1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <linux/smpboot.h>
26 #include <linux/relay.h>
27 #include <linux/slab.h>
28
29 #include <trace/events/power.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/cpuhp.h>
32
33 #include "smpboot.h"
34
35 /**
36 * cpuhp_cpu_state - Per cpu hotplug state storage
37 * @state: The current cpu state
38 * @target: The target state
39 * @thread: Pointer to the hotplug thread
40 * @should_run: Thread should execute
41 * @rollback: Perform a rollback
42 * @single: Single callback invocation
43 * @bringup: Single callback bringup or teardown selector
44 * @cb_state: The state for a single callback (install/uninstall)
45 * @result: Result of the operation
46 * @done: Signal completion to the issuer of the task
47 */
48 struct cpuhp_cpu_state {
49 enum cpuhp_state state;
50 enum cpuhp_state target;
51 #ifdef CONFIG_SMP
52 struct task_struct *thread;
53 bool should_run;
54 bool rollback;
55 bool single;
56 bool bringup;
57 struct hlist_node *node;
58 enum cpuhp_state cb_state;
59 int result;
60 struct completion done;
61 #endif
62 };
63
64 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
65
66 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
67 static struct lock_class_key cpuhp_state_key;
68 static struct lockdep_map cpuhp_state_lock_map =
69 STATIC_LOCKDEP_MAP_INIT("cpuhp_state", &cpuhp_state_key);
70 #endif
71
72 /**
73 * cpuhp_step - Hotplug state machine step
74 * @name: Name of the step
75 * @startup: Startup function of the step
76 * @teardown: Teardown function of the step
77 * @skip_onerr: Do not invoke the functions on error rollback
78 * Will go away once the notifiers are gone
79 * @cant_stop: Bringup/teardown can't be stopped at this step
80 */
81 struct cpuhp_step {
82 const char *name;
83 union {
84 int (*single)(unsigned int cpu);
85 int (*multi)(unsigned int cpu,
86 struct hlist_node *node);
87 } startup;
88 union {
89 int (*single)(unsigned int cpu);
90 int (*multi)(unsigned int cpu,
91 struct hlist_node *node);
92 } teardown;
93 struct hlist_head list;
94 bool skip_onerr;
95 bool cant_stop;
96 bool multi_instance;
97 };
98
99 static DEFINE_MUTEX(cpuhp_state_mutex);
100 static struct cpuhp_step cpuhp_bp_states[];
101 static struct cpuhp_step cpuhp_ap_states[];
102
cpuhp_is_ap_state(enum cpuhp_state state)103 static bool cpuhp_is_ap_state(enum cpuhp_state state)
104 {
105 /*
106 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
107 * purposes as that state is handled explicitly in cpu_down.
108 */
109 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
110 }
111
cpuhp_get_step(enum cpuhp_state state)112 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
113 {
114 struct cpuhp_step *sp;
115
116 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
117 return sp + state;
118 }
119
120 /**
121 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
122 * @cpu: The cpu for which the callback should be invoked
123 * @step: The step in the state machine
124 * @bringup: True if the bringup callback should be invoked
125 *
126 * Called from cpu hotplug and from the state register machinery.
127 */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)128 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
129 bool bringup, struct hlist_node *node)
130 {
131 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
132 struct cpuhp_step *step = cpuhp_get_step(state);
133 int (*cbm)(unsigned int cpu, struct hlist_node *node);
134 int (*cb)(unsigned int cpu);
135 int ret, cnt;
136
137 if (!step->multi_instance) {
138 cb = bringup ? step->startup.single : step->teardown.single;
139 if (!cb)
140 return 0;
141 trace_cpuhp_enter(cpu, st->target, state, cb);
142 ret = cb(cpu);
143 trace_cpuhp_exit(cpu, st->state, state, ret);
144 return ret;
145 }
146 cbm = bringup ? step->startup.multi : step->teardown.multi;
147 if (!cbm)
148 return 0;
149
150 /* Single invocation for instance add/remove */
151 if (node) {
152 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
153 ret = cbm(cpu, node);
154 trace_cpuhp_exit(cpu, st->state, state, ret);
155 return ret;
156 }
157
158 /* State transition. Invoke on all instances */
159 cnt = 0;
160 hlist_for_each(node, &step->list) {
161 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
162 ret = cbm(cpu, node);
163 trace_cpuhp_exit(cpu, st->state, state, ret);
164 if (ret)
165 goto err;
166 cnt++;
167 }
168 return 0;
169 err:
170 /* Rollback the instances if one failed */
171 cbm = !bringup ? step->startup.multi : step->teardown.multi;
172 if (!cbm)
173 return ret;
174
175 hlist_for_each(node, &step->list) {
176 if (!cnt--)
177 break;
178 cbm(cpu, node);
179 }
180 return ret;
181 }
182
183 #ifdef CONFIG_SMP
184 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
185 static DEFINE_MUTEX(cpu_add_remove_lock);
186 bool cpuhp_tasks_frozen;
187 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
188
189 /*
190 * The following two APIs (cpu_maps_update_begin/done) must be used when
191 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
192 * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
193 * hotplug callback (un)registration performed using __register_cpu_notifier()
194 * or __unregister_cpu_notifier().
195 */
cpu_maps_update_begin(void)196 void cpu_maps_update_begin(void)
197 {
198 mutex_lock(&cpu_add_remove_lock);
199 }
200 EXPORT_SYMBOL(cpu_notifier_register_begin);
201
cpu_maps_update_done(void)202 void cpu_maps_update_done(void)
203 {
204 mutex_unlock(&cpu_add_remove_lock);
205 }
206 EXPORT_SYMBOL(cpu_notifier_register_done);
207
208 static RAW_NOTIFIER_HEAD(cpu_chain);
209
210 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
211 * Should always be manipulated under cpu_add_remove_lock
212 */
213 static int cpu_hotplug_disabled;
214
215 #ifdef CONFIG_HOTPLUG_CPU
216
217 static struct {
218 struct task_struct *active_writer;
219 /* wait queue to wake up the active_writer */
220 wait_queue_head_t wq;
221 /* verifies that no writer will get active while readers are active */
222 struct mutex lock;
223 /*
224 * Also blocks the new readers during
225 * an ongoing cpu hotplug operation.
226 */
227 atomic_t refcount;
228
229 #ifdef CONFIG_DEBUG_LOCK_ALLOC
230 struct lockdep_map dep_map;
231 #endif
232 } cpu_hotplug = {
233 .active_writer = NULL,
234 .wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
235 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
236 #ifdef CONFIG_DEBUG_LOCK_ALLOC
237 .dep_map = STATIC_LOCKDEP_MAP_INIT("cpu_hotplug.dep_map", &cpu_hotplug.dep_map),
238 #endif
239 };
240
241 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
242 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
243 #define cpuhp_lock_acquire_tryread() \
244 lock_map_acquire_tryread(&cpu_hotplug.dep_map)
245 #define cpuhp_lock_acquire() lock_map_acquire(&cpu_hotplug.dep_map)
246 #define cpuhp_lock_release() lock_map_release(&cpu_hotplug.dep_map)
247
248
get_online_cpus(void)249 void get_online_cpus(void)
250 {
251 might_sleep();
252 if (cpu_hotplug.active_writer == current)
253 return;
254 cpuhp_lock_acquire_read();
255 mutex_lock(&cpu_hotplug.lock);
256 atomic_inc(&cpu_hotplug.refcount);
257 mutex_unlock(&cpu_hotplug.lock);
258 }
259 EXPORT_SYMBOL_GPL(get_online_cpus);
260
put_online_cpus(void)261 void put_online_cpus(void)
262 {
263 int refcount;
264
265 if (cpu_hotplug.active_writer == current)
266 return;
267
268 refcount = atomic_dec_return(&cpu_hotplug.refcount);
269 if (WARN_ON(refcount < 0)) /* try to fix things up */
270 atomic_inc(&cpu_hotplug.refcount);
271
272 if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
273 wake_up(&cpu_hotplug.wq);
274
275 cpuhp_lock_release();
276
277 }
278 EXPORT_SYMBOL_GPL(put_online_cpus);
279
280 /*
281 * This ensures that the hotplug operation can begin only when the
282 * refcount goes to zero.
283 *
284 * Note that during a cpu-hotplug operation, the new readers, if any,
285 * will be blocked by the cpu_hotplug.lock
286 *
287 * Since cpu_hotplug_begin() is always called after invoking
288 * cpu_maps_update_begin(), we can be sure that only one writer is active.
289 *
290 * Note that theoretically, there is a possibility of a livelock:
291 * - Refcount goes to zero, last reader wakes up the sleeping
292 * writer.
293 * - Last reader unlocks the cpu_hotplug.lock.
294 * - A new reader arrives at this moment, bumps up the refcount.
295 * - The writer acquires the cpu_hotplug.lock finds the refcount
296 * non zero and goes to sleep again.
297 *
298 * However, this is very difficult to achieve in practice since
299 * get_online_cpus() not an api which is called all that often.
300 *
301 */
cpu_hotplug_begin(void)302 void cpu_hotplug_begin(void)
303 {
304 DEFINE_WAIT(wait);
305
306 cpu_hotplug.active_writer = current;
307 cpuhp_lock_acquire();
308
309 for (;;) {
310 mutex_lock(&cpu_hotplug.lock);
311 prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
312 if (likely(!atomic_read(&cpu_hotplug.refcount)))
313 break;
314 mutex_unlock(&cpu_hotplug.lock);
315 schedule();
316 }
317 finish_wait(&cpu_hotplug.wq, &wait);
318 }
319
cpu_hotplug_done(void)320 void cpu_hotplug_done(void)
321 {
322 cpu_hotplug.active_writer = NULL;
323 mutex_unlock(&cpu_hotplug.lock);
324 cpuhp_lock_release();
325 }
326
327 /*
328 * Wait for currently running CPU hotplug operations to complete (if any) and
329 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
330 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
331 * hotplug path before performing hotplug operations. So acquiring that lock
332 * guarantees mutual exclusion from any currently running hotplug operations.
333 */
cpu_hotplug_disable(void)334 void cpu_hotplug_disable(void)
335 {
336 cpu_maps_update_begin();
337 cpu_hotplug_disabled++;
338 cpu_maps_update_done();
339 }
340 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
341
__cpu_hotplug_enable(void)342 static void __cpu_hotplug_enable(void)
343 {
344 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
345 return;
346 cpu_hotplug_disabled--;
347 }
348
cpu_hotplug_enable(void)349 void cpu_hotplug_enable(void)
350 {
351 cpu_maps_update_begin();
352 __cpu_hotplug_enable();
353 cpu_maps_update_done();
354 }
355 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
356 #endif /* CONFIG_HOTPLUG_CPU */
357
358 /* Need to know about CPUs going up/down? */
register_cpu_notifier(struct notifier_block * nb)359 int register_cpu_notifier(struct notifier_block *nb)
360 {
361 int ret;
362 cpu_maps_update_begin();
363 ret = raw_notifier_chain_register(&cpu_chain, nb);
364 cpu_maps_update_done();
365 return ret;
366 }
367
__register_cpu_notifier(struct notifier_block * nb)368 int __register_cpu_notifier(struct notifier_block *nb)
369 {
370 return raw_notifier_chain_register(&cpu_chain, nb);
371 }
372
__cpu_notify(unsigned long val,unsigned int cpu,int nr_to_call,int * nr_calls)373 static int __cpu_notify(unsigned long val, unsigned int cpu, int nr_to_call,
374 int *nr_calls)
375 {
376 unsigned long mod = cpuhp_tasks_frozen ? CPU_TASKS_FROZEN : 0;
377 void *hcpu = (void *)(long)cpu;
378
379 int ret;
380
381 ret = __raw_notifier_call_chain(&cpu_chain, val | mod, hcpu, nr_to_call,
382 nr_calls);
383
384 return notifier_to_errno(ret);
385 }
386
cpu_notify(unsigned long val,unsigned int cpu)387 static int cpu_notify(unsigned long val, unsigned int cpu)
388 {
389 return __cpu_notify(val, cpu, -1, NULL);
390 }
391
cpu_notify_nofail(unsigned long val,unsigned int cpu)392 static void cpu_notify_nofail(unsigned long val, unsigned int cpu)
393 {
394 BUG_ON(cpu_notify(val, cpu));
395 }
396
397 /* Notifier wrappers for transitioning to state machine */
notify_prepare(unsigned int cpu)398 static int notify_prepare(unsigned int cpu)
399 {
400 int nr_calls = 0;
401 int ret;
402
403 ret = __cpu_notify(CPU_UP_PREPARE, cpu, -1, &nr_calls);
404 if (ret) {
405 nr_calls--;
406 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
407 __func__, cpu);
408 __cpu_notify(CPU_UP_CANCELED, cpu, nr_calls, NULL);
409 }
410 return ret;
411 }
412
notify_online(unsigned int cpu)413 static int notify_online(unsigned int cpu)
414 {
415 cpu_notify(CPU_ONLINE, cpu);
416 return 0;
417 }
418
419 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st);
420
bringup_wait_for_ap(unsigned int cpu)421 static int bringup_wait_for_ap(unsigned int cpu)
422 {
423 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
424
425 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
426 wait_for_completion(&st->done);
427 if (WARN_ON_ONCE((!cpu_online(cpu))))
428 return -ECANCELED;
429
430 /* Unpark the stopper thread and the hotplug thread of the target cpu */
431 stop_machine_unpark(cpu);
432 kthread_unpark(st->thread);
433
434 /* Should we go further up ? */
435 if (st->target > CPUHP_AP_ONLINE_IDLE) {
436 __cpuhp_kick_ap_work(st);
437 wait_for_completion(&st->done);
438 }
439 return st->result;
440 }
441
bringup_cpu(unsigned int cpu)442 static int bringup_cpu(unsigned int cpu)
443 {
444 struct task_struct *idle = idle_thread_get(cpu);
445 int ret;
446
447 /*
448 * Some architectures have to walk the irq descriptors to
449 * setup the vector space for the cpu which comes online.
450 * Prevent irq alloc/free across the bringup.
451 */
452 irq_lock_sparse();
453
454 /* Arch-specific enabling code. */
455 ret = __cpu_up(cpu, idle);
456 irq_unlock_sparse();
457 if (ret) {
458 cpu_notify(CPU_UP_CANCELED, cpu);
459 return ret;
460 }
461 return bringup_wait_for_ap(cpu);
462 }
463
464 /*
465 * Hotplug state machine related functions
466 */
undo_cpu_down(unsigned int cpu,struct cpuhp_cpu_state * st)467 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
468 {
469 for (st->state++; st->state < st->target; st->state++) {
470 struct cpuhp_step *step = cpuhp_get_step(st->state);
471
472 if (!step->skip_onerr)
473 cpuhp_invoke_callback(cpu, st->state, true, NULL);
474 }
475 }
476
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)477 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
478 enum cpuhp_state target)
479 {
480 enum cpuhp_state prev_state = st->state;
481 int ret = 0;
482
483 for (; st->state > target; st->state--) {
484 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
485 if (ret) {
486 st->target = prev_state;
487 undo_cpu_down(cpu, st);
488 break;
489 }
490 }
491 return ret;
492 }
493
undo_cpu_up(unsigned int cpu,struct cpuhp_cpu_state * st)494 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
495 {
496 for (st->state--; st->state > st->target; st->state--) {
497 struct cpuhp_step *step = cpuhp_get_step(st->state);
498
499 if (!step->skip_onerr)
500 cpuhp_invoke_callback(cpu, st->state, false, NULL);
501 }
502 }
503
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)504 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
505 enum cpuhp_state target)
506 {
507 enum cpuhp_state prev_state = st->state;
508 int ret = 0;
509
510 while (st->state < target) {
511 st->state++;
512 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
513 if (ret) {
514 st->target = prev_state;
515 undo_cpu_up(cpu, st);
516 break;
517 }
518 }
519 return ret;
520 }
521
522 /*
523 * The cpu hotplug threads manage the bringup and teardown of the cpus
524 */
cpuhp_create(unsigned int cpu)525 static void cpuhp_create(unsigned int cpu)
526 {
527 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
528
529 init_completion(&st->done);
530 }
531
cpuhp_should_run(unsigned int cpu)532 static int cpuhp_should_run(unsigned int cpu)
533 {
534 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
535
536 return st->should_run;
537 }
538
539 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
cpuhp_ap_offline(unsigned int cpu,struct cpuhp_cpu_state * st)540 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
541 {
542 enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
543
544 return cpuhp_down_callbacks(cpu, st, target);
545 }
546
547 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
cpuhp_ap_online(unsigned int cpu,struct cpuhp_cpu_state * st)548 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
549 {
550 return cpuhp_up_callbacks(cpu, st, st->target);
551 }
552
553 /*
554 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
555 * callbacks when a state gets [un]installed at runtime.
556 */
cpuhp_thread_fun(unsigned int cpu)557 static void cpuhp_thread_fun(unsigned int cpu)
558 {
559 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
560 int ret = 0;
561
562 /*
563 * Paired with the mb() in cpuhp_kick_ap_work and
564 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
565 */
566 smp_mb();
567 if (!st->should_run)
568 return;
569
570 st->should_run = false;
571
572 lock_map_acquire(&cpuhp_state_lock_map);
573 /* Single callback invocation for [un]install ? */
574 if (st->single) {
575 if (st->cb_state < CPUHP_AP_ONLINE) {
576 local_irq_disable();
577 ret = cpuhp_invoke_callback(cpu, st->cb_state,
578 st->bringup, st->node);
579 local_irq_enable();
580 } else {
581 ret = cpuhp_invoke_callback(cpu, st->cb_state,
582 st->bringup, st->node);
583 }
584 } else if (st->rollback) {
585 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
586
587 undo_cpu_down(cpu, st);
588 /*
589 * This is a momentary workaround to keep the notifier users
590 * happy. Will go away once we got rid of the notifiers.
591 */
592 cpu_notify_nofail(CPU_DOWN_FAILED, cpu);
593 st->rollback = false;
594 } else {
595 /* Cannot happen .... */
596 BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
597
598 /* Regular hotplug work */
599 if (st->state < st->target)
600 ret = cpuhp_ap_online(cpu, st);
601 else if (st->state > st->target)
602 ret = cpuhp_ap_offline(cpu, st);
603 }
604 lock_map_release(&cpuhp_state_lock_map);
605 st->result = ret;
606 complete(&st->done);
607 }
608
609 /* Invoke a single callback on a remote cpu */
610 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)611 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
612 struct hlist_node *node)
613 {
614 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
615
616 if (!cpu_online(cpu))
617 return 0;
618
619 lock_map_acquire(&cpuhp_state_lock_map);
620 lock_map_release(&cpuhp_state_lock_map);
621
622 /*
623 * If we are up and running, use the hotplug thread. For early calls
624 * we invoke the thread function directly.
625 */
626 if (!st->thread)
627 return cpuhp_invoke_callback(cpu, state, bringup, node);
628
629 st->cb_state = state;
630 st->single = true;
631 st->bringup = bringup;
632 st->node = node;
633
634 /*
635 * Make sure the above stores are visible before should_run becomes
636 * true. Paired with the mb() above in cpuhp_thread_fun()
637 */
638 smp_mb();
639 st->should_run = true;
640 wake_up_process(st->thread);
641 wait_for_completion(&st->done);
642 return st->result;
643 }
644
645 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap_work(struct cpuhp_cpu_state * st)646 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
647 {
648 st->result = 0;
649 st->single = false;
650 /*
651 * Make sure the above stores are visible before should_run becomes
652 * true. Paired with the mb() above in cpuhp_thread_fun()
653 */
654 smp_mb();
655 st->should_run = true;
656 wake_up_process(st->thread);
657 }
658
cpuhp_kick_ap_work(unsigned int cpu)659 static int cpuhp_kick_ap_work(unsigned int cpu)
660 {
661 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
662 enum cpuhp_state state = st->state;
663
664 trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
665 lock_map_acquire(&cpuhp_state_lock_map);
666 lock_map_release(&cpuhp_state_lock_map);
667 __cpuhp_kick_ap_work(st);
668 wait_for_completion(&st->done);
669 trace_cpuhp_exit(cpu, st->state, state, st->result);
670 return st->result;
671 }
672
673 static struct smp_hotplug_thread cpuhp_threads = {
674 .store = &cpuhp_state.thread,
675 .create = &cpuhp_create,
676 .thread_should_run = cpuhp_should_run,
677 .thread_fn = cpuhp_thread_fun,
678 .thread_comm = "cpuhp/%u",
679 .selfparking = true,
680 };
681
cpuhp_threads_init(void)682 void __init cpuhp_threads_init(void)
683 {
684 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
685 kthread_unpark(this_cpu_read(cpuhp_state.thread));
686 }
687
688 EXPORT_SYMBOL(register_cpu_notifier);
689 EXPORT_SYMBOL(__register_cpu_notifier);
unregister_cpu_notifier(struct notifier_block * nb)690 void unregister_cpu_notifier(struct notifier_block *nb)
691 {
692 cpu_maps_update_begin();
693 raw_notifier_chain_unregister(&cpu_chain, nb);
694 cpu_maps_update_done();
695 }
696 EXPORT_SYMBOL(unregister_cpu_notifier);
697
__unregister_cpu_notifier(struct notifier_block * nb)698 void __unregister_cpu_notifier(struct notifier_block *nb)
699 {
700 raw_notifier_chain_unregister(&cpu_chain, nb);
701 }
702 EXPORT_SYMBOL(__unregister_cpu_notifier);
703
704 #ifdef CONFIG_HOTPLUG_CPU
705 /**
706 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
707 * @cpu: a CPU id
708 *
709 * This function walks all processes, finds a valid mm struct for each one and
710 * then clears a corresponding bit in mm's cpumask. While this all sounds
711 * trivial, there are various non-obvious corner cases, which this function
712 * tries to solve in a safe manner.
713 *
714 * Also note that the function uses a somewhat relaxed locking scheme, so it may
715 * be called only for an already offlined CPU.
716 */
clear_tasks_mm_cpumask(int cpu)717 void clear_tasks_mm_cpumask(int cpu)
718 {
719 struct task_struct *p;
720
721 /*
722 * This function is called after the cpu is taken down and marked
723 * offline, so its not like new tasks will ever get this cpu set in
724 * their mm mask. -- Peter Zijlstra
725 * Thus, we may use rcu_read_lock() here, instead of grabbing
726 * full-fledged tasklist_lock.
727 */
728 WARN_ON(cpu_online(cpu));
729 rcu_read_lock();
730 for_each_process(p) {
731 struct task_struct *t;
732
733 /*
734 * Main thread might exit, but other threads may still have
735 * a valid mm. Find one.
736 */
737 t = find_lock_task_mm(p);
738 if (!t)
739 continue;
740 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
741 task_unlock(t);
742 }
743 rcu_read_unlock();
744 }
745
check_for_tasks(int dead_cpu)746 static inline void check_for_tasks(int dead_cpu)
747 {
748 struct task_struct *g, *p;
749
750 read_lock(&tasklist_lock);
751 for_each_process_thread(g, p) {
752 if (!p->on_rq)
753 continue;
754 /*
755 * We do the check with unlocked task_rq(p)->lock.
756 * Order the reading to do not warn about a task,
757 * which was running on this cpu in the past, and
758 * it's just been woken on another cpu.
759 */
760 rmb();
761 if (task_cpu(p) != dead_cpu)
762 continue;
763
764 pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
765 p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
766 }
767 read_unlock(&tasklist_lock);
768 }
769
notify_down_prepare(unsigned int cpu)770 static int notify_down_prepare(unsigned int cpu)
771 {
772 int err, nr_calls = 0;
773
774 err = __cpu_notify(CPU_DOWN_PREPARE, cpu, -1, &nr_calls);
775 if (err) {
776 nr_calls--;
777 __cpu_notify(CPU_DOWN_FAILED, cpu, nr_calls, NULL);
778 pr_warn("%s: attempt to take down CPU %u failed\n",
779 __func__, cpu);
780 }
781 return err;
782 }
783
784 /* Take this CPU down. */
take_cpu_down(void * _param)785 static int take_cpu_down(void *_param)
786 {
787 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
788 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
789 int err, cpu = smp_processor_id();
790
791 /* Ensure this CPU doesn't handle any more interrupts. */
792 err = __cpu_disable();
793 if (err < 0)
794 return err;
795
796 /*
797 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
798 * do this step again.
799 */
800 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
801 st->state--;
802 /* Invoke the former CPU_DYING callbacks */
803 for (; st->state > target; st->state--)
804 cpuhp_invoke_callback(cpu, st->state, false, NULL);
805
806 /* Give up timekeeping duties */
807 tick_handover_do_timer();
808 /* Park the stopper thread */
809 stop_machine_park(cpu);
810 return 0;
811 }
812
takedown_cpu(unsigned int cpu)813 static int takedown_cpu(unsigned int cpu)
814 {
815 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
816 int err;
817
818 /* Park the smpboot threads */
819 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
820 smpboot_park_threads(cpu);
821
822 /*
823 * Prevent irq alloc/free while the dying cpu reorganizes the
824 * interrupt affinities.
825 */
826 irq_lock_sparse();
827
828 /*
829 * So now all preempt/rcu users must observe !cpu_active().
830 */
831 err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
832 if (err) {
833 /* CPU refused to die */
834 irq_unlock_sparse();
835 /* Unpark the hotplug thread so we can rollback there */
836 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
837 return err;
838 }
839 BUG_ON(cpu_online(cpu));
840
841 /*
842 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
843 * runnable tasks from the cpu, there's only the idle task left now
844 * that the migration thread is done doing the stop_machine thing.
845 *
846 * Wait for the stop thread to go away.
847 */
848 wait_for_completion(&st->done);
849 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
850
851 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
852 irq_unlock_sparse();
853
854 hotplug_cpu__broadcast_tick_pull(cpu);
855 /* This actually kills the CPU. */
856 __cpu_die(cpu);
857
858 tick_cleanup_dead_cpu(cpu);
859 return 0;
860 }
861
notify_dead(unsigned int cpu)862 static int notify_dead(unsigned int cpu)
863 {
864 cpu_notify_nofail(CPU_DEAD, cpu);
865 check_for_tasks(cpu);
866 return 0;
867 }
868
cpuhp_complete_idle_dead(void * arg)869 static void cpuhp_complete_idle_dead(void *arg)
870 {
871 struct cpuhp_cpu_state *st = arg;
872
873 complete(&st->done);
874 }
875
cpuhp_report_idle_dead(void)876 void cpuhp_report_idle_dead(void)
877 {
878 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
879
880 BUG_ON(st->state != CPUHP_AP_OFFLINE);
881 rcu_report_dead(smp_processor_id());
882 st->state = CPUHP_AP_IDLE_DEAD;
883 /*
884 * We cannot call complete after rcu_report_dead() so we delegate it
885 * to an online cpu.
886 */
887 smp_call_function_single(cpumask_first(cpu_online_mask),
888 cpuhp_complete_idle_dead, st, 0);
889 }
890
891 #else
892 #define notify_down_prepare NULL
893 #define takedown_cpu NULL
894 #define notify_dead NULL
895 #endif
896
897 #ifdef CONFIG_HOTPLUG_CPU
898
899 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)900 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
901 enum cpuhp_state target)
902 {
903 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
904 int prev_state, ret = 0;
905 bool hasdied = false;
906
907 if (num_online_cpus() == 1)
908 return -EBUSY;
909
910 if (!cpu_present(cpu))
911 return -EINVAL;
912
913 cpu_hotplug_begin();
914
915 cpuhp_tasks_frozen = tasks_frozen;
916
917 prev_state = st->state;
918 st->target = target;
919 /*
920 * If the current CPU state is in the range of the AP hotplug thread,
921 * then we need to kick the thread.
922 */
923 if (st->state > CPUHP_TEARDOWN_CPU) {
924 ret = cpuhp_kick_ap_work(cpu);
925 /*
926 * The AP side has done the error rollback already. Just
927 * return the error code..
928 */
929 if (ret)
930 goto out;
931
932 /*
933 * We might have stopped still in the range of the AP hotplug
934 * thread. Nothing to do anymore.
935 */
936 if (st->state > CPUHP_TEARDOWN_CPU)
937 goto out;
938 }
939 /*
940 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
941 * to do the further cleanups.
942 */
943 ret = cpuhp_down_callbacks(cpu, st, target);
944 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
945 st->target = prev_state;
946 st->rollback = true;
947 cpuhp_kick_ap_work(cpu);
948 }
949
950 hasdied = prev_state != st->state && st->state == CPUHP_OFFLINE;
951 out:
952 cpu_hotplug_done();
953 /* This post dead nonsense must die */
954 if (!ret && hasdied)
955 cpu_notify_nofail(CPU_POST_DEAD, cpu);
956 return ret;
957 }
958
do_cpu_down(unsigned int cpu,enum cpuhp_state target)959 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
960 {
961 int err;
962
963 cpu_maps_update_begin();
964
965 if (cpu_hotplug_disabled) {
966 err = -EBUSY;
967 goto out;
968 }
969
970 err = _cpu_down(cpu, 0, target);
971
972 out:
973 cpu_maps_update_done();
974 return err;
975 }
cpu_down(unsigned int cpu)976 int cpu_down(unsigned int cpu)
977 {
978 return do_cpu_down(cpu, CPUHP_OFFLINE);
979 }
980 EXPORT_SYMBOL(cpu_down);
981 #endif /*CONFIG_HOTPLUG_CPU*/
982
983 /**
984 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
985 * @cpu: cpu that just started
986 *
987 * It must be called by the arch code on the new cpu, before the new cpu
988 * enables interrupts and before the "boot" cpu returns from __cpu_up().
989 */
notify_cpu_starting(unsigned int cpu)990 void notify_cpu_starting(unsigned int cpu)
991 {
992 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
993 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
994
995 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
996 while (st->state < target) {
997 st->state++;
998 cpuhp_invoke_callback(cpu, st->state, true, NULL);
999 }
1000 }
1001
1002 /*
1003 * Called from the idle task. Wake up the controlling task which brings the
1004 * stopper and the hotplug thread of the upcoming CPU up and then delegates
1005 * the rest of the online bringup to the hotplug thread.
1006 */
cpuhp_online_idle(enum cpuhp_state state)1007 void cpuhp_online_idle(enum cpuhp_state state)
1008 {
1009 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1010
1011 /* Happens for the boot cpu */
1012 if (state != CPUHP_AP_ONLINE_IDLE)
1013 return;
1014
1015 st->state = CPUHP_AP_ONLINE_IDLE;
1016 complete(&st->done);
1017 }
1018
1019 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1020 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1021 {
1022 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1023 struct task_struct *idle;
1024 int ret = 0;
1025
1026 cpu_hotplug_begin();
1027
1028 if (!cpu_present(cpu)) {
1029 ret = -EINVAL;
1030 goto out;
1031 }
1032
1033 /*
1034 * The caller of do_cpu_up might have raced with another
1035 * caller. Ignore it for now.
1036 */
1037 if (st->state >= target)
1038 goto out;
1039
1040 if (st->state == CPUHP_OFFLINE) {
1041 /* Let it fail before we try to bring the cpu up */
1042 idle = idle_thread_get(cpu);
1043 if (IS_ERR(idle)) {
1044 ret = PTR_ERR(idle);
1045 goto out;
1046 }
1047 }
1048
1049 cpuhp_tasks_frozen = tasks_frozen;
1050
1051 st->target = target;
1052 /*
1053 * If the current CPU state is in the range of the AP hotplug thread,
1054 * then we need to kick the thread once more.
1055 */
1056 if (st->state > CPUHP_BRINGUP_CPU) {
1057 ret = cpuhp_kick_ap_work(cpu);
1058 /*
1059 * The AP side has done the error rollback already. Just
1060 * return the error code..
1061 */
1062 if (ret)
1063 goto out;
1064 }
1065
1066 /*
1067 * Try to reach the target state. We max out on the BP at
1068 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1069 * responsible for bringing it up to the target state.
1070 */
1071 target = min((int)target, CPUHP_BRINGUP_CPU);
1072 ret = cpuhp_up_callbacks(cpu, st, target);
1073 out:
1074 cpu_hotplug_done();
1075 return ret;
1076 }
1077
do_cpu_up(unsigned int cpu,enum cpuhp_state target)1078 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1079 {
1080 int err = 0;
1081
1082 if (!cpu_possible(cpu)) {
1083 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1084 cpu);
1085 #if defined(CONFIG_IA64)
1086 pr_err("please check additional_cpus= boot parameter\n");
1087 #endif
1088 return -EINVAL;
1089 }
1090
1091 err = try_online_node(cpu_to_node(cpu));
1092 if (err)
1093 return err;
1094
1095 cpu_maps_update_begin();
1096
1097 if (cpu_hotplug_disabled) {
1098 err = -EBUSY;
1099 goto out;
1100 }
1101
1102 err = _cpu_up(cpu, 0, target);
1103 out:
1104 cpu_maps_update_done();
1105 return err;
1106 }
1107
cpu_up(unsigned int cpu)1108 int cpu_up(unsigned int cpu)
1109 {
1110 return do_cpu_up(cpu, CPUHP_ONLINE);
1111 }
1112 EXPORT_SYMBOL_GPL(cpu_up);
1113
1114 #ifdef CONFIG_PM_SLEEP_SMP
1115 static cpumask_var_t frozen_cpus;
1116
freeze_secondary_cpus(int primary)1117 int freeze_secondary_cpus(int primary)
1118 {
1119 int cpu, error = 0;
1120
1121 cpu_maps_update_begin();
1122 if (!cpu_online(primary))
1123 primary = cpumask_first(cpu_online_mask);
1124 /*
1125 * We take down all of the non-boot CPUs in one shot to avoid races
1126 * with the userspace trying to use the CPU hotplug at the same time
1127 */
1128 cpumask_clear(frozen_cpus);
1129
1130 pr_info("Disabling non-boot CPUs ...\n");
1131 for_each_online_cpu(cpu) {
1132 if (cpu == primary)
1133 continue;
1134 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1135 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1136 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1137 if (!error)
1138 cpumask_set_cpu(cpu, frozen_cpus);
1139 else {
1140 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1141 break;
1142 }
1143 }
1144
1145 if (!error)
1146 BUG_ON(num_online_cpus() > 1);
1147 else
1148 pr_err("Non-boot CPUs are not disabled\n");
1149
1150 /*
1151 * Make sure the CPUs won't be enabled by someone else. We need to do
1152 * this even in case of failure as all disable_nonboot_cpus() users are
1153 * supposed to do enable_nonboot_cpus() on the failure path.
1154 */
1155 cpu_hotplug_disabled++;
1156
1157 cpu_maps_update_done();
1158 return error;
1159 }
1160
arch_enable_nonboot_cpus_begin(void)1161 void __weak arch_enable_nonboot_cpus_begin(void)
1162 {
1163 }
1164
arch_enable_nonboot_cpus_end(void)1165 void __weak arch_enable_nonboot_cpus_end(void)
1166 {
1167 }
1168
enable_nonboot_cpus(void)1169 void enable_nonboot_cpus(void)
1170 {
1171 int cpu, error;
1172 struct device *cpu_device;
1173
1174 /* Allow everyone to use the CPU hotplug again */
1175 cpu_maps_update_begin();
1176 __cpu_hotplug_enable();
1177 if (cpumask_empty(frozen_cpus))
1178 goto out;
1179
1180 pr_info("Enabling non-boot CPUs ...\n");
1181
1182 arch_enable_nonboot_cpus_begin();
1183
1184 for_each_cpu(cpu, frozen_cpus) {
1185 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1186 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1187 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1188 if (!error) {
1189 pr_info("CPU%d is up\n", cpu);
1190 cpu_device = get_cpu_device(cpu);
1191 if (!cpu_device)
1192 pr_err("%s: failed to get cpu%d device\n",
1193 __func__, cpu);
1194 else
1195 kobject_uevent(&cpu_device->kobj, KOBJ_ONLINE);
1196 continue;
1197 }
1198 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1199 }
1200
1201 arch_enable_nonboot_cpus_end();
1202
1203 cpumask_clear(frozen_cpus);
1204 out:
1205 cpu_maps_update_done();
1206 }
1207
alloc_frozen_cpus(void)1208 static int __init alloc_frozen_cpus(void)
1209 {
1210 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1211 return -ENOMEM;
1212 return 0;
1213 }
1214 core_initcall(alloc_frozen_cpus);
1215
1216 /*
1217 * When callbacks for CPU hotplug notifications are being executed, we must
1218 * ensure that the state of the system with respect to the tasks being frozen
1219 * or not, as reported by the notification, remains unchanged *throughout the
1220 * duration* of the execution of the callbacks.
1221 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1222 *
1223 * This synchronization is implemented by mutually excluding regular CPU
1224 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1225 * Hibernate notifications.
1226 */
1227 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)1228 cpu_hotplug_pm_callback(struct notifier_block *nb,
1229 unsigned long action, void *ptr)
1230 {
1231 switch (action) {
1232
1233 case PM_SUSPEND_PREPARE:
1234 case PM_HIBERNATION_PREPARE:
1235 cpu_hotplug_disable();
1236 break;
1237
1238 case PM_POST_SUSPEND:
1239 case PM_POST_HIBERNATION:
1240 cpu_hotplug_enable();
1241 break;
1242
1243 default:
1244 return NOTIFY_DONE;
1245 }
1246
1247 return NOTIFY_OK;
1248 }
1249
1250
cpu_hotplug_pm_sync_init(void)1251 static int __init cpu_hotplug_pm_sync_init(void)
1252 {
1253 /*
1254 * cpu_hotplug_pm_callback has higher priority than x86
1255 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1256 * to disable cpu hotplug to avoid cpu hotplug race.
1257 */
1258 pm_notifier(cpu_hotplug_pm_callback, 0);
1259 return 0;
1260 }
1261 core_initcall(cpu_hotplug_pm_sync_init);
1262
1263 #endif /* CONFIG_PM_SLEEP_SMP */
1264
1265 #endif /* CONFIG_SMP */
1266
1267 /* Boot processor state steps */
1268 static struct cpuhp_step cpuhp_bp_states[] = {
1269 [CPUHP_OFFLINE] = {
1270 .name = "offline",
1271 .startup.single = NULL,
1272 .teardown.single = NULL,
1273 },
1274 #ifdef CONFIG_SMP
1275 [CPUHP_CREATE_THREADS]= {
1276 .name = "threads:prepare",
1277 .startup.single = smpboot_create_threads,
1278 .teardown.single = NULL,
1279 .cant_stop = true,
1280 },
1281 [CPUHP_PERF_PREPARE] = {
1282 .name = "perf:prepare",
1283 .startup.single = perf_event_init_cpu,
1284 .teardown.single = perf_event_exit_cpu,
1285 },
1286 [CPUHP_WORKQUEUE_PREP] = {
1287 .name = "workqueue:prepare",
1288 .startup.single = workqueue_prepare_cpu,
1289 .teardown.single = NULL,
1290 },
1291 [CPUHP_HRTIMERS_PREPARE] = {
1292 .name = "hrtimers:prepare",
1293 .startup.single = hrtimers_prepare_cpu,
1294 .teardown.single = hrtimers_dead_cpu,
1295 },
1296 [CPUHP_SMPCFD_PREPARE] = {
1297 .name = "smpcfd:prepare",
1298 .startup.single = smpcfd_prepare_cpu,
1299 .teardown.single = smpcfd_dead_cpu,
1300 },
1301 [CPUHP_RELAY_PREPARE] = {
1302 .name = "relay:prepare",
1303 .startup.single = relay_prepare_cpu,
1304 .teardown.single = NULL,
1305 },
1306 [CPUHP_SLAB_PREPARE] = {
1307 .name = "slab:prepare",
1308 .startup.single = slab_prepare_cpu,
1309 .teardown.single = slab_dead_cpu,
1310 },
1311 [CPUHP_RCUTREE_PREP] = {
1312 .name = "RCU/tree:prepare",
1313 .startup.single = rcutree_prepare_cpu,
1314 .teardown.single = rcutree_dead_cpu,
1315 },
1316 /*
1317 * Preparatory and dead notifiers. Will be replaced once the notifiers
1318 * are converted to states.
1319 */
1320 [CPUHP_NOTIFY_PREPARE] = {
1321 .name = "notify:prepare",
1322 .startup.single = notify_prepare,
1323 .teardown.single = notify_dead,
1324 .skip_onerr = true,
1325 .cant_stop = true,
1326 },
1327 /*
1328 * On the tear-down path, timers_dead_cpu() must be invoked
1329 * before blk_mq_queue_reinit_notify() from notify_dead(),
1330 * otherwise a RCU stall occurs.
1331 */
1332 [CPUHP_TIMERS_PREPARE] = {
1333 .name = "timers:dead",
1334 .startup.single = timers_prepare_cpu,
1335 .teardown.single = timers_dead_cpu,
1336 },
1337 /* Kicks the plugged cpu into life */
1338 [CPUHP_BRINGUP_CPU] = {
1339 .name = "cpu:bringup",
1340 .startup.single = bringup_cpu,
1341 .teardown.single = NULL,
1342 .cant_stop = true,
1343 },
1344 /*
1345 * Handled on controll processor until the plugged processor manages
1346 * this itself.
1347 */
1348 [CPUHP_TEARDOWN_CPU] = {
1349 .name = "cpu:teardown",
1350 .startup.single = NULL,
1351 .teardown.single = takedown_cpu,
1352 .cant_stop = true,
1353 },
1354 #else
1355 [CPUHP_BRINGUP_CPU] = { },
1356 #endif
1357 };
1358
1359 /* Application processor state steps */
1360 static struct cpuhp_step cpuhp_ap_states[] = {
1361 #ifdef CONFIG_SMP
1362 /* Final state before CPU kills itself */
1363 [CPUHP_AP_IDLE_DEAD] = {
1364 .name = "idle:dead",
1365 },
1366 /*
1367 * Last state before CPU enters the idle loop to die. Transient state
1368 * for synchronization.
1369 */
1370 [CPUHP_AP_OFFLINE] = {
1371 .name = "ap:offline",
1372 .cant_stop = true,
1373 },
1374 /* First state is scheduler control. Interrupts are disabled */
1375 [CPUHP_AP_SCHED_STARTING] = {
1376 .name = "sched:starting",
1377 .startup.single = sched_cpu_starting,
1378 .teardown.single = sched_cpu_dying,
1379 },
1380 [CPUHP_AP_RCUTREE_DYING] = {
1381 .name = "RCU/tree:dying",
1382 .startup.single = NULL,
1383 .teardown.single = rcutree_dying_cpu,
1384 },
1385 [CPUHP_AP_SMPCFD_DYING] = {
1386 .name = "smpcfd:dying",
1387 .startup.single = NULL,
1388 .teardown.single = smpcfd_dying_cpu,
1389 },
1390 /* Entry state on starting. Interrupts enabled from here on. Transient
1391 * state for synchronsization */
1392 [CPUHP_AP_ONLINE] = {
1393 .name = "ap:online",
1394 },
1395 /* Handle smpboot threads park/unpark */
1396 [CPUHP_AP_SMPBOOT_THREADS] = {
1397 .name = "smpboot/threads:online",
1398 .startup.single = smpboot_unpark_threads,
1399 .teardown.single = NULL,
1400 },
1401 [CPUHP_AP_PERF_ONLINE] = {
1402 .name = "perf:online",
1403 .startup.single = perf_event_init_cpu,
1404 .teardown.single = perf_event_exit_cpu,
1405 },
1406 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1407 .name = "workqueue:online",
1408 .startup.single = workqueue_online_cpu,
1409 .teardown.single = workqueue_offline_cpu,
1410 },
1411 [CPUHP_AP_RCUTREE_ONLINE] = {
1412 .name = "RCU/tree:online",
1413 .startup.single = rcutree_online_cpu,
1414 .teardown.single = rcutree_offline_cpu,
1415 },
1416
1417 /*
1418 * Online/down_prepare notifiers. Will be removed once the notifiers
1419 * are converted to states.
1420 */
1421 [CPUHP_AP_NOTIFY_ONLINE] = {
1422 .name = "notify:online",
1423 .startup.single = notify_online,
1424 .teardown.single = notify_down_prepare,
1425 .skip_onerr = true,
1426 },
1427 #endif
1428 /*
1429 * The dynamically registered state space is here
1430 */
1431
1432 #ifdef CONFIG_SMP
1433 /* Last state is scheduler control setting the cpu active */
1434 [CPUHP_AP_ACTIVE] = {
1435 .name = "sched:active",
1436 .startup.single = sched_cpu_activate,
1437 .teardown.single = sched_cpu_deactivate,
1438 },
1439 #endif
1440
1441 /* CPU is fully up and running. */
1442 [CPUHP_ONLINE] = {
1443 .name = "online",
1444 .startup.single = NULL,
1445 .teardown.single = NULL,
1446 },
1447 };
1448
1449 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)1450 static int cpuhp_cb_check(enum cpuhp_state state)
1451 {
1452 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1453 return -EINVAL;
1454 return 0;
1455 }
1456
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1457 static void cpuhp_store_callbacks(enum cpuhp_state state,
1458 const char *name,
1459 int (*startup)(unsigned int cpu),
1460 int (*teardown)(unsigned int cpu),
1461 bool multi_instance)
1462 {
1463 /* (Un)Install the callbacks for further cpu hotplug operations */
1464 struct cpuhp_step *sp;
1465
1466 sp = cpuhp_get_step(state);
1467 sp->startup.single = startup;
1468 sp->teardown.single = teardown;
1469 sp->name = name;
1470 sp->multi_instance = multi_instance;
1471 INIT_HLIST_HEAD(&sp->list);
1472 }
1473
cpuhp_get_teardown_cb(enum cpuhp_state state)1474 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1475 {
1476 return cpuhp_get_step(state)->teardown.single;
1477 }
1478
1479 /*
1480 * Call the startup/teardown function for a step either on the AP or
1481 * on the current CPU.
1482 */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1483 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1484 struct hlist_node *node)
1485 {
1486 struct cpuhp_step *sp = cpuhp_get_step(state);
1487 int ret;
1488
1489 if ((bringup && !sp->startup.single) ||
1490 (!bringup && !sp->teardown.single))
1491 return 0;
1492 /*
1493 * The non AP bound callbacks can fail on bringup. On teardown
1494 * e.g. module removal we crash for now.
1495 */
1496 #ifdef CONFIG_SMP
1497 if (cpuhp_is_ap_state(state))
1498 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1499 else
1500 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1501 #else
1502 ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1503 #endif
1504 BUG_ON(ret && !bringup);
1505 return ret;
1506 }
1507
1508 /*
1509 * Called from __cpuhp_setup_state on a recoverable failure.
1510 *
1511 * Note: The teardown callbacks for rollback are not allowed to fail!
1512 */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)1513 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1514 struct hlist_node *node)
1515 {
1516 int cpu;
1517
1518 /* Roll back the already executed steps on the other cpus */
1519 for_each_present_cpu(cpu) {
1520 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1521 int cpustate = st->state;
1522
1523 if (cpu >= failedcpu)
1524 break;
1525
1526 /* Did we invoke the startup call on that cpu ? */
1527 if (cpustate >= state)
1528 cpuhp_issue_call(cpu, state, false, node);
1529 }
1530 }
1531
1532 /*
1533 * Returns a free for dynamic slot assignment of the Online state. The states
1534 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1535 * by having no name assigned.
1536 */
cpuhp_reserve_state(enum cpuhp_state state)1537 static int cpuhp_reserve_state(enum cpuhp_state state)
1538 {
1539 enum cpuhp_state i;
1540
1541 for (i = CPUHP_AP_ONLINE_DYN; i <= CPUHP_AP_ONLINE_DYN_END; i++) {
1542 if (cpuhp_ap_states[i].name)
1543 continue;
1544
1545 cpuhp_ap_states[i].name = "Reserved";
1546 return i;
1547 }
1548 WARN(1, "No more dynamic states available for CPU hotplug\n");
1549 return -ENOSPC;
1550 }
1551
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)1552 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1553 bool invoke)
1554 {
1555 struct cpuhp_step *sp;
1556 int cpu;
1557 int ret;
1558
1559 sp = cpuhp_get_step(state);
1560 if (sp->multi_instance == false)
1561 return -EINVAL;
1562
1563 get_online_cpus();
1564 mutex_lock(&cpuhp_state_mutex);
1565
1566 if (!invoke || !sp->startup.multi)
1567 goto add_node;
1568
1569 /*
1570 * Try to call the startup callback for each present cpu
1571 * depending on the hotplug state of the cpu.
1572 */
1573 for_each_present_cpu(cpu) {
1574 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1575 int cpustate = st->state;
1576
1577 if (cpustate < state)
1578 continue;
1579
1580 ret = cpuhp_issue_call(cpu, state, true, node);
1581 if (ret) {
1582 if (sp->teardown.multi)
1583 cpuhp_rollback_install(cpu, state, node);
1584 goto err;
1585 }
1586 }
1587 add_node:
1588 ret = 0;
1589 hlist_add_head(node, &sp->list);
1590
1591 err:
1592 mutex_unlock(&cpuhp_state_mutex);
1593 put_online_cpus();
1594 return ret;
1595 }
1596 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1597
1598 /**
1599 * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1600 * @state: The state to setup
1601 * @invoke: If true, the startup function is invoked for cpus where
1602 * cpu state >= @state
1603 * @startup: startup callback function
1604 * @teardown: teardown callback function
1605 *
1606 * Returns 0 if successful, otherwise a proper error code
1607 */
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1608 int __cpuhp_setup_state(enum cpuhp_state state,
1609 const char *name, bool invoke,
1610 int (*startup)(unsigned int cpu),
1611 int (*teardown)(unsigned int cpu),
1612 bool multi_instance)
1613 {
1614 int cpu, ret = 0;
1615 int dyn_state = 0;
1616
1617 if (cpuhp_cb_check(state) || !name)
1618 return -EINVAL;
1619
1620 get_online_cpus();
1621 mutex_lock(&cpuhp_state_mutex);
1622
1623 /* currently assignments for the ONLINE state are possible */
1624 if (state == CPUHP_AP_ONLINE_DYN) {
1625 dyn_state = 1;
1626 ret = cpuhp_reserve_state(state);
1627 if (ret < 0)
1628 goto out;
1629 state = ret;
1630 }
1631
1632 cpuhp_store_callbacks(state, name, startup, teardown, multi_instance);
1633
1634 if (!invoke || !startup)
1635 goto out;
1636
1637 /*
1638 * Try to call the startup callback for each present cpu
1639 * depending on the hotplug state of the cpu.
1640 */
1641 for_each_present_cpu(cpu) {
1642 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1643 int cpustate = st->state;
1644
1645 if (cpustate < state)
1646 continue;
1647
1648 ret = cpuhp_issue_call(cpu, state, true, NULL);
1649 if (ret) {
1650 if (teardown)
1651 cpuhp_rollback_install(cpu, state, NULL);
1652 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1653 goto out;
1654 }
1655 }
1656 out:
1657 mutex_unlock(&cpuhp_state_mutex);
1658
1659 put_online_cpus();
1660 if (!ret && dyn_state)
1661 return state;
1662 return ret;
1663 }
1664 EXPORT_SYMBOL(__cpuhp_setup_state);
1665
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)1666 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1667 struct hlist_node *node, bool invoke)
1668 {
1669 struct cpuhp_step *sp = cpuhp_get_step(state);
1670 int cpu;
1671
1672 BUG_ON(cpuhp_cb_check(state));
1673
1674 if (!sp->multi_instance)
1675 return -EINVAL;
1676
1677 get_online_cpus();
1678 mutex_lock(&cpuhp_state_mutex);
1679
1680 if (!invoke || !cpuhp_get_teardown_cb(state))
1681 goto remove;
1682 /*
1683 * Call the teardown callback for each present cpu depending
1684 * on the hotplug state of the cpu. This function is not
1685 * allowed to fail currently!
1686 */
1687 for_each_present_cpu(cpu) {
1688 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1689 int cpustate = st->state;
1690
1691 if (cpustate >= state)
1692 cpuhp_issue_call(cpu, state, false, node);
1693 }
1694
1695 remove:
1696 hlist_del(node);
1697 mutex_unlock(&cpuhp_state_mutex);
1698 put_online_cpus();
1699
1700 return 0;
1701 }
1702 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1703 /**
1704 * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1705 * @state: The state to remove
1706 * @invoke: If true, the teardown function is invoked for cpus where
1707 * cpu state >= @state
1708 *
1709 * The teardown callback is currently not allowed to fail. Think
1710 * about module removal!
1711 */
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)1712 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1713 {
1714 struct cpuhp_step *sp = cpuhp_get_step(state);
1715 int cpu;
1716
1717 BUG_ON(cpuhp_cb_check(state));
1718
1719 get_online_cpus();
1720 mutex_lock(&cpuhp_state_mutex);
1721
1722 if (sp->multi_instance) {
1723 WARN(!hlist_empty(&sp->list),
1724 "Error: Removing state %d which has instances left.\n",
1725 state);
1726 goto remove;
1727 }
1728
1729 if (!invoke || !cpuhp_get_teardown_cb(state))
1730 goto remove;
1731
1732 /*
1733 * Call the teardown callback for each present cpu depending
1734 * on the hotplug state of the cpu. This function is not
1735 * allowed to fail currently!
1736 */
1737 for_each_present_cpu(cpu) {
1738 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1739 int cpustate = st->state;
1740
1741 if (cpustate >= state)
1742 cpuhp_issue_call(cpu, state, false, NULL);
1743 }
1744 remove:
1745 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1746 mutex_unlock(&cpuhp_state_mutex);
1747 put_online_cpus();
1748 }
1749 EXPORT_SYMBOL(__cpuhp_remove_state);
1750
1751 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
show_cpuhp_state(struct device * dev,struct device_attribute * attr,char * buf)1752 static ssize_t show_cpuhp_state(struct device *dev,
1753 struct device_attribute *attr, char *buf)
1754 {
1755 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1756
1757 return sprintf(buf, "%d\n", st->state);
1758 }
1759 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1760
write_cpuhp_target(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1761 static ssize_t write_cpuhp_target(struct device *dev,
1762 struct device_attribute *attr,
1763 const char *buf, size_t count)
1764 {
1765 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1766 struct cpuhp_step *sp;
1767 int target, ret;
1768
1769 ret = kstrtoint(buf, 10, &target);
1770 if (ret)
1771 return ret;
1772
1773 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1774 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1775 return -EINVAL;
1776 #else
1777 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1778 return -EINVAL;
1779 #endif
1780
1781 ret = lock_device_hotplug_sysfs();
1782 if (ret)
1783 return ret;
1784
1785 mutex_lock(&cpuhp_state_mutex);
1786 sp = cpuhp_get_step(target);
1787 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1788 mutex_unlock(&cpuhp_state_mutex);
1789 if (ret)
1790 goto out;
1791
1792 if (st->state < target)
1793 ret = do_cpu_up(dev->id, target);
1794 else
1795 ret = do_cpu_down(dev->id, target);
1796 out:
1797 unlock_device_hotplug();
1798 return ret ? ret : count;
1799 }
1800
show_cpuhp_target(struct device * dev,struct device_attribute * attr,char * buf)1801 static ssize_t show_cpuhp_target(struct device *dev,
1802 struct device_attribute *attr, char *buf)
1803 {
1804 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1805
1806 return sprintf(buf, "%d\n", st->target);
1807 }
1808 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1809
1810 static struct attribute *cpuhp_cpu_attrs[] = {
1811 &dev_attr_state.attr,
1812 &dev_attr_target.attr,
1813 NULL
1814 };
1815
1816 static struct attribute_group cpuhp_cpu_attr_group = {
1817 .attrs = cpuhp_cpu_attrs,
1818 .name = "hotplug",
1819 NULL
1820 };
1821
show_cpuhp_states(struct device * dev,struct device_attribute * attr,char * buf)1822 static ssize_t show_cpuhp_states(struct device *dev,
1823 struct device_attribute *attr, char *buf)
1824 {
1825 ssize_t cur, res = 0;
1826 int i;
1827
1828 mutex_lock(&cpuhp_state_mutex);
1829 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1830 struct cpuhp_step *sp = cpuhp_get_step(i);
1831
1832 if (sp->name) {
1833 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1834 buf += cur;
1835 res += cur;
1836 }
1837 }
1838 mutex_unlock(&cpuhp_state_mutex);
1839 return res;
1840 }
1841 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1842
1843 static struct attribute *cpuhp_cpu_root_attrs[] = {
1844 &dev_attr_states.attr,
1845 NULL
1846 };
1847
1848 static struct attribute_group cpuhp_cpu_root_attr_group = {
1849 .attrs = cpuhp_cpu_root_attrs,
1850 .name = "hotplug",
1851 NULL
1852 };
1853
cpuhp_sysfs_init(void)1854 static int __init cpuhp_sysfs_init(void)
1855 {
1856 int cpu, ret;
1857
1858 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1859 &cpuhp_cpu_root_attr_group);
1860 if (ret)
1861 return ret;
1862
1863 for_each_possible_cpu(cpu) {
1864 struct device *dev = get_cpu_device(cpu);
1865
1866 if (!dev)
1867 continue;
1868 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1869 if (ret)
1870 return ret;
1871 }
1872 return 0;
1873 }
1874 device_initcall(cpuhp_sysfs_init);
1875 #endif
1876
1877 /*
1878 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1879 * represents all NR_CPUS bits binary values of 1<<nr.
1880 *
1881 * It is used by cpumask_of() to get a constant address to a CPU
1882 * mask value that has a single bit set only.
1883 */
1884
1885 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1886 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
1887 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1888 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1889 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1890
1891 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1892
1893 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
1894 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
1895 #if BITS_PER_LONG > 32
1896 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
1897 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
1898 #endif
1899 };
1900 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1901
1902 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1903 EXPORT_SYMBOL(cpu_all_bits);
1904
1905 #ifdef CONFIG_INIT_ALL_POSSIBLE
1906 struct cpumask __cpu_possible_mask __read_mostly
1907 = {CPU_BITS_ALL};
1908 #else
1909 struct cpumask __cpu_possible_mask __read_mostly;
1910 #endif
1911 EXPORT_SYMBOL(__cpu_possible_mask);
1912
1913 struct cpumask __cpu_online_mask __read_mostly;
1914 EXPORT_SYMBOL(__cpu_online_mask);
1915
1916 struct cpumask __cpu_present_mask __read_mostly;
1917 EXPORT_SYMBOL(__cpu_present_mask);
1918
1919 struct cpumask __cpu_active_mask __read_mostly;
1920 EXPORT_SYMBOL(__cpu_active_mask);
1921
init_cpu_present(const struct cpumask * src)1922 void init_cpu_present(const struct cpumask *src)
1923 {
1924 cpumask_copy(&__cpu_present_mask, src);
1925 }
1926
init_cpu_possible(const struct cpumask * src)1927 void init_cpu_possible(const struct cpumask *src)
1928 {
1929 cpumask_copy(&__cpu_possible_mask, src);
1930 }
1931
init_cpu_online(const struct cpumask * src)1932 void init_cpu_online(const struct cpumask *src)
1933 {
1934 cpumask_copy(&__cpu_online_mask, src);
1935 }
1936
1937 /*
1938 * Activate the first processor.
1939 */
boot_cpu_init(void)1940 void __init boot_cpu_init(void)
1941 {
1942 int cpu = smp_processor_id();
1943
1944 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
1945 set_cpu_online(cpu, true);
1946 set_cpu_active(cpu, true);
1947 set_cpu_present(cpu, true);
1948 set_cpu_possible(cpu, true);
1949 }
1950
1951 /*
1952 * Must be called _AFTER_ setting up the per_cpu areas
1953 */
boot_cpu_state_init(void)1954 void __init boot_cpu_state_init(void)
1955 {
1956 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1957 }
1958
1959 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
1960
idle_notifier_register(struct notifier_block * n)1961 void idle_notifier_register(struct notifier_block *n)
1962 {
1963 atomic_notifier_chain_register(&idle_notifier, n);
1964 }
1965 EXPORT_SYMBOL_GPL(idle_notifier_register);
1966
idle_notifier_unregister(struct notifier_block * n)1967 void idle_notifier_unregister(struct notifier_block *n)
1968 {
1969 atomic_notifier_chain_unregister(&idle_notifier, n);
1970 }
1971 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
1972
idle_notifier_call_chain(unsigned long val)1973 void idle_notifier_call_chain(unsigned long val)
1974 {
1975 atomic_notifier_call_chain(&idle_notifier, val, NULL);
1976 }
1977 EXPORT_SYMBOL_GPL(idle_notifier_call_chain);
1978