1
2 #ifndef _BCACHE_UTIL_H
3 #define _BCACHE_UTIL_H
4
5 #include <linux/blkdev.h>
6 #include <linux/errno.h>
7 #include <linux/blkdev.h>
8 #include <linux/kernel.h>
9 #include <linux/llist.h>
10 #include <linux/ratelimit.h>
11 #include <linux/vmalloc.h>
12 #include <linux/workqueue.h>
13
14 #include "closure.h"
15
16 #define PAGE_SECTORS (PAGE_SIZE / 512)
17
18 struct closure;
19
20 #ifdef CONFIG_BCACHE_DEBUG
21
22 #define EBUG_ON(cond) BUG_ON(cond)
23 #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0)
24 #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i)
25
26 #else /* DEBUG */
27
28 #define EBUG_ON(cond) do { if (cond); } while (0)
29 #define atomic_dec_bug(v) atomic_dec(v)
30 #define atomic_inc_bug(v, i) atomic_inc(v)
31
32 #endif
33
34 #define DECLARE_HEAP(type, name) \
35 struct { \
36 size_t size, used; \
37 type *data; \
38 } name
39
40 #define init_heap(heap, _size, gfp) \
41 ({ \
42 size_t _bytes; \
43 (heap)->used = 0; \
44 (heap)->size = (_size); \
45 _bytes = (heap)->size * sizeof(*(heap)->data); \
46 (heap)->data = NULL; \
47 if (_bytes < KMALLOC_MAX_SIZE) \
48 (heap)->data = kmalloc(_bytes, (gfp)); \
49 if ((!(heap)->data) && ((gfp) & GFP_KERNEL)) \
50 (heap)->data = vmalloc(_bytes); \
51 (heap)->data; \
52 })
53
54 #define free_heap(heap) \
55 do { \
56 kvfree((heap)->data); \
57 (heap)->data = NULL; \
58 } while (0)
59
60 #define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j])
61
62 #define heap_sift(h, i, cmp) \
63 do { \
64 size_t _r, _j = i; \
65 \
66 for (; _j * 2 + 1 < (h)->used; _j = _r) { \
67 _r = _j * 2 + 1; \
68 if (_r + 1 < (h)->used && \
69 cmp((h)->data[_r], (h)->data[_r + 1])) \
70 _r++; \
71 \
72 if (cmp((h)->data[_r], (h)->data[_j])) \
73 break; \
74 heap_swap(h, _r, _j); \
75 } \
76 } while (0)
77
78 #define heap_sift_down(h, i, cmp) \
79 do { \
80 while (i) { \
81 size_t p = (i - 1) / 2; \
82 if (cmp((h)->data[i], (h)->data[p])) \
83 break; \
84 heap_swap(h, i, p); \
85 i = p; \
86 } \
87 } while (0)
88
89 #define heap_add(h, d, cmp) \
90 ({ \
91 bool _r = !heap_full(h); \
92 if (_r) { \
93 size_t _i = (h)->used++; \
94 (h)->data[_i] = d; \
95 \
96 heap_sift_down(h, _i, cmp); \
97 heap_sift(h, _i, cmp); \
98 } \
99 _r; \
100 })
101
102 #define heap_pop(h, d, cmp) \
103 ({ \
104 bool _r = (h)->used; \
105 if (_r) { \
106 (d) = (h)->data[0]; \
107 (h)->used--; \
108 heap_swap(h, 0, (h)->used); \
109 heap_sift(h, 0, cmp); \
110 } \
111 _r; \
112 })
113
114 #define heap_peek(h) ((h)->used ? (h)->data[0] : NULL)
115
116 #define heap_full(h) ((h)->used == (h)->size)
117
118 #define DECLARE_FIFO(type, name) \
119 struct { \
120 size_t front, back, size, mask; \
121 type *data; \
122 } name
123
124 #define fifo_for_each(c, fifo, iter) \
125 for (iter = (fifo)->front; \
126 c = (fifo)->data[iter], iter != (fifo)->back; \
127 iter = (iter + 1) & (fifo)->mask)
128
129 #define __init_fifo(fifo, gfp) \
130 ({ \
131 size_t _allocated_size, _bytes; \
132 BUG_ON(!(fifo)->size); \
133 \
134 _allocated_size = roundup_pow_of_two((fifo)->size + 1); \
135 _bytes = _allocated_size * sizeof(*(fifo)->data); \
136 \
137 (fifo)->mask = _allocated_size - 1; \
138 (fifo)->front = (fifo)->back = 0; \
139 (fifo)->data = NULL; \
140 \
141 if (_bytes < KMALLOC_MAX_SIZE) \
142 (fifo)->data = kmalloc(_bytes, (gfp)); \
143 if ((!(fifo)->data) && ((gfp) & GFP_KERNEL)) \
144 (fifo)->data = vmalloc(_bytes); \
145 (fifo)->data; \
146 })
147
148 #define init_fifo_exact(fifo, _size, gfp) \
149 ({ \
150 (fifo)->size = (_size); \
151 __init_fifo(fifo, gfp); \
152 })
153
154 #define init_fifo(fifo, _size, gfp) \
155 ({ \
156 (fifo)->size = (_size); \
157 if ((fifo)->size > 4) \
158 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \
159 __init_fifo(fifo, gfp); \
160 })
161
162 #define free_fifo(fifo) \
163 do { \
164 kvfree((fifo)->data); \
165 (fifo)->data = NULL; \
166 } while (0)
167
168 #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask)
169 #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo))
170
171 #define fifo_empty(fifo) (!fifo_used(fifo))
172 #define fifo_full(fifo) (!fifo_free(fifo))
173
174 #define fifo_front(fifo) ((fifo)->data[(fifo)->front])
175 #define fifo_back(fifo) \
176 ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
177
178 #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask)
179
180 #define fifo_push_back(fifo, i) \
181 ({ \
182 bool _r = !fifo_full((fifo)); \
183 if (_r) { \
184 (fifo)->data[(fifo)->back++] = (i); \
185 (fifo)->back &= (fifo)->mask; \
186 } \
187 _r; \
188 })
189
190 #define fifo_pop_front(fifo, i) \
191 ({ \
192 bool _r = !fifo_empty((fifo)); \
193 if (_r) { \
194 (i) = (fifo)->data[(fifo)->front++]; \
195 (fifo)->front &= (fifo)->mask; \
196 } \
197 _r; \
198 })
199
200 #define fifo_push_front(fifo, i) \
201 ({ \
202 bool _r = !fifo_full((fifo)); \
203 if (_r) { \
204 --(fifo)->front; \
205 (fifo)->front &= (fifo)->mask; \
206 (fifo)->data[(fifo)->front] = (i); \
207 } \
208 _r; \
209 })
210
211 #define fifo_pop_back(fifo, i) \
212 ({ \
213 bool _r = !fifo_empty((fifo)); \
214 if (_r) { \
215 --(fifo)->back; \
216 (fifo)->back &= (fifo)->mask; \
217 (i) = (fifo)->data[(fifo)->back] \
218 } \
219 _r; \
220 })
221
222 #define fifo_push(fifo, i) fifo_push_back(fifo, (i))
223 #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i))
224
225 #define fifo_swap(l, r) \
226 do { \
227 swap((l)->front, (r)->front); \
228 swap((l)->back, (r)->back); \
229 swap((l)->size, (r)->size); \
230 swap((l)->mask, (r)->mask); \
231 swap((l)->data, (r)->data); \
232 } while (0)
233
234 #define fifo_move(dest, src) \
235 do { \
236 typeof(*((dest)->data)) _t; \
237 while (!fifo_full(dest) && \
238 fifo_pop(src, _t)) \
239 fifo_push(dest, _t); \
240 } while (0)
241
242 /*
243 * Simple array based allocator - preallocates a number of elements and you can
244 * never allocate more than that, also has no locking.
245 *
246 * Handy because if you know you only need a fixed number of elements you don't
247 * have to worry about memory allocation failure, and sometimes a mempool isn't
248 * what you want.
249 *
250 * We treat the free elements as entries in a singly linked list, and the
251 * freelist as a stack - allocating and freeing push and pop off the freelist.
252 */
253
254 #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \
255 struct { \
256 type *freelist; \
257 type data[size]; \
258 } name
259
260 #define array_alloc(array) \
261 ({ \
262 typeof((array)->freelist) _ret = (array)->freelist; \
263 \
264 if (_ret) \
265 (array)->freelist = *((typeof((array)->freelist) *) _ret);\
266 \
267 _ret; \
268 })
269
270 #define array_free(array, ptr) \
271 do { \
272 typeof((array)->freelist) _ptr = ptr; \
273 \
274 *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \
275 (array)->freelist = _ptr; \
276 } while (0)
277
278 #define array_allocator_init(array) \
279 do { \
280 typeof((array)->freelist) _i; \
281 \
282 BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \
283 (array)->freelist = NULL; \
284 \
285 for (_i = (array)->data; \
286 _i < (array)->data + ARRAY_SIZE((array)->data); \
287 _i++) \
288 array_free(array, _i); \
289 } while (0)
290
291 #define array_freelist_empty(array) ((array)->freelist == NULL)
292
293 #define ANYSINT_MAX(t) \
294 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
295
296 int bch_strtoint_h(const char *, int *);
297 int bch_strtouint_h(const char *, unsigned int *);
298 int bch_strtoll_h(const char *, long long *);
299 int bch_strtoull_h(const char *, unsigned long long *);
300
bch_strtol_h(const char * cp,long * res)301 static inline int bch_strtol_h(const char *cp, long *res)
302 {
303 #if BITS_PER_LONG == 32
304 return bch_strtoint_h(cp, (int *) res);
305 #else
306 return bch_strtoll_h(cp, (long long *) res);
307 #endif
308 }
309
bch_strtoul_h(const char * cp,long * res)310 static inline int bch_strtoul_h(const char *cp, long *res)
311 {
312 #if BITS_PER_LONG == 32
313 return bch_strtouint_h(cp, (unsigned int *) res);
314 #else
315 return bch_strtoull_h(cp, (unsigned long long *) res);
316 #endif
317 }
318
319 #define strtoi_h(cp, res) \
320 (__builtin_types_compatible_p(typeof(*res), int) \
321 ? bch_strtoint_h(cp, (void *) res) \
322 : __builtin_types_compatible_p(typeof(*res), long) \
323 ? bch_strtol_h(cp, (void *) res) \
324 : __builtin_types_compatible_p(typeof(*res), long long) \
325 ? bch_strtoll_h(cp, (void *) res) \
326 : __builtin_types_compatible_p(typeof(*res), unsigned int) \
327 ? bch_strtouint_h(cp, (void *) res) \
328 : __builtin_types_compatible_p(typeof(*res), unsigned long) \
329 ? bch_strtoul_h(cp, (void *) res) \
330 : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
331 ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
332
333 #define strtoul_safe(cp, var) \
334 ({ \
335 unsigned long _v; \
336 int _r = kstrtoul(cp, 10, &_v); \
337 if (!_r) \
338 var = _v; \
339 _r; \
340 })
341
342 #define strtoul_safe_clamp(cp, var, min, max) \
343 ({ \
344 unsigned long _v; \
345 int _r = kstrtoul(cp, 10, &_v); \
346 if (!_r) \
347 var = clamp_t(typeof(var), _v, min, max); \
348 _r; \
349 })
350
351 #define snprint(buf, size, var) \
352 snprintf(buf, size, \
353 __builtin_types_compatible_p(typeof(var), int) \
354 ? "%i\n" : \
355 __builtin_types_compatible_p(typeof(var), unsigned) \
356 ? "%u\n" : \
357 __builtin_types_compatible_p(typeof(var), long) \
358 ? "%li\n" : \
359 __builtin_types_compatible_p(typeof(var), unsigned long)\
360 ? "%lu\n" : \
361 __builtin_types_compatible_p(typeof(var), int64_t) \
362 ? "%lli\n" : \
363 __builtin_types_compatible_p(typeof(var), uint64_t) \
364 ? "%llu\n" : \
365 __builtin_types_compatible_p(typeof(var), const char *) \
366 ? "%s\n" : "%i\n", var)
367
368 ssize_t bch_hprint(char *buf, int64_t v);
369
370 bool bch_is_zero(const char *p, size_t n);
371 int bch_parse_uuid(const char *s, char *uuid);
372
373 ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[],
374 size_t selected);
375
376 ssize_t bch_read_string_list(const char *buf, const char * const list[]);
377
378 struct time_stats {
379 spinlock_t lock;
380 /*
381 * all fields are in nanoseconds, averages are ewmas stored left shifted
382 * by 8
383 */
384 uint64_t max_duration;
385 uint64_t average_duration;
386 uint64_t average_frequency;
387 uint64_t last;
388 };
389
390 void bch_time_stats_update(struct time_stats *stats, uint64_t time);
391
local_clock_us(void)392 static inline unsigned local_clock_us(void)
393 {
394 return local_clock() >> 10;
395 }
396
397 #define NSEC_PER_ns 1L
398 #define NSEC_PER_us NSEC_PER_USEC
399 #define NSEC_PER_ms NSEC_PER_MSEC
400 #define NSEC_PER_sec NSEC_PER_SEC
401
402 #define __print_time_stat(stats, name, stat, units) \
403 sysfs_print(name ## _ ## stat ## _ ## units, \
404 div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
405
406 #define sysfs_print_time_stats(stats, name, \
407 frequency_units, \
408 duration_units) \
409 do { \
410 __print_time_stat(stats, name, \
411 average_frequency, frequency_units); \
412 __print_time_stat(stats, name, \
413 average_duration, duration_units); \
414 sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \
415 div_u64((stats)->max_duration, NSEC_PER_ ## duration_units));\
416 \
417 sysfs_print(name ## _last_ ## frequency_units, (stats)->last \
418 ? div_s64(local_clock() - (stats)->last, \
419 NSEC_PER_ ## frequency_units) \
420 : -1LL); \
421 } while (0)
422
423 #define sysfs_time_stats_attribute(name, \
424 frequency_units, \
425 duration_units) \
426 read_attribute(name ## _average_frequency_ ## frequency_units); \
427 read_attribute(name ## _average_duration_ ## duration_units); \
428 read_attribute(name ## _max_duration_ ## duration_units); \
429 read_attribute(name ## _last_ ## frequency_units)
430
431 #define sysfs_time_stats_attribute_list(name, \
432 frequency_units, \
433 duration_units) \
434 &sysfs_ ## name ## _average_frequency_ ## frequency_units, \
435 &sysfs_ ## name ## _average_duration_ ## duration_units, \
436 &sysfs_ ## name ## _max_duration_ ## duration_units, \
437 &sysfs_ ## name ## _last_ ## frequency_units,
438
439 #define ewma_add(ewma, val, weight, factor) \
440 ({ \
441 (ewma) *= (weight) - 1; \
442 (ewma) += (val) << factor; \
443 (ewma) /= (weight); \
444 (ewma) >> factor; \
445 })
446
447 struct bch_ratelimit {
448 /* Next time we want to do some work, in nanoseconds */
449 uint64_t next;
450
451 /*
452 * Rate at which we want to do work, in units per nanosecond
453 * The units here correspond to the units passed to bch_next_delay()
454 */
455 unsigned rate;
456 };
457
bch_ratelimit_reset(struct bch_ratelimit * d)458 static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
459 {
460 d->next = local_clock();
461 }
462
463 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
464
465 #define __DIV_SAFE(n, d, zero) \
466 ({ \
467 typeof(n) _n = (n); \
468 typeof(d) _d = (d); \
469 _d ? _n / _d : zero; \
470 })
471
472 #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0)
473
474 #define container_of_or_null(ptr, type, member) \
475 ({ \
476 typeof(ptr) _ptr = ptr; \
477 _ptr ? container_of(_ptr, type, member) : NULL; \
478 })
479
480 #define RB_INSERT(root, new, member, cmp) \
481 ({ \
482 __label__ dup; \
483 struct rb_node **n = &(root)->rb_node, *parent = NULL; \
484 typeof(new) this; \
485 int res, ret = -1; \
486 \
487 while (*n) { \
488 parent = *n; \
489 this = container_of(*n, typeof(*(new)), member); \
490 res = cmp(new, this); \
491 if (!res) \
492 goto dup; \
493 n = res < 0 \
494 ? &(*n)->rb_left \
495 : &(*n)->rb_right; \
496 } \
497 \
498 rb_link_node(&(new)->member, parent, n); \
499 rb_insert_color(&(new)->member, root); \
500 ret = 0; \
501 dup: \
502 ret; \
503 })
504
505 #define RB_SEARCH(root, search, member, cmp) \
506 ({ \
507 struct rb_node *n = (root)->rb_node; \
508 typeof(&(search)) this, ret = NULL; \
509 int res; \
510 \
511 while (n) { \
512 this = container_of(n, typeof(search), member); \
513 res = cmp(&(search), this); \
514 if (!res) { \
515 ret = this; \
516 break; \
517 } \
518 n = res < 0 \
519 ? n->rb_left \
520 : n->rb_right; \
521 } \
522 ret; \
523 })
524
525 #define RB_GREATER(root, search, member, cmp) \
526 ({ \
527 struct rb_node *n = (root)->rb_node; \
528 typeof(&(search)) this, ret = NULL; \
529 int res; \
530 \
531 while (n) { \
532 this = container_of(n, typeof(search), member); \
533 res = cmp(&(search), this); \
534 if (res < 0) { \
535 ret = this; \
536 n = n->rb_left; \
537 } else \
538 n = n->rb_right; \
539 } \
540 ret; \
541 })
542
543 #define RB_FIRST(root, type, member) \
544 container_of_or_null(rb_first(root), type, member)
545
546 #define RB_LAST(root, type, member) \
547 container_of_or_null(rb_last(root), type, member)
548
549 #define RB_NEXT(ptr, member) \
550 container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
551
552 #define RB_PREV(ptr, member) \
553 container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
554
555 /* Does linear interpolation between powers of two */
fract_exp_two(unsigned x,unsigned fract_bits)556 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
557 {
558 unsigned fract = x & ~(~0 << fract_bits);
559
560 x >>= fract_bits;
561 x = 1 << x;
562 x += (x * fract) >> fract_bits;
563
564 return x;
565 }
566
567 void bch_bio_map(struct bio *bio, void *base);
568
bdev_sectors(struct block_device * bdev)569 static inline sector_t bdev_sectors(struct block_device *bdev)
570 {
571 return bdev->bd_inode->i_size >> 9;
572 }
573
574 #define closure_bio_submit(bio, cl) \
575 do { \
576 closure_get(cl); \
577 generic_make_request(bio); \
578 } while (0)
579
580 uint64_t bch_crc64_update(uint64_t, const void *, size_t);
581 uint64_t bch_crc64(const void *, size_t);
582
583 #endif /* _BCACHE_UTIL_H */
584