• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/block_dev.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
6  */
7 
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <linux/badblocks.h>
33 #include <linux/falloc.h>
34 #include <asm/uaccess.h>
35 #include "internal.h"
36 
37 struct bdev_inode {
38 	struct block_device bdev;
39 	struct inode vfs_inode;
40 };
41 
42 static const struct address_space_operations def_blk_aops;
43 
BDEV_I(struct inode * inode)44 static inline struct bdev_inode *BDEV_I(struct inode *inode)
45 {
46 	return container_of(inode, struct bdev_inode, vfs_inode);
47 }
48 
I_BDEV(struct inode * inode)49 struct block_device *I_BDEV(struct inode *inode)
50 {
51 	return &BDEV_I(inode)->bdev;
52 }
53 EXPORT_SYMBOL(I_BDEV);
54 
__vfs_msg(struct super_block * sb,const char * prefix,const char * fmt,...)55 void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
56 {
57 	struct va_format vaf;
58 	va_list args;
59 
60 	va_start(args, fmt);
61 	vaf.fmt = fmt;
62 	vaf.va = &args;
63 	printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
64 	va_end(args);
65 }
66 
bdev_write_inode(struct block_device * bdev)67 static void bdev_write_inode(struct block_device *bdev)
68 {
69 	struct inode *inode = bdev->bd_inode;
70 	int ret;
71 
72 	spin_lock(&inode->i_lock);
73 	while (inode->i_state & I_DIRTY) {
74 		spin_unlock(&inode->i_lock);
75 		ret = write_inode_now(inode, true);
76 		if (ret) {
77 			char name[BDEVNAME_SIZE];
78 			pr_warn_ratelimited("VFS: Dirty inode writeback failed "
79 					    "for block device %s (err=%d).\n",
80 					    bdevname(bdev, name), ret);
81 		}
82 		spin_lock(&inode->i_lock);
83 	}
84 	spin_unlock(&inode->i_lock);
85 }
86 
87 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)88 void kill_bdev(struct block_device *bdev)
89 {
90 	struct address_space *mapping = bdev->bd_inode->i_mapping;
91 
92 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
93 		return;
94 
95 	invalidate_bh_lrus();
96 	truncate_inode_pages(mapping, 0);
97 }
98 EXPORT_SYMBOL(kill_bdev);
99 
100 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)101 void invalidate_bdev(struct block_device *bdev)
102 {
103 	struct address_space *mapping = bdev->bd_inode->i_mapping;
104 
105 	if (mapping->nrpages) {
106 		invalidate_bh_lrus();
107 		lru_add_drain_all();	/* make sure all lru add caches are flushed */
108 		invalidate_mapping_pages(mapping, 0, -1);
109 	}
110 	/* 99% of the time, we don't need to flush the cleancache on the bdev.
111 	 * But, for the strange corners, lets be cautious
112 	 */
113 	cleancache_invalidate_inode(mapping);
114 }
115 EXPORT_SYMBOL(invalidate_bdev);
116 
set_blocksize(struct block_device * bdev,int size)117 int set_blocksize(struct block_device *bdev, int size)
118 {
119 	/* Size must be a power of two, and between 512 and PAGE_SIZE */
120 	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
121 		return -EINVAL;
122 
123 	/* Size cannot be smaller than the size supported by the device */
124 	if (size < bdev_logical_block_size(bdev))
125 		return -EINVAL;
126 
127 	/* Don't change the size if it is same as current */
128 	if (bdev->bd_block_size != size) {
129 		sync_blockdev(bdev);
130 		bdev->bd_block_size = size;
131 		bdev->bd_inode->i_blkbits = blksize_bits(size);
132 		kill_bdev(bdev);
133 	}
134 	return 0;
135 }
136 
137 EXPORT_SYMBOL(set_blocksize);
138 
sb_set_blocksize(struct super_block * sb,int size)139 int sb_set_blocksize(struct super_block *sb, int size)
140 {
141 	if (set_blocksize(sb->s_bdev, size))
142 		return 0;
143 	/* If we get here, we know size is power of two
144 	 * and it's value is between 512 and PAGE_SIZE */
145 	sb->s_blocksize = size;
146 	sb->s_blocksize_bits = blksize_bits(size);
147 	return sb->s_blocksize;
148 }
149 
150 EXPORT_SYMBOL(sb_set_blocksize);
151 
sb_min_blocksize(struct super_block * sb,int size)152 int sb_min_blocksize(struct super_block *sb, int size)
153 {
154 	int minsize = bdev_logical_block_size(sb->s_bdev);
155 	if (size < minsize)
156 		size = minsize;
157 	return sb_set_blocksize(sb, size);
158 }
159 
160 EXPORT_SYMBOL(sb_min_blocksize);
161 
162 static int
blkdev_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)163 blkdev_get_block(struct inode *inode, sector_t iblock,
164 		struct buffer_head *bh, int create)
165 {
166 	bh->b_bdev = I_BDEV(inode);
167 	bh->b_blocknr = iblock;
168 	set_buffer_mapped(bh);
169 	return 0;
170 }
171 
bdev_file_inode(struct file * file)172 static struct inode *bdev_file_inode(struct file *file)
173 {
174 	return file->f_mapping->host;
175 }
176 
177 static ssize_t
blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter)178 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
179 {
180 	struct file *file = iocb->ki_filp;
181 	struct inode *inode = bdev_file_inode(file);
182 
183 	return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter,
184 				    blkdev_get_block, NULL, NULL,
185 				    DIO_SKIP_DIO_COUNT);
186 }
187 
__sync_blockdev(struct block_device * bdev,int wait)188 int __sync_blockdev(struct block_device *bdev, int wait)
189 {
190 	if (!bdev)
191 		return 0;
192 	if (!wait)
193 		return filemap_flush(bdev->bd_inode->i_mapping);
194 	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
195 }
196 
197 /*
198  * Write out and wait upon all the dirty data associated with a block
199  * device via its mapping.  Does not take the superblock lock.
200  */
sync_blockdev(struct block_device * bdev)201 int sync_blockdev(struct block_device *bdev)
202 {
203 	return __sync_blockdev(bdev, 1);
204 }
205 EXPORT_SYMBOL(sync_blockdev);
206 
207 /*
208  * Write out and wait upon all dirty data associated with this
209  * device.   Filesystem data as well as the underlying block
210  * device.  Takes the superblock lock.
211  */
fsync_bdev(struct block_device * bdev)212 int fsync_bdev(struct block_device *bdev)
213 {
214 	struct super_block *sb = get_super(bdev);
215 	if (sb) {
216 		int res = sync_filesystem(sb);
217 		drop_super(sb);
218 		return res;
219 	}
220 	return sync_blockdev(bdev);
221 }
222 EXPORT_SYMBOL(fsync_bdev);
223 
224 /**
225  * freeze_bdev  --  lock a filesystem and force it into a consistent state
226  * @bdev:	blockdevice to lock
227  *
228  * If a superblock is found on this device, we take the s_umount semaphore
229  * on it to make sure nobody unmounts until the snapshot creation is done.
230  * The reference counter (bd_fsfreeze_count) guarantees that only the last
231  * unfreeze process can unfreeze the frozen filesystem actually when multiple
232  * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
233  * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
234  * actually.
235  */
freeze_bdev(struct block_device * bdev)236 struct super_block *freeze_bdev(struct block_device *bdev)
237 {
238 	struct super_block *sb;
239 	int error = 0;
240 
241 	mutex_lock(&bdev->bd_fsfreeze_mutex);
242 	if (++bdev->bd_fsfreeze_count > 1) {
243 		/*
244 		 * We don't even need to grab a reference - the first call
245 		 * to freeze_bdev grab an active reference and only the last
246 		 * thaw_bdev drops it.
247 		 */
248 		sb = get_super(bdev);
249 		if (sb)
250 			drop_super(sb);
251 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
252 		return sb;
253 	}
254 
255 	sb = get_active_super(bdev);
256 	if (!sb)
257 		goto out;
258 	if (sb->s_op->freeze_super)
259 		error = sb->s_op->freeze_super(sb);
260 	else
261 		error = freeze_super(sb);
262 	if (error) {
263 		deactivate_super(sb);
264 		bdev->bd_fsfreeze_count--;
265 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
266 		return ERR_PTR(error);
267 	}
268 	deactivate_super(sb);
269  out:
270 	sync_blockdev(bdev);
271 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
272 	return sb;	/* thaw_bdev releases s->s_umount */
273 }
274 EXPORT_SYMBOL(freeze_bdev);
275 
276 /**
277  * thaw_bdev  -- unlock filesystem
278  * @bdev:	blockdevice to unlock
279  * @sb:		associated superblock
280  *
281  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
282  */
thaw_bdev(struct block_device * bdev,struct super_block * sb)283 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
284 {
285 	int error = -EINVAL;
286 
287 	mutex_lock(&bdev->bd_fsfreeze_mutex);
288 	if (!bdev->bd_fsfreeze_count)
289 		goto out;
290 
291 	error = 0;
292 	if (--bdev->bd_fsfreeze_count > 0)
293 		goto out;
294 
295 	if (!sb)
296 		goto out;
297 
298 	if (sb->s_op->thaw_super)
299 		error = sb->s_op->thaw_super(sb);
300 	else
301 		error = thaw_super(sb);
302 	if (error)
303 		bdev->bd_fsfreeze_count++;
304 out:
305 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
306 	return error;
307 }
308 EXPORT_SYMBOL(thaw_bdev);
309 
blkdev_writepage(struct page * page,struct writeback_control * wbc)310 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
311 {
312 	return block_write_full_page(page, blkdev_get_block, wbc);
313 }
314 
blkdev_readpage(struct file * file,struct page * page)315 static int blkdev_readpage(struct file * file, struct page * page)
316 {
317 	return block_read_full_page(page, blkdev_get_block);
318 }
319 
blkdev_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)320 static int blkdev_readpages(struct file *file, struct address_space *mapping,
321 			struct list_head *pages, unsigned nr_pages)
322 {
323 	return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
324 }
325 
blkdev_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)326 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
327 			loff_t pos, unsigned len, unsigned flags,
328 			struct page **pagep, void **fsdata)
329 {
330 	return block_write_begin(mapping, pos, len, flags, pagep,
331 				 blkdev_get_block);
332 }
333 
blkdev_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)334 static int blkdev_write_end(struct file *file, struct address_space *mapping,
335 			loff_t pos, unsigned len, unsigned copied,
336 			struct page *page, void *fsdata)
337 {
338 	int ret;
339 	ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
340 
341 	unlock_page(page);
342 	put_page(page);
343 
344 	return ret;
345 }
346 
347 /*
348  * private llseek:
349  * for a block special file file_inode(file)->i_size is zero
350  * so we compute the size by hand (just as in block_read/write above)
351  */
block_llseek(struct file * file,loff_t offset,int whence)352 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
353 {
354 	struct inode *bd_inode = bdev_file_inode(file);
355 	loff_t retval;
356 
357 	inode_lock(bd_inode);
358 	retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
359 	inode_unlock(bd_inode);
360 	return retval;
361 }
362 
blkdev_fsync(struct file * filp,loff_t start,loff_t end,int datasync)363 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
364 {
365 	struct inode *bd_inode = bdev_file_inode(filp);
366 	struct block_device *bdev = I_BDEV(bd_inode);
367 	int error;
368 
369 	error = filemap_write_and_wait_range(filp->f_mapping, start, end);
370 	if (error)
371 		return error;
372 
373 	/*
374 	 * There is no need to serialise calls to blkdev_issue_flush with
375 	 * i_mutex and doing so causes performance issues with concurrent
376 	 * O_SYNC writers to a block device.
377 	 */
378 	error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
379 	if (error == -EOPNOTSUPP)
380 		error = 0;
381 
382 	return error;
383 }
384 EXPORT_SYMBOL(blkdev_fsync);
385 
386 /**
387  * bdev_read_page() - Start reading a page from a block device
388  * @bdev: The device to read the page from
389  * @sector: The offset on the device to read the page to (need not be aligned)
390  * @page: The page to read
391  *
392  * On entry, the page should be locked.  It will be unlocked when the page
393  * has been read.  If the block driver implements rw_page synchronously,
394  * that will be true on exit from this function, but it need not be.
395  *
396  * Errors returned by this function are usually "soft", eg out of memory, or
397  * queue full; callers should try a different route to read this page rather
398  * than propagate an error back up the stack.
399  *
400  * Return: negative errno if an error occurs, 0 if submission was successful.
401  */
bdev_read_page(struct block_device * bdev,sector_t sector,struct page * page)402 int bdev_read_page(struct block_device *bdev, sector_t sector,
403 			struct page *page)
404 {
405 	const struct block_device_operations *ops = bdev->bd_disk->fops;
406 	int result = -EOPNOTSUPP;
407 
408 	if (!ops->rw_page || bdev_get_integrity(bdev))
409 		return result;
410 
411 	result = blk_queue_enter(bdev->bd_queue, false);
412 	if (result)
413 		return result;
414 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
415 	blk_queue_exit(bdev->bd_queue);
416 	return result;
417 }
418 EXPORT_SYMBOL_GPL(bdev_read_page);
419 
420 /**
421  * bdev_write_page() - Start writing a page to a block device
422  * @bdev: The device to write the page to
423  * @sector: The offset on the device to write the page to (need not be aligned)
424  * @page: The page to write
425  * @wbc: The writeback_control for the write
426  *
427  * On entry, the page should be locked and not currently under writeback.
428  * On exit, if the write started successfully, the page will be unlocked and
429  * under writeback.  If the write failed already (eg the driver failed to
430  * queue the page to the device), the page will still be locked.  If the
431  * caller is a ->writepage implementation, it will need to unlock the page.
432  *
433  * Errors returned by this function are usually "soft", eg out of memory, or
434  * queue full; callers should try a different route to write this page rather
435  * than propagate an error back up the stack.
436  *
437  * Return: negative errno if an error occurs, 0 if submission was successful.
438  */
bdev_write_page(struct block_device * bdev,sector_t sector,struct page * page,struct writeback_control * wbc)439 int bdev_write_page(struct block_device *bdev, sector_t sector,
440 			struct page *page, struct writeback_control *wbc)
441 {
442 	int result;
443 	const struct block_device_operations *ops = bdev->bd_disk->fops;
444 
445 	if (!ops->rw_page || bdev_get_integrity(bdev))
446 		return -EOPNOTSUPP;
447 	result = blk_queue_enter(bdev->bd_queue, false);
448 	if (result)
449 		return result;
450 
451 	set_page_writeback(page);
452 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
453 	if (result) {
454 		end_page_writeback(page);
455 	} else {
456 		clean_page_buffers(page);
457 		unlock_page(page);
458 	}
459 	blk_queue_exit(bdev->bd_queue);
460 	return result;
461 }
462 EXPORT_SYMBOL_GPL(bdev_write_page);
463 
464 /**
465  * bdev_direct_access() - Get the address for directly-accessibly memory
466  * @bdev: The device containing the memory
467  * @dax: control and output parameters for ->direct_access
468  *
469  * If a block device is made up of directly addressable memory, this function
470  * will tell the caller the PFN and the address of the memory.  The address
471  * may be directly dereferenced within the kernel without the need to call
472  * ioremap(), kmap() or similar.  The PFN is suitable for inserting into
473  * page tables.
474  *
475  * Return: negative errno if an error occurs, otherwise the number of bytes
476  * accessible at this address.
477  */
bdev_direct_access(struct block_device * bdev,struct blk_dax_ctl * dax)478 long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax)
479 {
480 	sector_t sector = dax->sector;
481 	long avail, size = dax->size;
482 	const struct block_device_operations *ops = bdev->bd_disk->fops;
483 
484 	/*
485 	 * The device driver is allowed to sleep, in order to make the
486 	 * memory directly accessible.
487 	 */
488 	might_sleep();
489 
490 	if (size < 0)
491 		return size;
492 	if (!blk_queue_dax(bdev_get_queue(bdev)) || !ops->direct_access)
493 		return -EOPNOTSUPP;
494 	if ((sector + DIV_ROUND_UP(size, 512)) >
495 					part_nr_sects_read(bdev->bd_part))
496 		return -ERANGE;
497 	sector += get_start_sect(bdev);
498 	if (sector % (PAGE_SIZE / 512))
499 		return -EINVAL;
500 	avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn, size);
501 	if (!avail)
502 		return -ERANGE;
503 	if (avail > 0 && avail & ~PAGE_MASK)
504 		return -ENXIO;
505 	return min(avail, size);
506 }
507 EXPORT_SYMBOL_GPL(bdev_direct_access);
508 
509 /**
510  * bdev_dax_supported() - Check if the device supports dax for filesystem
511  * @sb: The superblock of the device
512  * @blocksize: The block size of the device
513  *
514  * This is a library function for filesystems to check if the block device
515  * can be mounted with dax option.
516  *
517  * Return: negative errno if unsupported, 0 if supported.
518  */
bdev_dax_supported(struct super_block * sb,int blocksize)519 int bdev_dax_supported(struct super_block *sb, int blocksize)
520 {
521 	struct blk_dax_ctl dax = {
522 		.sector = 0,
523 		.size = PAGE_SIZE,
524 	};
525 	int err;
526 
527 	if (blocksize != PAGE_SIZE) {
528 		vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax");
529 		return -EINVAL;
530 	}
531 
532 	err = bdev_direct_access(sb->s_bdev, &dax);
533 	if (err < 0) {
534 		switch (err) {
535 		case -EOPNOTSUPP:
536 			vfs_msg(sb, KERN_ERR,
537 				"error: device does not support dax");
538 			break;
539 		case -EINVAL:
540 			vfs_msg(sb, KERN_ERR,
541 				"error: unaligned partition for dax");
542 			break;
543 		default:
544 			vfs_msg(sb, KERN_ERR,
545 				"error: dax access failed (%d)", err);
546 		}
547 		return err;
548 	}
549 
550 	return 0;
551 }
552 EXPORT_SYMBOL_GPL(bdev_dax_supported);
553 
554 /**
555  * bdev_dax_capable() - Return if the raw device is capable for dax
556  * @bdev: The device for raw block device access
557  */
bdev_dax_capable(struct block_device * bdev)558 bool bdev_dax_capable(struct block_device *bdev)
559 {
560 	struct blk_dax_ctl dax = {
561 		.size = PAGE_SIZE,
562 	};
563 
564 	if (!IS_ENABLED(CONFIG_FS_DAX))
565 		return false;
566 
567 	dax.sector = 0;
568 	if (bdev_direct_access(bdev, &dax) < 0)
569 		return false;
570 
571 	dax.sector = bdev->bd_part->nr_sects - (PAGE_SIZE / 512);
572 	if (bdev_direct_access(bdev, &dax) < 0)
573 		return false;
574 
575 	return true;
576 }
577 
578 /*
579  * pseudo-fs
580  */
581 
582 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
583 static struct kmem_cache * bdev_cachep __read_mostly;
584 
bdev_alloc_inode(struct super_block * sb)585 static struct inode *bdev_alloc_inode(struct super_block *sb)
586 {
587 	struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
588 	if (!ei)
589 		return NULL;
590 	return &ei->vfs_inode;
591 }
592 
bdev_i_callback(struct rcu_head * head)593 static void bdev_i_callback(struct rcu_head *head)
594 {
595 	struct inode *inode = container_of(head, struct inode, i_rcu);
596 	struct bdev_inode *bdi = BDEV_I(inode);
597 
598 	kmem_cache_free(bdev_cachep, bdi);
599 }
600 
bdev_destroy_inode(struct inode * inode)601 static void bdev_destroy_inode(struct inode *inode)
602 {
603 	call_rcu(&inode->i_rcu, bdev_i_callback);
604 }
605 
init_once(void * foo)606 static void init_once(void *foo)
607 {
608 	struct bdev_inode *ei = (struct bdev_inode *) foo;
609 	struct block_device *bdev = &ei->bdev;
610 
611 	memset(bdev, 0, sizeof(*bdev));
612 	mutex_init(&bdev->bd_mutex);
613 	INIT_LIST_HEAD(&bdev->bd_list);
614 #ifdef CONFIG_SYSFS
615 	INIT_LIST_HEAD(&bdev->bd_holder_disks);
616 #endif
617 	inode_init_once(&ei->vfs_inode);
618 	/* Initialize mutex for freeze. */
619 	mutex_init(&bdev->bd_fsfreeze_mutex);
620 }
621 
bdev_evict_inode(struct inode * inode)622 static void bdev_evict_inode(struct inode *inode)
623 {
624 	struct block_device *bdev = &BDEV_I(inode)->bdev;
625 	truncate_inode_pages_final(&inode->i_data);
626 	invalidate_inode_buffers(inode); /* is it needed here? */
627 	clear_inode(inode);
628 	spin_lock(&bdev_lock);
629 	list_del_init(&bdev->bd_list);
630 	spin_unlock(&bdev_lock);
631 }
632 
633 static const struct super_operations bdev_sops = {
634 	.statfs = simple_statfs,
635 	.alloc_inode = bdev_alloc_inode,
636 	.destroy_inode = bdev_destroy_inode,
637 	.drop_inode = generic_delete_inode,
638 	.evict_inode = bdev_evict_inode,
639 };
640 
bd_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)641 static struct dentry *bd_mount(struct file_system_type *fs_type,
642 	int flags, const char *dev_name, void *data)
643 {
644 	struct dentry *dent;
645 	dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
646 	if (!IS_ERR(dent))
647 		dent->d_sb->s_iflags |= SB_I_CGROUPWB;
648 	return dent;
649 }
650 
651 static struct file_system_type bd_type = {
652 	.name		= "bdev",
653 	.mount		= bd_mount,
654 	.kill_sb	= kill_anon_super,
655 };
656 
657 struct super_block *blockdev_superblock __read_mostly;
658 EXPORT_SYMBOL_GPL(blockdev_superblock);
659 
bdev_cache_init(void)660 void __init bdev_cache_init(void)
661 {
662 	int err;
663 	static struct vfsmount *bd_mnt;
664 
665 	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
666 			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
667 				SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
668 			init_once);
669 	err = register_filesystem(&bd_type);
670 	if (err)
671 		panic("Cannot register bdev pseudo-fs");
672 	bd_mnt = kern_mount(&bd_type);
673 	if (IS_ERR(bd_mnt))
674 		panic("Cannot create bdev pseudo-fs");
675 	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
676 }
677 
678 /*
679  * Most likely _very_ bad one - but then it's hardly critical for small
680  * /dev and can be fixed when somebody will need really large one.
681  * Keep in mind that it will be fed through icache hash function too.
682  */
hash(dev_t dev)683 static inline unsigned long hash(dev_t dev)
684 {
685 	return MAJOR(dev)+MINOR(dev);
686 }
687 
bdev_test(struct inode * inode,void * data)688 static int bdev_test(struct inode *inode, void *data)
689 {
690 	return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
691 }
692 
bdev_set(struct inode * inode,void * data)693 static int bdev_set(struct inode *inode, void *data)
694 {
695 	BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
696 	return 0;
697 }
698 
699 static LIST_HEAD(all_bdevs);
700 
bdget(dev_t dev)701 struct block_device *bdget(dev_t dev)
702 {
703 	struct block_device *bdev;
704 	struct inode *inode;
705 
706 	inode = iget5_locked(blockdev_superblock, hash(dev),
707 			bdev_test, bdev_set, &dev);
708 
709 	if (!inode)
710 		return NULL;
711 
712 	bdev = &BDEV_I(inode)->bdev;
713 
714 	if (inode->i_state & I_NEW) {
715 		bdev->bd_contains = NULL;
716 		bdev->bd_super = NULL;
717 		bdev->bd_inode = inode;
718 		bdev->bd_block_size = i_blocksize(inode);
719 		bdev->bd_part_count = 0;
720 		bdev->bd_invalidated = 0;
721 		inode->i_mode = S_IFBLK;
722 		inode->i_rdev = dev;
723 		inode->i_bdev = bdev;
724 		inode->i_data.a_ops = &def_blk_aops;
725 		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
726 		spin_lock(&bdev_lock);
727 		list_add(&bdev->bd_list, &all_bdevs);
728 		spin_unlock(&bdev_lock);
729 		unlock_new_inode(inode);
730 	}
731 	return bdev;
732 }
733 
734 EXPORT_SYMBOL(bdget);
735 
736 /**
737  * bdgrab -- Grab a reference to an already referenced block device
738  * @bdev:	Block device to grab a reference to.
739  */
bdgrab(struct block_device * bdev)740 struct block_device *bdgrab(struct block_device *bdev)
741 {
742 	ihold(bdev->bd_inode);
743 	return bdev;
744 }
745 EXPORT_SYMBOL(bdgrab);
746 
nr_blockdev_pages(void)747 long nr_blockdev_pages(void)
748 {
749 	struct block_device *bdev;
750 	long ret = 0;
751 	spin_lock(&bdev_lock);
752 	list_for_each_entry(bdev, &all_bdevs, bd_list) {
753 		ret += bdev->bd_inode->i_mapping->nrpages;
754 	}
755 	spin_unlock(&bdev_lock);
756 	return ret;
757 }
758 
bdput(struct block_device * bdev)759 void bdput(struct block_device *bdev)
760 {
761 	iput(bdev->bd_inode);
762 }
763 
764 EXPORT_SYMBOL(bdput);
765 
bd_acquire(struct inode * inode)766 static struct block_device *bd_acquire(struct inode *inode)
767 {
768 	struct block_device *bdev;
769 
770 	spin_lock(&bdev_lock);
771 	bdev = inode->i_bdev;
772 	if (bdev) {
773 		bdgrab(bdev);
774 		spin_unlock(&bdev_lock);
775 		return bdev;
776 	}
777 	spin_unlock(&bdev_lock);
778 
779 	bdev = bdget(inode->i_rdev);
780 	if (bdev) {
781 		spin_lock(&bdev_lock);
782 		if (!inode->i_bdev) {
783 			/*
784 			 * We take an additional reference to bd_inode,
785 			 * and it's released in clear_inode() of inode.
786 			 * So, we can access it via ->i_mapping always
787 			 * without igrab().
788 			 */
789 			bdgrab(bdev);
790 			inode->i_bdev = bdev;
791 			inode->i_mapping = bdev->bd_inode->i_mapping;
792 		}
793 		spin_unlock(&bdev_lock);
794 	}
795 	return bdev;
796 }
797 
798 /* Call when you free inode */
799 
bd_forget(struct inode * inode)800 void bd_forget(struct inode *inode)
801 {
802 	struct block_device *bdev = NULL;
803 
804 	spin_lock(&bdev_lock);
805 	if (!sb_is_blkdev_sb(inode->i_sb))
806 		bdev = inode->i_bdev;
807 	inode->i_bdev = NULL;
808 	inode->i_mapping = &inode->i_data;
809 	spin_unlock(&bdev_lock);
810 
811 	if (bdev)
812 		bdput(bdev);
813 }
814 
815 /**
816  * bd_may_claim - test whether a block device can be claimed
817  * @bdev: block device of interest
818  * @whole: whole block device containing @bdev, may equal @bdev
819  * @holder: holder trying to claim @bdev
820  *
821  * Test whether @bdev can be claimed by @holder.
822  *
823  * CONTEXT:
824  * spin_lock(&bdev_lock).
825  *
826  * RETURNS:
827  * %true if @bdev can be claimed, %false otherwise.
828  */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)829 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
830 			 void *holder)
831 {
832 	if (bdev->bd_holder == holder)
833 		return true;	 /* already a holder */
834 	else if (bdev->bd_holder != NULL)
835 		return false; 	 /* held by someone else */
836 	else if (whole == bdev)
837 		return true;  	 /* is a whole device which isn't held */
838 
839 	else if (whole->bd_holder == bd_may_claim)
840 		return true; 	 /* is a partition of a device that is being partitioned */
841 	else if (whole->bd_holder != NULL)
842 		return false;	 /* is a partition of a held device */
843 	else
844 		return true;	 /* is a partition of an un-held device */
845 }
846 
847 /**
848  * bd_prepare_to_claim - prepare to claim a block device
849  * @bdev: block device of interest
850  * @whole: the whole device containing @bdev, may equal @bdev
851  * @holder: holder trying to claim @bdev
852  *
853  * Prepare to claim @bdev.  This function fails if @bdev is already
854  * claimed by another holder and waits if another claiming is in
855  * progress.  This function doesn't actually claim.  On successful
856  * return, the caller has ownership of bd_claiming and bd_holder[s].
857  *
858  * CONTEXT:
859  * spin_lock(&bdev_lock).  Might release bdev_lock, sleep and regrab
860  * it multiple times.
861  *
862  * RETURNS:
863  * 0 if @bdev can be claimed, -EBUSY otherwise.
864  */
bd_prepare_to_claim(struct block_device * bdev,struct block_device * whole,void * holder)865 static int bd_prepare_to_claim(struct block_device *bdev,
866 			       struct block_device *whole, void *holder)
867 {
868 retry:
869 	/* if someone else claimed, fail */
870 	if (!bd_may_claim(bdev, whole, holder))
871 		return -EBUSY;
872 
873 	/* if claiming is already in progress, wait for it to finish */
874 	if (whole->bd_claiming) {
875 		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
876 		DEFINE_WAIT(wait);
877 
878 		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
879 		spin_unlock(&bdev_lock);
880 		schedule();
881 		finish_wait(wq, &wait);
882 		spin_lock(&bdev_lock);
883 		goto retry;
884 	}
885 
886 	/* yay, all mine */
887 	return 0;
888 }
889 
890 /**
891  * bd_start_claiming - start claiming a block device
892  * @bdev: block device of interest
893  * @holder: holder trying to claim @bdev
894  *
895  * @bdev is about to be opened exclusively.  Check @bdev can be opened
896  * exclusively and mark that an exclusive open is in progress.  Each
897  * successful call to this function must be matched with a call to
898  * either bd_finish_claiming() or bd_abort_claiming() (which do not
899  * fail).
900  *
901  * This function is used to gain exclusive access to the block device
902  * without actually causing other exclusive open attempts to fail. It
903  * should be used when the open sequence itself requires exclusive
904  * access but may subsequently fail.
905  *
906  * CONTEXT:
907  * Might sleep.
908  *
909  * RETURNS:
910  * Pointer to the block device containing @bdev on success, ERR_PTR()
911  * value on failure.
912  */
bd_start_claiming(struct block_device * bdev,void * holder)913 static struct block_device *bd_start_claiming(struct block_device *bdev,
914 					      void *holder)
915 {
916 	struct gendisk *disk;
917 	struct block_device *whole;
918 	int partno, err;
919 
920 	might_sleep();
921 
922 	/*
923 	 * @bdev might not have been initialized properly yet, look up
924 	 * and grab the outer block device the hard way.
925 	 */
926 	disk = get_gendisk(bdev->bd_dev, &partno);
927 	if (!disk)
928 		return ERR_PTR(-ENXIO);
929 
930 	/*
931 	 * Normally, @bdev should equal what's returned from bdget_disk()
932 	 * if partno is 0; however, some drivers (floppy) use multiple
933 	 * bdev's for the same physical device and @bdev may be one of the
934 	 * aliases.  Keep @bdev if partno is 0.  This means claimer
935 	 * tracking is broken for those devices but it has always been that
936 	 * way.
937 	 */
938 	if (partno)
939 		whole = bdget_disk(disk, 0);
940 	else
941 		whole = bdgrab(bdev);
942 
943 	module_put(disk->fops->owner);
944 	put_disk(disk);
945 	if (!whole)
946 		return ERR_PTR(-ENOMEM);
947 
948 	/* prepare to claim, if successful, mark claiming in progress */
949 	spin_lock(&bdev_lock);
950 
951 	err = bd_prepare_to_claim(bdev, whole, holder);
952 	if (err == 0) {
953 		whole->bd_claiming = holder;
954 		spin_unlock(&bdev_lock);
955 		return whole;
956 	} else {
957 		spin_unlock(&bdev_lock);
958 		bdput(whole);
959 		return ERR_PTR(err);
960 	}
961 }
962 
963 #ifdef CONFIG_SYSFS
964 struct bd_holder_disk {
965 	struct list_head	list;
966 	struct gendisk		*disk;
967 	int			refcnt;
968 };
969 
bd_find_holder_disk(struct block_device * bdev,struct gendisk * disk)970 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
971 						  struct gendisk *disk)
972 {
973 	struct bd_holder_disk *holder;
974 
975 	list_for_each_entry(holder, &bdev->bd_holder_disks, list)
976 		if (holder->disk == disk)
977 			return holder;
978 	return NULL;
979 }
980 
add_symlink(struct kobject * from,struct kobject * to)981 static int add_symlink(struct kobject *from, struct kobject *to)
982 {
983 	return sysfs_create_link(from, to, kobject_name(to));
984 }
985 
del_symlink(struct kobject * from,struct kobject * to)986 static void del_symlink(struct kobject *from, struct kobject *to)
987 {
988 	sysfs_remove_link(from, kobject_name(to));
989 }
990 
991 /**
992  * bd_link_disk_holder - create symlinks between holding disk and slave bdev
993  * @bdev: the claimed slave bdev
994  * @disk: the holding disk
995  *
996  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
997  *
998  * This functions creates the following sysfs symlinks.
999  *
1000  * - from "slaves" directory of the holder @disk to the claimed @bdev
1001  * - from "holders" directory of the @bdev to the holder @disk
1002  *
1003  * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1004  * passed to bd_link_disk_holder(), then:
1005  *
1006  *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
1007  *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1008  *
1009  * The caller must have claimed @bdev before calling this function and
1010  * ensure that both @bdev and @disk are valid during the creation and
1011  * lifetime of these symlinks.
1012  *
1013  * CONTEXT:
1014  * Might sleep.
1015  *
1016  * RETURNS:
1017  * 0 on success, -errno on failure.
1018  */
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)1019 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1020 {
1021 	struct bd_holder_disk *holder;
1022 	int ret = 0;
1023 
1024 	mutex_lock(&bdev->bd_mutex);
1025 
1026 	WARN_ON_ONCE(!bdev->bd_holder);
1027 
1028 	/* FIXME: remove the following once add_disk() handles errors */
1029 	if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1030 		goto out_unlock;
1031 
1032 	holder = bd_find_holder_disk(bdev, disk);
1033 	if (holder) {
1034 		holder->refcnt++;
1035 		goto out_unlock;
1036 	}
1037 
1038 	holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1039 	if (!holder) {
1040 		ret = -ENOMEM;
1041 		goto out_unlock;
1042 	}
1043 
1044 	INIT_LIST_HEAD(&holder->list);
1045 	holder->disk = disk;
1046 	holder->refcnt = 1;
1047 
1048 	ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1049 	if (ret)
1050 		goto out_free;
1051 
1052 	ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1053 	if (ret)
1054 		goto out_del;
1055 	/*
1056 	 * bdev could be deleted beneath us which would implicitly destroy
1057 	 * the holder directory.  Hold on to it.
1058 	 */
1059 	kobject_get(bdev->bd_part->holder_dir);
1060 
1061 	list_add(&holder->list, &bdev->bd_holder_disks);
1062 	goto out_unlock;
1063 
1064 out_del:
1065 	del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1066 out_free:
1067 	kfree(holder);
1068 out_unlock:
1069 	mutex_unlock(&bdev->bd_mutex);
1070 	return ret;
1071 }
1072 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1073 
1074 /**
1075  * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1076  * @bdev: the calimed slave bdev
1077  * @disk: the holding disk
1078  *
1079  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1080  *
1081  * CONTEXT:
1082  * Might sleep.
1083  */
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)1084 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1085 {
1086 	struct bd_holder_disk *holder;
1087 
1088 	mutex_lock(&bdev->bd_mutex);
1089 
1090 	holder = bd_find_holder_disk(bdev, disk);
1091 
1092 	if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1093 		del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1094 		del_symlink(bdev->bd_part->holder_dir,
1095 			    &disk_to_dev(disk)->kobj);
1096 		kobject_put(bdev->bd_part->holder_dir);
1097 		list_del_init(&holder->list);
1098 		kfree(holder);
1099 	}
1100 
1101 	mutex_unlock(&bdev->bd_mutex);
1102 }
1103 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1104 #endif
1105 
1106 /**
1107  * flush_disk - invalidates all buffer-cache entries on a disk
1108  *
1109  * @bdev:      struct block device to be flushed
1110  * @kill_dirty: flag to guide handling of dirty inodes
1111  *
1112  * Invalidates all buffer-cache entries on a disk. It should be called
1113  * when a disk has been changed -- either by a media change or online
1114  * resize.
1115  */
flush_disk(struct block_device * bdev,bool kill_dirty)1116 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1117 {
1118 	if (__invalidate_device(bdev, kill_dirty)) {
1119 		printk(KERN_WARNING "VFS: busy inodes on changed media or "
1120 		       "resized disk %s\n",
1121 		       bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1122 	}
1123 
1124 	if (!bdev->bd_disk)
1125 		return;
1126 	if (disk_part_scan_enabled(bdev->bd_disk))
1127 		bdev->bd_invalidated = 1;
1128 }
1129 
1130 /**
1131  * check_disk_size_change - checks for disk size change and adjusts bdev size.
1132  * @disk: struct gendisk to check
1133  * @bdev: struct bdev to adjust.
1134  *
1135  * This routine checks to see if the bdev size does not match the disk size
1136  * and adjusts it if it differs.
1137  */
check_disk_size_change(struct gendisk * disk,struct block_device * bdev)1138 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1139 {
1140 	loff_t disk_size, bdev_size;
1141 
1142 	disk_size = (loff_t)get_capacity(disk) << 9;
1143 	bdev_size = i_size_read(bdev->bd_inode);
1144 	if (disk_size != bdev_size) {
1145 		printk(KERN_INFO
1146 		       "%s: detected capacity change from %lld to %lld\n",
1147 		       disk->disk_name, bdev_size, disk_size);
1148 		i_size_write(bdev->bd_inode, disk_size);
1149 		flush_disk(bdev, false);
1150 	}
1151 }
1152 EXPORT_SYMBOL(check_disk_size_change);
1153 
1154 /**
1155  * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1156  * @disk: struct gendisk to be revalidated
1157  *
1158  * This routine is a wrapper for lower-level driver's revalidate_disk
1159  * call-backs.  It is used to do common pre and post operations needed
1160  * for all revalidate_disk operations.
1161  */
revalidate_disk(struct gendisk * disk)1162 int revalidate_disk(struct gendisk *disk)
1163 {
1164 	struct block_device *bdev;
1165 	int ret = 0;
1166 
1167 	if (disk->fops->revalidate_disk)
1168 		ret = disk->fops->revalidate_disk(disk);
1169 	bdev = bdget_disk(disk, 0);
1170 	if (!bdev)
1171 		return ret;
1172 
1173 	mutex_lock(&bdev->bd_mutex);
1174 	check_disk_size_change(disk, bdev);
1175 	bdev->bd_invalidated = 0;
1176 	mutex_unlock(&bdev->bd_mutex);
1177 	bdput(bdev);
1178 	return ret;
1179 }
1180 EXPORT_SYMBOL(revalidate_disk);
1181 
1182 /*
1183  * This routine checks whether a removable media has been changed,
1184  * and invalidates all buffer-cache-entries in that case. This
1185  * is a relatively slow routine, so we have to try to minimize using
1186  * it. Thus it is called only upon a 'mount' or 'open'. This
1187  * is the best way of combining speed and utility, I think.
1188  * People changing diskettes in the middle of an operation deserve
1189  * to lose :-)
1190  */
check_disk_change(struct block_device * bdev)1191 int check_disk_change(struct block_device *bdev)
1192 {
1193 	struct gendisk *disk = bdev->bd_disk;
1194 	const struct block_device_operations *bdops = disk->fops;
1195 	unsigned int events;
1196 
1197 	events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1198 				   DISK_EVENT_EJECT_REQUEST);
1199 	if (!(events & DISK_EVENT_MEDIA_CHANGE))
1200 		return 0;
1201 
1202 	flush_disk(bdev, true);
1203 	if (bdops->revalidate_disk)
1204 		bdops->revalidate_disk(bdev->bd_disk);
1205 	return 1;
1206 }
1207 
1208 EXPORT_SYMBOL(check_disk_change);
1209 
bd_set_size(struct block_device * bdev,loff_t size)1210 void bd_set_size(struct block_device *bdev, loff_t size)
1211 {
1212 	unsigned bsize = bdev_logical_block_size(bdev);
1213 
1214 	inode_lock(bdev->bd_inode);
1215 	i_size_write(bdev->bd_inode, size);
1216 	inode_unlock(bdev->bd_inode);
1217 	while (bsize < PAGE_SIZE) {
1218 		if (size & bsize)
1219 			break;
1220 		bsize <<= 1;
1221 	}
1222 	bdev->bd_block_size = bsize;
1223 	bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1224 }
1225 EXPORT_SYMBOL(bd_set_size);
1226 
1227 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1228 
1229 /*
1230  * bd_mutex locking:
1231  *
1232  *  mutex_lock(part->bd_mutex)
1233  *    mutex_lock_nested(whole->bd_mutex, 1)
1234  */
1235 
__blkdev_get(struct block_device * bdev,fmode_t mode,int for_part)1236 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1237 {
1238 	struct gendisk *disk;
1239 	struct module *owner;
1240 	int ret;
1241 	int partno;
1242 	int perm = 0;
1243 
1244 	if (mode & FMODE_READ)
1245 		perm |= MAY_READ;
1246 	if (mode & FMODE_WRITE)
1247 		perm |= MAY_WRITE;
1248 	/*
1249 	 * hooks: /n/, see "layering violations".
1250 	 */
1251 	if (!for_part) {
1252 		ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1253 		if (ret != 0) {
1254 			bdput(bdev);
1255 			return ret;
1256 		}
1257 	}
1258 
1259  restart:
1260 
1261 	ret = -ENXIO;
1262 	disk = get_gendisk(bdev->bd_dev, &partno);
1263 	if (!disk)
1264 		goto out;
1265 	owner = disk->fops->owner;
1266 
1267 	disk_block_events(disk);
1268 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1269 	if (!bdev->bd_openers) {
1270 		bdev->bd_disk = disk;
1271 		bdev->bd_queue = disk->queue;
1272 		bdev->bd_contains = bdev;
1273 
1274 		if (!partno) {
1275 			ret = -ENXIO;
1276 			bdev->bd_part = disk_get_part(disk, partno);
1277 			if (!bdev->bd_part)
1278 				goto out_clear;
1279 
1280 			ret = 0;
1281 			if (disk->fops->open) {
1282 				ret = disk->fops->open(bdev, mode);
1283 				if (ret == -ERESTARTSYS) {
1284 					/* Lost a race with 'disk' being
1285 					 * deleted, try again.
1286 					 * See md.c
1287 					 */
1288 					disk_put_part(bdev->bd_part);
1289 					bdev->bd_part = NULL;
1290 					bdev->bd_disk = NULL;
1291 					bdev->bd_queue = NULL;
1292 					mutex_unlock(&bdev->bd_mutex);
1293 					disk_unblock_events(disk);
1294 					put_disk(disk);
1295 					module_put(owner);
1296 					goto restart;
1297 				}
1298 			}
1299 
1300 			if (!ret)
1301 				bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1302 
1303 			/*
1304 			 * If the device is invalidated, rescan partition
1305 			 * if open succeeded or failed with -ENOMEDIUM.
1306 			 * The latter is necessary to prevent ghost
1307 			 * partitions on a removed medium.
1308 			 */
1309 			if (bdev->bd_invalidated) {
1310 				if (!ret)
1311 					rescan_partitions(disk, bdev);
1312 				else if (ret == -ENOMEDIUM)
1313 					invalidate_partitions(disk, bdev);
1314 			}
1315 
1316 			if (ret)
1317 				goto out_clear;
1318 		} else {
1319 			struct block_device *whole;
1320 			whole = bdget_disk(disk, 0);
1321 			ret = -ENOMEM;
1322 			if (!whole)
1323 				goto out_clear;
1324 			BUG_ON(for_part);
1325 			ret = __blkdev_get(whole, mode, 1);
1326 			if (ret)
1327 				goto out_clear;
1328 			bdev->bd_contains = whole;
1329 			bdev->bd_part = disk_get_part(disk, partno);
1330 			if (!(disk->flags & GENHD_FL_UP) ||
1331 			    !bdev->bd_part || !bdev->bd_part->nr_sects) {
1332 				ret = -ENXIO;
1333 				goto out_clear;
1334 			}
1335 			bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1336 		}
1337 	} else {
1338 		if (bdev->bd_contains == bdev) {
1339 			ret = 0;
1340 			if (bdev->bd_disk->fops->open)
1341 				ret = bdev->bd_disk->fops->open(bdev, mode);
1342 			/* the same as first opener case, read comment there */
1343 			if (bdev->bd_invalidated) {
1344 				if (!ret)
1345 					rescan_partitions(bdev->bd_disk, bdev);
1346 				else if (ret == -ENOMEDIUM)
1347 					invalidate_partitions(bdev->bd_disk, bdev);
1348 			}
1349 			if (ret)
1350 				goto out_unlock_bdev;
1351 		}
1352 		/* only one opener holds refs to the module and disk */
1353 		put_disk(disk);
1354 		module_put(owner);
1355 	}
1356 	bdev->bd_openers++;
1357 	if (for_part)
1358 		bdev->bd_part_count++;
1359 	mutex_unlock(&bdev->bd_mutex);
1360 	disk_unblock_events(disk);
1361 	return 0;
1362 
1363  out_clear:
1364 	disk_put_part(bdev->bd_part);
1365 	bdev->bd_disk = NULL;
1366 	bdev->bd_part = NULL;
1367 	bdev->bd_queue = NULL;
1368 	if (bdev != bdev->bd_contains)
1369 		__blkdev_put(bdev->bd_contains, mode, 1);
1370 	bdev->bd_contains = NULL;
1371  out_unlock_bdev:
1372 	mutex_unlock(&bdev->bd_mutex);
1373 	disk_unblock_events(disk);
1374 	put_disk(disk);
1375 	module_put(owner);
1376  out:
1377 	bdput(bdev);
1378 
1379 	return ret;
1380 }
1381 
1382 /**
1383  * blkdev_get - open a block device
1384  * @bdev: block_device to open
1385  * @mode: FMODE_* mask
1386  * @holder: exclusive holder identifier
1387  *
1388  * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1389  * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1390  * @holder is invalid.  Exclusive opens may nest for the same @holder.
1391  *
1392  * On success, the reference count of @bdev is unchanged.  On failure,
1393  * @bdev is put.
1394  *
1395  * CONTEXT:
1396  * Might sleep.
1397  *
1398  * RETURNS:
1399  * 0 on success, -errno on failure.
1400  */
blkdev_get(struct block_device * bdev,fmode_t mode,void * holder)1401 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1402 {
1403 	struct block_device *whole = NULL;
1404 	int res;
1405 
1406 	WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1407 
1408 	if ((mode & FMODE_EXCL) && holder) {
1409 		whole = bd_start_claiming(bdev, holder);
1410 		if (IS_ERR(whole)) {
1411 			bdput(bdev);
1412 			return PTR_ERR(whole);
1413 		}
1414 	}
1415 
1416 	res = __blkdev_get(bdev, mode, 0);
1417 
1418 	if (whole) {
1419 		struct gendisk *disk = whole->bd_disk;
1420 
1421 		/* finish claiming */
1422 		mutex_lock(&bdev->bd_mutex);
1423 		spin_lock(&bdev_lock);
1424 
1425 		if (!res) {
1426 			BUG_ON(!bd_may_claim(bdev, whole, holder));
1427 			/*
1428 			 * Note that for a whole device bd_holders
1429 			 * will be incremented twice, and bd_holder
1430 			 * will be set to bd_may_claim before being
1431 			 * set to holder
1432 			 */
1433 			whole->bd_holders++;
1434 			whole->bd_holder = bd_may_claim;
1435 			bdev->bd_holders++;
1436 			bdev->bd_holder = holder;
1437 		}
1438 
1439 		/* tell others that we're done */
1440 		BUG_ON(whole->bd_claiming != holder);
1441 		whole->bd_claiming = NULL;
1442 		wake_up_bit(&whole->bd_claiming, 0);
1443 
1444 		spin_unlock(&bdev_lock);
1445 
1446 		/*
1447 		 * Block event polling for write claims if requested.  Any
1448 		 * write holder makes the write_holder state stick until
1449 		 * all are released.  This is good enough and tracking
1450 		 * individual writeable reference is too fragile given the
1451 		 * way @mode is used in blkdev_get/put().
1452 		 */
1453 		if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1454 		    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1455 			bdev->bd_write_holder = true;
1456 			disk_block_events(disk);
1457 		}
1458 
1459 		mutex_unlock(&bdev->bd_mutex);
1460 		bdput(whole);
1461 	}
1462 
1463 	return res;
1464 }
1465 EXPORT_SYMBOL(blkdev_get);
1466 
1467 /**
1468  * blkdev_get_by_path - open a block device by name
1469  * @path: path to the block device to open
1470  * @mode: FMODE_* mask
1471  * @holder: exclusive holder identifier
1472  *
1473  * Open the blockdevice described by the device file at @path.  @mode
1474  * and @holder are identical to blkdev_get().
1475  *
1476  * On success, the returned block_device has reference count of one.
1477  *
1478  * CONTEXT:
1479  * Might sleep.
1480  *
1481  * RETURNS:
1482  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1483  */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)1484 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1485 					void *holder)
1486 {
1487 	struct block_device *bdev;
1488 	int err;
1489 
1490 	bdev = lookup_bdev(path);
1491 	if (IS_ERR(bdev))
1492 		return bdev;
1493 
1494 	err = blkdev_get(bdev, mode, holder);
1495 	if (err)
1496 		return ERR_PTR(err);
1497 
1498 	if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1499 		blkdev_put(bdev, mode);
1500 		return ERR_PTR(-EACCES);
1501 	}
1502 
1503 	return bdev;
1504 }
1505 EXPORT_SYMBOL(blkdev_get_by_path);
1506 
1507 /**
1508  * blkdev_get_by_dev - open a block device by device number
1509  * @dev: device number of block device to open
1510  * @mode: FMODE_* mask
1511  * @holder: exclusive holder identifier
1512  *
1513  * Open the blockdevice described by device number @dev.  @mode and
1514  * @holder are identical to blkdev_get().
1515  *
1516  * Use it ONLY if you really do not have anything better - i.e. when
1517  * you are behind a truly sucky interface and all you are given is a
1518  * device number.  _Never_ to be used for internal purposes.  If you
1519  * ever need it - reconsider your API.
1520  *
1521  * On success, the returned block_device has reference count of one.
1522  *
1523  * CONTEXT:
1524  * Might sleep.
1525  *
1526  * RETURNS:
1527  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1528  */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)1529 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1530 {
1531 	struct block_device *bdev;
1532 	int err;
1533 
1534 	bdev = bdget(dev);
1535 	if (!bdev)
1536 		return ERR_PTR(-ENOMEM);
1537 
1538 	err = blkdev_get(bdev, mode, holder);
1539 	if (err)
1540 		return ERR_PTR(err);
1541 
1542 	return bdev;
1543 }
1544 EXPORT_SYMBOL(blkdev_get_by_dev);
1545 
blkdev_open(struct inode * inode,struct file * filp)1546 static int blkdev_open(struct inode * inode, struct file * filp)
1547 {
1548 	struct block_device *bdev;
1549 
1550 	/*
1551 	 * Preserve backwards compatibility and allow large file access
1552 	 * even if userspace doesn't ask for it explicitly. Some mkfs
1553 	 * binary needs it. We might want to drop this workaround
1554 	 * during an unstable branch.
1555 	 */
1556 	filp->f_flags |= O_LARGEFILE;
1557 
1558 	if (filp->f_flags & O_NDELAY)
1559 		filp->f_mode |= FMODE_NDELAY;
1560 	if (filp->f_flags & O_EXCL)
1561 		filp->f_mode |= FMODE_EXCL;
1562 	if ((filp->f_flags & O_ACCMODE) == 3)
1563 		filp->f_mode |= FMODE_WRITE_IOCTL;
1564 
1565 	bdev = bd_acquire(inode);
1566 	if (bdev == NULL)
1567 		return -ENOMEM;
1568 
1569 	filp->f_mapping = bdev->bd_inode->i_mapping;
1570 
1571 	return blkdev_get(bdev, filp->f_mode, filp);
1572 }
1573 
__blkdev_put(struct block_device * bdev,fmode_t mode,int for_part)1574 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1575 {
1576 	struct gendisk *disk = bdev->bd_disk;
1577 	struct block_device *victim = NULL;
1578 
1579 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1580 	if (for_part)
1581 		bdev->bd_part_count--;
1582 
1583 	if (!--bdev->bd_openers) {
1584 		WARN_ON_ONCE(bdev->bd_holders);
1585 		sync_blockdev(bdev);
1586 		kill_bdev(bdev);
1587 
1588 		bdev_write_inode(bdev);
1589 		/*
1590 		 * Detaching bdev inode from its wb in __destroy_inode()
1591 		 * is too late: the queue which embeds its bdi (along with
1592 		 * root wb) can be gone as soon as we put_disk() below.
1593 		 */
1594 		inode_detach_wb(bdev->bd_inode);
1595 	}
1596 	if (bdev->bd_contains == bdev) {
1597 		if (disk->fops->release)
1598 			disk->fops->release(disk, mode);
1599 	}
1600 	if (!bdev->bd_openers) {
1601 		struct module *owner = disk->fops->owner;
1602 
1603 		disk_put_part(bdev->bd_part);
1604 		bdev->bd_part = NULL;
1605 		bdev->bd_disk = NULL;
1606 		if (bdev != bdev->bd_contains)
1607 			victim = bdev->bd_contains;
1608 		bdev->bd_contains = NULL;
1609 
1610 		put_disk(disk);
1611 		module_put(owner);
1612 	}
1613 	mutex_unlock(&bdev->bd_mutex);
1614 	bdput(bdev);
1615 	if (victim)
1616 		__blkdev_put(victim, mode, 1);
1617 }
1618 
blkdev_put(struct block_device * bdev,fmode_t mode)1619 void blkdev_put(struct block_device *bdev, fmode_t mode)
1620 {
1621 	mutex_lock(&bdev->bd_mutex);
1622 
1623 	if (mode & FMODE_EXCL) {
1624 		bool bdev_free;
1625 
1626 		/*
1627 		 * Release a claim on the device.  The holder fields
1628 		 * are protected with bdev_lock.  bd_mutex is to
1629 		 * synchronize disk_holder unlinking.
1630 		 */
1631 		spin_lock(&bdev_lock);
1632 
1633 		WARN_ON_ONCE(--bdev->bd_holders < 0);
1634 		WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1635 
1636 		/* bd_contains might point to self, check in a separate step */
1637 		if ((bdev_free = !bdev->bd_holders))
1638 			bdev->bd_holder = NULL;
1639 		if (!bdev->bd_contains->bd_holders)
1640 			bdev->bd_contains->bd_holder = NULL;
1641 
1642 		spin_unlock(&bdev_lock);
1643 
1644 		/*
1645 		 * If this was the last claim, remove holder link and
1646 		 * unblock evpoll if it was a write holder.
1647 		 */
1648 		if (bdev_free && bdev->bd_write_holder) {
1649 			disk_unblock_events(bdev->bd_disk);
1650 			bdev->bd_write_holder = false;
1651 		}
1652 	}
1653 
1654 	/*
1655 	 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1656 	 * event.  This is to ensure detection of media removal commanded
1657 	 * from userland - e.g. eject(1).
1658 	 */
1659 	disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1660 
1661 	mutex_unlock(&bdev->bd_mutex);
1662 
1663 	__blkdev_put(bdev, mode, 0);
1664 }
1665 EXPORT_SYMBOL(blkdev_put);
1666 
blkdev_close(struct inode * inode,struct file * filp)1667 static int blkdev_close(struct inode * inode, struct file * filp)
1668 {
1669 	struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1670 	blkdev_put(bdev, filp->f_mode);
1671 	return 0;
1672 }
1673 
block_ioctl(struct file * file,unsigned cmd,unsigned long arg)1674 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1675 {
1676 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1677 	fmode_t mode = file->f_mode;
1678 
1679 	/*
1680 	 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1681 	 * to updated it before every ioctl.
1682 	 */
1683 	if (file->f_flags & O_NDELAY)
1684 		mode |= FMODE_NDELAY;
1685 	else
1686 		mode &= ~FMODE_NDELAY;
1687 
1688 	return blkdev_ioctl(bdev, mode, cmd, arg);
1689 }
1690 
1691 /*
1692  * Write data to the block device.  Only intended for the block device itself
1693  * and the raw driver which basically is a fake block device.
1694  *
1695  * Does not take i_mutex for the write and thus is not for general purpose
1696  * use.
1697  */
blkdev_write_iter(struct kiocb * iocb,struct iov_iter * from)1698 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1699 {
1700 	struct file *file = iocb->ki_filp;
1701 	struct inode *bd_inode = bdev_file_inode(file);
1702 	loff_t size = i_size_read(bd_inode);
1703 	struct blk_plug plug;
1704 	ssize_t ret;
1705 
1706 	if (bdev_read_only(I_BDEV(bd_inode)))
1707 		return -EPERM;
1708 
1709 	if (!iov_iter_count(from))
1710 		return 0;
1711 
1712 	if (iocb->ki_pos >= size)
1713 		return -ENOSPC;
1714 
1715 	iov_iter_truncate(from, size - iocb->ki_pos);
1716 
1717 	blk_start_plug(&plug);
1718 	ret = __generic_file_write_iter(iocb, from);
1719 	if (ret > 0)
1720 		ret = generic_write_sync(iocb, ret);
1721 	blk_finish_plug(&plug);
1722 	return ret;
1723 }
1724 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1725 
blkdev_read_iter(struct kiocb * iocb,struct iov_iter * to)1726 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1727 {
1728 	struct file *file = iocb->ki_filp;
1729 	struct inode *bd_inode = bdev_file_inode(file);
1730 	loff_t size = i_size_read(bd_inode);
1731 	loff_t pos = iocb->ki_pos;
1732 
1733 	if (pos >= size)
1734 		return 0;
1735 
1736 	size -= pos;
1737 	iov_iter_truncate(to, size);
1738 	return generic_file_read_iter(iocb, to);
1739 }
1740 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1741 
1742 /*
1743  * Try to release a page associated with block device when the system
1744  * is under memory pressure.
1745  */
blkdev_releasepage(struct page * page,gfp_t wait)1746 static int blkdev_releasepage(struct page *page, gfp_t wait)
1747 {
1748 	struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1749 
1750 	if (super && super->s_op->bdev_try_to_free_page)
1751 		return super->s_op->bdev_try_to_free_page(super, page, wait);
1752 
1753 	return try_to_free_buffers(page);
1754 }
1755 
blkdev_writepages(struct address_space * mapping,struct writeback_control * wbc)1756 static int blkdev_writepages(struct address_space *mapping,
1757 			     struct writeback_control *wbc)
1758 {
1759 	if (dax_mapping(mapping)) {
1760 		struct block_device *bdev = I_BDEV(mapping->host);
1761 
1762 		return dax_writeback_mapping_range(mapping, bdev, wbc);
1763 	}
1764 	return generic_writepages(mapping, wbc);
1765 }
1766 
1767 static const struct address_space_operations def_blk_aops = {
1768 	.readpage	= blkdev_readpage,
1769 	.readpages	= blkdev_readpages,
1770 	.writepage	= blkdev_writepage,
1771 	.write_begin	= blkdev_write_begin,
1772 	.write_end	= blkdev_write_end,
1773 	.writepages	= blkdev_writepages,
1774 	.releasepage	= blkdev_releasepage,
1775 	.direct_IO	= blkdev_direct_IO,
1776 	.is_dirty_writeback = buffer_check_dirty_writeback,
1777 };
1778 
1779 #define	BLKDEV_FALLOC_FL_SUPPORTED					\
1780 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
1781 		 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1782 
blkdev_fallocate(struct file * file,int mode,loff_t start,loff_t len)1783 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
1784 			     loff_t len)
1785 {
1786 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1787 	struct request_queue *q = bdev_get_queue(bdev);
1788 	struct address_space *mapping;
1789 	loff_t end = start + len - 1;
1790 	loff_t isize;
1791 	int error;
1792 
1793 	/* Fail if we don't recognize the flags. */
1794 	if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
1795 		return -EOPNOTSUPP;
1796 
1797 	/* Don't go off the end of the device. */
1798 	isize = i_size_read(bdev->bd_inode);
1799 	if (start >= isize)
1800 		return -EINVAL;
1801 	if (end >= isize) {
1802 		if (mode & FALLOC_FL_KEEP_SIZE) {
1803 			len = isize - start;
1804 			end = start + len - 1;
1805 		} else
1806 			return -EINVAL;
1807 	}
1808 
1809 	/*
1810 	 * Don't allow IO that isn't aligned to logical block size.
1811 	 */
1812 	if ((start | len) & (bdev_logical_block_size(bdev) - 1))
1813 		return -EINVAL;
1814 
1815 	/* Invalidate the page cache, including dirty pages. */
1816 	mapping = bdev->bd_inode->i_mapping;
1817 	truncate_inode_pages_range(mapping, start, end);
1818 
1819 	switch (mode) {
1820 	case FALLOC_FL_ZERO_RANGE:
1821 	case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
1822 		error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
1823 					    GFP_KERNEL, false);
1824 		break;
1825 	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
1826 		/* Only punch if the device can do zeroing discard. */
1827 		if (!blk_queue_discard(q) || !q->limits.discard_zeroes_data)
1828 			return -EOPNOTSUPP;
1829 		error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
1830 					     GFP_KERNEL, 0);
1831 		break;
1832 	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
1833 		if (!blk_queue_discard(q))
1834 			return -EOPNOTSUPP;
1835 		error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
1836 					     GFP_KERNEL, 0);
1837 		break;
1838 	default:
1839 		return -EOPNOTSUPP;
1840 	}
1841 	if (error)
1842 		return error;
1843 
1844 	/*
1845 	 * Invalidate again; if someone wandered in and dirtied a page,
1846 	 * the caller will be given -EBUSY.  The third argument is
1847 	 * inclusive, so the rounding here is safe.
1848 	 */
1849 	return invalidate_inode_pages2_range(mapping,
1850 					     start >> PAGE_SHIFT,
1851 					     end >> PAGE_SHIFT);
1852 }
1853 
1854 const struct file_operations def_blk_fops = {
1855 	.open		= blkdev_open,
1856 	.release	= blkdev_close,
1857 	.llseek		= block_llseek,
1858 	.read_iter	= blkdev_read_iter,
1859 	.write_iter	= blkdev_write_iter,
1860 	.mmap		= generic_file_mmap,
1861 	.fsync		= blkdev_fsync,
1862 	.unlocked_ioctl	= block_ioctl,
1863 #ifdef CONFIG_COMPAT
1864 	.compat_ioctl	= compat_blkdev_ioctl,
1865 #endif
1866 	.splice_read	= generic_file_splice_read,
1867 	.splice_write	= iter_file_splice_write,
1868 	.fallocate	= blkdev_fallocate,
1869 };
1870 
ioctl_by_bdev(struct block_device * bdev,unsigned cmd,unsigned long arg)1871 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1872 {
1873 	int res;
1874 	mm_segment_t old_fs = get_fs();
1875 	set_fs(KERNEL_DS);
1876 	res = blkdev_ioctl(bdev, 0, cmd, arg);
1877 	set_fs(old_fs);
1878 	return res;
1879 }
1880 
1881 EXPORT_SYMBOL(ioctl_by_bdev);
1882 
1883 /**
1884  * lookup_bdev  - lookup a struct block_device by name
1885  * @pathname:	special file representing the block device
1886  *
1887  * Get a reference to the blockdevice at @pathname in the current
1888  * namespace if possible and return it.  Return ERR_PTR(error)
1889  * otherwise.
1890  */
lookup_bdev(const char * pathname)1891 struct block_device *lookup_bdev(const char *pathname)
1892 {
1893 	struct block_device *bdev;
1894 	struct inode *inode;
1895 	struct path path;
1896 	int error;
1897 
1898 	if (!pathname || !*pathname)
1899 		return ERR_PTR(-EINVAL);
1900 
1901 	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1902 	if (error)
1903 		return ERR_PTR(error);
1904 
1905 	inode = d_backing_inode(path.dentry);
1906 	error = -ENOTBLK;
1907 	if (!S_ISBLK(inode->i_mode))
1908 		goto fail;
1909 	error = -EACCES;
1910 	if (!may_open_dev(&path))
1911 		goto fail;
1912 	error = -ENOMEM;
1913 	bdev = bd_acquire(inode);
1914 	if (!bdev)
1915 		goto fail;
1916 out:
1917 	path_put(&path);
1918 	return bdev;
1919 fail:
1920 	bdev = ERR_PTR(error);
1921 	goto out;
1922 }
1923 EXPORT_SYMBOL(lookup_bdev);
1924 
__invalidate_device(struct block_device * bdev,bool kill_dirty)1925 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1926 {
1927 	struct super_block *sb = get_super(bdev);
1928 	int res = 0;
1929 
1930 	if (sb) {
1931 		/*
1932 		 * no need to lock the super, get_super holds the
1933 		 * read mutex so the filesystem cannot go away
1934 		 * under us (->put_super runs with the write lock
1935 		 * hold).
1936 		 */
1937 		shrink_dcache_sb(sb);
1938 		res = invalidate_inodes(sb, kill_dirty);
1939 		drop_super(sb);
1940 	}
1941 	invalidate_bdev(bdev);
1942 	return res;
1943 }
1944 EXPORT_SYMBOL(__invalidate_device);
1945 
iterate_bdevs(void (* func)(struct block_device *,void *),void * arg)1946 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1947 {
1948 	struct inode *inode, *old_inode = NULL;
1949 
1950 	spin_lock(&blockdev_superblock->s_inode_list_lock);
1951 	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1952 		struct address_space *mapping = inode->i_mapping;
1953 		struct block_device *bdev;
1954 
1955 		spin_lock(&inode->i_lock);
1956 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1957 		    mapping->nrpages == 0) {
1958 			spin_unlock(&inode->i_lock);
1959 			continue;
1960 		}
1961 		__iget(inode);
1962 		spin_unlock(&inode->i_lock);
1963 		spin_unlock(&blockdev_superblock->s_inode_list_lock);
1964 		/*
1965 		 * We hold a reference to 'inode' so it couldn't have been
1966 		 * removed from s_inodes list while we dropped the
1967 		 * s_inode_list_lock  We cannot iput the inode now as we can
1968 		 * be holding the last reference and we cannot iput it under
1969 		 * s_inode_list_lock. So we keep the reference and iput it
1970 		 * later.
1971 		 */
1972 		iput(old_inode);
1973 		old_inode = inode;
1974 		bdev = I_BDEV(inode);
1975 
1976 		mutex_lock(&bdev->bd_mutex);
1977 		if (bdev->bd_openers)
1978 			func(bdev, arg);
1979 		mutex_unlock(&bdev->bd_mutex);
1980 
1981 		spin_lock(&blockdev_superblock->s_inode_list_lock);
1982 	}
1983 	spin_unlock(&blockdev_superblock->s_inode_list_lock);
1984 	iput(old_inode);
1985 }
1986