1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <linux/badblocks.h>
33 #include <linux/falloc.h>
34 #include <asm/uaccess.h>
35 #include "internal.h"
36
37 struct bdev_inode {
38 struct block_device bdev;
39 struct inode vfs_inode;
40 };
41
42 static const struct address_space_operations def_blk_aops;
43
BDEV_I(struct inode * inode)44 static inline struct bdev_inode *BDEV_I(struct inode *inode)
45 {
46 return container_of(inode, struct bdev_inode, vfs_inode);
47 }
48
I_BDEV(struct inode * inode)49 struct block_device *I_BDEV(struct inode *inode)
50 {
51 return &BDEV_I(inode)->bdev;
52 }
53 EXPORT_SYMBOL(I_BDEV);
54
__vfs_msg(struct super_block * sb,const char * prefix,const char * fmt,...)55 void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
56 {
57 struct va_format vaf;
58 va_list args;
59
60 va_start(args, fmt);
61 vaf.fmt = fmt;
62 vaf.va = &args;
63 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
64 va_end(args);
65 }
66
bdev_write_inode(struct block_device * bdev)67 static void bdev_write_inode(struct block_device *bdev)
68 {
69 struct inode *inode = bdev->bd_inode;
70 int ret;
71
72 spin_lock(&inode->i_lock);
73 while (inode->i_state & I_DIRTY) {
74 spin_unlock(&inode->i_lock);
75 ret = write_inode_now(inode, true);
76 if (ret) {
77 char name[BDEVNAME_SIZE];
78 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
79 "for block device %s (err=%d).\n",
80 bdevname(bdev, name), ret);
81 }
82 spin_lock(&inode->i_lock);
83 }
84 spin_unlock(&inode->i_lock);
85 }
86
87 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)88 void kill_bdev(struct block_device *bdev)
89 {
90 struct address_space *mapping = bdev->bd_inode->i_mapping;
91
92 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
93 return;
94
95 invalidate_bh_lrus();
96 truncate_inode_pages(mapping, 0);
97 }
98 EXPORT_SYMBOL(kill_bdev);
99
100 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)101 void invalidate_bdev(struct block_device *bdev)
102 {
103 struct address_space *mapping = bdev->bd_inode->i_mapping;
104
105 if (mapping->nrpages) {
106 invalidate_bh_lrus();
107 lru_add_drain_all(); /* make sure all lru add caches are flushed */
108 invalidate_mapping_pages(mapping, 0, -1);
109 }
110 /* 99% of the time, we don't need to flush the cleancache on the bdev.
111 * But, for the strange corners, lets be cautious
112 */
113 cleancache_invalidate_inode(mapping);
114 }
115 EXPORT_SYMBOL(invalidate_bdev);
116
set_blocksize(struct block_device * bdev,int size)117 int set_blocksize(struct block_device *bdev, int size)
118 {
119 /* Size must be a power of two, and between 512 and PAGE_SIZE */
120 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
121 return -EINVAL;
122
123 /* Size cannot be smaller than the size supported by the device */
124 if (size < bdev_logical_block_size(bdev))
125 return -EINVAL;
126
127 /* Don't change the size if it is same as current */
128 if (bdev->bd_block_size != size) {
129 sync_blockdev(bdev);
130 bdev->bd_block_size = size;
131 bdev->bd_inode->i_blkbits = blksize_bits(size);
132 kill_bdev(bdev);
133 }
134 return 0;
135 }
136
137 EXPORT_SYMBOL(set_blocksize);
138
sb_set_blocksize(struct super_block * sb,int size)139 int sb_set_blocksize(struct super_block *sb, int size)
140 {
141 if (set_blocksize(sb->s_bdev, size))
142 return 0;
143 /* If we get here, we know size is power of two
144 * and it's value is between 512 and PAGE_SIZE */
145 sb->s_blocksize = size;
146 sb->s_blocksize_bits = blksize_bits(size);
147 return sb->s_blocksize;
148 }
149
150 EXPORT_SYMBOL(sb_set_blocksize);
151
sb_min_blocksize(struct super_block * sb,int size)152 int sb_min_blocksize(struct super_block *sb, int size)
153 {
154 int minsize = bdev_logical_block_size(sb->s_bdev);
155 if (size < minsize)
156 size = minsize;
157 return sb_set_blocksize(sb, size);
158 }
159
160 EXPORT_SYMBOL(sb_min_blocksize);
161
162 static int
blkdev_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)163 blkdev_get_block(struct inode *inode, sector_t iblock,
164 struct buffer_head *bh, int create)
165 {
166 bh->b_bdev = I_BDEV(inode);
167 bh->b_blocknr = iblock;
168 set_buffer_mapped(bh);
169 return 0;
170 }
171
bdev_file_inode(struct file * file)172 static struct inode *bdev_file_inode(struct file *file)
173 {
174 return file->f_mapping->host;
175 }
176
177 static ssize_t
blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter)178 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
179 {
180 struct file *file = iocb->ki_filp;
181 struct inode *inode = bdev_file_inode(file);
182
183 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter,
184 blkdev_get_block, NULL, NULL,
185 DIO_SKIP_DIO_COUNT);
186 }
187
__sync_blockdev(struct block_device * bdev,int wait)188 int __sync_blockdev(struct block_device *bdev, int wait)
189 {
190 if (!bdev)
191 return 0;
192 if (!wait)
193 return filemap_flush(bdev->bd_inode->i_mapping);
194 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
195 }
196
197 /*
198 * Write out and wait upon all the dirty data associated with a block
199 * device via its mapping. Does not take the superblock lock.
200 */
sync_blockdev(struct block_device * bdev)201 int sync_blockdev(struct block_device *bdev)
202 {
203 return __sync_blockdev(bdev, 1);
204 }
205 EXPORT_SYMBOL(sync_blockdev);
206
207 /*
208 * Write out and wait upon all dirty data associated with this
209 * device. Filesystem data as well as the underlying block
210 * device. Takes the superblock lock.
211 */
fsync_bdev(struct block_device * bdev)212 int fsync_bdev(struct block_device *bdev)
213 {
214 struct super_block *sb = get_super(bdev);
215 if (sb) {
216 int res = sync_filesystem(sb);
217 drop_super(sb);
218 return res;
219 }
220 return sync_blockdev(bdev);
221 }
222 EXPORT_SYMBOL(fsync_bdev);
223
224 /**
225 * freeze_bdev -- lock a filesystem and force it into a consistent state
226 * @bdev: blockdevice to lock
227 *
228 * If a superblock is found on this device, we take the s_umount semaphore
229 * on it to make sure nobody unmounts until the snapshot creation is done.
230 * The reference counter (bd_fsfreeze_count) guarantees that only the last
231 * unfreeze process can unfreeze the frozen filesystem actually when multiple
232 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
233 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
234 * actually.
235 */
freeze_bdev(struct block_device * bdev)236 struct super_block *freeze_bdev(struct block_device *bdev)
237 {
238 struct super_block *sb;
239 int error = 0;
240
241 mutex_lock(&bdev->bd_fsfreeze_mutex);
242 if (++bdev->bd_fsfreeze_count > 1) {
243 /*
244 * We don't even need to grab a reference - the first call
245 * to freeze_bdev grab an active reference and only the last
246 * thaw_bdev drops it.
247 */
248 sb = get_super(bdev);
249 if (sb)
250 drop_super(sb);
251 mutex_unlock(&bdev->bd_fsfreeze_mutex);
252 return sb;
253 }
254
255 sb = get_active_super(bdev);
256 if (!sb)
257 goto out;
258 if (sb->s_op->freeze_super)
259 error = sb->s_op->freeze_super(sb);
260 else
261 error = freeze_super(sb);
262 if (error) {
263 deactivate_super(sb);
264 bdev->bd_fsfreeze_count--;
265 mutex_unlock(&bdev->bd_fsfreeze_mutex);
266 return ERR_PTR(error);
267 }
268 deactivate_super(sb);
269 out:
270 sync_blockdev(bdev);
271 mutex_unlock(&bdev->bd_fsfreeze_mutex);
272 return sb; /* thaw_bdev releases s->s_umount */
273 }
274 EXPORT_SYMBOL(freeze_bdev);
275
276 /**
277 * thaw_bdev -- unlock filesystem
278 * @bdev: blockdevice to unlock
279 * @sb: associated superblock
280 *
281 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
282 */
thaw_bdev(struct block_device * bdev,struct super_block * sb)283 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
284 {
285 int error = -EINVAL;
286
287 mutex_lock(&bdev->bd_fsfreeze_mutex);
288 if (!bdev->bd_fsfreeze_count)
289 goto out;
290
291 error = 0;
292 if (--bdev->bd_fsfreeze_count > 0)
293 goto out;
294
295 if (!sb)
296 goto out;
297
298 if (sb->s_op->thaw_super)
299 error = sb->s_op->thaw_super(sb);
300 else
301 error = thaw_super(sb);
302 if (error)
303 bdev->bd_fsfreeze_count++;
304 out:
305 mutex_unlock(&bdev->bd_fsfreeze_mutex);
306 return error;
307 }
308 EXPORT_SYMBOL(thaw_bdev);
309
blkdev_writepage(struct page * page,struct writeback_control * wbc)310 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
311 {
312 return block_write_full_page(page, blkdev_get_block, wbc);
313 }
314
blkdev_readpage(struct file * file,struct page * page)315 static int blkdev_readpage(struct file * file, struct page * page)
316 {
317 return block_read_full_page(page, blkdev_get_block);
318 }
319
blkdev_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)320 static int blkdev_readpages(struct file *file, struct address_space *mapping,
321 struct list_head *pages, unsigned nr_pages)
322 {
323 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
324 }
325
blkdev_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)326 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
327 loff_t pos, unsigned len, unsigned flags,
328 struct page **pagep, void **fsdata)
329 {
330 return block_write_begin(mapping, pos, len, flags, pagep,
331 blkdev_get_block);
332 }
333
blkdev_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)334 static int blkdev_write_end(struct file *file, struct address_space *mapping,
335 loff_t pos, unsigned len, unsigned copied,
336 struct page *page, void *fsdata)
337 {
338 int ret;
339 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
340
341 unlock_page(page);
342 put_page(page);
343
344 return ret;
345 }
346
347 /*
348 * private llseek:
349 * for a block special file file_inode(file)->i_size is zero
350 * so we compute the size by hand (just as in block_read/write above)
351 */
block_llseek(struct file * file,loff_t offset,int whence)352 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
353 {
354 struct inode *bd_inode = bdev_file_inode(file);
355 loff_t retval;
356
357 inode_lock(bd_inode);
358 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
359 inode_unlock(bd_inode);
360 return retval;
361 }
362
blkdev_fsync(struct file * filp,loff_t start,loff_t end,int datasync)363 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
364 {
365 struct inode *bd_inode = bdev_file_inode(filp);
366 struct block_device *bdev = I_BDEV(bd_inode);
367 int error;
368
369 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
370 if (error)
371 return error;
372
373 /*
374 * There is no need to serialise calls to blkdev_issue_flush with
375 * i_mutex and doing so causes performance issues with concurrent
376 * O_SYNC writers to a block device.
377 */
378 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
379 if (error == -EOPNOTSUPP)
380 error = 0;
381
382 return error;
383 }
384 EXPORT_SYMBOL(blkdev_fsync);
385
386 /**
387 * bdev_read_page() - Start reading a page from a block device
388 * @bdev: The device to read the page from
389 * @sector: The offset on the device to read the page to (need not be aligned)
390 * @page: The page to read
391 *
392 * On entry, the page should be locked. It will be unlocked when the page
393 * has been read. If the block driver implements rw_page synchronously,
394 * that will be true on exit from this function, but it need not be.
395 *
396 * Errors returned by this function are usually "soft", eg out of memory, or
397 * queue full; callers should try a different route to read this page rather
398 * than propagate an error back up the stack.
399 *
400 * Return: negative errno if an error occurs, 0 if submission was successful.
401 */
bdev_read_page(struct block_device * bdev,sector_t sector,struct page * page)402 int bdev_read_page(struct block_device *bdev, sector_t sector,
403 struct page *page)
404 {
405 const struct block_device_operations *ops = bdev->bd_disk->fops;
406 int result = -EOPNOTSUPP;
407
408 if (!ops->rw_page || bdev_get_integrity(bdev))
409 return result;
410
411 result = blk_queue_enter(bdev->bd_queue, false);
412 if (result)
413 return result;
414 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
415 blk_queue_exit(bdev->bd_queue);
416 return result;
417 }
418 EXPORT_SYMBOL_GPL(bdev_read_page);
419
420 /**
421 * bdev_write_page() - Start writing a page to a block device
422 * @bdev: The device to write the page to
423 * @sector: The offset on the device to write the page to (need not be aligned)
424 * @page: The page to write
425 * @wbc: The writeback_control for the write
426 *
427 * On entry, the page should be locked and not currently under writeback.
428 * On exit, if the write started successfully, the page will be unlocked and
429 * under writeback. If the write failed already (eg the driver failed to
430 * queue the page to the device), the page will still be locked. If the
431 * caller is a ->writepage implementation, it will need to unlock the page.
432 *
433 * Errors returned by this function are usually "soft", eg out of memory, or
434 * queue full; callers should try a different route to write this page rather
435 * than propagate an error back up the stack.
436 *
437 * Return: negative errno if an error occurs, 0 if submission was successful.
438 */
bdev_write_page(struct block_device * bdev,sector_t sector,struct page * page,struct writeback_control * wbc)439 int bdev_write_page(struct block_device *bdev, sector_t sector,
440 struct page *page, struct writeback_control *wbc)
441 {
442 int result;
443 const struct block_device_operations *ops = bdev->bd_disk->fops;
444
445 if (!ops->rw_page || bdev_get_integrity(bdev))
446 return -EOPNOTSUPP;
447 result = blk_queue_enter(bdev->bd_queue, false);
448 if (result)
449 return result;
450
451 set_page_writeback(page);
452 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
453 if (result) {
454 end_page_writeback(page);
455 } else {
456 clean_page_buffers(page);
457 unlock_page(page);
458 }
459 blk_queue_exit(bdev->bd_queue);
460 return result;
461 }
462 EXPORT_SYMBOL_GPL(bdev_write_page);
463
464 /**
465 * bdev_direct_access() - Get the address for directly-accessibly memory
466 * @bdev: The device containing the memory
467 * @dax: control and output parameters for ->direct_access
468 *
469 * If a block device is made up of directly addressable memory, this function
470 * will tell the caller the PFN and the address of the memory. The address
471 * may be directly dereferenced within the kernel without the need to call
472 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
473 * page tables.
474 *
475 * Return: negative errno if an error occurs, otherwise the number of bytes
476 * accessible at this address.
477 */
bdev_direct_access(struct block_device * bdev,struct blk_dax_ctl * dax)478 long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax)
479 {
480 sector_t sector = dax->sector;
481 long avail, size = dax->size;
482 const struct block_device_operations *ops = bdev->bd_disk->fops;
483
484 /*
485 * The device driver is allowed to sleep, in order to make the
486 * memory directly accessible.
487 */
488 might_sleep();
489
490 if (size < 0)
491 return size;
492 if (!blk_queue_dax(bdev_get_queue(bdev)) || !ops->direct_access)
493 return -EOPNOTSUPP;
494 if ((sector + DIV_ROUND_UP(size, 512)) >
495 part_nr_sects_read(bdev->bd_part))
496 return -ERANGE;
497 sector += get_start_sect(bdev);
498 if (sector % (PAGE_SIZE / 512))
499 return -EINVAL;
500 avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn, size);
501 if (!avail)
502 return -ERANGE;
503 if (avail > 0 && avail & ~PAGE_MASK)
504 return -ENXIO;
505 return min(avail, size);
506 }
507 EXPORT_SYMBOL_GPL(bdev_direct_access);
508
509 /**
510 * bdev_dax_supported() - Check if the device supports dax for filesystem
511 * @sb: The superblock of the device
512 * @blocksize: The block size of the device
513 *
514 * This is a library function for filesystems to check if the block device
515 * can be mounted with dax option.
516 *
517 * Return: negative errno if unsupported, 0 if supported.
518 */
bdev_dax_supported(struct super_block * sb,int blocksize)519 int bdev_dax_supported(struct super_block *sb, int blocksize)
520 {
521 struct blk_dax_ctl dax = {
522 .sector = 0,
523 .size = PAGE_SIZE,
524 };
525 int err;
526
527 if (blocksize != PAGE_SIZE) {
528 vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax");
529 return -EINVAL;
530 }
531
532 err = bdev_direct_access(sb->s_bdev, &dax);
533 if (err < 0) {
534 switch (err) {
535 case -EOPNOTSUPP:
536 vfs_msg(sb, KERN_ERR,
537 "error: device does not support dax");
538 break;
539 case -EINVAL:
540 vfs_msg(sb, KERN_ERR,
541 "error: unaligned partition for dax");
542 break;
543 default:
544 vfs_msg(sb, KERN_ERR,
545 "error: dax access failed (%d)", err);
546 }
547 return err;
548 }
549
550 return 0;
551 }
552 EXPORT_SYMBOL_GPL(bdev_dax_supported);
553
554 /**
555 * bdev_dax_capable() - Return if the raw device is capable for dax
556 * @bdev: The device for raw block device access
557 */
bdev_dax_capable(struct block_device * bdev)558 bool bdev_dax_capable(struct block_device *bdev)
559 {
560 struct blk_dax_ctl dax = {
561 .size = PAGE_SIZE,
562 };
563
564 if (!IS_ENABLED(CONFIG_FS_DAX))
565 return false;
566
567 dax.sector = 0;
568 if (bdev_direct_access(bdev, &dax) < 0)
569 return false;
570
571 dax.sector = bdev->bd_part->nr_sects - (PAGE_SIZE / 512);
572 if (bdev_direct_access(bdev, &dax) < 0)
573 return false;
574
575 return true;
576 }
577
578 /*
579 * pseudo-fs
580 */
581
582 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
583 static struct kmem_cache * bdev_cachep __read_mostly;
584
bdev_alloc_inode(struct super_block * sb)585 static struct inode *bdev_alloc_inode(struct super_block *sb)
586 {
587 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
588 if (!ei)
589 return NULL;
590 return &ei->vfs_inode;
591 }
592
bdev_i_callback(struct rcu_head * head)593 static void bdev_i_callback(struct rcu_head *head)
594 {
595 struct inode *inode = container_of(head, struct inode, i_rcu);
596 struct bdev_inode *bdi = BDEV_I(inode);
597
598 kmem_cache_free(bdev_cachep, bdi);
599 }
600
bdev_destroy_inode(struct inode * inode)601 static void bdev_destroy_inode(struct inode *inode)
602 {
603 call_rcu(&inode->i_rcu, bdev_i_callback);
604 }
605
init_once(void * foo)606 static void init_once(void *foo)
607 {
608 struct bdev_inode *ei = (struct bdev_inode *) foo;
609 struct block_device *bdev = &ei->bdev;
610
611 memset(bdev, 0, sizeof(*bdev));
612 mutex_init(&bdev->bd_mutex);
613 INIT_LIST_HEAD(&bdev->bd_list);
614 #ifdef CONFIG_SYSFS
615 INIT_LIST_HEAD(&bdev->bd_holder_disks);
616 #endif
617 inode_init_once(&ei->vfs_inode);
618 /* Initialize mutex for freeze. */
619 mutex_init(&bdev->bd_fsfreeze_mutex);
620 }
621
bdev_evict_inode(struct inode * inode)622 static void bdev_evict_inode(struct inode *inode)
623 {
624 struct block_device *bdev = &BDEV_I(inode)->bdev;
625 truncate_inode_pages_final(&inode->i_data);
626 invalidate_inode_buffers(inode); /* is it needed here? */
627 clear_inode(inode);
628 spin_lock(&bdev_lock);
629 list_del_init(&bdev->bd_list);
630 spin_unlock(&bdev_lock);
631 }
632
633 static const struct super_operations bdev_sops = {
634 .statfs = simple_statfs,
635 .alloc_inode = bdev_alloc_inode,
636 .destroy_inode = bdev_destroy_inode,
637 .drop_inode = generic_delete_inode,
638 .evict_inode = bdev_evict_inode,
639 };
640
bd_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)641 static struct dentry *bd_mount(struct file_system_type *fs_type,
642 int flags, const char *dev_name, void *data)
643 {
644 struct dentry *dent;
645 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
646 if (!IS_ERR(dent))
647 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
648 return dent;
649 }
650
651 static struct file_system_type bd_type = {
652 .name = "bdev",
653 .mount = bd_mount,
654 .kill_sb = kill_anon_super,
655 };
656
657 struct super_block *blockdev_superblock __read_mostly;
658 EXPORT_SYMBOL_GPL(blockdev_superblock);
659
bdev_cache_init(void)660 void __init bdev_cache_init(void)
661 {
662 int err;
663 static struct vfsmount *bd_mnt;
664
665 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
666 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
667 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
668 init_once);
669 err = register_filesystem(&bd_type);
670 if (err)
671 panic("Cannot register bdev pseudo-fs");
672 bd_mnt = kern_mount(&bd_type);
673 if (IS_ERR(bd_mnt))
674 panic("Cannot create bdev pseudo-fs");
675 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
676 }
677
678 /*
679 * Most likely _very_ bad one - but then it's hardly critical for small
680 * /dev and can be fixed when somebody will need really large one.
681 * Keep in mind that it will be fed through icache hash function too.
682 */
hash(dev_t dev)683 static inline unsigned long hash(dev_t dev)
684 {
685 return MAJOR(dev)+MINOR(dev);
686 }
687
bdev_test(struct inode * inode,void * data)688 static int bdev_test(struct inode *inode, void *data)
689 {
690 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
691 }
692
bdev_set(struct inode * inode,void * data)693 static int bdev_set(struct inode *inode, void *data)
694 {
695 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
696 return 0;
697 }
698
699 static LIST_HEAD(all_bdevs);
700
bdget(dev_t dev)701 struct block_device *bdget(dev_t dev)
702 {
703 struct block_device *bdev;
704 struct inode *inode;
705
706 inode = iget5_locked(blockdev_superblock, hash(dev),
707 bdev_test, bdev_set, &dev);
708
709 if (!inode)
710 return NULL;
711
712 bdev = &BDEV_I(inode)->bdev;
713
714 if (inode->i_state & I_NEW) {
715 bdev->bd_contains = NULL;
716 bdev->bd_super = NULL;
717 bdev->bd_inode = inode;
718 bdev->bd_block_size = i_blocksize(inode);
719 bdev->bd_part_count = 0;
720 bdev->bd_invalidated = 0;
721 inode->i_mode = S_IFBLK;
722 inode->i_rdev = dev;
723 inode->i_bdev = bdev;
724 inode->i_data.a_ops = &def_blk_aops;
725 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
726 spin_lock(&bdev_lock);
727 list_add(&bdev->bd_list, &all_bdevs);
728 spin_unlock(&bdev_lock);
729 unlock_new_inode(inode);
730 }
731 return bdev;
732 }
733
734 EXPORT_SYMBOL(bdget);
735
736 /**
737 * bdgrab -- Grab a reference to an already referenced block device
738 * @bdev: Block device to grab a reference to.
739 */
bdgrab(struct block_device * bdev)740 struct block_device *bdgrab(struct block_device *bdev)
741 {
742 ihold(bdev->bd_inode);
743 return bdev;
744 }
745 EXPORT_SYMBOL(bdgrab);
746
nr_blockdev_pages(void)747 long nr_blockdev_pages(void)
748 {
749 struct block_device *bdev;
750 long ret = 0;
751 spin_lock(&bdev_lock);
752 list_for_each_entry(bdev, &all_bdevs, bd_list) {
753 ret += bdev->bd_inode->i_mapping->nrpages;
754 }
755 spin_unlock(&bdev_lock);
756 return ret;
757 }
758
bdput(struct block_device * bdev)759 void bdput(struct block_device *bdev)
760 {
761 iput(bdev->bd_inode);
762 }
763
764 EXPORT_SYMBOL(bdput);
765
bd_acquire(struct inode * inode)766 static struct block_device *bd_acquire(struct inode *inode)
767 {
768 struct block_device *bdev;
769
770 spin_lock(&bdev_lock);
771 bdev = inode->i_bdev;
772 if (bdev) {
773 bdgrab(bdev);
774 spin_unlock(&bdev_lock);
775 return bdev;
776 }
777 spin_unlock(&bdev_lock);
778
779 bdev = bdget(inode->i_rdev);
780 if (bdev) {
781 spin_lock(&bdev_lock);
782 if (!inode->i_bdev) {
783 /*
784 * We take an additional reference to bd_inode,
785 * and it's released in clear_inode() of inode.
786 * So, we can access it via ->i_mapping always
787 * without igrab().
788 */
789 bdgrab(bdev);
790 inode->i_bdev = bdev;
791 inode->i_mapping = bdev->bd_inode->i_mapping;
792 }
793 spin_unlock(&bdev_lock);
794 }
795 return bdev;
796 }
797
798 /* Call when you free inode */
799
bd_forget(struct inode * inode)800 void bd_forget(struct inode *inode)
801 {
802 struct block_device *bdev = NULL;
803
804 spin_lock(&bdev_lock);
805 if (!sb_is_blkdev_sb(inode->i_sb))
806 bdev = inode->i_bdev;
807 inode->i_bdev = NULL;
808 inode->i_mapping = &inode->i_data;
809 spin_unlock(&bdev_lock);
810
811 if (bdev)
812 bdput(bdev);
813 }
814
815 /**
816 * bd_may_claim - test whether a block device can be claimed
817 * @bdev: block device of interest
818 * @whole: whole block device containing @bdev, may equal @bdev
819 * @holder: holder trying to claim @bdev
820 *
821 * Test whether @bdev can be claimed by @holder.
822 *
823 * CONTEXT:
824 * spin_lock(&bdev_lock).
825 *
826 * RETURNS:
827 * %true if @bdev can be claimed, %false otherwise.
828 */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)829 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
830 void *holder)
831 {
832 if (bdev->bd_holder == holder)
833 return true; /* already a holder */
834 else if (bdev->bd_holder != NULL)
835 return false; /* held by someone else */
836 else if (whole == bdev)
837 return true; /* is a whole device which isn't held */
838
839 else if (whole->bd_holder == bd_may_claim)
840 return true; /* is a partition of a device that is being partitioned */
841 else if (whole->bd_holder != NULL)
842 return false; /* is a partition of a held device */
843 else
844 return true; /* is a partition of an un-held device */
845 }
846
847 /**
848 * bd_prepare_to_claim - prepare to claim a block device
849 * @bdev: block device of interest
850 * @whole: the whole device containing @bdev, may equal @bdev
851 * @holder: holder trying to claim @bdev
852 *
853 * Prepare to claim @bdev. This function fails if @bdev is already
854 * claimed by another holder and waits if another claiming is in
855 * progress. This function doesn't actually claim. On successful
856 * return, the caller has ownership of bd_claiming and bd_holder[s].
857 *
858 * CONTEXT:
859 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
860 * it multiple times.
861 *
862 * RETURNS:
863 * 0 if @bdev can be claimed, -EBUSY otherwise.
864 */
bd_prepare_to_claim(struct block_device * bdev,struct block_device * whole,void * holder)865 static int bd_prepare_to_claim(struct block_device *bdev,
866 struct block_device *whole, void *holder)
867 {
868 retry:
869 /* if someone else claimed, fail */
870 if (!bd_may_claim(bdev, whole, holder))
871 return -EBUSY;
872
873 /* if claiming is already in progress, wait for it to finish */
874 if (whole->bd_claiming) {
875 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
876 DEFINE_WAIT(wait);
877
878 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
879 spin_unlock(&bdev_lock);
880 schedule();
881 finish_wait(wq, &wait);
882 spin_lock(&bdev_lock);
883 goto retry;
884 }
885
886 /* yay, all mine */
887 return 0;
888 }
889
890 /**
891 * bd_start_claiming - start claiming a block device
892 * @bdev: block device of interest
893 * @holder: holder trying to claim @bdev
894 *
895 * @bdev is about to be opened exclusively. Check @bdev can be opened
896 * exclusively and mark that an exclusive open is in progress. Each
897 * successful call to this function must be matched with a call to
898 * either bd_finish_claiming() or bd_abort_claiming() (which do not
899 * fail).
900 *
901 * This function is used to gain exclusive access to the block device
902 * without actually causing other exclusive open attempts to fail. It
903 * should be used when the open sequence itself requires exclusive
904 * access but may subsequently fail.
905 *
906 * CONTEXT:
907 * Might sleep.
908 *
909 * RETURNS:
910 * Pointer to the block device containing @bdev on success, ERR_PTR()
911 * value on failure.
912 */
bd_start_claiming(struct block_device * bdev,void * holder)913 static struct block_device *bd_start_claiming(struct block_device *bdev,
914 void *holder)
915 {
916 struct gendisk *disk;
917 struct block_device *whole;
918 int partno, err;
919
920 might_sleep();
921
922 /*
923 * @bdev might not have been initialized properly yet, look up
924 * and grab the outer block device the hard way.
925 */
926 disk = get_gendisk(bdev->bd_dev, &partno);
927 if (!disk)
928 return ERR_PTR(-ENXIO);
929
930 /*
931 * Normally, @bdev should equal what's returned from bdget_disk()
932 * if partno is 0; however, some drivers (floppy) use multiple
933 * bdev's for the same physical device and @bdev may be one of the
934 * aliases. Keep @bdev if partno is 0. This means claimer
935 * tracking is broken for those devices but it has always been that
936 * way.
937 */
938 if (partno)
939 whole = bdget_disk(disk, 0);
940 else
941 whole = bdgrab(bdev);
942
943 module_put(disk->fops->owner);
944 put_disk(disk);
945 if (!whole)
946 return ERR_PTR(-ENOMEM);
947
948 /* prepare to claim, if successful, mark claiming in progress */
949 spin_lock(&bdev_lock);
950
951 err = bd_prepare_to_claim(bdev, whole, holder);
952 if (err == 0) {
953 whole->bd_claiming = holder;
954 spin_unlock(&bdev_lock);
955 return whole;
956 } else {
957 spin_unlock(&bdev_lock);
958 bdput(whole);
959 return ERR_PTR(err);
960 }
961 }
962
963 #ifdef CONFIG_SYSFS
964 struct bd_holder_disk {
965 struct list_head list;
966 struct gendisk *disk;
967 int refcnt;
968 };
969
bd_find_holder_disk(struct block_device * bdev,struct gendisk * disk)970 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
971 struct gendisk *disk)
972 {
973 struct bd_holder_disk *holder;
974
975 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
976 if (holder->disk == disk)
977 return holder;
978 return NULL;
979 }
980
add_symlink(struct kobject * from,struct kobject * to)981 static int add_symlink(struct kobject *from, struct kobject *to)
982 {
983 return sysfs_create_link(from, to, kobject_name(to));
984 }
985
del_symlink(struct kobject * from,struct kobject * to)986 static void del_symlink(struct kobject *from, struct kobject *to)
987 {
988 sysfs_remove_link(from, kobject_name(to));
989 }
990
991 /**
992 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
993 * @bdev: the claimed slave bdev
994 * @disk: the holding disk
995 *
996 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
997 *
998 * This functions creates the following sysfs symlinks.
999 *
1000 * - from "slaves" directory of the holder @disk to the claimed @bdev
1001 * - from "holders" directory of the @bdev to the holder @disk
1002 *
1003 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1004 * passed to bd_link_disk_holder(), then:
1005 *
1006 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1007 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1008 *
1009 * The caller must have claimed @bdev before calling this function and
1010 * ensure that both @bdev and @disk are valid during the creation and
1011 * lifetime of these symlinks.
1012 *
1013 * CONTEXT:
1014 * Might sleep.
1015 *
1016 * RETURNS:
1017 * 0 on success, -errno on failure.
1018 */
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)1019 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1020 {
1021 struct bd_holder_disk *holder;
1022 int ret = 0;
1023
1024 mutex_lock(&bdev->bd_mutex);
1025
1026 WARN_ON_ONCE(!bdev->bd_holder);
1027
1028 /* FIXME: remove the following once add_disk() handles errors */
1029 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1030 goto out_unlock;
1031
1032 holder = bd_find_holder_disk(bdev, disk);
1033 if (holder) {
1034 holder->refcnt++;
1035 goto out_unlock;
1036 }
1037
1038 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1039 if (!holder) {
1040 ret = -ENOMEM;
1041 goto out_unlock;
1042 }
1043
1044 INIT_LIST_HEAD(&holder->list);
1045 holder->disk = disk;
1046 holder->refcnt = 1;
1047
1048 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1049 if (ret)
1050 goto out_free;
1051
1052 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1053 if (ret)
1054 goto out_del;
1055 /*
1056 * bdev could be deleted beneath us which would implicitly destroy
1057 * the holder directory. Hold on to it.
1058 */
1059 kobject_get(bdev->bd_part->holder_dir);
1060
1061 list_add(&holder->list, &bdev->bd_holder_disks);
1062 goto out_unlock;
1063
1064 out_del:
1065 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1066 out_free:
1067 kfree(holder);
1068 out_unlock:
1069 mutex_unlock(&bdev->bd_mutex);
1070 return ret;
1071 }
1072 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1073
1074 /**
1075 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1076 * @bdev: the calimed slave bdev
1077 * @disk: the holding disk
1078 *
1079 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1080 *
1081 * CONTEXT:
1082 * Might sleep.
1083 */
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)1084 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1085 {
1086 struct bd_holder_disk *holder;
1087
1088 mutex_lock(&bdev->bd_mutex);
1089
1090 holder = bd_find_holder_disk(bdev, disk);
1091
1092 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1093 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1094 del_symlink(bdev->bd_part->holder_dir,
1095 &disk_to_dev(disk)->kobj);
1096 kobject_put(bdev->bd_part->holder_dir);
1097 list_del_init(&holder->list);
1098 kfree(holder);
1099 }
1100
1101 mutex_unlock(&bdev->bd_mutex);
1102 }
1103 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1104 #endif
1105
1106 /**
1107 * flush_disk - invalidates all buffer-cache entries on a disk
1108 *
1109 * @bdev: struct block device to be flushed
1110 * @kill_dirty: flag to guide handling of dirty inodes
1111 *
1112 * Invalidates all buffer-cache entries on a disk. It should be called
1113 * when a disk has been changed -- either by a media change or online
1114 * resize.
1115 */
flush_disk(struct block_device * bdev,bool kill_dirty)1116 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1117 {
1118 if (__invalidate_device(bdev, kill_dirty)) {
1119 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1120 "resized disk %s\n",
1121 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1122 }
1123
1124 if (!bdev->bd_disk)
1125 return;
1126 if (disk_part_scan_enabled(bdev->bd_disk))
1127 bdev->bd_invalidated = 1;
1128 }
1129
1130 /**
1131 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1132 * @disk: struct gendisk to check
1133 * @bdev: struct bdev to adjust.
1134 *
1135 * This routine checks to see if the bdev size does not match the disk size
1136 * and adjusts it if it differs.
1137 */
check_disk_size_change(struct gendisk * disk,struct block_device * bdev)1138 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1139 {
1140 loff_t disk_size, bdev_size;
1141
1142 disk_size = (loff_t)get_capacity(disk) << 9;
1143 bdev_size = i_size_read(bdev->bd_inode);
1144 if (disk_size != bdev_size) {
1145 printk(KERN_INFO
1146 "%s: detected capacity change from %lld to %lld\n",
1147 disk->disk_name, bdev_size, disk_size);
1148 i_size_write(bdev->bd_inode, disk_size);
1149 flush_disk(bdev, false);
1150 }
1151 }
1152 EXPORT_SYMBOL(check_disk_size_change);
1153
1154 /**
1155 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1156 * @disk: struct gendisk to be revalidated
1157 *
1158 * This routine is a wrapper for lower-level driver's revalidate_disk
1159 * call-backs. It is used to do common pre and post operations needed
1160 * for all revalidate_disk operations.
1161 */
revalidate_disk(struct gendisk * disk)1162 int revalidate_disk(struct gendisk *disk)
1163 {
1164 struct block_device *bdev;
1165 int ret = 0;
1166
1167 if (disk->fops->revalidate_disk)
1168 ret = disk->fops->revalidate_disk(disk);
1169 bdev = bdget_disk(disk, 0);
1170 if (!bdev)
1171 return ret;
1172
1173 mutex_lock(&bdev->bd_mutex);
1174 check_disk_size_change(disk, bdev);
1175 bdev->bd_invalidated = 0;
1176 mutex_unlock(&bdev->bd_mutex);
1177 bdput(bdev);
1178 return ret;
1179 }
1180 EXPORT_SYMBOL(revalidate_disk);
1181
1182 /*
1183 * This routine checks whether a removable media has been changed,
1184 * and invalidates all buffer-cache-entries in that case. This
1185 * is a relatively slow routine, so we have to try to minimize using
1186 * it. Thus it is called only upon a 'mount' or 'open'. This
1187 * is the best way of combining speed and utility, I think.
1188 * People changing diskettes in the middle of an operation deserve
1189 * to lose :-)
1190 */
check_disk_change(struct block_device * bdev)1191 int check_disk_change(struct block_device *bdev)
1192 {
1193 struct gendisk *disk = bdev->bd_disk;
1194 const struct block_device_operations *bdops = disk->fops;
1195 unsigned int events;
1196
1197 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1198 DISK_EVENT_EJECT_REQUEST);
1199 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1200 return 0;
1201
1202 flush_disk(bdev, true);
1203 if (bdops->revalidate_disk)
1204 bdops->revalidate_disk(bdev->bd_disk);
1205 return 1;
1206 }
1207
1208 EXPORT_SYMBOL(check_disk_change);
1209
bd_set_size(struct block_device * bdev,loff_t size)1210 void bd_set_size(struct block_device *bdev, loff_t size)
1211 {
1212 unsigned bsize = bdev_logical_block_size(bdev);
1213
1214 inode_lock(bdev->bd_inode);
1215 i_size_write(bdev->bd_inode, size);
1216 inode_unlock(bdev->bd_inode);
1217 while (bsize < PAGE_SIZE) {
1218 if (size & bsize)
1219 break;
1220 bsize <<= 1;
1221 }
1222 bdev->bd_block_size = bsize;
1223 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1224 }
1225 EXPORT_SYMBOL(bd_set_size);
1226
1227 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1228
1229 /*
1230 * bd_mutex locking:
1231 *
1232 * mutex_lock(part->bd_mutex)
1233 * mutex_lock_nested(whole->bd_mutex, 1)
1234 */
1235
__blkdev_get(struct block_device * bdev,fmode_t mode,int for_part)1236 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1237 {
1238 struct gendisk *disk;
1239 struct module *owner;
1240 int ret;
1241 int partno;
1242 int perm = 0;
1243
1244 if (mode & FMODE_READ)
1245 perm |= MAY_READ;
1246 if (mode & FMODE_WRITE)
1247 perm |= MAY_WRITE;
1248 /*
1249 * hooks: /n/, see "layering violations".
1250 */
1251 if (!for_part) {
1252 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1253 if (ret != 0) {
1254 bdput(bdev);
1255 return ret;
1256 }
1257 }
1258
1259 restart:
1260
1261 ret = -ENXIO;
1262 disk = get_gendisk(bdev->bd_dev, &partno);
1263 if (!disk)
1264 goto out;
1265 owner = disk->fops->owner;
1266
1267 disk_block_events(disk);
1268 mutex_lock_nested(&bdev->bd_mutex, for_part);
1269 if (!bdev->bd_openers) {
1270 bdev->bd_disk = disk;
1271 bdev->bd_queue = disk->queue;
1272 bdev->bd_contains = bdev;
1273
1274 if (!partno) {
1275 ret = -ENXIO;
1276 bdev->bd_part = disk_get_part(disk, partno);
1277 if (!bdev->bd_part)
1278 goto out_clear;
1279
1280 ret = 0;
1281 if (disk->fops->open) {
1282 ret = disk->fops->open(bdev, mode);
1283 if (ret == -ERESTARTSYS) {
1284 /* Lost a race with 'disk' being
1285 * deleted, try again.
1286 * See md.c
1287 */
1288 disk_put_part(bdev->bd_part);
1289 bdev->bd_part = NULL;
1290 bdev->bd_disk = NULL;
1291 bdev->bd_queue = NULL;
1292 mutex_unlock(&bdev->bd_mutex);
1293 disk_unblock_events(disk);
1294 put_disk(disk);
1295 module_put(owner);
1296 goto restart;
1297 }
1298 }
1299
1300 if (!ret)
1301 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1302
1303 /*
1304 * If the device is invalidated, rescan partition
1305 * if open succeeded or failed with -ENOMEDIUM.
1306 * The latter is necessary to prevent ghost
1307 * partitions on a removed medium.
1308 */
1309 if (bdev->bd_invalidated) {
1310 if (!ret)
1311 rescan_partitions(disk, bdev);
1312 else if (ret == -ENOMEDIUM)
1313 invalidate_partitions(disk, bdev);
1314 }
1315
1316 if (ret)
1317 goto out_clear;
1318 } else {
1319 struct block_device *whole;
1320 whole = bdget_disk(disk, 0);
1321 ret = -ENOMEM;
1322 if (!whole)
1323 goto out_clear;
1324 BUG_ON(for_part);
1325 ret = __blkdev_get(whole, mode, 1);
1326 if (ret)
1327 goto out_clear;
1328 bdev->bd_contains = whole;
1329 bdev->bd_part = disk_get_part(disk, partno);
1330 if (!(disk->flags & GENHD_FL_UP) ||
1331 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1332 ret = -ENXIO;
1333 goto out_clear;
1334 }
1335 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1336 }
1337 } else {
1338 if (bdev->bd_contains == bdev) {
1339 ret = 0;
1340 if (bdev->bd_disk->fops->open)
1341 ret = bdev->bd_disk->fops->open(bdev, mode);
1342 /* the same as first opener case, read comment there */
1343 if (bdev->bd_invalidated) {
1344 if (!ret)
1345 rescan_partitions(bdev->bd_disk, bdev);
1346 else if (ret == -ENOMEDIUM)
1347 invalidate_partitions(bdev->bd_disk, bdev);
1348 }
1349 if (ret)
1350 goto out_unlock_bdev;
1351 }
1352 /* only one opener holds refs to the module and disk */
1353 put_disk(disk);
1354 module_put(owner);
1355 }
1356 bdev->bd_openers++;
1357 if (for_part)
1358 bdev->bd_part_count++;
1359 mutex_unlock(&bdev->bd_mutex);
1360 disk_unblock_events(disk);
1361 return 0;
1362
1363 out_clear:
1364 disk_put_part(bdev->bd_part);
1365 bdev->bd_disk = NULL;
1366 bdev->bd_part = NULL;
1367 bdev->bd_queue = NULL;
1368 if (bdev != bdev->bd_contains)
1369 __blkdev_put(bdev->bd_contains, mode, 1);
1370 bdev->bd_contains = NULL;
1371 out_unlock_bdev:
1372 mutex_unlock(&bdev->bd_mutex);
1373 disk_unblock_events(disk);
1374 put_disk(disk);
1375 module_put(owner);
1376 out:
1377 bdput(bdev);
1378
1379 return ret;
1380 }
1381
1382 /**
1383 * blkdev_get - open a block device
1384 * @bdev: block_device to open
1385 * @mode: FMODE_* mask
1386 * @holder: exclusive holder identifier
1387 *
1388 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1389 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1390 * @holder is invalid. Exclusive opens may nest for the same @holder.
1391 *
1392 * On success, the reference count of @bdev is unchanged. On failure,
1393 * @bdev is put.
1394 *
1395 * CONTEXT:
1396 * Might sleep.
1397 *
1398 * RETURNS:
1399 * 0 on success, -errno on failure.
1400 */
blkdev_get(struct block_device * bdev,fmode_t mode,void * holder)1401 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1402 {
1403 struct block_device *whole = NULL;
1404 int res;
1405
1406 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1407
1408 if ((mode & FMODE_EXCL) && holder) {
1409 whole = bd_start_claiming(bdev, holder);
1410 if (IS_ERR(whole)) {
1411 bdput(bdev);
1412 return PTR_ERR(whole);
1413 }
1414 }
1415
1416 res = __blkdev_get(bdev, mode, 0);
1417
1418 if (whole) {
1419 struct gendisk *disk = whole->bd_disk;
1420
1421 /* finish claiming */
1422 mutex_lock(&bdev->bd_mutex);
1423 spin_lock(&bdev_lock);
1424
1425 if (!res) {
1426 BUG_ON(!bd_may_claim(bdev, whole, holder));
1427 /*
1428 * Note that for a whole device bd_holders
1429 * will be incremented twice, and bd_holder
1430 * will be set to bd_may_claim before being
1431 * set to holder
1432 */
1433 whole->bd_holders++;
1434 whole->bd_holder = bd_may_claim;
1435 bdev->bd_holders++;
1436 bdev->bd_holder = holder;
1437 }
1438
1439 /* tell others that we're done */
1440 BUG_ON(whole->bd_claiming != holder);
1441 whole->bd_claiming = NULL;
1442 wake_up_bit(&whole->bd_claiming, 0);
1443
1444 spin_unlock(&bdev_lock);
1445
1446 /*
1447 * Block event polling for write claims if requested. Any
1448 * write holder makes the write_holder state stick until
1449 * all are released. This is good enough and tracking
1450 * individual writeable reference is too fragile given the
1451 * way @mode is used in blkdev_get/put().
1452 */
1453 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1454 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1455 bdev->bd_write_holder = true;
1456 disk_block_events(disk);
1457 }
1458
1459 mutex_unlock(&bdev->bd_mutex);
1460 bdput(whole);
1461 }
1462
1463 return res;
1464 }
1465 EXPORT_SYMBOL(blkdev_get);
1466
1467 /**
1468 * blkdev_get_by_path - open a block device by name
1469 * @path: path to the block device to open
1470 * @mode: FMODE_* mask
1471 * @holder: exclusive holder identifier
1472 *
1473 * Open the blockdevice described by the device file at @path. @mode
1474 * and @holder are identical to blkdev_get().
1475 *
1476 * On success, the returned block_device has reference count of one.
1477 *
1478 * CONTEXT:
1479 * Might sleep.
1480 *
1481 * RETURNS:
1482 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1483 */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)1484 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1485 void *holder)
1486 {
1487 struct block_device *bdev;
1488 int err;
1489
1490 bdev = lookup_bdev(path);
1491 if (IS_ERR(bdev))
1492 return bdev;
1493
1494 err = blkdev_get(bdev, mode, holder);
1495 if (err)
1496 return ERR_PTR(err);
1497
1498 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1499 blkdev_put(bdev, mode);
1500 return ERR_PTR(-EACCES);
1501 }
1502
1503 return bdev;
1504 }
1505 EXPORT_SYMBOL(blkdev_get_by_path);
1506
1507 /**
1508 * blkdev_get_by_dev - open a block device by device number
1509 * @dev: device number of block device to open
1510 * @mode: FMODE_* mask
1511 * @holder: exclusive holder identifier
1512 *
1513 * Open the blockdevice described by device number @dev. @mode and
1514 * @holder are identical to blkdev_get().
1515 *
1516 * Use it ONLY if you really do not have anything better - i.e. when
1517 * you are behind a truly sucky interface and all you are given is a
1518 * device number. _Never_ to be used for internal purposes. If you
1519 * ever need it - reconsider your API.
1520 *
1521 * On success, the returned block_device has reference count of one.
1522 *
1523 * CONTEXT:
1524 * Might sleep.
1525 *
1526 * RETURNS:
1527 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1528 */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)1529 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1530 {
1531 struct block_device *bdev;
1532 int err;
1533
1534 bdev = bdget(dev);
1535 if (!bdev)
1536 return ERR_PTR(-ENOMEM);
1537
1538 err = blkdev_get(bdev, mode, holder);
1539 if (err)
1540 return ERR_PTR(err);
1541
1542 return bdev;
1543 }
1544 EXPORT_SYMBOL(blkdev_get_by_dev);
1545
blkdev_open(struct inode * inode,struct file * filp)1546 static int blkdev_open(struct inode * inode, struct file * filp)
1547 {
1548 struct block_device *bdev;
1549
1550 /*
1551 * Preserve backwards compatibility and allow large file access
1552 * even if userspace doesn't ask for it explicitly. Some mkfs
1553 * binary needs it. We might want to drop this workaround
1554 * during an unstable branch.
1555 */
1556 filp->f_flags |= O_LARGEFILE;
1557
1558 if (filp->f_flags & O_NDELAY)
1559 filp->f_mode |= FMODE_NDELAY;
1560 if (filp->f_flags & O_EXCL)
1561 filp->f_mode |= FMODE_EXCL;
1562 if ((filp->f_flags & O_ACCMODE) == 3)
1563 filp->f_mode |= FMODE_WRITE_IOCTL;
1564
1565 bdev = bd_acquire(inode);
1566 if (bdev == NULL)
1567 return -ENOMEM;
1568
1569 filp->f_mapping = bdev->bd_inode->i_mapping;
1570
1571 return blkdev_get(bdev, filp->f_mode, filp);
1572 }
1573
__blkdev_put(struct block_device * bdev,fmode_t mode,int for_part)1574 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1575 {
1576 struct gendisk *disk = bdev->bd_disk;
1577 struct block_device *victim = NULL;
1578
1579 mutex_lock_nested(&bdev->bd_mutex, for_part);
1580 if (for_part)
1581 bdev->bd_part_count--;
1582
1583 if (!--bdev->bd_openers) {
1584 WARN_ON_ONCE(bdev->bd_holders);
1585 sync_blockdev(bdev);
1586 kill_bdev(bdev);
1587
1588 bdev_write_inode(bdev);
1589 /*
1590 * Detaching bdev inode from its wb in __destroy_inode()
1591 * is too late: the queue which embeds its bdi (along with
1592 * root wb) can be gone as soon as we put_disk() below.
1593 */
1594 inode_detach_wb(bdev->bd_inode);
1595 }
1596 if (bdev->bd_contains == bdev) {
1597 if (disk->fops->release)
1598 disk->fops->release(disk, mode);
1599 }
1600 if (!bdev->bd_openers) {
1601 struct module *owner = disk->fops->owner;
1602
1603 disk_put_part(bdev->bd_part);
1604 bdev->bd_part = NULL;
1605 bdev->bd_disk = NULL;
1606 if (bdev != bdev->bd_contains)
1607 victim = bdev->bd_contains;
1608 bdev->bd_contains = NULL;
1609
1610 put_disk(disk);
1611 module_put(owner);
1612 }
1613 mutex_unlock(&bdev->bd_mutex);
1614 bdput(bdev);
1615 if (victim)
1616 __blkdev_put(victim, mode, 1);
1617 }
1618
blkdev_put(struct block_device * bdev,fmode_t mode)1619 void blkdev_put(struct block_device *bdev, fmode_t mode)
1620 {
1621 mutex_lock(&bdev->bd_mutex);
1622
1623 if (mode & FMODE_EXCL) {
1624 bool bdev_free;
1625
1626 /*
1627 * Release a claim on the device. The holder fields
1628 * are protected with bdev_lock. bd_mutex is to
1629 * synchronize disk_holder unlinking.
1630 */
1631 spin_lock(&bdev_lock);
1632
1633 WARN_ON_ONCE(--bdev->bd_holders < 0);
1634 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1635
1636 /* bd_contains might point to self, check in a separate step */
1637 if ((bdev_free = !bdev->bd_holders))
1638 bdev->bd_holder = NULL;
1639 if (!bdev->bd_contains->bd_holders)
1640 bdev->bd_contains->bd_holder = NULL;
1641
1642 spin_unlock(&bdev_lock);
1643
1644 /*
1645 * If this was the last claim, remove holder link and
1646 * unblock evpoll if it was a write holder.
1647 */
1648 if (bdev_free && bdev->bd_write_holder) {
1649 disk_unblock_events(bdev->bd_disk);
1650 bdev->bd_write_holder = false;
1651 }
1652 }
1653
1654 /*
1655 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1656 * event. This is to ensure detection of media removal commanded
1657 * from userland - e.g. eject(1).
1658 */
1659 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1660
1661 mutex_unlock(&bdev->bd_mutex);
1662
1663 __blkdev_put(bdev, mode, 0);
1664 }
1665 EXPORT_SYMBOL(blkdev_put);
1666
blkdev_close(struct inode * inode,struct file * filp)1667 static int blkdev_close(struct inode * inode, struct file * filp)
1668 {
1669 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1670 blkdev_put(bdev, filp->f_mode);
1671 return 0;
1672 }
1673
block_ioctl(struct file * file,unsigned cmd,unsigned long arg)1674 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1675 {
1676 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1677 fmode_t mode = file->f_mode;
1678
1679 /*
1680 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1681 * to updated it before every ioctl.
1682 */
1683 if (file->f_flags & O_NDELAY)
1684 mode |= FMODE_NDELAY;
1685 else
1686 mode &= ~FMODE_NDELAY;
1687
1688 return blkdev_ioctl(bdev, mode, cmd, arg);
1689 }
1690
1691 /*
1692 * Write data to the block device. Only intended for the block device itself
1693 * and the raw driver which basically is a fake block device.
1694 *
1695 * Does not take i_mutex for the write and thus is not for general purpose
1696 * use.
1697 */
blkdev_write_iter(struct kiocb * iocb,struct iov_iter * from)1698 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1699 {
1700 struct file *file = iocb->ki_filp;
1701 struct inode *bd_inode = bdev_file_inode(file);
1702 loff_t size = i_size_read(bd_inode);
1703 struct blk_plug plug;
1704 ssize_t ret;
1705
1706 if (bdev_read_only(I_BDEV(bd_inode)))
1707 return -EPERM;
1708
1709 if (!iov_iter_count(from))
1710 return 0;
1711
1712 if (iocb->ki_pos >= size)
1713 return -ENOSPC;
1714
1715 iov_iter_truncate(from, size - iocb->ki_pos);
1716
1717 blk_start_plug(&plug);
1718 ret = __generic_file_write_iter(iocb, from);
1719 if (ret > 0)
1720 ret = generic_write_sync(iocb, ret);
1721 blk_finish_plug(&plug);
1722 return ret;
1723 }
1724 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1725
blkdev_read_iter(struct kiocb * iocb,struct iov_iter * to)1726 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1727 {
1728 struct file *file = iocb->ki_filp;
1729 struct inode *bd_inode = bdev_file_inode(file);
1730 loff_t size = i_size_read(bd_inode);
1731 loff_t pos = iocb->ki_pos;
1732
1733 if (pos >= size)
1734 return 0;
1735
1736 size -= pos;
1737 iov_iter_truncate(to, size);
1738 return generic_file_read_iter(iocb, to);
1739 }
1740 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1741
1742 /*
1743 * Try to release a page associated with block device when the system
1744 * is under memory pressure.
1745 */
blkdev_releasepage(struct page * page,gfp_t wait)1746 static int blkdev_releasepage(struct page *page, gfp_t wait)
1747 {
1748 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1749
1750 if (super && super->s_op->bdev_try_to_free_page)
1751 return super->s_op->bdev_try_to_free_page(super, page, wait);
1752
1753 return try_to_free_buffers(page);
1754 }
1755
blkdev_writepages(struct address_space * mapping,struct writeback_control * wbc)1756 static int blkdev_writepages(struct address_space *mapping,
1757 struct writeback_control *wbc)
1758 {
1759 if (dax_mapping(mapping)) {
1760 struct block_device *bdev = I_BDEV(mapping->host);
1761
1762 return dax_writeback_mapping_range(mapping, bdev, wbc);
1763 }
1764 return generic_writepages(mapping, wbc);
1765 }
1766
1767 static const struct address_space_operations def_blk_aops = {
1768 .readpage = blkdev_readpage,
1769 .readpages = blkdev_readpages,
1770 .writepage = blkdev_writepage,
1771 .write_begin = blkdev_write_begin,
1772 .write_end = blkdev_write_end,
1773 .writepages = blkdev_writepages,
1774 .releasepage = blkdev_releasepage,
1775 .direct_IO = blkdev_direct_IO,
1776 .is_dirty_writeback = buffer_check_dirty_writeback,
1777 };
1778
1779 #define BLKDEV_FALLOC_FL_SUPPORTED \
1780 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
1781 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1782
blkdev_fallocate(struct file * file,int mode,loff_t start,loff_t len)1783 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
1784 loff_t len)
1785 {
1786 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1787 struct request_queue *q = bdev_get_queue(bdev);
1788 struct address_space *mapping;
1789 loff_t end = start + len - 1;
1790 loff_t isize;
1791 int error;
1792
1793 /* Fail if we don't recognize the flags. */
1794 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
1795 return -EOPNOTSUPP;
1796
1797 /* Don't go off the end of the device. */
1798 isize = i_size_read(bdev->bd_inode);
1799 if (start >= isize)
1800 return -EINVAL;
1801 if (end >= isize) {
1802 if (mode & FALLOC_FL_KEEP_SIZE) {
1803 len = isize - start;
1804 end = start + len - 1;
1805 } else
1806 return -EINVAL;
1807 }
1808
1809 /*
1810 * Don't allow IO that isn't aligned to logical block size.
1811 */
1812 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
1813 return -EINVAL;
1814
1815 /* Invalidate the page cache, including dirty pages. */
1816 mapping = bdev->bd_inode->i_mapping;
1817 truncate_inode_pages_range(mapping, start, end);
1818
1819 switch (mode) {
1820 case FALLOC_FL_ZERO_RANGE:
1821 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
1822 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
1823 GFP_KERNEL, false);
1824 break;
1825 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
1826 /* Only punch if the device can do zeroing discard. */
1827 if (!blk_queue_discard(q) || !q->limits.discard_zeroes_data)
1828 return -EOPNOTSUPP;
1829 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
1830 GFP_KERNEL, 0);
1831 break;
1832 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
1833 if (!blk_queue_discard(q))
1834 return -EOPNOTSUPP;
1835 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
1836 GFP_KERNEL, 0);
1837 break;
1838 default:
1839 return -EOPNOTSUPP;
1840 }
1841 if (error)
1842 return error;
1843
1844 /*
1845 * Invalidate again; if someone wandered in and dirtied a page,
1846 * the caller will be given -EBUSY. The third argument is
1847 * inclusive, so the rounding here is safe.
1848 */
1849 return invalidate_inode_pages2_range(mapping,
1850 start >> PAGE_SHIFT,
1851 end >> PAGE_SHIFT);
1852 }
1853
1854 const struct file_operations def_blk_fops = {
1855 .open = blkdev_open,
1856 .release = blkdev_close,
1857 .llseek = block_llseek,
1858 .read_iter = blkdev_read_iter,
1859 .write_iter = blkdev_write_iter,
1860 .mmap = generic_file_mmap,
1861 .fsync = blkdev_fsync,
1862 .unlocked_ioctl = block_ioctl,
1863 #ifdef CONFIG_COMPAT
1864 .compat_ioctl = compat_blkdev_ioctl,
1865 #endif
1866 .splice_read = generic_file_splice_read,
1867 .splice_write = iter_file_splice_write,
1868 .fallocate = blkdev_fallocate,
1869 };
1870
ioctl_by_bdev(struct block_device * bdev,unsigned cmd,unsigned long arg)1871 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1872 {
1873 int res;
1874 mm_segment_t old_fs = get_fs();
1875 set_fs(KERNEL_DS);
1876 res = blkdev_ioctl(bdev, 0, cmd, arg);
1877 set_fs(old_fs);
1878 return res;
1879 }
1880
1881 EXPORT_SYMBOL(ioctl_by_bdev);
1882
1883 /**
1884 * lookup_bdev - lookup a struct block_device by name
1885 * @pathname: special file representing the block device
1886 *
1887 * Get a reference to the blockdevice at @pathname in the current
1888 * namespace if possible and return it. Return ERR_PTR(error)
1889 * otherwise.
1890 */
lookup_bdev(const char * pathname)1891 struct block_device *lookup_bdev(const char *pathname)
1892 {
1893 struct block_device *bdev;
1894 struct inode *inode;
1895 struct path path;
1896 int error;
1897
1898 if (!pathname || !*pathname)
1899 return ERR_PTR(-EINVAL);
1900
1901 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1902 if (error)
1903 return ERR_PTR(error);
1904
1905 inode = d_backing_inode(path.dentry);
1906 error = -ENOTBLK;
1907 if (!S_ISBLK(inode->i_mode))
1908 goto fail;
1909 error = -EACCES;
1910 if (!may_open_dev(&path))
1911 goto fail;
1912 error = -ENOMEM;
1913 bdev = bd_acquire(inode);
1914 if (!bdev)
1915 goto fail;
1916 out:
1917 path_put(&path);
1918 return bdev;
1919 fail:
1920 bdev = ERR_PTR(error);
1921 goto out;
1922 }
1923 EXPORT_SYMBOL(lookup_bdev);
1924
__invalidate_device(struct block_device * bdev,bool kill_dirty)1925 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1926 {
1927 struct super_block *sb = get_super(bdev);
1928 int res = 0;
1929
1930 if (sb) {
1931 /*
1932 * no need to lock the super, get_super holds the
1933 * read mutex so the filesystem cannot go away
1934 * under us (->put_super runs with the write lock
1935 * hold).
1936 */
1937 shrink_dcache_sb(sb);
1938 res = invalidate_inodes(sb, kill_dirty);
1939 drop_super(sb);
1940 }
1941 invalidate_bdev(bdev);
1942 return res;
1943 }
1944 EXPORT_SYMBOL(__invalidate_device);
1945
iterate_bdevs(void (* func)(struct block_device *,void *),void * arg)1946 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1947 {
1948 struct inode *inode, *old_inode = NULL;
1949
1950 spin_lock(&blockdev_superblock->s_inode_list_lock);
1951 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1952 struct address_space *mapping = inode->i_mapping;
1953 struct block_device *bdev;
1954
1955 spin_lock(&inode->i_lock);
1956 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1957 mapping->nrpages == 0) {
1958 spin_unlock(&inode->i_lock);
1959 continue;
1960 }
1961 __iget(inode);
1962 spin_unlock(&inode->i_lock);
1963 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1964 /*
1965 * We hold a reference to 'inode' so it couldn't have been
1966 * removed from s_inodes list while we dropped the
1967 * s_inode_list_lock We cannot iput the inode now as we can
1968 * be holding the last reference and we cannot iput it under
1969 * s_inode_list_lock. So we keep the reference and iput it
1970 * later.
1971 */
1972 iput(old_inode);
1973 old_inode = inode;
1974 bdev = I_BDEV(inode);
1975
1976 mutex_lock(&bdev->bd_mutex);
1977 if (bdev->bd_openers)
1978 func(bdev, arg);
1979 mutex_unlock(&bdev->bd_mutex);
1980
1981 spin_lock(&blockdev_superblock->s_inode_list_lock);
1982 }
1983 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1984 iput(old_inode);
1985 }
1986