1 /*
2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/init.h>
38 #include <linux/pci.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/netdevice.h>
41 #include <linux/etherdevice.h>
42 #include <linux/if_vlan.h>
43 #include <linux/mdio.h>
44 #include <linux/sockios.h>
45 #include <linux/workqueue.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/firmware.h>
49 #include <linux/log2.h>
50 #include <linux/stringify.h>
51 #include <linux/sched.h>
52 #include <linux/slab.h>
53 #include <asm/uaccess.h>
54
55 #include "common.h"
56 #include "cxgb3_ioctl.h"
57 #include "regs.h"
58 #include "cxgb3_offload.h"
59 #include "version.h"
60
61 #include "cxgb3_ctl_defs.h"
62 #include "t3_cpl.h"
63 #include "firmware_exports.h"
64
65 enum {
66 MAX_TXQ_ENTRIES = 16384,
67 MAX_CTRL_TXQ_ENTRIES = 1024,
68 MAX_RSPQ_ENTRIES = 16384,
69 MAX_RX_BUFFERS = 16384,
70 MAX_RX_JUMBO_BUFFERS = 16384,
71 MIN_TXQ_ENTRIES = 4,
72 MIN_CTRL_TXQ_ENTRIES = 4,
73 MIN_RSPQ_ENTRIES = 32,
74 MIN_FL_ENTRIES = 32
75 };
76
77 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
78
79 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
80 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
81 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
82
83 #define EEPROM_MAGIC 0x38E2F10C
84
85 #define CH_DEVICE(devid, idx) \
86 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
87
88 static const struct pci_device_id cxgb3_pci_tbl[] = {
89 CH_DEVICE(0x20, 0), /* PE9000 */
90 CH_DEVICE(0x21, 1), /* T302E */
91 CH_DEVICE(0x22, 2), /* T310E */
92 CH_DEVICE(0x23, 3), /* T320X */
93 CH_DEVICE(0x24, 1), /* T302X */
94 CH_DEVICE(0x25, 3), /* T320E */
95 CH_DEVICE(0x26, 2), /* T310X */
96 CH_DEVICE(0x30, 2), /* T3B10 */
97 CH_DEVICE(0x31, 3), /* T3B20 */
98 CH_DEVICE(0x32, 1), /* T3B02 */
99 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */
100 CH_DEVICE(0x36, 3), /* S320E-CR */
101 CH_DEVICE(0x37, 7), /* N320E-G2 */
102 {0,}
103 };
104
105 MODULE_DESCRIPTION(DRV_DESC);
106 MODULE_AUTHOR("Chelsio Communications");
107 MODULE_LICENSE("Dual BSD/GPL");
108 MODULE_VERSION(DRV_VERSION);
109 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
110
111 static int dflt_msg_enable = DFLT_MSG_ENABLE;
112
113 module_param(dflt_msg_enable, int, 0644);
114 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
115
116 /*
117 * The driver uses the best interrupt scheme available on a platform in the
118 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which
119 * of these schemes the driver may consider as follows:
120 *
121 * msi = 2: choose from among all three options
122 * msi = 1: only consider MSI and pin interrupts
123 * msi = 0: force pin interrupts
124 */
125 static int msi = 2;
126
127 module_param(msi, int, 0644);
128 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
129
130 /*
131 * The driver enables offload as a default.
132 * To disable it, use ofld_disable = 1.
133 */
134
135 static int ofld_disable = 0;
136
137 module_param(ofld_disable, int, 0644);
138 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
139
140 /*
141 * We have work elements that we need to cancel when an interface is taken
142 * down. Normally the work elements would be executed by keventd but that
143 * can deadlock because of linkwatch. If our close method takes the rtnl
144 * lock and linkwatch is ahead of our work elements in keventd, linkwatch
145 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
146 * for our work to complete. Get our own work queue to solve this.
147 */
148 struct workqueue_struct *cxgb3_wq;
149
150 /**
151 * link_report - show link status and link speed/duplex
152 * @p: the port whose settings are to be reported
153 *
154 * Shows the link status, speed, and duplex of a port.
155 */
link_report(struct net_device * dev)156 static void link_report(struct net_device *dev)
157 {
158 if (!netif_carrier_ok(dev))
159 netdev_info(dev, "link down\n");
160 else {
161 const char *s = "10Mbps";
162 const struct port_info *p = netdev_priv(dev);
163
164 switch (p->link_config.speed) {
165 case SPEED_10000:
166 s = "10Gbps";
167 break;
168 case SPEED_1000:
169 s = "1000Mbps";
170 break;
171 case SPEED_100:
172 s = "100Mbps";
173 break;
174 }
175
176 netdev_info(dev, "link up, %s, %s-duplex\n",
177 s, p->link_config.duplex == DUPLEX_FULL
178 ? "full" : "half");
179 }
180 }
181
enable_tx_fifo_drain(struct adapter * adapter,struct port_info * pi)182 static void enable_tx_fifo_drain(struct adapter *adapter,
183 struct port_info *pi)
184 {
185 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
186 F_ENDROPPKT);
187 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
188 t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
189 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
190 }
191
disable_tx_fifo_drain(struct adapter * adapter,struct port_info * pi)192 static void disable_tx_fifo_drain(struct adapter *adapter,
193 struct port_info *pi)
194 {
195 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
196 F_ENDROPPKT, 0);
197 }
198
t3_os_link_fault(struct adapter * adap,int port_id,int state)199 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
200 {
201 struct net_device *dev = adap->port[port_id];
202 struct port_info *pi = netdev_priv(dev);
203
204 if (state == netif_carrier_ok(dev))
205 return;
206
207 if (state) {
208 struct cmac *mac = &pi->mac;
209
210 netif_carrier_on(dev);
211
212 disable_tx_fifo_drain(adap, pi);
213
214 /* Clear local faults */
215 t3_xgm_intr_disable(adap, pi->port_id);
216 t3_read_reg(adap, A_XGM_INT_STATUS +
217 pi->mac.offset);
218 t3_write_reg(adap,
219 A_XGM_INT_CAUSE + pi->mac.offset,
220 F_XGM_INT);
221
222 t3_set_reg_field(adap,
223 A_XGM_INT_ENABLE +
224 pi->mac.offset,
225 F_XGM_INT, F_XGM_INT);
226 t3_xgm_intr_enable(adap, pi->port_id);
227
228 t3_mac_enable(mac, MAC_DIRECTION_TX);
229 } else {
230 netif_carrier_off(dev);
231
232 /* Flush TX FIFO */
233 enable_tx_fifo_drain(adap, pi);
234 }
235 link_report(dev);
236 }
237
238 /**
239 * t3_os_link_changed - handle link status changes
240 * @adapter: the adapter associated with the link change
241 * @port_id: the port index whose limk status has changed
242 * @link_stat: the new status of the link
243 * @speed: the new speed setting
244 * @duplex: the new duplex setting
245 * @pause: the new flow-control setting
246 *
247 * This is the OS-dependent handler for link status changes. The OS
248 * neutral handler takes care of most of the processing for these events,
249 * then calls this handler for any OS-specific processing.
250 */
t3_os_link_changed(struct adapter * adapter,int port_id,int link_stat,int speed,int duplex,int pause)251 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
252 int speed, int duplex, int pause)
253 {
254 struct net_device *dev = adapter->port[port_id];
255 struct port_info *pi = netdev_priv(dev);
256 struct cmac *mac = &pi->mac;
257
258 /* Skip changes from disabled ports. */
259 if (!netif_running(dev))
260 return;
261
262 if (link_stat != netif_carrier_ok(dev)) {
263 if (link_stat) {
264 disable_tx_fifo_drain(adapter, pi);
265
266 t3_mac_enable(mac, MAC_DIRECTION_RX);
267
268 /* Clear local faults */
269 t3_xgm_intr_disable(adapter, pi->port_id);
270 t3_read_reg(adapter, A_XGM_INT_STATUS +
271 pi->mac.offset);
272 t3_write_reg(adapter,
273 A_XGM_INT_CAUSE + pi->mac.offset,
274 F_XGM_INT);
275
276 t3_set_reg_field(adapter,
277 A_XGM_INT_ENABLE + pi->mac.offset,
278 F_XGM_INT, F_XGM_INT);
279 t3_xgm_intr_enable(adapter, pi->port_id);
280
281 netif_carrier_on(dev);
282 } else {
283 netif_carrier_off(dev);
284
285 t3_xgm_intr_disable(adapter, pi->port_id);
286 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
287 t3_set_reg_field(adapter,
288 A_XGM_INT_ENABLE + pi->mac.offset,
289 F_XGM_INT, 0);
290
291 if (is_10G(adapter))
292 pi->phy.ops->power_down(&pi->phy, 1);
293
294 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
295 t3_mac_disable(mac, MAC_DIRECTION_RX);
296 t3_link_start(&pi->phy, mac, &pi->link_config);
297
298 /* Flush TX FIFO */
299 enable_tx_fifo_drain(adapter, pi);
300 }
301
302 link_report(dev);
303 }
304 }
305
306 /**
307 * t3_os_phymod_changed - handle PHY module changes
308 * @phy: the PHY reporting the module change
309 * @mod_type: new module type
310 *
311 * This is the OS-dependent handler for PHY module changes. It is
312 * invoked when a PHY module is removed or inserted for any OS-specific
313 * processing.
314 */
t3_os_phymod_changed(struct adapter * adap,int port_id)315 void t3_os_phymod_changed(struct adapter *adap, int port_id)
316 {
317 static const char *mod_str[] = {
318 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
319 };
320
321 const struct net_device *dev = adap->port[port_id];
322 const struct port_info *pi = netdev_priv(dev);
323
324 if (pi->phy.modtype == phy_modtype_none)
325 netdev_info(dev, "PHY module unplugged\n");
326 else
327 netdev_info(dev, "%s PHY module inserted\n",
328 mod_str[pi->phy.modtype]);
329 }
330
cxgb_set_rxmode(struct net_device * dev)331 static void cxgb_set_rxmode(struct net_device *dev)
332 {
333 struct port_info *pi = netdev_priv(dev);
334
335 t3_mac_set_rx_mode(&pi->mac, dev);
336 }
337
338 /**
339 * link_start - enable a port
340 * @dev: the device to enable
341 *
342 * Performs the MAC and PHY actions needed to enable a port.
343 */
link_start(struct net_device * dev)344 static void link_start(struct net_device *dev)
345 {
346 struct port_info *pi = netdev_priv(dev);
347 struct cmac *mac = &pi->mac;
348
349 t3_mac_reset(mac);
350 t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
351 t3_mac_set_mtu(mac, dev->mtu);
352 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
353 t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
354 t3_mac_set_rx_mode(mac, dev);
355 t3_link_start(&pi->phy, mac, &pi->link_config);
356 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
357 }
358
cxgb_disable_msi(struct adapter * adapter)359 static inline void cxgb_disable_msi(struct adapter *adapter)
360 {
361 if (adapter->flags & USING_MSIX) {
362 pci_disable_msix(adapter->pdev);
363 adapter->flags &= ~USING_MSIX;
364 } else if (adapter->flags & USING_MSI) {
365 pci_disable_msi(adapter->pdev);
366 adapter->flags &= ~USING_MSI;
367 }
368 }
369
370 /*
371 * Interrupt handler for asynchronous events used with MSI-X.
372 */
t3_async_intr_handler(int irq,void * cookie)373 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
374 {
375 t3_slow_intr_handler(cookie);
376 return IRQ_HANDLED;
377 }
378
379 /*
380 * Name the MSI-X interrupts.
381 */
name_msix_vecs(struct adapter * adap)382 static void name_msix_vecs(struct adapter *adap)
383 {
384 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
385
386 snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
387 adap->msix_info[0].desc[n] = 0;
388
389 for_each_port(adap, j) {
390 struct net_device *d = adap->port[j];
391 const struct port_info *pi = netdev_priv(d);
392
393 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
394 snprintf(adap->msix_info[msi_idx].desc, n,
395 "%s-%d", d->name, pi->first_qset + i);
396 adap->msix_info[msi_idx].desc[n] = 0;
397 }
398 }
399 }
400
request_msix_data_irqs(struct adapter * adap)401 static int request_msix_data_irqs(struct adapter *adap)
402 {
403 int i, j, err, qidx = 0;
404
405 for_each_port(adap, i) {
406 int nqsets = adap2pinfo(adap, i)->nqsets;
407
408 for (j = 0; j < nqsets; ++j) {
409 err = request_irq(adap->msix_info[qidx + 1].vec,
410 t3_intr_handler(adap,
411 adap->sge.qs[qidx].
412 rspq.polling), 0,
413 adap->msix_info[qidx + 1].desc,
414 &adap->sge.qs[qidx]);
415 if (err) {
416 while (--qidx >= 0)
417 free_irq(adap->msix_info[qidx + 1].vec,
418 &adap->sge.qs[qidx]);
419 return err;
420 }
421 qidx++;
422 }
423 }
424 return 0;
425 }
426
free_irq_resources(struct adapter * adapter)427 static void free_irq_resources(struct adapter *adapter)
428 {
429 if (adapter->flags & USING_MSIX) {
430 int i, n = 0;
431
432 free_irq(adapter->msix_info[0].vec, adapter);
433 for_each_port(adapter, i)
434 n += adap2pinfo(adapter, i)->nqsets;
435
436 for (i = 0; i < n; ++i)
437 free_irq(adapter->msix_info[i + 1].vec,
438 &adapter->sge.qs[i]);
439 } else
440 free_irq(adapter->pdev->irq, adapter);
441 }
442
await_mgmt_replies(struct adapter * adap,unsigned long init_cnt,unsigned long n)443 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
444 unsigned long n)
445 {
446 int attempts = 10;
447
448 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
449 if (!--attempts)
450 return -ETIMEDOUT;
451 msleep(10);
452 }
453 return 0;
454 }
455
init_tp_parity(struct adapter * adap)456 static int init_tp_parity(struct adapter *adap)
457 {
458 int i;
459 struct sk_buff *skb;
460 struct cpl_set_tcb_field *greq;
461 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
462
463 t3_tp_set_offload_mode(adap, 1);
464
465 for (i = 0; i < 16; i++) {
466 struct cpl_smt_write_req *req;
467
468 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
469 if (!skb)
470 skb = adap->nofail_skb;
471 if (!skb)
472 goto alloc_skb_fail;
473
474 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
475 memset(req, 0, sizeof(*req));
476 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
477 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
478 req->mtu_idx = NMTUS - 1;
479 req->iff = i;
480 t3_mgmt_tx(adap, skb);
481 if (skb == adap->nofail_skb) {
482 await_mgmt_replies(adap, cnt, i + 1);
483 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
484 if (!adap->nofail_skb)
485 goto alloc_skb_fail;
486 }
487 }
488
489 for (i = 0; i < 2048; i++) {
490 struct cpl_l2t_write_req *req;
491
492 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
493 if (!skb)
494 skb = adap->nofail_skb;
495 if (!skb)
496 goto alloc_skb_fail;
497
498 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
499 memset(req, 0, sizeof(*req));
500 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
501 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
502 req->params = htonl(V_L2T_W_IDX(i));
503 t3_mgmt_tx(adap, skb);
504 if (skb == adap->nofail_skb) {
505 await_mgmt_replies(adap, cnt, 16 + i + 1);
506 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
507 if (!adap->nofail_skb)
508 goto alloc_skb_fail;
509 }
510 }
511
512 for (i = 0; i < 2048; i++) {
513 struct cpl_rte_write_req *req;
514
515 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
516 if (!skb)
517 skb = adap->nofail_skb;
518 if (!skb)
519 goto alloc_skb_fail;
520
521 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
522 memset(req, 0, sizeof(*req));
523 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
524 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
525 req->l2t_idx = htonl(V_L2T_W_IDX(i));
526 t3_mgmt_tx(adap, skb);
527 if (skb == adap->nofail_skb) {
528 await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
529 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
530 if (!adap->nofail_skb)
531 goto alloc_skb_fail;
532 }
533 }
534
535 skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
536 if (!skb)
537 skb = adap->nofail_skb;
538 if (!skb)
539 goto alloc_skb_fail;
540
541 greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
542 memset(greq, 0, sizeof(*greq));
543 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
544 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
545 greq->mask = cpu_to_be64(1);
546 t3_mgmt_tx(adap, skb);
547
548 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
549 if (skb == adap->nofail_skb) {
550 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
551 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
552 }
553
554 t3_tp_set_offload_mode(adap, 0);
555 return i;
556
557 alloc_skb_fail:
558 t3_tp_set_offload_mode(adap, 0);
559 return -ENOMEM;
560 }
561
562 /**
563 * setup_rss - configure RSS
564 * @adap: the adapter
565 *
566 * Sets up RSS to distribute packets to multiple receive queues. We
567 * configure the RSS CPU lookup table to distribute to the number of HW
568 * receive queues, and the response queue lookup table to narrow that
569 * down to the response queues actually configured for each port.
570 * We always configure the RSS mapping for two ports since the mapping
571 * table has plenty of entries.
572 */
setup_rss(struct adapter * adap)573 static void setup_rss(struct adapter *adap)
574 {
575 int i;
576 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
577 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
578 u8 cpus[SGE_QSETS + 1];
579 u16 rspq_map[RSS_TABLE_SIZE + 1];
580
581 for (i = 0; i < SGE_QSETS; ++i)
582 cpus[i] = i;
583 cpus[SGE_QSETS] = 0xff; /* terminator */
584
585 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
586 rspq_map[i] = i % nq0;
587 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
588 }
589 rspq_map[RSS_TABLE_SIZE] = 0xffff; /* terminator */
590
591 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
592 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
593 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
594 }
595
ring_dbs(struct adapter * adap)596 static void ring_dbs(struct adapter *adap)
597 {
598 int i, j;
599
600 for (i = 0; i < SGE_QSETS; i++) {
601 struct sge_qset *qs = &adap->sge.qs[i];
602
603 if (qs->adap)
604 for (j = 0; j < SGE_TXQ_PER_SET; j++)
605 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
606 }
607 }
608
init_napi(struct adapter * adap)609 static void init_napi(struct adapter *adap)
610 {
611 int i;
612
613 for (i = 0; i < SGE_QSETS; i++) {
614 struct sge_qset *qs = &adap->sge.qs[i];
615
616 if (qs->adap)
617 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
618 64);
619 }
620
621 /*
622 * netif_napi_add() can be called only once per napi_struct because it
623 * adds each new napi_struct to a list. Be careful not to call it a
624 * second time, e.g., during EEH recovery, by making a note of it.
625 */
626 adap->flags |= NAPI_INIT;
627 }
628
629 /*
630 * Wait until all NAPI handlers are descheduled. This includes the handlers of
631 * both netdevices representing interfaces and the dummy ones for the extra
632 * queues.
633 */
quiesce_rx(struct adapter * adap)634 static void quiesce_rx(struct adapter *adap)
635 {
636 int i;
637
638 for (i = 0; i < SGE_QSETS; i++)
639 if (adap->sge.qs[i].adap)
640 napi_disable(&adap->sge.qs[i].napi);
641 }
642
enable_all_napi(struct adapter * adap)643 static void enable_all_napi(struct adapter *adap)
644 {
645 int i;
646 for (i = 0; i < SGE_QSETS; i++)
647 if (adap->sge.qs[i].adap)
648 napi_enable(&adap->sge.qs[i].napi);
649 }
650
651 /**
652 * setup_sge_qsets - configure SGE Tx/Rx/response queues
653 * @adap: the adapter
654 *
655 * Determines how many sets of SGE queues to use and initializes them.
656 * We support multiple queue sets per port if we have MSI-X, otherwise
657 * just one queue set per port.
658 */
setup_sge_qsets(struct adapter * adap)659 static int setup_sge_qsets(struct adapter *adap)
660 {
661 int i, j, err, irq_idx = 0, qset_idx = 0;
662 unsigned int ntxq = SGE_TXQ_PER_SET;
663
664 if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
665 irq_idx = -1;
666
667 for_each_port(adap, i) {
668 struct net_device *dev = adap->port[i];
669 struct port_info *pi = netdev_priv(dev);
670
671 pi->qs = &adap->sge.qs[pi->first_qset];
672 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
673 err = t3_sge_alloc_qset(adap, qset_idx, 1,
674 (adap->flags & USING_MSIX) ? qset_idx + 1 :
675 irq_idx,
676 &adap->params.sge.qset[qset_idx], ntxq, dev,
677 netdev_get_tx_queue(dev, j));
678 if (err) {
679 t3_free_sge_resources(adap);
680 return err;
681 }
682 }
683 }
684
685 return 0;
686 }
687
attr_show(struct device * d,char * buf,ssize_t (* format)(struct net_device *,char *))688 static ssize_t attr_show(struct device *d, char *buf,
689 ssize_t(*format) (struct net_device *, char *))
690 {
691 ssize_t len;
692
693 /* Synchronize with ioctls that may shut down the device */
694 rtnl_lock();
695 len = (*format) (to_net_dev(d), buf);
696 rtnl_unlock();
697 return len;
698 }
699
attr_store(struct device * d,const char * buf,size_t len,ssize_t (* set)(struct net_device *,unsigned int),unsigned int min_val,unsigned int max_val)700 static ssize_t attr_store(struct device *d,
701 const char *buf, size_t len,
702 ssize_t(*set) (struct net_device *, unsigned int),
703 unsigned int min_val, unsigned int max_val)
704 {
705 ssize_t ret;
706 unsigned int val;
707
708 if (!capable(CAP_NET_ADMIN))
709 return -EPERM;
710
711 ret = kstrtouint(buf, 0, &val);
712 if (ret)
713 return ret;
714 if (val < min_val || val > max_val)
715 return -EINVAL;
716
717 rtnl_lock();
718 ret = (*set) (to_net_dev(d), val);
719 if (!ret)
720 ret = len;
721 rtnl_unlock();
722 return ret;
723 }
724
725 #define CXGB3_SHOW(name, val_expr) \
726 static ssize_t format_##name(struct net_device *dev, char *buf) \
727 { \
728 struct port_info *pi = netdev_priv(dev); \
729 struct adapter *adap = pi->adapter; \
730 return sprintf(buf, "%u\n", val_expr); \
731 } \
732 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
733 char *buf) \
734 { \
735 return attr_show(d, buf, format_##name); \
736 }
737
set_nfilters(struct net_device * dev,unsigned int val)738 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
739 {
740 struct port_info *pi = netdev_priv(dev);
741 struct adapter *adap = pi->adapter;
742 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
743
744 if (adap->flags & FULL_INIT_DONE)
745 return -EBUSY;
746 if (val && adap->params.rev == 0)
747 return -EINVAL;
748 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
749 min_tids)
750 return -EINVAL;
751 adap->params.mc5.nfilters = val;
752 return 0;
753 }
754
store_nfilters(struct device * d,struct device_attribute * attr,const char * buf,size_t len)755 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
756 const char *buf, size_t len)
757 {
758 return attr_store(d, buf, len, set_nfilters, 0, ~0);
759 }
760
set_nservers(struct net_device * dev,unsigned int val)761 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
762 {
763 struct port_info *pi = netdev_priv(dev);
764 struct adapter *adap = pi->adapter;
765
766 if (adap->flags & FULL_INIT_DONE)
767 return -EBUSY;
768 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
769 MC5_MIN_TIDS)
770 return -EINVAL;
771 adap->params.mc5.nservers = val;
772 return 0;
773 }
774
store_nservers(struct device * d,struct device_attribute * attr,const char * buf,size_t len)775 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
776 const char *buf, size_t len)
777 {
778 return attr_store(d, buf, len, set_nservers, 0, ~0);
779 }
780
781 #define CXGB3_ATTR_R(name, val_expr) \
782 CXGB3_SHOW(name, val_expr) \
783 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
784
785 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
786 CXGB3_SHOW(name, val_expr) \
787 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
788
789 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
790 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
791 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
792
793 static struct attribute *cxgb3_attrs[] = {
794 &dev_attr_cam_size.attr,
795 &dev_attr_nfilters.attr,
796 &dev_attr_nservers.attr,
797 NULL
798 };
799
800 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
801
tm_attr_show(struct device * d,char * buf,int sched)802 static ssize_t tm_attr_show(struct device *d,
803 char *buf, int sched)
804 {
805 struct port_info *pi = netdev_priv(to_net_dev(d));
806 struct adapter *adap = pi->adapter;
807 unsigned int v, addr, bpt, cpt;
808 ssize_t len;
809
810 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
811 rtnl_lock();
812 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
813 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
814 if (sched & 1)
815 v >>= 16;
816 bpt = (v >> 8) & 0xff;
817 cpt = v & 0xff;
818 if (!cpt)
819 len = sprintf(buf, "disabled\n");
820 else {
821 v = (adap->params.vpd.cclk * 1000) / cpt;
822 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
823 }
824 rtnl_unlock();
825 return len;
826 }
827
tm_attr_store(struct device * d,const char * buf,size_t len,int sched)828 static ssize_t tm_attr_store(struct device *d,
829 const char *buf, size_t len, int sched)
830 {
831 struct port_info *pi = netdev_priv(to_net_dev(d));
832 struct adapter *adap = pi->adapter;
833 unsigned int val;
834 ssize_t ret;
835
836 if (!capable(CAP_NET_ADMIN))
837 return -EPERM;
838
839 ret = kstrtouint(buf, 0, &val);
840 if (ret)
841 return ret;
842 if (val > 10000000)
843 return -EINVAL;
844
845 rtnl_lock();
846 ret = t3_config_sched(adap, val, sched);
847 if (!ret)
848 ret = len;
849 rtnl_unlock();
850 return ret;
851 }
852
853 #define TM_ATTR(name, sched) \
854 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
855 char *buf) \
856 { \
857 return tm_attr_show(d, buf, sched); \
858 } \
859 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
860 const char *buf, size_t len) \
861 { \
862 return tm_attr_store(d, buf, len, sched); \
863 } \
864 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
865
866 TM_ATTR(sched0, 0);
867 TM_ATTR(sched1, 1);
868 TM_ATTR(sched2, 2);
869 TM_ATTR(sched3, 3);
870 TM_ATTR(sched4, 4);
871 TM_ATTR(sched5, 5);
872 TM_ATTR(sched6, 6);
873 TM_ATTR(sched7, 7);
874
875 static struct attribute *offload_attrs[] = {
876 &dev_attr_sched0.attr,
877 &dev_attr_sched1.attr,
878 &dev_attr_sched2.attr,
879 &dev_attr_sched3.attr,
880 &dev_attr_sched4.attr,
881 &dev_attr_sched5.attr,
882 &dev_attr_sched6.attr,
883 &dev_attr_sched7.attr,
884 NULL
885 };
886
887 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
888
889 /*
890 * Sends an sk_buff to an offload queue driver
891 * after dealing with any active network taps.
892 */
offload_tx(struct t3cdev * tdev,struct sk_buff * skb)893 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
894 {
895 int ret;
896
897 local_bh_disable();
898 ret = t3_offload_tx(tdev, skb);
899 local_bh_enable();
900 return ret;
901 }
902
write_smt_entry(struct adapter * adapter,int idx)903 static int write_smt_entry(struct adapter *adapter, int idx)
904 {
905 struct cpl_smt_write_req *req;
906 struct port_info *pi = netdev_priv(adapter->port[idx]);
907 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
908
909 if (!skb)
910 return -ENOMEM;
911
912 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
913 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
914 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
915 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */
916 req->iff = idx;
917 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
918 memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
919 skb->priority = 1;
920 offload_tx(&adapter->tdev, skb);
921 return 0;
922 }
923
init_smt(struct adapter * adapter)924 static int init_smt(struct adapter *adapter)
925 {
926 int i;
927
928 for_each_port(adapter, i)
929 write_smt_entry(adapter, i);
930 return 0;
931 }
932
init_port_mtus(struct adapter * adapter)933 static void init_port_mtus(struct adapter *adapter)
934 {
935 unsigned int mtus = adapter->port[0]->mtu;
936
937 if (adapter->port[1])
938 mtus |= adapter->port[1]->mtu << 16;
939 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
940 }
941
send_pktsched_cmd(struct adapter * adap,int sched,int qidx,int lo,int hi,int port)942 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
943 int hi, int port)
944 {
945 struct sk_buff *skb;
946 struct mngt_pktsched_wr *req;
947 int ret;
948
949 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
950 if (!skb)
951 skb = adap->nofail_skb;
952 if (!skb)
953 return -ENOMEM;
954
955 req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
956 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
957 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
958 req->sched = sched;
959 req->idx = qidx;
960 req->min = lo;
961 req->max = hi;
962 req->binding = port;
963 ret = t3_mgmt_tx(adap, skb);
964 if (skb == adap->nofail_skb) {
965 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
966 GFP_KERNEL);
967 if (!adap->nofail_skb)
968 ret = -ENOMEM;
969 }
970
971 return ret;
972 }
973
bind_qsets(struct adapter * adap)974 static int bind_qsets(struct adapter *adap)
975 {
976 int i, j, err = 0;
977
978 for_each_port(adap, i) {
979 const struct port_info *pi = adap2pinfo(adap, i);
980
981 for (j = 0; j < pi->nqsets; ++j) {
982 int ret = send_pktsched_cmd(adap, 1,
983 pi->first_qset + j, -1,
984 -1, i);
985 if (ret)
986 err = ret;
987 }
988 }
989
990 return err;
991 }
992
993 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "." \
994 __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
995 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
996 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "." \
997 __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
998 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
999 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
1000 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
1001 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
1002 MODULE_FIRMWARE(FW_FNAME);
1003 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
1004 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
1005 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
1006 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1007 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1008
get_edc_fw_name(int edc_idx)1009 static inline const char *get_edc_fw_name(int edc_idx)
1010 {
1011 const char *fw_name = NULL;
1012
1013 switch (edc_idx) {
1014 case EDC_OPT_AEL2005:
1015 fw_name = AEL2005_OPT_EDC_NAME;
1016 break;
1017 case EDC_TWX_AEL2005:
1018 fw_name = AEL2005_TWX_EDC_NAME;
1019 break;
1020 case EDC_TWX_AEL2020:
1021 fw_name = AEL2020_TWX_EDC_NAME;
1022 break;
1023 }
1024 return fw_name;
1025 }
1026
t3_get_edc_fw(struct cphy * phy,int edc_idx,int size)1027 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1028 {
1029 struct adapter *adapter = phy->adapter;
1030 const struct firmware *fw;
1031 const char *fw_name;
1032 u32 csum;
1033 const __be32 *p;
1034 u16 *cache = phy->phy_cache;
1035 int i, ret = -EINVAL;
1036
1037 fw_name = get_edc_fw_name(edc_idx);
1038 if (fw_name)
1039 ret = request_firmware(&fw, fw_name, &adapter->pdev->dev);
1040 if (ret < 0) {
1041 dev_err(&adapter->pdev->dev,
1042 "could not upgrade firmware: unable to load %s\n",
1043 fw_name);
1044 return ret;
1045 }
1046
1047 /* check size, take checksum in account */
1048 if (fw->size > size + 4) {
1049 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1050 (unsigned int)fw->size, size + 4);
1051 ret = -EINVAL;
1052 }
1053
1054 /* compute checksum */
1055 p = (const __be32 *)fw->data;
1056 for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1057 csum += ntohl(p[i]);
1058
1059 if (csum != 0xffffffff) {
1060 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1061 csum);
1062 ret = -EINVAL;
1063 }
1064
1065 for (i = 0; i < size / 4 ; i++) {
1066 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1067 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1068 }
1069
1070 release_firmware(fw);
1071
1072 return ret;
1073 }
1074
upgrade_fw(struct adapter * adap)1075 static int upgrade_fw(struct adapter *adap)
1076 {
1077 int ret;
1078 const struct firmware *fw;
1079 struct device *dev = &adap->pdev->dev;
1080
1081 ret = request_firmware(&fw, FW_FNAME, dev);
1082 if (ret < 0) {
1083 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1084 FW_FNAME);
1085 return ret;
1086 }
1087 ret = t3_load_fw(adap, fw->data, fw->size);
1088 release_firmware(fw);
1089
1090 if (ret == 0)
1091 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1092 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1093 else
1094 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1095 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1096
1097 return ret;
1098 }
1099
t3rev2char(struct adapter * adapter)1100 static inline char t3rev2char(struct adapter *adapter)
1101 {
1102 char rev = 0;
1103
1104 switch(adapter->params.rev) {
1105 case T3_REV_B:
1106 case T3_REV_B2:
1107 rev = 'b';
1108 break;
1109 case T3_REV_C:
1110 rev = 'c';
1111 break;
1112 }
1113 return rev;
1114 }
1115
update_tpsram(struct adapter * adap)1116 static int update_tpsram(struct adapter *adap)
1117 {
1118 const struct firmware *tpsram;
1119 char buf[64];
1120 struct device *dev = &adap->pdev->dev;
1121 int ret;
1122 char rev;
1123
1124 rev = t3rev2char(adap);
1125 if (!rev)
1126 return 0;
1127
1128 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1129
1130 ret = request_firmware(&tpsram, buf, dev);
1131 if (ret < 0) {
1132 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1133 buf);
1134 return ret;
1135 }
1136
1137 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1138 if (ret)
1139 goto release_tpsram;
1140
1141 ret = t3_set_proto_sram(adap, tpsram->data);
1142 if (ret == 0)
1143 dev_info(dev,
1144 "successful update of protocol engine "
1145 "to %d.%d.%d\n",
1146 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1147 else
1148 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1149 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1150 if (ret)
1151 dev_err(dev, "loading protocol SRAM failed\n");
1152
1153 release_tpsram:
1154 release_firmware(tpsram);
1155
1156 return ret;
1157 }
1158
1159 /**
1160 * t3_synchronize_rx - wait for current Rx processing on a port to complete
1161 * @adap: the adapter
1162 * @p: the port
1163 *
1164 * Ensures that current Rx processing on any of the queues associated with
1165 * the given port completes before returning. We do this by acquiring and
1166 * releasing the locks of the response queues associated with the port.
1167 */
t3_synchronize_rx(struct adapter * adap,const struct port_info * p)1168 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
1169 {
1170 int i;
1171
1172 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
1173 struct sge_rspq *q = &adap->sge.qs[i].rspq;
1174
1175 spin_lock_irq(&q->lock);
1176 spin_unlock_irq(&q->lock);
1177 }
1178 }
1179
cxgb_vlan_mode(struct net_device * dev,netdev_features_t features)1180 static void cxgb_vlan_mode(struct net_device *dev, netdev_features_t features)
1181 {
1182 struct port_info *pi = netdev_priv(dev);
1183 struct adapter *adapter = pi->adapter;
1184
1185 if (adapter->params.rev > 0) {
1186 t3_set_vlan_accel(adapter, 1 << pi->port_id,
1187 features & NETIF_F_HW_VLAN_CTAG_RX);
1188 } else {
1189 /* single control for all ports */
1190 unsigned int i, have_vlans = features & NETIF_F_HW_VLAN_CTAG_RX;
1191
1192 for_each_port(adapter, i)
1193 have_vlans |=
1194 adapter->port[i]->features &
1195 NETIF_F_HW_VLAN_CTAG_RX;
1196
1197 t3_set_vlan_accel(adapter, 1, have_vlans);
1198 }
1199 t3_synchronize_rx(adapter, pi);
1200 }
1201
1202 /**
1203 * cxgb_up - enable the adapter
1204 * @adapter: adapter being enabled
1205 *
1206 * Called when the first port is enabled, this function performs the
1207 * actions necessary to make an adapter operational, such as completing
1208 * the initialization of HW modules, and enabling interrupts.
1209 *
1210 * Must be called with the rtnl lock held.
1211 */
cxgb_up(struct adapter * adap)1212 static int cxgb_up(struct adapter *adap)
1213 {
1214 int i, err;
1215
1216 if (!(adap->flags & FULL_INIT_DONE)) {
1217 err = t3_check_fw_version(adap);
1218 if (err == -EINVAL) {
1219 err = upgrade_fw(adap);
1220 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1221 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1222 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1223 }
1224
1225 err = t3_check_tpsram_version(adap);
1226 if (err == -EINVAL) {
1227 err = update_tpsram(adap);
1228 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1229 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1230 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1231 }
1232
1233 /*
1234 * Clear interrupts now to catch errors if t3_init_hw fails.
1235 * We clear them again later as initialization may trigger
1236 * conditions that can interrupt.
1237 */
1238 t3_intr_clear(adap);
1239
1240 err = t3_init_hw(adap, 0);
1241 if (err)
1242 goto out;
1243
1244 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1245 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1246
1247 err = setup_sge_qsets(adap);
1248 if (err)
1249 goto out;
1250
1251 for_each_port(adap, i)
1252 cxgb_vlan_mode(adap->port[i], adap->port[i]->features);
1253
1254 setup_rss(adap);
1255 if (!(adap->flags & NAPI_INIT))
1256 init_napi(adap);
1257
1258 t3_start_sge_timers(adap);
1259 adap->flags |= FULL_INIT_DONE;
1260 }
1261
1262 t3_intr_clear(adap);
1263
1264 if (adap->flags & USING_MSIX) {
1265 name_msix_vecs(adap);
1266 err = request_irq(adap->msix_info[0].vec,
1267 t3_async_intr_handler, 0,
1268 adap->msix_info[0].desc, adap);
1269 if (err)
1270 goto irq_err;
1271
1272 err = request_msix_data_irqs(adap);
1273 if (err) {
1274 free_irq(adap->msix_info[0].vec, adap);
1275 goto irq_err;
1276 }
1277 } else if ((err = request_irq(adap->pdev->irq,
1278 t3_intr_handler(adap,
1279 adap->sge.qs[0].rspq.
1280 polling),
1281 (adap->flags & USING_MSI) ?
1282 0 : IRQF_SHARED,
1283 adap->name, adap)))
1284 goto irq_err;
1285
1286 enable_all_napi(adap);
1287 t3_sge_start(adap);
1288 t3_intr_enable(adap);
1289
1290 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1291 is_offload(adap) && init_tp_parity(adap) == 0)
1292 adap->flags |= TP_PARITY_INIT;
1293
1294 if (adap->flags & TP_PARITY_INIT) {
1295 t3_write_reg(adap, A_TP_INT_CAUSE,
1296 F_CMCACHEPERR | F_ARPLUTPERR);
1297 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1298 }
1299
1300 if (!(adap->flags & QUEUES_BOUND)) {
1301 int ret = bind_qsets(adap);
1302
1303 if (ret < 0) {
1304 CH_ERR(adap, "failed to bind qsets, err %d\n", ret);
1305 t3_intr_disable(adap);
1306 free_irq_resources(adap);
1307 err = ret;
1308 goto out;
1309 }
1310 adap->flags |= QUEUES_BOUND;
1311 }
1312
1313 out:
1314 return err;
1315 irq_err:
1316 CH_ERR(adap, "request_irq failed, err %d\n", err);
1317 goto out;
1318 }
1319
1320 /*
1321 * Release resources when all the ports and offloading have been stopped.
1322 */
cxgb_down(struct adapter * adapter,int on_wq)1323 static void cxgb_down(struct adapter *adapter, int on_wq)
1324 {
1325 t3_sge_stop(adapter);
1326 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */
1327 t3_intr_disable(adapter);
1328 spin_unlock_irq(&adapter->work_lock);
1329
1330 free_irq_resources(adapter);
1331 quiesce_rx(adapter);
1332 t3_sge_stop(adapter);
1333 if (!on_wq)
1334 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */
1335 }
1336
schedule_chk_task(struct adapter * adap)1337 static void schedule_chk_task(struct adapter *adap)
1338 {
1339 unsigned int timeo;
1340
1341 timeo = adap->params.linkpoll_period ?
1342 (HZ * adap->params.linkpoll_period) / 10 :
1343 adap->params.stats_update_period * HZ;
1344 if (timeo)
1345 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1346 }
1347
offload_open(struct net_device * dev)1348 static int offload_open(struct net_device *dev)
1349 {
1350 struct port_info *pi = netdev_priv(dev);
1351 struct adapter *adapter = pi->adapter;
1352 struct t3cdev *tdev = dev2t3cdev(dev);
1353 int adap_up = adapter->open_device_map & PORT_MASK;
1354 int err;
1355
1356 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1357 return 0;
1358
1359 if (!adap_up && (err = cxgb_up(adapter)) < 0)
1360 goto out;
1361
1362 t3_tp_set_offload_mode(adapter, 1);
1363 tdev->lldev = adapter->port[0];
1364 err = cxgb3_offload_activate(adapter);
1365 if (err)
1366 goto out;
1367
1368 init_port_mtus(adapter);
1369 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1370 adapter->params.b_wnd,
1371 adapter->params.rev == 0 ?
1372 adapter->port[0]->mtu : 0xffff);
1373 init_smt(adapter);
1374
1375 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1376 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1377
1378 /* Call back all registered clients */
1379 cxgb3_add_clients(tdev);
1380
1381 out:
1382 /* restore them in case the offload module has changed them */
1383 if (err) {
1384 t3_tp_set_offload_mode(adapter, 0);
1385 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1386 cxgb3_set_dummy_ops(tdev);
1387 }
1388 return err;
1389 }
1390
offload_close(struct t3cdev * tdev)1391 static int offload_close(struct t3cdev *tdev)
1392 {
1393 struct adapter *adapter = tdev2adap(tdev);
1394 struct t3c_data *td = T3C_DATA(tdev);
1395
1396 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1397 return 0;
1398
1399 /* Call back all registered clients */
1400 cxgb3_remove_clients(tdev);
1401
1402 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1403
1404 /* Flush work scheduled while releasing TIDs */
1405 flush_work(&td->tid_release_task);
1406
1407 tdev->lldev = NULL;
1408 cxgb3_set_dummy_ops(tdev);
1409 t3_tp_set_offload_mode(adapter, 0);
1410 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1411
1412 if (!adapter->open_device_map)
1413 cxgb_down(adapter, 0);
1414
1415 cxgb3_offload_deactivate(adapter);
1416 return 0;
1417 }
1418
cxgb_open(struct net_device * dev)1419 static int cxgb_open(struct net_device *dev)
1420 {
1421 struct port_info *pi = netdev_priv(dev);
1422 struct adapter *adapter = pi->adapter;
1423 int other_ports = adapter->open_device_map & PORT_MASK;
1424 int err;
1425
1426 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1427 return err;
1428
1429 set_bit(pi->port_id, &adapter->open_device_map);
1430 if (is_offload(adapter) && !ofld_disable) {
1431 err = offload_open(dev);
1432 if (err)
1433 pr_warn("Could not initialize offload capabilities\n");
1434 }
1435
1436 netif_set_real_num_tx_queues(dev, pi->nqsets);
1437 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
1438 if (err)
1439 return err;
1440 link_start(dev);
1441 t3_port_intr_enable(adapter, pi->port_id);
1442 netif_tx_start_all_queues(dev);
1443 if (!other_ports)
1444 schedule_chk_task(adapter);
1445
1446 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1447 return 0;
1448 }
1449
__cxgb_close(struct net_device * dev,int on_wq)1450 static int __cxgb_close(struct net_device *dev, int on_wq)
1451 {
1452 struct port_info *pi = netdev_priv(dev);
1453 struct adapter *adapter = pi->adapter;
1454
1455
1456 if (!adapter->open_device_map)
1457 return 0;
1458
1459 /* Stop link fault interrupts */
1460 t3_xgm_intr_disable(adapter, pi->port_id);
1461 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1462
1463 t3_port_intr_disable(adapter, pi->port_id);
1464 netif_tx_stop_all_queues(dev);
1465 pi->phy.ops->power_down(&pi->phy, 1);
1466 netif_carrier_off(dev);
1467 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1468
1469 spin_lock_irq(&adapter->work_lock); /* sync with update task */
1470 clear_bit(pi->port_id, &adapter->open_device_map);
1471 spin_unlock_irq(&adapter->work_lock);
1472
1473 if (!(adapter->open_device_map & PORT_MASK))
1474 cancel_delayed_work_sync(&adapter->adap_check_task);
1475
1476 if (!adapter->open_device_map)
1477 cxgb_down(adapter, on_wq);
1478
1479 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1480 return 0;
1481 }
1482
cxgb_close(struct net_device * dev)1483 static int cxgb_close(struct net_device *dev)
1484 {
1485 return __cxgb_close(dev, 0);
1486 }
1487
cxgb_get_stats(struct net_device * dev)1488 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1489 {
1490 struct port_info *pi = netdev_priv(dev);
1491 struct adapter *adapter = pi->adapter;
1492 struct net_device_stats *ns = &pi->netstats;
1493 const struct mac_stats *pstats;
1494
1495 spin_lock(&adapter->stats_lock);
1496 pstats = t3_mac_update_stats(&pi->mac);
1497 spin_unlock(&adapter->stats_lock);
1498
1499 ns->tx_bytes = pstats->tx_octets;
1500 ns->tx_packets = pstats->tx_frames;
1501 ns->rx_bytes = pstats->rx_octets;
1502 ns->rx_packets = pstats->rx_frames;
1503 ns->multicast = pstats->rx_mcast_frames;
1504
1505 ns->tx_errors = pstats->tx_underrun;
1506 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1507 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1508 pstats->rx_fifo_ovfl;
1509
1510 /* detailed rx_errors */
1511 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1512 ns->rx_over_errors = 0;
1513 ns->rx_crc_errors = pstats->rx_fcs_errs;
1514 ns->rx_frame_errors = pstats->rx_symbol_errs;
1515 ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1516 ns->rx_missed_errors = pstats->rx_cong_drops;
1517
1518 /* detailed tx_errors */
1519 ns->tx_aborted_errors = 0;
1520 ns->tx_carrier_errors = 0;
1521 ns->tx_fifo_errors = pstats->tx_underrun;
1522 ns->tx_heartbeat_errors = 0;
1523 ns->tx_window_errors = 0;
1524 return ns;
1525 }
1526
get_msglevel(struct net_device * dev)1527 static u32 get_msglevel(struct net_device *dev)
1528 {
1529 struct port_info *pi = netdev_priv(dev);
1530 struct adapter *adapter = pi->adapter;
1531
1532 return adapter->msg_enable;
1533 }
1534
set_msglevel(struct net_device * dev,u32 val)1535 static void set_msglevel(struct net_device *dev, u32 val)
1536 {
1537 struct port_info *pi = netdev_priv(dev);
1538 struct adapter *adapter = pi->adapter;
1539
1540 adapter->msg_enable = val;
1541 }
1542
1543 static const char stats_strings[][ETH_GSTRING_LEN] = {
1544 "TxOctetsOK ",
1545 "TxFramesOK ",
1546 "TxMulticastFramesOK",
1547 "TxBroadcastFramesOK",
1548 "TxPauseFrames ",
1549 "TxUnderrun ",
1550 "TxExtUnderrun ",
1551
1552 "TxFrames64 ",
1553 "TxFrames65To127 ",
1554 "TxFrames128To255 ",
1555 "TxFrames256To511 ",
1556 "TxFrames512To1023 ",
1557 "TxFrames1024To1518 ",
1558 "TxFrames1519ToMax ",
1559
1560 "RxOctetsOK ",
1561 "RxFramesOK ",
1562 "RxMulticastFramesOK",
1563 "RxBroadcastFramesOK",
1564 "RxPauseFrames ",
1565 "RxFCSErrors ",
1566 "RxSymbolErrors ",
1567 "RxShortErrors ",
1568 "RxJabberErrors ",
1569 "RxLengthErrors ",
1570 "RxFIFOoverflow ",
1571
1572 "RxFrames64 ",
1573 "RxFrames65To127 ",
1574 "RxFrames128To255 ",
1575 "RxFrames256To511 ",
1576 "RxFrames512To1023 ",
1577 "RxFrames1024To1518 ",
1578 "RxFrames1519ToMax ",
1579
1580 "PhyFIFOErrors ",
1581 "TSO ",
1582 "VLANextractions ",
1583 "VLANinsertions ",
1584 "TxCsumOffload ",
1585 "RxCsumGood ",
1586 "LroAggregated ",
1587 "LroFlushed ",
1588 "LroNoDesc ",
1589 "RxDrops ",
1590
1591 "CheckTXEnToggled ",
1592 "CheckResets ",
1593
1594 "LinkFaults ",
1595 };
1596
get_sset_count(struct net_device * dev,int sset)1597 static int get_sset_count(struct net_device *dev, int sset)
1598 {
1599 switch (sset) {
1600 case ETH_SS_STATS:
1601 return ARRAY_SIZE(stats_strings);
1602 default:
1603 return -EOPNOTSUPP;
1604 }
1605 }
1606
1607 #define T3_REGMAP_SIZE (3 * 1024)
1608
get_regs_len(struct net_device * dev)1609 static int get_regs_len(struct net_device *dev)
1610 {
1611 return T3_REGMAP_SIZE;
1612 }
1613
get_eeprom_len(struct net_device * dev)1614 static int get_eeprom_len(struct net_device *dev)
1615 {
1616 return EEPROMSIZE;
1617 }
1618
get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1619 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1620 {
1621 struct port_info *pi = netdev_priv(dev);
1622 struct adapter *adapter = pi->adapter;
1623 u32 fw_vers = 0;
1624 u32 tp_vers = 0;
1625
1626 spin_lock(&adapter->stats_lock);
1627 t3_get_fw_version(adapter, &fw_vers);
1628 t3_get_tp_version(adapter, &tp_vers);
1629 spin_unlock(&adapter->stats_lock);
1630
1631 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1632 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1633 strlcpy(info->bus_info, pci_name(adapter->pdev),
1634 sizeof(info->bus_info));
1635 if (fw_vers)
1636 snprintf(info->fw_version, sizeof(info->fw_version),
1637 "%s %u.%u.%u TP %u.%u.%u",
1638 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1639 G_FW_VERSION_MAJOR(fw_vers),
1640 G_FW_VERSION_MINOR(fw_vers),
1641 G_FW_VERSION_MICRO(fw_vers),
1642 G_TP_VERSION_MAJOR(tp_vers),
1643 G_TP_VERSION_MINOR(tp_vers),
1644 G_TP_VERSION_MICRO(tp_vers));
1645 }
1646
get_strings(struct net_device * dev,u32 stringset,u8 * data)1647 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1648 {
1649 if (stringset == ETH_SS_STATS)
1650 memcpy(data, stats_strings, sizeof(stats_strings));
1651 }
1652
collect_sge_port_stats(struct adapter * adapter,struct port_info * p,int idx)1653 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1654 struct port_info *p, int idx)
1655 {
1656 int i;
1657 unsigned long tot = 0;
1658
1659 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1660 tot += adapter->sge.qs[i].port_stats[idx];
1661 return tot;
1662 }
1663
get_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1664 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1665 u64 *data)
1666 {
1667 struct port_info *pi = netdev_priv(dev);
1668 struct adapter *adapter = pi->adapter;
1669 const struct mac_stats *s;
1670
1671 spin_lock(&adapter->stats_lock);
1672 s = t3_mac_update_stats(&pi->mac);
1673 spin_unlock(&adapter->stats_lock);
1674
1675 *data++ = s->tx_octets;
1676 *data++ = s->tx_frames;
1677 *data++ = s->tx_mcast_frames;
1678 *data++ = s->tx_bcast_frames;
1679 *data++ = s->tx_pause;
1680 *data++ = s->tx_underrun;
1681 *data++ = s->tx_fifo_urun;
1682
1683 *data++ = s->tx_frames_64;
1684 *data++ = s->tx_frames_65_127;
1685 *data++ = s->tx_frames_128_255;
1686 *data++ = s->tx_frames_256_511;
1687 *data++ = s->tx_frames_512_1023;
1688 *data++ = s->tx_frames_1024_1518;
1689 *data++ = s->tx_frames_1519_max;
1690
1691 *data++ = s->rx_octets;
1692 *data++ = s->rx_frames;
1693 *data++ = s->rx_mcast_frames;
1694 *data++ = s->rx_bcast_frames;
1695 *data++ = s->rx_pause;
1696 *data++ = s->rx_fcs_errs;
1697 *data++ = s->rx_symbol_errs;
1698 *data++ = s->rx_short;
1699 *data++ = s->rx_jabber;
1700 *data++ = s->rx_too_long;
1701 *data++ = s->rx_fifo_ovfl;
1702
1703 *data++ = s->rx_frames_64;
1704 *data++ = s->rx_frames_65_127;
1705 *data++ = s->rx_frames_128_255;
1706 *data++ = s->rx_frames_256_511;
1707 *data++ = s->rx_frames_512_1023;
1708 *data++ = s->rx_frames_1024_1518;
1709 *data++ = s->rx_frames_1519_max;
1710
1711 *data++ = pi->phy.fifo_errors;
1712
1713 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1714 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1715 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1716 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1717 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1718 *data++ = 0;
1719 *data++ = 0;
1720 *data++ = 0;
1721 *data++ = s->rx_cong_drops;
1722
1723 *data++ = s->num_toggled;
1724 *data++ = s->num_resets;
1725
1726 *data++ = s->link_faults;
1727 }
1728
reg_block_dump(struct adapter * ap,void * buf,unsigned int start,unsigned int end)1729 static inline void reg_block_dump(struct adapter *ap, void *buf,
1730 unsigned int start, unsigned int end)
1731 {
1732 u32 *p = buf + start;
1733
1734 for (; start <= end; start += sizeof(u32))
1735 *p++ = t3_read_reg(ap, start);
1736 }
1737
get_regs(struct net_device * dev,struct ethtool_regs * regs,void * buf)1738 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1739 void *buf)
1740 {
1741 struct port_info *pi = netdev_priv(dev);
1742 struct adapter *ap = pi->adapter;
1743
1744 /*
1745 * Version scheme:
1746 * bits 0..9: chip version
1747 * bits 10..15: chip revision
1748 * bit 31: set for PCIe cards
1749 */
1750 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1751
1752 /*
1753 * We skip the MAC statistics registers because they are clear-on-read.
1754 * Also reading multi-register stats would need to synchronize with the
1755 * periodic mac stats accumulation. Hard to justify the complexity.
1756 */
1757 memset(buf, 0, T3_REGMAP_SIZE);
1758 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1759 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1760 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1761 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1762 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1763 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1764 XGM_REG(A_XGM_SERDES_STAT3, 1));
1765 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1766 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1767 }
1768
restart_autoneg(struct net_device * dev)1769 static int restart_autoneg(struct net_device *dev)
1770 {
1771 struct port_info *p = netdev_priv(dev);
1772
1773 if (!netif_running(dev))
1774 return -EAGAIN;
1775 if (p->link_config.autoneg != AUTONEG_ENABLE)
1776 return -EINVAL;
1777 p->phy.ops->autoneg_restart(&p->phy);
1778 return 0;
1779 }
1780
set_phys_id(struct net_device * dev,enum ethtool_phys_id_state state)1781 static int set_phys_id(struct net_device *dev,
1782 enum ethtool_phys_id_state state)
1783 {
1784 struct port_info *pi = netdev_priv(dev);
1785 struct adapter *adapter = pi->adapter;
1786
1787 switch (state) {
1788 case ETHTOOL_ID_ACTIVE:
1789 return 1; /* cycle on/off once per second */
1790
1791 case ETHTOOL_ID_OFF:
1792 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0);
1793 break;
1794
1795 case ETHTOOL_ID_ON:
1796 case ETHTOOL_ID_INACTIVE:
1797 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1798 F_GPIO0_OUT_VAL);
1799 }
1800
1801 return 0;
1802 }
1803
get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1804 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1805 {
1806 struct port_info *p = netdev_priv(dev);
1807
1808 cmd->supported = p->link_config.supported;
1809 cmd->advertising = p->link_config.advertising;
1810
1811 if (netif_carrier_ok(dev)) {
1812 ethtool_cmd_speed_set(cmd, p->link_config.speed);
1813 cmd->duplex = p->link_config.duplex;
1814 } else {
1815 ethtool_cmd_speed_set(cmd, SPEED_UNKNOWN);
1816 cmd->duplex = DUPLEX_UNKNOWN;
1817 }
1818
1819 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1820 cmd->phy_address = p->phy.mdio.prtad;
1821 cmd->transceiver = XCVR_EXTERNAL;
1822 cmd->autoneg = p->link_config.autoneg;
1823 cmd->maxtxpkt = 0;
1824 cmd->maxrxpkt = 0;
1825 return 0;
1826 }
1827
speed_duplex_to_caps(int speed,int duplex)1828 static int speed_duplex_to_caps(int speed, int duplex)
1829 {
1830 int cap = 0;
1831
1832 switch (speed) {
1833 case SPEED_10:
1834 if (duplex == DUPLEX_FULL)
1835 cap = SUPPORTED_10baseT_Full;
1836 else
1837 cap = SUPPORTED_10baseT_Half;
1838 break;
1839 case SPEED_100:
1840 if (duplex == DUPLEX_FULL)
1841 cap = SUPPORTED_100baseT_Full;
1842 else
1843 cap = SUPPORTED_100baseT_Half;
1844 break;
1845 case SPEED_1000:
1846 if (duplex == DUPLEX_FULL)
1847 cap = SUPPORTED_1000baseT_Full;
1848 else
1849 cap = SUPPORTED_1000baseT_Half;
1850 break;
1851 case SPEED_10000:
1852 if (duplex == DUPLEX_FULL)
1853 cap = SUPPORTED_10000baseT_Full;
1854 }
1855 return cap;
1856 }
1857
1858 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1859 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1860 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1861 ADVERTISED_10000baseT_Full)
1862
set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1863 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1864 {
1865 struct port_info *p = netdev_priv(dev);
1866 struct link_config *lc = &p->link_config;
1867
1868 if (!(lc->supported & SUPPORTED_Autoneg)) {
1869 /*
1870 * PHY offers a single speed/duplex. See if that's what's
1871 * being requested.
1872 */
1873 if (cmd->autoneg == AUTONEG_DISABLE) {
1874 u32 speed = ethtool_cmd_speed(cmd);
1875 int cap = speed_duplex_to_caps(speed, cmd->duplex);
1876 if (lc->supported & cap)
1877 return 0;
1878 }
1879 return -EINVAL;
1880 }
1881
1882 if (cmd->autoneg == AUTONEG_DISABLE) {
1883 u32 speed = ethtool_cmd_speed(cmd);
1884 int cap = speed_duplex_to_caps(speed, cmd->duplex);
1885
1886 if (!(lc->supported & cap) || (speed == SPEED_1000))
1887 return -EINVAL;
1888 lc->requested_speed = speed;
1889 lc->requested_duplex = cmd->duplex;
1890 lc->advertising = 0;
1891 } else {
1892 cmd->advertising &= ADVERTISED_MASK;
1893 cmd->advertising &= lc->supported;
1894 if (!cmd->advertising)
1895 return -EINVAL;
1896 lc->requested_speed = SPEED_INVALID;
1897 lc->requested_duplex = DUPLEX_INVALID;
1898 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1899 }
1900 lc->autoneg = cmd->autoneg;
1901 if (netif_running(dev))
1902 t3_link_start(&p->phy, &p->mac, lc);
1903 return 0;
1904 }
1905
get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)1906 static void get_pauseparam(struct net_device *dev,
1907 struct ethtool_pauseparam *epause)
1908 {
1909 struct port_info *p = netdev_priv(dev);
1910
1911 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1912 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1913 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1914 }
1915
set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)1916 static int set_pauseparam(struct net_device *dev,
1917 struct ethtool_pauseparam *epause)
1918 {
1919 struct port_info *p = netdev_priv(dev);
1920 struct link_config *lc = &p->link_config;
1921
1922 if (epause->autoneg == AUTONEG_DISABLE)
1923 lc->requested_fc = 0;
1924 else if (lc->supported & SUPPORTED_Autoneg)
1925 lc->requested_fc = PAUSE_AUTONEG;
1926 else
1927 return -EINVAL;
1928
1929 if (epause->rx_pause)
1930 lc->requested_fc |= PAUSE_RX;
1931 if (epause->tx_pause)
1932 lc->requested_fc |= PAUSE_TX;
1933 if (lc->autoneg == AUTONEG_ENABLE) {
1934 if (netif_running(dev))
1935 t3_link_start(&p->phy, &p->mac, lc);
1936 } else {
1937 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1938 if (netif_running(dev))
1939 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1940 }
1941 return 0;
1942 }
1943
get_sge_param(struct net_device * dev,struct ethtool_ringparam * e)1944 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1945 {
1946 struct port_info *pi = netdev_priv(dev);
1947 struct adapter *adapter = pi->adapter;
1948 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1949
1950 e->rx_max_pending = MAX_RX_BUFFERS;
1951 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1952 e->tx_max_pending = MAX_TXQ_ENTRIES;
1953
1954 e->rx_pending = q->fl_size;
1955 e->rx_mini_pending = q->rspq_size;
1956 e->rx_jumbo_pending = q->jumbo_size;
1957 e->tx_pending = q->txq_size[0];
1958 }
1959
set_sge_param(struct net_device * dev,struct ethtool_ringparam * e)1960 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1961 {
1962 struct port_info *pi = netdev_priv(dev);
1963 struct adapter *adapter = pi->adapter;
1964 struct qset_params *q;
1965 int i;
1966
1967 if (e->rx_pending > MAX_RX_BUFFERS ||
1968 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1969 e->tx_pending > MAX_TXQ_ENTRIES ||
1970 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1971 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1972 e->rx_pending < MIN_FL_ENTRIES ||
1973 e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1974 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1975 return -EINVAL;
1976
1977 if (adapter->flags & FULL_INIT_DONE)
1978 return -EBUSY;
1979
1980 q = &adapter->params.sge.qset[pi->first_qset];
1981 for (i = 0; i < pi->nqsets; ++i, ++q) {
1982 q->rspq_size = e->rx_mini_pending;
1983 q->fl_size = e->rx_pending;
1984 q->jumbo_size = e->rx_jumbo_pending;
1985 q->txq_size[0] = e->tx_pending;
1986 q->txq_size[1] = e->tx_pending;
1987 q->txq_size[2] = e->tx_pending;
1988 }
1989 return 0;
1990 }
1991
set_coalesce(struct net_device * dev,struct ethtool_coalesce * c)1992 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1993 {
1994 struct port_info *pi = netdev_priv(dev);
1995 struct adapter *adapter = pi->adapter;
1996 struct qset_params *qsp;
1997 struct sge_qset *qs;
1998 int i;
1999
2000 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
2001 return -EINVAL;
2002
2003 for (i = 0; i < pi->nqsets; i++) {
2004 qsp = &adapter->params.sge.qset[i];
2005 qs = &adapter->sge.qs[i];
2006 qsp->coalesce_usecs = c->rx_coalesce_usecs;
2007 t3_update_qset_coalesce(qs, qsp);
2008 }
2009
2010 return 0;
2011 }
2012
get_coalesce(struct net_device * dev,struct ethtool_coalesce * c)2013 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2014 {
2015 struct port_info *pi = netdev_priv(dev);
2016 struct adapter *adapter = pi->adapter;
2017 struct qset_params *q = adapter->params.sge.qset;
2018
2019 c->rx_coalesce_usecs = q->coalesce_usecs;
2020 return 0;
2021 }
2022
get_eeprom(struct net_device * dev,struct ethtool_eeprom * e,u8 * data)2023 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2024 u8 * data)
2025 {
2026 struct port_info *pi = netdev_priv(dev);
2027 struct adapter *adapter = pi->adapter;
2028 int i, err = 0;
2029
2030 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2031 if (!buf)
2032 return -ENOMEM;
2033
2034 e->magic = EEPROM_MAGIC;
2035 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2036 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
2037
2038 if (!err)
2039 memcpy(data, buf + e->offset, e->len);
2040 kfree(buf);
2041 return err;
2042 }
2043
set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)2044 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2045 u8 * data)
2046 {
2047 struct port_info *pi = netdev_priv(dev);
2048 struct adapter *adapter = pi->adapter;
2049 u32 aligned_offset, aligned_len;
2050 __le32 *p;
2051 u8 *buf;
2052 int err;
2053
2054 if (eeprom->magic != EEPROM_MAGIC)
2055 return -EINVAL;
2056
2057 aligned_offset = eeprom->offset & ~3;
2058 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2059
2060 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2061 buf = kmalloc(aligned_len, GFP_KERNEL);
2062 if (!buf)
2063 return -ENOMEM;
2064 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2065 if (!err && aligned_len > 4)
2066 err = t3_seeprom_read(adapter,
2067 aligned_offset + aligned_len - 4,
2068 (__le32 *) & buf[aligned_len - 4]);
2069 if (err)
2070 goto out;
2071 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2072 } else
2073 buf = data;
2074
2075 err = t3_seeprom_wp(adapter, 0);
2076 if (err)
2077 goto out;
2078
2079 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2080 err = t3_seeprom_write(adapter, aligned_offset, *p);
2081 aligned_offset += 4;
2082 }
2083
2084 if (!err)
2085 err = t3_seeprom_wp(adapter, 1);
2086 out:
2087 if (buf != data)
2088 kfree(buf);
2089 return err;
2090 }
2091
get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2092 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2093 {
2094 wol->supported = 0;
2095 wol->wolopts = 0;
2096 memset(&wol->sopass, 0, sizeof(wol->sopass));
2097 }
2098
2099 static const struct ethtool_ops cxgb_ethtool_ops = {
2100 .get_settings = get_settings,
2101 .set_settings = set_settings,
2102 .get_drvinfo = get_drvinfo,
2103 .get_msglevel = get_msglevel,
2104 .set_msglevel = set_msglevel,
2105 .get_ringparam = get_sge_param,
2106 .set_ringparam = set_sge_param,
2107 .get_coalesce = get_coalesce,
2108 .set_coalesce = set_coalesce,
2109 .get_eeprom_len = get_eeprom_len,
2110 .get_eeprom = get_eeprom,
2111 .set_eeprom = set_eeprom,
2112 .get_pauseparam = get_pauseparam,
2113 .set_pauseparam = set_pauseparam,
2114 .get_link = ethtool_op_get_link,
2115 .get_strings = get_strings,
2116 .set_phys_id = set_phys_id,
2117 .nway_reset = restart_autoneg,
2118 .get_sset_count = get_sset_count,
2119 .get_ethtool_stats = get_stats,
2120 .get_regs_len = get_regs_len,
2121 .get_regs = get_regs,
2122 .get_wol = get_wol,
2123 };
2124
in_range(int val,int lo,int hi)2125 static int in_range(int val, int lo, int hi)
2126 {
2127 return val < 0 || (val <= hi && val >= lo);
2128 }
2129
cxgb_extension_ioctl(struct net_device * dev,void __user * useraddr)2130 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2131 {
2132 struct port_info *pi = netdev_priv(dev);
2133 struct adapter *adapter = pi->adapter;
2134 u32 cmd;
2135 int ret;
2136
2137 if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2138 return -EFAULT;
2139
2140 switch (cmd) {
2141 case CHELSIO_SET_QSET_PARAMS:{
2142 int i;
2143 struct qset_params *q;
2144 struct ch_qset_params t;
2145 int q1 = pi->first_qset;
2146 int nqsets = pi->nqsets;
2147
2148 if (!capable(CAP_NET_ADMIN))
2149 return -EPERM;
2150 if (copy_from_user(&t, useraddr, sizeof(t)))
2151 return -EFAULT;
2152 if (t.qset_idx >= SGE_QSETS)
2153 return -EINVAL;
2154 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2155 !in_range(t.cong_thres, 0, 255) ||
2156 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2157 MAX_TXQ_ENTRIES) ||
2158 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2159 MAX_TXQ_ENTRIES) ||
2160 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2161 MAX_CTRL_TXQ_ENTRIES) ||
2162 !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2163 MAX_RX_BUFFERS) ||
2164 !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2165 MAX_RX_JUMBO_BUFFERS) ||
2166 !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2167 MAX_RSPQ_ENTRIES))
2168 return -EINVAL;
2169
2170 if ((adapter->flags & FULL_INIT_DONE) &&
2171 (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2172 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2173 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2174 t.polling >= 0 || t.cong_thres >= 0))
2175 return -EBUSY;
2176
2177 /* Allow setting of any available qset when offload enabled */
2178 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2179 q1 = 0;
2180 for_each_port(adapter, i) {
2181 pi = adap2pinfo(adapter, i);
2182 nqsets += pi->first_qset + pi->nqsets;
2183 }
2184 }
2185
2186 if (t.qset_idx < q1)
2187 return -EINVAL;
2188 if (t.qset_idx > q1 + nqsets - 1)
2189 return -EINVAL;
2190
2191 q = &adapter->params.sge.qset[t.qset_idx];
2192
2193 if (t.rspq_size >= 0)
2194 q->rspq_size = t.rspq_size;
2195 if (t.fl_size[0] >= 0)
2196 q->fl_size = t.fl_size[0];
2197 if (t.fl_size[1] >= 0)
2198 q->jumbo_size = t.fl_size[1];
2199 if (t.txq_size[0] >= 0)
2200 q->txq_size[0] = t.txq_size[0];
2201 if (t.txq_size[1] >= 0)
2202 q->txq_size[1] = t.txq_size[1];
2203 if (t.txq_size[2] >= 0)
2204 q->txq_size[2] = t.txq_size[2];
2205 if (t.cong_thres >= 0)
2206 q->cong_thres = t.cong_thres;
2207 if (t.intr_lat >= 0) {
2208 struct sge_qset *qs =
2209 &adapter->sge.qs[t.qset_idx];
2210
2211 q->coalesce_usecs = t.intr_lat;
2212 t3_update_qset_coalesce(qs, q);
2213 }
2214 if (t.polling >= 0) {
2215 if (adapter->flags & USING_MSIX)
2216 q->polling = t.polling;
2217 else {
2218 /* No polling with INTx for T3A */
2219 if (adapter->params.rev == 0 &&
2220 !(adapter->flags & USING_MSI))
2221 t.polling = 0;
2222
2223 for (i = 0; i < SGE_QSETS; i++) {
2224 q = &adapter->params.sge.
2225 qset[i];
2226 q->polling = t.polling;
2227 }
2228 }
2229 }
2230
2231 if (t.lro >= 0) {
2232 if (t.lro)
2233 dev->wanted_features |= NETIF_F_GRO;
2234 else
2235 dev->wanted_features &= ~NETIF_F_GRO;
2236 netdev_update_features(dev);
2237 }
2238
2239 break;
2240 }
2241 case CHELSIO_GET_QSET_PARAMS:{
2242 struct qset_params *q;
2243 struct ch_qset_params t;
2244 int q1 = pi->first_qset;
2245 int nqsets = pi->nqsets;
2246 int i;
2247
2248 if (copy_from_user(&t, useraddr, sizeof(t)))
2249 return -EFAULT;
2250
2251 /* Display qsets for all ports when offload enabled */
2252 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2253 q1 = 0;
2254 for_each_port(adapter, i) {
2255 pi = adap2pinfo(adapter, i);
2256 nqsets = pi->first_qset + pi->nqsets;
2257 }
2258 }
2259
2260 if (t.qset_idx >= nqsets)
2261 return -EINVAL;
2262
2263 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2264 t.rspq_size = q->rspq_size;
2265 t.txq_size[0] = q->txq_size[0];
2266 t.txq_size[1] = q->txq_size[1];
2267 t.txq_size[2] = q->txq_size[2];
2268 t.fl_size[0] = q->fl_size;
2269 t.fl_size[1] = q->jumbo_size;
2270 t.polling = q->polling;
2271 t.lro = !!(dev->features & NETIF_F_GRO);
2272 t.intr_lat = q->coalesce_usecs;
2273 t.cong_thres = q->cong_thres;
2274 t.qnum = q1;
2275
2276 if (adapter->flags & USING_MSIX)
2277 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2278 else
2279 t.vector = adapter->pdev->irq;
2280
2281 if (copy_to_user(useraddr, &t, sizeof(t)))
2282 return -EFAULT;
2283 break;
2284 }
2285 case CHELSIO_SET_QSET_NUM:{
2286 struct ch_reg edata;
2287 unsigned int i, first_qset = 0, other_qsets = 0;
2288
2289 if (!capable(CAP_NET_ADMIN))
2290 return -EPERM;
2291 if (adapter->flags & FULL_INIT_DONE)
2292 return -EBUSY;
2293 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2294 return -EFAULT;
2295 if (edata.val < 1 ||
2296 (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2297 return -EINVAL;
2298
2299 for_each_port(adapter, i)
2300 if (adapter->port[i] && adapter->port[i] != dev)
2301 other_qsets += adap2pinfo(adapter, i)->nqsets;
2302
2303 if (edata.val + other_qsets > SGE_QSETS)
2304 return -EINVAL;
2305
2306 pi->nqsets = edata.val;
2307
2308 for_each_port(adapter, i)
2309 if (adapter->port[i]) {
2310 pi = adap2pinfo(adapter, i);
2311 pi->first_qset = first_qset;
2312 first_qset += pi->nqsets;
2313 }
2314 break;
2315 }
2316 case CHELSIO_GET_QSET_NUM:{
2317 struct ch_reg edata;
2318
2319 memset(&edata, 0, sizeof(struct ch_reg));
2320
2321 edata.cmd = CHELSIO_GET_QSET_NUM;
2322 edata.val = pi->nqsets;
2323 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2324 return -EFAULT;
2325 break;
2326 }
2327 case CHELSIO_LOAD_FW:{
2328 u8 *fw_data;
2329 struct ch_mem_range t;
2330
2331 if (!capable(CAP_SYS_RAWIO))
2332 return -EPERM;
2333 if (copy_from_user(&t, useraddr, sizeof(t)))
2334 return -EFAULT;
2335 /* Check t.len sanity ? */
2336 fw_data = memdup_user(useraddr + sizeof(t), t.len);
2337 if (IS_ERR(fw_data))
2338 return PTR_ERR(fw_data);
2339
2340 ret = t3_load_fw(adapter, fw_data, t.len);
2341 kfree(fw_data);
2342 if (ret)
2343 return ret;
2344 break;
2345 }
2346 case CHELSIO_SETMTUTAB:{
2347 struct ch_mtus m;
2348 int i;
2349
2350 if (!is_offload(adapter))
2351 return -EOPNOTSUPP;
2352 if (!capable(CAP_NET_ADMIN))
2353 return -EPERM;
2354 if (offload_running(adapter))
2355 return -EBUSY;
2356 if (copy_from_user(&m, useraddr, sizeof(m)))
2357 return -EFAULT;
2358 if (m.nmtus != NMTUS)
2359 return -EINVAL;
2360 if (m.mtus[0] < 81) /* accommodate SACK */
2361 return -EINVAL;
2362
2363 /* MTUs must be in ascending order */
2364 for (i = 1; i < NMTUS; ++i)
2365 if (m.mtus[i] < m.mtus[i - 1])
2366 return -EINVAL;
2367
2368 memcpy(adapter->params.mtus, m.mtus,
2369 sizeof(adapter->params.mtus));
2370 break;
2371 }
2372 case CHELSIO_GET_PM:{
2373 struct tp_params *p = &adapter->params.tp;
2374 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2375
2376 if (!is_offload(adapter))
2377 return -EOPNOTSUPP;
2378 m.tx_pg_sz = p->tx_pg_size;
2379 m.tx_num_pg = p->tx_num_pgs;
2380 m.rx_pg_sz = p->rx_pg_size;
2381 m.rx_num_pg = p->rx_num_pgs;
2382 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2383 if (copy_to_user(useraddr, &m, sizeof(m)))
2384 return -EFAULT;
2385 break;
2386 }
2387 case CHELSIO_SET_PM:{
2388 struct ch_pm m;
2389 struct tp_params *p = &adapter->params.tp;
2390
2391 if (!is_offload(adapter))
2392 return -EOPNOTSUPP;
2393 if (!capable(CAP_NET_ADMIN))
2394 return -EPERM;
2395 if (adapter->flags & FULL_INIT_DONE)
2396 return -EBUSY;
2397 if (copy_from_user(&m, useraddr, sizeof(m)))
2398 return -EFAULT;
2399 if (!is_power_of_2(m.rx_pg_sz) ||
2400 !is_power_of_2(m.tx_pg_sz))
2401 return -EINVAL; /* not power of 2 */
2402 if (!(m.rx_pg_sz & 0x14000))
2403 return -EINVAL; /* not 16KB or 64KB */
2404 if (!(m.tx_pg_sz & 0x1554000))
2405 return -EINVAL;
2406 if (m.tx_num_pg == -1)
2407 m.tx_num_pg = p->tx_num_pgs;
2408 if (m.rx_num_pg == -1)
2409 m.rx_num_pg = p->rx_num_pgs;
2410 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2411 return -EINVAL;
2412 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2413 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2414 return -EINVAL;
2415 p->rx_pg_size = m.rx_pg_sz;
2416 p->tx_pg_size = m.tx_pg_sz;
2417 p->rx_num_pgs = m.rx_num_pg;
2418 p->tx_num_pgs = m.tx_num_pg;
2419 break;
2420 }
2421 case CHELSIO_GET_MEM:{
2422 struct ch_mem_range t;
2423 struct mc7 *mem;
2424 u64 buf[32];
2425
2426 if (!is_offload(adapter))
2427 return -EOPNOTSUPP;
2428 if (!(adapter->flags & FULL_INIT_DONE))
2429 return -EIO; /* need the memory controllers */
2430 if (copy_from_user(&t, useraddr, sizeof(t)))
2431 return -EFAULT;
2432 if ((t.addr & 7) || (t.len & 7))
2433 return -EINVAL;
2434 if (t.mem_id == MEM_CM)
2435 mem = &adapter->cm;
2436 else if (t.mem_id == MEM_PMRX)
2437 mem = &adapter->pmrx;
2438 else if (t.mem_id == MEM_PMTX)
2439 mem = &adapter->pmtx;
2440 else
2441 return -EINVAL;
2442
2443 /*
2444 * Version scheme:
2445 * bits 0..9: chip version
2446 * bits 10..15: chip revision
2447 */
2448 t.version = 3 | (adapter->params.rev << 10);
2449 if (copy_to_user(useraddr, &t, sizeof(t)))
2450 return -EFAULT;
2451
2452 /*
2453 * Read 256 bytes at a time as len can be large and we don't
2454 * want to use huge intermediate buffers.
2455 */
2456 useraddr += sizeof(t); /* advance to start of buffer */
2457 while (t.len) {
2458 unsigned int chunk =
2459 min_t(unsigned int, t.len, sizeof(buf));
2460
2461 ret =
2462 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2463 buf);
2464 if (ret)
2465 return ret;
2466 if (copy_to_user(useraddr, buf, chunk))
2467 return -EFAULT;
2468 useraddr += chunk;
2469 t.addr += chunk;
2470 t.len -= chunk;
2471 }
2472 break;
2473 }
2474 case CHELSIO_SET_TRACE_FILTER:{
2475 struct ch_trace t;
2476 const struct trace_params *tp;
2477
2478 if (!capable(CAP_NET_ADMIN))
2479 return -EPERM;
2480 if (!offload_running(adapter))
2481 return -EAGAIN;
2482 if (copy_from_user(&t, useraddr, sizeof(t)))
2483 return -EFAULT;
2484
2485 tp = (const struct trace_params *)&t.sip;
2486 if (t.config_tx)
2487 t3_config_trace_filter(adapter, tp, 0,
2488 t.invert_match,
2489 t.trace_tx);
2490 if (t.config_rx)
2491 t3_config_trace_filter(adapter, tp, 1,
2492 t.invert_match,
2493 t.trace_rx);
2494 break;
2495 }
2496 default:
2497 return -EOPNOTSUPP;
2498 }
2499 return 0;
2500 }
2501
cxgb_ioctl(struct net_device * dev,struct ifreq * req,int cmd)2502 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2503 {
2504 struct mii_ioctl_data *data = if_mii(req);
2505 struct port_info *pi = netdev_priv(dev);
2506 struct adapter *adapter = pi->adapter;
2507
2508 switch (cmd) {
2509 case SIOCGMIIREG:
2510 case SIOCSMIIREG:
2511 /* Convert phy_id from older PRTAD/DEVAD format */
2512 if (is_10G(adapter) &&
2513 !mdio_phy_id_is_c45(data->phy_id) &&
2514 (data->phy_id & 0x1f00) &&
2515 !(data->phy_id & 0xe0e0))
2516 data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2517 data->phy_id & 0x1f);
2518 /* FALLTHRU */
2519 case SIOCGMIIPHY:
2520 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2521 case SIOCCHIOCTL:
2522 return cxgb_extension_ioctl(dev, req->ifr_data);
2523 default:
2524 return -EOPNOTSUPP;
2525 }
2526 }
2527
cxgb_change_mtu(struct net_device * dev,int new_mtu)2528 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2529 {
2530 struct port_info *pi = netdev_priv(dev);
2531 struct adapter *adapter = pi->adapter;
2532 int ret;
2533
2534 if (new_mtu < 81) /* accommodate SACK */
2535 return -EINVAL;
2536 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2537 return ret;
2538 dev->mtu = new_mtu;
2539 init_port_mtus(adapter);
2540 if (adapter->params.rev == 0 && offload_running(adapter))
2541 t3_load_mtus(adapter, adapter->params.mtus,
2542 adapter->params.a_wnd, adapter->params.b_wnd,
2543 adapter->port[0]->mtu);
2544 return 0;
2545 }
2546
cxgb_set_mac_addr(struct net_device * dev,void * p)2547 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2548 {
2549 struct port_info *pi = netdev_priv(dev);
2550 struct adapter *adapter = pi->adapter;
2551 struct sockaddr *addr = p;
2552
2553 if (!is_valid_ether_addr(addr->sa_data))
2554 return -EADDRNOTAVAIL;
2555
2556 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2557 t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2558 if (offload_running(adapter))
2559 write_smt_entry(adapter, pi->port_id);
2560 return 0;
2561 }
2562
cxgb_fix_features(struct net_device * dev,netdev_features_t features)2563 static netdev_features_t cxgb_fix_features(struct net_device *dev,
2564 netdev_features_t features)
2565 {
2566 /*
2567 * Since there is no support for separate rx/tx vlan accel
2568 * enable/disable make sure tx flag is always in same state as rx.
2569 */
2570 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2571 features |= NETIF_F_HW_VLAN_CTAG_TX;
2572 else
2573 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2574
2575 return features;
2576 }
2577
cxgb_set_features(struct net_device * dev,netdev_features_t features)2578 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2579 {
2580 netdev_features_t changed = dev->features ^ features;
2581
2582 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2583 cxgb_vlan_mode(dev, features);
2584
2585 return 0;
2586 }
2587
2588 #ifdef CONFIG_NET_POLL_CONTROLLER
cxgb_netpoll(struct net_device * dev)2589 static void cxgb_netpoll(struct net_device *dev)
2590 {
2591 struct port_info *pi = netdev_priv(dev);
2592 struct adapter *adapter = pi->adapter;
2593 int qidx;
2594
2595 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2596 struct sge_qset *qs = &adapter->sge.qs[qidx];
2597 void *source;
2598
2599 if (adapter->flags & USING_MSIX)
2600 source = qs;
2601 else
2602 source = adapter;
2603
2604 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2605 }
2606 }
2607 #endif
2608
2609 /*
2610 * Periodic accumulation of MAC statistics.
2611 */
mac_stats_update(struct adapter * adapter)2612 static void mac_stats_update(struct adapter *adapter)
2613 {
2614 int i;
2615
2616 for_each_port(adapter, i) {
2617 struct net_device *dev = adapter->port[i];
2618 struct port_info *p = netdev_priv(dev);
2619
2620 if (netif_running(dev)) {
2621 spin_lock(&adapter->stats_lock);
2622 t3_mac_update_stats(&p->mac);
2623 spin_unlock(&adapter->stats_lock);
2624 }
2625 }
2626 }
2627
check_link_status(struct adapter * adapter)2628 static void check_link_status(struct adapter *adapter)
2629 {
2630 int i;
2631
2632 for_each_port(adapter, i) {
2633 struct net_device *dev = adapter->port[i];
2634 struct port_info *p = netdev_priv(dev);
2635 int link_fault;
2636
2637 spin_lock_irq(&adapter->work_lock);
2638 link_fault = p->link_fault;
2639 spin_unlock_irq(&adapter->work_lock);
2640
2641 if (link_fault) {
2642 t3_link_fault(adapter, i);
2643 continue;
2644 }
2645
2646 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2647 t3_xgm_intr_disable(adapter, i);
2648 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2649
2650 t3_link_changed(adapter, i);
2651 t3_xgm_intr_enable(adapter, i);
2652 }
2653 }
2654 }
2655
check_t3b2_mac(struct adapter * adapter)2656 static void check_t3b2_mac(struct adapter *adapter)
2657 {
2658 int i;
2659
2660 if (!rtnl_trylock()) /* synchronize with ifdown */
2661 return;
2662
2663 for_each_port(adapter, i) {
2664 struct net_device *dev = adapter->port[i];
2665 struct port_info *p = netdev_priv(dev);
2666 int status;
2667
2668 if (!netif_running(dev))
2669 continue;
2670
2671 status = 0;
2672 if (netif_running(dev) && netif_carrier_ok(dev))
2673 status = t3b2_mac_watchdog_task(&p->mac);
2674 if (status == 1)
2675 p->mac.stats.num_toggled++;
2676 else if (status == 2) {
2677 struct cmac *mac = &p->mac;
2678
2679 t3_mac_set_mtu(mac, dev->mtu);
2680 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2681 cxgb_set_rxmode(dev);
2682 t3_link_start(&p->phy, mac, &p->link_config);
2683 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2684 t3_port_intr_enable(adapter, p->port_id);
2685 p->mac.stats.num_resets++;
2686 }
2687 }
2688 rtnl_unlock();
2689 }
2690
2691
t3_adap_check_task(struct work_struct * work)2692 static void t3_adap_check_task(struct work_struct *work)
2693 {
2694 struct adapter *adapter = container_of(work, struct adapter,
2695 adap_check_task.work);
2696 const struct adapter_params *p = &adapter->params;
2697 int port;
2698 unsigned int v, status, reset;
2699
2700 adapter->check_task_cnt++;
2701
2702 check_link_status(adapter);
2703
2704 /* Accumulate MAC stats if needed */
2705 if (!p->linkpoll_period ||
2706 (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2707 p->stats_update_period) {
2708 mac_stats_update(adapter);
2709 adapter->check_task_cnt = 0;
2710 }
2711
2712 if (p->rev == T3_REV_B2)
2713 check_t3b2_mac(adapter);
2714
2715 /*
2716 * Scan the XGMAC's to check for various conditions which we want to
2717 * monitor in a periodic polling manner rather than via an interrupt
2718 * condition. This is used for conditions which would otherwise flood
2719 * the system with interrupts and we only really need to know that the
2720 * conditions are "happening" ... For each condition we count the
2721 * detection of the condition and reset it for the next polling loop.
2722 */
2723 for_each_port(adapter, port) {
2724 struct cmac *mac = &adap2pinfo(adapter, port)->mac;
2725 u32 cause;
2726
2727 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2728 reset = 0;
2729 if (cause & F_RXFIFO_OVERFLOW) {
2730 mac->stats.rx_fifo_ovfl++;
2731 reset |= F_RXFIFO_OVERFLOW;
2732 }
2733
2734 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2735 }
2736
2737 /*
2738 * We do the same as above for FL_EMPTY interrupts.
2739 */
2740 status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2741 reset = 0;
2742
2743 if (status & F_FLEMPTY) {
2744 struct sge_qset *qs = &adapter->sge.qs[0];
2745 int i = 0;
2746
2747 reset |= F_FLEMPTY;
2748
2749 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2750 0xffff;
2751
2752 while (v) {
2753 qs->fl[i].empty += (v & 1);
2754 if (i)
2755 qs++;
2756 i ^= 1;
2757 v >>= 1;
2758 }
2759 }
2760
2761 t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2762
2763 /* Schedule the next check update if any port is active. */
2764 spin_lock_irq(&adapter->work_lock);
2765 if (adapter->open_device_map & PORT_MASK)
2766 schedule_chk_task(adapter);
2767 spin_unlock_irq(&adapter->work_lock);
2768 }
2769
db_full_task(struct work_struct * work)2770 static void db_full_task(struct work_struct *work)
2771 {
2772 struct adapter *adapter = container_of(work, struct adapter,
2773 db_full_task);
2774
2775 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2776 }
2777
db_empty_task(struct work_struct * work)2778 static void db_empty_task(struct work_struct *work)
2779 {
2780 struct adapter *adapter = container_of(work, struct adapter,
2781 db_empty_task);
2782
2783 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2784 }
2785
db_drop_task(struct work_struct * work)2786 static void db_drop_task(struct work_struct *work)
2787 {
2788 struct adapter *adapter = container_of(work, struct adapter,
2789 db_drop_task);
2790 unsigned long delay = 1000;
2791 unsigned short r;
2792
2793 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2794
2795 /*
2796 * Sleep a while before ringing the driver qset dbs.
2797 * The delay is between 1000-2023 usecs.
2798 */
2799 get_random_bytes(&r, 2);
2800 delay += r & 1023;
2801 set_current_state(TASK_UNINTERRUPTIBLE);
2802 schedule_timeout(usecs_to_jiffies(delay));
2803 ring_dbs(adapter);
2804 }
2805
2806 /*
2807 * Processes external (PHY) interrupts in process context.
2808 */
ext_intr_task(struct work_struct * work)2809 static void ext_intr_task(struct work_struct *work)
2810 {
2811 struct adapter *adapter = container_of(work, struct adapter,
2812 ext_intr_handler_task);
2813 int i;
2814
2815 /* Disable link fault interrupts */
2816 for_each_port(adapter, i) {
2817 struct net_device *dev = adapter->port[i];
2818 struct port_info *p = netdev_priv(dev);
2819
2820 t3_xgm_intr_disable(adapter, i);
2821 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2822 }
2823
2824 /* Re-enable link fault interrupts */
2825 t3_phy_intr_handler(adapter);
2826
2827 for_each_port(adapter, i)
2828 t3_xgm_intr_enable(adapter, i);
2829
2830 /* Now reenable external interrupts */
2831 spin_lock_irq(&adapter->work_lock);
2832 if (adapter->slow_intr_mask) {
2833 adapter->slow_intr_mask |= F_T3DBG;
2834 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2835 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2836 adapter->slow_intr_mask);
2837 }
2838 spin_unlock_irq(&adapter->work_lock);
2839 }
2840
2841 /*
2842 * Interrupt-context handler for external (PHY) interrupts.
2843 */
t3_os_ext_intr_handler(struct adapter * adapter)2844 void t3_os_ext_intr_handler(struct adapter *adapter)
2845 {
2846 /*
2847 * Schedule a task to handle external interrupts as they may be slow
2848 * and we use a mutex to protect MDIO registers. We disable PHY
2849 * interrupts in the meantime and let the task reenable them when
2850 * it's done.
2851 */
2852 spin_lock(&adapter->work_lock);
2853 if (adapter->slow_intr_mask) {
2854 adapter->slow_intr_mask &= ~F_T3DBG;
2855 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2856 adapter->slow_intr_mask);
2857 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2858 }
2859 spin_unlock(&adapter->work_lock);
2860 }
2861
t3_os_link_fault_handler(struct adapter * adapter,int port_id)2862 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2863 {
2864 struct net_device *netdev = adapter->port[port_id];
2865 struct port_info *pi = netdev_priv(netdev);
2866
2867 spin_lock(&adapter->work_lock);
2868 pi->link_fault = 1;
2869 spin_unlock(&adapter->work_lock);
2870 }
2871
t3_adapter_error(struct adapter * adapter,int reset,int on_wq)2872 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq)
2873 {
2874 int i, ret = 0;
2875
2876 if (is_offload(adapter) &&
2877 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2878 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2879 offload_close(&adapter->tdev);
2880 }
2881
2882 /* Stop all ports */
2883 for_each_port(adapter, i) {
2884 struct net_device *netdev = adapter->port[i];
2885
2886 if (netif_running(netdev))
2887 __cxgb_close(netdev, on_wq);
2888 }
2889
2890 /* Stop SGE timers */
2891 t3_stop_sge_timers(adapter);
2892
2893 adapter->flags &= ~FULL_INIT_DONE;
2894
2895 if (reset)
2896 ret = t3_reset_adapter(adapter);
2897
2898 pci_disable_device(adapter->pdev);
2899
2900 return ret;
2901 }
2902
t3_reenable_adapter(struct adapter * adapter)2903 static int t3_reenable_adapter(struct adapter *adapter)
2904 {
2905 if (pci_enable_device(adapter->pdev)) {
2906 dev_err(&adapter->pdev->dev,
2907 "Cannot re-enable PCI device after reset.\n");
2908 goto err;
2909 }
2910 pci_set_master(adapter->pdev);
2911 pci_restore_state(adapter->pdev);
2912 pci_save_state(adapter->pdev);
2913
2914 /* Free sge resources */
2915 t3_free_sge_resources(adapter);
2916
2917 if (t3_replay_prep_adapter(adapter))
2918 goto err;
2919
2920 return 0;
2921 err:
2922 return -1;
2923 }
2924
t3_resume_ports(struct adapter * adapter)2925 static void t3_resume_ports(struct adapter *adapter)
2926 {
2927 int i;
2928
2929 /* Restart the ports */
2930 for_each_port(adapter, i) {
2931 struct net_device *netdev = adapter->port[i];
2932
2933 if (netif_running(netdev)) {
2934 if (cxgb_open(netdev)) {
2935 dev_err(&adapter->pdev->dev,
2936 "can't bring device back up"
2937 " after reset\n");
2938 continue;
2939 }
2940 }
2941 }
2942
2943 if (is_offload(adapter) && !ofld_disable)
2944 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2945 }
2946
2947 /*
2948 * processes a fatal error.
2949 * Bring the ports down, reset the chip, bring the ports back up.
2950 */
fatal_error_task(struct work_struct * work)2951 static void fatal_error_task(struct work_struct *work)
2952 {
2953 struct adapter *adapter = container_of(work, struct adapter,
2954 fatal_error_handler_task);
2955 int err = 0;
2956
2957 rtnl_lock();
2958 err = t3_adapter_error(adapter, 1, 1);
2959 if (!err)
2960 err = t3_reenable_adapter(adapter);
2961 if (!err)
2962 t3_resume_ports(adapter);
2963
2964 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2965 rtnl_unlock();
2966 }
2967
t3_fatal_err(struct adapter * adapter)2968 void t3_fatal_err(struct adapter *adapter)
2969 {
2970 unsigned int fw_status[4];
2971
2972 if (adapter->flags & FULL_INIT_DONE) {
2973 t3_sge_stop(adapter);
2974 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2975 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2976 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2977 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2978
2979 spin_lock(&adapter->work_lock);
2980 t3_intr_disable(adapter);
2981 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2982 spin_unlock(&adapter->work_lock);
2983 }
2984 CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2985 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2986 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2987 fw_status[0], fw_status[1],
2988 fw_status[2], fw_status[3]);
2989 }
2990
2991 /**
2992 * t3_io_error_detected - called when PCI error is detected
2993 * @pdev: Pointer to PCI device
2994 * @state: The current pci connection state
2995 *
2996 * This function is called after a PCI bus error affecting
2997 * this device has been detected.
2998 */
t3_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)2999 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
3000 pci_channel_state_t state)
3001 {
3002 struct adapter *adapter = pci_get_drvdata(pdev);
3003
3004 if (state == pci_channel_io_perm_failure)
3005 return PCI_ERS_RESULT_DISCONNECT;
3006
3007 t3_adapter_error(adapter, 0, 0);
3008
3009 /* Request a slot reset. */
3010 return PCI_ERS_RESULT_NEED_RESET;
3011 }
3012
3013 /**
3014 * t3_io_slot_reset - called after the pci bus has been reset.
3015 * @pdev: Pointer to PCI device
3016 *
3017 * Restart the card from scratch, as if from a cold-boot.
3018 */
t3_io_slot_reset(struct pci_dev * pdev)3019 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3020 {
3021 struct adapter *adapter = pci_get_drvdata(pdev);
3022
3023 if (!t3_reenable_adapter(adapter))
3024 return PCI_ERS_RESULT_RECOVERED;
3025
3026 return PCI_ERS_RESULT_DISCONNECT;
3027 }
3028
3029 /**
3030 * t3_io_resume - called when traffic can start flowing again.
3031 * @pdev: Pointer to PCI device
3032 *
3033 * This callback is called when the error recovery driver tells us that
3034 * its OK to resume normal operation.
3035 */
t3_io_resume(struct pci_dev * pdev)3036 static void t3_io_resume(struct pci_dev *pdev)
3037 {
3038 struct adapter *adapter = pci_get_drvdata(pdev);
3039
3040 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3041 t3_read_reg(adapter, A_PCIE_PEX_ERR));
3042
3043 rtnl_lock();
3044 t3_resume_ports(adapter);
3045 rtnl_unlock();
3046 }
3047
3048 static const struct pci_error_handlers t3_err_handler = {
3049 .error_detected = t3_io_error_detected,
3050 .slot_reset = t3_io_slot_reset,
3051 .resume = t3_io_resume,
3052 };
3053
3054 /*
3055 * Set the number of qsets based on the number of CPUs and the number of ports,
3056 * not to exceed the number of available qsets, assuming there are enough qsets
3057 * per port in HW.
3058 */
set_nqsets(struct adapter * adap)3059 static void set_nqsets(struct adapter *adap)
3060 {
3061 int i, j = 0;
3062 int num_cpus = netif_get_num_default_rss_queues();
3063 int hwports = adap->params.nports;
3064 int nqsets = adap->msix_nvectors - 1;
3065
3066 if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3067 if (hwports == 2 &&
3068 (hwports * nqsets > SGE_QSETS ||
3069 num_cpus >= nqsets / hwports))
3070 nqsets /= hwports;
3071 if (nqsets > num_cpus)
3072 nqsets = num_cpus;
3073 if (nqsets < 1 || hwports == 4)
3074 nqsets = 1;
3075 } else
3076 nqsets = 1;
3077
3078 for_each_port(adap, i) {
3079 struct port_info *pi = adap2pinfo(adap, i);
3080
3081 pi->first_qset = j;
3082 pi->nqsets = nqsets;
3083 j = pi->first_qset + nqsets;
3084
3085 dev_info(&adap->pdev->dev,
3086 "Port %d using %d queue sets.\n", i, nqsets);
3087 }
3088 }
3089
cxgb_enable_msix(struct adapter * adap)3090 static int cxgb_enable_msix(struct adapter *adap)
3091 {
3092 struct msix_entry entries[SGE_QSETS + 1];
3093 int vectors;
3094 int i;
3095
3096 vectors = ARRAY_SIZE(entries);
3097 for (i = 0; i < vectors; ++i)
3098 entries[i].entry = i;
3099
3100 vectors = pci_enable_msix_range(adap->pdev, entries,
3101 adap->params.nports + 1, vectors);
3102 if (vectors < 0)
3103 return vectors;
3104
3105 for (i = 0; i < vectors; ++i)
3106 adap->msix_info[i].vec = entries[i].vector;
3107 adap->msix_nvectors = vectors;
3108
3109 return 0;
3110 }
3111
print_port_info(struct adapter * adap,const struct adapter_info * ai)3112 static void print_port_info(struct adapter *adap, const struct adapter_info *ai)
3113 {
3114 static const char *pci_variant[] = {
3115 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3116 };
3117
3118 int i;
3119 char buf[80];
3120
3121 if (is_pcie(adap))
3122 snprintf(buf, sizeof(buf), "%s x%d",
3123 pci_variant[adap->params.pci.variant],
3124 adap->params.pci.width);
3125 else
3126 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3127 pci_variant[adap->params.pci.variant],
3128 adap->params.pci.speed, adap->params.pci.width);
3129
3130 for_each_port(adap, i) {
3131 struct net_device *dev = adap->port[i];
3132 const struct port_info *pi = netdev_priv(dev);
3133
3134 if (!test_bit(i, &adap->registered_device_map))
3135 continue;
3136 netdev_info(dev, "%s %s %sNIC (rev %d) %s%s\n",
3137 ai->desc, pi->phy.desc,
3138 is_offload(adap) ? "R" : "", adap->params.rev, buf,
3139 (adap->flags & USING_MSIX) ? " MSI-X" :
3140 (adap->flags & USING_MSI) ? " MSI" : "");
3141 if (adap->name == dev->name && adap->params.vpd.mclk)
3142 pr_info("%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3143 adap->name, t3_mc7_size(&adap->cm) >> 20,
3144 t3_mc7_size(&adap->pmtx) >> 20,
3145 t3_mc7_size(&adap->pmrx) >> 20,
3146 adap->params.vpd.sn);
3147 }
3148 }
3149
3150 static const struct net_device_ops cxgb_netdev_ops = {
3151 .ndo_open = cxgb_open,
3152 .ndo_stop = cxgb_close,
3153 .ndo_start_xmit = t3_eth_xmit,
3154 .ndo_get_stats = cxgb_get_stats,
3155 .ndo_validate_addr = eth_validate_addr,
3156 .ndo_set_rx_mode = cxgb_set_rxmode,
3157 .ndo_do_ioctl = cxgb_ioctl,
3158 .ndo_change_mtu = cxgb_change_mtu,
3159 .ndo_set_mac_address = cxgb_set_mac_addr,
3160 .ndo_fix_features = cxgb_fix_features,
3161 .ndo_set_features = cxgb_set_features,
3162 #ifdef CONFIG_NET_POLL_CONTROLLER
3163 .ndo_poll_controller = cxgb_netpoll,
3164 #endif
3165 };
3166
cxgb3_init_iscsi_mac(struct net_device * dev)3167 static void cxgb3_init_iscsi_mac(struct net_device *dev)
3168 {
3169 struct port_info *pi = netdev_priv(dev);
3170
3171 memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3172 pi->iscsic.mac_addr[3] |= 0x80;
3173 }
3174
3175 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
3176 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
3177 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)3178 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
3179 {
3180 int i, err, pci_using_dac = 0;
3181 resource_size_t mmio_start, mmio_len;
3182 const struct adapter_info *ai;
3183 struct adapter *adapter = NULL;
3184 struct port_info *pi;
3185
3186 pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
3187
3188 if (!cxgb3_wq) {
3189 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3190 if (!cxgb3_wq) {
3191 pr_err("cannot initialize work queue\n");
3192 return -ENOMEM;
3193 }
3194 }
3195
3196 err = pci_enable_device(pdev);
3197 if (err) {
3198 dev_err(&pdev->dev, "cannot enable PCI device\n");
3199 goto out;
3200 }
3201
3202 err = pci_request_regions(pdev, DRV_NAME);
3203 if (err) {
3204 /* Just info, some other driver may have claimed the device. */
3205 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3206 goto out_disable_device;
3207 }
3208
3209 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3210 pci_using_dac = 1;
3211 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3212 if (err) {
3213 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3214 "coherent allocations\n");
3215 goto out_release_regions;
3216 }
3217 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3218 dev_err(&pdev->dev, "no usable DMA configuration\n");
3219 goto out_release_regions;
3220 }
3221
3222 pci_set_master(pdev);
3223 pci_save_state(pdev);
3224
3225 mmio_start = pci_resource_start(pdev, 0);
3226 mmio_len = pci_resource_len(pdev, 0);
3227 ai = t3_get_adapter_info(ent->driver_data);
3228
3229 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3230 if (!adapter) {
3231 err = -ENOMEM;
3232 goto out_release_regions;
3233 }
3234
3235 adapter->nofail_skb =
3236 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3237 if (!adapter->nofail_skb) {
3238 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3239 err = -ENOMEM;
3240 goto out_free_adapter;
3241 }
3242
3243 adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3244 if (!adapter->regs) {
3245 dev_err(&pdev->dev, "cannot map device registers\n");
3246 err = -ENOMEM;
3247 goto out_free_adapter;
3248 }
3249
3250 adapter->pdev = pdev;
3251 adapter->name = pci_name(pdev);
3252 adapter->msg_enable = dflt_msg_enable;
3253 adapter->mmio_len = mmio_len;
3254
3255 mutex_init(&adapter->mdio_lock);
3256 spin_lock_init(&adapter->work_lock);
3257 spin_lock_init(&adapter->stats_lock);
3258
3259 INIT_LIST_HEAD(&adapter->adapter_list);
3260 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3261 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3262
3263 INIT_WORK(&adapter->db_full_task, db_full_task);
3264 INIT_WORK(&adapter->db_empty_task, db_empty_task);
3265 INIT_WORK(&adapter->db_drop_task, db_drop_task);
3266
3267 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3268
3269 for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3270 struct net_device *netdev;
3271
3272 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3273 if (!netdev) {
3274 err = -ENOMEM;
3275 goto out_free_dev;
3276 }
3277
3278 SET_NETDEV_DEV(netdev, &pdev->dev);
3279
3280 adapter->port[i] = netdev;
3281 pi = netdev_priv(netdev);
3282 pi->adapter = adapter;
3283 pi->port_id = i;
3284 netif_carrier_off(netdev);
3285 netdev->irq = pdev->irq;
3286 netdev->mem_start = mmio_start;
3287 netdev->mem_end = mmio_start + mmio_len - 1;
3288 netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
3289 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX;
3290 netdev->features |= netdev->hw_features |
3291 NETIF_F_HW_VLAN_CTAG_TX;
3292 netdev->vlan_features |= netdev->features & VLAN_FEAT;
3293 if (pci_using_dac)
3294 netdev->features |= NETIF_F_HIGHDMA;
3295
3296 netdev->netdev_ops = &cxgb_netdev_ops;
3297 netdev->ethtool_ops = &cxgb_ethtool_ops;
3298 }
3299
3300 pci_set_drvdata(pdev, adapter);
3301 if (t3_prep_adapter(adapter, ai, 1) < 0) {
3302 err = -ENODEV;
3303 goto out_free_dev;
3304 }
3305
3306 /*
3307 * The card is now ready to go. If any errors occur during device
3308 * registration we do not fail the whole card but rather proceed only
3309 * with the ports we manage to register successfully. However we must
3310 * register at least one net device.
3311 */
3312 for_each_port(adapter, i) {
3313 err = register_netdev(adapter->port[i]);
3314 if (err)
3315 dev_warn(&pdev->dev,
3316 "cannot register net device %s, skipping\n",
3317 adapter->port[i]->name);
3318 else {
3319 /*
3320 * Change the name we use for messages to the name of
3321 * the first successfully registered interface.
3322 */
3323 if (!adapter->registered_device_map)
3324 adapter->name = adapter->port[i]->name;
3325
3326 __set_bit(i, &adapter->registered_device_map);
3327 }
3328 }
3329 if (!adapter->registered_device_map) {
3330 dev_err(&pdev->dev, "could not register any net devices\n");
3331 goto out_free_dev;
3332 }
3333
3334 for_each_port(adapter, i)
3335 cxgb3_init_iscsi_mac(adapter->port[i]);
3336
3337 /* Driver's ready. Reflect it on LEDs */
3338 t3_led_ready(adapter);
3339
3340 if (is_offload(adapter)) {
3341 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3342 cxgb3_adapter_ofld(adapter);
3343 }
3344
3345 /* See what interrupts we'll be using */
3346 if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3347 adapter->flags |= USING_MSIX;
3348 else if (msi > 0 && pci_enable_msi(pdev) == 0)
3349 adapter->flags |= USING_MSI;
3350
3351 set_nqsets(adapter);
3352
3353 err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3354 &cxgb3_attr_group);
3355
3356 print_port_info(adapter, ai);
3357 return 0;
3358
3359 out_free_dev:
3360 iounmap(adapter->regs);
3361 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3362 if (adapter->port[i])
3363 free_netdev(adapter->port[i]);
3364
3365 out_free_adapter:
3366 kfree(adapter);
3367
3368 out_release_regions:
3369 pci_release_regions(pdev);
3370 out_disable_device:
3371 pci_disable_device(pdev);
3372 out:
3373 return err;
3374 }
3375
remove_one(struct pci_dev * pdev)3376 static void remove_one(struct pci_dev *pdev)
3377 {
3378 struct adapter *adapter = pci_get_drvdata(pdev);
3379
3380 if (adapter) {
3381 int i;
3382
3383 t3_sge_stop(adapter);
3384 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3385 &cxgb3_attr_group);
3386
3387 if (is_offload(adapter)) {
3388 cxgb3_adapter_unofld(adapter);
3389 if (test_bit(OFFLOAD_DEVMAP_BIT,
3390 &adapter->open_device_map))
3391 offload_close(&adapter->tdev);
3392 }
3393
3394 for_each_port(adapter, i)
3395 if (test_bit(i, &adapter->registered_device_map))
3396 unregister_netdev(adapter->port[i]);
3397
3398 t3_stop_sge_timers(adapter);
3399 t3_free_sge_resources(adapter);
3400 cxgb_disable_msi(adapter);
3401
3402 for_each_port(adapter, i)
3403 if (adapter->port[i])
3404 free_netdev(adapter->port[i]);
3405
3406 iounmap(adapter->regs);
3407 if (adapter->nofail_skb)
3408 kfree_skb(adapter->nofail_skb);
3409 kfree(adapter);
3410 pci_release_regions(pdev);
3411 pci_disable_device(pdev);
3412 }
3413 }
3414
3415 static struct pci_driver driver = {
3416 .name = DRV_NAME,
3417 .id_table = cxgb3_pci_tbl,
3418 .probe = init_one,
3419 .remove = remove_one,
3420 .err_handler = &t3_err_handler,
3421 };
3422
cxgb3_init_module(void)3423 static int __init cxgb3_init_module(void)
3424 {
3425 int ret;
3426
3427 cxgb3_offload_init();
3428
3429 ret = pci_register_driver(&driver);
3430 return ret;
3431 }
3432
cxgb3_cleanup_module(void)3433 static void __exit cxgb3_cleanup_module(void)
3434 {
3435 pci_unregister_driver(&driver);
3436 if (cxgb3_wq)
3437 destroy_workqueue(cxgb3_wq);
3438 }
3439
3440 module_init(cxgb3_init_module);
3441 module_exit(cxgb3_cleanup_module);
3442