• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67 #include <linux/crash_dump.h>
68 
69 #include "cxgb4.h"
70 #include "cxgb4_filter.h"
71 #include "t4_regs.h"
72 #include "t4_values.h"
73 #include "t4_msg.h"
74 #include "t4fw_api.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
77 #include "cxgb4_debugfs.h"
78 #include "clip_tbl.h"
79 #include "l2t.h"
80 #include "sched.h"
81 #include "cxgb4_tc_u32.h"
82 
83 char cxgb4_driver_name[] = KBUILD_MODNAME;
84 
85 #ifdef DRV_VERSION
86 #undef DRV_VERSION
87 #endif
88 #define DRV_VERSION "2.0.0-ko"
89 const char cxgb4_driver_version[] = DRV_VERSION;
90 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
91 
92 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
93 			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
94 			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
95 
96 /* Macros needed to support the PCI Device ID Table ...
97  */
98 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
99 	static const struct pci_device_id cxgb4_pci_tbl[] = {
100 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
101 
102 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
103  * called for both.
104  */
105 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
106 
107 #define CH_PCI_ID_TABLE_ENTRY(devid) \
108 		{PCI_VDEVICE(CHELSIO, (devid)), 4}
109 
110 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
111 		{ 0, } \
112 	}
113 
114 #include "t4_pci_id_tbl.h"
115 
116 #define FW4_FNAME "cxgb4/t4fw.bin"
117 #define FW5_FNAME "cxgb4/t5fw.bin"
118 #define FW6_FNAME "cxgb4/t6fw.bin"
119 #define FW4_CFNAME "cxgb4/t4-config.txt"
120 #define FW5_CFNAME "cxgb4/t5-config.txt"
121 #define FW6_CFNAME "cxgb4/t6-config.txt"
122 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
123 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
124 #define PHY_AQ1202_DEVICEID 0x4409
125 #define PHY_BCM84834_DEVICEID 0x4486
126 
127 MODULE_DESCRIPTION(DRV_DESC);
128 MODULE_AUTHOR("Chelsio Communications");
129 MODULE_LICENSE("Dual BSD/GPL");
130 MODULE_VERSION(DRV_VERSION);
131 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
132 MODULE_FIRMWARE(FW4_FNAME);
133 MODULE_FIRMWARE(FW5_FNAME);
134 MODULE_FIRMWARE(FW6_FNAME);
135 
136 /*
137  * Normally we're willing to become the firmware's Master PF but will be happy
138  * if another PF has already become the Master and initialized the adapter.
139  * Setting "force_init" will cause this driver to forcibly establish itself as
140  * the Master PF and initialize the adapter.
141  */
142 static uint force_init;
143 
144 module_param(force_init, uint, 0644);
145 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter,"
146 		 "deprecated parameter");
147 
148 static int dflt_msg_enable = DFLT_MSG_ENABLE;
149 
150 module_param(dflt_msg_enable, int, 0644);
151 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap, "
152 		 "deprecated parameter");
153 
154 /*
155  * The driver uses the best interrupt scheme available on a platform in the
156  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
157  * of these schemes the driver may consider as follows:
158  *
159  * msi = 2: choose from among all three options
160  * msi = 1: only consider MSI and INTx interrupts
161  * msi = 0: force INTx interrupts
162  */
163 static int msi = 2;
164 
165 module_param(msi, int, 0644);
166 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
167 
168 /*
169  * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
170  * offset by 2 bytes in order to have the IP headers line up on 4-byte
171  * boundaries.  This is a requirement for many architectures which will throw
172  * a machine check fault if an attempt is made to access one of the 4-byte IP
173  * header fields on a non-4-byte boundary.  And it's a major performance issue
174  * even on some architectures which allow it like some implementations of the
175  * x86 ISA.  However, some architectures don't mind this and for some very
176  * edge-case performance sensitive applications (like forwarding large volumes
177  * of small packets), setting this DMA offset to 0 will decrease the number of
178  * PCI-E Bus transfers enough to measurably affect performance.
179  */
180 static int rx_dma_offset = 2;
181 
182 #ifdef CONFIG_PCI_IOV
183 /* Configure the number of PCI-E Virtual Function which are to be instantiated
184  * on SR-IOV Capable Physical Functions.
185  */
186 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
187 
188 module_param_array(num_vf, uint, NULL, 0644);
189 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3, deprecated parameter - please use the pci sysfs interface.");
190 #endif
191 
192 /* TX Queue select used to determine what algorithm to use for selecting TX
193  * queue. Select between the kernel provided function (select_queue=0) or user
194  * cxgb_select_queue function (select_queue=1)
195  *
196  * Default: select_queue=0
197  */
198 static int select_queue;
199 module_param(select_queue, int, 0644);
200 MODULE_PARM_DESC(select_queue,
201 		 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
202 
203 static struct dentry *cxgb4_debugfs_root;
204 
205 LIST_HEAD(adapter_list);
206 DEFINE_MUTEX(uld_mutex);
207 
link_report(struct net_device * dev)208 static void link_report(struct net_device *dev)
209 {
210 	if (!netif_carrier_ok(dev))
211 		netdev_info(dev, "link down\n");
212 	else {
213 		static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
214 
215 		const char *s;
216 		const struct port_info *p = netdev_priv(dev);
217 
218 		switch (p->link_cfg.speed) {
219 		case 10000:
220 			s = "10Gbps";
221 			break;
222 		case 1000:
223 			s = "1000Mbps";
224 			break;
225 		case 100:
226 			s = "100Mbps";
227 			break;
228 		case 40000:
229 			s = "40Gbps";
230 			break;
231 		default:
232 			pr_info("%s: unsupported speed: %d\n",
233 				dev->name, p->link_cfg.speed);
234 			return;
235 		}
236 
237 		netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
238 			    fc[p->link_cfg.fc]);
239 	}
240 }
241 
242 #ifdef CONFIG_CHELSIO_T4_DCB
243 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
dcb_tx_queue_prio_enable(struct net_device * dev,int enable)244 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
245 {
246 	struct port_info *pi = netdev_priv(dev);
247 	struct adapter *adap = pi->adapter;
248 	struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
249 	int i;
250 
251 	/* We use a simple mapping of Port TX Queue Index to DCB
252 	 * Priority when we're enabling DCB.
253 	 */
254 	for (i = 0; i < pi->nqsets; i++, txq++) {
255 		u32 name, value;
256 		int err;
257 
258 		name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
259 			FW_PARAMS_PARAM_X_V(
260 				FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
261 			FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
262 		value = enable ? i : 0xffffffff;
263 
264 		/* Since we can be called while atomic (from "interrupt
265 		 * level") we need to issue the Set Parameters Commannd
266 		 * without sleeping (timeout < 0).
267 		 */
268 		err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
269 					    &name, &value,
270 					    -FW_CMD_MAX_TIMEOUT);
271 
272 		if (err)
273 			dev_err(adap->pdev_dev,
274 				"Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
275 				enable ? "set" : "unset", pi->port_id, i, -err);
276 		else
277 			txq->dcb_prio = value;
278 	}
279 }
280 
cxgb4_dcb_enabled(const struct net_device * dev)281 static int cxgb4_dcb_enabled(const struct net_device *dev)
282 {
283 	struct port_info *pi = netdev_priv(dev);
284 
285 	if (!pi->dcb.enabled)
286 		return 0;
287 
288 	return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
289 		(pi->dcb.state == CXGB4_DCB_STATE_HOST));
290 }
291 #endif /* CONFIG_CHELSIO_T4_DCB */
292 
t4_os_link_changed(struct adapter * adapter,int port_id,int link_stat)293 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
294 {
295 	struct net_device *dev = adapter->port[port_id];
296 
297 	/* Skip changes from disabled ports. */
298 	if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
299 		if (link_stat)
300 			netif_carrier_on(dev);
301 		else {
302 #ifdef CONFIG_CHELSIO_T4_DCB
303 			if (cxgb4_dcb_enabled(dev)) {
304 				cxgb4_dcb_state_init(dev);
305 				dcb_tx_queue_prio_enable(dev, false);
306 			}
307 #endif /* CONFIG_CHELSIO_T4_DCB */
308 			netif_carrier_off(dev);
309 		}
310 
311 		link_report(dev);
312 	}
313 }
314 
t4_os_portmod_changed(const struct adapter * adap,int port_id)315 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
316 {
317 	static const char *mod_str[] = {
318 		NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
319 	};
320 
321 	const struct net_device *dev = adap->port[port_id];
322 	const struct port_info *pi = netdev_priv(dev);
323 
324 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
325 		netdev_info(dev, "port module unplugged\n");
326 	else if (pi->mod_type < ARRAY_SIZE(mod_str))
327 		netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
328 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
329 		netdev_info(dev, "%s: unsupported port module inserted\n",
330 			    dev->name);
331 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
332 		netdev_info(dev, "%s: unknown port module inserted\n",
333 			    dev->name);
334 	else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
335 		netdev_info(dev, "%s: transceiver module error\n", dev->name);
336 	else
337 		netdev_info(dev, "%s: unknown module type %d inserted\n",
338 			    dev->name, pi->mod_type);
339 }
340 
341 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
342 module_param(dbfifo_int_thresh, int, 0644);
343 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
344 
345 /*
346  * usecs to sleep while draining the dbfifo
347  */
348 static int dbfifo_drain_delay = 1000;
349 module_param(dbfifo_drain_delay, int, 0644);
350 MODULE_PARM_DESC(dbfifo_drain_delay,
351 		 "usecs to sleep while draining the dbfifo");
352 
cxgb4_set_addr_hash(struct port_info * pi)353 static inline int cxgb4_set_addr_hash(struct port_info *pi)
354 {
355 	struct adapter *adap = pi->adapter;
356 	u64 vec = 0;
357 	bool ucast = false;
358 	struct hash_mac_addr *entry;
359 
360 	/* Calculate the hash vector for the updated list and program it */
361 	list_for_each_entry(entry, &adap->mac_hlist, list) {
362 		ucast |= is_unicast_ether_addr(entry->addr);
363 		vec |= (1ULL << hash_mac_addr(entry->addr));
364 	}
365 	return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
366 				vec, false);
367 }
368 
cxgb4_mac_sync(struct net_device * netdev,const u8 * mac_addr)369 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
370 {
371 	struct port_info *pi = netdev_priv(netdev);
372 	struct adapter *adap = pi->adapter;
373 	int ret;
374 	u64 mhash = 0;
375 	u64 uhash = 0;
376 	bool free = false;
377 	bool ucast = is_unicast_ether_addr(mac_addr);
378 	const u8 *maclist[1] = {mac_addr};
379 	struct hash_mac_addr *new_entry;
380 
381 	ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
382 				NULL, ucast ? &uhash : &mhash, false);
383 	if (ret < 0)
384 		goto out;
385 	/* if hash != 0, then add the addr to hash addr list
386 	 * so on the end we will calculate the hash for the
387 	 * list and program it
388 	 */
389 	if (uhash || mhash) {
390 		new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
391 		if (!new_entry)
392 			return -ENOMEM;
393 		ether_addr_copy(new_entry->addr, mac_addr);
394 		list_add_tail(&new_entry->list, &adap->mac_hlist);
395 		ret = cxgb4_set_addr_hash(pi);
396 	}
397 out:
398 	return ret < 0 ? ret : 0;
399 }
400 
cxgb4_mac_unsync(struct net_device * netdev,const u8 * mac_addr)401 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
402 {
403 	struct port_info *pi = netdev_priv(netdev);
404 	struct adapter *adap = pi->adapter;
405 	int ret;
406 	const u8 *maclist[1] = {mac_addr};
407 	struct hash_mac_addr *entry, *tmp;
408 
409 	/* If the MAC address to be removed is in the hash addr
410 	 * list, delete it from the list and update hash vector
411 	 */
412 	list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
413 		if (ether_addr_equal(entry->addr, mac_addr)) {
414 			list_del(&entry->list);
415 			kfree(entry);
416 			return cxgb4_set_addr_hash(pi);
417 		}
418 	}
419 
420 	ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
421 	return ret < 0 ? -EINVAL : 0;
422 }
423 
424 /*
425  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
426  * If @mtu is -1 it is left unchanged.
427  */
set_rxmode(struct net_device * dev,int mtu,bool sleep_ok)428 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
429 {
430 	struct port_info *pi = netdev_priv(dev);
431 	struct adapter *adapter = pi->adapter;
432 
433 	__dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
434 	__dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
435 
436 	return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
437 			     (dev->flags & IFF_PROMISC) ? 1 : 0,
438 			     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
439 			     sleep_ok);
440 }
441 
442 /**
443  *	link_start - enable a port
444  *	@dev: the port to enable
445  *
446  *	Performs the MAC and PHY actions needed to enable a port.
447  */
link_start(struct net_device * dev)448 static int link_start(struct net_device *dev)
449 {
450 	int ret;
451 	struct port_info *pi = netdev_priv(dev);
452 	unsigned int mb = pi->adapter->pf;
453 
454 	/*
455 	 * We do not set address filters and promiscuity here, the stack does
456 	 * that step explicitly.
457 	 */
458 	ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
459 			    !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
460 	if (ret == 0) {
461 		ret = t4_change_mac(pi->adapter, mb, pi->viid,
462 				    pi->xact_addr_filt, dev->dev_addr, true,
463 				    true);
464 		if (ret >= 0) {
465 			pi->xact_addr_filt = ret;
466 			ret = 0;
467 		}
468 	}
469 	if (ret == 0)
470 		ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
471 				    &pi->link_cfg);
472 	if (ret == 0) {
473 		local_bh_disable();
474 		ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
475 					  true, CXGB4_DCB_ENABLED);
476 		local_bh_enable();
477 	}
478 
479 	return ret;
480 }
481 
482 #ifdef CONFIG_CHELSIO_T4_DCB
483 /* Handle a Data Center Bridging update message from the firmware. */
dcb_rpl(struct adapter * adap,const struct fw_port_cmd * pcmd)484 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
485 {
486 	int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
487 	struct net_device *dev = adap->port[adap->chan_map[port]];
488 	int old_dcb_enabled = cxgb4_dcb_enabled(dev);
489 	int new_dcb_enabled;
490 
491 	cxgb4_dcb_handle_fw_update(adap, pcmd);
492 	new_dcb_enabled = cxgb4_dcb_enabled(dev);
493 
494 	/* If the DCB has become enabled or disabled on the port then we're
495 	 * going to need to set up/tear down DCB Priority parameters for the
496 	 * TX Queues associated with the port.
497 	 */
498 	if (new_dcb_enabled != old_dcb_enabled)
499 		dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
500 }
501 #endif /* CONFIG_CHELSIO_T4_DCB */
502 
503 /* Response queue handler for the FW event queue.
504  */
fwevtq_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * gl)505 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
506 			  const struct pkt_gl *gl)
507 {
508 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
509 
510 	rsp++;                                          /* skip RSS header */
511 
512 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
513 	 */
514 	if (unlikely(opcode == CPL_FW4_MSG &&
515 	   ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
516 		rsp++;
517 		opcode = ((const struct rss_header *)rsp)->opcode;
518 		rsp++;
519 		if (opcode != CPL_SGE_EGR_UPDATE) {
520 			dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
521 				, opcode);
522 			goto out;
523 		}
524 	}
525 
526 	if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
527 		const struct cpl_sge_egr_update *p = (void *)rsp;
528 		unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
529 		struct sge_txq *txq;
530 
531 		txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
532 		txq->restarts++;
533 		if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
534 			struct sge_eth_txq *eq;
535 
536 			eq = container_of(txq, struct sge_eth_txq, q);
537 			netif_tx_wake_queue(eq->txq);
538 		} else {
539 			struct sge_ofld_txq *oq;
540 
541 			oq = container_of(txq, struct sge_ofld_txq, q);
542 			tasklet_schedule(&oq->qresume_tsk);
543 		}
544 	} else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
545 		const struct cpl_fw6_msg *p = (void *)rsp;
546 
547 #ifdef CONFIG_CHELSIO_T4_DCB
548 		const struct fw_port_cmd *pcmd = (const void *)p->data;
549 		unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
550 		unsigned int action =
551 			FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
552 
553 		if (cmd == FW_PORT_CMD &&
554 		    action == FW_PORT_ACTION_GET_PORT_INFO) {
555 			int port = FW_PORT_CMD_PORTID_G(
556 					be32_to_cpu(pcmd->op_to_portid));
557 			struct net_device *dev =
558 				q->adap->port[q->adap->chan_map[port]];
559 			int state_input = ((pcmd->u.info.dcbxdis_pkd &
560 					    FW_PORT_CMD_DCBXDIS_F)
561 					   ? CXGB4_DCB_INPUT_FW_DISABLED
562 					   : CXGB4_DCB_INPUT_FW_ENABLED);
563 
564 			cxgb4_dcb_state_fsm(dev, state_input);
565 		}
566 
567 		if (cmd == FW_PORT_CMD &&
568 		    action == FW_PORT_ACTION_L2_DCB_CFG)
569 			dcb_rpl(q->adap, pcmd);
570 		else
571 #endif
572 			if (p->type == 0)
573 				t4_handle_fw_rpl(q->adap, p->data);
574 	} else if (opcode == CPL_L2T_WRITE_RPL) {
575 		const struct cpl_l2t_write_rpl *p = (void *)rsp;
576 
577 		do_l2t_write_rpl(q->adap, p);
578 	} else if (opcode == CPL_SET_TCB_RPL) {
579 		const struct cpl_set_tcb_rpl *p = (void *)rsp;
580 
581 		filter_rpl(q->adap, p);
582 	} else
583 		dev_err(q->adap->pdev_dev,
584 			"unexpected CPL %#x on FW event queue\n", opcode);
585 out:
586 	return 0;
587 }
588 
disable_msi(struct adapter * adapter)589 static void disable_msi(struct adapter *adapter)
590 {
591 	if (adapter->flags & USING_MSIX) {
592 		pci_disable_msix(adapter->pdev);
593 		adapter->flags &= ~USING_MSIX;
594 	} else if (adapter->flags & USING_MSI) {
595 		pci_disable_msi(adapter->pdev);
596 		adapter->flags &= ~USING_MSI;
597 	}
598 }
599 
600 /*
601  * Interrupt handler for non-data events used with MSI-X.
602  */
t4_nondata_intr(int irq,void * cookie)603 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
604 {
605 	struct adapter *adap = cookie;
606 	u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
607 
608 	if (v & PFSW_F) {
609 		adap->swintr = 1;
610 		t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
611 	}
612 	if (adap->flags & MASTER_PF)
613 		t4_slow_intr_handler(adap);
614 	return IRQ_HANDLED;
615 }
616 
617 /*
618  * Name the MSI-X interrupts.
619  */
name_msix_vecs(struct adapter * adap)620 static void name_msix_vecs(struct adapter *adap)
621 {
622 	int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
623 
624 	/* non-data interrupts */
625 	snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
626 
627 	/* FW events */
628 	snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
629 		 adap->port[0]->name);
630 
631 	/* Ethernet queues */
632 	for_each_port(adap, j) {
633 		struct net_device *d = adap->port[j];
634 		const struct port_info *pi = netdev_priv(d);
635 
636 		for (i = 0; i < pi->nqsets; i++, msi_idx++)
637 			snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
638 				 d->name, i);
639 	}
640 }
641 
request_msix_queue_irqs(struct adapter * adap)642 static int request_msix_queue_irqs(struct adapter *adap)
643 {
644 	struct sge *s = &adap->sge;
645 	int err, ethqidx;
646 	int msi_index = 2;
647 
648 	err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
649 			  adap->msix_info[1].desc, &s->fw_evtq);
650 	if (err)
651 		return err;
652 
653 	for_each_ethrxq(s, ethqidx) {
654 		err = request_irq(adap->msix_info[msi_index].vec,
655 				  t4_sge_intr_msix, 0,
656 				  adap->msix_info[msi_index].desc,
657 				  &s->ethrxq[ethqidx].rspq);
658 		if (err)
659 			goto unwind;
660 		msi_index++;
661 	}
662 	return 0;
663 
664 unwind:
665 	while (--ethqidx >= 0)
666 		free_irq(adap->msix_info[--msi_index].vec,
667 			 &s->ethrxq[ethqidx].rspq);
668 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
669 	return err;
670 }
671 
free_msix_queue_irqs(struct adapter * adap)672 static void free_msix_queue_irqs(struct adapter *adap)
673 {
674 	int i, msi_index = 2;
675 	struct sge *s = &adap->sge;
676 
677 	free_irq(adap->msix_info[1].vec, &s->fw_evtq);
678 	for_each_ethrxq(s, i)
679 		free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
680 }
681 
682 /**
683  *	cxgb4_write_rss - write the RSS table for a given port
684  *	@pi: the port
685  *	@queues: array of queue indices for RSS
686  *
687  *	Sets up the portion of the HW RSS table for the port's VI to distribute
688  *	packets to the Rx queues in @queues.
689  *	Should never be called before setting up sge eth rx queues
690  */
cxgb4_write_rss(const struct port_info * pi,const u16 * queues)691 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
692 {
693 	u16 *rss;
694 	int i, err;
695 	struct adapter *adapter = pi->adapter;
696 	const struct sge_eth_rxq *rxq;
697 
698 	rxq = &adapter->sge.ethrxq[pi->first_qset];
699 	rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
700 	if (!rss)
701 		return -ENOMEM;
702 
703 	/* map the queue indices to queue ids */
704 	for (i = 0; i < pi->rss_size; i++, queues++)
705 		rss[i] = rxq[*queues].rspq.abs_id;
706 
707 	err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
708 				  pi->rss_size, rss, pi->rss_size);
709 	/* If Tunnel All Lookup isn't specified in the global RSS
710 	 * Configuration, then we need to specify a default Ingress
711 	 * Queue for any ingress packets which aren't hashed.  We'll
712 	 * use our first ingress queue ...
713 	 */
714 	if (!err)
715 		err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
716 				       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
717 				       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
718 				       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
719 				       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
720 				       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
721 				       rss[0]);
722 	kfree(rss);
723 	return err;
724 }
725 
726 /**
727  *	setup_rss - configure RSS
728  *	@adap: the adapter
729  *
730  *	Sets up RSS for each port.
731  */
setup_rss(struct adapter * adap)732 static int setup_rss(struct adapter *adap)
733 {
734 	int i, j, err;
735 
736 	for_each_port(adap, i) {
737 		const struct port_info *pi = adap2pinfo(adap, i);
738 
739 		/* Fill default values with equal distribution */
740 		for (j = 0; j < pi->rss_size; j++)
741 			pi->rss[j] = j % pi->nqsets;
742 
743 		err = cxgb4_write_rss(pi, pi->rss);
744 		if (err)
745 			return err;
746 	}
747 	return 0;
748 }
749 
750 /*
751  * Return the channel of the ingress queue with the given qid.
752  */
rxq_to_chan(const struct sge * p,unsigned int qid)753 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
754 {
755 	qid -= p->ingr_start;
756 	return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
757 }
758 
759 /*
760  * Wait until all NAPI handlers are descheduled.
761  */
quiesce_rx(struct adapter * adap)762 static void quiesce_rx(struct adapter *adap)
763 {
764 	int i;
765 
766 	for (i = 0; i < adap->sge.ingr_sz; i++) {
767 		struct sge_rspq *q = adap->sge.ingr_map[i];
768 
769 		if (q && q->handler) {
770 			napi_disable(&q->napi);
771 			local_bh_disable();
772 			while (!cxgb_poll_lock_napi(q))
773 				mdelay(1);
774 			local_bh_enable();
775 		}
776 
777 	}
778 }
779 
780 /* Disable interrupt and napi handler */
disable_interrupts(struct adapter * adap)781 static void disable_interrupts(struct adapter *adap)
782 {
783 	if (adap->flags & FULL_INIT_DONE) {
784 		t4_intr_disable(adap);
785 		if (adap->flags & USING_MSIX) {
786 			free_msix_queue_irqs(adap);
787 			free_irq(adap->msix_info[0].vec, adap);
788 		} else {
789 			free_irq(adap->pdev->irq, adap);
790 		}
791 		quiesce_rx(adap);
792 	}
793 }
794 
795 /*
796  * Enable NAPI scheduling and interrupt generation for all Rx queues.
797  */
enable_rx(struct adapter * adap)798 static void enable_rx(struct adapter *adap)
799 {
800 	int i;
801 
802 	for (i = 0; i < adap->sge.ingr_sz; i++) {
803 		struct sge_rspq *q = adap->sge.ingr_map[i];
804 
805 		if (!q)
806 			continue;
807 		if (q->handler) {
808 			cxgb_busy_poll_init_lock(q);
809 			napi_enable(&q->napi);
810 		}
811 		/* 0-increment GTS to start the timer and enable interrupts */
812 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
813 			     SEINTARM_V(q->intr_params) |
814 			     INGRESSQID_V(q->cntxt_id));
815 	}
816 }
817 
818 
setup_fw_sge_queues(struct adapter * adap)819 static int setup_fw_sge_queues(struct adapter *adap)
820 {
821 	struct sge *s = &adap->sge;
822 	int err = 0;
823 
824 	bitmap_zero(s->starving_fl, s->egr_sz);
825 	bitmap_zero(s->txq_maperr, s->egr_sz);
826 
827 	if (adap->flags & USING_MSIX)
828 		adap->msi_idx = 1;         /* vector 0 is for non-queue interrupts */
829 	else {
830 		err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
831 				       NULL, NULL, NULL, -1);
832 		if (err)
833 			return err;
834 		adap->msi_idx = -((int)s->intrq.abs_id + 1);
835 	}
836 
837 	err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
838 			       adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
839 	if (err)
840 		t4_free_sge_resources(adap);
841 	return err;
842 }
843 
844 /**
845  *	setup_sge_queues - configure SGE Tx/Rx/response queues
846  *	@adap: the adapter
847  *
848  *	Determines how many sets of SGE queues to use and initializes them.
849  *	We support multiple queue sets per port if we have MSI-X, otherwise
850  *	just one queue set per port.
851  */
setup_sge_queues(struct adapter * adap)852 static int setup_sge_queues(struct adapter *adap)
853 {
854 	int err, i, j;
855 	struct sge *s = &adap->sge;
856 	struct sge_uld_rxq_info *rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
857 	unsigned int cmplqid = 0;
858 
859 	for_each_port(adap, i) {
860 		struct net_device *dev = adap->port[i];
861 		struct port_info *pi = netdev_priv(dev);
862 		struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
863 		struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
864 
865 		for (j = 0; j < pi->nqsets; j++, q++) {
866 			if (adap->msi_idx > 0)
867 				adap->msi_idx++;
868 			err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
869 					       adap->msi_idx, &q->fl,
870 					       t4_ethrx_handler,
871 					       NULL,
872 					       t4_get_mps_bg_map(adap,
873 								 pi->tx_chan));
874 			if (err)
875 				goto freeout;
876 			q->rspq.idx = j;
877 			memset(&q->stats, 0, sizeof(q->stats));
878 		}
879 		for (j = 0; j < pi->nqsets; j++, t++) {
880 			err = t4_sge_alloc_eth_txq(adap, t, dev,
881 					netdev_get_tx_queue(dev, j),
882 					s->fw_evtq.cntxt_id);
883 			if (err)
884 				goto freeout;
885 		}
886 	}
887 
888 	j = s->ofldqsets / adap->params.nports; /* iscsi queues per channel */
889 	for_each_ofldtxq(s, i) {
890 		err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
891 					    adap->port[i / j],
892 					    s->fw_evtq.cntxt_id);
893 		if (err)
894 			goto freeout;
895 	}
896 
897 	for_each_port(adap, i) {
898 		/* Note that cmplqid below is 0 if we don't
899 		 * have RDMA queues, and that's the right value.
900 		 */
901 		if (rxq_info)
902 			cmplqid	= rxq_info->uldrxq[i].rspq.cntxt_id;
903 
904 		err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
905 					    s->fw_evtq.cntxt_id, cmplqid);
906 		if (err)
907 			goto freeout;
908 	}
909 
910 	t4_write_reg(adap, is_t4(adap->params.chip) ?
911 				MPS_TRC_RSS_CONTROL_A :
912 				MPS_T5_TRC_RSS_CONTROL_A,
913 		     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
914 		     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
915 	return 0;
916 freeout:
917 	t4_free_sge_resources(adap);
918 	return err;
919 }
920 
921 /*
922  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
923  * The allocated memory is cleared.
924  */
t4_alloc_mem(size_t size)925 void *t4_alloc_mem(size_t size)
926 {
927 	void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
928 
929 	if (!p)
930 		p = vzalloc(size);
931 	return p;
932 }
933 
934 /*
935  * Free memory allocated through alloc_mem().
936  */
t4_free_mem(void * addr)937 void t4_free_mem(void *addr)
938 {
939 	kvfree(addr);
940 }
941 
cxgb_select_queue(struct net_device * dev,struct sk_buff * skb,void * accel_priv,select_queue_fallback_t fallback)942 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
943 			     void *accel_priv, select_queue_fallback_t fallback)
944 {
945 	int txq;
946 
947 #ifdef CONFIG_CHELSIO_T4_DCB
948 	/* If a Data Center Bridging has been successfully negotiated on this
949 	 * link then we'll use the skb's priority to map it to a TX Queue.
950 	 * The skb's priority is determined via the VLAN Tag Priority Code
951 	 * Point field.
952 	 */
953 	if (cxgb4_dcb_enabled(dev)) {
954 		u16 vlan_tci;
955 		int err;
956 
957 		err = vlan_get_tag(skb, &vlan_tci);
958 		if (unlikely(err)) {
959 			if (net_ratelimit())
960 				netdev_warn(dev,
961 					    "TX Packet without VLAN Tag on DCB Link\n");
962 			txq = 0;
963 		} else {
964 			txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
965 #ifdef CONFIG_CHELSIO_T4_FCOE
966 			if (skb->protocol == htons(ETH_P_FCOE))
967 				txq = skb->priority & 0x7;
968 #endif /* CONFIG_CHELSIO_T4_FCOE */
969 		}
970 		return txq;
971 	}
972 #endif /* CONFIG_CHELSIO_T4_DCB */
973 
974 	if (select_queue) {
975 		txq = (skb_rx_queue_recorded(skb)
976 			? skb_get_rx_queue(skb)
977 			: smp_processor_id());
978 
979 		while (unlikely(txq >= dev->real_num_tx_queues))
980 			txq -= dev->real_num_tx_queues;
981 
982 		return txq;
983 	}
984 
985 	return fallback(dev, skb) % dev->real_num_tx_queues;
986 }
987 
closest_timer(const struct sge * s,int time)988 static int closest_timer(const struct sge *s, int time)
989 {
990 	int i, delta, match = 0, min_delta = INT_MAX;
991 
992 	for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
993 		delta = time - s->timer_val[i];
994 		if (delta < 0)
995 			delta = -delta;
996 		if (delta < min_delta) {
997 			min_delta = delta;
998 			match = i;
999 		}
1000 	}
1001 	return match;
1002 }
1003 
closest_thres(const struct sge * s,int thres)1004 static int closest_thres(const struct sge *s, int thres)
1005 {
1006 	int i, delta, match = 0, min_delta = INT_MAX;
1007 
1008 	for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1009 		delta = thres - s->counter_val[i];
1010 		if (delta < 0)
1011 			delta = -delta;
1012 		if (delta < min_delta) {
1013 			min_delta = delta;
1014 			match = i;
1015 		}
1016 	}
1017 	return match;
1018 }
1019 
1020 /**
1021  *	cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1022  *	@q: the Rx queue
1023  *	@us: the hold-off time in us, or 0 to disable timer
1024  *	@cnt: the hold-off packet count, or 0 to disable counter
1025  *
1026  *	Sets an Rx queue's interrupt hold-off time and packet count.  At least
1027  *	one of the two needs to be enabled for the queue to generate interrupts.
1028  */
cxgb4_set_rspq_intr_params(struct sge_rspq * q,unsigned int us,unsigned int cnt)1029 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1030 			       unsigned int us, unsigned int cnt)
1031 {
1032 	struct adapter *adap = q->adap;
1033 
1034 	if ((us | cnt) == 0)
1035 		cnt = 1;
1036 
1037 	if (cnt) {
1038 		int err;
1039 		u32 v, new_idx;
1040 
1041 		new_idx = closest_thres(&adap->sge, cnt);
1042 		if (q->desc && q->pktcnt_idx != new_idx) {
1043 			/* the queue has already been created, update it */
1044 			v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1045 			    FW_PARAMS_PARAM_X_V(
1046 					FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1047 			    FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1048 			err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1049 					    &v, &new_idx);
1050 			if (err)
1051 				return err;
1052 		}
1053 		q->pktcnt_idx = new_idx;
1054 	}
1055 
1056 	us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1057 	q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1058 	return 0;
1059 }
1060 
cxgb_set_features(struct net_device * dev,netdev_features_t features)1061 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1062 {
1063 	const struct port_info *pi = netdev_priv(dev);
1064 	netdev_features_t changed = dev->features ^ features;
1065 	int err;
1066 
1067 	if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1068 		return 0;
1069 
1070 	err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1071 			    -1, -1, -1,
1072 			    !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1073 	if (unlikely(err))
1074 		dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1075 	return err;
1076 }
1077 
setup_debugfs(struct adapter * adap)1078 static int setup_debugfs(struct adapter *adap)
1079 {
1080 	if (IS_ERR_OR_NULL(adap->debugfs_root))
1081 		return -1;
1082 
1083 #ifdef CONFIG_DEBUG_FS
1084 	t4_setup_debugfs(adap);
1085 #endif
1086 	return 0;
1087 }
1088 
1089 /*
1090  * upper-layer driver support
1091  */
1092 
1093 /*
1094  * Allocate an active-open TID and set it to the supplied value.
1095  */
cxgb4_alloc_atid(struct tid_info * t,void * data)1096 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1097 {
1098 	int atid = -1;
1099 
1100 	spin_lock_bh(&t->atid_lock);
1101 	if (t->afree) {
1102 		union aopen_entry *p = t->afree;
1103 
1104 		atid = (p - t->atid_tab) + t->atid_base;
1105 		t->afree = p->next;
1106 		p->data = data;
1107 		t->atids_in_use++;
1108 	}
1109 	spin_unlock_bh(&t->atid_lock);
1110 	return atid;
1111 }
1112 EXPORT_SYMBOL(cxgb4_alloc_atid);
1113 
1114 /*
1115  * Release an active-open TID.
1116  */
cxgb4_free_atid(struct tid_info * t,unsigned int atid)1117 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1118 {
1119 	union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1120 
1121 	spin_lock_bh(&t->atid_lock);
1122 	p->next = t->afree;
1123 	t->afree = p;
1124 	t->atids_in_use--;
1125 	spin_unlock_bh(&t->atid_lock);
1126 }
1127 EXPORT_SYMBOL(cxgb4_free_atid);
1128 
1129 /*
1130  * Allocate a server TID and set it to the supplied value.
1131  */
cxgb4_alloc_stid(struct tid_info * t,int family,void * data)1132 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1133 {
1134 	int stid;
1135 
1136 	spin_lock_bh(&t->stid_lock);
1137 	if (family == PF_INET) {
1138 		stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1139 		if (stid < t->nstids)
1140 			__set_bit(stid, t->stid_bmap);
1141 		else
1142 			stid = -1;
1143 	} else {
1144 		stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1145 		if (stid < 0)
1146 			stid = -1;
1147 	}
1148 	if (stid >= 0) {
1149 		t->stid_tab[stid].data = data;
1150 		stid += t->stid_base;
1151 		/* IPv6 requires max of 520 bits or 16 cells in TCAM
1152 		 * This is equivalent to 4 TIDs. With CLIP enabled it
1153 		 * needs 2 TIDs.
1154 		 */
1155 		if (family == PF_INET)
1156 			t->stids_in_use++;
1157 		else
1158 			t->stids_in_use += 2;
1159 	}
1160 	spin_unlock_bh(&t->stid_lock);
1161 	return stid;
1162 }
1163 EXPORT_SYMBOL(cxgb4_alloc_stid);
1164 
1165 /* Allocate a server filter TID and set it to the supplied value.
1166  */
cxgb4_alloc_sftid(struct tid_info * t,int family,void * data)1167 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1168 {
1169 	int stid;
1170 
1171 	spin_lock_bh(&t->stid_lock);
1172 	if (family == PF_INET) {
1173 		stid = find_next_zero_bit(t->stid_bmap,
1174 				t->nstids + t->nsftids, t->nstids);
1175 		if (stid < (t->nstids + t->nsftids))
1176 			__set_bit(stid, t->stid_bmap);
1177 		else
1178 			stid = -1;
1179 	} else {
1180 		stid = -1;
1181 	}
1182 	if (stid >= 0) {
1183 		t->stid_tab[stid].data = data;
1184 		stid -= t->nstids;
1185 		stid += t->sftid_base;
1186 		t->sftids_in_use++;
1187 	}
1188 	spin_unlock_bh(&t->stid_lock);
1189 	return stid;
1190 }
1191 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1192 
1193 /* Release a server TID.
1194  */
cxgb4_free_stid(struct tid_info * t,unsigned int stid,int family)1195 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1196 {
1197 	/* Is it a server filter TID? */
1198 	if (t->nsftids && (stid >= t->sftid_base)) {
1199 		stid -= t->sftid_base;
1200 		stid += t->nstids;
1201 	} else {
1202 		stid -= t->stid_base;
1203 	}
1204 
1205 	spin_lock_bh(&t->stid_lock);
1206 	if (family == PF_INET)
1207 		__clear_bit(stid, t->stid_bmap);
1208 	else
1209 		bitmap_release_region(t->stid_bmap, stid, 1);
1210 	t->stid_tab[stid].data = NULL;
1211 	if (stid < t->nstids) {
1212 		if (family == PF_INET)
1213 			t->stids_in_use--;
1214 		else
1215 			t->stids_in_use -= 2;
1216 	} else {
1217 		t->sftids_in_use--;
1218 	}
1219 	spin_unlock_bh(&t->stid_lock);
1220 }
1221 EXPORT_SYMBOL(cxgb4_free_stid);
1222 
1223 /*
1224  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1225  */
mk_tid_release(struct sk_buff * skb,unsigned int chan,unsigned int tid)1226 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1227 			   unsigned int tid)
1228 {
1229 	struct cpl_tid_release *req;
1230 
1231 	set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1232 	req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1233 	INIT_TP_WR(req, tid);
1234 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1235 }
1236 
1237 /*
1238  * Queue a TID release request and if necessary schedule a work queue to
1239  * process it.
1240  */
cxgb4_queue_tid_release(struct tid_info * t,unsigned int chan,unsigned int tid)1241 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1242 				    unsigned int tid)
1243 {
1244 	void **p = &t->tid_tab[tid];
1245 	struct adapter *adap = container_of(t, struct adapter, tids);
1246 
1247 	spin_lock_bh(&adap->tid_release_lock);
1248 	*p = adap->tid_release_head;
1249 	/* Low 2 bits encode the Tx channel number */
1250 	adap->tid_release_head = (void **)((uintptr_t)p | chan);
1251 	if (!adap->tid_release_task_busy) {
1252 		adap->tid_release_task_busy = true;
1253 		queue_work(adap->workq, &adap->tid_release_task);
1254 	}
1255 	spin_unlock_bh(&adap->tid_release_lock);
1256 }
1257 
1258 /*
1259  * Process the list of pending TID release requests.
1260  */
process_tid_release_list(struct work_struct * work)1261 static void process_tid_release_list(struct work_struct *work)
1262 {
1263 	struct sk_buff *skb;
1264 	struct adapter *adap;
1265 
1266 	adap = container_of(work, struct adapter, tid_release_task);
1267 
1268 	spin_lock_bh(&adap->tid_release_lock);
1269 	while (adap->tid_release_head) {
1270 		void **p = adap->tid_release_head;
1271 		unsigned int chan = (uintptr_t)p & 3;
1272 		p = (void *)p - chan;
1273 
1274 		adap->tid_release_head = *p;
1275 		*p = NULL;
1276 		spin_unlock_bh(&adap->tid_release_lock);
1277 
1278 		while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1279 					 GFP_KERNEL)))
1280 			schedule_timeout_uninterruptible(1);
1281 
1282 		mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1283 		t4_ofld_send(adap, skb);
1284 		spin_lock_bh(&adap->tid_release_lock);
1285 	}
1286 	adap->tid_release_task_busy = false;
1287 	spin_unlock_bh(&adap->tid_release_lock);
1288 }
1289 
1290 /*
1291  * Release a TID and inform HW.  If we are unable to allocate the release
1292  * message we defer to a work queue.
1293  */
cxgb4_remove_tid(struct tid_info * t,unsigned int chan,unsigned int tid)1294 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1295 {
1296 	struct sk_buff *skb;
1297 	struct adapter *adap = container_of(t, struct adapter, tids);
1298 
1299 	WARN_ON(tid >= t->ntids);
1300 
1301 	if (t->tid_tab[tid]) {
1302 		t->tid_tab[tid] = NULL;
1303 		if (t->hash_base && (tid >= t->hash_base))
1304 			atomic_dec(&t->hash_tids_in_use);
1305 		else
1306 			atomic_dec(&t->tids_in_use);
1307 	}
1308 
1309 	skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1310 	if (likely(skb)) {
1311 		mk_tid_release(skb, chan, tid);
1312 		t4_ofld_send(adap, skb);
1313 	} else
1314 		cxgb4_queue_tid_release(t, chan, tid);
1315 }
1316 EXPORT_SYMBOL(cxgb4_remove_tid);
1317 
1318 /*
1319  * Allocate and initialize the TID tables.  Returns 0 on success.
1320  */
tid_init(struct tid_info * t)1321 static int tid_init(struct tid_info *t)
1322 {
1323 	struct adapter *adap = container_of(t, struct adapter, tids);
1324 	unsigned int max_ftids = t->nftids + t->nsftids;
1325 	unsigned int natids = t->natids;
1326 	unsigned int stid_bmap_size;
1327 	unsigned int ftid_bmap_size;
1328 	size_t size;
1329 
1330 	stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1331 	ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1332 	size = t->ntids * sizeof(*t->tid_tab) +
1333 	       natids * sizeof(*t->atid_tab) +
1334 	       t->nstids * sizeof(*t->stid_tab) +
1335 	       t->nsftids * sizeof(*t->stid_tab) +
1336 	       stid_bmap_size * sizeof(long) +
1337 	       max_ftids * sizeof(*t->ftid_tab) +
1338 	       ftid_bmap_size * sizeof(long);
1339 
1340 	t->tid_tab = t4_alloc_mem(size);
1341 	if (!t->tid_tab)
1342 		return -ENOMEM;
1343 
1344 	t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1345 	t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1346 	t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1347 	t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1348 	t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1349 	spin_lock_init(&t->stid_lock);
1350 	spin_lock_init(&t->atid_lock);
1351 	spin_lock_init(&t->ftid_lock);
1352 
1353 	t->stids_in_use = 0;
1354 	t->sftids_in_use = 0;
1355 	t->afree = NULL;
1356 	t->atids_in_use = 0;
1357 	atomic_set(&t->tids_in_use, 0);
1358 	atomic_set(&t->hash_tids_in_use, 0);
1359 
1360 	/* Setup the free list for atid_tab and clear the stid bitmap. */
1361 	if (natids) {
1362 		while (--natids)
1363 			t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1364 		t->afree = t->atid_tab;
1365 	}
1366 
1367 	if (is_offload(adap)) {
1368 		bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1369 		/* Reserve stid 0 for T4/T5 adapters */
1370 		if (!t->stid_base &&
1371 		    CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1372 			__set_bit(0, t->stid_bmap);
1373 	}
1374 
1375 	bitmap_zero(t->ftid_bmap, t->nftids);
1376 	return 0;
1377 }
1378 
1379 /**
1380  *	cxgb4_create_server - create an IP server
1381  *	@dev: the device
1382  *	@stid: the server TID
1383  *	@sip: local IP address to bind server to
1384  *	@sport: the server's TCP port
1385  *	@queue: queue to direct messages from this server to
1386  *
1387  *	Create an IP server for the given port and address.
1388  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1389  */
cxgb4_create_server(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue)1390 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1391 			__be32 sip, __be16 sport, __be16 vlan,
1392 			unsigned int queue)
1393 {
1394 	unsigned int chan;
1395 	struct sk_buff *skb;
1396 	struct adapter *adap;
1397 	struct cpl_pass_open_req *req;
1398 	int ret;
1399 
1400 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1401 	if (!skb)
1402 		return -ENOMEM;
1403 
1404 	adap = netdev2adap(dev);
1405 	req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1406 	INIT_TP_WR(req, 0);
1407 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1408 	req->local_port = sport;
1409 	req->peer_port = htons(0);
1410 	req->local_ip = sip;
1411 	req->peer_ip = htonl(0);
1412 	chan = rxq_to_chan(&adap->sge, queue);
1413 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1414 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1415 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1416 	ret = t4_mgmt_tx(adap, skb);
1417 	return net_xmit_eval(ret);
1418 }
1419 EXPORT_SYMBOL(cxgb4_create_server);
1420 
1421 /*	cxgb4_create_server6 - create an IPv6 server
1422  *	@dev: the device
1423  *	@stid: the server TID
1424  *	@sip: local IPv6 address to bind server to
1425  *	@sport: the server's TCP port
1426  *	@queue: queue to direct messages from this server to
1427  *
1428  *	Create an IPv6 server for the given port and address.
1429  *	Returns <0 on error and one of the %NET_XMIT_* values on success.
1430  */
cxgb4_create_server6(const struct net_device * dev,unsigned int stid,const struct in6_addr * sip,__be16 sport,unsigned int queue)1431 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1432 			 const struct in6_addr *sip, __be16 sport,
1433 			 unsigned int queue)
1434 {
1435 	unsigned int chan;
1436 	struct sk_buff *skb;
1437 	struct adapter *adap;
1438 	struct cpl_pass_open_req6 *req;
1439 	int ret;
1440 
1441 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1442 	if (!skb)
1443 		return -ENOMEM;
1444 
1445 	adap = netdev2adap(dev);
1446 	req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1447 	INIT_TP_WR(req, 0);
1448 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1449 	req->local_port = sport;
1450 	req->peer_port = htons(0);
1451 	req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1452 	req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1453 	req->peer_ip_hi = cpu_to_be64(0);
1454 	req->peer_ip_lo = cpu_to_be64(0);
1455 	chan = rxq_to_chan(&adap->sge, queue);
1456 	req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1457 	req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1458 				SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1459 	ret = t4_mgmt_tx(adap, skb);
1460 	return net_xmit_eval(ret);
1461 }
1462 EXPORT_SYMBOL(cxgb4_create_server6);
1463 
cxgb4_remove_server(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)1464 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1465 			unsigned int queue, bool ipv6)
1466 {
1467 	struct sk_buff *skb;
1468 	struct adapter *adap;
1469 	struct cpl_close_listsvr_req *req;
1470 	int ret;
1471 
1472 	adap = netdev2adap(dev);
1473 
1474 	skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1475 	if (!skb)
1476 		return -ENOMEM;
1477 
1478 	req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1479 	INIT_TP_WR(req, 0);
1480 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1481 	req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1482 				LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1483 	ret = t4_mgmt_tx(adap, skb);
1484 	return net_xmit_eval(ret);
1485 }
1486 EXPORT_SYMBOL(cxgb4_remove_server);
1487 
1488 /**
1489  *	cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1490  *	@mtus: the HW MTU table
1491  *	@mtu: the target MTU
1492  *	@idx: index of selected entry in the MTU table
1493  *
1494  *	Returns the index and the value in the HW MTU table that is closest to
1495  *	but does not exceed @mtu, unless @mtu is smaller than any value in the
1496  *	table, in which case that smallest available value is selected.
1497  */
cxgb4_best_mtu(const unsigned short * mtus,unsigned short mtu,unsigned int * idx)1498 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1499 			    unsigned int *idx)
1500 {
1501 	unsigned int i = 0;
1502 
1503 	while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1504 		++i;
1505 	if (idx)
1506 		*idx = i;
1507 	return mtus[i];
1508 }
1509 EXPORT_SYMBOL(cxgb4_best_mtu);
1510 
1511 /**
1512  *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1513  *     @mtus: the HW MTU table
1514  *     @header_size: Header Size
1515  *     @data_size_max: maximum Data Segment Size
1516  *     @data_size_align: desired Data Segment Size Alignment (2^N)
1517  *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1518  *
1519  *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1520  *     MTU Table based solely on a Maximum MTU parameter, we break that
1521  *     parameter up into a Header Size and Maximum Data Segment Size, and
1522  *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1523  *     the Hardware MTU Table which will result in a Data Segment Size with
1524  *     the requested alignment _and_ that MTU isn't "too far" from the
1525  *     closest MTU, then we'll return that rather than the closest MTU.
1526  */
cxgb4_best_aligned_mtu(const unsigned short * mtus,unsigned short header_size,unsigned short data_size_max,unsigned short data_size_align,unsigned int * mtu_idxp)1527 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1528 				    unsigned short header_size,
1529 				    unsigned short data_size_max,
1530 				    unsigned short data_size_align,
1531 				    unsigned int *mtu_idxp)
1532 {
1533 	unsigned short max_mtu = header_size + data_size_max;
1534 	unsigned short data_size_align_mask = data_size_align - 1;
1535 	int mtu_idx, aligned_mtu_idx;
1536 
1537 	/* Scan the MTU Table till we find an MTU which is larger than our
1538 	 * Maximum MTU or we reach the end of the table.  Along the way,
1539 	 * record the last MTU found, if any, which will result in a Data
1540 	 * Segment Length matching the requested alignment.
1541 	 */
1542 	for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1543 		unsigned short data_size = mtus[mtu_idx] - header_size;
1544 
1545 		/* If this MTU minus the Header Size would result in a
1546 		 * Data Segment Size of the desired alignment, remember it.
1547 		 */
1548 		if ((data_size & data_size_align_mask) == 0)
1549 			aligned_mtu_idx = mtu_idx;
1550 
1551 		/* If we're not at the end of the Hardware MTU Table and the
1552 		 * next element is larger than our Maximum MTU, drop out of
1553 		 * the loop.
1554 		 */
1555 		if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1556 			break;
1557 	}
1558 
1559 	/* If we fell out of the loop because we ran to the end of the table,
1560 	 * then we just have to use the last [largest] entry.
1561 	 */
1562 	if (mtu_idx == NMTUS)
1563 		mtu_idx--;
1564 
1565 	/* If we found an MTU which resulted in the requested Data Segment
1566 	 * Length alignment and that's "not far" from the largest MTU which is
1567 	 * less than or equal to the maximum MTU, then use that.
1568 	 */
1569 	if (aligned_mtu_idx >= 0 &&
1570 	    mtu_idx - aligned_mtu_idx <= 1)
1571 		mtu_idx = aligned_mtu_idx;
1572 
1573 	/* If the caller has passed in an MTU Index pointer, pass the
1574 	 * MTU Index back.  Return the MTU value.
1575 	 */
1576 	if (mtu_idxp)
1577 		*mtu_idxp = mtu_idx;
1578 	return mtus[mtu_idx];
1579 }
1580 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1581 
1582 /**
1583  *	cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1584  *	@chip: chip type
1585  *	@viid: VI id of the given port
1586  *
1587  *	Return the SMT index for this VI.
1588  */
cxgb4_tp_smt_idx(enum chip_type chip,unsigned int viid)1589 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1590 {
1591 	/* In T4/T5, SMT contains 256 SMAC entries organized in
1592 	 * 128 rows of 2 entries each.
1593 	 * In T6, SMT contains 256 SMAC entries in 256 rows.
1594 	 * TODO: The below code needs to be updated when we add support
1595 	 * for 256 VFs.
1596 	 */
1597 	if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1598 		return ((viid & 0x7f) << 1);
1599 	else
1600 		return (viid & 0x7f);
1601 }
1602 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1603 
1604 /**
1605  *	cxgb4_port_chan - get the HW channel of a port
1606  *	@dev: the net device for the port
1607  *
1608  *	Return the HW Tx channel of the given port.
1609  */
cxgb4_port_chan(const struct net_device * dev)1610 unsigned int cxgb4_port_chan(const struct net_device *dev)
1611 {
1612 	return netdev2pinfo(dev)->tx_chan;
1613 }
1614 EXPORT_SYMBOL(cxgb4_port_chan);
1615 
cxgb4_dbfifo_count(const struct net_device * dev,int lpfifo)1616 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1617 {
1618 	struct adapter *adap = netdev2adap(dev);
1619 	u32 v1, v2, lp_count, hp_count;
1620 
1621 	v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1622 	v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1623 	if (is_t4(adap->params.chip)) {
1624 		lp_count = LP_COUNT_G(v1);
1625 		hp_count = HP_COUNT_G(v1);
1626 	} else {
1627 		lp_count = LP_COUNT_T5_G(v1);
1628 		hp_count = HP_COUNT_T5_G(v2);
1629 	}
1630 	return lpfifo ? lp_count : hp_count;
1631 }
1632 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1633 
1634 /**
1635  *	cxgb4_port_viid - get the VI id of a port
1636  *	@dev: the net device for the port
1637  *
1638  *	Return the VI id of the given port.
1639  */
cxgb4_port_viid(const struct net_device * dev)1640 unsigned int cxgb4_port_viid(const struct net_device *dev)
1641 {
1642 	return netdev2pinfo(dev)->viid;
1643 }
1644 EXPORT_SYMBOL(cxgb4_port_viid);
1645 
1646 /**
1647  *	cxgb4_port_idx - get the index of a port
1648  *	@dev: the net device for the port
1649  *
1650  *	Return the index of the given port.
1651  */
cxgb4_port_idx(const struct net_device * dev)1652 unsigned int cxgb4_port_idx(const struct net_device *dev)
1653 {
1654 	return netdev2pinfo(dev)->port_id;
1655 }
1656 EXPORT_SYMBOL(cxgb4_port_idx);
1657 
cxgb4_get_tcp_stats(struct pci_dev * pdev,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6)1658 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1659 			 struct tp_tcp_stats *v6)
1660 {
1661 	struct adapter *adap = pci_get_drvdata(pdev);
1662 
1663 	spin_lock(&adap->stats_lock);
1664 	t4_tp_get_tcp_stats(adap, v4, v6);
1665 	spin_unlock(&adap->stats_lock);
1666 }
1667 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1668 
cxgb4_iscsi_init(struct net_device * dev,unsigned int tag_mask,const unsigned int * pgsz_order)1669 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1670 		      const unsigned int *pgsz_order)
1671 {
1672 	struct adapter *adap = netdev2adap(dev);
1673 
1674 	t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1675 	t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1676 		     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1677 		     HPZ3_V(pgsz_order[3]));
1678 }
1679 EXPORT_SYMBOL(cxgb4_iscsi_init);
1680 
cxgb4_flush_eq_cache(struct net_device * dev)1681 int cxgb4_flush_eq_cache(struct net_device *dev)
1682 {
1683 	struct adapter *adap = netdev2adap(dev);
1684 
1685 	return t4_sge_ctxt_flush(adap, adap->mbox);
1686 }
1687 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1688 
read_eq_indices(struct adapter * adap,u16 qid,u16 * pidx,u16 * cidx)1689 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1690 {
1691 	u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1692 	__be64 indices;
1693 	int ret;
1694 
1695 	spin_lock(&adap->win0_lock);
1696 	ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1697 			   sizeof(indices), (__be32 *)&indices,
1698 			   T4_MEMORY_READ);
1699 	spin_unlock(&adap->win0_lock);
1700 	if (!ret) {
1701 		*cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1702 		*pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1703 	}
1704 	return ret;
1705 }
1706 
cxgb4_sync_txq_pidx(struct net_device * dev,u16 qid,u16 pidx,u16 size)1707 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1708 			u16 size)
1709 {
1710 	struct adapter *adap = netdev2adap(dev);
1711 	u16 hw_pidx, hw_cidx;
1712 	int ret;
1713 
1714 	ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1715 	if (ret)
1716 		goto out;
1717 
1718 	if (pidx != hw_pidx) {
1719 		u16 delta;
1720 		u32 val;
1721 
1722 		if (pidx >= hw_pidx)
1723 			delta = pidx - hw_pidx;
1724 		else
1725 			delta = size - hw_pidx + pidx;
1726 
1727 		if (is_t4(adap->params.chip))
1728 			val = PIDX_V(delta);
1729 		else
1730 			val = PIDX_T5_V(delta);
1731 		wmb();
1732 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1733 			     QID_V(qid) | val);
1734 	}
1735 out:
1736 	return ret;
1737 }
1738 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1739 
cxgb4_read_tpte(struct net_device * dev,u32 stag,__be32 * tpte)1740 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1741 {
1742 	struct adapter *adap;
1743 	u32 offset, memtype, memaddr;
1744 	u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1745 	u32 edc0_end, edc1_end, mc0_end, mc1_end;
1746 	int ret;
1747 
1748 	adap = netdev2adap(dev);
1749 
1750 	offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1751 
1752 	/* Figure out where the offset lands in the Memory Type/Address scheme.
1753 	 * This code assumes that the memory is laid out starting at offset 0
1754 	 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1755 	 * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
1756 	 * MC0, and some have both MC0 and MC1.
1757 	 */
1758 	size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1759 	edc0_size = EDRAM0_SIZE_G(size) << 20;
1760 	size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1761 	edc1_size = EDRAM1_SIZE_G(size) << 20;
1762 	size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1763 	mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1764 
1765 	edc0_end = edc0_size;
1766 	edc1_end = edc0_end + edc1_size;
1767 	mc0_end = edc1_end + mc0_size;
1768 
1769 	if (offset < edc0_end) {
1770 		memtype = MEM_EDC0;
1771 		memaddr = offset;
1772 	} else if (offset < edc1_end) {
1773 		memtype = MEM_EDC1;
1774 		memaddr = offset - edc0_end;
1775 	} else {
1776 		if (offset < mc0_end) {
1777 			memtype = MEM_MC0;
1778 			memaddr = offset - edc1_end;
1779 		} else if (is_t5(adap->params.chip)) {
1780 			size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1781 			mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1782 			mc1_end = mc0_end + mc1_size;
1783 			if (offset < mc1_end) {
1784 				memtype = MEM_MC1;
1785 				memaddr = offset - mc0_end;
1786 			} else {
1787 				/* offset beyond the end of any memory */
1788 				goto err;
1789 			}
1790 		} else {
1791 			/* T4/T6 only has a single memory channel */
1792 			goto err;
1793 		}
1794 	}
1795 
1796 	spin_lock(&adap->win0_lock);
1797 	ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1798 	spin_unlock(&adap->win0_lock);
1799 	return ret;
1800 
1801 err:
1802 	dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1803 		stag, offset);
1804 	return -EINVAL;
1805 }
1806 EXPORT_SYMBOL(cxgb4_read_tpte);
1807 
cxgb4_read_sge_timestamp(struct net_device * dev)1808 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1809 {
1810 	u32 hi, lo;
1811 	struct adapter *adap;
1812 
1813 	adap = netdev2adap(dev);
1814 	lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1815 	hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1816 
1817 	return ((u64)hi << 32) | (u64)lo;
1818 }
1819 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1820 
cxgb4_bar2_sge_qregs(struct net_device * dev,unsigned int qid,enum cxgb4_bar2_qtype qtype,int user,u64 * pbar2_qoffset,unsigned int * pbar2_qid)1821 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1822 			 unsigned int qid,
1823 			 enum cxgb4_bar2_qtype qtype,
1824 			 int user,
1825 			 u64 *pbar2_qoffset,
1826 			 unsigned int *pbar2_qid)
1827 {
1828 	return t4_bar2_sge_qregs(netdev2adap(dev),
1829 				 qid,
1830 				 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1831 				  ? T4_BAR2_QTYPE_EGRESS
1832 				  : T4_BAR2_QTYPE_INGRESS),
1833 				 user,
1834 				 pbar2_qoffset,
1835 				 pbar2_qid);
1836 }
1837 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1838 
1839 static struct pci_driver cxgb4_driver;
1840 
check_neigh_update(struct neighbour * neigh)1841 static void check_neigh_update(struct neighbour *neigh)
1842 {
1843 	const struct device *parent;
1844 	const struct net_device *netdev = neigh->dev;
1845 
1846 	if (netdev->priv_flags & IFF_802_1Q_VLAN)
1847 		netdev = vlan_dev_real_dev(netdev);
1848 	parent = netdev->dev.parent;
1849 	if (parent && parent->driver == &cxgb4_driver.driver)
1850 		t4_l2t_update(dev_get_drvdata(parent), neigh);
1851 }
1852 
netevent_cb(struct notifier_block * nb,unsigned long event,void * data)1853 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1854 		       void *data)
1855 {
1856 	switch (event) {
1857 	case NETEVENT_NEIGH_UPDATE:
1858 		check_neigh_update(data);
1859 		break;
1860 	case NETEVENT_REDIRECT:
1861 	default:
1862 		break;
1863 	}
1864 	return 0;
1865 }
1866 
1867 static bool netevent_registered;
1868 static struct notifier_block cxgb4_netevent_nb = {
1869 	.notifier_call = netevent_cb
1870 };
1871 
drain_db_fifo(struct adapter * adap,int usecs)1872 static void drain_db_fifo(struct adapter *adap, int usecs)
1873 {
1874 	u32 v1, v2, lp_count, hp_count;
1875 
1876 	do {
1877 		v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1878 		v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1879 		if (is_t4(adap->params.chip)) {
1880 			lp_count = LP_COUNT_G(v1);
1881 			hp_count = HP_COUNT_G(v1);
1882 		} else {
1883 			lp_count = LP_COUNT_T5_G(v1);
1884 			hp_count = HP_COUNT_T5_G(v2);
1885 		}
1886 
1887 		if (lp_count == 0 && hp_count == 0)
1888 			break;
1889 		set_current_state(TASK_UNINTERRUPTIBLE);
1890 		schedule_timeout(usecs_to_jiffies(usecs));
1891 	} while (1);
1892 }
1893 
disable_txq_db(struct sge_txq * q)1894 static void disable_txq_db(struct sge_txq *q)
1895 {
1896 	unsigned long flags;
1897 
1898 	spin_lock_irqsave(&q->db_lock, flags);
1899 	q->db_disabled = 1;
1900 	spin_unlock_irqrestore(&q->db_lock, flags);
1901 }
1902 
enable_txq_db(struct adapter * adap,struct sge_txq * q)1903 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1904 {
1905 	spin_lock_irq(&q->db_lock);
1906 	if (q->db_pidx_inc) {
1907 		/* Make sure that all writes to the TX descriptors
1908 		 * are committed before we tell HW about them.
1909 		 */
1910 		wmb();
1911 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1912 			     QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1913 		q->db_pidx_inc = 0;
1914 	}
1915 	q->db_disabled = 0;
1916 	spin_unlock_irq(&q->db_lock);
1917 }
1918 
disable_dbs(struct adapter * adap)1919 static void disable_dbs(struct adapter *adap)
1920 {
1921 	int i;
1922 
1923 	for_each_ethrxq(&adap->sge, i)
1924 		disable_txq_db(&adap->sge.ethtxq[i].q);
1925 	for_each_ofldtxq(&adap->sge, i)
1926 		disable_txq_db(&adap->sge.ofldtxq[i].q);
1927 	for_each_port(adap, i)
1928 		disable_txq_db(&adap->sge.ctrlq[i].q);
1929 }
1930 
enable_dbs(struct adapter * adap)1931 static void enable_dbs(struct adapter *adap)
1932 {
1933 	int i;
1934 
1935 	for_each_ethrxq(&adap->sge, i)
1936 		enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1937 	for_each_ofldtxq(&adap->sge, i)
1938 		enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
1939 	for_each_port(adap, i)
1940 		enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1941 }
1942 
notify_rdma_uld(struct adapter * adap,enum cxgb4_control cmd)1943 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1944 {
1945 	enum cxgb4_uld type = CXGB4_ULD_RDMA;
1946 
1947 	if (adap->uld && adap->uld[type].handle)
1948 		adap->uld[type].control(adap->uld[type].handle, cmd);
1949 }
1950 
process_db_full(struct work_struct * work)1951 static void process_db_full(struct work_struct *work)
1952 {
1953 	struct adapter *adap;
1954 
1955 	adap = container_of(work, struct adapter, db_full_task);
1956 
1957 	drain_db_fifo(adap, dbfifo_drain_delay);
1958 	enable_dbs(adap);
1959 	notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1960 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1961 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1962 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1963 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1964 	else
1965 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1966 				 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1967 }
1968 
sync_txq_pidx(struct adapter * adap,struct sge_txq * q)1969 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
1970 {
1971 	u16 hw_pidx, hw_cidx;
1972 	int ret;
1973 
1974 	spin_lock_irq(&q->db_lock);
1975 	ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
1976 	if (ret)
1977 		goto out;
1978 	if (q->db_pidx != hw_pidx) {
1979 		u16 delta;
1980 		u32 val;
1981 
1982 		if (q->db_pidx >= hw_pidx)
1983 			delta = q->db_pidx - hw_pidx;
1984 		else
1985 			delta = q->size - hw_pidx + q->db_pidx;
1986 
1987 		if (is_t4(adap->params.chip))
1988 			val = PIDX_V(delta);
1989 		else
1990 			val = PIDX_T5_V(delta);
1991 		wmb();
1992 		t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1993 			     QID_V(q->cntxt_id) | val);
1994 	}
1995 out:
1996 	q->db_disabled = 0;
1997 	q->db_pidx_inc = 0;
1998 	spin_unlock_irq(&q->db_lock);
1999 	if (ret)
2000 		CH_WARN(adap, "DB drop recovery failed.\n");
2001 }
2002 
recover_all_queues(struct adapter * adap)2003 static void recover_all_queues(struct adapter *adap)
2004 {
2005 	int i;
2006 
2007 	for_each_ethrxq(&adap->sge, i)
2008 		sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2009 	for_each_ofldtxq(&adap->sge, i)
2010 		sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2011 	for_each_port(adap, i)
2012 		sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2013 }
2014 
process_db_drop(struct work_struct * work)2015 static void process_db_drop(struct work_struct *work)
2016 {
2017 	struct adapter *adap;
2018 
2019 	adap = container_of(work, struct adapter, db_drop_task);
2020 
2021 	if (is_t4(adap->params.chip)) {
2022 		drain_db_fifo(adap, dbfifo_drain_delay);
2023 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2024 		drain_db_fifo(adap, dbfifo_drain_delay);
2025 		recover_all_queues(adap);
2026 		drain_db_fifo(adap, dbfifo_drain_delay);
2027 		enable_dbs(adap);
2028 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2029 	} else if (is_t5(adap->params.chip)) {
2030 		u32 dropped_db = t4_read_reg(adap, 0x010ac);
2031 		u16 qid = (dropped_db >> 15) & 0x1ffff;
2032 		u16 pidx_inc = dropped_db & 0x1fff;
2033 		u64 bar2_qoffset;
2034 		unsigned int bar2_qid;
2035 		int ret;
2036 
2037 		ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2038 					0, &bar2_qoffset, &bar2_qid);
2039 		if (ret)
2040 			dev_err(adap->pdev_dev, "doorbell drop recovery: "
2041 				"qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2042 		else
2043 			writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2044 			       adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2045 
2046 		/* Re-enable BAR2 WC */
2047 		t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2048 	}
2049 
2050 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2051 		t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2052 }
2053 
t4_db_full(struct adapter * adap)2054 void t4_db_full(struct adapter *adap)
2055 {
2056 	if (is_t4(adap->params.chip)) {
2057 		disable_dbs(adap);
2058 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2059 		t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2060 				 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2061 		queue_work(adap->workq, &adap->db_full_task);
2062 	}
2063 }
2064 
t4_db_dropped(struct adapter * adap)2065 void t4_db_dropped(struct adapter *adap)
2066 {
2067 	if (is_t4(adap->params.chip)) {
2068 		disable_dbs(adap);
2069 		notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2070 	}
2071 	queue_work(adap->workq, &adap->db_drop_task);
2072 }
2073 
t4_register_netevent_notifier(void)2074 void t4_register_netevent_notifier(void)
2075 {
2076 	if (!netevent_registered) {
2077 		register_netevent_notifier(&cxgb4_netevent_nb);
2078 		netevent_registered = true;
2079 	}
2080 }
2081 
detach_ulds(struct adapter * adap)2082 static void detach_ulds(struct adapter *adap)
2083 {
2084 	unsigned int i;
2085 
2086 	mutex_lock(&uld_mutex);
2087 	list_del(&adap->list_node);
2088 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2089 		if (adap->uld && adap->uld[i].handle) {
2090 			adap->uld[i].state_change(adap->uld[i].handle,
2091 					     CXGB4_STATE_DETACH);
2092 			adap->uld[i].handle = NULL;
2093 		}
2094 	if (netevent_registered && list_empty(&adapter_list)) {
2095 		unregister_netevent_notifier(&cxgb4_netevent_nb);
2096 		netevent_registered = false;
2097 	}
2098 	mutex_unlock(&uld_mutex);
2099 }
2100 
notify_ulds(struct adapter * adap,enum cxgb4_state new_state)2101 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2102 {
2103 	unsigned int i;
2104 
2105 	mutex_lock(&uld_mutex);
2106 	for (i = 0; i < CXGB4_ULD_MAX; i++)
2107 		if (adap->uld && adap->uld[i].handle)
2108 			adap->uld[i].state_change(adap->uld[i].handle,
2109 						  new_state);
2110 	mutex_unlock(&uld_mutex);
2111 }
2112 
2113 #if IS_ENABLED(CONFIG_IPV6)
cxgb4_inet6addr_handler(struct notifier_block * this,unsigned long event,void * data)2114 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2115 				   unsigned long event, void *data)
2116 {
2117 	struct inet6_ifaddr *ifa = data;
2118 	struct net_device *event_dev = ifa->idev->dev;
2119 	const struct device *parent = NULL;
2120 #if IS_ENABLED(CONFIG_BONDING)
2121 	struct adapter *adap;
2122 #endif
2123 	if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2124 		event_dev = vlan_dev_real_dev(event_dev);
2125 #if IS_ENABLED(CONFIG_BONDING)
2126 	if (event_dev->flags & IFF_MASTER) {
2127 		list_for_each_entry(adap, &adapter_list, list_node) {
2128 			switch (event) {
2129 			case NETDEV_UP:
2130 				cxgb4_clip_get(adap->port[0],
2131 					       (const u32 *)ifa, 1);
2132 				break;
2133 			case NETDEV_DOWN:
2134 				cxgb4_clip_release(adap->port[0],
2135 						   (const u32 *)ifa, 1);
2136 				break;
2137 			default:
2138 				break;
2139 			}
2140 		}
2141 		return NOTIFY_OK;
2142 	}
2143 #endif
2144 
2145 	if (event_dev)
2146 		parent = event_dev->dev.parent;
2147 
2148 	if (parent && parent->driver == &cxgb4_driver.driver) {
2149 		switch (event) {
2150 		case NETDEV_UP:
2151 			cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2152 			break;
2153 		case NETDEV_DOWN:
2154 			cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2155 			break;
2156 		default:
2157 			break;
2158 		}
2159 	}
2160 	return NOTIFY_OK;
2161 }
2162 
2163 static bool inet6addr_registered;
2164 static struct notifier_block cxgb4_inet6addr_notifier = {
2165 	.notifier_call = cxgb4_inet6addr_handler
2166 };
2167 
update_clip(const struct adapter * adap)2168 static void update_clip(const struct adapter *adap)
2169 {
2170 	int i;
2171 	struct net_device *dev;
2172 	int ret;
2173 
2174 	rcu_read_lock();
2175 
2176 	for (i = 0; i < MAX_NPORTS; i++) {
2177 		dev = adap->port[i];
2178 		ret = 0;
2179 
2180 		if (dev)
2181 			ret = cxgb4_update_root_dev_clip(dev);
2182 
2183 		if (ret < 0)
2184 			break;
2185 	}
2186 	rcu_read_unlock();
2187 }
2188 #endif /* IS_ENABLED(CONFIG_IPV6) */
2189 
2190 /**
2191  *	cxgb_up - enable the adapter
2192  *	@adap: adapter being enabled
2193  *
2194  *	Called when the first port is enabled, this function performs the
2195  *	actions necessary to make an adapter operational, such as completing
2196  *	the initialization of HW modules, and enabling interrupts.
2197  *
2198  *	Must be called with the rtnl lock held.
2199  */
cxgb_up(struct adapter * adap)2200 static int cxgb_up(struct adapter *adap)
2201 {
2202 	int err;
2203 
2204 	mutex_lock(&uld_mutex);
2205 	err = setup_sge_queues(adap);
2206 	if (err)
2207 		goto rel_lock;
2208 	err = setup_rss(adap);
2209 	if (err)
2210 		goto freeq;
2211 
2212 	if (adap->flags & USING_MSIX) {
2213 		name_msix_vecs(adap);
2214 		err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2215 				  adap->msix_info[0].desc, adap);
2216 		if (err)
2217 			goto irq_err;
2218 		err = request_msix_queue_irqs(adap);
2219 		if (err) {
2220 			free_irq(adap->msix_info[0].vec, adap);
2221 			goto irq_err;
2222 		}
2223 	} else {
2224 		err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2225 				  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2226 				  adap->port[0]->name, adap);
2227 		if (err)
2228 			goto irq_err;
2229 	}
2230 
2231 	enable_rx(adap);
2232 	t4_sge_start(adap);
2233 	t4_intr_enable(adap);
2234 	adap->flags |= FULL_INIT_DONE;
2235 	mutex_unlock(&uld_mutex);
2236 
2237 	notify_ulds(adap, CXGB4_STATE_UP);
2238 #if IS_ENABLED(CONFIG_IPV6)
2239 	update_clip(adap);
2240 #endif
2241 	/* Initialize hash mac addr list*/
2242 	INIT_LIST_HEAD(&adap->mac_hlist);
2243 	return err;
2244 
2245  irq_err:
2246 	dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2247  freeq:
2248 	t4_free_sge_resources(adap);
2249  rel_lock:
2250 	mutex_unlock(&uld_mutex);
2251 	return err;
2252 }
2253 
cxgb_down(struct adapter * adapter)2254 static void cxgb_down(struct adapter *adapter)
2255 {
2256 	cancel_work_sync(&adapter->tid_release_task);
2257 	cancel_work_sync(&adapter->db_full_task);
2258 	cancel_work_sync(&adapter->db_drop_task);
2259 	adapter->tid_release_task_busy = false;
2260 	adapter->tid_release_head = NULL;
2261 
2262 	t4_sge_stop(adapter);
2263 	t4_free_sge_resources(adapter);
2264 	adapter->flags &= ~FULL_INIT_DONE;
2265 }
2266 
2267 /*
2268  * net_device operations
2269  */
cxgb_open(struct net_device * dev)2270 static int cxgb_open(struct net_device *dev)
2271 {
2272 	int err;
2273 	struct port_info *pi = netdev_priv(dev);
2274 	struct adapter *adapter = pi->adapter;
2275 
2276 	netif_carrier_off(dev);
2277 
2278 	if (!(adapter->flags & FULL_INIT_DONE)) {
2279 		err = cxgb_up(adapter);
2280 		if (err < 0)
2281 			return err;
2282 	}
2283 
2284 	err = link_start(dev);
2285 	if (!err)
2286 		netif_tx_start_all_queues(dev);
2287 	return err;
2288 }
2289 
cxgb_close(struct net_device * dev)2290 static int cxgb_close(struct net_device *dev)
2291 {
2292 	struct port_info *pi = netdev_priv(dev);
2293 	struct adapter *adapter = pi->adapter;
2294 
2295 	netif_tx_stop_all_queues(dev);
2296 	netif_carrier_off(dev);
2297 	return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2298 }
2299 
cxgb4_create_server_filter(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue,unsigned char port,unsigned char mask)2300 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2301 		__be32 sip, __be16 sport, __be16 vlan,
2302 		unsigned int queue, unsigned char port, unsigned char mask)
2303 {
2304 	int ret;
2305 	struct filter_entry *f;
2306 	struct adapter *adap;
2307 	int i;
2308 	u8 *val;
2309 
2310 	adap = netdev2adap(dev);
2311 
2312 	/* Adjust stid to correct filter index */
2313 	stid -= adap->tids.sftid_base;
2314 	stid += adap->tids.nftids;
2315 
2316 	/* Check to make sure the filter requested is writable ...
2317 	 */
2318 	f = &adap->tids.ftid_tab[stid];
2319 	ret = writable_filter(f);
2320 	if (ret)
2321 		return ret;
2322 
2323 	/* Clear out any old resources being used by the filter before
2324 	 * we start constructing the new filter.
2325 	 */
2326 	if (f->valid)
2327 		clear_filter(adap, f);
2328 
2329 	/* Clear out filter specifications */
2330 	memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2331 	f->fs.val.lport = cpu_to_be16(sport);
2332 	f->fs.mask.lport  = ~0;
2333 	val = (u8 *)&sip;
2334 	if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2335 		for (i = 0; i < 4; i++) {
2336 			f->fs.val.lip[i] = val[i];
2337 			f->fs.mask.lip[i] = ~0;
2338 		}
2339 		if (adap->params.tp.vlan_pri_map & PORT_F) {
2340 			f->fs.val.iport = port;
2341 			f->fs.mask.iport = mask;
2342 		}
2343 	}
2344 
2345 	if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2346 		f->fs.val.proto = IPPROTO_TCP;
2347 		f->fs.mask.proto = ~0;
2348 	}
2349 
2350 	f->fs.dirsteer = 1;
2351 	f->fs.iq = queue;
2352 	/* Mark filter as locked */
2353 	f->locked = 1;
2354 	f->fs.rpttid = 1;
2355 
2356 	ret = set_filter_wr(adap, stid);
2357 	if (ret) {
2358 		clear_filter(adap, f);
2359 		return ret;
2360 	}
2361 
2362 	return 0;
2363 }
2364 EXPORT_SYMBOL(cxgb4_create_server_filter);
2365 
cxgb4_remove_server_filter(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)2366 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2367 		unsigned int queue, bool ipv6)
2368 {
2369 	struct filter_entry *f;
2370 	struct adapter *adap;
2371 
2372 	adap = netdev2adap(dev);
2373 
2374 	/* Adjust stid to correct filter index */
2375 	stid -= adap->tids.sftid_base;
2376 	stid += adap->tids.nftids;
2377 
2378 	f = &adap->tids.ftid_tab[stid];
2379 	/* Unlock the filter */
2380 	f->locked = 0;
2381 
2382 	return delete_filter(adap, stid);
2383 }
2384 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2385 
cxgb_get_stats(struct net_device * dev,struct rtnl_link_stats64 * ns)2386 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2387 						struct rtnl_link_stats64 *ns)
2388 {
2389 	struct port_stats stats;
2390 	struct port_info *p = netdev_priv(dev);
2391 	struct adapter *adapter = p->adapter;
2392 
2393 	/* Block retrieving statistics during EEH error
2394 	 * recovery. Otherwise, the recovery might fail
2395 	 * and the PCI device will be removed permanently
2396 	 */
2397 	spin_lock(&adapter->stats_lock);
2398 	if (!netif_device_present(dev)) {
2399 		spin_unlock(&adapter->stats_lock);
2400 		return ns;
2401 	}
2402 	t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2403 				 &p->stats_base);
2404 	spin_unlock(&adapter->stats_lock);
2405 
2406 	ns->tx_bytes   = stats.tx_octets;
2407 	ns->tx_packets = stats.tx_frames;
2408 	ns->rx_bytes   = stats.rx_octets;
2409 	ns->rx_packets = stats.rx_frames;
2410 	ns->multicast  = stats.rx_mcast_frames;
2411 
2412 	/* detailed rx_errors */
2413 	ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2414 			       stats.rx_runt;
2415 	ns->rx_over_errors   = 0;
2416 	ns->rx_crc_errors    = stats.rx_fcs_err;
2417 	ns->rx_frame_errors  = stats.rx_symbol_err;
2418 	ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2419 			       stats.rx_ovflow2 + stats.rx_ovflow3 +
2420 			       stats.rx_trunc0 + stats.rx_trunc1 +
2421 			       stats.rx_trunc2 + stats.rx_trunc3;
2422 	ns->rx_missed_errors = 0;
2423 
2424 	/* detailed tx_errors */
2425 	ns->tx_aborted_errors   = 0;
2426 	ns->tx_carrier_errors   = 0;
2427 	ns->tx_fifo_errors      = 0;
2428 	ns->tx_heartbeat_errors = 0;
2429 	ns->tx_window_errors    = 0;
2430 
2431 	ns->tx_errors = stats.tx_error_frames;
2432 	ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2433 		ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2434 	return ns;
2435 }
2436 
cxgb_ioctl(struct net_device * dev,struct ifreq * req,int cmd)2437 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2438 {
2439 	unsigned int mbox;
2440 	int ret = 0, prtad, devad;
2441 	struct port_info *pi = netdev_priv(dev);
2442 	struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2443 
2444 	switch (cmd) {
2445 	case SIOCGMIIPHY:
2446 		if (pi->mdio_addr < 0)
2447 			return -EOPNOTSUPP;
2448 		data->phy_id = pi->mdio_addr;
2449 		break;
2450 	case SIOCGMIIREG:
2451 	case SIOCSMIIREG:
2452 		if (mdio_phy_id_is_c45(data->phy_id)) {
2453 			prtad = mdio_phy_id_prtad(data->phy_id);
2454 			devad = mdio_phy_id_devad(data->phy_id);
2455 		} else if (data->phy_id < 32) {
2456 			prtad = data->phy_id;
2457 			devad = 0;
2458 			data->reg_num &= 0x1f;
2459 		} else
2460 			return -EINVAL;
2461 
2462 		mbox = pi->adapter->pf;
2463 		if (cmd == SIOCGMIIREG)
2464 			ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2465 					 data->reg_num, &data->val_out);
2466 		else
2467 			ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2468 					 data->reg_num, data->val_in);
2469 		break;
2470 	case SIOCGHWTSTAMP:
2471 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2472 				    sizeof(pi->tstamp_config)) ?
2473 			-EFAULT : 0;
2474 	case SIOCSHWTSTAMP:
2475 		if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2476 				   sizeof(pi->tstamp_config)))
2477 			return -EFAULT;
2478 
2479 		switch (pi->tstamp_config.rx_filter) {
2480 		case HWTSTAMP_FILTER_NONE:
2481 			pi->rxtstamp = false;
2482 			break;
2483 		case HWTSTAMP_FILTER_ALL:
2484 			pi->rxtstamp = true;
2485 			break;
2486 		default:
2487 			pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2488 			return -ERANGE;
2489 		}
2490 
2491 		return copy_to_user(req->ifr_data, &pi->tstamp_config,
2492 				    sizeof(pi->tstamp_config)) ?
2493 			-EFAULT : 0;
2494 	default:
2495 		return -EOPNOTSUPP;
2496 	}
2497 	return ret;
2498 }
2499 
cxgb_set_rxmode(struct net_device * dev)2500 static void cxgb_set_rxmode(struct net_device *dev)
2501 {
2502 	/* unfortunately we can't return errors to the stack */
2503 	set_rxmode(dev, -1, false);
2504 }
2505 
cxgb_change_mtu(struct net_device * dev,int new_mtu)2506 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2507 {
2508 	int ret;
2509 	struct port_info *pi = netdev_priv(dev);
2510 
2511 	if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
2512 		return -EINVAL;
2513 	ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2514 			    -1, -1, -1, true);
2515 	if (!ret)
2516 		dev->mtu = new_mtu;
2517 	return ret;
2518 }
2519 
2520 #ifdef CONFIG_PCI_IOV
dummy_open(struct net_device * dev)2521 static int dummy_open(struct net_device *dev)
2522 {
2523 	/* Turn carrier off since we don't have to transmit anything on this
2524 	 * interface.
2525 	 */
2526 	netif_carrier_off(dev);
2527 	return 0;
2528 }
2529 
2530 /* Fill MAC address that will be assigned by the FW */
fill_vf_station_mac_addr(struct adapter * adap)2531 static void fill_vf_station_mac_addr(struct adapter *adap)
2532 {
2533 	unsigned int i;
2534 	u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2535 	int err;
2536 	u8 *na;
2537 	u16 a, b;
2538 
2539 	err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2540 	if (!err) {
2541 		na = adap->params.vpd.na;
2542 		for (i = 0; i < ETH_ALEN; i++)
2543 			hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2544 				      hex2val(na[2 * i + 1]));
2545 		a = (hw_addr[0] << 8) | hw_addr[1];
2546 		b = (hw_addr[1] << 8) | hw_addr[2];
2547 		a ^= b;
2548 		a |= 0x0200;    /* locally assigned Ethernet MAC address */
2549 		a &= ~0x0100;   /* not a multicast Ethernet MAC address */
2550 		macaddr[0] = a >> 8;
2551 		macaddr[1] = a & 0xff;
2552 
2553 		for (i = 2; i < 5; i++)
2554 			macaddr[i] = hw_addr[i + 1];
2555 
2556 		for (i = 0; i < adap->num_vfs; i++) {
2557 			macaddr[5] = adap->pf * 16 + i;
2558 			ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
2559 		}
2560 	}
2561 }
2562 
cxgb_set_vf_mac(struct net_device * dev,int vf,u8 * mac)2563 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2564 {
2565 	struct port_info *pi = netdev_priv(dev);
2566 	struct adapter *adap = pi->adapter;
2567 	int ret;
2568 
2569 	/* verify MAC addr is valid */
2570 	if (!is_valid_ether_addr(mac)) {
2571 		dev_err(pi->adapter->pdev_dev,
2572 			"Invalid Ethernet address %pM for VF %d\n",
2573 			mac, vf);
2574 		return -EINVAL;
2575 	}
2576 
2577 	dev_info(pi->adapter->pdev_dev,
2578 		 "Setting MAC %pM on VF %d\n", mac, vf);
2579 	ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2580 	if (!ret)
2581 		ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2582 	return ret;
2583 }
2584 
cxgb_get_vf_config(struct net_device * dev,int vf,struct ifla_vf_info * ivi)2585 static int cxgb_get_vf_config(struct net_device *dev,
2586 			      int vf, struct ifla_vf_info *ivi)
2587 {
2588 	struct port_info *pi = netdev_priv(dev);
2589 	struct adapter *adap = pi->adapter;
2590 
2591 	if (vf >= adap->num_vfs)
2592 		return -EINVAL;
2593 	ivi->vf = vf;
2594 	ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
2595 	return 0;
2596 }
2597 #endif
2598 
cxgb_set_mac_addr(struct net_device * dev,void * p)2599 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2600 {
2601 	int ret;
2602 	struct sockaddr *addr = p;
2603 	struct port_info *pi = netdev_priv(dev);
2604 
2605 	if (!is_valid_ether_addr(addr->sa_data))
2606 		return -EADDRNOTAVAIL;
2607 
2608 	ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2609 			    pi->xact_addr_filt, addr->sa_data, true, true);
2610 	if (ret < 0)
2611 		return ret;
2612 
2613 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2614 	pi->xact_addr_filt = ret;
2615 	return 0;
2616 }
2617 
2618 #ifdef CONFIG_NET_POLL_CONTROLLER
cxgb_netpoll(struct net_device * dev)2619 static void cxgb_netpoll(struct net_device *dev)
2620 {
2621 	struct port_info *pi = netdev_priv(dev);
2622 	struct adapter *adap = pi->adapter;
2623 
2624 	if (adap->flags & USING_MSIX) {
2625 		int i;
2626 		struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2627 
2628 		for (i = pi->nqsets; i; i--, rx++)
2629 			t4_sge_intr_msix(0, &rx->rspq);
2630 	} else
2631 		t4_intr_handler(adap)(0, adap);
2632 }
2633 #endif
2634 
cxgb_set_tx_maxrate(struct net_device * dev,int index,u32 rate)2635 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2636 {
2637 	struct port_info *pi = netdev_priv(dev);
2638 	struct adapter *adap = pi->adapter;
2639 	struct sched_class *e;
2640 	struct ch_sched_params p;
2641 	struct ch_sched_queue qe;
2642 	u32 req_rate;
2643 	int err = 0;
2644 
2645 	if (!can_sched(dev))
2646 		return -ENOTSUPP;
2647 
2648 	if (index < 0 || index > pi->nqsets - 1)
2649 		return -EINVAL;
2650 
2651 	if (!(adap->flags & FULL_INIT_DONE)) {
2652 		dev_err(adap->pdev_dev,
2653 			"Failed to rate limit on queue %d. Link Down?\n",
2654 			index);
2655 		return -EINVAL;
2656 	}
2657 
2658 	/* Convert from Mbps to Kbps */
2659 	req_rate = rate << 10;
2660 
2661 	/* Max rate is 10 Gbps */
2662 	if (req_rate >= SCHED_MAX_RATE_KBPS) {
2663 		dev_err(adap->pdev_dev,
2664 			"Invalid rate %u Mbps, Max rate is %u Gbps\n",
2665 			rate, SCHED_MAX_RATE_KBPS);
2666 		return -ERANGE;
2667 	}
2668 
2669 	/* First unbind the queue from any existing class */
2670 	memset(&qe, 0, sizeof(qe));
2671 	qe.queue = index;
2672 	qe.class = SCHED_CLS_NONE;
2673 
2674 	err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2675 	if (err) {
2676 		dev_err(adap->pdev_dev,
2677 			"Unbinding Queue %d on port %d fail. Err: %d\n",
2678 			index, pi->port_id, err);
2679 		return err;
2680 	}
2681 
2682 	/* Queue already unbound */
2683 	if (!req_rate)
2684 		return 0;
2685 
2686 	/* Fetch any available unused or matching scheduling class */
2687 	memset(&p, 0, sizeof(p));
2688 	p.type = SCHED_CLASS_TYPE_PACKET;
2689 	p.u.params.level    = SCHED_CLASS_LEVEL_CL_RL;
2690 	p.u.params.mode     = SCHED_CLASS_MODE_CLASS;
2691 	p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2692 	p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2693 	p.u.params.channel  = pi->tx_chan;
2694 	p.u.params.class    = SCHED_CLS_NONE;
2695 	p.u.params.minrate  = 0;
2696 	p.u.params.maxrate  = req_rate;
2697 	p.u.params.weight   = 0;
2698 	p.u.params.pktsize  = dev->mtu;
2699 
2700 	e = cxgb4_sched_class_alloc(dev, &p);
2701 	if (!e)
2702 		return -ENOMEM;
2703 
2704 	/* Bind the queue to a scheduling class */
2705 	memset(&qe, 0, sizeof(qe));
2706 	qe.queue = index;
2707 	qe.class = e->idx;
2708 
2709 	err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2710 	if (err)
2711 		dev_err(adap->pdev_dev,
2712 			"Queue rate limiting failed. Err: %d\n", err);
2713 	return err;
2714 }
2715 
cxgb_setup_tc(struct net_device * dev,u32 handle,__be16 proto,struct tc_to_netdev * tc)2716 static int cxgb_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
2717 			 struct tc_to_netdev *tc)
2718 {
2719 	struct port_info *pi = netdev2pinfo(dev);
2720 	struct adapter *adap = netdev2adap(dev);
2721 
2722 	if (!(adap->flags & FULL_INIT_DONE)) {
2723 		dev_err(adap->pdev_dev,
2724 			"Failed to setup tc on port %d. Link Down?\n",
2725 			pi->port_id);
2726 		return -EINVAL;
2727 	}
2728 
2729 	if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) &&
2730 	    tc->type == TC_SETUP_CLSU32) {
2731 		switch (tc->cls_u32->command) {
2732 		case TC_CLSU32_NEW_KNODE:
2733 		case TC_CLSU32_REPLACE_KNODE:
2734 			return cxgb4_config_knode(dev, proto, tc->cls_u32);
2735 		case TC_CLSU32_DELETE_KNODE:
2736 			return cxgb4_delete_knode(dev, proto, tc->cls_u32);
2737 		default:
2738 			return -EOPNOTSUPP;
2739 		}
2740 	}
2741 
2742 	return -EOPNOTSUPP;
2743 }
2744 
cxgb_fix_features(struct net_device * dev,netdev_features_t features)2745 static netdev_features_t cxgb_fix_features(struct net_device *dev,
2746 					   netdev_features_t features)
2747 {
2748 	/* Disable GRO, if RX_CSUM is disabled */
2749 	if (!(features & NETIF_F_RXCSUM))
2750 		features &= ~NETIF_F_GRO;
2751 
2752 	return features;
2753 }
2754 
2755 static const struct net_device_ops cxgb4_netdev_ops = {
2756 	.ndo_open             = cxgb_open,
2757 	.ndo_stop             = cxgb_close,
2758 	.ndo_start_xmit       = t4_eth_xmit,
2759 	.ndo_select_queue     =	cxgb_select_queue,
2760 	.ndo_get_stats64      = cxgb_get_stats,
2761 	.ndo_set_rx_mode      = cxgb_set_rxmode,
2762 	.ndo_set_mac_address  = cxgb_set_mac_addr,
2763 	.ndo_set_features     = cxgb_set_features,
2764 	.ndo_validate_addr    = eth_validate_addr,
2765 	.ndo_do_ioctl         = cxgb_ioctl,
2766 	.ndo_change_mtu       = cxgb_change_mtu,
2767 #ifdef CONFIG_NET_POLL_CONTROLLER
2768 	.ndo_poll_controller  = cxgb_netpoll,
2769 #endif
2770 #ifdef CONFIG_CHELSIO_T4_FCOE
2771 	.ndo_fcoe_enable      = cxgb_fcoe_enable,
2772 	.ndo_fcoe_disable     = cxgb_fcoe_disable,
2773 #endif /* CONFIG_CHELSIO_T4_FCOE */
2774 #ifdef CONFIG_NET_RX_BUSY_POLL
2775 	.ndo_busy_poll        = cxgb_busy_poll,
2776 #endif
2777 	.ndo_set_tx_maxrate   = cxgb_set_tx_maxrate,
2778 	.ndo_setup_tc         = cxgb_setup_tc,
2779 	.ndo_fix_features     = cxgb_fix_features,
2780 };
2781 
2782 #ifdef CONFIG_PCI_IOV
2783 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
2784 	.ndo_open             = dummy_open,
2785 	.ndo_set_vf_mac       = cxgb_set_vf_mac,
2786 	.ndo_get_vf_config    = cxgb_get_vf_config,
2787 };
2788 #endif
2789 
get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)2790 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2791 {
2792 	struct adapter *adapter = netdev2adap(dev);
2793 
2794 	strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
2795 	strlcpy(info->version, cxgb4_driver_version,
2796 		sizeof(info->version));
2797 	strlcpy(info->bus_info, pci_name(adapter->pdev),
2798 		sizeof(info->bus_info));
2799 }
2800 
2801 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
2802 	.get_drvinfo       = get_drvinfo,
2803 };
2804 
t4_fatal_err(struct adapter * adap)2805 void t4_fatal_err(struct adapter *adap)
2806 {
2807 	t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
2808 	t4_intr_disable(adap);
2809 	dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
2810 }
2811 
setup_memwin(struct adapter * adap)2812 static void setup_memwin(struct adapter *adap)
2813 {
2814 	u32 nic_win_base = t4_get_util_window(adap);
2815 
2816 	t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
2817 }
2818 
setup_memwin_rdma(struct adapter * adap)2819 static void setup_memwin_rdma(struct adapter *adap)
2820 {
2821 	if (adap->vres.ocq.size) {
2822 		u32 start;
2823 		unsigned int sz_kb;
2824 
2825 		start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
2826 		start &= PCI_BASE_ADDRESS_MEM_MASK;
2827 		start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
2828 		sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
2829 		t4_write_reg(adap,
2830 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
2831 			     start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
2832 		t4_write_reg(adap,
2833 			     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
2834 			     adap->vres.ocq.start);
2835 		t4_read_reg(adap,
2836 			    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
2837 	}
2838 }
2839 
adap_init1(struct adapter * adap,struct fw_caps_config_cmd * c)2840 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
2841 {
2842 	u32 v;
2843 	int ret;
2844 
2845 	/* get device capabilities */
2846 	memset(c, 0, sizeof(*c));
2847 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2848 			       FW_CMD_REQUEST_F | FW_CMD_READ_F);
2849 	c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
2850 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
2851 	if (ret < 0)
2852 		return ret;
2853 
2854 	c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2855 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
2856 	ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
2857 	if (ret < 0)
2858 		return ret;
2859 
2860 	ret = t4_config_glbl_rss(adap, adap->pf,
2861 				 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
2862 				 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
2863 				 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
2864 	if (ret < 0)
2865 		return ret;
2866 
2867 	ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
2868 			  MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
2869 			  FW_CMD_CAP_PF);
2870 	if (ret < 0)
2871 		return ret;
2872 
2873 	t4_sge_init(adap);
2874 
2875 	/* tweak some settings */
2876 	t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
2877 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
2878 	t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
2879 	v = t4_read_reg(adap, TP_PIO_DATA_A);
2880 	t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
2881 
2882 	/* first 4 Tx modulation queues point to consecutive Tx channels */
2883 	adap->params.tp.tx_modq_map = 0xE4;
2884 	t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
2885 		     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
2886 
2887 	/* associate each Tx modulation queue with consecutive Tx channels */
2888 	v = 0x84218421;
2889 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2890 			  &v, 1, TP_TX_SCHED_HDR_A);
2891 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2892 			  &v, 1, TP_TX_SCHED_FIFO_A);
2893 	t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2894 			  &v, 1, TP_TX_SCHED_PCMD_A);
2895 
2896 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
2897 	if (is_offload(adap)) {
2898 		t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
2899 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2900 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2901 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2902 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2903 		t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
2904 			     TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2905 			     TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2906 			     TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2907 			     TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2908 	}
2909 
2910 	/* get basic stuff going */
2911 	return t4_early_init(adap, adap->pf);
2912 }
2913 
2914 /*
2915  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
2916  */
2917 #define MAX_ATIDS 8192U
2918 
2919 /*
2920  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
2921  *
2922  * If the firmware we're dealing with has Configuration File support, then
2923  * we use that to perform all configuration
2924  */
2925 
2926 /*
2927  * Tweak configuration based on module parameters, etc.  Most of these have
2928  * defaults assigned to them by Firmware Configuration Files (if we're using
2929  * them) but need to be explicitly set if we're using hard-coded
2930  * initialization.  But even in the case of using Firmware Configuration
2931  * Files, we'd like to expose the ability to change these via module
2932  * parameters so these are essentially common tweaks/settings for
2933  * Configuration Files and hard-coded initialization ...
2934  */
adap_init0_tweaks(struct adapter * adapter)2935 static int adap_init0_tweaks(struct adapter *adapter)
2936 {
2937 	/*
2938 	 * Fix up various Host-Dependent Parameters like Page Size, Cache
2939 	 * Line Size, etc.  The firmware default is for a 4KB Page Size and
2940 	 * 64B Cache Line Size ...
2941 	 */
2942 	t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
2943 
2944 	/*
2945 	 * Process module parameters which affect early initialization.
2946 	 */
2947 	if (rx_dma_offset != 2 && rx_dma_offset != 0) {
2948 		dev_err(&adapter->pdev->dev,
2949 			"Ignoring illegal rx_dma_offset=%d, using 2\n",
2950 			rx_dma_offset);
2951 		rx_dma_offset = 2;
2952 	}
2953 	t4_set_reg_field(adapter, SGE_CONTROL_A,
2954 			 PKTSHIFT_V(PKTSHIFT_M),
2955 			 PKTSHIFT_V(rx_dma_offset));
2956 
2957 	/*
2958 	 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
2959 	 * adds the pseudo header itself.
2960 	 */
2961 	t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
2962 			       CSUM_HAS_PSEUDO_HDR_F, 0);
2963 
2964 	return 0;
2965 }
2966 
2967 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
2968  * unto themselves and they contain their own firmware to perform their
2969  * tasks ...
2970  */
phy_aq1202_version(const u8 * phy_fw_data,size_t phy_fw_size)2971 static int phy_aq1202_version(const u8 *phy_fw_data,
2972 			      size_t phy_fw_size)
2973 {
2974 	int offset;
2975 
2976 	/* At offset 0x8 you're looking for the primary image's
2977 	 * starting offset which is 3 Bytes wide
2978 	 *
2979 	 * At offset 0xa of the primary image, you look for the offset
2980 	 * of the DRAM segment which is 3 Bytes wide.
2981 	 *
2982 	 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
2983 	 * wide
2984 	 */
2985 	#define be16(__p) (((__p)[0] << 8) | (__p)[1])
2986 	#define le16(__p) ((__p)[0] | ((__p)[1] << 8))
2987 	#define le24(__p) (le16(__p) | ((__p)[2] << 16))
2988 
2989 	offset = le24(phy_fw_data + 0x8) << 12;
2990 	offset = le24(phy_fw_data + offset + 0xa);
2991 	return be16(phy_fw_data + offset + 0x27e);
2992 
2993 	#undef be16
2994 	#undef le16
2995 	#undef le24
2996 }
2997 
2998 static struct info_10gbt_phy_fw {
2999 	unsigned int phy_fw_id;		/* PCI Device ID */
3000 	char *phy_fw_file;		/* /lib/firmware/ PHY Firmware file */
3001 	int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3002 	int phy_flash;			/* Has FLASH for PHY Firmware */
3003 } phy_info_array[] = {
3004 	{
3005 		PHY_AQ1202_DEVICEID,
3006 		PHY_AQ1202_FIRMWARE,
3007 		phy_aq1202_version,
3008 		1,
3009 	},
3010 	{
3011 		PHY_BCM84834_DEVICEID,
3012 		PHY_BCM84834_FIRMWARE,
3013 		NULL,
3014 		0,
3015 	},
3016 	{ 0, NULL, NULL },
3017 };
3018 
find_phy_info(int devid)3019 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3020 {
3021 	int i;
3022 
3023 	for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3024 		if (phy_info_array[i].phy_fw_id == devid)
3025 			return &phy_info_array[i];
3026 	}
3027 	return NULL;
3028 }
3029 
3030 /* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3031  * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3032  * we return a negative error number.  If we transfer new firmware we return 1
3033  * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3034  */
adap_init0_phy(struct adapter * adap)3035 static int adap_init0_phy(struct adapter *adap)
3036 {
3037 	const struct firmware *phyf;
3038 	int ret;
3039 	struct info_10gbt_phy_fw *phy_info;
3040 
3041 	/* Use the device ID to determine which PHY file to flash.
3042 	 */
3043 	phy_info = find_phy_info(adap->pdev->device);
3044 	if (!phy_info) {
3045 		dev_warn(adap->pdev_dev,
3046 			 "No PHY Firmware file found for this PHY\n");
3047 		return -EOPNOTSUPP;
3048 	}
3049 
3050 	/* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3051 	 * use that. The adapter firmware provides us with a memory buffer
3052 	 * where we can load a PHY firmware file from the host if we want to
3053 	 * override the PHY firmware File in flash.
3054 	 */
3055 	ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3056 				      adap->pdev_dev);
3057 	if (ret < 0) {
3058 		/* For adapters without FLASH attached to PHY for their
3059 		 * firmware, it's obviously a fatal error if we can't get the
3060 		 * firmware to the adapter.  For adapters with PHY firmware
3061 		 * FLASH storage, it's worth a warning if we can't find the
3062 		 * PHY Firmware but we'll neuter the error ...
3063 		 */
3064 		dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3065 			"/lib/firmware/%s, error %d\n",
3066 			phy_info->phy_fw_file, -ret);
3067 		if (phy_info->phy_flash) {
3068 			int cur_phy_fw_ver = 0;
3069 
3070 			t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3071 			dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3072 				 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3073 			ret = 0;
3074 		}
3075 
3076 		return ret;
3077 	}
3078 
3079 	/* Load PHY Firmware onto adapter.
3080 	 */
3081 	ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3082 			     phy_info->phy_fw_version,
3083 			     (u8 *)phyf->data, phyf->size);
3084 	if (ret < 0)
3085 		dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3086 			-ret);
3087 	else if (ret > 0) {
3088 		int new_phy_fw_ver = 0;
3089 
3090 		if (phy_info->phy_fw_version)
3091 			new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3092 								  phyf->size);
3093 		dev_info(adap->pdev_dev, "Successfully transferred PHY "
3094 			 "Firmware /lib/firmware/%s, version %#x\n",
3095 			 phy_info->phy_fw_file, new_phy_fw_ver);
3096 	}
3097 
3098 	release_firmware(phyf);
3099 
3100 	return ret;
3101 }
3102 
3103 /*
3104  * Attempt to initialize the adapter via a Firmware Configuration File.
3105  */
adap_init0_config(struct adapter * adapter,int reset)3106 static int adap_init0_config(struct adapter *adapter, int reset)
3107 {
3108 	struct fw_caps_config_cmd caps_cmd;
3109 	const struct firmware *cf;
3110 	unsigned long mtype = 0, maddr = 0;
3111 	u32 finiver, finicsum, cfcsum;
3112 	int ret;
3113 	int config_issued = 0;
3114 	char *fw_config_file, fw_config_file_path[256];
3115 	char *config_name = NULL;
3116 
3117 	/*
3118 	 * Reset device if necessary.
3119 	 */
3120 	if (reset) {
3121 		ret = t4_fw_reset(adapter, adapter->mbox,
3122 				  PIORSTMODE_F | PIORST_F);
3123 		if (ret < 0)
3124 			goto bye;
3125 	}
3126 
3127 	/* If this is a 10Gb/s-BT adapter make sure the chip-external
3128 	 * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3129 	 * to be performed after any global adapter RESET above since some
3130 	 * PHYs only have local RAM copies of the PHY firmware.
3131 	 */
3132 	if (is_10gbt_device(adapter->pdev->device)) {
3133 		ret = adap_init0_phy(adapter);
3134 		if (ret < 0)
3135 			goto bye;
3136 	}
3137 	/*
3138 	 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3139 	 * then use that.  Otherwise, use the configuration file stored
3140 	 * in the adapter flash ...
3141 	 */
3142 	switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3143 	case CHELSIO_T4:
3144 		fw_config_file = FW4_CFNAME;
3145 		break;
3146 	case CHELSIO_T5:
3147 		fw_config_file = FW5_CFNAME;
3148 		break;
3149 	case CHELSIO_T6:
3150 		fw_config_file = FW6_CFNAME;
3151 		break;
3152 	default:
3153 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3154 		       adapter->pdev->device);
3155 		ret = -EINVAL;
3156 		goto bye;
3157 	}
3158 
3159 	ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3160 	if (ret < 0) {
3161 		config_name = "On FLASH";
3162 		mtype = FW_MEMTYPE_CF_FLASH;
3163 		maddr = t4_flash_cfg_addr(adapter);
3164 	} else {
3165 		u32 params[7], val[7];
3166 
3167 		sprintf(fw_config_file_path,
3168 			"/lib/firmware/%s", fw_config_file);
3169 		config_name = fw_config_file_path;
3170 
3171 		if (cf->size >= FLASH_CFG_MAX_SIZE)
3172 			ret = -ENOMEM;
3173 		else {
3174 			params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3175 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3176 			ret = t4_query_params(adapter, adapter->mbox,
3177 					      adapter->pf, 0, 1, params, val);
3178 			if (ret == 0) {
3179 				/*
3180 				 * For t4_memory_rw() below addresses and
3181 				 * sizes have to be in terms of multiples of 4
3182 				 * bytes.  So, if the Configuration File isn't
3183 				 * a multiple of 4 bytes in length we'll have
3184 				 * to write that out separately since we can't
3185 				 * guarantee that the bytes following the
3186 				 * residual byte in the buffer returned by
3187 				 * request_firmware() are zeroed out ...
3188 				 */
3189 				size_t resid = cf->size & 0x3;
3190 				size_t size = cf->size & ~0x3;
3191 				__be32 *data = (__be32 *)cf->data;
3192 
3193 				mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3194 				maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3195 
3196 				spin_lock(&adapter->win0_lock);
3197 				ret = t4_memory_rw(adapter, 0, mtype, maddr,
3198 						   size, data, T4_MEMORY_WRITE);
3199 				if (ret == 0 && resid != 0) {
3200 					union {
3201 						__be32 word;
3202 						char buf[4];
3203 					} last;
3204 					int i;
3205 
3206 					last.word = data[size >> 2];
3207 					for (i = resid; i < 4; i++)
3208 						last.buf[i] = 0;
3209 					ret = t4_memory_rw(adapter, 0, mtype,
3210 							   maddr + size,
3211 							   4, &last.word,
3212 							   T4_MEMORY_WRITE);
3213 				}
3214 				spin_unlock(&adapter->win0_lock);
3215 			}
3216 		}
3217 
3218 		release_firmware(cf);
3219 		if (ret)
3220 			goto bye;
3221 	}
3222 
3223 	/*
3224 	 * Issue a Capability Configuration command to the firmware to get it
3225 	 * to parse the Configuration File.  We don't use t4_fw_config_file()
3226 	 * because we want the ability to modify various features after we've
3227 	 * processed the configuration file ...
3228 	 */
3229 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3230 	caps_cmd.op_to_write =
3231 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3232 		      FW_CMD_REQUEST_F |
3233 		      FW_CMD_READ_F);
3234 	caps_cmd.cfvalid_to_len16 =
3235 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3236 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3237 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3238 		      FW_LEN16(caps_cmd));
3239 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3240 			 &caps_cmd);
3241 
3242 	/* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3243 	 * Configuration File in FLASH), our last gasp effort is to use the
3244 	 * Firmware Configuration File which is embedded in the firmware.  A
3245 	 * very few early versions of the firmware didn't have one embedded
3246 	 * but we can ignore those.
3247 	 */
3248 	if (ret == -ENOENT) {
3249 		memset(&caps_cmd, 0, sizeof(caps_cmd));
3250 		caps_cmd.op_to_write =
3251 			htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3252 					FW_CMD_REQUEST_F |
3253 					FW_CMD_READ_F);
3254 		caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3255 		ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3256 				sizeof(caps_cmd), &caps_cmd);
3257 		config_name = "Firmware Default";
3258 	}
3259 
3260 	config_issued = 1;
3261 	if (ret < 0)
3262 		goto bye;
3263 
3264 	finiver = ntohl(caps_cmd.finiver);
3265 	finicsum = ntohl(caps_cmd.finicsum);
3266 	cfcsum = ntohl(caps_cmd.cfcsum);
3267 	if (finicsum != cfcsum)
3268 		dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3269 			 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3270 			 finicsum, cfcsum);
3271 
3272 	/*
3273 	 * And now tell the firmware to use the configuration we just loaded.
3274 	 */
3275 	caps_cmd.op_to_write =
3276 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3277 		      FW_CMD_REQUEST_F |
3278 		      FW_CMD_WRITE_F);
3279 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3280 	ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3281 			 NULL);
3282 	if (ret < 0)
3283 		goto bye;
3284 
3285 	/*
3286 	 * Tweak configuration based on system architecture, module
3287 	 * parameters, etc.
3288 	 */
3289 	ret = adap_init0_tweaks(adapter);
3290 	if (ret < 0)
3291 		goto bye;
3292 
3293 	/*
3294 	 * And finally tell the firmware to initialize itself using the
3295 	 * parameters from the Configuration File.
3296 	 */
3297 	ret = t4_fw_initialize(adapter, adapter->mbox);
3298 	if (ret < 0)
3299 		goto bye;
3300 
3301 	/* Emit Firmware Configuration File information and return
3302 	 * successfully.
3303 	 */
3304 	dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3305 		 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3306 		 config_name, finiver, cfcsum);
3307 	return 0;
3308 
3309 	/*
3310 	 * Something bad happened.  Return the error ...  (If the "error"
3311 	 * is that there's no Configuration File on the adapter we don't
3312 	 * want to issue a warning since this is fairly common.)
3313 	 */
3314 bye:
3315 	if (config_issued && ret != -ENOENT)
3316 		dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3317 			 config_name, -ret);
3318 	return ret;
3319 }
3320 
3321 static struct fw_info fw_info_array[] = {
3322 	{
3323 		.chip = CHELSIO_T4,
3324 		.fs_name = FW4_CFNAME,
3325 		.fw_mod_name = FW4_FNAME,
3326 		.fw_hdr = {
3327 			.chip = FW_HDR_CHIP_T4,
3328 			.fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3329 			.intfver_nic = FW_INTFVER(T4, NIC),
3330 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3331 			.intfver_ri = FW_INTFVER(T4, RI),
3332 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3333 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3334 		},
3335 	}, {
3336 		.chip = CHELSIO_T5,
3337 		.fs_name = FW5_CFNAME,
3338 		.fw_mod_name = FW5_FNAME,
3339 		.fw_hdr = {
3340 			.chip = FW_HDR_CHIP_T5,
3341 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3342 			.intfver_nic = FW_INTFVER(T5, NIC),
3343 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3344 			.intfver_ri = FW_INTFVER(T5, RI),
3345 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3346 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3347 		},
3348 	}, {
3349 		.chip = CHELSIO_T6,
3350 		.fs_name = FW6_CFNAME,
3351 		.fw_mod_name = FW6_FNAME,
3352 		.fw_hdr = {
3353 			.chip = FW_HDR_CHIP_T6,
3354 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3355 			.intfver_nic = FW_INTFVER(T6, NIC),
3356 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3357 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3358 			.intfver_ri = FW_INTFVER(T6, RI),
3359 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3360 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3361 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3362 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3363 		},
3364 	}
3365 
3366 };
3367 
find_fw_info(int chip)3368 static struct fw_info *find_fw_info(int chip)
3369 {
3370 	int i;
3371 
3372 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3373 		if (fw_info_array[i].chip == chip)
3374 			return &fw_info_array[i];
3375 	}
3376 	return NULL;
3377 }
3378 
3379 /*
3380  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3381  */
adap_init0(struct adapter * adap)3382 static int adap_init0(struct adapter *adap)
3383 {
3384 	int ret;
3385 	u32 v, port_vec;
3386 	enum dev_state state;
3387 	u32 params[7], val[7];
3388 	struct fw_caps_config_cmd caps_cmd;
3389 	int reset = 1;
3390 
3391 	/* Grab Firmware Device Log parameters as early as possible so we have
3392 	 * access to it for debugging, etc.
3393 	 */
3394 	ret = t4_init_devlog_params(adap);
3395 	if (ret < 0)
3396 		return ret;
3397 
3398 	/* Contact FW, advertising Master capability */
3399 	ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3400 			  is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3401 	if (ret < 0) {
3402 		dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3403 			ret);
3404 		return ret;
3405 	}
3406 	if (ret == adap->mbox)
3407 		adap->flags |= MASTER_PF;
3408 
3409 	/*
3410 	 * If we're the Master PF Driver and the device is uninitialized,
3411 	 * then let's consider upgrading the firmware ...  (We always want
3412 	 * to check the firmware version number in order to A. get it for
3413 	 * later reporting and B. to warn if the currently loaded firmware
3414 	 * is excessively mismatched relative to the driver.)
3415 	 */
3416 	t4_get_fw_version(adap, &adap->params.fw_vers);
3417 	t4_get_bs_version(adap, &adap->params.bs_vers);
3418 	t4_get_tp_version(adap, &adap->params.tp_vers);
3419 	t4_get_exprom_version(adap, &adap->params.er_vers);
3420 
3421 	ret = t4_check_fw_version(adap);
3422 	/* If firmware is too old (not supported by driver) force an update. */
3423 	if (ret)
3424 		state = DEV_STATE_UNINIT;
3425 	if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3426 		struct fw_info *fw_info;
3427 		struct fw_hdr *card_fw;
3428 		const struct firmware *fw;
3429 		const u8 *fw_data = NULL;
3430 		unsigned int fw_size = 0;
3431 
3432 		/* This is the firmware whose headers the driver was compiled
3433 		 * against
3434 		 */
3435 		fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3436 		if (fw_info == NULL) {
3437 			dev_err(adap->pdev_dev,
3438 				"unable to get firmware info for chip %d.\n",
3439 				CHELSIO_CHIP_VERSION(adap->params.chip));
3440 			return -EINVAL;
3441 		}
3442 
3443 		/* allocate memory to read the header of the firmware on the
3444 		 * card
3445 		 */
3446 		card_fw = t4_alloc_mem(sizeof(*card_fw));
3447 
3448 		/* Get FW from from /lib/firmware/ */
3449 		ret = request_firmware(&fw, fw_info->fw_mod_name,
3450 				       adap->pdev_dev);
3451 		if (ret < 0) {
3452 			dev_err(adap->pdev_dev,
3453 				"unable to load firmware image %s, error %d\n",
3454 				fw_info->fw_mod_name, ret);
3455 		} else {
3456 			fw_data = fw->data;
3457 			fw_size = fw->size;
3458 		}
3459 
3460 		/* upgrade FW logic */
3461 		ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3462 				 state, &reset);
3463 
3464 		/* Cleaning up */
3465 		release_firmware(fw);
3466 		t4_free_mem(card_fw);
3467 
3468 		if (ret < 0)
3469 			goto bye;
3470 	}
3471 
3472 	/*
3473 	 * Grab VPD parameters.  This should be done after we establish a
3474 	 * connection to the firmware since some of the VPD parameters
3475 	 * (notably the Core Clock frequency) are retrieved via requests to
3476 	 * the firmware.  On the other hand, we need these fairly early on
3477 	 * so we do this right after getting ahold of the firmware.
3478 	 */
3479 	ret = t4_get_vpd_params(adap, &adap->params.vpd);
3480 	if (ret < 0)
3481 		goto bye;
3482 
3483 	/*
3484 	 * Find out what ports are available to us.  Note that we need to do
3485 	 * this before calling adap_init0_no_config() since it needs nports
3486 	 * and portvec ...
3487 	 */
3488 	v =
3489 	    FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3490 	    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3491 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3492 	if (ret < 0)
3493 		goto bye;
3494 
3495 	adap->params.nports = hweight32(port_vec);
3496 	adap->params.portvec = port_vec;
3497 
3498 	/* If the firmware is initialized already, emit a simply note to that
3499 	 * effect. Otherwise, it's time to try initializing the adapter.
3500 	 */
3501 	if (state == DEV_STATE_INIT) {
3502 		dev_info(adap->pdev_dev, "Coming up as %s: "\
3503 			 "Adapter already initialized\n",
3504 			 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3505 	} else {
3506 		dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3507 			 "Initializing adapter\n");
3508 
3509 		/* Find out whether we're dealing with a version of the
3510 		 * firmware which has configuration file support.
3511 		 */
3512 		params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3513 			     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3514 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3515 				      params, val);
3516 
3517 		/* If the firmware doesn't support Configuration Files,
3518 		 * return an error.
3519 		 */
3520 		if (ret < 0) {
3521 			dev_err(adap->pdev_dev, "firmware doesn't support "
3522 				"Firmware Configuration Files\n");
3523 			goto bye;
3524 		}
3525 
3526 		/* The firmware provides us with a memory buffer where we can
3527 		 * load a Configuration File from the host if we want to
3528 		 * override the Configuration File in flash.
3529 		 */
3530 		ret = adap_init0_config(adap, reset);
3531 		if (ret == -ENOENT) {
3532 			dev_err(adap->pdev_dev, "no Configuration File "
3533 				"present on adapter.\n");
3534 			goto bye;
3535 		}
3536 		if (ret < 0) {
3537 			dev_err(adap->pdev_dev, "could not initialize "
3538 				"adapter, error %d\n", -ret);
3539 			goto bye;
3540 		}
3541 	}
3542 
3543 	/* Give the SGE code a chance to pull in anything that it needs ...
3544 	 * Note that this must be called after we retrieve our VPD parameters
3545 	 * in order to know how to convert core ticks to seconds, etc.
3546 	 */
3547 	ret = t4_sge_init(adap);
3548 	if (ret < 0)
3549 		goto bye;
3550 
3551 	if (is_bypass_device(adap->pdev->device))
3552 		adap->params.bypass = 1;
3553 
3554 	/*
3555 	 * Grab some of our basic fundamental operating parameters.
3556 	 */
3557 #define FW_PARAM_DEV(param) \
3558 	(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3559 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3560 
3561 #define FW_PARAM_PFVF(param) \
3562 	FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3563 	FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3564 	FW_PARAMS_PARAM_Y_V(0) | \
3565 	FW_PARAMS_PARAM_Z_V(0)
3566 
3567 	params[0] = FW_PARAM_PFVF(EQ_START);
3568 	params[1] = FW_PARAM_PFVF(L2T_START);
3569 	params[2] = FW_PARAM_PFVF(L2T_END);
3570 	params[3] = FW_PARAM_PFVF(FILTER_START);
3571 	params[4] = FW_PARAM_PFVF(FILTER_END);
3572 	params[5] = FW_PARAM_PFVF(IQFLINT_START);
3573 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3574 	if (ret < 0)
3575 		goto bye;
3576 	adap->sge.egr_start = val[0];
3577 	adap->l2t_start = val[1];
3578 	adap->l2t_end = val[2];
3579 	adap->tids.ftid_base = val[3];
3580 	adap->tids.nftids = val[4] - val[3] + 1;
3581 	adap->sge.ingr_start = val[5];
3582 
3583 	/* qids (ingress/egress) returned from firmware can be anywhere
3584 	 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3585 	 * Hence driver needs to allocate memory for this range to
3586 	 * store the queue info. Get the highest IQFLINT/EQ index returned
3587 	 * in FW_EQ_*_CMD.alloc command.
3588 	 */
3589 	params[0] = FW_PARAM_PFVF(EQ_END);
3590 	params[1] = FW_PARAM_PFVF(IQFLINT_END);
3591 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3592 	if (ret < 0)
3593 		goto bye;
3594 	adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3595 	adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3596 
3597 	adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3598 				    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3599 	if (!adap->sge.egr_map) {
3600 		ret = -ENOMEM;
3601 		goto bye;
3602 	}
3603 
3604 	adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3605 				     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3606 	if (!adap->sge.ingr_map) {
3607 		ret = -ENOMEM;
3608 		goto bye;
3609 	}
3610 
3611 	/* Allocate the memory for the vaious egress queue bitmaps
3612 	 * ie starving_fl, txq_maperr and blocked_fl.
3613 	 */
3614 	adap->sge.starving_fl =	kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3615 					sizeof(long), GFP_KERNEL);
3616 	if (!adap->sge.starving_fl) {
3617 		ret = -ENOMEM;
3618 		goto bye;
3619 	}
3620 
3621 	adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3622 				       sizeof(long), GFP_KERNEL);
3623 	if (!adap->sge.txq_maperr) {
3624 		ret = -ENOMEM;
3625 		goto bye;
3626 	}
3627 
3628 #ifdef CONFIG_DEBUG_FS
3629 	adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3630 				       sizeof(long), GFP_KERNEL);
3631 	if (!adap->sge.blocked_fl) {
3632 		ret = -ENOMEM;
3633 		goto bye;
3634 	}
3635 #endif
3636 
3637 	params[0] = FW_PARAM_PFVF(CLIP_START);
3638 	params[1] = FW_PARAM_PFVF(CLIP_END);
3639 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3640 	if (ret < 0)
3641 		goto bye;
3642 	adap->clipt_start = val[0];
3643 	adap->clipt_end = val[1];
3644 
3645 	/* We don't yet have a PARAMs calls to retrieve the number of Traffic
3646 	 * Classes supported by the hardware/firmware so we hard code it here
3647 	 * for now.
3648 	 */
3649 	adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
3650 
3651 	/* query params related to active filter region */
3652 	params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3653 	params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3654 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3655 	/* If Active filter size is set we enable establishing
3656 	 * offload connection through firmware work request
3657 	 */
3658 	if ((val[0] != val[1]) && (ret >= 0)) {
3659 		adap->flags |= FW_OFLD_CONN;
3660 		adap->tids.aftid_base = val[0];
3661 		adap->tids.aftid_end = val[1];
3662 	}
3663 
3664 	/* If we're running on newer firmware, let it know that we're
3665 	 * prepared to deal with encapsulated CPL messages.  Older
3666 	 * firmware won't understand this and we'll just get
3667 	 * unencapsulated messages ...
3668 	 */
3669 	params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3670 	val[0] = 1;
3671 	(void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3672 
3673 	/*
3674 	 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3675 	 * capability.  Earlier versions of the firmware didn't have the
3676 	 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3677 	 * permission to use ULPTX MEMWRITE DSGL.
3678 	 */
3679 	if (is_t4(adap->params.chip)) {
3680 		adap->params.ulptx_memwrite_dsgl = false;
3681 	} else {
3682 		params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3683 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3684 				      1, params, val);
3685 		adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3686 	}
3687 
3688 	/* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
3689 	params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
3690 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3691 			      1, params, val);
3692 	adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
3693 
3694 	/*
3695 	 * Get device capabilities so we can determine what resources we need
3696 	 * to manage.
3697 	 */
3698 	memset(&caps_cmd, 0, sizeof(caps_cmd));
3699 	caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3700 				     FW_CMD_REQUEST_F | FW_CMD_READ_F);
3701 	caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3702 	ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3703 			 &caps_cmd);
3704 	if (ret < 0)
3705 		goto bye;
3706 
3707 	if (caps_cmd.ofldcaps) {
3708 		/* query offload-related parameters */
3709 		params[0] = FW_PARAM_DEV(NTID);
3710 		params[1] = FW_PARAM_PFVF(SERVER_START);
3711 		params[2] = FW_PARAM_PFVF(SERVER_END);
3712 		params[3] = FW_PARAM_PFVF(TDDP_START);
3713 		params[4] = FW_PARAM_PFVF(TDDP_END);
3714 		params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3715 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3716 				      params, val);
3717 		if (ret < 0)
3718 			goto bye;
3719 		adap->tids.ntids = val[0];
3720 		adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3721 		adap->tids.stid_base = val[1];
3722 		adap->tids.nstids = val[2] - val[1] + 1;
3723 		/*
3724 		 * Setup server filter region. Divide the available filter
3725 		 * region into two parts. Regular filters get 1/3rd and server
3726 		 * filters get 2/3rd part. This is only enabled if workarond
3727 		 * path is enabled.
3728 		 * 1. For regular filters.
3729 		 * 2. Server filter: This are special filters which are used
3730 		 * to redirect SYN packets to offload queue.
3731 		 */
3732 		if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3733 			adap->tids.sftid_base = adap->tids.ftid_base +
3734 					DIV_ROUND_UP(adap->tids.nftids, 3);
3735 			adap->tids.nsftids = adap->tids.nftids -
3736 					 DIV_ROUND_UP(adap->tids.nftids, 3);
3737 			adap->tids.nftids = adap->tids.sftid_base -
3738 						adap->tids.ftid_base;
3739 		}
3740 		adap->vres.ddp.start = val[3];
3741 		adap->vres.ddp.size = val[4] - val[3] + 1;
3742 		adap->params.ofldq_wr_cred = val[5];
3743 
3744 		adap->params.offload = 1;
3745 		adap->num_ofld_uld += 1;
3746 	}
3747 	if (caps_cmd.rdmacaps) {
3748 		params[0] = FW_PARAM_PFVF(STAG_START);
3749 		params[1] = FW_PARAM_PFVF(STAG_END);
3750 		params[2] = FW_PARAM_PFVF(RQ_START);
3751 		params[3] = FW_PARAM_PFVF(RQ_END);
3752 		params[4] = FW_PARAM_PFVF(PBL_START);
3753 		params[5] = FW_PARAM_PFVF(PBL_END);
3754 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3755 				      params, val);
3756 		if (ret < 0)
3757 			goto bye;
3758 		adap->vres.stag.start = val[0];
3759 		adap->vres.stag.size = val[1] - val[0] + 1;
3760 		adap->vres.rq.start = val[2];
3761 		adap->vres.rq.size = val[3] - val[2] + 1;
3762 		adap->vres.pbl.start = val[4];
3763 		adap->vres.pbl.size = val[5] - val[4] + 1;
3764 
3765 		params[0] = FW_PARAM_PFVF(SQRQ_START);
3766 		params[1] = FW_PARAM_PFVF(SQRQ_END);
3767 		params[2] = FW_PARAM_PFVF(CQ_START);
3768 		params[3] = FW_PARAM_PFVF(CQ_END);
3769 		params[4] = FW_PARAM_PFVF(OCQ_START);
3770 		params[5] = FW_PARAM_PFVF(OCQ_END);
3771 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
3772 				      val);
3773 		if (ret < 0)
3774 			goto bye;
3775 		adap->vres.qp.start = val[0];
3776 		adap->vres.qp.size = val[1] - val[0] + 1;
3777 		adap->vres.cq.start = val[2];
3778 		adap->vres.cq.size = val[3] - val[2] + 1;
3779 		adap->vres.ocq.start = val[4];
3780 		adap->vres.ocq.size = val[5] - val[4] + 1;
3781 
3782 		params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3783 		params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3784 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
3785 				      val);
3786 		if (ret < 0) {
3787 			adap->params.max_ordird_qp = 8;
3788 			adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3789 			ret = 0;
3790 		} else {
3791 			adap->params.max_ordird_qp = val[0];
3792 			adap->params.max_ird_adapter = val[1];
3793 		}
3794 		dev_info(adap->pdev_dev,
3795 			 "max_ordird_qp %d max_ird_adapter %d\n",
3796 			 adap->params.max_ordird_qp,
3797 			 adap->params.max_ird_adapter);
3798 		adap->num_ofld_uld += 2;
3799 	}
3800 	if (caps_cmd.iscsicaps) {
3801 		params[0] = FW_PARAM_PFVF(ISCSI_START);
3802 		params[1] = FW_PARAM_PFVF(ISCSI_END);
3803 		ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
3804 				      params, val);
3805 		if (ret < 0)
3806 			goto bye;
3807 		adap->vres.iscsi.start = val[0];
3808 		adap->vres.iscsi.size = val[1] - val[0] + 1;
3809 		/* LIO target and cxgb4i initiaitor */
3810 		adap->num_ofld_uld += 2;
3811 	}
3812 	if (caps_cmd.cryptocaps) {
3813 		/* Should query params here...TODO */
3814 		adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
3815 		adap->num_uld += 1;
3816 	}
3817 #undef FW_PARAM_PFVF
3818 #undef FW_PARAM_DEV
3819 
3820 	/* The MTU/MSS Table is initialized by now, so load their values.  If
3821 	 * we're initializing the adapter, then we'll make any modifications
3822 	 * we want to the MTU/MSS Table and also initialize the congestion
3823 	 * parameters.
3824 	 */
3825 	t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3826 	if (state != DEV_STATE_INIT) {
3827 		int i;
3828 
3829 		/* The default MTU Table contains values 1492 and 1500.
3830 		 * However, for TCP, it's better to have two values which are
3831 		 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
3832 		 * This allows us to have a TCP Data Payload which is a
3833 		 * multiple of 8 regardless of what combination of TCP Options
3834 		 * are in use (always a multiple of 4 bytes) which is
3835 		 * important for performance reasons.  For instance, if no
3836 		 * options are in use, then we have a 20-byte IP header and a
3837 		 * 20-byte TCP header.  In this case, a 1500-byte MSS would
3838 		 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
3839 		 * which is not a multiple of 8.  So using an MSS of 1488 in
3840 		 * this case results in a TCP Data Payload of 1448 bytes which
3841 		 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
3842 		 * Stamps have been negotiated, then an MTU of 1500 bytes
3843 		 * results in a TCP Data Payload of 1448 bytes which, as
3844 		 * above, is a multiple of 8 bytes ...
3845 		 */
3846 		for (i = 0; i < NMTUS; i++)
3847 			if (adap->params.mtus[i] == 1492) {
3848 				adap->params.mtus[i] = 1488;
3849 				break;
3850 			}
3851 
3852 		t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3853 			     adap->params.b_wnd);
3854 	}
3855 	t4_init_sge_params(adap);
3856 	adap->flags |= FW_OK;
3857 	t4_init_tp_params(adap);
3858 	return 0;
3859 
3860 	/*
3861 	 * Something bad happened.  If a command timed out or failed with EIO
3862 	 * FW does not operate within its spec or something catastrophic
3863 	 * happened to HW/FW, stop issuing commands.
3864 	 */
3865 bye:
3866 	kfree(adap->sge.egr_map);
3867 	kfree(adap->sge.ingr_map);
3868 	kfree(adap->sge.starving_fl);
3869 	kfree(adap->sge.txq_maperr);
3870 #ifdef CONFIG_DEBUG_FS
3871 	kfree(adap->sge.blocked_fl);
3872 #endif
3873 	if (ret != -ETIMEDOUT && ret != -EIO)
3874 		t4_fw_bye(adap, adap->mbox);
3875 	return ret;
3876 }
3877 
3878 /* EEH callbacks */
3879 
eeh_err_detected(struct pci_dev * pdev,pci_channel_state_t state)3880 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3881 					 pci_channel_state_t state)
3882 {
3883 	int i;
3884 	struct adapter *adap = pci_get_drvdata(pdev);
3885 
3886 	if (!adap)
3887 		goto out;
3888 
3889 	rtnl_lock();
3890 	adap->flags &= ~FW_OK;
3891 	notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3892 	spin_lock(&adap->stats_lock);
3893 	for_each_port(adap, i) {
3894 		struct net_device *dev = adap->port[i];
3895 
3896 		netif_device_detach(dev);
3897 		netif_carrier_off(dev);
3898 	}
3899 	spin_unlock(&adap->stats_lock);
3900 	disable_interrupts(adap);
3901 	if (adap->flags & FULL_INIT_DONE)
3902 		cxgb_down(adap);
3903 	rtnl_unlock();
3904 	if ((adap->flags & DEV_ENABLED)) {
3905 		pci_disable_device(pdev);
3906 		adap->flags &= ~DEV_ENABLED;
3907 	}
3908 out:	return state == pci_channel_io_perm_failure ?
3909 		PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
3910 }
3911 
eeh_slot_reset(struct pci_dev * pdev)3912 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
3913 {
3914 	int i, ret;
3915 	struct fw_caps_config_cmd c;
3916 	struct adapter *adap = pci_get_drvdata(pdev);
3917 
3918 	if (!adap) {
3919 		pci_restore_state(pdev);
3920 		pci_save_state(pdev);
3921 		return PCI_ERS_RESULT_RECOVERED;
3922 	}
3923 
3924 	if (!(adap->flags & DEV_ENABLED)) {
3925 		if (pci_enable_device(pdev)) {
3926 			dev_err(&pdev->dev, "Cannot reenable PCI "
3927 					    "device after reset\n");
3928 			return PCI_ERS_RESULT_DISCONNECT;
3929 		}
3930 		adap->flags |= DEV_ENABLED;
3931 	}
3932 
3933 	pci_set_master(pdev);
3934 	pci_restore_state(pdev);
3935 	pci_save_state(pdev);
3936 	pci_cleanup_aer_uncorrect_error_status(pdev);
3937 
3938 	if (t4_wait_dev_ready(adap->regs) < 0)
3939 		return PCI_ERS_RESULT_DISCONNECT;
3940 	if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
3941 		return PCI_ERS_RESULT_DISCONNECT;
3942 	adap->flags |= FW_OK;
3943 	if (adap_init1(adap, &c))
3944 		return PCI_ERS_RESULT_DISCONNECT;
3945 
3946 	for_each_port(adap, i) {
3947 		struct port_info *p = adap2pinfo(adap, i);
3948 
3949 		ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
3950 				  NULL, NULL);
3951 		if (ret < 0)
3952 			return PCI_ERS_RESULT_DISCONNECT;
3953 		p->viid = ret;
3954 		p->xact_addr_filt = -1;
3955 	}
3956 
3957 	t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3958 		     adap->params.b_wnd);
3959 	setup_memwin(adap);
3960 	if (cxgb_up(adap))
3961 		return PCI_ERS_RESULT_DISCONNECT;
3962 	return PCI_ERS_RESULT_RECOVERED;
3963 }
3964 
eeh_resume(struct pci_dev * pdev)3965 static void eeh_resume(struct pci_dev *pdev)
3966 {
3967 	int i;
3968 	struct adapter *adap = pci_get_drvdata(pdev);
3969 
3970 	if (!adap)
3971 		return;
3972 
3973 	rtnl_lock();
3974 	for_each_port(adap, i) {
3975 		struct net_device *dev = adap->port[i];
3976 
3977 		if (netif_running(dev)) {
3978 			link_start(dev);
3979 			cxgb_set_rxmode(dev);
3980 		}
3981 		netif_device_attach(dev);
3982 	}
3983 	rtnl_unlock();
3984 }
3985 
3986 static const struct pci_error_handlers cxgb4_eeh = {
3987 	.error_detected = eeh_err_detected,
3988 	.slot_reset     = eeh_slot_reset,
3989 	.resume         = eeh_resume,
3990 };
3991 
3992 /* Return true if the Link Configuration supports "High Speeds" (those greater
3993  * than 1Gb/s).
3994  */
is_x_10g_port(const struct link_config * lc)3995 static inline bool is_x_10g_port(const struct link_config *lc)
3996 {
3997 	unsigned int speeds, high_speeds;
3998 
3999 	speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported));
4000 	high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G);
4001 
4002 	return high_speeds != 0;
4003 }
4004 
4005 /*
4006  * Perform default configuration of DMA queues depending on the number and type
4007  * of ports we found and the number of available CPUs.  Most settings can be
4008  * modified by the admin prior to actual use.
4009  */
cfg_queues(struct adapter * adap)4010 static void cfg_queues(struct adapter *adap)
4011 {
4012 	struct sge *s = &adap->sge;
4013 	int i, n10g = 0, qidx = 0;
4014 #ifndef CONFIG_CHELSIO_T4_DCB
4015 	int q10g = 0;
4016 #endif
4017 
4018 	/* Reduce memory usage in kdump environment, disable all offload.
4019 	 */
4020 	if (is_kdump_kernel()) {
4021 		adap->params.offload = 0;
4022 		adap->params.crypto = 0;
4023 	} else if (is_uld(adap) && t4_uld_mem_alloc(adap)) {
4024 		adap->params.offload = 0;
4025 		adap->params.crypto = 0;
4026 	}
4027 
4028 	for_each_port(adap, i)
4029 		n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4030 #ifdef CONFIG_CHELSIO_T4_DCB
4031 	/* For Data Center Bridging support we need to be able to support up
4032 	 * to 8 Traffic Priorities; each of which will be assigned to its
4033 	 * own TX Queue in order to prevent Head-Of-Line Blocking.
4034 	 */
4035 	if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4036 		dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4037 			MAX_ETH_QSETS, adap->params.nports * 8);
4038 		BUG_ON(1);
4039 	}
4040 
4041 	for_each_port(adap, i) {
4042 		struct port_info *pi = adap2pinfo(adap, i);
4043 
4044 		pi->first_qset = qidx;
4045 		pi->nqsets = 8;
4046 		qidx += pi->nqsets;
4047 	}
4048 #else /* !CONFIG_CHELSIO_T4_DCB */
4049 	/*
4050 	 * We default to 1 queue per non-10G port and up to # of cores queues
4051 	 * per 10G port.
4052 	 */
4053 	if (n10g)
4054 		q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4055 	if (q10g > netif_get_num_default_rss_queues())
4056 		q10g = netif_get_num_default_rss_queues();
4057 
4058 	for_each_port(adap, i) {
4059 		struct port_info *pi = adap2pinfo(adap, i);
4060 
4061 		pi->first_qset = qidx;
4062 		pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4063 		qidx += pi->nqsets;
4064 	}
4065 #endif /* !CONFIG_CHELSIO_T4_DCB */
4066 
4067 	s->ethqsets = qidx;
4068 	s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4069 
4070 	if (is_uld(adap)) {
4071 		/*
4072 		 * For offload we use 1 queue/channel if all ports are up to 1G,
4073 		 * otherwise we divide all available queues amongst the channels
4074 		 * capped by the number of available cores.
4075 		 */
4076 		if (n10g) {
4077 			i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4078 			s->ofldqsets = roundup(i, adap->params.nports);
4079 		} else {
4080 			s->ofldqsets = adap->params.nports;
4081 		}
4082 	}
4083 
4084 	for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4085 		struct sge_eth_rxq *r = &s->ethrxq[i];
4086 
4087 		init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4088 		r->fl.size = 72;
4089 	}
4090 
4091 	for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4092 		s->ethtxq[i].q.size = 1024;
4093 
4094 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4095 		s->ctrlq[i].q.size = 512;
4096 
4097 	for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4098 		s->ofldtxq[i].q.size = 1024;
4099 
4100 	init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4101 	init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4102 }
4103 
4104 /*
4105  * Reduce the number of Ethernet queues across all ports to at most n.
4106  * n provides at least one queue per port.
4107  */
reduce_ethqs(struct adapter * adap,int n)4108 static void reduce_ethqs(struct adapter *adap, int n)
4109 {
4110 	int i;
4111 	struct port_info *pi;
4112 
4113 	while (n < adap->sge.ethqsets)
4114 		for_each_port(adap, i) {
4115 			pi = adap2pinfo(adap, i);
4116 			if (pi->nqsets > 1) {
4117 				pi->nqsets--;
4118 				adap->sge.ethqsets--;
4119 				if (adap->sge.ethqsets <= n)
4120 					break;
4121 			}
4122 		}
4123 
4124 	n = 0;
4125 	for_each_port(adap, i) {
4126 		pi = adap2pinfo(adap, i);
4127 		pi->first_qset = n;
4128 		n += pi->nqsets;
4129 	}
4130 }
4131 
get_msix_info(struct adapter * adap)4132 static int get_msix_info(struct adapter *adap)
4133 {
4134 	struct uld_msix_info *msix_info;
4135 	unsigned int max_ingq = 0;
4136 
4137 	if (is_offload(adap))
4138 		max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4139 	if (is_pci_uld(adap))
4140 		max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4141 
4142 	if (!max_ingq)
4143 		goto out;
4144 
4145 	msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4146 	if (!msix_info)
4147 		return -ENOMEM;
4148 
4149 	adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4150 						 sizeof(long), GFP_KERNEL);
4151 	if (!adap->msix_bmap_ulds.msix_bmap) {
4152 		kfree(msix_info);
4153 		return -ENOMEM;
4154 	}
4155 	spin_lock_init(&adap->msix_bmap_ulds.lock);
4156 	adap->msix_info_ulds = msix_info;
4157 out:
4158 	return 0;
4159 }
4160 
free_msix_info(struct adapter * adap)4161 static void free_msix_info(struct adapter *adap)
4162 {
4163 	if (!(adap->num_uld && adap->num_ofld_uld))
4164 		return;
4165 
4166 	kfree(adap->msix_info_ulds);
4167 	kfree(adap->msix_bmap_ulds.msix_bmap);
4168 }
4169 
4170 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4171 #define EXTRA_VECS 2
4172 
enable_msix(struct adapter * adap)4173 static int enable_msix(struct adapter *adap)
4174 {
4175 	int ofld_need = 0, uld_need = 0;
4176 	int i, j, want, need, allocated;
4177 	struct sge *s = &adap->sge;
4178 	unsigned int nchan = adap->params.nports;
4179 	struct msix_entry *entries;
4180 	int max_ingq = MAX_INGQ;
4181 
4182 	if (is_pci_uld(adap))
4183 		max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4184 	if (is_offload(adap))
4185 		max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4186 	entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4187 			  GFP_KERNEL);
4188 	if (!entries)
4189 		return -ENOMEM;
4190 
4191 	/* map for msix */
4192 	if (get_msix_info(adap)) {
4193 		adap->params.offload = 0;
4194 		adap->params.crypto = 0;
4195 	}
4196 
4197 	for (i = 0; i < max_ingq + 1; ++i)
4198 		entries[i].entry = i;
4199 
4200 	want = s->max_ethqsets + EXTRA_VECS;
4201 	if (is_offload(adap)) {
4202 		want += adap->num_ofld_uld * s->ofldqsets;
4203 		ofld_need = adap->num_ofld_uld * nchan;
4204 	}
4205 	if (is_pci_uld(adap)) {
4206 		want += adap->num_uld * s->ofldqsets;
4207 		uld_need = adap->num_uld * nchan;
4208 	}
4209 #ifdef CONFIG_CHELSIO_T4_DCB
4210 	/* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4211 	 * each port.
4212 	 */
4213 	need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4214 #else
4215 	need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4216 #endif
4217 	allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4218 	if (allocated < 0) {
4219 		dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4220 			 " not using MSI-X\n");
4221 		kfree(entries);
4222 		return allocated;
4223 	}
4224 
4225 	/* Distribute available vectors to the various queue groups.
4226 	 * Every group gets its minimum requirement and NIC gets top
4227 	 * priority for leftovers.
4228 	 */
4229 	i = allocated - EXTRA_VECS - ofld_need - uld_need;
4230 	if (i < s->max_ethqsets) {
4231 		s->max_ethqsets = i;
4232 		if (i < s->ethqsets)
4233 			reduce_ethqs(adap, i);
4234 	}
4235 	if (is_uld(adap)) {
4236 		if (allocated < want)
4237 			s->nqs_per_uld = nchan;
4238 		else
4239 			s->nqs_per_uld = s->ofldqsets;
4240 	}
4241 
4242 	for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4243 		adap->msix_info[i].vec = entries[i].vector;
4244 	if (is_uld(adap)) {
4245 		for (j = 0 ; i < allocated; ++i, j++) {
4246 			adap->msix_info_ulds[j].vec = entries[i].vector;
4247 			adap->msix_info_ulds[j].idx = i;
4248 		}
4249 		adap->msix_bmap_ulds.mapsize = j;
4250 	}
4251 	dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4252 		 "nic %d per uld %d\n",
4253 		 allocated, s->max_ethqsets, s->nqs_per_uld);
4254 
4255 	kfree(entries);
4256 	return 0;
4257 }
4258 
4259 #undef EXTRA_VECS
4260 
init_rss(struct adapter * adap)4261 static int init_rss(struct adapter *adap)
4262 {
4263 	unsigned int i;
4264 	int err;
4265 
4266 	err = t4_init_rss_mode(adap, adap->mbox);
4267 	if (err)
4268 		return err;
4269 
4270 	for_each_port(adap, i) {
4271 		struct port_info *pi = adap2pinfo(adap, i);
4272 
4273 		pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4274 		if (!pi->rss)
4275 			return -ENOMEM;
4276 	}
4277 	return 0;
4278 }
4279 
cxgb4_get_pcie_dev_link_caps(struct adapter * adap,enum pci_bus_speed * speed,enum pcie_link_width * width)4280 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4281 					enum pci_bus_speed *speed,
4282 					enum pcie_link_width *width)
4283 {
4284 	u32 lnkcap1, lnkcap2;
4285 	int err1, err2;
4286 
4287 #define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4288 
4289 	*speed = PCI_SPEED_UNKNOWN;
4290 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4291 
4292 	err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4293 					  &lnkcap1);
4294 	err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4295 					  &lnkcap2);
4296 	if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4297 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4298 			*speed = PCIE_SPEED_8_0GT;
4299 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4300 			*speed = PCIE_SPEED_5_0GT;
4301 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4302 			*speed = PCIE_SPEED_2_5GT;
4303 	}
4304 	if (!err1) {
4305 		*width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4306 		if (!lnkcap2) { /* pre-r3.0 */
4307 			if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4308 				*speed = PCIE_SPEED_5_0GT;
4309 			else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4310 				*speed = PCIE_SPEED_2_5GT;
4311 		}
4312 	}
4313 
4314 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4315 		return err1 ? err1 : err2 ? err2 : -EINVAL;
4316 	return 0;
4317 }
4318 
cxgb4_check_pcie_caps(struct adapter * adap)4319 static void cxgb4_check_pcie_caps(struct adapter *adap)
4320 {
4321 	enum pcie_link_width width, width_cap;
4322 	enum pci_bus_speed speed, speed_cap;
4323 
4324 #define PCIE_SPEED_STR(speed) \
4325 	(speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4326 	 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4327 	 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4328 	 "Unknown")
4329 
4330 	if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4331 		dev_warn(adap->pdev_dev,
4332 			 "Unable to determine PCIe device BW capabilities\n");
4333 		return;
4334 	}
4335 
4336 	if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4337 	    speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4338 		dev_warn(adap->pdev_dev,
4339 			 "Unable to determine PCI Express bandwidth.\n");
4340 		return;
4341 	}
4342 
4343 	dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4344 		 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4345 	dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4346 		 width, width_cap);
4347 	if (speed < speed_cap || width < width_cap)
4348 		dev_info(adap->pdev_dev,
4349 			 "A slot with more lanes and/or higher speed is "
4350 			 "suggested for optimal performance.\n");
4351 }
4352 
4353 /* Dump basic information about the adapter */
print_adapter_info(struct adapter * adapter)4354 static void print_adapter_info(struct adapter *adapter)
4355 {
4356 	/* Device information */
4357 	dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4358 		 adapter->params.vpd.id,
4359 		 CHELSIO_CHIP_RELEASE(adapter->params.chip));
4360 	dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4361 		 adapter->params.vpd.sn, adapter->params.vpd.pn);
4362 
4363 	/* Firmware Version */
4364 	if (!adapter->params.fw_vers)
4365 		dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4366 	else
4367 		dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4368 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4369 			 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4370 			 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4371 			 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4372 
4373 	/* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4374 	 * Firmware, so dev_info() is more appropriate here.)
4375 	 */
4376 	if (!adapter->params.bs_vers)
4377 		dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4378 	else
4379 		dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4380 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4381 			 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4382 			 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4383 			 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4384 
4385 	/* TP Microcode Version */
4386 	if (!adapter->params.tp_vers)
4387 		dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4388 	else
4389 		dev_info(adapter->pdev_dev,
4390 			 "TP Microcode version: %u.%u.%u.%u\n",
4391 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4392 			 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4393 			 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4394 			 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4395 
4396 	/* Expansion ROM version */
4397 	if (!adapter->params.er_vers)
4398 		dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4399 	else
4400 		dev_info(adapter->pdev_dev,
4401 			 "Expansion ROM version: %u.%u.%u.%u\n",
4402 			 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4403 			 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4404 			 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4405 			 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4406 
4407 	/* Software/Hardware configuration */
4408 	dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4409 		 is_offload(adapter) ? "R" : "",
4410 		 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4411 		  (adapter->flags & USING_MSI) ? "MSI" : ""),
4412 		 is_offload(adapter) ? "Offload" : "non-Offload");
4413 }
4414 
print_port_info(const struct net_device * dev)4415 static void print_port_info(const struct net_device *dev)
4416 {
4417 	char buf[80];
4418 	char *bufp = buf;
4419 	const char *spd = "";
4420 	const struct port_info *pi = netdev_priv(dev);
4421 	const struct adapter *adap = pi->adapter;
4422 
4423 	if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4424 		spd = " 2.5 GT/s";
4425 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4426 		spd = " 5 GT/s";
4427 	else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4428 		spd = " 8 GT/s";
4429 
4430 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4431 		bufp += sprintf(bufp, "100/");
4432 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4433 		bufp += sprintf(bufp, "1000/");
4434 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4435 		bufp += sprintf(bufp, "10G/");
4436 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G)
4437 		bufp += sprintf(bufp, "25G/");
4438 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4439 		bufp += sprintf(bufp, "40G/");
4440 	if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G)
4441 		bufp += sprintf(bufp, "100G/");
4442 	if (bufp != buf)
4443 		--bufp;
4444 	sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4445 
4446 	netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4447 		    dev->name, adap->params.vpd.id, adap->name, buf);
4448 }
4449 
enable_pcie_relaxed_ordering(struct pci_dev * dev)4450 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4451 {
4452 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4453 }
4454 
4455 /*
4456  * Free the following resources:
4457  * - memory used for tables
4458  * - MSI/MSI-X
4459  * - net devices
4460  * - resources FW is holding for us
4461  */
free_some_resources(struct adapter * adapter)4462 static void free_some_resources(struct adapter *adapter)
4463 {
4464 	unsigned int i;
4465 
4466 	t4_free_mem(adapter->l2t);
4467 	t4_cleanup_sched(adapter);
4468 	t4_free_mem(adapter->tids.tid_tab);
4469 	cxgb4_cleanup_tc_u32(adapter);
4470 	kfree(adapter->sge.egr_map);
4471 	kfree(adapter->sge.ingr_map);
4472 	kfree(adapter->sge.starving_fl);
4473 	kfree(adapter->sge.txq_maperr);
4474 #ifdef CONFIG_DEBUG_FS
4475 	kfree(adapter->sge.blocked_fl);
4476 #endif
4477 	disable_msi(adapter);
4478 
4479 	for_each_port(adapter, i)
4480 		if (adapter->port[i]) {
4481 			struct port_info *pi = adap2pinfo(adapter, i);
4482 
4483 			if (pi->viid != 0)
4484 				t4_free_vi(adapter, adapter->mbox, adapter->pf,
4485 					   0, pi->viid);
4486 			kfree(adap2pinfo(adapter, i)->rss);
4487 			free_netdev(adapter->port[i]);
4488 		}
4489 	if (adapter->flags & FW_OK)
4490 		t4_fw_bye(adapter, adapter->pf);
4491 }
4492 
4493 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4494 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4495 		   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4496 #define SEGMENT_SIZE 128
4497 
get_chip_type(struct pci_dev * pdev,u32 pl_rev)4498 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4499 {
4500 	u16 device_id;
4501 
4502 	/* Retrieve adapter's device ID */
4503 	pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4504 
4505 	switch (device_id >> 12) {
4506 	case CHELSIO_T4:
4507 		return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4508 	case CHELSIO_T5:
4509 		return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4510 	case CHELSIO_T6:
4511 		return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4512 	default:
4513 		dev_err(&pdev->dev, "Device %d is not supported\n",
4514 			device_id);
4515 	}
4516 	return -EINVAL;
4517 }
4518 
4519 #ifdef CONFIG_PCI_IOV
dummy_setup(struct net_device * dev)4520 static void dummy_setup(struct net_device *dev)
4521 {
4522 	dev->type = ARPHRD_NONE;
4523 	dev->mtu = 0;
4524 	dev->hard_header_len = 0;
4525 	dev->addr_len = 0;
4526 	dev->tx_queue_len = 0;
4527 	dev->flags |= IFF_NOARP;
4528 	dev->priv_flags |= IFF_NO_QUEUE;
4529 
4530 	/* Initialize the device structure. */
4531 	dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
4532 	dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4533 	dev->destructor = free_netdev;
4534 }
4535 
config_mgmt_dev(struct pci_dev * pdev)4536 static int config_mgmt_dev(struct pci_dev *pdev)
4537 {
4538 	struct adapter *adap = pci_get_drvdata(pdev);
4539 	struct net_device *netdev;
4540 	struct port_info *pi;
4541 	char name[IFNAMSIZ];
4542 	int err;
4543 
4544 	snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
4545 	netdev = alloc_netdev(0, name, NET_NAME_UNKNOWN, dummy_setup);
4546 	if (!netdev)
4547 		return -ENOMEM;
4548 
4549 	pi = netdev_priv(netdev);
4550 	pi->adapter = adap;
4551 	SET_NETDEV_DEV(netdev, &pdev->dev);
4552 
4553 	adap->port[0] = netdev;
4554 
4555 	err = register_netdev(adap->port[0]);
4556 	if (err) {
4557 		pr_info("Unable to register VF mgmt netdev %s\n", name);
4558 		free_netdev(adap->port[0]);
4559 		adap->port[0] = NULL;
4560 		return err;
4561 	}
4562 	return 0;
4563 }
4564 
cxgb4_iov_configure(struct pci_dev * pdev,int num_vfs)4565 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
4566 {
4567 	struct adapter *adap = pci_get_drvdata(pdev);
4568 	int err = 0;
4569 	int current_vfs = pci_num_vf(pdev);
4570 	u32 pcie_fw;
4571 
4572 	pcie_fw = readl(adap->regs + PCIE_FW_A);
4573 	/* Check if cxgb4 is the MASTER and fw is initialized */
4574 	if (!(pcie_fw & PCIE_FW_INIT_F) ||
4575 	    !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
4576 	    PCIE_FW_MASTER_G(pcie_fw) != 4) {
4577 		dev_warn(&pdev->dev,
4578 			 "cxgb4 driver needs to be MASTER to support SRIOV\n");
4579 		return -EOPNOTSUPP;
4580 	}
4581 
4582 	/* If any of the VF's is already assigned to Guest OS, then
4583 	 * SRIOV for the same cannot be modified
4584 	 */
4585 	if (current_vfs && pci_vfs_assigned(pdev)) {
4586 		dev_err(&pdev->dev,
4587 			"Cannot modify SR-IOV while VFs are assigned\n");
4588 		num_vfs = current_vfs;
4589 		return num_vfs;
4590 	}
4591 
4592 	/* Disable SRIOV when zero is passed.
4593 	 * One needs to disable SRIOV before modifying it, else
4594 	 * stack throws the below warning:
4595 	 * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
4596 	 */
4597 	if (!num_vfs) {
4598 		pci_disable_sriov(pdev);
4599 		if (adap->port[0]) {
4600 			unregister_netdev(adap->port[0]);
4601 			adap->port[0] = NULL;
4602 		}
4603 		/* free VF resources */
4604 		kfree(adap->vfinfo);
4605 		adap->vfinfo = NULL;
4606 		adap->num_vfs = 0;
4607 		return num_vfs;
4608 	}
4609 
4610 	if (num_vfs != current_vfs) {
4611 		err = pci_enable_sriov(pdev, num_vfs);
4612 		if (err)
4613 			return err;
4614 
4615 		adap->num_vfs = num_vfs;
4616 		err = config_mgmt_dev(pdev);
4617 		if (err)
4618 			return err;
4619 	}
4620 
4621 	adap->vfinfo = kcalloc(adap->num_vfs,
4622 			       sizeof(struct vf_info), GFP_KERNEL);
4623 	if (adap->vfinfo)
4624 		fill_vf_station_mac_addr(adap);
4625 	return num_vfs;
4626 }
4627 #endif
4628 
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)4629 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4630 {
4631 	int func, i, err, s_qpp, qpp, num_seg;
4632 	struct port_info *pi;
4633 	bool highdma = false;
4634 	struct adapter *adapter = NULL;
4635 	struct net_device *netdev;
4636 	void __iomem *regs;
4637 	u32 whoami, pl_rev;
4638 	enum chip_type chip;
4639 	static int adap_idx = 1;
4640 
4641 	printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4642 
4643 	err = pci_request_regions(pdev, KBUILD_MODNAME);
4644 	if (err) {
4645 		/* Just info, some other driver may have claimed the device. */
4646 		dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4647 		return err;
4648 	}
4649 
4650 	err = pci_enable_device(pdev);
4651 	if (err) {
4652 		dev_err(&pdev->dev, "cannot enable PCI device\n");
4653 		goto out_release_regions;
4654 	}
4655 
4656 	regs = pci_ioremap_bar(pdev, 0);
4657 	if (!regs) {
4658 		dev_err(&pdev->dev, "cannot map device registers\n");
4659 		err = -ENOMEM;
4660 		goto out_disable_device;
4661 	}
4662 
4663 	err = t4_wait_dev_ready(regs);
4664 	if (err < 0)
4665 		goto out_unmap_bar0;
4666 
4667 	/* We control everything through one PF */
4668 	whoami = readl(regs + PL_WHOAMI_A);
4669 	pl_rev = REV_G(readl(regs + PL_REV_A));
4670 	chip = get_chip_type(pdev, pl_rev);
4671 	func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4672 		SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4673 	if (func != ent->driver_data) {
4674 #ifndef CONFIG_PCI_IOV
4675 		iounmap(regs);
4676 #endif
4677 		pci_disable_device(pdev);
4678 		pci_save_state(pdev);        /* to restore SR-IOV later */
4679 		goto sriov;
4680 	}
4681 
4682 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4683 		highdma = true;
4684 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4685 		if (err) {
4686 			dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4687 				"coherent allocations\n");
4688 			goto out_unmap_bar0;
4689 		}
4690 	} else {
4691 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4692 		if (err) {
4693 			dev_err(&pdev->dev, "no usable DMA configuration\n");
4694 			goto out_unmap_bar0;
4695 		}
4696 	}
4697 
4698 	pci_enable_pcie_error_reporting(pdev);
4699 	enable_pcie_relaxed_ordering(pdev);
4700 	pci_set_master(pdev);
4701 	pci_save_state(pdev);
4702 
4703 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4704 	if (!adapter) {
4705 		err = -ENOMEM;
4706 		goto out_unmap_bar0;
4707 	}
4708 	adap_idx++;
4709 
4710 	adapter->workq = create_singlethread_workqueue("cxgb4");
4711 	if (!adapter->workq) {
4712 		err = -ENOMEM;
4713 		goto out_free_adapter;
4714 	}
4715 
4716 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4717 				    (sizeof(struct mbox_cmd) *
4718 				     T4_OS_LOG_MBOX_CMDS),
4719 				    GFP_KERNEL);
4720 	if (!adapter->mbox_log) {
4721 		err = -ENOMEM;
4722 		goto out_free_adapter;
4723 	}
4724 	adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4725 
4726 	/* PCI device has been enabled */
4727 	adapter->flags |= DEV_ENABLED;
4728 
4729 	adapter->regs = regs;
4730 	adapter->pdev = pdev;
4731 	adapter->pdev_dev = &pdev->dev;
4732 	adapter->name = pci_name(pdev);
4733 	adapter->mbox = func;
4734 	adapter->pf = func;
4735 	adapter->msg_enable = dflt_msg_enable;
4736 	memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4737 
4738 	spin_lock_init(&adapter->stats_lock);
4739 	spin_lock_init(&adapter->tid_release_lock);
4740 	spin_lock_init(&adapter->win0_lock);
4741 
4742 	INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4743 	INIT_WORK(&adapter->db_full_task, process_db_full);
4744 	INIT_WORK(&adapter->db_drop_task, process_db_drop);
4745 
4746 	err = t4_prep_adapter(adapter);
4747 	if (err)
4748 		goto out_free_adapter;
4749 
4750 
4751 	if (!is_t4(adapter->params.chip)) {
4752 		s_qpp = (QUEUESPERPAGEPF0_S +
4753 			(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4754 			adapter->pf);
4755 		qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4756 		      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4757 		num_seg = PAGE_SIZE / SEGMENT_SIZE;
4758 
4759 		/* Each segment size is 128B. Write coalescing is enabled only
4760 		 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4761 		 * queue is less no of segments that can be accommodated in
4762 		 * a page size.
4763 		 */
4764 		if (qpp > num_seg) {
4765 			dev_err(&pdev->dev,
4766 				"Incorrect number of egress queues per page\n");
4767 			err = -EINVAL;
4768 			goto out_free_adapter;
4769 		}
4770 		adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4771 		pci_resource_len(pdev, 2));
4772 		if (!adapter->bar2) {
4773 			dev_err(&pdev->dev, "cannot map device bar2 region\n");
4774 			err = -ENOMEM;
4775 			goto out_free_adapter;
4776 		}
4777 	}
4778 
4779 	setup_memwin(adapter);
4780 	err = adap_init0(adapter);
4781 #ifdef CONFIG_DEBUG_FS
4782 	bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4783 #endif
4784 	setup_memwin_rdma(adapter);
4785 	if (err)
4786 		goto out_unmap_bar;
4787 
4788 	/* configure SGE_STAT_CFG_A to read WC stats */
4789 	if (!is_t4(adapter->params.chip))
4790 		t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4791 			     (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4792 			      T6_STATMODE_V(0)));
4793 
4794 	for_each_port(adapter, i) {
4795 		netdev = alloc_etherdev_mq(sizeof(struct port_info),
4796 					   MAX_ETH_QSETS);
4797 		if (!netdev) {
4798 			err = -ENOMEM;
4799 			goto out_free_dev;
4800 		}
4801 
4802 		SET_NETDEV_DEV(netdev, &pdev->dev);
4803 
4804 		adapter->port[i] = netdev;
4805 		pi = netdev_priv(netdev);
4806 		pi->adapter = adapter;
4807 		pi->xact_addr_filt = -1;
4808 		pi->port_id = i;
4809 		netdev->irq = pdev->irq;
4810 
4811 		netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4812 			NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4813 			NETIF_F_RXCSUM | NETIF_F_RXHASH |
4814 			NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
4815 			NETIF_F_HW_TC;
4816 		if (highdma)
4817 			netdev->hw_features |= NETIF_F_HIGHDMA;
4818 		netdev->features |= netdev->hw_features;
4819 		netdev->vlan_features = netdev->features & VLAN_FEAT;
4820 
4821 		netdev->priv_flags |= IFF_UNICAST_FLT;
4822 
4823 		netdev->netdev_ops = &cxgb4_netdev_ops;
4824 #ifdef CONFIG_CHELSIO_T4_DCB
4825 		netdev->dcbnl_ops = &cxgb4_dcb_ops;
4826 		cxgb4_dcb_state_init(netdev);
4827 #endif
4828 		cxgb4_set_ethtool_ops(netdev);
4829 	}
4830 
4831 	pci_set_drvdata(pdev, adapter);
4832 
4833 	if (adapter->flags & FW_OK) {
4834 		err = t4_port_init(adapter, func, func, 0);
4835 		if (err)
4836 			goto out_free_dev;
4837 	} else if (adapter->params.nports == 1) {
4838 		/* If we don't have a connection to the firmware -- possibly
4839 		 * because of an error -- grab the raw VPD parameters so we
4840 		 * can set the proper MAC Address on the debug network
4841 		 * interface that we've created.
4842 		 */
4843 		u8 hw_addr[ETH_ALEN];
4844 		u8 *na = adapter->params.vpd.na;
4845 
4846 		err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4847 		if (!err) {
4848 			for (i = 0; i < ETH_ALEN; i++)
4849 				hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4850 					      hex2val(na[2 * i + 1]));
4851 			t4_set_hw_addr(adapter, 0, hw_addr);
4852 		}
4853 	}
4854 
4855 	/* Configure queues and allocate tables now, they can be needed as
4856 	 * soon as the first register_netdev completes.
4857 	 */
4858 	cfg_queues(adapter);
4859 
4860 	adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4861 	if (!adapter->l2t) {
4862 		/* We tolerate a lack of L2T, giving up some functionality */
4863 		dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4864 		adapter->params.offload = 0;
4865 	}
4866 
4867 #if IS_ENABLED(CONFIG_IPV6)
4868 	if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
4869 	    (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
4870 		/* CLIP functionality is not present in hardware,
4871 		 * hence disable all offload features
4872 		 */
4873 		dev_warn(&pdev->dev,
4874 			 "CLIP not enabled in hardware, continuing\n");
4875 		adapter->params.offload = 0;
4876 	} else {
4877 		adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4878 						  adapter->clipt_end);
4879 		if (!adapter->clipt) {
4880 			/* We tolerate a lack of clip_table, giving up
4881 			 * some functionality
4882 			 */
4883 			dev_warn(&pdev->dev,
4884 				 "could not allocate Clip table, continuing\n");
4885 			adapter->params.offload = 0;
4886 		}
4887 	}
4888 #endif
4889 
4890 	for_each_port(adapter, i) {
4891 		pi = adap2pinfo(adapter, i);
4892 		pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
4893 		if (!pi->sched_tbl)
4894 			dev_warn(&pdev->dev,
4895 				 "could not activate scheduling on port %d\n",
4896 				 i);
4897 	}
4898 
4899 	if (tid_init(&adapter->tids) < 0) {
4900 		dev_warn(&pdev->dev, "could not allocate TID table, "
4901 			 "continuing\n");
4902 		adapter->params.offload = 0;
4903 	} else {
4904 		adapter->tc_u32 = cxgb4_init_tc_u32(adapter,
4905 						    CXGB4_MAX_LINK_HANDLE);
4906 		if (!adapter->tc_u32)
4907 			dev_warn(&pdev->dev,
4908 				 "could not offload tc u32, continuing\n");
4909 	}
4910 
4911 	if (is_offload(adapter)) {
4912 		if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4913 			u32 hash_base, hash_reg;
4914 
4915 			if (chip <= CHELSIO_T5) {
4916 				hash_reg = LE_DB_TID_HASHBASE_A;
4917 				hash_base = t4_read_reg(adapter, hash_reg);
4918 				adapter->tids.hash_base = hash_base / 4;
4919 			} else {
4920 				hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4921 				hash_base = t4_read_reg(adapter, hash_reg);
4922 				adapter->tids.hash_base = hash_base;
4923 			}
4924 		}
4925 	}
4926 
4927 	/* See what interrupts we'll be using */
4928 	if (msi > 1 && enable_msix(adapter) == 0)
4929 		adapter->flags |= USING_MSIX;
4930 	else if (msi > 0 && pci_enable_msi(pdev) == 0) {
4931 		adapter->flags |= USING_MSI;
4932 		if (msi > 1)
4933 			free_msix_info(adapter);
4934 	}
4935 
4936 	/* check for PCI Express bandwidth capabiltites */
4937 	cxgb4_check_pcie_caps(adapter);
4938 
4939 	err = init_rss(adapter);
4940 	if (err)
4941 		goto out_free_dev;
4942 
4943 	/*
4944 	 * The card is now ready to go.  If any errors occur during device
4945 	 * registration we do not fail the whole card but rather proceed only
4946 	 * with the ports we manage to register successfully.  However we must
4947 	 * register at least one net device.
4948 	 */
4949 	for_each_port(adapter, i) {
4950 		pi = adap2pinfo(adapter, i);
4951 		adapter->port[i]->dev_port = pi->lport;
4952 		netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4953 		netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4954 
4955 		err = register_netdev(adapter->port[i]);
4956 		if (err)
4957 			break;
4958 		adapter->chan_map[pi->tx_chan] = i;
4959 		print_port_info(adapter->port[i]);
4960 	}
4961 	if (i == 0) {
4962 		dev_err(&pdev->dev, "could not register any net devices\n");
4963 		goto out_free_dev;
4964 	}
4965 	if (err) {
4966 		dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4967 		err = 0;
4968 	}
4969 
4970 	if (cxgb4_debugfs_root) {
4971 		adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4972 							   cxgb4_debugfs_root);
4973 		setup_debugfs(adapter);
4974 	}
4975 
4976 	/* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4977 	pdev->needs_freset = 1;
4978 
4979 	if (is_uld(adapter)) {
4980 		mutex_lock(&uld_mutex);
4981 		list_add_tail(&adapter->list_node, &adapter_list);
4982 		mutex_unlock(&uld_mutex);
4983 	}
4984 
4985 	print_adapter_info(adapter);
4986 	setup_fw_sge_queues(adapter);
4987 	return 0;
4988 
4989 sriov:
4990 #ifdef CONFIG_PCI_IOV
4991 	if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) {
4992 		dev_warn(&pdev->dev,
4993 			 "Enabling SR-IOV VFs using the num_vf module "
4994 			 "parameter is deprecated - please use the pci sysfs "
4995 			 "interface instead.\n");
4996 		if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4997 			dev_info(&pdev->dev,
4998 				 "instantiated %u virtual functions\n",
4999 				 num_vf[func]);
5000 	}
5001 
5002 	adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5003 	if (!adapter) {
5004 		err = -ENOMEM;
5005 		goto free_pci_region;
5006 	}
5007 
5008 	adapter->pdev = pdev;
5009 	adapter->pdev_dev = &pdev->dev;
5010 	adapter->name = pci_name(pdev);
5011 	adapter->mbox = func;
5012 	adapter->pf = func;
5013 	adapter->regs = regs;
5014 	adapter->adap_idx = adap_idx;
5015 	adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5016 				    (sizeof(struct mbox_cmd) *
5017 				     T4_OS_LOG_MBOX_CMDS),
5018 				    GFP_KERNEL);
5019 	if (!adapter->mbox_log) {
5020 		err = -ENOMEM;
5021 		goto free_adapter;
5022 	}
5023 	pci_set_drvdata(pdev, adapter);
5024 	return 0;
5025 
5026  free_adapter:
5027 	kfree(adapter);
5028  free_pci_region:
5029 	iounmap(regs);
5030 	pci_disable_sriov(pdev);
5031 	pci_release_regions(pdev);
5032 	return err;
5033 #else
5034 	return 0;
5035 #endif
5036 
5037  out_free_dev:
5038 	free_some_resources(adapter);
5039 	if (adapter->flags & USING_MSIX)
5040 		free_msix_info(adapter);
5041 	if (adapter->num_uld || adapter->num_ofld_uld)
5042 		t4_uld_mem_free(adapter);
5043  out_unmap_bar:
5044 	if (!is_t4(adapter->params.chip))
5045 		iounmap(adapter->bar2);
5046  out_free_adapter:
5047 	if (adapter->workq)
5048 		destroy_workqueue(adapter->workq);
5049 
5050 	kfree(adapter->mbox_log);
5051 	kfree(adapter);
5052  out_unmap_bar0:
5053 	iounmap(regs);
5054  out_disable_device:
5055 	pci_disable_pcie_error_reporting(pdev);
5056 	pci_disable_device(pdev);
5057  out_release_regions:
5058 	pci_release_regions(pdev);
5059 	return err;
5060 }
5061 
remove_one(struct pci_dev * pdev)5062 static void remove_one(struct pci_dev *pdev)
5063 {
5064 	struct adapter *adapter = pci_get_drvdata(pdev);
5065 
5066 	if (!adapter) {
5067 		pci_release_regions(pdev);
5068 		return;
5069 	}
5070 
5071 	if (adapter->pf == 4) {
5072 		int i;
5073 
5074 		/* Tear down per-adapter Work Queue first since it can contain
5075 		 * references to our adapter data structure.
5076 		 */
5077 		destroy_workqueue(adapter->workq);
5078 
5079 		if (is_uld(adapter))
5080 			detach_ulds(adapter);
5081 
5082 		disable_interrupts(adapter);
5083 
5084 		for_each_port(adapter, i)
5085 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5086 				unregister_netdev(adapter->port[i]);
5087 
5088 		debugfs_remove_recursive(adapter->debugfs_root);
5089 
5090 		/* If we allocated filters, free up state associated with any
5091 		 * valid filters ...
5092 		 */
5093 		clear_all_filters(adapter);
5094 
5095 		if (adapter->flags & FULL_INIT_DONE)
5096 			cxgb_down(adapter);
5097 
5098 		if (adapter->flags & USING_MSIX)
5099 			free_msix_info(adapter);
5100 		if (adapter->num_uld || adapter->num_ofld_uld)
5101 			t4_uld_mem_free(adapter);
5102 		free_some_resources(adapter);
5103 #if IS_ENABLED(CONFIG_IPV6)
5104 		t4_cleanup_clip_tbl(adapter);
5105 #endif
5106 		iounmap(adapter->regs);
5107 		if (!is_t4(adapter->params.chip))
5108 			iounmap(adapter->bar2);
5109 		pci_disable_pcie_error_reporting(pdev);
5110 		if ((adapter->flags & DEV_ENABLED)) {
5111 			pci_disable_device(pdev);
5112 			adapter->flags &= ~DEV_ENABLED;
5113 		}
5114 		pci_release_regions(pdev);
5115 		kfree(adapter->mbox_log);
5116 		synchronize_rcu();
5117 		kfree(adapter);
5118 	}
5119 #ifdef CONFIG_PCI_IOV
5120 	else {
5121 		if (adapter->port[0])
5122 			unregister_netdev(adapter->port[0]);
5123 		iounmap(adapter->regs);
5124 		kfree(adapter->vfinfo);
5125 		kfree(adapter);
5126 		pci_disable_sriov(pdev);
5127 		pci_release_regions(pdev);
5128 	}
5129 #endif
5130 }
5131 
5132 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5133  * delivery.  This is essentially a stripped down version of the PCI remove()
5134  * function where we do the minimal amount of work necessary to shutdown any
5135  * further activity.
5136  */
shutdown_one(struct pci_dev * pdev)5137 static void shutdown_one(struct pci_dev *pdev)
5138 {
5139 	struct adapter *adapter = pci_get_drvdata(pdev);
5140 
5141 	/* As with remove_one() above (see extended comment), we only want do
5142 	 * do cleanup on PCI Devices which went all the way through init_one()
5143 	 * ...
5144 	 */
5145 	if (!adapter) {
5146 		pci_release_regions(pdev);
5147 		return;
5148 	}
5149 
5150 	if (adapter->pf == 4) {
5151 		int i;
5152 
5153 		for_each_port(adapter, i)
5154 			if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5155 				cxgb_close(adapter->port[i]);
5156 
5157 		t4_uld_clean_up(adapter);
5158 		disable_interrupts(adapter);
5159 		disable_msi(adapter);
5160 
5161 		t4_sge_stop(adapter);
5162 		if (adapter->flags & FW_OK)
5163 			t4_fw_bye(adapter, adapter->mbox);
5164 	}
5165 #ifdef CONFIG_PCI_IOV
5166 	else {
5167 		if (adapter->port[0])
5168 			unregister_netdev(adapter->port[0]);
5169 		iounmap(adapter->regs);
5170 		kfree(adapter->vfinfo);
5171 		kfree(adapter);
5172 		pci_disable_sriov(pdev);
5173 		pci_release_regions(pdev);
5174 	}
5175 #endif
5176 }
5177 
5178 static struct pci_driver cxgb4_driver = {
5179 	.name     = KBUILD_MODNAME,
5180 	.id_table = cxgb4_pci_tbl,
5181 	.probe    = init_one,
5182 	.remove   = remove_one,
5183 	.shutdown = shutdown_one,
5184 #ifdef CONFIG_PCI_IOV
5185 	.sriov_configure = cxgb4_iov_configure,
5186 #endif
5187 	.err_handler = &cxgb4_eeh,
5188 };
5189 
cxgb4_init_module(void)5190 static int __init cxgb4_init_module(void)
5191 {
5192 	int ret;
5193 
5194 	/* Debugfs support is optional, just warn if this fails */
5195 	cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5196 	if (!cxgb4_debugfs_root)
5197 		pr_warn("could not create debugfs entry, continuing\n");
5198 
5199 	ret = pci_register_driver(&cxgb4_driver);
5200 	if (ret < 0)
5201 		debugfs_remove(cxgb4_debugfs_root);
5202 
5203 #if IS_ENABLED(CONFIG_IPV6)
5204 	if (!inet6addr_registered) {
5205 		register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5206 		inet6addr_registered = true;
5207 	}
5208 #endif
5209 
5210 	return ret;
5211 }
5212 
cxgb4_cleanup_module(void)5213 static void __exit cxgb4_cleanup_module(void)
5214 {
5215 #if IS_ENABLED(CONFIG_IPV6)
5216 	if (inet6addr_registered) {
5217 		unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5218 		inet6addr_registered = false;
5219 	}
5220 #endif
5221 	pci_unregister_driver(&cxgb4_driver);
5222 	debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5223 }
5224 
5225 module_init(cxgb4_init_module);
5226 module_exit(cxgb4_cleanup_module);
5227