1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/if.h>
38 #include <linux/if_vlan.h>
39 #include <linux/jhash.h>
40 #include <linux/module.h>
41 #include <linux/debugfs.h>
42 #include <linux/seq_file.h>
43 #include <net/neighbour.h>
44 #include "cxgb4.h"
45 #include "l2t.h"
46 #include "t4_msg.h"
47 #include "t4fw_api.h"
48 #include "t4_regs.h"
49 #include "t4_values.h"
50
51 /* identifies sync vs async L2T_WRITE_REQs */
52 #define SYNC_WR_S 12
53 #define SYNC_WR_V(x) ((x) << SYNC_WR_S)
54 #define SYNC_WR_F SYNC_WR_V(1)
55
56 struct l2t_data {
57 unsigned int l2t_start; /* start index of our piece of the L2T */
58 unsigned int l2t_size; /* number of entries in l2tab */
59 rwlock_t lock;
60 atomic_t nfree; /* number of free entries */
61 struct l2t_entry *rover; /* starting point for next allocation */
62 struct l2t_entry l2tab[0]; /* MUST BE LAST */
63 };
64
vlan_prio(const struct l2t_entry * e)65 static inline unsigned int vlan_prio(const struct l2t_entry *e)
66 {
67 return e->vlan >> VLAN_PRIO_SHIFT;
68 }
69
l2t_hold(struct l2t_data * d,struct l2t_entry * e)70 static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e)
71 {
72 if (atomic_add_return(1, &e->refcnt) == 1) /* 0 -> 1 transition */
73 atomic_dec(&d->nfree);
74 }
75
76 /*
77 * To avoid having to check address families we do not allow v4 and v6
78 * neighbors to be on the same hash chain. We keep v4 entries in the first
79 * half of available hash buckets and v6 in the second. We need at least two
80 * entries in our L2T for this scheme to work.
81 */
82 enum {
83 L2T_MIN_HASH_BUCKETS = 2,
84 };
85
arp_hash(struct l2t_data * d,const u32 * key,int ifindex)86 static inline unsigned int arp_hash(struct l2t_data *d, const u32 *key,
87 int ifindex)
88 {
89 unsigned int l2t_size_half = d->l2t_size / 2;
90
91 return jhash_2words(*key, ifindex, 0) % l2t_size_half;
92 }
93
ipv6_hash(struct l2t_data * d,const u32 * key,int ifindex)94 static inline unsigned int ipv6_hash(struct l2t_data *d, const u32 *key,
95 int ifindex)
96 {
97 unsigned int l2t_size_half = d->l2t_size / 2;
98 u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3];
99
100 return (l2t_size_half +
101 (jhash_2words(xor, ifindex, 0) % l2t_size_half));
102 }
103
addr_hash(struct l2t_data * d,const u32 * addr,int addr_len,int ifindex)104 static unsigned int addr_hash(struct l2t_data *d, const u32 *addr,
105 int addr_len, int ifindex)
106 {
107 return addr_len == 4 ? arp_hash(d, addr, ifindex) :
108 ipv6_hash(d, addr, ifindex);
109 }
110
111 /*
112 * Checks if an L2T entry is for the given IP/IPv6 address. It does not check
113 * whether the L2T entry and the address are of the same address family.
114 * Callers ensure an address is only checked against L2T entries of the same
115 * family, something made trivial by the separation of IP and IPv6 hash chains
116 * mentioned above. Returns 0 if there's a match,
117 */
addreq(const struct l2t_entry * e,const u32 * addr)118 static int addreq(const struct l2t_entry *e, const u32 *addr)
119 {
120 if (e->v6)
121 return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) |
122 (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]);
123 return e->addr[0] ^ addr[0];
124 }
125
neigh_replace(struct l2t_entry * e,struct neighbour * n)126 static void neigh_replace(struct l2t_entry *e, struct neighbour *n)
127 {
128 neigh_hold(n);
129 if (e->neigh)
130 neigh_release(e->neigh);
131 e->neigh = n;
132 }
133
134 /*
135 * Write an L2T entry. Must be called with the entry locked.
136 * The write may be synchronous or asynchronous.
137 */
write_l2e(struct adapter * adap,struct l2t_entry * e,int sync)138 static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync)
139 {
140 struct l2t_data *d = adap->l2t;
141 unsigned int l2t_idx = e->idx + d->l2t_start;
142 struct sk_buff *skb;
143 struct cpl_l2t_write_req *req;
144
145 skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
146 if (!skb)
147 return -ENOMEM;
148
149 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
150 INIT_TP_WR(req, 0);
151
152 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ,
153 l2t_idx | (sync ? SYNC_WR_F : 0) |
154 TID_QID_V(adap->sge.fw_evtq.abs_id)));
155 req->params = htons(L2T_W_PORT_V(e->lport) | L2T_W_NOREPLY_V(!sync));
156 req->l2t_idx = htons(l2t_idx);
157 req->vlan = htons(e->vlan);
158 if (e->neigh && !(e->neigh->dev->flags & IFF_LOOPBACK))
159 memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
160 memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
161
162 t4_mgmt_tx(adap, skb);
163
164 if (sync && e->state != L2T_STATE_SWITCHING)
165 e->state = L2T_STATE_SYNC_WRITE;
166 return 0;
167 }
168
169 /*
170 * Send packets waiting in an L2T entry's ARP queue. Must be called with the
171 * entry locked.
172 */
send_pending(struct adapter * adap,struct l2t_entry * e)173 static void send_pending(struct adapter *adap, struct l2t_entry *e)
174 {
175 struct sk_buff *skb;
176
177 while ((skb = __skb_dequeue(&e->arpq)) != NULL)
178 t4_ofld_send(adap, skb);
179 }
180
181 /*
182 * Process a CPL_L2T_WRITE_RPL. Wake up the ARP queue if it completes a
183 * synchronous L2T_WRITE. Note that the TID in the reply is really the L2T
184 * index it refers to.
185 */
do_l2t_write_rpl(struct adapter * adap,const struct cpl_l2t_write_rpl * rpl)186 void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl)
187 {
188 struct l2t_data *d = adap->l2t;
189 unsigned int tid = GET_TID(rpl);
190 unsigned int l2t_idx = tid % L2T_SIZE;
191
192 if (unlikely(rpl->status != CPL_ERR_NONE)) {
193 dev_err(adap->pdev_dev,
194 "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
195 rpl->status, l2t_idx);
196 return;
197 }
198
199 if (tid & SYNC_WR_F) {
200 struct l2t_entry *e = &d->l2tab[l2t_idx - d->l2t_start];
201
202 spin_lock(&e->lock);
203 if (e->state != L2T_STATE_SWITCHING) {
204 send_pending(adap, e);
205 e->state = (e->neigh->nud_state & NUD_STALE) ?
206 L2T_STATE_STALE : L2T_STATE_VALID;
207 }
208 spin_unlock(&e->lock);
209 }
210 }
211
212 /*
213 * Add a packet to an L2T entry's queue of packets awaiting resolution.
214 * Must be called with the entry's lock held.
215 */
arpq_enqueue(struct l2t_entry * e,struct sk_buff * skb)216 static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
217 {
218 __skb_queue_tail(&e->arpq, skb);
219 }
220
cxgb4_l2t_send(struct net_device * dev,struct sk_buff * skb,struct l2t_entry * e)221 int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb,
222 struct l2t_entry *e)
223 {
224 struct adapter *adap = netdev2adap(dev);
225
226 again:
227 switch (e->state) {
228 case L2T_STATE_STALE: /* entry is stale, kick off revalidation */
229 neigh_event_send(e->neigh, NULL);
230 spin_lock_bh(&e->lock);
231 if (e->state == L2T_STATE_STALE)
232 e->state = L2T_STATE_VALID;
233 spin_unlock_bh(&e->lock);
234 case L2T_STATE_VALID: /* fast-path, send the packet on */
235 return t4_ofld_send(adap, skb);
236 case L2T_STATE_RESOLVING:
237 case L2T_STATE_SYNC_WRITE:
238 spin_lock_bh(&e->lock);
239 if (e->state != L2T_STATE_SYNC_WRITE &&
240 e->state != L2T_STATE_RESOLVING) {
241 spin_unlock_bh(&e->lock);
242 goto again;
243 }
244 arpq_enqueue(e, skb);
245 spin_unlock_bh(&e->lock);
246
247 if (e->state == L2T_STATE_RESOLVING &&
248 !neigh_event_send(e->neigh, NULL)) {
249 spin_lock_bh(&e->lock);
250 if (e->state == L2T_STATE_RESOLVING &&
251 !skb_queue_empty(&e->arpq))
252 write_l2e(adap, e, 1);
253 spin_unlock_bh(&e->lock);
254 }
255 }
256 return 0;
257 }
258 EXPORT_SYMBOL(cxgb4_l2t_send);
259
260 /*
261 * Allocate a free L2T entry. Must be called with l2t_data.lock held.
262 */
alloc_l2e(struct l2t_data * d)263 static struct l2t_entry *alloc_l2e(struct l2t_data *d)
264 {
265 struct l2t_entry *end, *e, **p;
266
267 if (!atomic_read(&d->nfree))
268 return NULL;
269
270 /* there's definitely a free entry */
271 for (e = d->rover, end = &d->l2tab[d->l2t_size]; e != end; ++e)
272 if (atomic_read(&e->refcnt) == 0)
273 goto found;
274
275 for (e = d->l2tab; atomic_read(&e->refcnt); ++e)
276 ;
277 found:
278 d->rover = e + 1;
279 atomic_dec(&d->nfree);
280
281 /*
282 * The entry we found may be an inactive entry that is
283 * presently in the hash table. We need to remove it.
284 */
285 if (e->state < L2T_STATE_SWITCHING)
286 for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next)
287 if (*p == e) {
288 *p = e->next;
289 e->next = NULL;
290 break;
291 }
292
293 e->state = L2T_STATE_UNUSED;
294 return e;
295 }
296
find_or_alloc_l2e(struct l2t_data * d,u16 vlan,u8 port,u8 * dmac)297 static struct l2t_entry *find_or_alloc_l2e(struct l2t_data *d, u16 vlan,
298 u8 port, u8 *dmac)
299 {
300 struct l2t_entry *end, *e, **p;
301 struct l2t_entry *first_free = NULL;
302
303 for (e = &d->l2tab[0], end = &d->l2tab[d->l2t_size]; e != end; ++e) {
304 if (atomic_read(&e->refcnt) == 0) {
305 if (!first_free)
306 first_free = e;
307 } else {
308 if (e->state == L2T_STATE_SWITCHING) {
309 if (ether_addr_equal(e->dmac, dmac) &&
310 (e->vlan == vlan) && (e->lport == port))
311 goto exists;
312 }
313 }
314 }
315
316 if (first_free) {
317 e = first_free;
318 goto found;
319 }
320
321 return NULL;
322
323 found:
324 /* The entry we found may be an inactive entry that is
325 * presently in the hash table. We need to remove it.
326 */
327 if (e->state < L2T_STATE_SWITCHING)
328 for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next)
329 if (*p == e) {
330 *p = e->next;
331 e->next = NULL;
332 break;
333 }
334 e->state = L2T_STATE_UNUSED;
335
336 exists:
337 return e;
338 }
339
340 /* Called when an L2T entry has no more users. The entry is left in the hash
341 * table since it is likely to be reused but we also bump nfree to indicate
342 * that the entry can be reallocated for a different neighbor. We also drop
343 * the existing neighbor reference in case the neighbor is going away and is
344 * waiting on our reference.
345 *
346 * Because entries can be reallocated to other neighbors once their ref count
347 * drops to 0 we need to take the entry's lock to avoid races with a new
348 * incarnation.
349 */
_t4_l2e_free(struct l2t_entry * e)350 static void _t4_l2e_free(struct l2t_entry *e)
351 {
352 struct l2t_data *d;
353 struct sk_buff *skb;
354
355 if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */
356 if (e->neigh) {
357 neigh_release(e->neigh);
358 e->neigh = NULL;
359 }
360 while ((skb = __skb_dequeue(&e->arpq)) != NULL)
361 kfree_skb(skb);
362 }
363
364 d = container_of(e, struct l2t_data, l2tab[e->idx]);
365 atomic_inc(&d->nfree);
366 }
367
368 /* Locked version of _t4_l2e_free */
t4_l2e_free(struct l2t_entry * e)369 static void t4_l2e_free(struct l2t_entry *e)
370 {
371 struct l2t_data *d;
372 struct sk_buff *skb;
373
374 spin_lock_bh(&e->lock);
375 if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */
376 if (e->neigh) {
377 neigh_release(e->neigh);
378 e->neigh = NULL;
379 }
380 while ((skb = __skb_dequeue(&e->arpq)) != NULL)
381 kfree_skb(skb);
382 }
383 spin_unlock_bh(&e->lock);
384
385 d = container_of(e, struct l2t_data, l2tab[e->idx]);
386 atomic_inc(&d->nfree);
387 }
388
cxgb4_l2t_release(struct l2t_entry * e)389 void cxgb4_l2t_release(struct l2t_entry *e)
390 {
391 if (atomic_dec_and_test(&e->refcnt))
392 t4_l2e_free(e);
393 }
394 EXPORT_SYMBOL(cxgb4_l2t_release);
395
396 /*
397 * Update an L2T entry that was previously used for the same next hop as neigh.
398 * Must be called with softirqs disabled.
399 */
reuse_entry(struct l2t_entry * e,struct neighbour * neigh)400 static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
401 {
402 unsigned int nud_state;
403
404 spin_lock(&e->lock); /* avoid race with t4_l2t_free */
405 if (neigh != e->neigh)
406 neigh_replace(e, neigh);
407 nud_state = neigh->nud_state;
408 if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
409 !(nud_state & NUD_VALID))
410 e->state = L2T_STATE_RESOLVING;
411 else if (nud_state & NUD_CONNECTED)
412 e->state = L2T_STATE_VALID;
413 else
414 e->state = L2T_STATE_STALE;
415 spin_unlock(&e->lock);
416 }
417
cxgb4_l2t_get(struct l2t_data * d,struct neighbour * neigh,const struct net_device * physdev,unsigned int priority)418 struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh,
419 const struct net_device *physdev,
420 unsigned int priority)
421 {
422 u8 lport;
423 u16 vlan;
424 struct l2t_entry *e;
425 int addr_len = neigh->tbl->key_len;
426 u32 *addr = (u32 *)neigh->primary_key;
427 int ifidx = neigh->dev->ifindex;
428 int hash = addr_hash(d, addr, addr_len, ifidx);
429
430 if (neigh->dev->flags & IFF_LOOPBACK)
431 lport = netdev2pinfo(physdev)->tx_chan + 4;
432 else
433 lport = netdev2pinfo(physdev)->lport;
434
435 if (neigh->dev->priv_flags & IFF_802_1Q_VLAN)
436 vlan = vlan_dev_vlan_id(neigh->dev);
437 else
438 vlan = VLAN_NONE;
439
440 write_lock_bh(&d->lock);
441 for (e = d->l2tab[hash].first; e; e = e->next)
442 if (!addreq(e, addr) && e->ifindex == ifidx &&
443 e->vlan == vlan && e->lport == lport) {
444 l2t_hold(d, e);
445 if (atomic_read(&e->refcnt) == 1)
446 reuse_entry(e, neigh);
447 goto done;
448 }
449
450 /* Need to allocate a new entry */
451 e = alloc_l2e(d);
452 if (e) {
453 spin_lock(&e->lock); /* avoid race with t4_l2t_free */
454 e->state = L2T_STATE_RESOLVING;
455 if (neigh->dev->flags & IFF_LOOPBACK)
456 memcpy(e->dmac, physdev->dev_addr, sizeof(e->dmac));
457 memcpy(e->addr, addr, addr_len);
458 e->ifindex = ifidx;
459 e->hash = hash;
460 e->lport = lport;
461 e->v6 = addr_len == 16;
462 atomic_set(&e->refcnt, 1);
463 neigh_replace(e, neigh);
464 e->vlan = vlan;
465 e->next = d->l2tab[hash].first;
466 d->l2tab[hash].first = e;
467 spin_unlock(&e->lock);
468 }
469 done:
470 write_unlock_bh(&d->lock);
471 return e;
472 }
473 EXPORT_SYMBOL(cxgb4_l2t_get);
474
cxgb4_select_ntuple(struct net_device * dev,const struct l2t_entry * l2t)475 u64 cxgb4_select_ntuple(struct net_device *dev,
476 const struct l2t_entry *l2t)
477 {
478 struct adapter *adap = netdev2adap(dev);
479 struct tp_params *tp = &adap->params.tp;
480 u64 ntuple = 0;
481
482 /* Initialize each of the fields which we care about which are present
483 * in the Compressed Filter Tuple.
484 */
485 if (tp->vlan_shift >= 0 && l2t->vlan != VLAN_NONE)
486 ntuple |= (u64)(FT_VLAN_VLD_F | l2t->vlan) << tp->vlan_shift;
487
488 if (tp->port_shift >= 0)
489 ntuple |= (u64)l2t->lport << tp->port_shift;
490
491 if (tp->protocol_shift >= 0)
492 ntuple |= (u64)IPPROTO_TCP << tp->protocol_shift;
493
494 if (tp->vnic_shift >= 0) {
495 u32 viid = cxgb4_port_viid(dev);
496 u32 vf = FW_VIID_VIN_G(viid);
497 u32 pf = FW_VIID_PFN_G(viid);
498 u32 vld = FW_VIID_VIVLD_G(viid);
499
500 ntuple |= (u64)(FT_VNID_ID_VF_V(vf) |
501 FT_VNID_ID_PF_V(pf) |
502 FT_VNID_ID_VLD_V(vld)) << tp->vnic_shift;
503 }
504
505 return ntuple;
506 }
507 EXPORT_SYMBOL(cxgb4_select_ntuple);
508
509 /*
510 * Called when address resolution fails for an L2T entry to handle packets
511 * on the arpq head. If a packet specifies a failure handler it is invoked,
512 * otherwise the packet is sent to the device.
513 */
handle_failed_resolution(struct adapter * adap,struct l2t_entry * e)514 static void handle_failed_resolution(struct adapter *adap, struct l2t_entry *e)
515 {
516 struct sk_buff *skb;
517
518 while ((skb = __skb_dequeue(&e->arpq)) != NULL) {
519 const struct l2t_skb_cb *cb = L2T_SKB_CB(skb);
520
521 spin_unlock(&e->lock);
522 if (cb->arp_err_handler)
523 cb->arp_err_handler(cb->handle, skb);
524 else
525 t4_ofld_send(adap, skb);
526 spin_lock(&e->lock);
527 }
528 }
529
530 /*
531 * Called when the host's neighbor layer makes a change to some entry that is
532 * loaded into the HW L2 table.
533 */
t4_l2t_update(struct adapter * adap,struct neighbour * neigh)534 void t4_l2t_update(struct adapter *adap, struct neighbour *neigh)
535 {
536 struct l2t_entry *e;
537 struct sk_buff_head *arpq = NULL;
538 struct l2t_data *d = adap->l2t;
539 int addr_len = neigh->tbl->key_len;
540 u32 *addr = (u32 *) neigh->primary_key;
541 int ifidx = neigh->dev->ifindex;
542 int hash = addr_hash(d, addr, addr_len, ifidx);
543
544 read_lock_bh(&d->lock);
545 for (e = d->l2tab[hash].first; e; e = e->next)
546 if (!addreq(e, addr) && e->ifindex == ifidx) {
547 spin_lock(&e->lock);
548 if (atomic_read(&e->refcnt))
549 goto found;
550 spin_unlock(&e->lock);
551 break;
552 }
553 read_unlock_bh(&d->lock);
554 return;
555
556 found:
557 read_unlock(&d->lock);
558
559 if (neigh != e->neigh)
560 neigh_replace(e, neigh);
561
562 if (e->state == L2T_STATE_RESOLVING) {
563 if (neigh->nud_state & NUD_FAILED) {
564 arpq = &e->arpq;
565 } else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) &&
566 !skb_queue_empty(&e->arpq)) {
567 write_l2e(adap, e, 1);
568 }
569 } else {
570 e->state = neigh->nud_state & NUD_CONNECTED ?
571 L2T_STATE_VALID : L2T_STATE_STALE;
572 if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)))
573 write_l2e(adap, e, 0);
574 }
575
576 if (arpq)
577 handle_failed_resolution(adap, e);
578 spin_unlock_bh(&e->lock);
579 }
580
581 /* Allocate an L2T entry for use by a switching rule. Such need to be
582 * explicitly freed and while busy they are not on any hash chain, so normal
583 * address resolution updates do not see them.
584 */
t4_l2t_alloc_switching(struct adapter * adap,u16 vlan,u8 port,u8 * eth_addr)585 struct l2t_entry *t4_l2t_alloc_switching(struct adapter *adap, u16 vlan,
586 u8 port, u8 *eth_addr)
587 {
588 struct l2t_data *d = adap->l2t;
589 struct l2t_entry *e;
590 int ret;
591
592 write_lock_bh(&d->lock);
593 e = find_or_alloc_l2e(d, vlan, port, eth_addr);
594 if (e) {
595 spin_lock(&e->lock); /* avoid race with t4_l2t_free */
596 if (!atomic_read(&e->refcnt)) {
597 e->state = L2T_STATE_SWITCHING;
598 e->vlan = vlan;
599 e->lport = port;
600 ether_addr_copy(e->dmac, eth_addr);
601 atomic_set(&e->refcnt, 1);
602 ret = write_l2e(adap, e, 0);
603 if (ret < 0) {
604 _t4_l2e_free(e);
605 spin_unlock(&e->lock);
606 write_unlock_bh(&d->lock);
607 return NULL;
608 }
609 } else {
610 atomic_inc(&e->refcnt);
611 }
612
613 spin_unlock(&e->lock);
614 }
615 write_unlock_bh(&d->lock);
616 return e;
617 }
618
619 /**
620 * @dev: net_device pointer
621 * @vlan: VLAN Id
622 * @port: Associated port
623 * @dmac: Destination MAC address to add to L2T
624 * Returns pointer to the allocated l2t entry
625 *
626 * Allocates an L2T entry for use by switching rule of a filter
627 */
cxgb4_l2t_alloc_switching(struct net_device * dev,u16 vlan,u8 port,u8 * dmac)628 struct l2t_entry *cxgb4_l2t_alloc_switching(struct net_device *dev, u16 vlan,
629 u8 port, u8 *dmac)
630 {
631 struct adapter *adap = netdev2adap(dev);
632
633 return t4_l2t_alloc_switching(adap, vlan, port, dmac);
634 }
635 EXPORT_SYMBOL(cxgb4_l2t_alloc_switching);
636
t4_init_l2t(unsigned int l2t_start,unsigned int l2t_end)637 struct l2t_data *t4_init_l2t(unsigned int l2t_start, unsigned int l2t_end)
638 {
639 unsigned int l2t_size;
640 int i;
641 struct l2t_data *d;
642
643 if (l2t_start >= l2t_end || l2t_end >= L2T_SIZE)
644 return NULL;
645 l2t_size = l2t_end - l2t_start + 1;
646 if (l2t_size < L2T_MIN_HASH_BUCKETS)
647 return NULL;
648
649 d = t4_alloc_mem(sizeof(*d) + l2t_size * sizeof(struct l2t_entry));
650 if (!d)
651 return NULL;
652
653 d->l2t_start = l2t_start;
654 d->l2t_size = l2t_size;
655
656 d->rover = d->l2tab;
657 atomic_set(&d->nfree, l2t_size);
658 rwlock_init(&d->lock);
659
660 for (i = 0; i < d->l2t_size; ++i) {
661 d->l2tab[i].idx = i;
662 d->l2tab[i].state = L2T_STATE_UNUSED;
663 spin_lock_init(&d->l2tab[i].lock);
664 atomic_set(&d->l2tab[i].refcnt, 0);
665 skb_queue_head_init(&d->l2tab[i].arpq);
666 }
667 return d;
668 }
669
l2t_get_idx(struct seq_file * seq,loff_t pos)670 static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos)
671 {
672 struct l2t_data *d = seq->private;
673
674 return pos >= d->l2t_size ? NULL : &d->l2tab[pos];
675 }
676
l2t_seq_start(struct seq_file * seq,loff_t * pos)677 static void *l2t_seq_start(struct seq_file *seq, loff_t *pos)
678 {
679 return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
680 }
681
l2t_seq_next(struct seq_file * seq,void * v,loff_t * pos)682 static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos)
683 {
684 v = l2t_get_idx(seq, *pos);
685 if (v)
686 ++*pos;
687 return v;
688 }
689
l2t_seq_stop(struct seq_file * seq,void * v)690 static void l2t_seq_stop(struct seq_file *seq, void *v)
691 {
692 }
693
l2e_state(const struct l2t_entry * e)694 static char l2e_state(const struct l2t_entry *e)
695 {
696 switch (e->state) {
697 case L2T_STATE_VALID: return 'V';
698 case L2T_STATE_STALE: return 'S';
699 case L2T_STATE_SYNC_WRITE: return 'W';
700 case L2T_STATE_RESOLVING:
701 return skb_queue_empty(&e->arpq) ? 'R' : 'A';
702 case L2T_STATE_SWITCHING: return 'X';
703 default:
704 return 'U';
705 }
706 }
707
l2t_seq_show(struct seq_file * seq,void * v)708 static int l2t_seq_show(struct seq_file *seq, void *v)
709 {
710 if (v == SEQ_START_TOKEN)
711 seq_puts(seq, " Idx IP address "
712 "Ethernet address VLAN/P LP State Users Port\n");
713 else {
714 char ip[60];
715 struct l2t_data *d = seq->private;
716 struct l2t_entry *e = v;
717
718 spin_lock_bh(&e->lock);
719 if (e->state == L2T_STATE_SWITCHING)
720 ip[0] = '\0';
721 else
722 sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr);
723 seq_printf(seq, "%4u %-25s %17pM %4d %u %2u %c %5u %s\n",
724 e->idx + d->l2t_start, ip, e->dmac,
725 e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport,
726 l2e_state(e), atomic_read(&e->refcnt),
727 e->neigh ? e->neigh->dev->name : "");
728 spin_unlock_bh(&e->lock);
729 }
730 return 0;
731 }
732
733 static const struct seq_operations l2t_seq_ops = {
734 .start = l2t_seq_start,
735 .next = l2t_seq_next,
736 .stop = l2t_seq_stop,
737 .show = l2t_seq_show
738 };
739
l2t_seq_open(struct inode * inode,struct file * file)740 static int l2t_seq_open(struct inode *inode, struct file *file)
741 {
742 int rc = seq_open(file, &l2t_seq_ops);
743
744 if (!rc) {
745 struct adapter *adap = inode->i_private;
746 struct seq_file *seq = file->private_data;
747
748 seq->private = adap->l2t;
749 }
750 return rc;
751 }
752
753 const struct file_operations t4_l2t_fops = {
754 .owner = THIS_MODULE,
755 .open = l2t_seq_open,
756 .read = seq_read,
757 .llseek = seq_lseek,
758 .release = seq_release,
759 };
760