1 /*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/pci.h>
37
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
40
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4_values.h"
43 #include "../cxgb4/t4fw_api.h"
44
45 /*
46 * Wait for the device to become ready (signified by our "who am I" register
47 * returning a value other than all 1's). Return an error if it doesn't
48 * become ready ...
49 */
t4vf_wait_dev_ready(struct adapter * adapter)50 int t4vf_wait_dev_ready(struct adapter *adapter)
51 {
52 const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53 const u32 notready1 = 0xffffffff;
54 const u32 notready2 = 0xeeeeeeee;
55 u32 val;
56
57 val = t4_read_reg(adapter, whoami);
58 if (val != notready1 && val != notready2)
59 return 0;
60 msleep(500);
61 val = t4_read_reg(adapter, whoami);
62 if (val != notready1 && val != notready2)
63 return 0;
64 else
65 return -EIO;
66 }
67
68 /*
69 * Get the reply to a mailbox command and store it in @rpl in big-endian order
70 * (since the firmware data structures are specified in a big-endian layout).
71 */
get_mbox_rpl(struct adapter * adapter,__be64 * rpl,int size,u32 mbox_data)72 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73 u32 mbox_data)
74 {
75 for ( ; size; size -= 8, mbox_data += 8)
76 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77 }
78
79 /**
80 * t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
81 * @adapter: the adapter
82 * @cmd: the Firmware Mailbox Command or Reply
83 * @size: command length in bytes
84 * @access: the time (ms) needed to access the Firmware Mailbox
85 * @execute: the time (ms) the command spent being executed
86 */
t4vf_record_mbox(struct adapter * adapter,const __be64 * cmd,int size,int access,int execute)87 static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
88 int size, int access, int execute)
89 {
90 struct mbox_cmd_log *log = adapter->mbox_log;
91 struct mbox_cmd *entry;
92 int i;
93
94 entry = mbox_cmd_log_entry(log, log->cursor++);
95 if (log->cursor == log->size)
96 log->cursor = 0;
97
98 for (i = 0; i < size / 8; i++)
99 entry->cmd[i] = be64_to_cpu(cmd[i]);
100 while (i < MBOX_LEN / 8)
101 entry->cmd[i++] = 0;
102 entry->timestamp = jiffies;
103 entry->seqno = log->seqno++;
104 entry->access = access;
105 entry->execute = execute;
106 }
107
108 /**
109 * t4vf_wr_mbox_core - send a command to FW through the mailbox
110 * @adapter: the adapter
111 * @cmd: the command to write
112 * @size: command length in bytes
113 * @rpl: where to optionally store the reply
114 * @sleep_ok: if true we may sleep while awaiting command completion
115 *
116 * Sends the given command to FW through the mailbox and waits for the
117 * FW to execute the command. If @rpl is not %NULL it is used to store
118 * the FW's reply to the command. The command and its optional reply
119 * are of the same length. FW can take up to 500 ms to respond.
120 * @sleep_ok determines whether we may sleep while awaiting the response.
121 * If sleeping is allowed we use progressive backoff otherwise we spin.
122 *
123 * The return value is 0 on success or a negative errno on failure. A
124 * failure can happen either because we are not able to execute the
125 * command or FW executes it but signals an error. In the latter case
126 * the return value is the error code indicated by FW (negated).
127 */
t4vf_wr_mbox_core(struct adapter * adapter,const void * cmd,int size,void * rpl,bool sleep_ok)128 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
129 void *rpl, bool sleep_ok)
130 {
131 static const int delay[] = {
132 1, 1, 3, 5, 10, 10, 20, 50, 100
133 };
134
135 u16 access = 0, execute = 0;
136 u32 v, mbox_data;
137 int i, ms, delay_idx, ret;
138 const __be64 *p;
139 u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
140 u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
141 __be64 cmd_rpl[MBOX_LEN / 8];
142 struct mbox_list entry;
143
144 /* In T6, mailbox size is changed to 128 bytes to avoid
145 * invalidating the entire prefetch buffer.
146 */
147 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
148 mbox_data = T4VF_MBDATA_BASE_ADDR;
149 else
150 mbox_data = T6VF_MBDATA_BASE_ADDR;
151
152 /*
153 * Commands must be multiples of 16 bytes in length and may not be
154 * larger than the size of the Mailbox Data register array.
155 */
156 if ((size % 16) != 0 ||
157 size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
158 return -EINVAL;
159
160 /* Queue ourselves onto the mailbox access list. When our entry is at
161 * the front of the list, we have rights to access the mailbox. So we
162 * wait [for a while] till we're at the front [or bail out with an
163 * EBUSY] ...
164 */
165 spin_lock(&adapter->mbox_lock);
166 list_add_tail(&entry.list, &adapter->mlist.list);
167 spin_unlock(&adapter->mbox_lock);
168
169 delay_idx = 0;
170 ms = delay[0];
171
172 for (i = 0; ; i += ms) {
173 /* If we've waited too long, return a busy indication. This
174 * really ought to be based on our initial position in the
175 * mailbox access list but this is a start. We very rearely
176 * contend on access to the mailbox ...
177 */
178 if (i > FW_CMD_MAX_TIMEOUT) {
179 spin_lock(&adapter->mbox_lock);
180 list_del(&entry.list);
181 spin_unlock(&adapter->mbox_lock);
182 ret = -EBUSY;
183 t4vf_record_mbox(adapter, cmd, size, access, ret);
184 return ret;
185 }
186
187 /* If we're at the head, break out and start the mailbox
188 * protocol.
189 */
190 if (list_first_entry(&adapter->mlist.list, struct mbox_list,
191 list) == &entry)
192 break;
193
194 /* Delay for a bit before checking again ... */
195 if (sleep_ok) {
196 ms = delay[delay_idx]; /* last element may repeat */
197 if (delay_idx < ARRAY_SIZE(delay) - 1)
198 delay_idx++;
199 msleep(ms);
200 } else {
201 mdelay(ms);
202 }
203 }
204
205 /*
206 * Loop trying to get ownership of the mailbox. Return an error
207 * if we can't gain ownership.
208 */
209 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
210 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
211 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
212 if (v != MBOX_OWNER_DRV) {
213 spin_lock(&adapter->mbox_lock);
214 list_del(&entry.list);
215 spin_unlock(&adapter->mbox_lock);
216 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
217 t4vf_record_mbox(adapter, cmd, size, access, ret);
218 return ret;
219 }
220
221 /*
222 * Write the command array into the Mailbox Data register array and
223 * transfer ownership of the mailbox to the firmware.
224 *
225 * For the VFs, the Mailbox Data "registers" are actually backed by
226 * T4's "MA" interface rather than PL Registers (as is the case for
227 * the PFs). Because these are in different coherency domains, the
228 * write to the VF's PL-register-backed Mailbox Control can race in
229 * front of the writes to the MA-backed VF Mailbox Data "registers".
230 * So we need to do a read-back on at least one byte of the VF Mailbox
231 * Data registers before doing the write to the VF Mailbox Control
232 * register.
233 */
234 if (cmd_op != FW_VI_STATS_CMD)
235 t4vf_record_mbox(adapter, cmd, size, access, 0);
236 for (i = 0, p = cmd; i < size; i += 8)
237 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
238 t4_read_reg(adapter, mbox_data); /* flush write */
239
240 t4_write_reg(adapter, mbox_ctl,
241 MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
242 t4_read_reg(adapter, mbox_ctl); /* flush write */
243
244 /*
245 * Spin waiting for firmware to acknowledge processing our command.
246 */
247 delay_idx = 0;
248 ms = delay[0];
249
250 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
251 if (sleep_ok) {
252 ms = delay[delay_idx];
253 if (delay_idx < ARRAY_SIZE(delay) - 1)
254 delay_idx++;
255 msleep(ms);
256 } else
257 mdelay(ms);
258
259 /*
260 * If we're the owner, see if this is the reply we wanted.
261 */
262 v = t4_read_reg(adapter, mbox_ctl);
263 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
264 /*
265 * If the Message Valid bit isn't on, revoke ownership
266 * of the mailbox and continue waiting for our reply.
267 */
268 if ((v & MBMSGVALID_F) == 0) {
269 t4_write_reg(adapter, mbox_ctl,
270 MBOWNER_V(MBOX_OWNER_NONE));
271 continue;
272 }
273
274 /*
275 * We now have our reply. Extract the command return
276 * value, copy the reply back to our caller's buffer
277 * (if specified) and revoke ownership of the mailbox.
278 * We return the (negated) firmware command return
279 * code (this depends on FW_SUCCESS == 0).
280 */
281 get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
282
283 /* return value in low-order little-endian word */
284 v = be64_to_cpu(cmd_rpl[0]);
285
286 if (rpl) {
287 /* request bit in high-order BE word */
288 WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
289 & FW_CMD_REQUEST_F) == 0);
290 memcpy(rpl, cmd_rpl, size);
291 WARN_ON((be32_to_cpu(*(__be32 *)rpl)
292 & FW_CMD_REQUEST_F) != 0);
293 }
294 t4_write_reg(adapter, mbox_ctl,
295 MBOWNER_V(MBOX_OWNER_NONE));
296 execute = i + ms;
297 if (cmd_op != FW_VI_STATS_CMD)
298 t4vf_record_mbox(adapter, cmd_rpl, size, access,
299 execute);
300 spin_lock(&adapter->mbox_lock);
301 list_del(&entry.list);
302 spin_unlock(&adapter->mbox_lock);
303 return -FW_CMD_RETVAL_G(v);
304 }
305 }
306
307 /* We timed out. Return the error ... */
308 ret = -ETIMEDOUT;
309 t4vf_record_mbox(adapter, cmd, size, access, ret);
310 spin_lock(&adapter->mbox_lock);
311 list_del(&entry.list);
312 spin_unlock(&adapter->mbox_lock);
313 return ret;
314 }
315
316 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
317 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_25G | \
318 FW_PORT_CAP_SPEED_40G | FW_PORT_CAP_SPEED_100G | \
319 FW_PORT_CAP_ANEG)
320
321 /**
322 * init_link_config - initialize a link's SW state
323 * @lc: structure holding the link state
324 * @caps: link capabilities
325 *
326 * Initializes the SW state maintained for each link, including the link's
327 * capabilities and default speed/flow-control/autonegotiation settings.
328 */
init_link_config(struct link_config * lc,unsigned int caps)329 static void init_link_config(struct link_config *lc, unsigned int caps)
330 {
331 lc->supported = caps;
332 lc->lp_advertising = 0;
333 lc->requested_speed = 0;
334 lc->speed = 0;
335 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
336 if (lc->supported & FW_PORT_CAP_ANEG) {
337 lc->advertising = lc->supported & ADVERT_MASK;
338 lc->autoneg = AUTONEG_ENABLE;
339 lc->requested_fc |= PAUSE_AUTONEG;
340 } else {
341 lc->advertising = 0;
342 lc->autoneg = AUTONEG_DISABLE;
343 }
344 }
345
346 /**
347 * t4vf_port_init - initialize port hardware/software state
348 * @adapter: the adapter
349 * @pidx: the adapter port index
350 */
t4vf_port_init(struct adapter * adapter,int pidx)351 int t4vf_port_init(struct adapter *adapter, int pidx)
352 {
353 struct port_info *pi = adap2pinfo(adapter, pidx);
354 struct fw_vi_cmd vi_cmd, vi_rpl;
355 struct fw_port_cmd port_cmd, port_rpl;
356 int v;
357
358 /*
359 * Execute a VI Read command to get our Virtual Interface information
360 * like MAC address, etc.
361 */
362 memset(&vi_cmd, 0, sizeof(vi_cmd));
363 vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
364 FW_CMD_REQUEST_F |
365 FW_CMD_READ_F);
366 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
367 vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
368 v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
369 if (v)
370 return v;
371
372 BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
373 pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
374 t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
375
376 /*
377 * If we don't have read access to our port information, we're done
378 * now. Otherwise, execute a PORT Read command to get it ...
379 */
380 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
381 return 0;
382
383 memset(&port_cmd, 0, sizeof(port_cmd));
384 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
385 FW_CMD_REQUEST_F |
386 FW_CMD_READ_F |
387 FW_PORT_CMD_PORTID_V(pi->port_id));
388 port_cmd.action_to_len16 =
389 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
390 FW_LEN16(port_cmd));
391 v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
392 if (v)
393 return v;
394
395 v = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
396 pi->mdio_addr = (v & FW_PORT_CMD_MDIOCAP_F) ?
397 FW_PORT_CMD_MDIOADDR_G(v) : -1;
398 pi->port_type = FW_PORT_CMD_PTYPE_G(v);
399 pi->mod_type = FW_PORT_MOD_TYPE_NA;
400
401 init_link_config(&pi->link_cfg, be16_to_cpu(port_rpl.u.info.pcap));
402
403 return 0;
404 }
405
406 /**
407 * t4vf_fw_reset - issue a reset to FW
408 * @adapter: the adapter
409 *
410 * Issues a reset command to FW. For a Physical Function this would
411 * result in the Firmware resetting all of its state. For a Virtual
412 * Function this just resets the state associated with the VF.
413 */
t4vf_fw_reset(struct adapter * adapter)414 int t4vf_fw_reset(struct adapter *adapter)
415 {
416 struct fw_reset_cmd cmd;
417
418 memset(&cmd, 0, sizeof(cmd));
419 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
420 FW_CMD_WRITE_F);
421 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
422 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
423 }
424
425 /**
426 * t4vf_query_params - query FW or device parameters
427 * @adapter: the adapter
428 * @nparams: the number of parameters
429 * @params: the parameter names
430 * @vals: the parameter values
431 *
432 * Reads the values of firmware or device parameters. Up to 7 parameters
433 * can be queried at once.
434 */
t4vf_query_params(struct adapter * adapter,unsigned int nparams,const u32 * params,u32 * vals)435 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
436 const u32 *params, u32 *vals)
437 {
438 int i, ret;
439 struct fw_params_cmd cmd, rpl;
440 struct fw_params_param *p;
441 size_t len16;
442
443 if (nparams > 7)
444 return -EINVAL;
445
446 memset(&cmd, 0, sizeof(cmd));
447 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
448 FW_CMD_REQUEST_F |
449 FW_CMD_READ_F);
450 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
451 param[nparams].mnem), 16);
452 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
453 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
454 p->mnem = htonl(*params++);
455
456 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
457 if (ret == 0)
458 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
459 *vals++ = be32_to_cpu(p->val);
460 return ret;
461 }
462
463 /**
464 * t4vf_set_params - sets FW or device parameters
465 * @adapter: the adapter
466 * @nparams: the number of parameters
467 * @params: the parameter names
468 * @vals: the parameter values
469 *
470 * Sets the values of firmware or device parameters. Up to 7 parameters
471 * can be specified at once.
472 */
t4vf_set_params(struct adapter * adapter,unsigned int nparams,const u32 * params,const u32 * vals)473 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
474 const u32 *params, const u32 *vals)
475 {
476 int i;
477 struct fw_params_cmd cmd;
478 struct fw_params_param *p;
479 size_t len16;
480
481 if (nparams > 7)
482 return -EINVAL;
483
484 memset(&cmd, 0, sizeof(cmd));
485 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
486 FW_CMD_REQUEST_F |
487 FW_CMD_WRITE_F);
488 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
489 param[nparams]), 16);
490 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
491 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
492 p->mnem = cpu_to_be32(*params++);
493 p->val = cpu_to_be32(*vals++);
494 }
495
496 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
497 }
498
499 /**
500 * t4vf_fl_pkt_align - return the fl packet alignment
501 * @adapter: the adapter
502 *
503 * T4 has a single field to specify the packing and padding boundary.
504 * T5 onwards has separate fields for this and hence the alignment for
505 * next packet offset is maximum of these two. And T6 changes the
506 * Ingress Padding Boundary Shift, so it's all a mess and it's best
507 * if we put this in low-level Common Code ...
508 *
509 */
t4vf_fl_pkt_align(struct adapter * adapter)510 int t4vf_fl_pkt_align(struct adapter *adapter)
511 {
512 u32 sge_control, sge_control2;
513 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
514
515 sge_control = adapter->params.sge.sge_control;
516
517 /* T4 uses a single control field to specify both the PCIe Padding and
518 * Packing Boundary. T5 introduced the ability to specify these
519 * separately. The actual Ingress Packet Data alignment boundary
520 * within Packed Buffer Mode is the maximum of these two
521 * specifications. (Note that it makes no real practical sense to
522 * have the Pading Boudary be larger than the Packing Boundary but you
523 * could set the chip up that way and, in fact, legacy T4 code would
524 * end doing this because it would initialize the Padding Boundary and
525 * leave the Packing Boundary initialized to 0 (16 bytes).)
526 * Padding Boundary values in T6 starts from 8B,
527 * where as it is 32B for T4 and T5.
528 */
529 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
530 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
531 else
532 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
533
534 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
535
536 fl_align = ingpadboundary;
537 if (!is_t4(adapter->params.chip)) {
538 /* T5 has a different interpretation of one of the PCIe Packing
539 * Boundary values.
540 */
541 sge_control2 = adapter->params.sge.sge_control2;
542 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
543 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
544 ingpackboundary = 16;
545 else
546 ingpackboundary = 1 << (ingpackboundary +
547 INGPACKBOUNDARY_SHIFT_X);
548
549 fl_align = max(ingpadboundary, ingpackboundary);
550 }
551 return fl_align;
552 }
553
554 /**
555 * t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
556 * @adapter: the adapter
557 * @qid: the Queue ID
558 * @qtype: the Ingress or Egress type for @qid
559 * @pbar2_qoffset: BAR2 Queue Offset
560 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
561 *
562 * Returns the BAR2 SGE Queue Registers information associated with the
563 * indicated Absolute Queue ID. These are passed back in return value
564 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
565 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
566 *
567 * This may return an error which indicates that BAR2 SGE Queue
568 * registers aren't available. If an error is not returned, then the
569 * following values are returned:
570 *
571 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
572 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
573 *
574 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
575 * require the "Inferred Queue ID" ability may be used. E.g. the
576 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
577 * then these "Inferred Queue ID" register may not be used.
578 */
t4vf_bar2_sge_qregs(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,u64 * pbar2_qoffset,unsigned int * pbar2_qid)579 int t4vf_bar2_sge_qregs(struct adapter *adapter,
580 unsigned int qid,
581 enum t4_bar2_qtype qtype,
582 u64 *pbar2_qoffset,
583 unsigned int *pbar2_qid)
584 {
585 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
586 u64 bar2_page_offset, bar2_qoffset;
587 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
588
589 /* T4 doesn't support BAR2 SGE Queue registers.
590 */
591 if (is_t4(adapter->params.chip))
592 return -EINVAL;
593
594 /* Get our SGE Page Size parameters.
595 */
596 page_shift = adapter->params.sge.sge_vf_hps + 10;
597 page_size = 1 << page_shift;
598
599 /* Get the right Queues per Page parameters for our Queue.
600 */
601 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
602 ? adapter->params.sge.sge_vf_eq_qpp
603 : adapter->params.sge.sge_vf_iq_qpp);
604 qpp_mask = (1 << qpp_shift) - 1;
605
606 /* Calculate the basics of the BAR2 SGE Queue register area:
607 * o The BAR2 page the Queue registers will be in.
608 * o The BAR2 Queue ID.
609 * o The BAR2 Queue ID Offset into the BAR2 page.
610 */
611 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
612 bar2_qid = qid & qpp_mask;
613 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
614
615 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
616 * hardware will infer the Absolute Queue ID simply from the writes to
617 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
618 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
619 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
620 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
621 * from the BAR2 Page and BAR2 Queue ID.
622 *
623 * One important censequence of this is that some BAR2 SGE registers
624 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
625 * there. But other registers synthesize the SGE Queue ID purely
626 * from the writes to the registers -- the Write Combined Doorbell
627 * Buffer is a good example. These BAR2 SGE Registers are only
628 * available for those BAR2 SGE Register areas where the SGE Absolute
629 * Queue ID can be inferred from simple writes.
630 */
631 bar2_qoffset = bar2_page_offset;
632 bar2_qinferred = (bar2_qid_offset < page_size);
633 if (bar2_qinferred) {
634 bar2_qoffset += bar2_qid_offset;
635 bar2_qid = 0;
636 }
637
638 *pbar2_qoffset = bar2_qoffset;
639 *pbar2_qid = bar2_qid;
640 return 0;
641 }
642
t4vf_get_pf_from_vf(struct adapter * adapter)643 unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
644 {
645 u32 whoami;
646
647 whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
648 return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
649 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami));
650 }
651
652 /**
653 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
654 * @adapter: the adapter
655 *
656 * Retrieves various core SGE parameters in the form of hardware SGE
657 * register values. The caller is responsible for decoding these as
658 * needed. The SGE parameters are stored in @adapter->params.sge.
659 */
t4vf_get_sge_params(struct adapter * adapter)660 int t4vf_get_sge_params(struct adapter *adapter)
661 {
662 struct sge_params *sge_params = &adapter->params.sge;
663 u32 params[7], vals[7];
664 int v;
665
666 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
667 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
668 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
669 FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
670 params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
671 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
672 params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
673 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
674 params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
675 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
676 params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
677 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
678 params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
679 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
680 v = t4vf_query_params(adapter, 7, params, vals);
681 if (v)
682 return v;
683 sge_params->sge_control = vals[0];
684 sge_params->sge_host_page_size = vals[1];
685 sge_params->sge_fl_buffer_size[0] = vals[2];
686 sge_params->sge_fl_buffer_size[1] = vals[3];
687 sge_params->sge_timer_value_0_and_1 = vals[4];
688 sge_params->sge_timer_value_2_and_3 = vals[5];
689 sge_params->sge_timer_value_4_and_5 = vals[6];
690
691 /* T4 uses a single control field to specify both the PCIe Padding and
692 * Packing Boundary. T5 introduced the ability to specify these
693 * separately with the Padding Boundary in SGE_CONTROL and and Packing
694 * Boundary in SGE_CONTROL2. So for T5 and later we need to grab
695 * SGE_CONTROL in order to determine how ingress packet data will be
696 * laid out in Packed Buffer Mode. Unfortunately, older versions of
697 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
698 * failure grabbing it we throw an error since we can't figure out the
699 * right value.
700 */
701 if (!is_t4(adapter->params.chip)) {
702 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
703 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
704 v = t4vf_query_params(adapter, 1, params, vals);
705 if (v != FW_SUCCESS) {
706 dev_err(adapter->pdev_dev,
707 "Unable to get SGE Control2; "
708 "probably old firmware.\n");
709 return v;
710 }
711 sge_params->sge_control2 = vals[0];
712 }
713
714 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
715 FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
716 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
717 FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
718 v = t4vf_query_params(adapter, 2, params, vals);
719 if (v)
720 return v;
721 sge_params->sge_ingress_rx_threshold = vals[0];
722 sge_params->sge_congestion_control = vals[1];
723
724 /* For T5 and later we want to use the new BAR2 Doorbells.
725 * Unfortunately, older firmware didn't allow the this register to be
726 * read.
727 */
728 if (!is_t4(adapter->params.chip)) {
729 unsigned int pf, s_hps, s_qpp;
730
731 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
732 FW_PARAMS_PARAM_XYZ_V(
733 SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
734 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
735 FW_PARAMS_PARAM_XYZ_V(
736 SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
737 v = t4vf_query_params(adapter, 2, params, vals);
738 if (v != FW_SUCCESS) {
739 dev_warn(adapter->pdev_dev,
740 "Unable to get VF SGE Queues/Page; "
741 "probably old firmware.\n");
742 return v;
743 }
744 sge_params->sge_egress_queues_per_page = vals[0];
745 sge_params->sge_ingress_queues_per_page = vals[1];
746
747 /* We need the Queues/Page for our VF. This is based on the
748 * PF from which we're instantiated and is indexed in the
749 * register we just read. Do it once here so other code in
750 * the driver can just use it.
751 */
752 pf = t4vf_get_pf_from_vf(adapter);
753 s_hps = (HOSTPAGESIZEPF0_S +
754 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
755 sge_params->sge_vf_hps =
756 ((sge_params->sge_host_page_size >> s_hps)
757 & HOSTPAGESIZEPF0_M);
758
759 s_qpp = (QUEUESPERPAGEPF0_S +
760 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
761 sge_params->sge_vf_eq_qpp =
762 ((sge_params->sge_egress_queues_per_page >> s_qpp)
763 & QUEUESPERPAGEPF0_M);
764 sge_params->sge_vf_iq_qpp =
765 ((sge_params->sge_ingress_queues_per_page >> s_qpp)
766 & QUEUESPERPAGEPF0_M);
767 }
768
769 return 0;
770 }
771
772 /**
773 * t4vf_get_vpd_params - retrieve device VPD paremeters
774 * @adapter: the adapter
775 *
776 * Retrives various device Vital Product Data parameters. The parameters
777 * are stored in @adapter->params.vpd.
778 */
t4vf_get_vpd_params(struct adapter * adapter)779 int t4vf_get_vpd_params(struct adapter *adapter)
780 {
781 struct vpd_params *vpd_params = &adapter->params.vpd;
782 u32 params[7], vals[7];
783 int v;
784
785 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
786 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
787 v = t4vf_query_params(adapter, 1, params, vals);
788 if (v)
789 return v;
790 vpd_params->cclk = vals[0];
791
792 return 0;
793 }
794
795 /**
796 * t4vf_get_dev_params - retrieve device paremeters
797 * @adapter: the adapter
798 *
799 * Retrives various device parameters. The parameters are stored in
800 * @adapter->params.dev.
801 */
t4vf_get_dev_params(struct adapter * adapter)802 int t4vf_get_dev_params(struct adapter *adapter)
803 {
804 struct dev_params *dev_params = &adapter->params.dev;
805 u32 params[7], vals[7];
806 int v;
807
808 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
809 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
810 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
811 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
812 v = t4vf_query_params(adapter, 2, params, vals);
813 if (v)
814 return v;
815 dev_params->fwrev = vals[0];
816 dev_params->tprev = vals[1];
817
818 return 0;
819 }
820
821 /**
822 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
823 * @adapter: the adapter
824 *
825 * Retrieves global RSS mode and parameters with which we have to live
826 * and stores them in the @adapter's RSS parameters.
827 */
t4vf_get_rss_glb_config(struct adapter * adapter)828 int t4vf_get_rss_glb_config(struct adapter *adapter)
829 {
830 struct rss_params *rss = &adapter->params.rss;
831 struct fw_rss_glb_config_cmd cmd, rpl;
832 int v;
833
834 /*
835 * Execute an RSS Global Configuration read command to retrieve
836 * our RSS configuration.
837 */
838 memset(&cmd, 0, sizeof(cmd));
839 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
840 FW_CMD_REQUEST_F |
841 FW_CMD_READ_F);
842 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
843 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
844 if (v)
845 return v;
846
847 /*
848 * Transate the big-endian RSS Global Configuration into our
849 * cpu-endian format based on the RSS mode. We also do first level
850 * filtering at this point to weed out modes which don't support
851 * VF Drivers ...
852 */
853 rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
854 be32_to_cpu(rpl.u.manual.mode_pkd));
855 switch (rss->mode) {
856 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
857 u32 word = be32_to_cpu(
858 rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
859
860 rss->u.basicvirtual.synmapen =
861 ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
862 rss->u.basicvirtual.syn4tupenipv6 =
863 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
864 rss->u.basicvirtual.syn2tupenipv6 =
865 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
866 rss->u.basicvirtual.syn4tupenipv4 =
867 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
868 rss->u.basicvirtual.syn2tupenipv4 =
869 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
870
871 rss->u.basicvirtual.ofdmapen =
872 ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
873
874 rss->u.basicvirtual.tnlmapen =
875 ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
876 rss->u.basicvirtual.tnlalllookup =
877 ((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
878
879 rss->u.basicvirtual.hashtoeplitz =
880 ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
881
882 /* we need at least Tunnel Map Enable to be set */
883 if (!rss->u.basicvirtual.tnlmapen)
884 return -EINVAL;
885 break;
886 }
887
888 default:
889 /* all unknown/unsupported RSS modes result in an error */
890 return -EINVAL;
891 }
892
893 return 0;
894 }
895
896 /**
897 * t4vf_get_vfres - retrieve VF resource limits
898 * @adapter: the adapter
899 *
900 * Retrieves configured resource limits and capabilities for a virtual
901 * function. The results are stored in @adapter->vfres.
902 */
t4vf_get_vfres(struct adapter * adapter)903 int t4vf_get_vfres(struct adapter *adapter)
904 {
905 struct vf_resources *vfres = &adapter->params.vfres;
906 struct fw_pfvf_cmd cmd, rpl;
907 int v;
908 u32 word;
909
910 /*
911 * Execute PFVF Read command to get VF resource limits; bail out early
912 * with error on command failure.
913 */
914 memset(&cmd, 0, sizeof(cmd));
915 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
916 FW_CMD_REQUEST_F |
917 FW_CMD_READ_F);
918 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
919 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
920 if (v)
921 return v;
922
923 /*
924 * Extract VF resource limits and return success.
925 */
926 word = be32_to_cpu(rpl.niqflint_niq);
927 vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
928 vfres->niq = FW_PFVF_CMD_NIQ_G(word);
929
930 word = be32_to_cpu(rpl.type_to_neq);
931 vfres->neq = FW_PFVF_CMD_NEQ_G(word);
932 vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
933
934 word = be32_to_cpu(rpl.tc_to_nexactf);
935 vfres->tc = FW_PFVF_CMD_TC_G(word);
936 vfres->nvi = FW_PFVF_CMD_NVI_G(word);
937 vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
938
939 word = be32_to_cpu(rpl.r_caps_to_nethctrl);
940 vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
941 vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
942 vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
943
944 return 0;
945 }
946
947 /**
948 * t4vf_read_rss_vi_config - read a VI's RSS configuration
949 * @adapter: the adapter
950 * @viid: Virtual Interface ID
951 * @config: pointer to host-native VI RSS Configuration buffer
952 *
953 * Reads the Virtual Interface's RSS configuration information and
954 * translates it into CPU-native format.
955 */
t4vf_read_rss_vi_config(struct adapter * adapter,unsigned int viid,union rss_vi_config * config)956 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
957 union rss_vi_config *config)
958 {
959 struct fw_rss_vi_config_cmd cmd, rpl;
960 int v;
961
962 memset(&cmd, 0, sizeof(cmd));
963 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
964 FW_CMD_REQUEST_F |
965 FW_CMD_READ_F |
966 FW_RSS_VI_CONFIG_CMD_VIID(viid));
967 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
968 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
969 if (v)
970 return v;
971
972 switch (adapter->params.rss.mode) {
973 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
974 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
975
976 config->basicvirtual.ip6fourtupen =
977 ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
978 config->basicvirtual.ip6twotupen =
979 ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
980 config->basicvirtual.ip4fourtupen =
981 ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
982 config->basicvirtual.ip4twotupen =
983 ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
984 config->basicvirtual.udpen =
985 ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
986 config->basicvirtual.defaultq =
987 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
988 break;
989 }
990
991 default:
992 return -EINVAL;
993 }
994
995 return 0;
996 }
997
998 /**
999 * t4vf_write_rss_vi_config - write a VI's RSS configuration
1000 * @adapter: the adapter
1001 * @viid: Virtual Interface ID
1002 * @config: pointer to host-native VI RSS Configuration buffer
1003 *
1004 * Write the Virtual Interface's RSS configuration information
1005 * (translating it into firmware-native format before writing).
1006 */
t4vf_write_rss_vi_config(struct adapter * adapter,unsigned int viid,union rss_vi_config * config)1007 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
1008 union rss_vi_config *config)
1009 {
1010 struct fw_rss_vi_config_cmd cmd, rpl;
1011
1012 memset(&cmd, 0, sizeof(cmd));
1013 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1014 FW_CMD_REQUEST_F |
1015 FW_CMD_WRITE_F |
1016 FW_RSS_VI_CONFIG_CMD_VIID(viid));
1017 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1018 switch (adapter->params.rss.mode) {
1019 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1020 u32 word = 0;
1021
1022 if (config->basicvirtual.ip6fourtupen)
1023 word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
1024 if (config->basicvirtual.ip6twotupen)
1025 word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
1026 if (config->basicvirtual.ip4fourtupen)
1027 word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
1028 if (config->basicvirtual.ip4twotupen)
1029 word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
1030 if (config->basicvirtual.udpen)
1031 word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
1032 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1033 config->basicvirtual.defaultq);
1034 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
1035 break;
1036 }
1037
1038 default:
1039 return -EINVAL;
1040 }
1041
1042 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1043 }
1044
1045 /**
1046 * t4vf_config_rss_range - configure a portion of the RSS mapping table
1047 * @adapter: the adapter
1048 * @viid: Virtual Interface of RSS Table Slice
1049 * @start: starting entry in the table to write
1050 * @n: how many table entries to write
1051 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table
1052 * @nrspq: number of values in @rspq
1053 *
1054 * Programs the selected part of the VI's RSS mapping table with the
1055 * provided values. If @nrspq < @n the supplied values are used repeatedly
1056 * until the full table range is populated.
1057 *
1058 * The caller must ensure the values in @rspq are in the range 0..1023.
1059 */
t4vf_config_rss_range(struct adapter * adapter,unsigned int viid,int start,int n,const u16 * rspq,int nrspq)1060 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1061 int start, int n, const u16 *rspq, int nrspq)
1062 {
1063 const u16 *rsp = rspq;
1064 const u16 *rsp_end = rspq+nrspq;
1065 struct fw_rss_ind_tbl_cmd cmd;
1066
1067 /*
1068 * Initialize firmware command template to write the RSS table.
1069 */
1070 memset(&cmd, 0, sizeof(cmd));
1071 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1072 FW_CMD_REQUEST_F |
1073 FW_CMD_WRITE_F |
1074 FW_RSS_IND_TBL_CMD_VIID_V(viid));
1075 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1076
1077 /*
1078 * Each firmware RSS command can accommodate up to 32 RSS Ingress
1079 * Queue Identifiers. These Ingress Queue IDs are packed three to
1080 * a 32-bit word as 10-bit values with the upper remaining 2 bits
1081 * reserved.
1082 */
1083 while (n > 0) {
1084 __be32 *qp = &cmd.iq0_to_iq2;
1085 int nq = min(n, 32);
1086 int ret;
1087
1088 /*
1089 * Set up the firmware RSS command header to send the next
1090 * "nq" Ingress Queue IDs to the firmware.
1091 */
1092 cmd.niqid = cpu_to_be16(nq);
1093 cmd.startidx = cpu_to_be16(start);
1094
1095 /*
1096 * "nq" more done for the start of the next loop.
1097 */
1098 start += nq;
1099 n -= nq;
1100
1101 /*
1102 * While there are still Ingress Queue IDs to stuff into the
1103 * current firmware RSS command, retrieve them from the
1104 * Ingress Queue ID array and insert them into the command.
1105 */
1106 while (nq > 0) {
1107 /*
1108 * Grab up to the next 3 Ingress Queue IDs (wrapping
1109 * around the Ingress Queue ID array if necessary) and
1110 * insert them into the firmware RSS command at the
1111 * current 3-tuple position within the commad.
1112 */
1113 u16 qbuf[3];
1114 u16 *qbp = qbuf;
1115 int nqbuf = min(3, nq);
1116
1117 nq -= nqbuf;
1118 qbuf[0] = qbuf[1] = qbuf[2] = 0;
1119 while (nqbuf) {
1120 nqbuf--;
1121 *qbp++ = *rsp++;
1122 if (rsp >= rsp_end)
1123 rsp = rspq;
1124 }
1125 *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1126 FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1127 FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1128 }
1129
1130 /*
1131 * Send this portion of the RRS table update to the firmware;
1132 * bail out on any errors.
1133 */
1134 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1135 if (ret)
1136 return ret;
1137 }
1138 return 0;
1139 }
1140
1141 /**
1142 * t4vf_alloc_vi - allocate a virtual interface on a port
1143 * @adapter: the adapter
1144 * @port_id: physical port associated with the VI
1145 *
1146 * Allocate a new Virtual Interface and bind it to the indicated
1147 * physical port. Return the new Virtual Interface Identifier on
1148 * success, or a [negative] error number on failure.
1149 */
t4vf_alloc_vi(struct adapter * adapter,int port_id)1150 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1151 {
1152 struct fw_vi_cmd cmd, rpl;
1153 int v;
1154
1155 /*
1156 * Execute a VI command to allocate Virtual Interface and return its
1157 * VIID.
1158 */
1159 memset(&cmd, 0, sizeof(cmd));
1160 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1161 FW_CMD_REQUEST_F |
1162 FW_CMD_WRITE_F |
1163 FW_CMD_EXEC_F);
1164 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1165 FW_VI_CMD_ALLOC_F);
1166 cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1167 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1168 if (v)
1169 return v;
1170
1171 return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1172 }
1173
1174 /**
1175 * t4vf_free_vi -- free a virtual interface
1176 * @adapter: the adapter
1177 * @viid: the virtual interface identifier
1178 *
1179 * Free a previously allocated Virtual Interface. Return an error on
1180 * failure.
1181 */
t4vf_free_vi(struct adapter * adapter,int viid)1182 int t4vf_free_vi(struct adapter *adapter, int viid)
1183 {
1184 struct fw_vi_cmd cmd;
1185
1186 /*
1187 * Execute a VI command to free the Virtual Interface.
1188 */
1189 memset(&cmd, 0, sizeof(cmd));
1190 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1191 FW_CMD_REQUEST_F |
1192 FW_CMD_EXEC_F);
1193 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1194 FW_VI_CMD_FREE_F);
1195 cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1196 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1197 }
1198
1199 /**
1200 * t4vf_enable_vi - enable/disable a virtual interface
1201 * @adapter: the adapter
1202 * @viid: the Virtual Interface ID
1203 * @rx_en: 1=enable Rx, 0=disable Rx
1204 * @tx_en: 1=enable Tx, 0=disable Tx
1205 *
1206 * Enables/disables a virtual interface.
1207 */
t4vf_enable_vi(struct adapter * adapter,unsigned int viid,bool rx_en,bool tx_en)1208 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1209 bool rx_en, bool tx_en)
1210 {
1211 struct fw_vi_enable_cmd cmd;
1212
1213 memset(&cmd, 0, sizeof(cmd));
1214 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1215 FW_CMD_REQUEST_F |
1216 FW_CMD_EXEC_F |
1217 FW_VI_ENABLE_CMD_VIID_V(viid));
1218 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1219 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1220 FW_LEN16(cmd));
1221 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1222 }
1223
1224 /**
1225 * t4vf_identify_port - identify a VI's port by blinking its LED
1226 * @adapter: the adapter
1227 * @viid: the Virtual Interface ID
1228 * @nblinks: how many times to blink LED at 2.5 Hz
1229 *
1230 * Identifies a VI's port by blinking its LED.
1231 */
t4vf_identify_port(struct adapter * adapter,unsigned int viid,unsigned int nblinks)1232 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1233 unsigned int nblinks)
1234 {
1235 struct fw_vi_enable_cmd cmd;
1236
1237 memset(&cmd, 0, sizeof(cmd));
1238 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1239 FW_CMD_REQUEST_F |
1240 FW_CMD_EXEC_F |
1241 FW_VI_ENABLE_CMD_VIID_V(viid));
1242 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1243 FW_LEN16(cmd));
1244 cmd.blinkdur = cpu_to_be16(nblinks);
1245 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1246 }
1247
1248 /**
1249 * t4vf_set_rxmode - set Rx properties of a virtual interface
1250 * @adapter: the adapter
1251 * @viid: the VI id
1252 * @mtu: the new MTU or -1 for no change
1253 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1254 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1255 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1256 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1257 * -1 no change
1258 *
1259 * Sets Rx properties of a virtual interface.
1260 */
t4vf_set_rxmode(struct adapter * adapter,unsigned int viid,int mtu,int promisc,int all_multi,int bcast,int vlanex,bool sleep_ok)1261 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1262 int mtu, int promisc, int all_multi, int bcast, int vlanex,
1263 bool sleep_ok)
1264 {
1265 struct fw_vi_rxmode_cmd cmd;
1266
1267 /* convert to FW values */
1268 if (mtu < 0)
1269 mtu = FW_VI_RXMODE_CMD_MTU_M;
1270 if (promisc < 0)
1271 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1272 if (all_multi < 0)
1273 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1274 if (bcast < 0)
1275 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1276 if (vlanex < 0)
1277 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1278
1279 memset(&cmd, 0, sizeof(cmd));
1280 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1281 FW_CMD_REQUEST_F |
1282 FW_CMD_WRITE_F |
1283 FW_VI_RXMODE_CMD_VIID_V(viid));
1284 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1285 cmd.mtu_to_vlanexen =
1286 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1287 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1288 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1289 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1290 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1291 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1292 }
1293
1294 /**
1295 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1296 * @adapter: the adapter
1297 * @viid: the Virtual Interface Identifier
1298 * @free: if true any existing filters for this VI id are first removed
1299 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1300 * @addr: the MAC address(es)
1301 * @idx: where to store the index of each allocated filter
1302 * @hash: pointer to hash address filter bitmap
1303 * @sleep_ok: call is allowed to sleep
1304 *
1305 * Allocates an exact-match filter for each of the supplied addresses and
1306 * sets it to the corresponding address. If @idx is not %NULL it should
1307 * have at least @naddr entries, each of which will be set to the index of
1308 * the filter allocated for the corresponding MAC address. If a filter
1309 * could not be allocated for an address its index is set to 0xffff.
1310 * If @hash is not %NULL addresses that fail to allocate an exact filter
1311 * are hashed and update the hash filter bitmap pointed at by @hash.
1312 *
1313 * Returns a negative error number or the number of filters allocated.
1314 */
t4vf_alloc_mac_filt(struct adapter * adapter,unsigned int viid,bool free,unsigned int naddr,const u8 ** addr,u16 * idx,u64 * hash,bool sleep_ok)1315 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1316 unsigned int naddr, const u8 **addr, u16 *idx,
1317 u64 *hash, bool sleep_ok)
1318 {
1319 int offset, ret = 0;
1320 unsigned nfilters = 0;
1321 unsigned int rem = naddr;
1322 struct fw_vi_mac_cmd cmd, rpl;
1323 unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1324
1325 if (naddr > max_naddr)
1326 return -EINVAL;
1327
1328 for (offset = 0; offset < naddr; /**/) {
1329 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1330 ? rem
1331 : ARRAY_SIZE(cmd.u.exact));
1332 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1333 u.exact[fw_naddr]), 16);
1334 struct fw_vi_mac_exact *p;
1335 int i;
1336
1337 memset(&cmd, 0, sizeof(cmd));
1338 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1339 FW_CMD_REQUEST_F |
1340 FW_CMD_WRITE_F |
1341 (free ? FW_CMD_EXEC_F : 0) |
1342 FW_VI_MAC_CMD_VIID_V(viid));
1343 cmd.freemacs_to_len16 =
1344 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1345 FW_CMD_LEN16_V(len16));
1346
1347 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1348 p->valid_to_idx = cpu_to_be16(
1349 FW_VI_MAC_CMD_VALID_F |
1350 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1351 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1352 }
1353
1354
1355 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1356 sleep_ok);
1357 if (ret && ret != -ENOMEM)
1358 break;
1359
1360 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1361 u16 index = FW_VI_MAC_CMD_IDX_G(
1362 be16_to_cpu(p->valid_to_idx));
1363
1364 if (idx)
1365 idx[offset+i] =
1366 (index >= max_naddr
1367 ? 0xffff
1368 : index);
1369 if (index < max_naddr)
1370 nfilters++;
1371 else if (hash)
1372 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1373 }
1374
1375 free = false;
1376 offset += fw_naddr;
1377 rem -= fw_naddr;
1378 }
1379
1380 /*
1381 * If there were no errors or we merely ran out of room in our MAC
1382 * address arena, return the number of filters actually written.
1383 */
1384 if (ret == 0 || ret == -ENOMEM)
1385 ret = nfilters;
1386 return ret;
1387 }
1388
1389 /**
1390 * t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1391 * @adapter: the adapter
1392 * @viid: the VI id
1393 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1394 * @addr: the MAC address(es)
1395 * @sleep_ok: call is allowed to sleep
1396 *
1397 * Frees the exact-match filter for each of the supplied addresses
1398 *
1399 * Returns a negative error number or the number of filters freed.
1400 */
t4vf_free_mac_filt(struct adapter * adapter,unsigned int viid,unsigned int naddr,const u8 ** addr,bool sleep_ok)1401 int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1402 unsigned int naddr, const u8 **addr, bool sleep_ok)
1403 {
1404 int offset, ret = 0;
1405 struct fw_vi_mac_cmd cmd;
1406 unsigned int nfilters = 0;
1407 unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1408 unsigned int rem = naddr;
1409
1410 if (naddr > max_naddr)
1411 return -EINVAL;
1412
1413 for (offset = 0; offset < (int)naddr ; /**/) {
1414 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1415 rem : ARRAY_SIZE(cmd.u.exact));
1416 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1417 u.exact[fw_naddr]), 16);
1418 struct fw_vi_mac_exact *p;
1419 int i;
1420
1421 memset(&cmd, 0, sizeof(cmd));
1422 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1423 FW_CMD_REQUEST_F |
1424 FW_CMD_WRITE_F |
1425 FW_CMD_EXEC_V(0) |
1426 FW_VI_MAC_CMD_VIID_V(viid));
1427 cmd.freemacs_to_len16 =
1428 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1429 FW_CMD_LEN16_V(len16));
1430
1431 for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1432 p->valid_to_idx = cpu_to_be16(
1433 FW_VI_MAC_CMD_VALID_F |
1434 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1435 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1436 }
1437
1438 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1439 sleep_ok);
1440 if (ret)
1441 break;
1442
1443 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1444 u16 index = FW_VI_MAC_CMD_IDX_G(
1445 be16_to_cpu(p->valid_to_idx));
1446
1447 if (index < max_naddr)
1448 nfilters++;
1449 }
1450
1451 offset += fw_naddr;
1452 rem -= fw_naddr;
1453 }
1454
1455 if (ret == 0)
1456 ret = nfilters;
1457 return ret;
1458 }
1459
1460 /**
1461 * t4vf_change_mac - modifies the exact-match filter for a MAC address
1462 * @adapter: the adapter
1463 * @viid: the Virtual Interface ID
1464 * @idx: index of existing filter for old value of MAC address, or -1
1465 * @addr: the new MAC address value
1466 * @persist: if idx < 0, the new MAC allocation should be persistent
1467 *
1468 * Modifies an exact-match filter and sets it to the new MAC address.
1469 * Note that in general it is not possible to modify the value of a given
1470 * filter so the generic way to modify an address filter is to free the
1471 * one being used by the old address value and allocate a new filter for
1472 * the new address value. @idx can be -1 if the address is a new
1473 * addition.
1474 *
1475 * Returns a negative error number or the index of the filter with the new
1476 * MAC value.
1477 */
t4vf_change_mac(struct adapter * adapter,unsigned int viid,int idx,const u8 * addr,bool persist)1478 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1479 int idx, const u8 *addr, bool persist)
1480 {
1481 int ret;
1482 struct fw_vi_mac_cmd cmd, rpl;
1483 struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1484 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1485 u.exact[1]), 16);
1486 unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1487
1488 /*
1489 * If this is a new allocation, determine whether it should be
1490 * persistent (across a "freemacs" operation) or not.
1491 */
1492 if (idx < 0)
1493 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1494
1495 memset(&cmd, 0, sizeof(cmd));
1496 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1497 FW_CMD_REQUEST_F |
1498 FW_CMD_WRITE_F |
1499 FW_VI_MAC_CMD_VIID_V(viid));
1500 cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1501 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1502 FW_VI_MAC_CMD_IDX_V(idx));
1503 memcpy(p->macaddr, addr, sizeof(p->macaddr));
1504
1505 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1506 if (ret == 0) {
1507 p = &rpl.u.exact[0];
1508 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1509 if (ret >= max_mac_addr)
1510 ret = -ENOMEM;
1511 }
1512 return ret;
1513 }
1514
1515 /**
1516 * t4vf_set_addr_hash - program the MAC inexact-match hash filter
1517 * @adapter: the adapter
1518 * @viid: the Virtual Interface Identifier
1519 * @ucast: whether the hash filter should also match unicast addresses
1520 * @vec: the value to be written to the hash filter
1521 * @sleep_ok: call is allowed to sleep
1522 *
1523 * Sets the 64-bit inexact-match hash filter for a virtual interface.
1524 */
t4vf_set_addr_hash(struct adapter * adapter,unsigned int viid,bool ucast,u64 vec,bool sleep_ok)1525 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1526 bool ucast, u64 vec, bool sleep_ok)
1527 {
1528 struct fw_vi_mac_cmd cmd;
1529 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1530 u.exact[0]), 16);
1531
1532 memset(&cmd, 0, sizeof(cmd));
1533 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1534 FW_CMD_REQUEST_F |
1535 FW_CMD_WRITE_F |
1536 FW_VI_ENABLE_CMD_VIID_V(viid));
1537 cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1538 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1539 FW_CMD_LEN16_V(len16));
1540 cmd.u.hash.hashvec = cpu_to_be64(vec);
1541 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1542 }
1543
1544 /**
1545 * t4vf_get_port_stats - collect "port" statistics
1546 * @adapter: the adapter
1547 * @pidx: the port index
1548 * @s: the stats structure to fill
1549 *
1550 * Collect statistics for the "port"'s Virtual Interface.
1551 */
t4vf_get_port_stats(struct adapter * adapter,int pidx,struct t4vf_port_stats * s)1552 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1553 struct t4vf_port_stats *s)
1554 {
1555 struct port_info *pi = adap2pinfo(adapter, pidx);
1556 struct fw_vi_stats_vf fwstats;
1557 unsigned int rem = VI_VF_NUM_STATS;
1558 __be64 *fwsp = (__be64 *)&fwstats;
1559
1560 /*
1561 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1562 * commands. We could use a Work Request and get all of them at once
1563 * but that's an asynchronous interface which is awkward to use.
1564 */
1565 while (rem) {
1566 unsigned int ix = VI_VF_NUM_STATS - rem;
1567 unsigned int nstats = min(6U, rem);
1568 struct fw_vi_stats_cmd cmd, rpl;
1569 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1570 sizeof(struct fw_vi_stats_ctl));
1571 size_t len16 = DIV_ROUND_UP(len, 16);
1572 int ret;
1573
1574 memset(&cmd, 0, sizeof(cmd));
1575 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1576 FW_VI_STATS_CMD_VIID_V(pi->viid) |
1577 FW_CMD_REQUEST_F |
1578 FW_CMD_READ_F);
1579 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1580 cmd.u.ctl.nstats_ix =
1581 cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1582 FW_VI_STATS_CMD_NSTATS_V(nstats));
1583 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1584 if (ret)
1585 return ret;
1586
1587 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1588
1589 rem -= nstats;
1590 fwsp += nstats;
1591 }
1592
1593 /*
1594 * Translate firmware statistics into host native statistics.
1595 */
1596 s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1597 s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1598 s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1599 s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1600 s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1601 s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1602 s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1603 s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1604 s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1605
1606 s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1607 s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1608 s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1609 s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1610 s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1611 s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1612
1613 s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1614
1615 return 0;
1616 }
1617
1618 /**
1619 * t4vf_iq_free - free an ingress queue and its free lists
1620 * @adapter: the adapter
1621 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1622 * @iqid: ingress queue ID
1623 * @fl0id: FL0 queue ID or 0xffff if no attached FL0
1624 * @fl1id: FL1 queue ID or 0xffff if no attached FL1
1625 *
1626 * Frees an ingress queue and its associated free lists, if any.
1627 */
t4vf_iq_free(struct adapter * adapter,unsigned int iqtype,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)1628 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1629 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1630 {
1631 struct fw_iq_cmd cmd;
1632
1633 memset(&cmd, 0, sizeof(cmd));
1634 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1635 FW_CMD_REQUEST_F |
1636 FW_CMD_EXEC_F);
1637 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1638 FW_LEN16(cmd));
1639 cmd.type_to_iqandstindex =
1640 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1641
1642 cmd.iqid = cpu_to_be16(iqid);
1643 cmd.fl0id = cpu_to_be16(fl0id);
1644 cmd.fl1id = cpu_to_be16(fl1id);
1645 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1646 }
1647
1648 /**
1649 * t4vf_eth_eq_free - free an Ethernet egress queue
1650 * @adapter: the adapter
1651 * @eqid: egress queue ID
1652 *
1653 * Frees an Ethernet egress queue.
1654 */
t4vf_eth_eq_free(struct adapter * adapter,unsigned int eqid)1655 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1656 {
1657 struct fw_eq_eth_cmd cmd;
1658
1659 memset(&cmd, 0, sizeof(cmd));
1660 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1661 FW_CMD_REQUEST_F |
1662 FW_CMD_EXEC_F);
1663 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1664 FW_LEN16(cmd));
1665 cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1666 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1667 }
1668
1669 /**
1670 * t4vf_handle_fw_rpl - process a firmware reply message
1671 * @adapter: the adapter
1672 * @rpl: start of the firmware message
1673 *
1674 * Processes a firmware message, such as link state change messages.
1675 */
t4vf_handle_fw_rpl(struct adapter * adapter,const __be64 * rpl)1676 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1677 {
1678 const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
1679 u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
1680
1681 switch (opcode) {
1682 case FW_PORT_CMD: {
1683 /*
1684 * Link/module state change message.
1685 */
1686 const struct fw_port_cmd *port_cmd =
1687 (const struct fw_port_cmd *)rpl;
1688 u32 stat, mod;
1689 int action, port_id, link_ok, speed, fc, pidx;
1690
1691 /*
1692 * Extract various fields from port status change message.
1693 */
1694 action = FW_PORT_CMD_ACTION_G(
1695 be32_to_cpu(port_cmd->action_to_len16));
1696 if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1697 dev_err(adapter->pdev_dev,
1698 "Unknown firmware PORT reply action %x\n",
1699 action);
1700 break;
1701 }
1702
1703 port_id = FW_PORT_CMD_PORTID_G(
1704 be32_to_cpu(port_cmd->op_to_portid));
1705
1706 stat = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1707 link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
1708 speed = 0;
1709 fc = 0;
1710 if (stat & FW_PORT_CMD_RXPAUSE_F)
1711 fc |= PAUSE_RX;
1712 if (stat & FW_PORT_CMD_TXPAUSE_F)
1713 fc |= PAUSE_TX;
1714 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1715 speed = 100;
1716 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1717 speed = 1000;
1718 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1719 speed = 10000;
1720 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1721 speed = 25000;
1722 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1723 speed = 40000;
1724 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1725 speed = 100000;
1726
1727 /*
1728 * Scan all of our "ports" (Virtual Interfaces) looking for
1729 * those bound to the physical port which has changed. If
1730 * our recorded state doesn't match the current state,
1731 * signal that change to the OS code.
1732 */
1733 for_each_port(adapter, pidx) {
1734 struct port_info *pi = adap2pinfo(adapter, pidx);
1735 struct link_config *lc;
1736
1737 if (pi->port_id != port_id)
1738 continue;
1739
1740 lc = &pi->link_cfg;
1741
1742 mod = FW_PORT_CMD_MODTYPE_G(stat);
1743 if (mod != pi->mod_type) {
1744 pi->mod_type = mod;
1745 t4vf_os_portmod_changed(adapter, pidx);
1746 }
1747
1748 if (link_ok != lc->link_ok || speed != lc->speed ||
1749 fc != lc->fc) {
1750 /* something changed */
1751 lc->link_ok = link_ok;
1752 lc->speed = speed;
1753 lc->fc = fc;
1754 lc->supported =
1755 be16_to_cpu(port_cmd->u.info.pcap);
1756 lc->lp_advertising =
1757 be16_to_cpu(port_cmd->u.info.lpacap);
1758 t4vf_os_link_changed(adapter, pidx, link_ok);
1759 }
1760 }
1761 break;
1762 }
1763
1764 default:
1765 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1766 opcode);
1767 }
1768 return 0;
1769 }
1770
1771 /**
1772 */
t4vf_prep_adapter(struct adapter * adapter)1773 int t4vf_prep_adapter(struct adapter *adapter)
1774 {
1775 int err;
1776 unsigned int chipid;
1777
1778 /* Wait for the device to become ready before proceeding ...
1779 */
1780 err = t4vf_wait_dev_ready(adapter);
1781 if (err)
1782 return err;
1783
1784 /* Default port and clock for debugging in case we can't reach
1785 * firmware.
1786 */
1787 adapter->params.nports = 1;
1788 adapter->params.vfres.pmask = 1;
1789 adapter->params.vpd.cclk = 50000;
1790
1791 adapter->params.chip = 0;
1792 switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
1793 case CHELSIO_T4:
1794 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
1795 adapter->params.arch.sge_fl_db = DBPRIO_F;
1796 adapter->params.arch.mps_tcam_size =
1797 NUM_MPS_CLS_SRAM_L_INSTANCES;
1798 break;
1799
1800 case CHELSIO_T5:
1801 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
1802 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
1803 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
1804 adapter->params.arch.mps_tcam_size =
1805 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1806 break;
1807
1808 case CHELSIO_T6:
1809 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
1810 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
1811 adapter->params.arch.sge_fl_db = 0;
1812 adapter->params.arch.mps_tcam_size =
1813 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
1814 break;
1815 }
1816
1817 return 0;
1818 }
1819
1820 /**
1821 * t4vf_get_vf_mac_acl - Get the MAC address to be set to
1822 * the VI of this VF.
1823 * @adapter: The adapter
1824 * @pf: The pf associated with vf
1825 * @naddr: the number of ACL MAC addresses returned in addr
1826 * @addr: Placeholder for MAC addresses
1827 *
1828 * Find the MAC address to be set to the VF's VI. The requested MAC address
1829 * is from the host OS via callback in the PF driver.
1830 */
t4vf_get_vf_mac_acl(struct adapter * adapter,unsigned int pf,unsigned int * naddr,u8 * addr)1831 int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int pf,
1832 unsigned int *naddr, u8 *addr)
1833 {
1834 struct fw_acl_mac_cmd cmd;
1835 int ret;
1836
1837 memset(&cmd, 0, sizeof(cmd));
1838 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
1839 FW_CMD_REQUEST_F |
1840 FW_CMD_READ_F);
1841 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
1842 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
1843 if (ret)
1844 return ret;
1845
1846 if (cmd.nmac < *naddr)
1847 *naddr = cmd.nmac;
1848
1849 switch (pf) {
1850 case 3:
1851 memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3));
1852 break;
1853 case 2:
1854 memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2));
1855 break;
1856 case 1:
1857 memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1));
1858 break;
1859 case 0:
1860 memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0));
1861 break;
1862 }
1863
1864 return ret;
1865 }
1866