• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 1000;
91 
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
97 
98 int sysctl_tcp_thin_dupack __read_mostly;
99 
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
102 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
103 int sysctl_tcp_default_init_rwnd __read_mostly = TCP_INIT_CWND * 2;
104 
105 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
106 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
107 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
108 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
109 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
110 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
111 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
112 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
113 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
114 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
115 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
116 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
117 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
118 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
119 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
120 
121 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
122 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
123 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
124 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
125 
126 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
127 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
128 
129 #define REXMIT_NONE	0 /* no loss recovery to do */
130 #define REXMIT_LOST	1 /* retransmit packets marked lost */
131 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
132 
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb)133 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb)
134 {
135 	static bool __once __read_mostly;
136 
137 	if (!__once) {
138 		struct net_device *dev;
139 
140 		__once = true;
141 
142 		rcu_read_lock();
143 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
144 		pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
145 			dev ? dev->name : "Unknown driver");
146 		rcu_read_unlock();
147 	}
148 }
149 
150 /* Adapt the MSS value used to make delayed ack decision to the
151  * real world.
152  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)153 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
154 {
155 	struct inet_connection_sock *icsk = inet_csk(sk);
156 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
157 	unsigned int len;
158 
159 	icsk->icsk_ack.last_seg_size = 0;
160 
161 	/* skb->len may jitter because of SACKs, even if peer
162 	 * sends good full-sized frames.
163 	 */
164 	len = skb_shinfo(skb)->gso_size ? : skb->len;
165 	if (len >= icsk->icsk_ack.rcv_mss) {
166 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
167 					       tcp_sk(sk)->advmss);
168 		if (unlikely(icsk->icsk_ack.rcv_mss != len))
169 			tcp_gro_dev_warn(sk, skb);
170 	} else {
171 		/* Otherwise, we make more careful check taking into account,
172 		 * that SACKs block is variable.
173 		 *
174 		 * "len" is invariant segment length, including TCP header.
175 		 */
176 		len += skb->data - skb_transport_header(skb);
177 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
178 		    /* If PSH is not set, packet should be
179 		     * full sized, provided peer TCP is not badly broken.
180 		     * This observation (if it is correct 8)) allows
181 		     * to handle super-low mtu links fairly.
182 		     */
183 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
184 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
185 			/* Subtract also invariant (if peer is RFC compliant),
186 			 * tcp header plus fixed timestamp option length.
187 			 * Resulting "len" is MSS free of SACK jitter.
188 			 */
189 			len -= tcp_sk(sk)->tcp_header_len;
190 			icsk->icsk_ack.last_seg_size = len;
191 			if (len == lss) {
192 				icsk->icsk_ack.rcv_mss = len;
193 				return;
194 			}
195 		}
196 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
197 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
198 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
199 	}
200 }
201 
tcp_incr_quickack(struct sock * sk)202 static void tcp_incr_quickack(struct sock *sk)
203 {
204 	struct inet_connection_sock *icsk = inet_csk(sk);
205 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
206 
207 	if (quickacks == 0)
208 		quickacks = 2;
209 	if (quickacks > icsk->icsk_ack.quick)
210 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
211 }
212 
tcp_enter_quickack_mode(struct sock * sk)213 static void tcp_enter_quickack_mode(struct sock *sk)
214 {
215 	struct inet_connection_sock *icsk = inet_csk(sk);
216 	tcp_incr_quickack(sk);
217 	icsk->icsk_ack.pingpong = 0;
218 	icsk->icsk_ack.ato = TCP_ATO_MIN;
219 }
220 
221 /* Send ACKs quickly, if "quick" count is not exhausted
222  * and the session is not interactive.
223  */
224 
tcp_in_quickack_mode(struct sock * sk)225 static bool tcp_in_quickack_mode(struct sock *sk)
226 {
227 	const struct inet_connection_sock *icsk = inet_csk(sk);
228 	const struct dst_entry *dst = __sk_dst_get(sk);
229 
230 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
231 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
232 }
233 
tcp_ecn_queue_cwr(struct tcp_sock * tp)234 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
235 {
236 	if (tp->ecn_flags & TCP_ECN_OK)
237 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
238 }
239 
tcp_ecn_accept_cwr(struct tcp_sock * tp,const struct sk_buff * skb)240 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
241 {
242 	if (tcp_hdr(skb)->cwr)
243 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
244 }
245 
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)246 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
247 {
248 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
249 }
250 
__tcp_ecn_check_ce(struct tcp_sock * tp,const struct sk_buff * skb)251 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
252 {
253 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
254 	case INET_ECN_NOT_ECT:
255 		/* Funny extension: if ECT is not set on a segment,
256 		 * and we already seen ECT on a previous segment,
257 		 * it is probably a retransmit.
258 		 */
259 		if (tp->ecn_flags & TCP_ECN_SEEN)
260 			tcp_enter_quickack_mode((struct sock *)tp);
261 		break;
262 	case INET_ECN_CE:
263 		if (tcp_ca_needs_ecn((struct sock *)tp))
264 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
265 
266 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
267 			/* Better not delay acks, sender can have a very low cwnd */
268 			tcp_enter_quickack_mode((struct sock *)tp);
269 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
270 		}
271 		tp->ecn_flags |= TCP_ECN_SEEN;
272 		break;
273 	default:
274 		if (tcp_ca_needs_ecn((struct sock *)tp))
275 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
276 		tp->ecn_flags |= TCP_ECN_SEEN;
277 		break;
278 	}
279 }
280 
tcp_ecn_check_ce(struct tcp_sock * tp,const struct sk_buff * skb)281 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
282 {
283 	if (tp->ecn_flags & TCP_ECN_OK)
284 		__tcp_ecn_check_ce(tp, skb);
285 }
286 
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)287 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
288 {
289 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
290 		tp->ecn_flags &= ~TCP_ECN_OK;
291 }
292 
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)293 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
294 {
295 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
296 		tp->ecn_flags &= ~TCP_ECN_OK;
297 }
298 
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)299 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
300 {
301 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
302 		return true;
303 	return false;
304 }
305 
306 /* Buffer size and advertised window tuning.
307  *
308  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
309  */
310 
tcp_sndbuf_expand(struct sock * sk)311 static void tcp_sndbuf_expand(struct sock *sk)
312 {
313 	const struct tcp_sock *tp = tcp_sk(sk);
314 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
315 	int sndmem, per_mss;
316 	u32 nr_segs;
317 
318 	/* Worst case is non GSO/TSO : each frame consumes one skb
319 	 * and skb->head is kmalloced using power of two area of memory
320 	 */
321 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
322 		  MAX_TCP_HEADER +
323 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
324 
325 	per_mss = roundup_pow_of_two(per_mss) +
326 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
327 
328 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
329 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
330 
331 	/* Fast Recovery (RFC 5681 3.2) :
332 	 * Cubic needs 1.7 factor, rounded to 2 to include
333 	 * extra cushion (application might react slowly to POLLOUT)
334 	 */
335 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
336 	sndmem *= nr_segs * per_mss;
337 
338 	if (sk->sk_sndbuf < sndmem)
339 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
340 }
341 
342 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
343  *
344  * All tcp_full_space() is split to two parts: "network" buffer, allocated
345  * forward and advertised in receiver window (tp->rcv_wnd) and
346  * "application buffer", required to isolate scheduling/application
347  * latencies from network.
348  * window_clamp is maximal advertised window. It can be less than
349  * tcp_full_space(), in this case tcp_full_space() - window_clamp
350  * is reserved for "application" buffer. The less window_clamp is
351  * the smoother our behaviour from viewpoint of network, but the lower
352  * throughput and the higher sensitivity of the connection to losses. 8)
353  *
354  * rcv_ssthresh is more strict window_clamp used at "slow start"
355  * phase to predict further behaviour of this connection.
356  * It is used for two goals:
357  * - to enforce header prediction at sender, even when application
358  *   requires some significant "application buffer". It is check #1.
359  * - to prevent pruning of receive queue because of misprediction
360  *   of receiver window. Check #2.
361  *
362  * The scheme does not work when sender sends good segments opening
363  * window and then starts to feed us spaghetti. But it should work
364  * in common situations. Otherwise, we have to rely on queue collapsing.
365  */
366 
367 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb)368 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
369 {
370 	struct tcp_sock *tp = tcp_sk(sk);
371 	/* Optimize this! */
372 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
373 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
374 
375 	while (tp->rcv_ssthresh <= window) {
376 		if (truesize <= skb->len)
377 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
378 
379 		truesize >>= 1;
380 		window >>= 1;
381 	}
382 	return 0;
383 }
384 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb)385 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
386 {
387 	struct tcp_sock *tp = tcp_sk(sk);
388 
389 	/* Check #1 */
390 	if (tp->rcv_ssthresh < tp->window_clamp &&
391 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
392 	    !tcp_under_memory_pressure(sk)) {
393 		int incr;
394 
395 		/* Check #2. Increase window, if skb with such overhead
396 		 * will fit to rcvbuf in future.
397 		 */
398 		if (tcp_win_from_space(skb->truesize) <= skb->len)
399 			incr = 2 * tp->advmss;
400 		else
401 			incr = __tcp_grow_window(sk, skb);
402 
403 		if (incr) {
404 			incr = max_t(int, incr, 2 * skb->len);
405 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
406 					       tp->window_clamp);
407 			inet_csk(sk)->icsk_ack.quick |= 1;
408 		}
409 	}
410 }
411 
412 /* 3. Tuning rcvbuf, when connection enters established state. */
tcp_fixup_rcvbuf(struct sock * sk)413 static void tcp_fixup_rcvbuf(struct sock *sk)
414 {
415 	u32 mss = tcp_sk(sk)->advmss;
416 	int rcvmem;
417 
418 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
419 		 tcp_default_init_rwnd(mss);
420 
421 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
422 	 * Allow enough cushion so that sender is not limited by our window
423 	 */
424 	if (sysctl_tcp_moderate_rcvbuf)
425 		rcvmem <<= 2;
426 
427 	if (sk->sk_rcvbuf < rcvmem)
428 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
429 }
430 
431 /* 4. Try to fixup all. It is made immediately after connection enters
432  *    established state.
433  */
tcp_init_buffer_space(struct sock * sk)434 void tcp_init_buffer_space(struct sock *sk)
435 {
436 	struct tcp_sock *tp = tcp_sk(sk);
437 	int maxwin;
438 
439 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
440 		tcp_fixup_rcvbuf(sk);
441 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
442 		tcp_sndbuf_expand(sk);
443 
444 	tp->rcvq_space.space = tp->rcv_wnd;
445 	tp->rcvq_space.time = tcp_time_stamp;
446 	tp->rcvq_space.seq = tp->copied_seq;
447 
448 	maxwin = tcp_full_space(sk);
449 
450 	if (tp->window_clamp >= maxwin) {
451 		tp->window_clamp = maxwin;
452 
453 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
454 			tp->window_clamp = max(maxwin -
455 					       (maxwin >> sysctl_tcp_app_win),
456 					       4 * tp->advmss);
457 	}
458 
459 	/* Force reservation of one segment. */
460 	if (sysctl_tcp_app_win &&
461 	    tp->window_clamp > 2 * tp->advmss &&
462 	    tp->window_clamp + tp->advmss > maxwin)
463 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
464 
465 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
466 	tp->snd_cwnd_stamp = tcp_time_stamp;
467 }
468 
469 /* 5. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)470 static void tcp_clamp_window(struct sock *sk)
471 {
472 	struct tcp_sock *tp = tcp_sk(sk);
473 	struct inet_connection_sock *icsk = inet_csk(sk);
474 
475 	icsk->icsk_ack.quick = 0;
476 
477 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
478 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
479 	    !tcp_under_memory_pressure(sk) &&
480 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
481 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
482 				    sysctl_tcp_rmem[2]);
483 	}
484 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
485 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
486 }
487 
488 /* Initialize RCV_MSS value.
489  * RCV_MSS is an our guess about MSS used by the peer.
490  * We haven't any direct information about the MSS.
491  * It's better to underestimate the RCV_MSS rather than overestimate.
492  * Overestimations make us ACKing less frequently than needed.
493  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
494  */
tcp_initialize_rcv_mss(struct sock * sk)495 void tcp_initialize_rcv_mss(struct sock *sk)
496 {
497 	const struct tcp_sock *tp = tcp_sk(sk);
498 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
499 
500 	hint = min(hint, tp->rcv_wnd / 2);
501 	hint = min(hint, TCP_MSS_DEFAULT);
502 	hint = max(hint, TCP_MIN_MSS);
503 
504 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
505 }
506 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
507 
508 /* Receiver "autotuning" code.
509  *
510  * The algorithm for RTT estimation w/o timestamps is based on
511  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
512  * <http://public.lanl.gov/radiant/pubs.html#DRS>
513  *
514  * More detail on this code can be found at
515  * <http://staff.psc.edu/jheffner/>,
516  * though this reference is out of date.  A new paper
517  * is pending.
518  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)519 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
520 {
521 	u32 new_sample = tp->rcv_rtt_est.rtt;
522 	long m = sample;
523 
524 	if (m == 0)
525 		m = 1;
526 
527 	if (new_sample != 0) {
528 		/* If we sample in larger samples in the non-timestamp
529 		 * case, we could grossly overestimate the RTT especially
530 		 * with chatty applications or bulk transfer apps which
531 		 * are stalled on filesystem I/O.
532 		 *
533 		 * Also, since we are only going for a minimum in the
534 		 * non-timestamp case, we do not smooth things out
535 		 * else with timestamps disabled convergence takes too
536 		 * long.
537 		 */
538 		if (!win_dep) {
539 			m -= (new_sample >> 3);
540 			new_sample += m;
541 		} else {
542 			m <<= 3;
543 			if (m < new_sample)
544 				new_sample = m;
545 		}
546 	} else {
547 		/* No previous measure. */
548 		new_sample = m << 3;
549 	}
550 
551 	if (tp->rcv_rtt_est.rtt != new_sample)
552 		tp->rcv_rtt_est.rtt = new_sample;
553 }
554 
tcp_rcv_rtt_measure(struct tcp_sock * tp)555 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
556 {
557 	if (tp->rcv_rtt_est.time == 0)
558 		goto new_measure;
559 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
560 		return;
561 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
562 
563 new_measure:
564 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
565 	tp->rcv_rtt_est.time = tcp_time_stamp;
566 }
567 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)568 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
569 					  const struct sk_buff *skb)
570 {
571 	struct tcp_sock *tp = tcp_sk(sk);
572 	if (tp->rx_opt.rcv_tsecr &&
573 	    (TCP_SKB_CB(skb)->end_seq -
574 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
575 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
576 }
577 
578 /*
579  * This function should be called every time data is copied to user space.
580  * It calculates the appropriate TCP receive buffer space.
581  */
tcp_rcv_space_adjust(struct sock * sk)582 void tcp_rcv_space_adjust(struct sock *sk)
583 {
584 	struct tcp_sock *tp = tcp_sk(sk);
585 	int time;
586 	int copied;
587 
588 	time = tcp_time_stamp - tp->rcvq_space.time;
589 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
590 		return;
591 
592 	/* Number of bytes copied to user in last RTT */
593 	copied = tp->copied_seq - tp->rcvq_space.seq;
594 	if (copied <= tp->rcvq_space.space)
595 		goto new_measure;
596 
597 	/* A bit of theory :
598 	 * copied = bytes received in previous RTT, our base window
599 	 * To cope with packet losses, we need a 2x factor
600 	 * To cope with slow start, and sender growing its cwin by 100 %
601 	 * every RTT, we need a 4x factor, because the ACK we are sending
602 	 * now is for the next RTT, not the current one :
603 	 * <prev RTT . ><current RTT .. ><next RTT .... >
604 	 */
605 
606 	if (sysctl_tcp_moderate_rcvbuf &&
607 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
608 		int rcvwin, rcvmem, rcvbuf;
609 
610 		/* minimal window to cope with packet losses, assuming
611 		 * steady state. Add some cushion because of small variations.
612 		 */
613 		rcvwin = (copied << 1) + 16 * tp->advmss;
614 
615 		/* If rate increased by 25%,
616 		 *	assume slow start, rcvwin = 3 * copied
617 		 * If rate increased by 50%,
618 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
619 		 */
620 		if (copied >=
621 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
622 			if (copied >=
623 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
624 				rcvwin <<= 1;
625 			else
626 				rcvwin += (rcvwin >> 1);
627 		}
628 
629 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
630 		while (tcp_win_from_space(rcvmem) < tp->advmss)
631 			rcvmem += 128;
632 
633 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
634 		if (rcvbuf > sk->sk_rcvbuf) {
635 			sk->sk_rcvbuf = rcvbuf;
636 
637 			/* Make the window clamp follow along.  */
638 			tp->window_clamp = rcvwin;
639 		}
640 	}
641 	tp->rcvq_space.space = copied;
642 
643 new_measure:
644 	tp->rcvq_space.seq = tp->copied_seq;
645 	tp->rcvq_space.time = tcp_time_stamp;
646 }
647 
648 /* There is something which you must keep in mind when you analyze the
649  * behavior of the tp->ato delayed ack timeout interval.  When a
650  * connection starts up, we want to ack as quickly as possible.  The
651  * problem is that "good" TCP's do slow start at the beginning of data
652  * transmission.  The means that until we send the first few ACK's the
653  * sender will sit on his end and only queue most of his data, because
654  * he can only send snd_cwnd unacked packets at any given time.  For
655  * each ACK we send, he increments snd_cwnd and transmits more of his
656  * queue.  -DaveM
657  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)658 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
659 {
660 	struct tcp_sock *tp = tcp_sk(sk);
661 	struct inet_connection_sock *icsk = inet_csk(sk);
662 	u32 now;
663 
664 	inet_csk_schedule_ack(sk);
665 
666 	tcp_measure_rcv_mss(sk, skb);
667 
668 	tcp_rcv_rtt_measure(tp);
669 
670 	now = tcp_time_stamp;
671 
672 	if (!icsk->icsk_ack.ato) {
673 		/* The _first_ data packet received, initialize
674 		 * delayed ACK engine.
675 		 */
676 		tcp_incr_quickack(sk);
677 		icsk->icsk_ack.ato = TCP_ATO_MIN;
678 	} else {
679 		int m = now - icsk->icsk_ack.lrcvtime;
680 
681 		if (m <= TCP_ATO_MIN / 2) {
682 			/* The fastest case is the first. */
683 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
684 		} else if (m < icsk->icsk_ack.ato) {
685 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
686 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
687 				icsk->icsk_ack.ato = icsk->icsk_rto;
688 		} else if (m > icsk->icsk_rto) {
689 			/* Too long gap. Apparently sender failed to
690 			 * restart window, so that we send ACKs quickly.
691 			 */
692 			tcp_incr_quickack(sk);
693 			sk_mem_reclaim(sk);
694 		}
695 	}
696 	icsk->icsk_ack.lrcvtime = now;
697 
698 	tcp_ecn_check_ce(tp, skb);
699 
700 	if (skb->len >= 128)
701 		tcp_grow_window(sk, skb);
702 }
703 
704 /* Called to compute a smoothed rtt estimate. The data fed to this
705  * routine either comes from timestamps, or from segments that were
706  * known _not_ to have been retransmitted [see Karn/Partridge
707  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
708  * piece by Van Jacobson.
709  * NOTE: the next three routines used to be one big routine.
710  * To save cycles in the RFC 1323 implementation it was better to break
711  * it up into three procedures. -- erics
712  */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)713 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
714 {
715 	struct tcp_sock *tp = tcp_sk(sk);
716 	long m = mrtt_us; /* RTT */
717 	u32 srtt = tp->srtt_us;
718 
719 	/*	The following amusing code comes from Jacobson's
720 	 *	article in SIGCOMM '88.  Note that rtt and mdev
721 	 *	are scaled versions of rtt and mean deviation.
722 	 *	This is designed to be as fast as possible
723 	 *	m stands for "measurement".
724 	 *
725 	 *	On a 1990 paper the rto value is changed to:
726 	 *	RTO = rtt + 4 * mdev
727 	 *
728 	 * Funny. This algorithm seems to be very broken.
729 	 * These formulae increase RTO, when it should be decreased, increase
730 	 * too slowly, when it should be increased quickly, decrease too quickly
731 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
732 	 * does not matter how to _calculate_ it. Seems, it was trap
733 	 * that VJ failed to avoid. 8)
734 	 */
735 	if (srtt != 0) {
736 		m -= (srtt >> 3);	/* m is now error in rtt est */
737 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
738 		if (m < 0) {
739 			m = -m;		/* m is now abs(error) */
740 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
741 			/* This is similar to one of Eifel findings.
742 			 * Eifel blocks mdev updates when rtt decreases.
743 			 * This solution is a bit different: we use finer gain
744 			 * for mdev in this case (alpha*beta).
745 			 * Like Eifel it also prevents growth of rto,
746 			 * but also it limits too fast rto decreases,
747 			 * happening in pure Eifel.
748 			 */
749 			if (m > 0)
750 				m >>= 3;
751 		} else {
752 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
753 		}
754 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
755 		if (tp->mdev_us > tp->mdev_max_us) {
756 			tp->mdev_max_us = tp->mdev_us;
757 			if (tp->mdev_max_us > tp->rttvar_us)
758 				tp->rttvar_us = tp->mdev_max_us;
759 		}
760 		if (after(tp->snd_una, tp->rtt_seq)) {
761 			if (tp->mdev_max_us < tp->rttvar_us)
762 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
763 			tp->rtt_seq = tp->snd_nxt;
764 			tp->mdev_max_us = tcp_rto_min_us(sk);
765 		}
766 	} else {
767 		/* no previous measure. */
768 		srtt = m << 3;		/* take the measured time to be rtt */
769 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
770 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
771 		tp->mdev_max_us = tp->rttvar_us;
772 		tp->rtt_seq = tp->snd_nxt;
773 	}
774 	tp->srtt_us = max(1U, srtt);
775 }
776 
777 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
778  * Note: TCP stack does not yet implement pacing.
779  * FQ packet scheduler can be used to implement cheap but effective
780  * TCP pacing, to smooth the burst on large writes when packets
781  * in flight is significantly lower than cwnd (or rwin)
782  */
783 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
784 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
785 
tcp_update_pacing_rate(struct sock * sk)786 static void tcp_update_pacing_rate(struct sock *sk)
787 {
788 	const struct tcp_sock *tp = tcp_sk(sk);
789 	u64 rate;
790 
791 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
792 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
793 
794 	/* current rate is (cwnd * mss) / srtt
795 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
796 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
797 	 *
798 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
799 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
800 	 *	 end of slow start and should slow down.
801 	 */
802 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
803 		rate *= sysctl_tcp_pacing_ss_ratio;
804 	else
805 		rate *= sysctl_tcp_pacing_ca_ratio;
806 
807 	rate *= max(tp->snd_cwnd, tp->packets_out);
808 
809 	if (likely(tp->srtt_us))
810 		do_div(rate, tp->srtt_us);
811 
812 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
813 	 * without any lock. We want to make sure compiler wont store
814 	 * intermediate values in this location.
815 	 */
816 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
817 						sk->sk_max_pacing_rate);
818 }
819 
820 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
821  * routine referred to above.
822  */
tcp_set_rto(struct sock * sk)823 static void tcp_set_rto(struct sock *sk)
824 {
825 	const struct tcp_sock *tp = tcp_sk(sk);
826 	/* Old crap is replaced with new one. 8)
827 	 *
828 	 * More seriously:
829 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
830 	 *    It cannot be less due to utterly erratic ACK generation made
831 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
832 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
833 	 *    is invisible. Actually, Linux-2.4 also generates erratic
834 	 *    ACKs in some circumstances.
835 	 */
836 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
837 
838 	/* 2. Fixups made earlier cannot be right.
839 	 *    If we do not estimate RTO correctly without them,
840 	 *    all the algo is pure shit and should be replaced
841 	 *    with correct one. It is exactly, which we pretend to do.
842 	 */
843 
844 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
845 	 * guarantees that rto is higher.
846 	 */
847 	tcp_bound_rto(sk);
848 }
849 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)850 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
851 {
852 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
853 
854 	if (!cwnd)
855 		cwnd = TCP_INIT_CWND;
856 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
857 }
858 
859 /*
860  * Packet counting of FACK is based on in-order assumptions, therefore TCP
861  * disables it when reordering is detected
862  */
tcp_disable_fack(struct tcp_sock * tp)863 void tcp_disable_fack(struct tcp_sock *tp)
864 {
865 	/* RFC3517 uses different metric in lost marker => reset on change */
866 	if (tcp_is_fack(tp))
867 		tp->lost_skb_hint = NULL;
868 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
869 }
870 
871 /* Take a notice that peer is sending D-SACKs */
tcp_dsack_seen(struct tcp_sock * tp)872 static void tcp_dsack_seen(struct tcp_sock *tp)
873 {
874 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
875 }
876 
tcp_update_reordering(struct sock * sk,const int metric,const int ts)877 static void tcp_update_reordering(struct sock *sk, const int metric,
878 				  const int ts)
879 {
880 	struct tcp_sock *tp = tcp_sk(sk);
881 	if (metric > tp->reordering) {
882 		int mib_idx;
883 
884 		tp->reordering = min(sysctl_tcp_max_reordering, metric);
885 
886 		/* This exciting event is worth to be remembered. 8) */
887 		if (ts)
888 			mib_idx = LINUX_MIB_TCPTSREORDER;
889 		else if (tcp_is_reno(tp))
890 			mib_idx = LINUX_MIB_TCPRENOREORDER;
891 		else if (tcp_is_fack(tp))
892 			mib_idx = LINUX_MIB_TCPFACKREORDER;
893 		else
894 			mib_idx = LINUX_MIB_TCPSACKREORDER;
895 
896 		NET_INC_STATS(sock_net(sk), mib_idx);
897 #if FASTRETRANS_DEBUG > 1
898 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
899 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
900 			 tp->reordering,
901 			 tp->fackets_out,
902 			 tp->sacked_out,
903 			 tp->undo_marker ? tp->undo_retrans : 0);
904 #endif
905 		tcp_disable_fack(tp);
906 	}
907 
908 	if (metric > 0)
909 		tcp_disable_early_retrans(tp);
910 	tp->rack.reord = 1;
911 }
912 
913 /* This must be called before lost_out is incremented */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)914 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
915 {
916 	if (!tp->retransmit_skb_hint ||
917 	    before(TCP_SKB_CB(skb)->seq,
918 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
919 		tp->retransmit_skb_hint = skb;
920 
921 	if (!tp->lost_out ||
922 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
923 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
924 }
925 
926 /* Sum the number of packets on the wire we have marked as lost.
927  * There are two cases we care about here:
928  * a) Packet hasn't been marked lost (nor retransmitted),
929  *    and this is the first loss.
930  * b) Packet has been marked both lost and retransmitted,
931  *    and this means we think it was lost again.
932  */
tcp_sum_lost(struct tcp_sock * tp,struct sk_buff * skb)933 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
934 {
935 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
936 
937 	if (!(sacked & TCPCB_LOST) ||
938 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
939 		tp->lost += tcp_skb_pcount(skb);
940 }
941 
tcp_skb_mark_lost(struct tcp_sock * tp,struct sk_buff * skb)942 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
943 {
944 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
945 		tcp_verify_retransmit_hint(tp, skb);
946 
947 		tp->lost_out += tcp_skb_pcount(skb);
948 		tcp_sum_lost(tp, skb);
949 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
950 	}
951 }
952 
tcp_skb_mark_lost_uncond_verify(struct tcp_sock * tp,struct sk_buff * skb)953 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
954 {
955 	tcp_verify_retransmit_hint(tp, skb);
956 
957 	tcp_sum_lost(tp, skb);
958 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
959 		tp->lost_out += tcp_skb_pcount(skb);
960 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
961 	}
962 }
963 
964 /* This procedure tags the retransmission queue when SACKs arrive.
965  *
966  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
967  * Packets in queue with these bits set are counted in variables
968  * sacked_out, retrans_out and lost_out, correspondingly.
969  *
970  * Valid combinations are:
971  * Tag  InFlight	Description
972  * 0	1		- orig segment is in flight.
973  * S	0		- nothing flies, orig reached receiver.
974  * L	0		- nothing flies, orig lost by net.
975  * R	2		- both orig and retransmit are in flight.
976  * L|R	1		- orig is lost, retransmit is in flight.
977  * S|R  1		- orig reached receiver, retrans is still in flight.
978  * (L|S|R is logically valid, it could occur when L|R is sacked,
979  *  but it is equivalent to plain S and code short-curcuits it to S.
980  *  L|S is logically invalid, it would mean -1 packet in flight 8))
981  *
982  * These 6 states form finite state machine, controlled by the following events:
983  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
984  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
985  * 3. Loss detection event of two flavors:
986  *	A. Scoreboard estimator decided the packet is lost.
987  *	   A'. Reno "three dupacks" marks head of queue lost.
988  *	   A''. Its FACK modification, head until snd.fack is lost.
989  *	B. SACK arrives sacking SND.NXT at the moment, when the
990  *	   segment was retransmitted.
991  * 4. D-SACK added new rule: D-SACK changes any tag to S.
992  *
993  * It is pleasant to note, that state diagram turns out to be commutative,
994  * so that we are allowed not to be bothered by order of our actions,
995  * when multiple events arrive simultaneously. (see the function below).
996  *
997  * Reordering detection.
998  * --------------------
999  * Reordering metric is maximal distance, which a packet can be displaced
1000  * in packet stream. With SACKs we can estimate it:
1001  *
1002  * 1. SACK fills old hole and the corresponding segment was not
1003  *    ever retransmitted -> reordering. Alas, we cannot use it
1004  *    when segment was retransmitted.
1005  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1006  *    for retransmitted and already SACKed segment -> reordering..
1007  * Both of these heuristics are not used in Loss state, when we cannot
1008  * account for retransmits accurately.
1009  *
1010  * SACK block validation.
1011  * ----------------------
1012  *
1013  * SACK block range validation checks that the received SACK block fits to
1014  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1015  * Note that SND.UNA is not included to the range though being valid because
1016  * it means that the receiver is rather inconsistent with itself reporting
1017  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1018  * perfectly valid, however, in light of RFC2018 which explicitly states
1019  * that "SACK block MUST reflect the newest segment.  Even if the newest
1020  * segment is going to be discarded ...", not that it looks very clever
1021  * in case of head skb. Due to potentional receiver driven attacks, we
1022  * choose to avoid immediate execution of a walk in write queue due to
1023  * reneging and defer head skb's loss recovery to standard loss recovery
1024  * procedure that will eventually trigger (nothing forbids us doing this).
1025  *
1026  * Implements also blockage to start_seq wrap-around. Problem lies in the
1027  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1028  * there's no guarantee that it will be before snd_nxt (n). The problem
1029  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1030  * wrap (s_w):
1031  *
1032  *         <- outs wnd ->                          <- wrapzone ->
1033  *         u     e      n                         u_w   e_w  s n_w
1034  *         |     |      |                          |     |   |  |
1035  * |<------------+------+----- TCP seqno space --------------+---------->|
1036  * ...-- <2^31 ->|                                           |<--------...
1037  * ...---- >2^31 ------>|                                    |<--------...
1038  *
1039  * Current code wouldn't be vulnerable but it's better still to discard such
1040  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1041  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1042  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1043  * equal to the ideal case (infinite seqno space without wrap caused issues).
1044  *
1045  * With D-SACK the lower bound is extended to cover sequence space below
1046  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1047  * again, D-SACK block must not to go across snd_una (for the same reason as
1048  * for the normal SACK blocks, explained above). But there all simplicity
1049  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1050  * fully below undo_marker they do not affect behavior in anyway and can
1051  * therefore be safely ignored. In rare cases (which are more or less
1052  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1053  * fragmentation and packet reordering past skb's retransmission. To consider
1054  * them correctly, the acceptable range must be extended even more though
1055  * the exact amount is rather hard to quantify. However, tp->max_window can
1056  * be used as an exaggerated estimate.
1057  */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1058 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1059 				   u32 start_seq, u32 end_seq)
1060 {
1061 	/* Too far in future, or reversed (interpretation is ambiguous) */
1062 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1063 		return false;
1064 
1065 	/* Nasty start_seq wrap-around check (see comments above) */
1066 	if (!before(start_seq, tp->snd_nxt))
1067 		return false;
1068 
1069 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1070 	 * start_seq == snd_una is non-sensical (see comments above)
1071 	 */
1072 	if (after(start_seq, tp->snd_una))
1073 		return true;
1074 
1075 	if (!is_dsack || !tp->undo_marker)
1076 		return false;
1077 
1078 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1079 	if (after(end_seq, tp->snd_una))
1080 		return false;
1081 
1082 	if (!before(start_seq, tp->undo_marker))
1083 		return true;
1084 
1085 	/* Too old */
1086 	if (!after(end_seq, tp->undo_marker))
1087 		return false;
1088 
1089 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1090 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1091 	 */
1092 	return !before(start_seq, end_seq - tp->max_window);
1093 }
1094 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una)1095 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1096 			    struct tcp_sack_block_wire *sp, int num_sacks,
1097 			    u32 prior_snd_una)
1098 {
1099 	struct tcp_sock *tp = tcp_sk(sk);
1100 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1101 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1102 	bool dup_sack = false;
1103 
1104 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1105 		dup_sack = true;
1106 		tcp_dsack_seen(tp);
1107 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1108 	} else if (num_sacks > 1) {
1109 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1110 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1111 
1112 		if (!after(end_seq_0, end_seq_1) &&
1113 		    !before(start_seq_0, start_seq_1)) {
1114 			dup_sack = true;
1115 			tcp_dsack_seen(tp);
1116 			NET_INC_STATS(sock_net(sk),
1117 					LINUX_MIB_TCPDSACKOFORECV);
1118 		}
1119 	}
1120 
1121 	/* D-SACK for already forgotten data... Do dumb counting. */
1122 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1123 	    !after(end_seq_0, prior_snd_una) &&
1124 	    after(end_seq_0, tp->undo_marker))
1125 		tp->undo_retrans--;
1126 
1127 	return dup_sack;
1128 }
1129 
1130 struct tcp_sacktag_state {
1131 	int	reord;
1132 	int	fack_count;
1133 	/* Timestamps for earliest and latest never-retransmitted segment
1134 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1135 	 * but congestion control should still get an accurate delay signal.
1136 	 */
1137 	struct skb_mstamp first_sackt;
1138 	struct skb_mstamp last_sackt;
1139 	struct rate_sample *rate;
1140 	int	flag;
1141 };
1142 
1143 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1144  * the incoming SACK may not exactly match but we can find smaller MSS
1145  * aligned portion of it that matches. Therefore we might need to fragment
1146  * which may fail and creates some hassle (caller must handle error case
1147  * returns).
1148  *
1149  * FIXME: this could be merged to shift decision code
1150  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1151 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1152 				  u32 start_seq, u32 end_seq)
1153 {
1154 	int err;
1155 	bool in_sack;
1156 	unsigned int pkt_len;
1157 	unsigned int mss;
1158 
1159 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1160 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1161 
1162 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1163 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1164 		mss = tcp_skb_mss(skb);
1165 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1166 
1167 		if (!in_sack) {
1168 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1169 			if (pkt_len < mss)
1170 				pkt_len = mss;
1171 		} else {
1172 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1173 			if (pkt_len < mss)
1174 				return -EINVAL;
1175 		}
1176 
1177 		/* Round if necessary so that SACKs cover only full MSSes
1178 		 * and/or the remaining small portion (if present)
1179 		 */
1180 		if (pkt_len > mss) {
1181 			unsigned int new_len = (pkt_len / mss) * mss;
1182 			if (!in_sack && new_len < pkt_len)
1183 				new_len += mss;
1184 			pkt_len = new_len;
1185 		}
1186 
1187 		if (pkt_len >= skb->len && !in_sack)
1188 			return 0;
1189 
1190 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1191 		if (err < 0)
1192 			return err;
1193 	}
1194 
1195 	return in_sack;
1196 }
1197 
1198 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,const struct skb_mstamp * xmit_time)1199 static u8 tcp_sacktag_one(struct sock *sk,
1200 			  struct tcp_sacktag_state *state, u8 sacked,
1201 			  u32 start_seq, u32 end_seq,
1202 			  int dup_sack, int pcount,
1203 			  const struct skb_mstamp *xmit_time)
1204 {
1205 	struct tcp_sock *tp = tcp_sk(sk);
1206 	int fack_count = state->fack_count;
1207 
1208 	/* Account D-SACK for retransmitted packet. */
1209 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1210 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1211 		    after(end_seq, tp->undo_marker))
1212 			tp->undo_retrans--;
1213 		if (sacked & TCPCB_SACKED_ACKED)
1214 			state->reord = min(fack_count, state->reord);
1215 	}
1216 
1217 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1218 	if (!after(end_seq, tp->snd_una))
1219 		return sacked;
1220 
1221 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1222 		tcp_rack_advance(tp, xmit_time, sacked);
1223 
1224 		if (sacked & TCPCB_SACKED_RETRANS) {
1225 			/* If the segment is not tagged as lost,
1226 			 * we do not clear RETRANS, believing
1227 			 * that retransmission is still in flight.
1228 			 */
1229 			if (sacked & TCPCB_LOST) {
1230 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1231 				tp->lost_out -= pcount;
1232 				tp->retrans_out -= pcount;
1233 			}
1234 		} else {
1235 			if (!(sacked & TCPCB_RETRANS)) {
1236 				/* New sack for not retransmitted frame,
1237 				 * which was in hole. It is reordering.
1238 				 */
1239 				if (before(start_seq,
1240 					   tcp_highest_sack_seq(tp)))
1241 					state->reord = min(fack_count,
1242 							   state->reord);
1243 				if (!after(end_seq, tp->high_seq))
1244 					state->flag |= FLAG_ORIG_SACK_ACKED;
1245 				if (state->first_sackt.v64 == 0)
1246 					state->first_sackt = *xmit_time;
1247 				state->last_sackt = *xmit_time;
1248 			}
1249 
1250 			if (sacked & TCPCB_LOST) {
1251 				sacked &= ~TCPCB_LOST;
1252 				tp->lost_out -= pcount;
1253 			}
1254 		}
1255 
1256 		sacked |= TCPCB_SACKED_ACKED;
1257 		state->flag |= FLAG_DATA_SACKED;
1258 		tp->sacked_out += pcount;
1259 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1260 
1261 		fack_count += pcount;
1262 
1263 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1264 		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1265 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1266 			tp->lost_cnt_hint += pcount;
1267 
1268 		if (fack_count > tp->fackets_out)
1269 			tp->fackets_out = fack_count;
1270 	}
1271 
1272 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1273 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1274 	 * are accounted above as well.
1275 	 */
1276 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1277 		sacked &= ~TCPCB_SACKED_RETRANS;
1278 		tp->retrans_out -= pcount;
1279 	}
1280 
1281 	return sacked;
1282 }
1283 
1284 /* Shift newly-SACKed bytes from this skb to the immediately previous
1285  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1286  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1287 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1288 			    struct tcp_sacktag_state *state,
1289 			    unsigned int pcount, int shifted, int mss,
1290 			    bool dup_sack)
1291 {
1292 	struct tcp_sock *tp = tcp_sk(sk);
1293 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1294 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1295 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1296 
1297 	BUG_ON(!pcount);
1298 
1299 	/* Adjust counters and hints for the newly sacked sequence
1300 	 * range but discard the return value since prev is already
1301 	 * marked. We must tag the range first because the seq
1302 	 * advancement below implicitly advances
1303 	 * tcp_highest_sack_seq() when skb is highest_sack.
1304 	 */
1305 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1306 			start_seq, end_seq, dup_sack, pcount,
1307 			&skb->skb_mstamp);
1308 	tcp_rate_skb_delivered(sk, skb, state->rate);
1309 
1310 	if (skb == tp->lost_skb_hint)
1311 		tp->lost_cnt_hint += pcount;
1312 
1313 	TCP_SKB_CB(prev)->end_seq += shifted;
1314 	TCP_SKB_CB(skb)->seq += shifted;
1315 
1316 	tcp_skb_pcount_add(prev, pcount);
1317 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1318 	tcp_skb_pcount_add(skb, -pcount);
1319 
1320 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1321 	 * in theory this shouldn't be necessary but as long as DSACK
1322 	 * code can come after this skb later on it's better to keep
1323 	 * setting gso_size to something.
1324 	 */
1325 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1326 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1327 
1328 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1329 	if (tcp_skb_pcount(skb) <= 1)
1330 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1331 
1332 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1333 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1334 
1335 	if (skb->len > 0) {
1336 		BUG_ON(!tcp_skb_pcount(skb));
1337 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1338 		return false;
1339 	}
1340 
1341 	/* Whole SKB was eaten :-) */
1342 
1343 	if (skb == tp->retransmit_skb_hint)
1344 		tp->retransmit_skb_hint = prev;
1345 	if (skb == tp->lost_skb_hint) {
1346 		tp->lost_skb_hint = prev;
1347 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1348 	}
1349 
1350 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1351 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1352 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1353 		TCP_SKB_CB(prev)->end_seq++;
1354 
1355 	if (skb == tcp_highest_sack(sk))
1356 		tcp_advance_highest_sack(sk, skb);
1357 
1358 	tcp_skb_collapse_tstamp(prev, skb);
1359 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1360 		TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1361 
1362 	tcp_unlink_write_queue(skb, sk);
1363 	sk_wmem_free_skb(sk, skb);
1364 
1365 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1366 
1367 	return true;
1368 }
1369 
1370 /* I wish gso_size would have a bit more sane initialization than
1371  * something-or-zero which complicates things
1372  */
tcp_skb_seglen(const struct sk_buff * skb)1373 static int tcp_skb_seglen(const struct sk_buff *skb)
1374 {
1375 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1376 }
1377 
1378 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1379 static int skb_can_shift(const struct sk_buff *skb)
1380 {
1381 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1382 }
1383 
1384 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1385  * skb.
1386  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1387 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1388 					  struct tcp_sacktag_state *state,
1389 					  u32 start_seq, u32 end_seq,
1390 					  bool dup_sack)
1391 {
1392 	struct tcp_sock *tp = tcp_sk(sk);
1393 	struct sk_buff *prev;
1394 	int mss;
1395 	int pcount = 0;
1396 	int len;
1397 	int in_sack;
1398 
1399 	if (!sk_can_gso(sk))
1400 		goto fallback;
1401 
1402 	/* Normally R but no L won't result in plain S */
1403 	if (!dup_sack &&
1404 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1405 		goto fallback;
1406 	if (!skb_can_shift(skb))
1407 		goto fallback;
1408 	/* This frame is about to be dropped (was ACKed). */
1409 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1410 		goto fallback;
1411 
1412 	/* Can only happen with delayed DSACK + discard craziness */
1413 	if (unlikely(skb == tcp_write_queue_head(sk)))
1414 		goto fallback;
1415 	prev = tcp_write_queue_prev(sk, skb);
1416 
1417 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1418 		goto fallback;
1419 
1420 	if (!tcp_skb_can_collapse_to(prev))
1421 		goto fallback;
1422 
1423 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1424 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1425 
1426 	if (in_sack) {
1427 		len = skb->len;
1428 		pcount = tcp_skb_pcount(skb);
1429 		mss = tcp_skb_seglen(skb);
1430 
1431 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1432 		 * drop this restriction as unnecessary
1433 		 */
1434 		if (mss != tcp_skb_seglen(prev))
1435 			goto fallback;
1436 	} else {
1437 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1438 			goto noop;
1439 		/* CHECKME: This is non-MSS split case only?, this will
1440 		 * cause skipped skbs due to advancing loop btw, original
1441 		 * has that feature too
1442 		 */
1443 		if (tcp_skb_pcount(skb) <= 1)
1444 			goto noop;
1445 
1446 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1447 		if (!in_sack) {
1448 			/* TODO: head merge to next could be attempted here
1449 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1450 			 * though it might not be worth of the additional hassle
1451 			 *
1452 			 * ...we can probably just fallback to what was done
1453 			 * previously. We could try merging non-SACKed ones
1454 			 * as well but it probably isn't going to buy off
1455 			 * because later SACKs might again split them, and
1456 			 * it would make skb timestamp tracking considerably
1457 			 * harder problem.
1458 			 */
1459 			goto fallback;
1460 		}
1461 
1462 		len = end_seq - TCP_SKB_CB(skb)->seq;
1463 		BUG_ON(len < 0);
1464 		BUG_ON(len > skb->len);
1465 
1466 		/* MSS boundaries should be honoured or else pcount will
1467 		 * severely break even though it makes things bit trickier.
1468 		 * Optimize common case to avoid most of the divides
1469 		 */
1470 		mss = tcp_skb_mss(skb);
1471 
1472 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1473 		 * drop this restriction as unnecessary
1474 		 */
1475 		if (mss != tcp_skb_seglen(prev))
1476 			goto fallback;
1477 
1478 		if (len == mss) {
1479 			pcount = 1;
1480 		} else if (len < mss) {
1481 			goto noop;
1482 		} else {
1483 			pcount = len / mss;
1484 			len = pcount * mss;
1485 		}
1486 	}
1487 
1488 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1489 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1490 		goto fallback;
1491 
1492 	if (!skb_shift(prev, skb, len))
1493 		goto fallback;
1494 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1495 		goto out;
1496 
1497 	/* Hole filled allows collapsing with the next as well, this is very
1498 	 * useful when hole on every nth skb pattern happens
1499 	 */
1500 	if (prev == tcp_write_queue_tail(sk))
1501 		goto out;
1502 	skb = tcp_write_queue_next(sk, prev);
1503 
1504 	if (!skb_can_shift(skb) ||
1505 	    (skb == tcp_send_head(sk)) ||
1506 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1507 	    (mss != tcp_skb_seglen(skb)))
1508 		goto out;
1509 
1510 	len = skb->len;
1511 	if (skb_shift(prev, skb, len)) {
1512 		pcount += tcp_skb_pcount(skb);
1513 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1514 	}
1515 
1516 out:
1517 	state->fack_count += pcount;
1518 	return prev;
1519 
1520 noop:
1521 	return skb;
1522 
1523 fallback:
1524 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1525 	return NULL;
1526 }
1527 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1528 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1529 					struct tcp_sack_block *next_dup,
1530 					struct tcp_sacktag_state *state,
1531 					u32 start_seq, u32 end_seq,
1532 					bool dup_sack_in)
1533 {
1534 	struct tcp_sock *tp = tcp_sk(sk);
1535 	struct sk_buff *tmp;
1536 
1537 	tcp_for_write_queue_from(skb, sk) {
1538 		int in_sack = 0;
1539 		bool dup_sack = dup_sack_in;
1540 
1541 		if (skb == tcp_send_head(sk))
1542 			break;
1543 
1544 		/* queue is in-order => we can short-circuit the walk early */
1545 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1546 			break;
1547 
1548 		if (next_dup  &&
1549 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1550 			in_sack = tcp_match_skb_to_sack(sk, skb,
1551 							next_dup->start_seq,
1552 							next_dup->end_seq);
1553 			if (in_sack > 0)
1554 				dup_sack = true;
1555 		}
1556 
1557 		/* skb reference here is a bit tricky to get right, since
1558 		 * shifting can eat and free both this skb and the next,
1559 		 * so not even _safe variant of the loop is enough.
1560 		 */
1561 		if (in_sack <= 0) {
1562 			tmp = tcp_shift_skb_data(sk, skb, state,
1563 						 start_seq, end_seq, dup_sack);
1564 			if (tmp) {
1565 				if (tmp != skb) {
1566 					skb = tmp;
1567 					continue;
1568 				}
1569 
1570 				in_sack = 0;
1571 			} else {
1572 				in_sack = tcp_match_skb_to_sack(sk, skb,
1573 								start_seq,
1574 								end_seq);
1575 			}
1576 		}
1577 
1578 		if (unlikely(in_sack < 0))
1579 			break;
1580 
1581 		if (in_sack) {
1582 			TCP_SKB_CB(skb)->sacked =
1583 				tcp_sacktag_one(sk,
1584 						state,
1585 						TCP_SKB_CB(skb)->sacked,
1586 						TCP_SKB_CB(skb)->seq,
1587 						TCP_SKB_CB(skb)->end_seq,
1588 						dup_sack,
1589 						tcp_skb_pcount(skb),
1590 						&skb->skb_mstamp);
1591 			tcp_rate_skb_delivered(sk, skb, state->rate);
1592 
1593 			if (!before(TCP_SKB_CB(skb)->seq,
1594 				    tcp_highest_sack_seq(tp)))
1595 				tcp_advance_highest_sack(sk, skb);
1596 		}
1597 
1598 		state->fack_count += tcp_skb_pcount(skb);
1599 	}
1600 	return skb;
1601 }
1602 
1603 /* Avoid all extra work that is being done by sacktag while walking in
1604  * a normal way
1605  */
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,struct tcp_sacktag_state * state,u32 skip_to_seq)1606 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1607 					struct tcp_sacktag_state *state,
1608 					u32 skip_to_seq)
1609 {
1610 	tcp_for_write_queue_from(skb, sk) {
1611 		if (skb == tcp_send_head(sk))
1612 			break;
1613 
1614 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1615 			break;
1616 
1617 		state->fack_count += tcp_skb_pcount(skb);
1618 	}
1619 	return skb;
1620 }
1621 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1622 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1623 						struct sock *sk,
1624 						struct tcp_sack_block *next_dup,
1625 						struct tcp_sacktag_state *state,
1626 						u32 skip_to_seq)
1627 {
1628 	if (!next_dup)
1629 		return skb;
1630 
1631 	if (before(next_dup->start_seq, skip_to_seq)) {
1632 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1633 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1634 				       next_dup->start_seq, next_dup->end_seq,
1635 				       1);
1636 	}
1637 
1638 	return skb;
1639 }
1640 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1641 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1642 {
1643 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1644 }
1645 
1646 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1647 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1648 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1649 {
1650 	struct tcp_sock *tp = tcp_sk(sk);
1651 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1652 				    TCP_SKB_CB(ack_skb)->sacked);
1653 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1654 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1655 	struct tcp_sack_block *cache;
1656 	struct sk_buff *skb;
1657 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1658 	int used_sacks;
1659 	bool found_dup_sack = false;
1660 	int i, j;
1661 	int first_sack_index;
1662 
1663 	state->flag = 0;
1664 	state->reord = tp->packets_out;
1665 
1666 	if (!tp->sacked_out) {
1667 		if (WARN_ON(tp->fackets_out))
1668 			tp->fackets_out = 0;
1669 		tcp_highest_sack_reset(sk);
1670 	}
1671 
1672 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1673 					 num_sacks, prior_snd_una);
1674 	if (found_dup_sack) {
1675 		state->flag |= FLAG_DSACKING_ACK;
1676 		tp->delivered++; /* A spurious retransmission is delivered */
1677 	}
1678 
1679 	/* Eliminate too old ACKs, but take into
1680 	 * account more or less fresh ones, they can
1681 	 * contain valid SACK info.
1682 	 */
1683 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1684 		return 0;
1685 
1686 	if (!tp->packets_out)
1687 		goto out;
1688 
1689 	used_sacks = 0;
1690 	first_sack_index = 0;
1691 	for (i = 0; i < num_sacks; i++) {
1692 		bool dup_sack = !i && found_dup_sack;
1693 
1694 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1695 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1696 
1697 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1698 					    sp[used_sacks].start_seq,
1699 					    sp[used_sacks].end_seq)) {
1700 			int mib_idx;
1701 
1702 			if (dup_sack) {
1703 				if (!tp->undo_marker)
1704 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1705 				else
1706 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1707 			} else {
1708 				/* Don't count olds caused by ACK reordering */
1709 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1710 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1711 					continue;
1712 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1713 			}
1714 
1715 			NET_INC_STATS(sock_net(sk), mib_idx);
1716 			if (i == 0)
1717 				first_sack_index = -1;
1718 			continue;
1719 		}
1720 
1721 		/* Ignore very old stuff early */
1722 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1723 			continue;
1724 
1725 		used_sacks++;
1726 	}
1727 
1728 	/* order SACK blocks to allow in order walk of the retrans queue */
1729 	for (i = used_sacks - 1; i > 0; i--) {
1730 		for (j = 0; j < i; j++) {
1731 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1732 				swap(sp[j], sp[j + 1]);
1733 
1734 				/* Track where the first SACK block goes to */
1735 				if (j == first_sack_index)
1736 					first_sack_index = j + 1;
1737 			}
1738 		}
1739 	}
1740 
1741 	skb = tcp_write_queue_head(sk);
1742 	state->fack_count = 0;
1743 	i = 0;
1744 
1745 	if (!tp->sacked_out) {
1746 		/* It's already past, so skip checking against it */
1747 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1748 	} else {
1749 		cache = tp->recv_sack_cache;
1750 		/* Skip empty blocks in at head of the cache */
1751 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1752 		       !cache->end_seq)
1753 			cache++;
1754 	}
1755 
1756 	while (i < used_sacks) {
1757 		u32 start_seq = sp[i].start_seq;
1758 		u32 end_seq = sp[i].end_seq;
1759 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1760 		struct tcp_sack_block *next_dup = NULL;
1761 
1762 		if (found_dup_sack && ((i + 1) == first_sack_index))
1763 			next_dup = &sp[i + 1];
1764 
1765 		/* Skip too early cached blocks */
1766 		while (tcp_sack_cache_ok(tp, cache) &&
1767 		       !before(start_seq, cache->end_seq))
1768 			cache++;
1769 
1770 		/* Can skip some work by looking recv_sack_cache? */
1771 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1772 		    after(end_seq, cache->start_seq)) {
1773 
1774 			/* Head todo? */
1775 			if (before(start_seq, cache->start_seq)) {
1776 				skb = tcp_sacktag_skip(skb, sk, state,
1777 						       start_seq);
1778 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1779 						       state,
1780 						       start_seq,
1781 						       cache->start_seq,
1782 						       dup_sack);
1783 			}
1784 
1785 			/* Rest of the block already fully processed? */
1786 			if (!after(end_seq, cache->end_seq))
1787 				goto advance_sp;
1788 
1789 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1790 						       state,
1791 						       cache->end_seq);
1792 
1793 			/* ...tail remains todo... */
1794 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1795 				/* ...but better entrypoint exists! */
1796 				skb = tcp_highest_sack(sk);
1797 				if (!skb)
1798 					break;
1799 				state->fack_count = tp->fackets_out;
1800 				cache++;
1801 				goto walk;
1802 			}
1803 
1804 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1805 			/* Check overlap against next cached too (past this one already) */
1806 			cache++;
1807 			continue;
1808 		}
1809 
1810 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1811 			skb = tcp_highest_sack(sk);
1812 			if (!skb)
1813 				break;
1814 			state->fack_count = tp->fackets_out;
1815 		}
1816 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1817 
1818 walk:
1819 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1820 				       start_seq, end_seq, dup_sack);
1821 
1822 advance_sp:
1823 		i++;
1824 	}
1825 
1826 	/* Clear the head of the cache sack blocks so we can skip it next time */
1827 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1828 		tp->recv_sack_cache[i].start_seq = 0;
1829 		tp->recv_sack_cache[i].end_seq = 0;
1830 	}
1831 	for (j = 0; j < used_sacks; j++)
1832 		tp->recv_sack_cache[i++] = sp[j];
1833 
1834 	if ((state->reord < tp->fackets_out) &&
1835 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1836 		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1837 
1838 	tcp_verify_left_out(tp);
1839 out:
1840 
1841 #if FASTRETRANS_DEBUG > 0
1842 	WARN_ON((int)tp->sacked_out < 0);
1843 	WARN_ON((int)tp->lost_out < 0);
1844 	WARN_ON((int)tp->retrans_out < 0);
1845 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1846 #endif
1847 	return state->flag;
1848 }
1849 
1850 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1851  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1852  */
tcp_limit_reno_sacked(struct tcp_sock * tp)1853 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1854 {
1855 	u32 holes;
1856 
1857 	holes = max(tp->lost_out, 1U);
1858 	holes = min(holes, tp->packets_out);
1859 
1860 	if ((tp->sacked_out + holes) > tp->packets_out) {
1861 		tp->sacked_out = tp->packets_out - holes;
1862 		return true;
1863 	}
1864 	return false;
1865 }
1866 
1867 /* If we receive more dupacks than we expected counting segments
1868  * in assumption of absent reordering, interpret this as reordering.
1869  * The only another reason could be bug in receiver TCP.
1870  */
tcp_check_reno_reordering(struct sock * sk,const int addend)1871 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1872 {
1873 	struct tcp_sock *tp = tcp_sk(sk);
1874 	if (tcp_limit_reno_sacked(tp))
1875 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1876 }
1877 
1878 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1879 
tcp_add_reno_sack(struct sock * sk)1880 static void tcp_add_reno_sack(struct sock *sk)
1881 {
1882 	struct tcp_sock *tp = tcp_sk(sk);
1883 	u32 prior_sacked = tp->sacked_out;
1884 
1885 	tp->sacked_out++;
1886 	tcp_check_reno_reordering(sk, 0);
1887 	if (tp->sacked_out > prior_sacked)
1888 		tp->delivered++; /* Some out-of-order packet is delivered */
1889 	tcp_verify_left_out(tp);
1890 }
1891 
1892 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1893 
tcp_remove_reno_sacks(struct sock * sk,int acked)1894 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1895 {
1896 	struct tcp_sock *tp = tcp_sk(sk);
1897 
1898 	if (acked > 0) {
1899 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1900 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1901 		if (acked - 1 >= tp->sacked_out)
1902 			tp->sacked_out = 0;
1903 		else
1904 			tp->sacked_out -= acked - 1;
1905 	}
1906 	tcp_check_reno_reordering(sk, acked);
1907 	tcp_verify_left_out(tp);
1908 }
1909 
tcp_reset_reno_sack(struct tcp_sock * tp)1910 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1911 {
1912 	tp->sacked_out = 0;
1913 }
1914 
tcp_clear_retrans(struct tcp_sock * tp)1915 void tcp_clear_retrans(struct tcp_sock *tp)
1916 {
1917 	tp->retrans_out = 0;
1918 	tp->lost_out = 0;
1919 	tp->undo_marker = 0;
1920 	tp->undo_retrans = -1;
1921 	tp->fackets_out = 0;
1922 	tp->sacked_out = 0;
1923 }
1924 
tcp_init_undo(struct tcp_sock * tp)1925 static inline void tcp_init_undo(struct tcp_sock *tp)
1926 {
1927 	tp->undo_marker = tp->snd_una;
1928 	/* Retransmission still in flight may cause DSACKs later. */
1929 	tp->undo_retrans = tp->retrans_out ? : -1;
1930 }
1931 
1932 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1933  * and reset tags completely, otherwise preserve SACKs. If receiver
1934  * dropped its ofo queue, we will know this due to reneging detection.
1935  */
tcp_enter_loss(struct sock * sk)1936 void tcp_enter_loss(struct sock *sk)
1937 {
1938 	const struct inet_connection_sock *icsk = inet_csk(sk);
1939 	struct tcp_sock *tp = tcp_sk(sk);
1940 	struct net *net = sock_net(sk);
1941 	struct sk_buff *skb;
1942 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1943 	bool is_reneg;			/* is receiver reneging on SACKs? */
1944 	bool mark_lost;
1945 
1946 	/* Reduce ssthresh if it has not yet been made inside this window. */
1947 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1948 	    !after(tp->high_seq, tp->snd_una) ||
1949 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1950 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1951 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1952 		tcp_ca_event(sk, CA_EVENT_LOSS);
1953 		tcp_init_undo(tp);
1954 	}
1955 	tp->snd_cwnd	   = 1;
1956 	tp->snd_cwnd_cnt   = 0;
1957 	tp->snd_cwnd_stamp = tcp_time_stamp;
1958 
1959 	tp->retrans_out = 0;
1960 	tp->lost_out = 0;
1961 
1962 	if (tcp_is_reno(tp))
1963 		tcp_reset_reno_sack(tp);
1964 
1965 	skb = tcp_write_queue_head(sk);
1966 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1967 	if (is_reneg) {
1968 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1969 		tp->sacked_out = 0;
1970 		tp->fackets_out = 0;
1971 		/* Mark SACK reneging until we recover from this loss event. */
1972 		tp->is_sack_reneg = 1;
1973 	}
1974 	tcp_clear_all_retrans_hints(tp);
1975 
1976 	tcp_for_write_queue(skb, sk) {
1977 		if (skb == tcp_send_head(sk))
1978 			break;
1979 
1980 		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1981 			     is_reneg);
1982 		if (mark_lost)
1983 			tcp_sum_lost(tp, skb);
1984 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1985 		if (mark_lost) {
1986 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1987 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1988 			tp->lost_out += tcp_skb_pcount(skb);
1989 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1990 		}
1991 	}
1992 	tcp_verify_left_out(tp);
1993 
1994 	/* Timeout in disordered state after receiving substantial DUPACKs
1995 	 * suggests that the degree of reordering is over-estimated.
1996 	 */
1997 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1998 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1999 		tp->reordering = min_t(unsigned int, tp->reordering,
2000 				       net->ipv4.sysctl_tcp_reordering);
2001 	tcp_set_ca_state(sk, TCP_CA_Loss);
2002 	tp->high_seq = tp->snd_nxt;
2003 	tcp_ecn_queue_cwr(tp);
2004 
2005 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2006 	 * loss recovery is underway except recurring timeout(s) on
2007 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2008 	 */
2009 	tp->frto = sysctl_tcp_frto &&
2010 		   (new_recovery || icsk->icsk_retransmits) &&
2011 		   !inet_csk(sk)->icsk_mtup.probe_size;
2012 }
2013 
2014 /* If ACK arrived pointing to a remembered SACK, it means that our
2015  * remembered SACKs do not reflect real state of receiver i.e.
2016  * receiver _host_ is heavily congested (or buggy).
2017  *
2018  * To avoid big spurious retransmission bursts due to transient SACK
2019  * scoreboard oddities that look like reneging, we give the receiver a
2020  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2021  * restore sanity to the SACK scoreboard. If the apparent reneging
2022  * persists until this RTO then we'll clear the SACK scoreboard.
2023  */
tcp_check_sack_reneging(struct sock * sk,int flag)2024 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2025 {
2026 	if (flag & FLAG_SACK_RENEGING) {
2027 		struct tcp_sock *tp = tcp_sk(sk);
2028 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2029 					  msecs_to_jiffies(10));
2030 
2031 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2032 					  delay, TCP_RTO_MAX);
2033 		return true;
2034 	}
2035 	return false;
2036 }
2037 
tcp_fackets_out(const struct tcp_sock * tp)2038 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2039 {
2040 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2041 }
2042 
2043 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2044  * counter when SACK is enabled (without SACK, sacked_out is used for
2045  * that purpose).
2046  *
2047  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2048  * segments up to the highest received SACK block so far and holes in
2049  * between them.
2050  *
2051  * With reordering, holes may still be in flight, so RFC3517 recovery
2052  * uses pure sacked_out (total number of SACKed segments) even though
2053  * it violates the RFC that uses duplicate ACKs, often these are equal
2054  * but when e.g. out-of-window ACKs or packet duplication occurs,
2055  * they differ. Since neither occurs due to loss, TCP should really
2056  * ignore them.
2057  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2058 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2059 {
2060 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2061 }
2062 
tcp_pause_early_retransmit(struct sock * sk,int flag)2063 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2064 {
2065 	struct tcp_sock *tp = tcp_sk(sk);
2066 	unsigned long delay;
2067 
2068 	/* Delay early retransmit and entering fast recovery for
2069 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2070 	 * available, or RTO is scheduled to fire first.
2071 	 */
2072 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2073 	    (flag & FLAG_ECE) || !tp->srtt_us)
2074 		return false;
2075 
2076 	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2077 		    msecs_to_jiffies(2));
2078 
2079 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2080 		return false;
2081 
2082 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2083 				  TCP_RTO_MAX);
2084 	return true;
2085 }
2086 
2087 /* Linux NewReno/SACK/FACK/ECN state machine.
2088  * --------------------------------------
2089  *
2090  * "Open"	Normal state, no dubious events, fast path.
2091  * "Disorder"   In all the respects it is "Open",
2092  *		but requires a bit more attention. It is entered when
2093  *		we see some SACKs or dupacks. It is split of "Open"
2094  *		mainly to move some processing from fast path to slow one.
2095  * "CWR"	CWND was reduced due to some Congestion Notification event.
2096  *		It can be ECN, ICMP source quench, local device congestion.
2097  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2098  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2099  *
2100  * tcp_fastretrans_alert() is entered:
2101  * - each incoming ACK, if state is not "Open"
2102  * - when arrived ACK is unusual, namely:
2103  *	* SACK
2104  *	* Duplicate ACK.
2105  *	* ECN ECE.
2106  *
2107  * Counting packets in flight is pretty simple.
2108  *
2109  *	in_flight = packets_out - left_out + retrans_out
2110  *
2111  *	packets_out is SND.NXT-SND.UNA counted in packets.
2112  *
2113  *	retrans_out is number of retransmitted segments.
2114  *
2115  *	left_out is number of segments left network, but not ACKed yet.
2116  *
2117  *		left_out = sacked_out + lost_out
2118  *
2119  *     sacked_out: Packets, which arrived to receiver out of order
2120  *		   and hence not ACKed. With SACKs this number is simply
2121  *		   amount of SACKed data. Even without SACKs
2122  *		   it is easy to give pretty reliable estimate of this number,
2123  *		   counting duplicate ACKs.
2124  *
2125  *       lost_out: Packets lost by network. TCP has no explicit
2126  *		   "loss notification" feedback from network (for now).
2127  *		   It means that this number can be only _guessed_.
2128  *		   Actually, it is the heuristics to predict lossage that
2129  *		   distinguishes different algorithms.
2130  *
2131  *	F.e. after RTO, when all the queue is considered as lost,
2132  *	lost_out = packets_out and in_flight = retrans_out.
2133  *
2134  *		Essentially, we have now two algorithms counting
2135  *		lost packets.
2136  *
2137  *		FACK: It is the simplest heuristics. As soon as we decided
2138  *		that something is lost, we decide that _all_ not SACKed
2139  *		packets until the most forward SACK are lost. I.e.
2140  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2141  *		It is absolutely correct estimate, if network does not reorder
2142  *		packets. And it loses any connection to reality when reordering
2143  *		takes place. We use FACK by default until reordering
2144  *		is suspected on the path to this destination.
2145  *
2146  *		NewReno: when Recovery is entered, we assume that one segment
2147  *		is lost (classic Reno). While we are in Recovery and
2148  *		a partial ACK arrives, we assume that one more packet
2149  *		is lost (NewReno). This heuristics are the same in NewReno
2150  *		and SACK.
2151  *
2152  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2153  *  deflation etc. CWND is real congestion window, never inflated, changes
2154  *  only according to classic VJ rules.
2155  *
2156  * Really tricky (and requiring careful tuning) part of algorithm
2157  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2158  * The first determines the moment _when_ we should reduce CWND and,
2159  * hence, slow down forward transmission. In fact, it determines the moment
2160  * when we decide that hole is caused by loss, rather than by a reorder.
2161  *
2162  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2163  * holes, caused by lost packets.
2164  *
2165  * And the most logically complicated part of algorithm is undo
2166  * heuristics. We detect false retransmits due to both too early
2167  * fast retransmit (reordering) and underestimated RTO, analyzing
2168  * timestamps and D-SACKs. When we detect that some segments were
2169  * retransmitted by mistake and CWND reduction was wrong, we undo
2170  * window reduction and abort recovery phase. This logic is hidden
2171  * inside several functions named tcp_try_undo_<something>.
2172  */
2173 
2174 /* This function decides, when we should leave Disordered state
2175  * and enter Recovery phase, reducing congestion window.
2176  *
2177  * Main question: may we further continue forward transmission
2178  * with the same cwnd?
2179  */
tcp_time_to_recover(struct sock * sk,int flag)2180 static bool tcp_time_to_recover(struct sock *sk, int flag)
2181 {
2182 	struct tcp_sock *tp = tcp_sk(sk);
2183 	__u32 packets_out;
2184 	int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
2185 
2186 	/* Trick#1: The loss is proven. */
2187 	if (tp->lost_out)
2188 		return true;
2189 
2190 	/* Not-A-Trick#2 : Classic rule... */
2191 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2192 		return true;
2193 
2194 	/* Trick#4: It is still not OK... But will it be useful to delay
2195 	 * recovery more?
2196 	 */
2197 	packets_out = tp->packets_out;
2198 	if (packets_out <= tp->reordering &&
2199 	    tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2200 	    !tcp_may_send_now(sk)) {
2201 		/* We have nothing to send. This connection is limited
2202 		 * either by receiver window or by application.
2203 		 */
2204 		return true;
2205 	}
2206 
2207 	/* If a thin stream is detected, retransmit after first
2208 	 * received dupack. Employ only if SACK is supported in order
2209 	 * to avoid possible corner-case series of spurious retransmissions
2210 	 * Use only if there are no unsent data.
2211 	 */
2212 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2213 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2214 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2215 		return true;
2216 
2217 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2218 	 * retransmissions due to small network reorderings, we implement
2219 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2220 	 * interval if appropriate.
2221 	 */
2222 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2223 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2224 	    !tcp_may_send_now(sk))
2225 		return !tcp_pause_early_retransmit(sk, flag);
2226 
2227 	return false;
2228 }
2229 
2230 /* Detect loss in event "A" above by marking head of queue up as lost.
2231  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2232  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2233  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2234  * the maximum SACKed segments to pass before reaching this limit.
2235  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2236 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2237 {
2238 	struct tcp_sock *tp = tcp_sk(sk);
2239 	struct sk_buff *skb;
2240 	int cnt, oldcnt, lost;
2241 	unsigned int mss;
2242 	/* Use SACK to deduce losses of new sequences sent during recovery */
2243 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2244 
2245 	WARN_ON(packets > tp->packets_out);
2246 	if (tp->lost_skb_hint) {
2247 		skb = tp->lost_skb_hint;
2248 		cnt = tp->lost_cnt_hint;
2249 		/* Head already handled? */
2250 		if (mark_head && skb != tcp_write_queue_head(sk))
2251 			return;
2252 	} else {
2253 		skb = tcp_write_queue_head(sk);
2254 		cnt = 0;
2255 	}
2256 
2257 	tcp_for_write_queue_from(skb, sk) {
2258 		if (skb == tcp_send_head(sk))
2259 			break;
2260 		/* TODO: do this better */
2261 		/* this is not the most efficient way to do this... */
2262 		tp->lost_skb_hint = skb;
2263 		tp->lost_cnt_hint = cnt;
2264 
2265 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2266 			break;
2267 
2268 		oldcnt = cnt;
2269 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2270 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2271 			cnt += tcp_skb_pcount(skb);
2272 
2273 		if (cnt > packets) {
2274 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2275 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2276 			    (oldcnt >= packets))
2277 				break;
2278 
2279 			mss = tcp_skb_mss(skb);
2280 			/* If needed, chop off the prefix to mark as lost. */
2281 			lost = (packets - oldcnt) * mss;
2282 			if (lost < skb->len &&
2283 			    tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2284 				break;
2285 			cnt = packets;
2286 		}
2287 
2288 		tcp_skb_mark_lost(tp, skb);
2289 
2290 		if (mark_head)
2291 			break;
2292 	}
2293 	tcp_verify_left_out(tp);
2294 }
2295 
2296 /* Account newly detected lost packet(s) */
2297 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2298 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2299 {
2300 	struct tcp_sock *tp = tcp_sk(sk);
2301 
2302 	if (tcp_is_reno(tp)) {
2303 		tcp_mark_head_lost(sk, 1, 1);
2304 	} else if (tcp_is_fack(tp)) {
2305 		int lost = tp->fackets_out - tp->reordering;
2306 		if (lost <= 0)
2307 			lost = 1;
2308 		tcp_mark_head_lost(sk, lost, 0);
2309 	} else {
2310 		int sacked_upto = tp->sacked_out - tp->reordering;
2311 		if (sacked_upto >= 0)
2312 			tcp_mark_head_lost(sk, sacked_upto, 0);
2313 		else if (fast_rexmit)
2314 			tcp_mark_head_lost(sk, 1, 1);
2315 	}
2316 }
2317 
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2318 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2319 {
2320 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2321 	       before(tp->rx_opt.rcv_tsecr, when);
2322 }
2323 
2324 /* skb is spurious retransmitted if the returned timestamp echo
2325  * reply is prior to the skb transmission time
2326  */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2327 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2328 				     const struct sk_buff *skb)
2329 {
2330 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2331 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2332 }
2333 
2334 /* Nothing was retransmitted or returned timestamp is less
2335  * than timestamp of the first retransmission.
2336  */
tcp_packet_delayed(const struct tcp_sock * tp)2337 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2338 {
2339 	return !tp->retrans_stamp ||
2340 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2341 }
2342 
2343 /* Undo procedures. */
2344 
2345 /* We can clear retrans_stamp when there are no retransmissions in the
2346  * window. It would seem that it is trivially available for us in
2347  * tp->retrans_out, however, that kind of assumptions doesn't consider
2348  * what will happen if errors occur when sending retransmission for the
2349  * second time. ...It could the that such segment has only
2350  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2351  * the head skb is enough except for some reneging corner cases that
2352  * are not worth the effort.
2353  *
2354  * Main reason for all this complexity is the fact that connection dying
2355  * time now depends on the validity of the retrans_stamp, in particular,
2356  * that successive retransmissions of a segment must not advance
2357  * retrans_stamp under any conditions.
2358  */
tcp_any_retrans_done(const struct sock * sk)2359 static bool tcp_any_retrans_done(const struct sock *sk)
2360 {
2361 	const struct tcp_sock *tp = tcp_sk(sk);
2362 	struct sk_buff *skb;
2363 
2364 	if (tp->retrans_out)
2365 		return true;
2366 
2367 	skb = tcp_write_queue_head(sk);
2368 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2369 		return true;
2370 
2371 	return false;
2372 }
2373 
2374 #if FASTRETRANS_DEBUG > 1
DBGUNDO(struct sock * sk,const char * msg)2375 static void DBGUNDO(struct sock *sk, const char *msg)
2376 {
2377 	struct tcp_sock *tp = tcp_sk(sk);
2378 	struct inet_sock *inet = inet_sk(sk);
2379 
2380 	if (sk->sk_family == AF_INET) {
2381 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2382 			 msg,
2383 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2384 			 tp->snd_cwnd, tcp_left_out(tp),
2385 			 tp->snd_ssthresh, tp->prior_ssthresh,
2386 			 tp->packets_out);
2387 	}
2388 #if IS_ENABLED(CONFIG_IPV6)
2389 	else if (sk->sk_family == AF_INET6) {
2390 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2391 			 msg,
2392 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2393 			 tp->snd_cwnd, tcp_left_out(tp),
2394 			 tp->snd_ssthresh, tp->prior_ssthresh,
2395 			 tp->packets_out);
2396 	}
2397 #endif
2398 }
2399 #else
2400 #define DBGUNDO(x...) do { } while (0)
2401 #endif
2402 
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2403 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2404 {
2405 	struct tcp_sock *tp = tcp_sk(sk);
2406 
2407 	if (unmark_loss) {
2408 		struct sk_buff *skb;
2409 
2410 		tcp_for_write_queue(skb, sk) {
2411 			if (skb == tcp_send_head(sk))
2412 				break;
2413 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2414 		}
2415 		tp->lost_out = 0;
2416 		tcp_clear_all_retrans_hints(tp);
2417 	}
2418 
2419 	if (tp->prior_ssthresh) {
2420 		const struct inet_connection_sock *icsk = inet_csk(sk);
2421 
2422 		if (icsk->icsk_ca_ops->undo_cwnd)
2423 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2424 		else
2425 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2426 
2427 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2428 			tp->snd_ssthresh = tp->prior_ssthresh;
2429 			tcp_ecn_withdraw_cwr(tp);
2430 		}
2431 	}
2432 	tp->snd_cwnd_stamp = tcp_time_stamp;
2433 	tp->undo_marker = 0;
2434 }
2435 
tcp_may_undo(const struct tcp_sock * tp)2436 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2437 {
2438 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2439 }
2440 
2441 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2442 static bool tcp_try_undo_recovery(struct sock *sk)
2443 {
2444 	struct tcp_sock *tp = tcp_sk(sk);
2445 
2446 	if (tcp_may_undo(tp)) {
2447 		int mib_idx;
2448 
2449 		/* Happy end! We did not retransmit anything
2450 		 * or our original transmission succeeded.
2451 		 */
2452 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2453 		tcp_undo_cwnd_reduction(sk, false);
2454 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2455 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2456 		else
2457 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2458 
2459 		NET_INC_STATS(sock_net(sk), mib_idx);
2460 	}
2461 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2462 		/* Hold old state until something *above* high_seq
2463 		 * is ACKed. For Reno it is MUST to prevent false
2464 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2465 		if (!tcp_any_retrans_done(sk))
2466 			tp->retrans_stamp = 0;
2467 		return true;
2468 	}
2469 	tcp_set_ca_state(sk, TCP_CA_Open);
2470 	tp->is_sack_reneg = 0;
2471 	return false;
2472 }
2473 
2474 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2475 static bool tcp_try_undo_dsack(struct sock *sk)
2476 {
2477 	struct tcp_sock *tp = tcp_sk(sk);
2478 
2479 	if (tp->undo_marker && !tp->undo_retrans) {
2480 		DBGUNDO(sk, "D-SACK");
2481 		tcp_undo_cwnd_reduction(sk, false);
2482 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2483 		return true;
2484 	}
2485 	return false;
2486 }
2487 
2488 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2489 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2490 {
2491 	struct tcp_sock *tp = tcp_sk(sk);
2492 
2493 	if (frto_undo || tcp_may_undo(tp)) {
2494 		tcp_undo_cwnd_reduction(sk, true);
2495 
2496 		DBGUNDO(sk, "partial loss");
2497 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2498 		if (frto_undo)
2499 			NET_INC_STATS(sock_net(sk),
2500 					LINUX_MIB_TCPSPURIOUSRTOS);
2501 		inet_csk(sk)->icsk_retransmits = 0;
2502 		if (frto_undo || tcp_is_sack(tp)) {
2503 			tcp_set_ca_state(sk, TCP_CA_Open);
2504 			tp->is_sack_reneg = 0;
2505 		}
2506 		return true;
2507 	}
2508 	return false;
2509 }
2510 
2511 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2512  * It computes the number of packets to send (sndcnt) based on packets newly
2513  * delivered:
2514  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2515  *	cwnd reductions across a full RTT.
2516  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2517  *      But when the retransmits are acked without further losses, PRR
2518  *      slow starts cwnd up to ssthresh to speed up the recovery.
2519  */
tcp_init_cwnd_reduction(struct sock * sk)2520 static void tcp_init_cwnd_reduction(struct sock *sk)
2521 {
2522 	struct tcp_sock *tp = tcp_sk(sk);
2523 
2524 	tp->high_seq = tp->snd_nxt;
2525 	tp->tlp_high_seq = 0;
2526 	tp->snd_cwnd_cnt = 0;
2527 	tp->prior_cwnd = tp->snd_cwnd;
2528 	tp->prr_delivered = 0;
2529 	tp->prr_out = 0;
2530 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2531 	tcp_ecn_queue_cwr(tp);
2532 }
2533 
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int flag)2534 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2535 			       int flag)
2536 {
2537 	struct tcp_sock *tp = tcp_sk(sk);
2538 	int sndcnt = 0;
2539 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2540 
2541 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2542 		return;
2543 
2544 	tp->prr_delivered += newly_acked_sacked;
2545 	if (delta < 0) {
2546 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2547 			       tp->prior_cwnd - 1;
2548 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2549 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2550 		   !(flag & FLAG_LOST_RETRANS)) {
2551 		sndcnt = min_t(int, delta,
2552 			       max_t(int, tp->prr_delivered - tp->prr_out,
2553 				     newly_acked_sacked) + 1);
2554 	} else {
2555 		sndcnt = min(delta, newly_acked_sacked);
2556 	}
2557 	/* Force a fast retransmit upon entering fast recovery */
2558 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2559 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2560 }
2561 
tcp_end_cwnd_reduction(struct sock * sk)2562 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2563 {
2564 	struct tcp_sock *tp = tcp_sk(sk);
2565 
2566 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2567 		return;
2568 
2569 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2570 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2571 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2572 		tp->snd_cwnd = tp->snd_ssthresh;
2573 		tp->snd_cwnd_stamp = tcp_time_stamp;
2574 	}
2575 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2576 }
2577 
2578 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2579 void tcp_enter_cwr(struct sock *sk)
2580 {
2581 	struct tcp_sock *tp = tcp_sk(sk);
2582 
2583 	tp->prior_ssthresh = 0;
2584 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2585 		tp->undo_marker = 0;
2586 		tcp_init_cwnd_reduction(sk);
2587 		tcp_set_ca_state(sk, TCP_CA_CWR);
2588 	}
2589 }
2590 EXPORT_SYMBOL(tcp_enter_cwr);
2591 
tcp_try_keep_open(struct sock * sk)2592 static void tcp_try_keep_open(struct sock *sk)
2593 {
2594 	struct tcp_sock *tp = tcp_sk(sk);
2595 	int state = TCP_CA_Open;
2596 
2597 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2598 		state = TCP_CA_Disorder;
2599 
2600 	if (inet_csk(sk)->icsk_ca_state != state) {
2601 		tcp_set_ca_state(sk, state);
2602 		tp->high_seq = tp->snd_nxt;
2603 	}
2604 }
2605 
tcp_try_to_open(struct sock * sk,int flag)2606 static void tcp_try_to_open(struct sock *sk, int flag)
2607 {
2608 	struct tcp_sock *tp = tcp_sk(sk);
2609 
2610 	tcp_verify_left_out(tp);
2611 
2612 	if (!tcp_any_retrans_done(sk))
2613 		tp->retrans_stamp = 0;
2614 
2615 	if (flag & FLAG_ECE)
2616 		tcp_enter_cwr(sk);
2617 
2618 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2619 		tcp_try_keep_open(sk);
2620 	}
2621 }
2622 
tcp_mtup_probe_failed(struct sock * sk)2623 static void tcp_mtup_probe_failed(struct sock *sk)
2624 {
2625 	struct inet_connection_sock *icsk = inet_csk(sk);
2626 
2627 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2628 	icsk->icsk_mtup.probe_size = 0;
2629 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2630 }
2631 
tcp_mtup_probe_success(struct sock * sk)2632 static void tcp_mtup_probe_success(struct sock *sk)
2633 {
2634 	struct tcp_sock *tp = tcp_sk(sk);
2635 	struct inet_connection_sock *icsk = inet_csk(sk);
2636 
2637 	/* FIXME: breaks with very large cwnd */
2638 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2639 	tp->snd_cwnd = tp->snd_cwnd *
2640 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2641 		       icsk->icsk_mtup.probe_size;
2642 	tp->snd_cwnd_cnt = 0;
2643 	tp->snd_cwnd_stamp = tcp_time_stamp;
2644 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2645 
2646 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2647 	icsk->icsk_mtup.probe_size = 0;
2648 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2649 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2650 }
2651 
2652 /* Do a simple retransmit without using the backoff mechanisms in
2653  * tcp_timer. This is used for path mtu discovery.
2654  * The socket is already locked here.
2655  */
tcp_simple_retransmit(struct sock * sk)2656 void tcp_simple_retransmit(struct sock *sk)
2657 {
2658 	const struct inet_connection_sock *icsk = inet_csk(sk);
2659 	struct tcp_sock *tp = tcp_sk(sk);
2660 	struct sk_buff *skb;
2661 	unsigned int mss = tcp_current_mss(sk);
2662 	u32 prior_lost = tp->lost_out;
2663 
2664 	tcp_for_write_queue(skb, sk) {
2665 		if (skb == tcp_send_head(sk))
2666 			break;
2667 		if (tcp_skb_seglen(skb) > mss &&
2668 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2669 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2670 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2671 				tp->retrans_out -= tcp_skb_pcount(skb);
2672 			}
2673 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2674 		}
2675 	}
2676 
2677 	tcp_clear_retrans_hints_partial(tp);
2678 
2679 	if (prior_lost == tp->lost_out)
2680 		return;
2681 
2682 	if (tcp_is_reno(tp))
2683 		tcp_limit_reno_sacked(tp);
2684 
2685 	tcp_verify_left_out(tp);
2686 
2687 	/* Don't muck with the congestion window here.
2688 	 * Reason is that we do not increase amount of _data_
2689 	 * in network, but units changed and effective
2690 	 * cwnd/ssthresh really reduced now.
2691 	 */
2692 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2693 		tp->high_seq = tp->snd_nxt;
2694 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2695 		tp->prior_ssthresh = 0;
2696 		tp->undo_marker = 0;
2697 		tcp_set_ca_state(sk, TCP_CA_Loss);
2698 	}
2699 	tcp_xmit_retransmit_queue(sk);
2700 }
2701 EXPORT_SYMBOL(tcp_simple_retransmit);
2702 
tcp_enter_recovery(struct sock * sk,bool ece_ack)2703 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2704 {
2705 	struct tcp_sock *tp = tcp_sk(sk);
2706 	int mib_idx;
2707 
2708 	if (tcp_is_reno(tp))
2709 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2710 	else
2711 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2712 
2713 	NET_INC_STATS(sock_net(sk), mib_idx);
2714 
2715 	tp->prior_ssthresh = 0;
2716 	tcp_init_undo(tp);
2717 
2718 	if (!tcp_in_cwnd_reduction(sk)) {
2719 		if (!ece_ack)
2720 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2721 		tcp_init_cwnd_reduction(sk);
2722 	}
2723 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2724 }
2725 
2726 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2727  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2728  */
tcp_process_loss(struct sock * sk,int flag,bool is_dupack,int * rexmit)2729 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2730 			     int *rexmit)
2731 {
2732 	struct tcp_sock *tp = tcp_sk(sk);
2733 	bool recovered = !before(tp->snd_una, tp->high_seq);
2734 
2735 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2736 	    tcp_try_undo_loss(sk, false))
2737 		return;
2738 
2739 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2740 		/* Step 3.b. A timeout is spurious if not all data are
2741 		 * lost, i.e., never-retransmitted data are (s)acked.
2742 		 */
2743 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2744 		    tcp_try_undo_loss(sk, true))
2745 			return;
2746 
2747 		if (after(tp->snd_nxt, tp->high_seq)) {
2748 			if (flag & FLAG_DATA_SACKED || is_dupack)
2749 				tp->frto = 0; /* Step 3.a. loss was real */
2750 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2751 			tp->high_seq = tp->snd_nxt;
2752 			/* Step 2.b. Try send new data (but deferred until cwnd
2753 			 * is updated in tcp_ack()). Otherwise fall back to
2754 			 * the conventional recovery.
2755 			 */
2756 			if (tcp_send_head(sk) &&
2757 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2758 				*rexmit = REXMIT_NEW;
2759 				return;
2760 			}
2761 			tp->frto = 0;
2762 		}
2763 	}
2764 
2765 	if (recovered) {
2766 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2767 		tcp_try_undo_recovery(sk);
2768 		return;
2769 	}
2770 	if (tcp_is_reno(tp)) {
2771 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2772 		 * delivered. Lower inflight to clock out (re)tranmissions.
2773 		 */
2774 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2775 			tcp_add_reno_sack(sk);
2776 		else if (flag & FLAG_SND_UNA_ADVANCED)
2777 			tcp_reset_reno_sack(tp);
2778 	}
2779 	*rexmit = REXMIT_LOST;
2780 }
2781 
2782 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,const int acked)2783 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2784 {
2785 	struct tcp_sock *tp = tcp_sk(sk);
2786 
2787 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2788 		/* Plain luck! Hole if filled with delayed
2789 		 * packet, rather than with a retransmit.
2790 		 */
2791 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2792 
2793 		/* We are getting evidence that the reordering degree is higher
2794 		 * than we realized. If there are no retransmits out then we
2795 		 * can undo. Otherwise we clock out new packets but do not
2796 		 * mark more packets lost or retransmit more.
2797 		 */
2798 		if (tp->retrans_out)
2799 			return true;
2800 
2801 		if (!tcp_any_retrans_done(sk))
2802 			tp->retrans_stamp = 0;
2803 
2804 		DBGUNDO(sk, "partial recovery");
2805 		tcp_undo_cwnd_reduction(sk, true);
2806 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2807 		tcp_try_keep_open(sk);
2808 		return true;
2809 	}
2810 	return false;
2811 }
2812 
2813 /* Process an event, which can update packets-in-flight not trivially.
2814  * Main goal of this function is to calculate new estimate for left_out,
2815  * taking into account both packets sitting in receiver's buffer and
2816  * packets lost by network.
2817  *
2818  * Besides that it updates the congestion state when packet loss or ECN
2819  * is detected. But it does not reduce the cwnd, it is done by the
2820  * congestion control later.
2821  *
2822  * It does _not_ decide what to send, it is made in function
2823  * tcp_xmit_retransmit_queue().
2824  */
tcp_fastretrans_alert(struct sock * sk,const int acked,bool is_dupack,int * ack_flag,int * rexmit)2825 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2826 				  bool is_dupack, int *ack_flag, int *rexmit)
2827 {
2828 	struct inet_connection_sock *icsk = inet_csk(sk);
2829 	struct tcp_sock *tp = tcp_sk(sk);
2830 	int fast_rexmit = 0, flag = *ack_flag;
2831 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2832 				    (tcp_fackets_out(tp) > tp->reordering));
2833 
2834 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2835 		tp->sacked_out = 0;
2836 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2837 		tp->fackets_out = 0;
2838 
2839 	/* Now state machine starts.
2840 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2841 	if (flag & FLAG_ECE)
2842 		tp->prior_ssthresh = 0;
2843 
2844 	/* B. In all the states check for reneging SACKs. */
2845 	if (tcp_check_sack_reneging(sk, flag))
2846 		return;
2847 
2848 	/* C. Check consistency of the current state. */
2849 	tcp_verify_left_out(tp);
2850 
2851 	/* D. Check state exit conditions. State can be terminated
2852 	 *    when high_seq is ACKed. */
2853 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2854 		WARN_ON(tp->retrans_out != 0);
2855 		tp->retrans_stamp = 0;
2856 	} else if (!before(tp->snd_una, tp->high_seq)) {
2857 		switch (icsk->icsk_ca_state) {
2858 		case TCP_CA_CWR:
2859 			/* CWR is to be held something *above* high_seq
2860 			 * is ACKed for CWR bit to reach receiver. */
2861 			if (tp->snd_una != tp->high_seq) {
2862 				tcp_end_cwnd_reduction(sk);
2863 				tcp_set_ca_state(sk, TCP_CA_Open);
2864 			}
2865 			break;
2866 
2867 		case TCP_CA_Recovery:
2868 			if (tcp_is_reno(tp))
2869 				tcp_reset_reno_sack(tp);
2870 			if (tcp_try_undo_recovery(sk))
2871 				return;
2872 			tcp_end_cwnd_reduction(sk);
2873 			break;
2874 		}
2875 	}
2876 
2877 	/* Use RACK to detect loss */
2878 	if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2879 	    tcp_rack_mark_lost(sk)) {
2880 		flag |= FLAG_LOST_RETRANS;
2881 		*ack_flag |= FLAG_LOST_RETRANS;
2882 	}
2883 
2884 	/* E. Process state. */
2885 	switch (icsk->icsk_ca_state) {
2886 	case TCP_CA_Recovery:
2887 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2888 			if (tcp_is_reno(tp) && is_dupack)
2889 				tcp_add_reno_sack(sk);
2890 		} else {
2891 			if (tcp_try_undo_partial(sk, acked))
2892 				return;
2893 			/* Partial ACK arrived. Force fast retransmit. */
2894 			do_lost = tcp_is_reno(tp) ||
2895 				  tcp_fackets_out(tp) > tp->reordering;
2896 		}
2897 		if (tcp_try_undo_dsack(sk)) {
2898 			tcp_try_keep_open(sk);
2899 			return;
2900 		}
2901 		break;
2902 	case TCP_CA_Loss:
2903 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2904 		if (icsk->icsk_ca_state != TCP_CA_Open &&
2905 		    !(flag & FLAG_LOST_RETRANS))
2906 			return;
2907 		/* Change state if cwnd is undone or retransmits are lost */
2908 	default:
2909 		if (tcp_is_reno(tp)) {
2910 			if (flag & FLAG_SND_UNA_ADVANCED)
2911 				tcp_reset_reno_sack(tp);
2912 			if (is_dupack)
2913 				tcp_add_reno_sack(sk);
2914 		}
2915 
2916 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2917 			tcp_try_undo_dsack(sk);
2918 
2919 		if (!tcp_time_to_recover(sk, flag)) {
2920 			tcp_try_to_open(sk, flag);
2921 			return;
2922 		}
2923 
2924 		/* MTU probe failure: don't reduce cwnd */
2925 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2926 		    icsk->icsk_mtup.probe_size &&
2927 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2928 			tcp_mtup_probe_failed(sk);
2929 			/* Restores the reduction we did in tcp_mtup_probe() */
2930 			tp->snd_cwnd++;
2931 			tcp_simple_retransmit(sk);
2932 			return;
2933 		}
2934 
2935 		/* Otherwise enter Recovery state */
2936 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2937 		fast_rexmit = 1;
2938 	}
2939 
2940 	if (do_lost)
2941 		tcp_update_scoreboard(sk, fast_rexmit);
2942 	*rexmit = REXMIT_LOST;
2943 }
2944 
tcp_update_rtt_min(struct sock * sk,u32 rtt_us)2945 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2946 {
2947 	struct tcp_sock *tp = tcp_sk(sk);
2948 	u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2949 
2950 	minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp,
2951 			   rtt_us ? : jiffies_to_usecs(1));
2952 }
2953 
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us)2954 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2955 				      long seq_rtt_us, long sack_rtt_us,
2956 				      long ca_rtt_us)
2957 {
2958 	const struct tcp_sock *tp = tcp_sk(sk);
2959 
2960 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2961 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2962 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2963 	 * is acked (RFC6298).
2964 	 */
2965 	if (seq_rtt_us < 0)
2966 		seq_rtt_us = sack_rtt_us;
2967 
2968 	/* RTTM Rule: A TSecr value received in a segment is used to
2969 	 * update the averaged RTT measurement only if the segment
2970 	 * acknowledges some new data, i.e., only if it advances the
2971 	 * left edge of the send window.
2972 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2973 	 */
2974 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2975 	    flag & FLAG_ACKED)
2976 		seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2977 							  tp->rx_opt.rcv_tsecr);
2978 	if (seq_rtt_us < 0)
2979 		return false;
2980 
2981 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2982 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2983 	 * values will be skipped with the seq_rtt_us < 0 check above.
2984 	 */
2985 	tcp_update_rtt_min(sk, ca_rtt_us);
2986 	tcp_rtt_estimator(sk, seq_rtt_us);
2987 	tcp_set_rto(sk);
2988 
2989 	/* RFC6298: only reset backoff on valid RTT measurement. */
2990 	inet_csk(sk)->icsk_backoff = 0;
2991 	return true;
2992 }
2993 
2994 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)2995 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2996 {
2997 	long rtt_us = -1L;
2998 
2999 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
3000 		struct skb_mstamp now;
3001 
3002 		skb_mstamp_get(&now);
3003 		rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
3004 	}
3005 
3006 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
3007 }
3008 
3009 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3010 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3011 {
3012 	const struct inet_connection_sock *icsk = inet_csk(sk);
3013 
3014 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3015 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3016 }
3017 
3018 /* Restart timer after forward progress on connection.
3019  * RFC2988 recommends to restart timer to now+rto.
3020  */
tcp_rearm_rto(struct sock * sk)3021 void tcp_rearm_rto(struct sock *sk)
3022 {
3023 	const struct inet_connection_sock *icsk = inet_csk(sk);
3024 	struct tcp_sock *tp = tcp_sk(sk);
3025 
3026 	/* If the retrans timer is currently being used by Fast Open
3027 	 * for SYN-ACK retrans purpose, stay put.
3028 	 */
3029 	if (tp->fastopen_rsk)
3030 		return;
3031 
3032 	if (!tp->packets_out) {
3033 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3034 	} else {
3035 		u32 rto = inet_csk(sk)->icsk_rto;
3036 		/* Offset the time elapsed after installing regular RTO */
3037 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3038 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3039 			struct sk_buff *skb = tcp_write_queue_head(sk);
3040 			const u32 rto_time_stamp =
3041 				tcp_skb_timestamp(skb) + rto;
3042 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3043 			/* delta may not be positive if the socket is locked
3044 			 * when the retrans timer fires and is rescheduled.
3045 			 */
3046 			rto = max(delta, 1);
3047 		}
3048 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3049 					  TCP_RTO_MAX);
3050 	}
3051 }
3052 
3053 /* This function is called when the delayed ER timer fires. TCP enters
3054  * fast recovery and performs fast-retransmit.
3055  */
tcp_resume_early_retransmit(struct sock * sk)3056 void tcp_resume_early_retransmit(struct sock *sk)
3057 {
3058 	struct tcp_sock *tp = tcp_sk(sk);
3059 
3060 	tcp_rearm_rto(sk);
3061 
3062 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3063 	if (!tp->do_early_retrans)
3064 		return;
3065 
3066 	tcp_enter_recovery(sk, false);
3067 	tcp_update_scoreboard(sk, 1);
3068 	tcp_xmit_retransmit_queue(sk);
3069 }
3070 
3071 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3072 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3073 {
3074 	struct tcp_sock *tp = tcp_sk(sk);
3075 	u32 packets_acked;
3076 
3077 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3078 
3079 	packets_acked = tcp_skb_pcount(skb);
3080 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3081 		return 0;
3082 	packets_acked -= tcp_skb_pcount(skb);
3083 
3084 	if (packets_acked) {
3085 		BUG_ON(tcp_skb_pcount(skb) == 0);
3086 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3087 	}
3088 
3089 	return packets_acked;
3090 }
3091 
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,u32 prior_snd_una)3092 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3093 			   u32 prior_snd_una)
3094 {
3095 	const struct skb_shared_info *shinfo;
3096 
3097 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3098 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3099 		return;
3100 
3101 	shinfo = skb_shinfo(skb);
3102 	if (!before(shinfo->tskey, prior_snd_una) &&
3103 	    before(shinfo->tskey, tcp_sk(sk)->snd_una))
3104 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3105 }
3106 
3107 /* Remove acknowledged frames from the retransmission queue. If our packet
3108  * is before the ack sequence we can discard it as it's confirmed to have
3109  * arrived at the other end.
3110  */
tcp_clean_rtx_queue(struct sock * sk,int prior_fackets,u32 prior_snd_una,int * acked,struct tcp_sacktag_state * sack,struct skb_mstamp * now)3111 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3112 			       u32 prior_snd_una, int *acked,
3113 			       struct tcp_sacktag_state *sack,
3114 			       struct skb_mstamp *now)
3115 {
3116 	const struct inet_connection_sock *icsk = inet_csk(sk);
3117 	struct skb_mstamp first_ackt, last_ackt;
3118 	struct tcp_sock *tp = tcp_sk(sk);
3119 	u32 prior_sacked = tp->sacked_out;
3120 	u32 reord = tp->packets_out;
3121 	bool fully_acked = true;
3122 	long sack_rtt_us = -1L;
3123 	long seq_rtt_us = -1L;
3124 	long ca_rtt_us = -1L;
3125 	struct sk_buff *skb;
3126 	u32 pkts_acked = 0;
3127 	u32 last_in_flight = 0;
3128 	bool rtt_update;
3129 	int flag = 0;
3130 
3131 	first_ackt.v64 = 0;
3132 
3133 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3134 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3135 		u8 sacked = scb->sacked;
3136 		u32 acked_pcount;
3137 
3138 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3139 
3140 		/* Determine how many packets and what bytes were acked, tso and else */
3141 		if (after(scb->end_seq, tp->snd_una)) {
3142 			if (tcp_skb_pcount(skb) == 1 ||
3143 			    !after(tp->snd_una, scb->seq))
3144 				break;
3145 
3146 			acked_pcount = tcp_tso_acked(sk, skb);
3147 			if (!acked_pcount)
3148 				break;
3149 			fully_acked = false;
3150 		} else {
3151 			/* Speedup tcp_unlink_write_queue() and next loop */
3152 			prefetchw(skb->next);
3153 			acked_pcount = tcp_skb_pcount(skb);
3154 		}
3155 
3156 		if (unlikely(sacked & TCPCB_RETRANS)) {
3157 			if (sacked & TCPCB_SACKED_RETRANS)
3158 				tp->retrans_out -= acked_pcount;
3159 			flag |= FLAG_RETRANS_DATA_ACKED;
3160 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3161 			last_ackt = skb->skb_mstamp;
3162 			WARN_ON_ONCE(last_ackt.v64 == 0);
3163 			if (!first_ackt.v64)
3164 				first_ackt = last_ackt;
3165 
3166 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3167 			reord = min(pkts_acked, reord);
3168 			if (!after(scb->end_seq, tp->high_seq))
3169 				flag |= FLAG_ORIG_SACK_ACKED;
3170 		}
3171 
3172 		if (sacked & TCPCB_SACKED_ACKED) {
3173 			tp->sacked_out -= acked_pcount;
3174 		} else if (tcp_is_sack(tp)) {
3175 			tp->delivered += acked_pcount;
3176 			if (!tcp_skb_spurious_retrans(tp, skb))
3177 				tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3178 		}
3179 		if (sacked & TCPCB_LOST)
3180 			tp->lost_out -= acked_pcount;
3181 
3182 		tp->packets_out -= acked_pcount;
3183 		pkts_acked += acked_pcount;
3184 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3185 
3186 		/* Initial outgoing SYN's get put onto the write_queue
3187 		 * just like anything else we transmit.  It is not
3188 		 * true data, and if we misinform our callers that
3189 		 * this ACK acks real data, we will erroneously exit
3190 		 * connection startup slow start one packet too
3191 		 * quickly.  This is severely frowned upon behavior.
3192 		 */
3193 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3194 			flag |= FLAG_DATA_ACKED;
3195 		} else {
3196 			flag |= FLAG_SYN_ACKED;
3197 			tp->retrans_stamp = 0;
3198 		}
3199 
3200 		if (!fully_acked)
3201 			break;
3202 
3203 		tcp_unlink_write_queue(skb, sk);
3204 		sk_wmem_free_skb(sk, skb);
3205 		if (unlikely(skb == tp->retransmit_skb_hint))
3206 			tp->retransmit_skb_hint = NULL;
3207 		if (unlikely(skb == tp->lost_skb_hint))
3208 			tp->lost_skb_hint = NULL;
3209 	}
3210 
3211 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3212 		tp->snd_up = tp->snd_una;
3213 
3214 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3215 		flag |= FLAG_SACK_RENEGING;
3216 
3217 	if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3218 		seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt);
3219 		ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt);
3220 	}
3221 	if (sack->first_sackt.v64) {
3222 		sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt);
3223 		ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt);
3224 	}
3225 	sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */
3226 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3227 					ca_rtt_us);
3228 
3229 	if (flag & FLAG_ACKED) {
3230 		tcp_rearm_rto(sk);
3231 		if (unlikely(icsk->icsk_mtup.probe_size &&
3232 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3233 			tcp_mtup_probe_success(sk);
3234 		}
3235 
3236 		if (tcp_is_reno(tp)) {
3237 			tcp_remove_reno_sacks(sk, pkts_acked);
3238 		} else {
3239 			int delta;
3240 
3241 			/* Non-retransmitted hole got filled? That's reordering */
3242 			if (reord < prior_fackets && reord <= tp->fackets_out)
3243 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3244 
3245 			delta = tcp_is_fack(tp) ? pkts_acked :
3246 						  prior_sacked - tp->sacked_out;
3247 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3248 		}
3249 
3250 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3251 
3252 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3253 		   sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) {
3254 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3255 		 * after when the head was last (re)transmitted. Otherwise the
3256 		 * timeout may continue to extend in loss recovery.
3257 		 */
3258 		tcp_rearm_rto(sk);
3259 	}
3260 
3261 	if (icsk->icsk_ca_ops->pkts_acked) {
3262 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3263 					     .rtt_us = ca_rtt_us,
3264 					     .in_flight = last_in_flight };
3265 
3266 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3267 	}
3268 
3269 #if FASTRETRANS_DEBUG > 0
3270 	WARN_ON((int)tp->sacked_out < 0);
3271 	WARN_ON((int)tp->lost_out < 0);
3272 	WARN_ON((int)tp->retrans_out < 0);
3273 	if (!tp->packets_out && tcp_is_sack(tp)) {
3274 		icsk = inet_csk(sk);
3275 		if (tp->lost_out) {
3276 			pr_debug("Leak l=%u %d\n",
3277 				 tp->lost_out, icsk->icsk_ca_state);
3278 			tp->lost_out = 0;
3279 		}
3280 		if (tp->sacked_out) {
3281 			pr_debug("Leak s=%u %d\n",
3282 				 tp->sacked_out, icsk->icsk_ca_state);
3283 			tp->sacked_out = 0;
3284 		}
3285 		if (tp->retrans_out) {
3286 			pr_debug("Leak r=%u %d\n",
3287 				 tp->retrans_out, icsk->icsk_ca_state);
3288 			tp->retrans_out = 0;
3289 		}
3290 	}
3291 #endif
3292 	*acked = pkts_acked;
3293 	return flag;
3294 }
3295 
tcp_ack_probe(struct sock * sk)3296 static void tcp_ack_probe(struct sock *sk)
3297 {
3298 	const struct tcp_sock *tp = tcp_sk(sk);
3299 	struct inet_connection_sock *icsk = inet_csk(sk);
3300 
3301 	/* Was it a usable window open? */
3302 
3303 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3304 		icsk->icsk_backoff = 0;
3305 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3306 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3307 		 * This function is not for random using!
3308 		 */
3309 	} else {
3310 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3311 
3312 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3313 					  when, TCP_RTO_MAX);
3314 	}
3315 }
3316 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3317 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3318 {
3319 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3320 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3321 }
3322 
3323 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3324 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3325 {
3326 	/* If reordering is high then always grow cwnd whenever data is
3327 	 * delivered regardless of its ordering. Otherwise stay conservative
3328 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3329 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3330 	 * cwnd in tcp_fastretrans_alert() based on more states.
3331 	 */
3332 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3333 		return flag & FLAG_FORWARD_PROGRESS;
3334 
3335 	return flag & FLAG_DATA_ACKED;
3336 }
3337 
3338 /* The "ultimate" congestion control function that aims to replace the rigid
3339  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3340  * It's called toward the end of processing an ACK with precise rate
3341  * information. All transmission or retransmission are delayed afterwards.
3342  */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3343 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3344 			     int flag, const struct rate_sample *rs)
3345 {
3346 	const struct inet_connection_sock *icsk = inet_csk(sk);
3347 
3348 	if (icsk->icsk_ca_ops->cong_control) {
3349 		icsk->icsk_ca_ops->cong_control(sk, rs);
3350 		return;
3351 	}
3352 
3353 	if (tcp_in_cwnd_reduction(sk)) {
3354 		/* Reduce cwnd if state mandates */
3355 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3356 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3357 		/* Advance cwnd if state allows */
3358 		tcp_cong_avoid(sk, ack, acked_sacked);
3359 	}
3360 	tcp_update_pacing_rate(sk);
3361 }
3362 
3363 /* Check that window update is acceptable.
3364  * The function assumes that snd_una<=ack<=snd_next.
3365  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3366 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3367 					const u32 ack, const u32 ack_seq,
3368 					const u32 nwin)
3369 {
3370 	return	after(ack, tp->snd_una) ||
3371 		after(ack_seq, tp->snd_wl1) ||
3372 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3373 }
3374 
3375 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3376 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3377 {
3378 	u32 delta = ack - tp->snd_una;
3379 
3380 	sock_owned_by_me((struct sock *)tp);
3381 	u64_stats_update_begin_raw(&tp->syncp);
3382 	tp->bytes_acked += delta;
3383 	u64_stats_update_end_raw(&tp->syncp);
3384 	tp->snd_una = ack;
3385 }
3386 
3387 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3388 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3389 {
3390 	u32 delta = seq - tp->rcv_nxt;
3391 
3392 	sock_owned_by_me((struct sock *)tp);
3393 	u64_stats_update_begin_raw(&tp->syncp);
3394 	tp->bytes_received += delta;
3395 	u64_stats_update_end_raw(&tp->syncp);
3396 	tp->rcv_nxt = seq;
3397 }
3398 
3399 /* Update our send window.
3400  *
3401  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3402  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3403  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3404 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3405 				 u32 ack_seq)
3406 {
3407 	struct tcp_sock *tp = tcp_sk(sk);
3408 	int flag = 0;
3409 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3410 
3411 	if (likely(!tcp_hdr(skb)->syn))
3412 		nwin <<= tp->rx_opt.snd_wscale;
3413 
3414 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3415 		flag |= FLAG_WIN_UPDATE;
3416 		tcp_update_wl(tp, ack_seq);
3417 
3418 		if (tp->snd_wnd != nwin) {
3419 			tp->snd_wnd = nwin;
3420 
3421 			/* Note, it is the only place, where
3422 			 * fast path is recovered for sending TCP.
3423 			 */
3424 			tp->pred_flags = 0;
3425 			tcp_fast_path_check(sk);
3426 
3427 			if (tcp_send_head(sk))
3428 				tcp_slow_start_after_idle_check(sk);
3429 
3430 			if (nwin > tp->max_window) {
3431 				tp->max_window = nwin;
3432 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3433 			}
3434 		}
3435 	}
3436 
3437 	tcp_snd_una_update(tp, ack);
3438 
3439 	return flag;
3440 }
3441 
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3442 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3443 				   u32 *last_oow_ack_time)
3444 {
3445 	if (*last_oow_ack_time) {
3446 		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3447 
3448 		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3449 			NET_INC_STATS(net, mib_idx);
3450 			return true;	/* rate-limited: don't send yet! */
3451 		}
3452 	}
3453 
3454 	*last_oow_ack_time = tcp_time_stamp;
3455 
3456 	return false;	/* not rate-limited: go ahead, send dupack now! */
3457 }
3458 
3459 /* Return true if we're currently rate-limiting out-of-window ACKs and
3460  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3461  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3462  * attacks that send repeated SYNs or ACKs for the same connection. To
3463  * do this, we do not send a duplicate SYNACK or ACK if the remote
3464  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3465  */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3466 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3467 			  int mib_idx, u32 *last_oow_ack_time)
3468 {
3469 	/* Data packets without SYNs are not likely part of an ACK loop. */
3470 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3471 	    !tcp_hdr(skb)->syn)
3472 		return false;
3473 
3474 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3475 }
3476 
3477 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3478 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3479 {
3480 	/* unprotected vars, we dont care of overwrites */
3481 	static u32 challenge_timestamp;
3482 	static unsigned int challenge_count;
3483 	struct tcp_sock *tp = tcp_sk(sk);
3484 	u32 count, now;
3485 
3486 	/* First check our per-socket dupack rate limit. */
3487 	if (__tcp_oow_rate_limited(sock_net(sk),
3488 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3489 				   &tp->last_oow_ack_time))
3490 		return;
3491 
3492 	/* Then check host-wide RFC 5961 rate limit. */
3493 	now = jiffies / HZ;
3494 	if (now != challenge_timestamp) {
3495 		u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3496 
3497 		challenge_timestamp = now;
3498 		WRITE_ONCE(challenge_count, half +
3499 			   prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3500 	}
3501 	count = READ_ONCE(challenge_count);
3502 	if (count > 0) {
3503 		WRITE_ONCE(challenge_count, count - 1);
3504 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3505 		tcp_send_ack(sk);
3506 	}
3507 }
3508 
tcp_store_ts_recent(struct tcp_sock * tp)3509 static void tcp_store_ts_recent(struct tcp_sock *tp)
3510 {
3511 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3512 	tp->rx_opt.ts_recent_stamp = get_seconds();
3513 }
3514 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3515 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3516 {
3517 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3518 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3519 		 * extra check below makes sure this can only happen
3520 		 * for pure ACK frames.  -DaveM
3521 		 *
3522 		 * Not only, also it occurs for expired timestamps.
3523 		 */
3524 
3525 		if (tcp_paws_check(&tp->rx_opt, 0))
3526 			tcp_store_ts_recent(tp);
3527 	}
3528 }
3529 
3530 /* This routine deals with acks during a TLP episode.
3531  * We mark the end of a TLP episode on receiving TLP dupack or when
3532  * ack is after tlp_high_seq.
3533  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3534  */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3535 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3536 {
3537 	struct tcp_sock *tp = tcp_sk(sk);
3538 
3539 	if (before(ack, tp->tlp_high_seq))
3540 		return;
3541 
3542 	if (flag & FLAG_DSACKING_ACK) {
3543 		/* This DSACK means original and TLP probe arrived; no loss */
3544 		tp->tlp_high_seq = 0;
3545 	} else if (after(ack, tp->tlp_high_seq)) {
3546 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3547 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3548 		 */
3549 		tcp_init_cwnd_reduction(sk);
3550 		tcp_set_ca_state(sk, TCP_CA_CWR);
3551 		tcp_end_cwnd_reduction(sk);
3552 		tcp_try_keep_open(sk);
3553 		NET_INC_STATS(sock_net(sk),
3554 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3555 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3556 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3557 		/* Pure dupack: original and TLP probe arrived; no loss */
3558 		tp->tlp_high_seq = 0;
3559 	}
3560 }
3561 
tcp_in_ack_event(struct sock * sk,u32 flags)3562 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3563 {
3564 	const struct inet_connection_sock *icsk = inet_csk(sk);
3565 
3566 	if (icsk->icsk_ca_ops->in_ack_event)
3567 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3568 }
3569 
3570 /* Congestion control has updated the cwnd already. So if we're in
3571  * loss recovery then now we do any new sends (for FRTO) or
3572  * retransmits (for CA_Loss or CA_recovery) that make sense.
3573  */
tcp_xmit_recovery(struct sock * sk,int rexmit)3574 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3575 {
3576 	struct tcp_sock *tp = tcp_sk(sk);
3577 
3578 	if (rexmit == REXMIT_NONE)
3579 		return;
3580 
3581 	if (unlikely(rexmit == 2)) {
3582 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3583 					  TCP_NAGLE_OFF);
3584 		if (after(tp->snd_nxt, tp->high_seq))
3585 			return;
3586 		tp->frto = 0;
3587 	}
3588 	tcp_xmit_retransmit_queue(sk);
3589 }
3590 
3591 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3592 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3593 {
3594 	struct inet_connection_sock *icsk = inet_csk(sk);
3595 	struct tcp_sock *tp = tcp_sk(sk);
3596 	struct tcp_sacktag_state sack_state;
3597 	struct rate_sample rs = { .prior_delivered = 0 };
3598 	u32 prior_snd_una = tp->snd_una;
3599 	bool is_sack_reneg = tp->is_sack_reneg;
3600 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3601 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3602 	bool is_dupack = false;
3603 	u32 prior_fackets;
3604 	int prior_packets = tp->packets_out;
3605 	u32 delivered = tp->delivered;
3606 	u32 lost = tp->lost;
3607 	int acked = 0; /* Number of packets newly acked */
3608 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3609 	struct skb_mstamp now;
3610 
3611 	sack_state.first_sackt.v64 = 0;
3612 	sack_state.rate = &rs;
3613 
3614 	/* We very likely will need to access write queue head. */
3615 	prefetchw(sk->sk_write_queue.next);
3616 
3617 	/* If the ack is older than previous acks
3618 	 * then we can probably ignore it.
3619 	 */
3620 	if (before(ack, prior_snd_una)) {
3621 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3622 		if (before(ack, prior_snd_una - tp->max_window)) {
3623 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3624 				tcp_send_challenge_ack(sk, skb);
3625 			return -1;
3626 		}
3627 		goto old_ack;
3628 	}
3629 
3630 	/* If the ack includes data we haven't sent yet, discard
3631 	 * this segment (RFC793 Section 3.9).
3632 	 */
3633 	if (after(ack, tp->snd_nxt))
3634 		goto invalid_ack;
3635 
3636 	skb_mstamp_get(&now);
3637 
3638 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3639 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3640 		tcp_rearm_rto(sk);
3641 
3642 	if (after(ack, prior_snd_una)) {
3643 		flag |= FLAG_SND_UNA_ADVANCED;
3644 		icsk->icsk_retransmits = 0;
3645 	}
3646 
3647 	prior_fackets = tp->fackets_out;
3648 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3649 
3650 	/* ts_recent update must be made after we are sure that the packet
3651 	 * is in window.
3652 	 */
3653 	if (flag & FLAG_UPDATE_TS_RECENT)
3654 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3655 
3656 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3657 		/* Window is constant, pure forward advance.
3658 		 * No more checks are required.
3659 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3660 		 */
3661 		tcp_update_wl(tp, ack_seq);
3662 		tcp_snd_una_update(tp, ack);
3663 		flag |= FLAG_WIN_UPDATE;
3664 
3665 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3666 
3667 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3668 	} else {
3669 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3670 
3671 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3672 			flag |= FLAG_DATA;
3673 		else
3674 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3675 
3676 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3677 
3678 		if (TCP_SKB_CB(skb)->sacked)
3679 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3680 							&sack_state);
3681 
3682 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3683 			flag |= FLAG_ECE;
3684 			ack_ev_flags |= CA_ACK_ECE;
3685 		}
3686 
3687 		if (flag & FLAG_WIN_UPDATE)
3688 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3689 
3690 		tcp_in_ack_event(sk, ack_ev_flags);
3691 	}
3692 
3693 	/* We passed data and got it acked, remove any soft error
3694 	 * log. Something worked...
3695 	 */
3696 	sk->sk_err_soft = 0;
3697 	icsk->icsk_probes_out = 0;
3698 	tp->rcv_tstamp = tcp_time_stamp;
3699 	if (!prior_packets)
3700 		goto no_queue;
3701 
3702 	/* See if we can take anything off of the retransmit queue. */
3703 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3704 				    &sack_state, &now);
3705 
3706 	if (tcp_ack_is_dubious(sk, flag)) {
3707 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3708 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3709 	}
3710 	if (tp->tlp_high_seq)
3711 		tcp_process_tlp_ack(sk, ack, flag);
3712 
3713 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3714 		struct dst_entry *dst = __sk_dst_get(sk);
3715 		if (dst)
3716 			dst_confirm(dst);
3717 	}
3718 
3719 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3720 		tcp_schedule_loss_probe(sk);
3721 	delivered = tp->delivered - delivered;	/* freshly ACKed or SACKed */
3722 	lost = tp->lost - lost;			/* freshly marked lost */
3723 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, &now, &rs);
3724 	tcp_cong_control(sk, ack, delivered, flag, &rs);
3725 	tcp_xmit_recovery(sk, rexmit);
3726 	return 1;
3727 
3728 no_queue:
3729 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3730 	if (flag & FLAG_DSACKING_ACK)
3731 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3732 	/* If this ack opens up a zero window, clear backoff.  It was
3733 	 * being used to time the probes, and is probably far higher than
3734 	 * it needs to be for normal retransmission.
3735 	 */
3736 	if (tcp_send_head(sk))
3737 		tcp_ack_probe(sk);
3738 
3739 	if (tp->tlp_high_seq)
3740 		tcp_process_tlp_ack(sk, ack, flag);
3741 	return 1;
3742 
3743 invalid_ack:
3744 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3745 	return -1;
3746 
3747 old_ack:
3748 	/* If data was SACKed, tag it and see if we should send more data.
3749 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3750 	 */
3751 	if (TCP_SKB_CB(skb)->sacked) {
3752 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3753 						&sack_state);
3754 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3755 		tcp_xmit_recovery(sk, rexmit);
3756 	}
3757 
3758 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3759 	return 0;
3760 }
3761 
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3762 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3763 				      bool syn, struct tcp_fastopen_cookie *foc,
3764 				      bool exp_opt)
3765 {
3766 	/* Valid only in SYN or SYN-ACK with an even length.  */
3767 	if (!foc || !syn || len < 0 || (len & 1))
3768 		return;
3769 
3770 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3771 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3772 		memcpy(foc->val, cookie, len);
3773 	else if (len != 0)
3774 		len = -1;
3775 	foc->len = len;
3776 	foc->exp = exp_opt;
3777 }
3778 
3779 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3780  * But, this can also be called on packets in the established flow when
3781  * the fast version below fails.
3782  */
tcp_parse_options(const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)3783 void tcp_parse_options(const struct sk_buff *skb,
3784 		       struct tcp_options_received *opt_rx, int estab,
3785 		       struct tcp_fastopen_cookie *foc)
3786 {
3787 	const unsigned char *ptr;
3788 	const struct tcphdr *th = tcp_hdr(skb);
3789 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3790 
3791 	ptr = (const unsigned char *)(th + 1);
3792 	opt_rx->saw_tstamp = 0;
3793 
3794 	while (length > 0) {
3795 		int opcode = *ptr++;
3796 		int opsize;
3797 
3798 		switch (opcode) {
3799 		case TCPOPT_EOL:
3800 			return;
3801 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3802 			length--;
3803 			continue;
3804 		default:
3805 			opsize = *ptr++;
3806 			if (opsize < 2) /* "silly options" */
3807 				return;
3808 			if (opsize > length)
3809 				return;	/* don't parse partial options */
3810 			switch (opcode) {
3811 			case TCPOPT_MSS:
3812 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3813 					u16 in_mss = get_unaligned_be16(ptr);
3814 					if (in_mss) {
3815 						if (opt_rx->user_mss &&
3816 						    opt_rx->user_mss < in_mss)
3817 							in_mss = opt_rx->user_mss;
3818 						opt_rx->mss_clamp = in_mss;
3819 					}
3820 				}
3821 				break;
3822 			case TCPOPT_WINDOW:
3823 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3824 				    !estab && sysctl_tcp_window_scaling) {
3825 					__u8 snd_wscale = *(__u8 *)ptr;
3826 					opt_rx->wscale_ok = 1;
3827 					if (snd_wscale > 14) {
3828 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3829 								     __func__,
3830 								     snd_wscale);
3831 						snd_wscale = 14;
3832 					}
3833 					opt_rx->snd_wscale = snd_wscale;
3834 				}
3835 				break;
3836 			case TCPOPT_TIMESTAMP:
3837 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3838 				    ((estab && opt_rx->tstamp_ok) ||
3839 				     (!estab && sysctl_tcp_timestamps))) {
3840 					opt_rx->saw_tstamp = 1;
3841 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3842 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3843 				}
3844 				break;
3845 			case TCPOPT_SACK_PERM:
3846 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3847 				    !estab && sysctl_tcp_sack) {
3848 					opt_rx->sack_ok = TCP_SACK_SEEN;
3849 					tcp_sack_reset(opt_rx);
3850 				}
3851 				break;
3852 
3853 			case TCPOPT_SACK:
3854 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3855 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3856 				   opt_rx->sack_ok) {
3857 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3858 				}
3859 				break;
3860 #ifdef CONFIG_TCP_MD5SIG
3861 			case TCPOPT_MD5SIG:
3862 				/*
3863 				 * The MD5 Hash has already been
3864 				 * checked (see tcp_v{4,6}_do_rcv()).
3865 				 */
3866 				break;
3867 #endif
3868 			case TCPOPT_FASTOPEN:
3869 				tcp_parse_fastopen_option(
3870 					opsize - TCPOLEN_FASTOPEN_BASE,
3871 					ptr, th->syn, foc, false);
3872 				break;
3873 
3874 			case TCPOPT_EXP:
3875 				/* Fast Open option shares code 254 using a
3876 				 * 16 bits magic number.
3877 				 */
3878 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3879 				    get_unaligned_be16(ptr) ==
3880 				    TCPOPT_FASTOPEN_MAGIC)
3881 					tcp_parse_fastopen_option(opsize -
3882 						TCPOLEN_EXP_FASTOPEN_BASE,
3883 						ptr + 2, th->syn, foc, true);
3884 				break;
3885 
3886 			}
3887 			ptr += opsize-2;
3888 			length -= opsize;
3889 		}
3890 	}
3891 }
3892 EXPORT_SYMBOL(tcp_parse_options);
3893 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)3894 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3895 {
3896 	const __be32 *ptr = (const __be32 *)(th + 1);
3897 
3898 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3899 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3900 		tp->rx_opt.saw_tstamp = 1;
3901 		++ptr;
3902 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3903 		++ptr;
3904 		if (*ptr)
3905 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3906 		else
3907 			tp->rx_opt.rcv_tsecr = 0;
3908 		return true;
3909 	}
3910 	return false;
3911 }
3912 
3913 /* Fast parse options. This hopes to only see timestamps.
3914  * If it is wrong it falls back on tcp_parse_options().
3915  */
tcp_fast_parse_options(const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)3916 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3917 				   const struct tcphdr *th, struct tcp_sock *tp)
3918 {
3919 	/* In the spirit of fast parsing, compare doff directly to constant
3920 	 * values.  Because equality is used, short doff can be ignored here.
3921 	 */
3922 	if (th->doff == (sizeof(*th) / 4)) {
3923 		tp->rx_opt.saw_tstamp = 0;
3924 		return false;
3925 	} else if (tp->rx_opt.tstamp_ok &&
3926 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3927 		if (tcp_parse_aligned_timestamp(tp, th))
3928 			return true;
3929 	}
3930 
3931 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3932 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3933 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3934 
3935 	return true;
3936 }
3937 
3938 #ifdef CONFIG_TCP_MD5SIG
3939 /*
3940  * Parse MD5 Signature option
3941  */
tcp_parse_md5sig_option(const struct tcphdr * th)3942 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3943 {
3944 	int length = (th->doff << 2) - sizeof(*th);
3945 	const u8 *ptr = (const u8 *)(th + 1);
3946 
3947 	/* If not enough data remaining, we can short cut */
3948 	while (length >= TCPOLEN_MD5SIG) {
3949 		int opcode = *ptr++;
3950 		int opsize;
3951 
3952 		switch (opcode) {
3953 		case TCPOPT_EOL:
3954 			return NULL;
3955 		case TCPOPT_NOP:
3956 			length--;
3957 			continue;
3958 		default:
3959 			opsize = *ptr++;
3960 			if (opsize < 2 || opsize > length)
3961 				return NULL;
3962 			if (opcode == TCPOPT_MD5SIG)
3963 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3964 		}
3965 		ptr += opsize - 2;
3966 		length -= opsize;
3967 	}
3968 	return NULL;
3969 }
3970 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3971 #endif
3972 
3973 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3974  *
3975  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3976  * it can pass through stack. So, the following predicate verifies that
3977  * this segment is not used for anything but congestion avoidance or
3978  * fast retransmit. Moreover, we even are able to eliminate most of such
3979  * second order effects, if we apply some small "replay" window (~RTO)
3980  * to timestamp space.
3981  *
3982  * All these measures still do not guarantee that we reject wrapped ACKs
3983  * on networks with high bandwidth, when sequence space is recycled fastly,
3984  * but it guarantees that such events will be very rare and do not affect
3985  * connection seriously. This doesn't look nice, but alas, PAWS is really
3986  * buggy extension.
3987  *
3988  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3989  * states that events when retransmit arrives after original data are rare.
3990  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3991  * the biggest problem on large power networks even with minor reordering.
3992  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3993  * up to bandwidth of 18Gigabit/sec. 8) ]
3994  */
3995 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)3996 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3997 {
3998 	const struct tcp_sock *tp = tcp_sk(sk);
3999 	const struct tcphdr *th = tcp_hdr(skb);
4000 	u32 seq = TCP_SKB_CB(skb)->seq;
4001 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4002 
4003 	return (/* 1. Pure ACK with correct sequence number. */
4004 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4005 
4006 		/* 2. ... and duplicate ACK. */
4007 		ack == tp->snd_una &&
4008 
4009 		/* 3. ... and does not update window. */
4010 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4011 
4012 		/* 4. ... and sits in replay window. */
4013 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4014 }
4015 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4016 static inline bool tcp_paws_discard(const struct sock *sk,
4017 				   const struct sk_buff *skb)
4018 {
4019 	const struct tcp_sock *tp = tcp_sk(sk);
4020 
4021 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4022 	       !tcp_disordered_ack(sk, skb);
4023 }
4024 
4025 /* Check segment sequence number for validity.
4026  *
4027  * Segment controls are considered valid, if the segment
4028  * fits to the window after truncation to the window. Acceptability
4029  * of data (and SYN, FIN, of course) is checked separately.
4030  * See tcp_data_queue(), for example.
4031  *
4032  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4033  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4034  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4035  * (borrowed from freebsd)
4036  */
4037 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4038 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4039 {
4040 	return	!before(end_seq, tp->rcv_wup) &&
4041 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4042 }
4043 
4044 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4045 void tcp_reset(struct sock *sk)
4046 {
4047 	/* We want the right error as BSD sees it (and indeed as we do). */
4048 	switch (sk->sk_state) {
4049 	case TCP_SYN_SENT:
4050 		sk->sk_err = ECONNREFUSED;
4051 		break;
4052 	case TCP_CLOSE_WAIT:
4053 		sk->sk_err = EPIPE;
4054 		break;
4055 	case TCP_CLOSE:
4056 		return;
4057 	default:
4058 		sk->sk_err = ECONNRESET;
4059 	}
4060 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4061 	smp_wmb();
4062 
4063 	if (!sock_flag(sk, SOCK_DEAD))
4064 		sk->sk_error_report(sk);
4065 
4066 	tcp_done(sk);
4067 }
4068 
4069 /*
4070  * 	Process the FIN bit. This now behaves as it is supposed to work
4071  *	and the FIN takes effect when it is validly part of sequence
4072  *	space. Not before when we get holes.
4073  *
4074  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4075  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4076  *	TIME-WAIT)
4077  *
4078  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4079  *	close and we go into CLOSING (and later onto TIME-WAIT)
4080  *
4081  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4082  */
tcp_fin(struct sock * sk)4083 void tcp_fin(struct sock *sk)
4084 {
4085 	struct tcp_sock *tp = tcp_sk(sk);
4086 
4087 	inet_csk_schedule_ack(sk);
4088 
4089 	sk->sk_shutdown |= RCV_SHUTDOWN;
4090 	sock_set_flag(sk, SOCK_DONE);
4091 
4092 	switch (sk->sk_state) {
4093 	case TCP_SYN_RECV:
4094 	case TCP_ESTABLISHED:
4095 		/* Move to CLOSE_WAIT */
4096 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4097 		inet_csk(sk)->icsk_ack.pingpong = 1;
4098 		break;
4099 
4100 	case TCP_CLOSE_WAIT:
4101 	case TCP_CLOSING:
4102 		/* Received a retransmission of the FIN, do
4103 		 * nothing.
4104 		 */
4105 		break;
4106 	case TCP_LAST_ACK:
4107 		/* RFC793: Remain in the LAST-ACK state. */
4108 		break;
4109 
4110 	case TCP_FIN_WAIT1:
4111 		/* This case occurs when a simultaneous close
4112 		 * happens, we must ack the received FIN and
4113 		 * enter the CLOSING state.
4114 		 */
4115 		tcp_send_ack(sk);
4116 		tcp_set_state(sk, TCP_CLOSING);
4117 		break;
4118 	case TCP_FIN_WAIT2:
4119 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4120 		tcp_send_ack(sk);
4121 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4122 		break;
4123 	default:
4124 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4125 		 * cases we should never reach this piece of code.
4126 		 */
4127 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4128 		       __func__, sk->sk_state);
4129 		break;
4130 	}
4131 
4132 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4133 	 * Probably, we should reset in this case. For now drop them.
4134 	 */
4135 	skb_rbtree_purge(&tp->out_of_order_queue);
4136 	if (tcp_is_sack(tp))
4137 		tcp_sack_reset(&tp->rx_opt);
4138 	sk_mem_reclaim(sk);
4139 
4140 	if (!sock_flag(sk, SOCK_DEAD)) {
4141 		sk->sk_state_change(sk);
4142 
4143 		/* Do not send POLL_HUP for half duplex close. */
4144 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4145 		    sk->sk_state == TCP_CLOSE)
4146 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4147 		else
4148 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4149 	}
4150 }
4151 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4152 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4153 				  u32 end_seq)
4154 {
4155 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4156 		if (before(seq, sp->start_seq))
4157 			sp->start_seq = seq;
4158 		if (after(end_seq, sp->end_seq))
4159 			sp->end_seq = end_seq;
4160 		return true;
4161 	}
4162 	return false;
4163 }
4164 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4165 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4166 {
4167 	struct tcp_sock *tp = tcp_sk(sk);
4168 
4169 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4170 		int mib_idx;
4171 
4172 		if (before(seq, tp->rcv_nxt))
4173 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4174 		else
4175 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4176 
4177 		NET_INC_STATS(sock_net(sk), mib_idx);
4178 
4179 		tp->rx_opt.dsack = 1;
4180 		tp->duplicate_sack[0].start_seq = seq;
4181 		tp->duplicate_sack[0].end_seq = end_seq;
4182 	}
4183 }
4184 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4185 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4186 {
4187 	struct tcp_sock *tp = tcp_sk(sk);
4188 
4189 	if (!tp->rx_opt.dsack)
4190 		tcp_dsack_set(sk, seq, end_seq);
4191 	else
4192 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4193 }
4194 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4195 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4196 {
4197 	struct tcp_sock *tp = tcp_sk(sk);
4198 
4199 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4200 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4201 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4202 		tcp_enter_quickack_mode(sk);
4203 
4204 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4205 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4206 
4207 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4208 				end_seq = tp->rcv_nxt;
4209 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4210 		}
4211 	}
4212 
4213 	tcp_send_ack(sk);
4214 }
4215 
4216 /* These routines update the SACK block as out-of-order packets arrive or
4217  * in-order packets close up the sequence space.
4218  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4219 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4220 {
4221 	int this_sack;
4222 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4223 	struct tcp_sack_block *swalk = sp + 1;
4224 
4225 	/* See if the recent change to the first SACK eats into
4226 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4227 	 */
4228 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4229 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4230 			int i;
4231 
4232 			/* Zap SWALK, by moving every further SACK up by one slot.
4233 			 * Decrease num_sacks.
4234 			 */
4235 			tp->rx_opt.num_sacks--;
4236 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4237 				sp[i] = sp[i + 1];
4238 			continue;
4239 		}
4240 		this_sack++, swalk++;
4241 	}
4242 }
4243 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4244 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4245 {
4246 	struct tcp_sock *tp = tcp_sk(sk);
4247 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4248 	int cur_sacks = tp->rx_opt.num_sacks;
4249 	int this_sack;
4250 
4251 	if (!cur_sacks)
4252 		goto new_sack;
4253 
4254 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4255 		if (tcp_sack_extend(sp, seq, end_seq)) {
4256 			/* Rotate this_sack to the first one. */
4257 			for (; this_sack > 0; this_sack--, sp--)
4258 				swap(*sp, *(sp - 1));
4259 			if (cur_sacks > 1)
4260 				tcp_sack_maybe_coalesce(tp);
4261 			return;
4262 		}
4263 	}
4264 
4265 	/* Could not find an adjacent existing SACK, build a new one,
4266 	 * put it at the front, and shift everyone else down.  We
4267 	 * always know there is at least one SACK present already here.
4268 	 *
4269 	 * If the sack array is full, forget about the last one.
4270 	 */
4271 	if (this_sack >= TCP_NUM_SACKS) {
4272 		this_sack--;
4273 		tp->rx_opt.num_sacks--;
4274 		sp--;
4275 	}
4276 	for (; this_sack > 0; this_sack--, sp--)
4277 		*sp = *(sp - 1);
4278 
4279 new_sack:
4280 	/* Build the new head SACK, and we're done. */
4281 	sp->start_seq = seq;
4282 	sp->end_seq = end_seq;
4283 	tp->rx_opt.num_sacks++;
4284 }
4285 
4286 /* RCV.NXT advances, some SACKs should be eaten. */
4287 
tcp_sack_remove(struct tcp_sock * tp)4288 static void tcp_sack_remove(struct tcp_sock *tp)
4289 {
4290 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4291 	int num_sacks = tp->rx_opt.num_sacks;
4292 	int this_sack;
4293 
4294 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4295 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4296 		tp->rx_opt.num_sacks = 0;
4297 		return;
4298 	}
4299 
4300 	for (this_sack = 0; this_sack < num_sacks;) {
4301 		/* Check if the start of the sack is covered by RCV.NXT. */
4302 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4303 			int i;
4304 
4305 			/* RCV.NXT must cover all the block! */
4306 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4307 
4308 			/* Zap this SACK, by moving forward any other SACKS. */
4309 			for (i = this_sack+1; i < num_sacks; i++)
4310 				tp->selective_acks[i-1] = tp->selective_acks[i];
4311 			num_sacks--;
4312 			continue;
4313 		}
4314 		this_sack++;
4315 		sp++;
4316 	}
4317 	tp->rx_opt.num_sacks = num_sacks;
4318 }
4319 
4320 /**
4321  * tcp_try_coalesce - try to merge skb to prior one
4322  * @sk: socket
4323  * @to: prior buffer
4324  * @from: buffer to add in queue
4325  * @fragstolen: pointer to boolean
4326  *
4327  * Before queueing skb @from after @to, try to merge them
4328  * to reduce overall memory use and queue lengths, if cost is small.
4329  * Packets in ofo or receive queues can stay a long time.
4330  * Better try to coalesce them right now to avoid future collapses.
4331  * Returns true if caller should free @from instead of queueing it
4332  */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4333 static bool tcp_try_coalesce(struct sock *sk,
4334 			     struct sk_buff *to,
4335 			     struct sk_buff *from,
4336 			     bool *fragstolen)
4337 {
4338 	int delta;
4339 
4340 	*fragstolen = false;
4341 
4342 	/* Its possible this segment overlaps with prior segment in queue */
4343 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4344 		return false;
4345 
4346 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4347 		return false;
4348 
4349 	atomic_add(delta, &sk->sk_rmem_alloc);
4350 	sk_mem_charge(sk, delta);
4351 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4352 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4353 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4354 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4355 	return true;
4356 }
4357 
tcp_drop(struct sock * sk,struct sk_buff * skb)4358 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4359 {
4360 	sk_drops_add(sk, skb);
4361 	__kfree_skb(skb);
4362 }
4363 
4364 /* This one checks to see if we can put data from the
4365  * out_of_order queue into the receive_queue.
4366  */
tcp_ofo_queue(struct sock * sk)4367 static void tcp_ofo_queue(struct sock *sk)
4368 {
4369 	struct tcp_sock *tp = tcp_sk(sk);
4370 	__u32 dsack_high = tp->rcv_nxt;
4371 	bool fin, fragstolen, eaten;
4372 	struct sk_buff *skb, *tail;
4373 	struct rb_node *p;
4374 
4375 	p = rb_first(&tp->out_of_order_queue);
4376 	while (p) {
4377 		skb = rb_entry(p, struct sk_buff, rbnode);
4378 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4379 			break;
4380 
4381 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4382 			__u32 dsack = dsack_high;
4383 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4384 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4385 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4386 		}
4387 		p = rb_next(p);
4388 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4389 
4390 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4391 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4392 			tcp_drop(sk, skb);
4393 			continue;
4394 		}
4395 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4396 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4397 			   TCP_SKB_CB(skb)->end_seq);
4398 
4399 		tail = skb_peek_tail(&sk->sk_receive_queue);
4400 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4401 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4402 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4403 		if (!eaten)
4404 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4405 		else
4406 			kfree_skb_partial(skb, fragstolen);
4407 
4408 		if (unlikely(fin)) {
4409 			tcp_fin(sk);
4410 			/* tcp_fin() purges tp->out_of_order_queue,
4411 			 * so we must end this loop right now.
4412 			 */
4413 			break;
4414 		}
4415 	}
4416 }
4417 
4418 static bool tcp_prune_ofo_queue(struct sock *sk);
4419 static int tcp_prune_queue(struct sock *sk);
4420 
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4421 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4422 				 unsigned int size)
4423 {
4424 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4425 	    !sk_rmem_schedule(sk, skb, size)) {
4426 
4427 		if (tcp_prune_queue(sk) < 0)
4428 			return -1;
4429 
4430 		while (!sk_rmem_schedule(sk, skb, size)) {
4431 			if (!tcp_prune_ofo_queue(sk))
4432 				return -1;
4433 		}
4434 	}
4435 	return 0;
4436 }
4437 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4438 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4439 {
4440 	struct tcp_sock *tp = tcp_sk(sk);
4441 	struct rb_node **p, *q, *parent;
4442 	struct sk_buff *skb1;
4443 	u32 seq, end_seq;
4444 	bool fragstolen;
4445 
4446 	tcp_ecn_check_ce(tp, skb);
4447 
4448 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4449 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4450 		tcp_drop(sk, skb);
4451 		return;
4452 	}
4453 
4454 	/* Disable header prediction. */
4455 	tp->pred_flags = 0;
4456 	inet_csk_schedule_ack(sk);
4457 
4458 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4459 	seq = TCP_SKB_CB(skb)->seq;
4460 	end_seq = TCP_SKB_CB(skb)->end_seq;
4461 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4462 		   tp->rcv_nxt, seq, end_seq);
4463 
4464 	p = &tp->out_of_order_queue.rb_node;
4465 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4466 		/* Initial out of order segment, build 1 SACK. */
4467 		if (tcp_is_sack(tp)) {
4468 			tp->rx_opt.num_sacks = 1;
4469 			tp->selective_acks[0].start_seq = seq;
4470 			tp->selective_acks[0].end_seq = end_seq;
4471 		}
4472 		rb_link_node(&skb->rbnode, NULL, p);
4473 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4474 		tp->ooo_last_skb = skb;
4475 		goto end;
4476 	}
4477 
4478 	/* In the typical case, we are adding an skb to the end of the list.
4479 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4480 	 */
4481 	if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4482 coalesce_done:
4483 		tcp_grow_window(sk, skb);
4484 		kfree_skb_partial(skb, fragstolen);
4485 		skb = NULL;
4486 		goto add_sack;
4487 	}
4488 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4489 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4490 		parent = &tp->ooo_last_skb->rbnode;
4491 		p = &parent->rb_right;
4492 		goto insert;
4493 	}
4494 
4495 	/* Find place to insert this segment. Handle overlaps on the way. */
4496 	parent = NULL;
4497 	while (*p) {
4498 		parent = *p;
4499 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4500 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4501 			p = &parent->rb_left;
4502 			continue;
4503 		}
4504 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4505 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4506 				/* All the bits are present. Drop. */
4507 				NET_INC_STATS(sock_net(sk),
4508 					      LINUX_MIB_TCPOFOMERGE);
4509 				__kfree_skb(skb);
4510 				skb = NULL;
4511 				tcp_dsack_set(sk, seq, end_seq);
4512 				goto add_sack;
4513 			}
4514 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4515 				/* Partial overlap. */
4516 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4517 			} else {
4518 				/* skb's seq == skb1's seq and skb covers skb1.
4519 				 * Replace skb1 with skb.
4520 				 */
4521 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4522 						&tp->out_of_order_queue);
4523 				tcp_dsack_extend(sk,
4524 						 TCP_SKB_CB(skb1)->seq,
4525 						 TCP_SKB_CB(skb1)->end_seq);
4526 				NET_INC_STATS(sock_net(sk),
4527 					      LINUX_MIB_TCPOFOMERGE);
4528 				__kfree_skb(skb1);
4529 				goto merge_right;
4530 			}
4531 		} else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4532 			goto coalesce_done;
4533 		}
4534 		p = &parent->rb_right;
4535 	}
4536 insert:
4537 	/* Insert segment into RB tree. */
4538 	rb_link_node(&skb->rbnode, parent, p);
4539 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4540 
4541 merge_right:
4542 	/* Remove other segments covered by skb. */
4543 	while ((q = rb_next(&skb->rbnode)) != NULL) {
4544 		skb1 = rb_entry(q, struct sk_buff, rbnode);
4545 
4546 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4547 			break;
4548 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4549 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4550 					 end_seq);
4551 			break;
4552 		}
4553 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4554 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4555 				 TCP_SKB_CB(skb1)->end_seq);
4556 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4557 		tcp_drop(sk, skb1);
4558 	}
4559 	/* If there is no skb after us, we are the last_skb ! */
4560 	if (!q)
4561 		tp->ooo_last_skb = skb;
4562 
4563 add_sack:
4564 	if (tcp_is_sack(tp))
4565 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4566 end:
4567 	if (skb) {
4568 		tcp_grow_window(sk, skb);
4569 		skb_set_owner_r(skb, sk);
4570 	}
4571 }
4572 
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,int hdrlen,bool * fragstolen)4573 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4574 		  bool *fragstolen)
4575 {
4576 	int eaten;
4577 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4578 
4579 	__skb_pull(skb, hdrlen);
4580 	eaten = (tail &&
4581 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4582 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4583 	if (!eaten) {
4584 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4585 		skb_set_owner_r(skb, sk);
4586 	}
4587 	return eaten;
4588 }
4589 
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4590 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4591 {
4592 	struct sk_buff *skb;
4593 	int err = -ENOMEM;
4594 	int data_len = 0;
4595 	bool fragstolen;
4596 
4597 	if (size == 0)
4598 		return 0;
4599 
4600 	if (size > PAGE_SIZE) {
4601 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4602 
4603 		data_len = npages << PAGE_SHIFT;
4604 		size = data_len + (size & ~PAGE_MASK);
4605 	}
4606 	skb = alloc_skb_with_frags(size - data_len, data_len,
4607 				   PAGE_ALLOC_COSTLY_ORDER,
4608 				   &err, sk->sk_allocation);
4609 	if (!skb)
4610 		goto err;
4611 
4612 	skb_put(skb, size - data_len);
4613 	skb->data_len = data_len;
4614 	skb->len = size;
4615 
4616 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4617 		goto err_free;
4618 
4619 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4620 	if (err)
4621 		goto err_free;
4622 
4623 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4624 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4625 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4626 
4627 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4628 		WARN_ON_ONCE(fragstolen); /* should not happen */
4629 		__kfree_skb(skb);
4630 	}
4631 	return size;
4632 
4633 err_free:
4634 	kfree_skb(skb);
4635 err:
4636 	return err;
4637 
4638 }
4639 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4640 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4641 {
4642 	struct tcp_sock *tp = tcp_sk(sk);
4643 	bool fragstolen = false;
4644 	int eaten = -1;
4645 
4646 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4647 		__kfree_skb(skb);
4648 		return;
4649 	}
4650 	skb_dst_drop(skb);
4651 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4652 
4653 	tcp_ecn_accept_cwr(tp, skb);
4654 
4655 	tp->rx_opt.dsack = 0;
4656 
4657 	/*  Queue data for delivery to the user.
4658 	 *  Packets in sequence go to the receive queue.
4659 	 *  Out of sequence packets to the out_of_order_queue.
4660 	 */
4661 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4662 		if (tcp_receive_window(tp) == 0)
4663 			goto out_of_window;
4664 
4665 		/* Ok. In sequence. In window. */
4666 		if (tp->ucopy.task == current &&
4667 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4668 		    sock_owned_by_user(sk) && !tp->urg_data) {
4669 			int chunk = min_t(unsigned int, skb->len,
4670 					  tp->ucopy.len);
4671 
4672 			__set_current_state(TASK_RUNNING);
4673 
4674 			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4675 				tp->ucopy.len -= chunk;
4676 				tp->copied_seq += chunk;
4677 				eaten = (chunk == skb->len);
4678 				tcp_rcv_space_adjust(sk);
4679 			}
4680 		}
4681 
4682 		if (eaten <= 0) {
4683 queue_and_out:
4684 			if (eaten < 0) {
4685 				if (skb_queue_len(&sk->sk_receive_queue) == 0)
4686 					sk_forced_mem_schedule(sk, skb->truesize);
4687 				else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4688 					goto drop;
4689 			}
4690 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4691 		}
4692 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4693 		if (skb->len)
4694 			tcp_event_data_recv(sk, skb);
4695 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4696 			tcp_fin(sk);
4697 
4698 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4699 			tcp_ofo_queue(sk);
4700 
4701 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4702 			 * gap in queue is filled.
4703 			 */
4704 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4705 				inet_csk(sk)->icsk_ack.pingpong = 0;
4706 		}
4707 
4708 		if (tp->rx_opt.num_sacks)
4709 			tcp_sack_remove(tp);
4710 
4711 		tcp_fast_path_check(sk);
4712 
4713 		if (eaten > 0)
4714 			kfree_skb_partial(skb, fragstolen);
4715 		if (!sock_flag(sk, SOCK_DEAD))
4716 			sk->sk_data_ready(sk);
4717 		return;
4718 	}
4719 
4720 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4721 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4722 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4723 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4724 
4725 out_of_window:
4726 		tcp_enter_quickack_mode(sk);
4727 		inet_csk_schedule_ack(sk);
4728 drop:
4729 		tcp_drop(sk, skb);
4730 		return;
4731 	}
4732 
4733 	/* Out of window. F.e. zero window probe. */
4734 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4735 		goto out_of_window;
4736 
4737 	tcp_enter_quickack_mode(sk);
4738 
4739 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4740 		/* Partial packet, seq < rcv_next < end_seq */
4741 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4742 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4743 			   TCP_SKB_CB(skb)->end_seq);
4744 
4745 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4746 
4747 		/* If window is closed, drop tail of packet. But after
4748 		 * remembering D-SACK for its head made in previous line.
4749 		 */
4750 		if (!tcp_receive_window(tp))
4751 			goto out_of_window;
4752 		goto queue_and_out;
4753 	}
4754 
4755 	tcp_data_queue_ofo(sk, skb);
4756 }
4757 
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)4758 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4759 {
4760 	if (list)
4761 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4762 
4763 	return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4764 }
4765 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)4766 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4767 					struct sk_buff_head *list,
4768 					struct rb_root *root)
4769 {
4770 	struct sk_buff *next = tcp_skb_next(skb, list);
4771 
4772 	if (list)
4773 		__skb_unlink(skb, list);
4774 	else
4775 		rb_erase(&skb->rbnode, root);
4776 
4777 	__kfree_skb(skb);
4778 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4779 
4780 	return next;
4781 }
4782 
4783 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)4784 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4785 {
4786 	struct rb_node **p = &root->rb_node;
4787 	struct rb_node *parent = NULL;
4788 	struct sk_buff *skb1;
4789 
4790 	while (*p) {
4791 		parent = *p;
4792 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4793 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4794 			p = &parent->rb_left;
4795 		else
4796 			p = &parent->rb_right;
4797 	}
4798 	rb_link_node(&skb->rbnode, parent, p);
4799 	rb_insert_color(&skb->rbnode, root);
4800 }
4801 
4802 /* Collapse contiguous sequence of skbs head..tail with
4803  * sequence numbers start..end.
4804  *
4805  * If tail is NULL, this means until the end of the queue.
4806  *
4807  * Segments with FIN/SYN are not collapsed (only because this
4808  * simplifies code)
4809  */
4810 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)4811 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4812 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4813 {
4814 	struct sk_buff *skb = head, *n;
4815 	struct sk_buff_head tmp;
4816 	bool end_of_skbs;
4817 
4818 	/* First, check that queue is collapsible and find
4819 	 * the point where collapsing can be useful.
4820 	 */
4821 restart:
4822 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4823 		n = tcp_skb_next(skb, list);
4824 
4825 		/* No new bits? It is possible on ofo queue. */
4826 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4827 			skb = tcp_collapse_one(sk, skb, list, root);
4828 			if (!skb)
4829 				break;
4830 			goto restart;
4831 		}
4832 
4833 		/* The first skb to collapse is:
4834 		 * - not SYN/FIN and
4835 		 * - bloated or contains data before "start" or
4836 		 *   overlaps to the next one.
4837 		 */
4838 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4839 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4840 		     before(TCP_SKB_CB(skb)->seq, start))) {
4841 			end_of_skbs = false;
4842 			break;
4843 		}
4844 
4845 		if (n && n != tail &&
4846 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4847 			end_of_skbs = false;
4848 			break;
4849 		}
4850 
4851 		/* Decided to skip this, advance start seq. */
4852 		start = TCP_SKB_CB(skb)->end_seq;
4853 	}
4854 	if (end_of_skbs ||
4855 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4856 		return;
4857 
4858 	__skb_queue_head_init(&tmp);
4859 
4860 	while (before(start, end)) {
4861 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4862 		struct sk_buff *nskb;
4863 
4864 		nskb = alloc_skb(copy, GFP_ATOMIC);
4865 		if (!nskb)
4866 			break;
4867 
4868 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4869 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4870 		if (list)
4871 			__skb_queue_before(list, skb, nskb);
4872 		else
4873 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4874 		skb_set_owner_r(nskb, sk);
4875 
4876 		/* Copy data, releasing collapsed skbs. */
4877 		while (copy > 0) {
4878 			int offset = start - TCP_SKB_CB(skb)->seq;
4879 			int size = TCP_SKB_CB(skb)->end_seq - start;
4880 
4881 			BUG_ON(offset < 0);
4882 			if (size > 0) {
4883 				size = min(copy, size);
4884 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4885 					BUG();
4886 				TCP_SKB_CB(nskb)->end_seq += size;
4887 				copy -= size;
4888 				start += size;
4889 			}
4890 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4891 				skb = tcp_collapse_one(sk, skb, list, root);
4892 				if (!skb ||
4893 				    skb == tail ||
4894 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4895 					goto end;
4896 			}
4897 		}
4898 	}
4899 end:
4900 	skb_queue_walk_safe(&tmp, skb, n)
4901 		tcp_rbtree_insert(root, skb);
4902 }
4903 
4904 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4905  * and tcp_collapse() them until all the queue is collapsed.
4906  */
tcp_collapse_ofo_queue(struct sock * sk)4907 static void tcp_collapse_ofo_queue(struct sock *sk)
4908 {
4909 	struct tcp_sock *tp = tcp_sk(sk);
4910 	struct sk_buff *skb, *head;
4911 	struct rb_node *p;
4912 	u32 start, end;
4913 
4914 	p = rb_first(&tp->out_of_order_queue);
4915 	skb = rb_entry_safe(p, struct sk_buff, rbnode);
4916 new_range:
4917 	if (!skb) {
4918 		p = rb_last(&tp->out_of_order_queue);
4919 		/* Note: This is possible p is NULL here. We do not
4920 		 * use rb_entry_safe(), as ooo_last_skb is valid only
4921 		 * if rbtree is not empty.
4922 		 */
4923 		tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4924 		return;
4925 	}
4926 	start = TCP_SKB_CB(skb)->seq;
4927 	end = TCP_SKB_CB(skb)->end_seq;
4928 
4929 	for (head = skb;;) {
4930 		skb = tcp_skb_next(skb, NULL);
4931 
4932 		/* Range is terminated when we see a gap or when
4933 		 * we are at the queue end.
4934 		 */
4935 		if (!skb ||
4936 		    after(TCP_SKB_CB(skb)->seq, end) ||
4937 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4938 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4939 				     head, skb, start, end);
4940 			goto new_range;
4941 		}
4942 
4943 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4944 			start = TCP_SKB_CB(skb)->seq;
4945 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4946 			end = TCP_SKB_CB(skb)->end_seq;
4947 	}
4948 }
4949 
4950 /*
4951  * Clean the out-of-order queue to make room.
4952  * We drop high sequences packets to :
4953  * 1) Let a chance for holes to be filled.
4954  * 2) not add too big latencies if thousands of packets sit there.
4955  *    (But if application shrinks SO_RCVBUF, we could still end up
4956  *     freeing whole queue here)
4957  *
4958  * Return true if queue has shrunk.
4959  */
tcp_prune_ofo_queue(struct sock * sk)4960 static bool tcp_prune_ofo_queue(struct sock *sk)
4961 {
4962 	struct tcp_sock *tp = tcp_sk(sk);
4963 	struct rb_node *node, *prev;
4964 
4965 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4966 		return false;
4967 
4968 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4969 	node = &tp->ooo_last_skb->rbnode;
4970 	do {
4971 		prev = rb_prev(node);
4972 		rb_erase(node, &tp->out_of_order_queue);
4973 		tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4974 		sk_mem_reclaim(sk);
4975 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4976 		    !tcp_under_memory_pressure(sk))
4977 			break;
4978 		node = prev;
4979 	} while (node);
4980 	tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4981 
4982 	/* Reset SACK state.  A conforming SACK implementation will
4983 	 * do the same at a timeout based retransmit.  When a connection
4984 	 * is in a sad state like this, we care only about integrity
4985 	 * of the connection not performance.
4986 	 */
4987 	if (tp->rx_opt.sack_ok)
4988 		tcp_sack_reset(&tp->rx_opt);
4989 	return true;
4990 }
4991 
4992 /* Reduce allocated memory if we can, trying to get
4993  * the socket within its memory limits again.
4994  *
4995  * Return less than zero if we should start dropping frames
4996  * until the socket owning process reads some of the data
4997  * to stabilize the situation.
4998  */
tcp_prune_queue(struct sock * sk)4999 static int tcp_prune_queue(struct sock *sk)
5000 {
5001 	struct tcp_sock *tp = tcp_sk(sk);
5002 
5003 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5004 
5005 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5006 
5007 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5008 		tcp_clamp_window(sk);
5009 	else if (tcp_under_memory_pressure(sk))
5010 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5011 
5012 	tcp_collapse_ofo_queue(sk);
5013 	if (!skb_queue_empty(&sk->sk_receive_queue))
5014 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5015 			     skb_peek(&sk->sk_receive_queue),
5016 			     NULL,
5017 			     tp->copied_seq, tp->rcv_nxt);
5018 	sk_mem_reclaim(sk);
5019 
5020 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5021 		return 0;
5022 
5023 	/* Collapsing did not help, destructive actions follow.
5024 	 * This must not ever occur. */
5025 
5026 	tcp_prune_ofo_queue(sk);
5027 
5028 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5029 		return 0;
5030 
5031 	/* If we are really being abused, tell the caller to silently
5032 	 * drop receive data on the floor.  It will get retransmitted
5033 	 * and hopefully then we'll have sufficient space.
5034 	 */
5035 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5036 
5037 	/* Massive buffer overcommit. */
5038 	tp->pred_flags = 0;
5039 	return -1;
5040 }
5041 
tcp_should_expand_sndbuf(const struct sock * sk)5042 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5043 {
5044 	const struct tcp_sock *tp = tcp_sk(sk);
5045 
5046 	/* If the user specified a specific send buffer setting, do
5047 	 * not modify it.
5048 	 */
5049 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5050 		return false;
5051 
5052 	/* If we are under global TCP memory pressure, do not expand.  */
5053 	if (tcp_under_memory_pressure(sk))
5054 		return false;
5055 
5056 	/* If we are under soft global TCP memory pressure, do not expand.  */
5057 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5058 		return false;
5059 
5060 	/* If we filled the congestion window, do not expand.  */
5061 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5062 		return false;
5063 
5064 	return true;
5065 }
5066 
5067 /* When incoming ACK allowed to free some skb from write_queue,
5068  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5069  * on the exit from tcp input handler.
5070  *
5071  * PROBLEM: sndbuf expansion does not work well with largesend.
5072  */
tcp_new_space(struct sock * sk)5073 static void tcp_new_space(struct sock *sk)
5074 {
5075 	struct tcp_sock *tp = tcp_sk(sk);
5076 
5077 	if (tcp_should_expand_sndbuf(sk)) {
5078 		tcp_sndbuf_expand(sk);
5079 		tp->snd_cwnd_stamp = tcp_time_stamp;
5080 	}
5081 
5082 	sk->sk_write_space(sk);
5083 }
5084 
tcp_check_space(struct sock * sk)5085 static void tcp_check_space(struct sock *sk)
5086 {
5087 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5088 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5089 		/* pairs with tcp_poll() */
5090 		smp_mb();
5091 		if (sk->sk_socket &&
5092 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5093 			tcp_new_space(sk);
5094 	}
5095 }
5096 
tcp_data_snd_check(struct sock * sk)5097 static inline void tcp_data_snd_check(struct sock *sk)
5098 {
5099 	tcp_push_pending_frames(sk);
5100 	tcp_check_space(sk);
5101 }
5102 
5103 /*
5104  * Check if sending an ack is needed.
5105  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5106 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5107 {
5108 	struct tcp_sock *tp = tcp_sk(sk);
5109 
5110 	    /* More than one full frame received... */
5111 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5112 	     /* ... and right edge of window advances far enough.
5113 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5114 	      */
5115 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5116 	    /* We ACK each frame or... */
5117 	    tcp_in_quickack_mode(sk) ||
5118 	    /* We have out of order data. */
5119 	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5120 		/* Then ack it now */
5121 		tcp_send_ack(sk);
5122 	} else {
5123 		/* Else, send delayed ack. */
5124 		tcp_send_delayed_ack(sk);
5125 	}
5126 }
5127 
tcp_ack_snd_check(struct sock * sk)5128 static inline void tcp_ack_snd_check(struct sock *sk)
5129 {
5130 	if (!inet_csk_ack_scheduled(sk)) {
5131 		/* We sent a data segment already. */
5132 		return;
5133 	}
5134 	__tcp_ack_snd_check(sk, 1);
5135 }
5136 
5137 /*
5138  *	This routine is only called when we have urgent data
5139  *	signaled. Its the 'slow' part of tcp_urg. It could be
5140  *	moved inline now as tcp_urg is only called from one
5141  *	place. We handle URGent data wrong. We have to - as
5142  *	BSD still doesn't use the correction from RFC961.
5143  *	For 1003.1g we should support a new option TCP_STDURG to permit
5144  *	either form (or just set the sysctl tcp_stdurg).
5145  */
5146 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5147 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5148 {
5149 	struct tcp_sock *tp = tcp_sk(sk);
5150 	u32 ptr = ntohs(th->urg_ptr);
5151 
5152 	if (ptr && !sysctl_tcp_stdurg)
5153 		ptr--;
5154 	ptr += ntohl(th->seq);
5155 
5156 	/* Ignore urgent data that we've already seen and read. */
5157 	if (after(tp->copied_seq, ptr))
5158 		return;
5159 
5160 	/* Do not replay urg ptr.
5161 	 *
5162 	 * NOTE: interesting situation not covered by specs.
5163 	 * Misbehaving sender may send urg ptr, pointing to segment,
5164 	 * which we already have in ofo queue. We are not able to fetch
5165 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5166 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5167 	 * situations. But it is worth to think about possibility of some
5168 	 * DoSes using some hypothetical application level deadlock.
5169 	 */
5170 	if (before(ptr, tp->rcv_nxt))
5171 		return;
5172 
5173 	/* Do we already have a newer (or duplicate) urgent pointer? */
5174 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5175 		return;
5176 
5177 	/* Tell the world about our new urgent pointer. */
5178 	sk_send_sigurg(sk);
5179 
5180 	/* We may be adding urgent data when the last byte read was
5181 	 * urgent. To do this requires some care. We cannot just ignore
5182 	 * tp->copied_seq since we would read the last urgent byte again
5183 	 * as data, nor can we alter copied_seq until this data arrives
5184 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5185 	 *
5186 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5187 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5188 	 * and expect that both A and B disappear from stream. This is _wrong_.
5189 	 * Though this happens in BSD with high probability, this is occasional.
5190 	 * Any application relying on this is buggy. Note also, that fix "works"
5191 	 * only in this artificial test. Insert some normal data between A and B and we will
5192 	 * decline of BSD again. Verdict: it is better to remove to trap
5193 	 * buggy users.
5194 	 */
5195 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5196 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5197 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5198 		tp->copied_seq++;
5199 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5200 			__skb_unlink(skb, &sk->sk_receive_queue);
5201 			__kfree_skb(skb);
5202 		}
5203 	}
5204 
5205 	tp->urg_data = TCP_URG_NOTYET;
5206 	tp->urg_seq = ptr;
5207 
5208 	/* Disable header prediction. */
5209 	tp->pred_flags = 0;
5210 }
5211 
5212 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5213 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5214 {
5215 	struct tcp_sock *tp = tcp_sk(sk);
5216 
5217 	/* Check if we get a new urgent pointer - normally not. */
5218 	if (th->urg)
5219 		tcp_check_urg(sk, th);
5220 
5221 	/* Do we wait for any urgent data? - normally not... */
5222 	if (tp->urg_data == TCP_URG_NOTYET) {
5223 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5224 			  th->syn;
5225 
5226 		/* Is the urgent pointer pointing into this packet? */
5227 		if (ptr < skb->len) {
5228 			u8 tmp;
5229 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5230 				BUG();
5231 			tp->urg_data = TCP_URG_VALID | tmp;
5232 			if (!sock_flag(sk, SOCK_DEAD))
5233 				sk->sk_data_ready(sk);
5234 		}
5235 	}
5236 }
5237 
tcp_copy_to_iovec(struct sock * sk,struct sk_buff * skb,int hlen)5238 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5239 {
5240 	struct tcp_sock *tp = tcp_sk(sk);
5241 	int chunk = skb->len - hlen;
5242 	int err;
5243 
5244 	if (skb_csum_unnecessary(skb))
5245 		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5246 	else
5247 		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5248 
5249 	if (!err) {
5250 		tp->ucopy.len -= chunk;
5251 		tp->copied_seq += chunk;
5252 		tcp_rcv_space_adjust(sk);
5253 	}
5254 
5255 	return err;
5256 }
5257 
5258 /* Does PAWS and seqno based validation of an incoming segment, flags will
5259  * play significant role here.
5260  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5261 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5262 				  const struct tcphdr *th, int syn_inerr)
5263 {
5264 	struct tcp_sock *tp = tcp_sk(sk);
5265 	bool rst_seq_match = false;
5266 
5267 	/* RFC1323: H1. Apply PAWS check first. */
5268 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5269 	    tcp_paws_discard(sk, skb)) {
5270 		if (!th->rst) {
5271 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5272 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5273 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5274 						  &tp->last_oow_ack_time))
5275 				tcp_send_dupack(sk, skb);
5276 			goto discard;
5277 		}
5278 		/* Reset is accepted even if it did not pass PAWS. */
5279 	}
5280 
5281 	/* Step 1: check sequence number */
5282 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5283 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5284 		 * (RST) segments are validated by checking their SEQ-fields."
5285 		 * And page 69: "If an incoming segment is not acceptable,
5286 		 * an acknowledgment should be sent in reply (unless the RST
5287 		 * bit is set, if so drop the segment and return)".
5288 		 */
5289 		if (!th->rst) {
5290 			if (th->syn)
5291 				goto syn_challenge;
5292 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5293 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5294 						  &tp->last_oow_ack_time))
5295 				tcp_send_dupack(sk, skb);
5296 		}
5297 		goto discard;
5298 	}
5299 
5300 	/* Step 2: check RST bit */
5301 	if (th->rst) {
5302 		/* RFC 5961 3.2 (extend to match against SACK too if available):
5303 		 * If seq num matches RCV.NXT or the right-most SACK block,
5304 		 * then
5305 		 *     RESET the connection
5306 		 * else
5307 		 *     Send a challenge ACK
5308 		 */
5309 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5310 			rst_seq_match = true;
5311 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5312 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5313 			int max_sack = sp[0].end_seq;
5314 			int this_sack;
5315 
5316 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5317 			     ++this_sack) {
5318 				max_sack = after(sp[this_sack].end_seq,
5319 						 max_sack) ?
5320 					sp[this_sack].end_seq : max_sack;
5321 			}
5322 
5323 			if (TCP_SKB_CB(skb)->seq == max_sack)
5324 				rst_seq_match = true;
5325 		}
5326 
5327 		if (rst_seq_match)
5328 			tcp_reset(sk);
5329 		else
5330 			tcp_send_challenge_ack(sk, skb);
5331 		goto discard;
5332 	}
5333 
5334 	/* step 3: check security and precedence [ignored] */
5335 
5336 	/* step 4: Check for a SYN
5337 	 * RFC 5961 4.2 : Send a challenge ack
5338 	 */
5339 	if (th->syn) {
5340 syn_challenge:
5341 		if (syn_inerr)
5342 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5343 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5344 		tcp_send_challenge_ack(sk, skb);
5345 		goto discard;
5346 	}
5347 
5348 	return true;
5349 
5350 discard:
5351 	tcp_drop(sk, skb);
5352 	return false;
5353 }
5354 
5355 /*
5356  *	TCP receive function for the ESTABLISHED state.
5357  *
5358  *	It is split into a fast path and a slow path. The fast path is
5359  * 	disabled when:
5360  *	- A zero window was announced from us - zero window probing
5361  *        is only handled properly in the slow path.
5362  *	- Out of order segments arrived.
5363  *	- Urgent data is expected.
5364  *	- There is no buffer space left
5365  *	- Unexpected TCP flags/window values/header lengths are received
5366  *	  (detected by checking the TCP header against pred_flags)
5367  *	- Data is sent in both directions. Fast path only supports pure senders
5368  *	  or pure receivers (this means either the sequence number or the ack
5369  *	  value must stay constant)
5370  *	- Unexpected TCP option.
5371  *
5372  *	When these conditions are not satisfied it drops into a standard
5373  *	receive procedure patterned after RFC793 to handle all cases.
5374  *	The first three cases are guaranteed by proper pred_flags setting,
5375  *	the rest is checked inline. Fast processing is turned on in
5376  *	tcp_data_queue when everything is OK.
5377  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,unsigned int len)5378 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5379 			 const struct tcphdr *th, unsigned int len)
5380 {
5381 	struct tcp_sock *tp = tcp_sk(sk);
5382 
5383 	if (unlikely(!sk->sk_rx_dst))
5384 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5385 	/*
5386 	 *	Header prediction.
5387 	 *	The code loosely follows the one in the famous
5388 	 *	"30 instruction TCP receive" Van Jacobson mail.
5389 	 *
5390 	 *	Van's trick is to deposit buffers into socket queue
5391 	 *	on a device interrupt, to call tcp_recv function
5392 	 *	on the receive process context and checksum and copy
5393 	 *	the buffer to user space. smart...
5394 	 *
5395 	 *	Our current scheme is not silly either but we take the
5396 	 *	extra cost of the net_bh soft interrupt processing...
5397 	 *	We do checksum and copy also but from device to kernel.
5398 	 */
5399 
5400 	tp->rx_opt.saw_tstamp = 0;
5401 
5402 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5403 	 *	if header_prediction is to be made
5404 	 *	'S' will always be tp->tcp_header_len >> 2
5405 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5406 	 *  turn it off	(when there are holes in the receive
5407 	 *	 space for instance)
5408 	 *	PSH flag is ignored.
5409 	 */
5410 
5411 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5412 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5413 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5414 		int tcp_header_len = tp->tcp_header_len;
5415 
5416 		/* Timestamp header prediction: tcp_header_len
5417 		 * is automatically equal to th->doff*4 due to pred_flags
5418 		 * match.
5419 		 */
5420 
5421 		/* Check timestamp */
5422 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5423 			/* No? Slow path! */
5424 			if (!tcp_parse_aligned_timestamp(tp, th))
5425 				goto slow_path;
5426 
5427 			/* If PAWS failed, check it more carefully in slow path */
5428 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5429 				goto slow_path;
5430 
5431 			/* DO NOT update ts_recent here, if checksum fails
5432 			 * and timestamp was corrupted part, it will result
5433 			 * in a hung connection since we will drop all
5434 			 * future packets due to the PAWS test.
5435 			 */
5436 		}
5437 
5438 		if (len <= tcp_header_len) {
5439 			/* Bulk data transfer: sender */
5440 			if (len == tcp_header_len) {
5441 				/* Predicted packet is in window by definition.
5442 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5443 				 * Hence, check seq<=rcv_wup reduces to:
5444 				 */
5445 				if (tcp_header_len ==
5446 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5447 				    tp->rcv_nxt == tp->rcv_wup)
5448 					tcp_store_ts_recent(tp);
5449 
5450 				/* We know that such packets are checksummed
5451 				 * on entry.
5452 				 */
5453 				tcp_ack(sk, skb, 0);
5454 				__kfree_skb(skb);
5455 				tcp_data_snd_check(sk);
5456 				return;
5457 			} else { /* Header too small */
5458 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5459 				goto discard;
5460 			}
5461 		} else {
5462 			int eaten = 0;
5463 			bool fragstolen = false;
5464 
5465 			if (tp->ucopy.task == current &&
5466 			    tp->copied_seq == tp->rcv_nxt &&
5467 			    len - tcp_header_len <= tp->ucopy.len &&
5468 			    sock_owned_by_user(sk)) {
5469 				__set_current_state(TASK_RUNNING);
5470 
5471 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5472 					/* Predicted packet is in window by definition.
5473 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5474 					 * Hence, check seq<=rcv_wup reduces to:
5475 					 */
5476 					if (tcp_header_len ==
5477 					    (sizeof(struct tcphdr) +
5478 					     TCPOLEN_TSTAMP_ALIGNED) &&
5479 					    tp->rcv_nxt == tp->rcv_wup)
5480 						tcp_store_ts_recent(tp);
5481 
5482 					tcp_rcv_rtt_measure_ts(sk, skb);
5483 
5484 					__skb_pull(skb, tcp_header_len);
5485 					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5486 					NET_INC_STATS(sock_net(sk),
5487 							LINUX_MIB_TCPHPHITSTOUSER);
5488 					eaten = 1;
5489 				}
5490 			}
5491 			if (!eaten) {
5492 				if (tcp_checksum_complete(skb))
5493 					goto csum_error;
5494 
5495 				if ((int)skb->truesize > sk->sk_forward_alloc)
5496 					goto step5;
5497 
5498 				/* Predicted packet is in window by definition.
5499 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5500 				 * Hence, check seq<=rcv_wup reduces to:
5501 				 */
5502 				if (tcp_header_len ==
5503 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5504 				    tp->rcv_nxt == tp->rcv_wup)
5505 					tcp_store_ts_recent(tp);
5506 
5507 				tcp_rcv_rtt_measure_ts(sk, skb);
5508 
5509 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5510 
5511 				/* Bulk data transfer: receiver */
5512 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5513 						      &fragstolen);
5514 			}
5515 
5516 			tcp_event_data_recv(sk, skb);
5517 
5518 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5519 				/* Well, only one small jumplet in fast path... */
5520 				tcp_ack(sk, skb, FLAG_DATA);
5521 				tcp_data_snd_check(sk);
5522 				if (!inet_csk_ack_scheduled(sk))
5523 					goto no_ack;
5524 			}
5525 
5526 			__tcp_ack_snd_check(sk, 0);
5527 no_ack:
5528 			if (eaten)
5529 				kfree_skb_partial(skb, fragstolen);
5530 			sk->sk_data_ready(sk);
5531 			return;
5532 		}
5533 	}
5534 
5535 slow_path:
5536 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5537 		goto csum_error;
5538 
5539 	if (!th->ack && !th->rst && !th->syn)
5540 		goto discard;
5541 
5542 	/*
5543 	 *	Standard slow path.
5544 	 */
5545 
5546 	if (!tcp_validate_incoming(sk, skb, th, 1))
5547 		return;
5548 
5549 step5:
5550 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5551 		goto discard;
5552 
5553 	tcp_rcv_rtt_measure_ts(sk, skb);
5554 
5555 	/* Process urgent data. */
5556 	tcp_urg(sk, skb, th);
5557 
5558 	/* step 7: process the segment text */
5559 	tcp_data_queue(sk, skb);
5560 
5561 	tcp_data_snd_check(sk);
5562 	tcp_ack_snd_check(sk);
5563 	return;
5564 
5565 csum_error:
5566 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5567 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5568 
5569 discard:
5570 	tcp_drop(sk, skb);
5571 }
5572 EXPORT_SYMBOL(tcp_rcv_established);
5573 
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)5574 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5575 {
5576 	struct tcp_sock *tp = tcp_sk(sk);
5577 	struct inet_connection_sock *icsk = inet_csk(sk);
5578 
5579 	tcp_set_state(sk, TCP_ESTABLISHED);
5580 	icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5581 
5582 	if (skb) {
5583 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5584 		security_inet_conn_established(sk, skb);
5585 	}
5586 
5587 	/* Make sure socket is routed, for correct metrics.  */
5588 	icsk->icsk_af_ops->rebuild_header(sk);
5589 
5590 	tcp_init_metrics(sk);
5591 
5592 	tcp_init_congestion_control(sk);
5593 
5594 	/* Prevent spurious tcp_cwnd_restart() on first data
5595 	 * packet.
5596 	 */
5597 	tp->lsndtime = tcp_time_stamp;
5598 
5599 	tcp_init_buffer_space(sk);
5600 
5601 	if (sock_flag(sk, SOCK_KEEPOPEN))
5602 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5603 
5604 	if (!tp->rx_opt.snd_wscale)
5605 		__tcp_fast_path_on(tp, tp->snd_wnd);
5606 	else
5607 		tp->pred_flags = 0;
5608 
5609 }
5610 
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)5611 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5612 				    struct tcp_fastopen_cookie *cookie)
5613 {
5614 	struct tcp_sock *tp = tcp_sk(sk);
5615 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5616 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5617 	bool syn_drop = false;
5618 
5619 	if (mss == tp->rx_opt.user_mss) {
5620 		struct tcp_options_received opt;
5621 
5622 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5623 		tcp_clear_options(&opt);
5624 		opt.user_mss = opt.mss_clamp = 0;
5625 		tcp_parse_options(synack, &opt, 0, NULL);
5626 		mss = opt.mss_clamp;
5627 	}
5628 
5629 	if (!tp->syn_fastopen) {
5630 		/* Ignore an unsolicited cookie */
5631 		cookie->len = -1;
5632 	} else if (tp->total_retrans) {
5633 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5634 		 * acknowledges data. Presumably the remote received only
5635 		 * the retransmitted (regular) SYNs: either the original
5636 		 * SYN-data or the corresponding SYN-ACK was dropped.
5637 		 */
5638 		syn_drop = (cookie->len < 0 && data);
5639 	} else if (cookie->len < 0 && !tp->syn_data) {
5640 		/* We requested a cookie but didn't get it. If we did not use
5641 		 * the (old) exp opt format then try so next time (try_exp=1).
5642 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5643 		 */
5644 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5645 	}
5646 
5647 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5648 
5649 	if (data) { /* Retransmit unacked data in SYN */
5650 		tcp_for_write_queue_from(data, sk) {
5651 			if (data == tcp_send_head(sk) ||
5652 			    __tcp_retransmit_skb(sk, data, 1))
5653 				break;
5654 		}
5655 		tcp_rearm_rto(sk);
5656 		NET_INC_STATS(sock_net(sk),
5657 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5658 		return true;
5659 	}
5660 	tp->syn_data_acked = tp->syn_data;
5661 	if (tp->syn_data_acked)
5662 		NET_INC_STATS(sock_net(sk),
5663 				LINUX_MIB_TCPFASTOPENACTIVE);
5664 
5665 	tcp_fastopen_add_skb(sk, synack);
5666 
5667 	return false;
5668 }
5669 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5670 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5671 					 const struct tcphdr *th)
5672 {
5673 	struct inet_connection_sock *icsk = inet_csk(sk);
5674 	struct tcp_sock *tp = tcp_sk(sk);
5675 	struct tcp_fastopen_cookie foc = { .len = -1 };
5676 	int saved_clamp = tp->rx_opt.mss_clamp;
5677 	bool fastopen_fail;
5678 
5679 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5680 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5681 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5682 
5683 	if (th->ack) {
5684 		/* rfc793:
5685 		 * "If the state is SYN-SENT then
5686 		 *    first check the ACK bit
5687 		 *      If the ACK bit is set
5688 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5689 		 *        a reset (unless the RST bit is set, if so drop
5690 		 *        the segment and return)"
5691 		 */
5692 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5693 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5694 			goto reset_and_undo;
5695 
5696 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5697 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5698 			     tcp_time_stamp)) {
5699 			NET_INC_STATS(sock_net(sk),
5700 					LINUX_MIB_PAWSACTIVEREJECTED);
5701 			goto reset_and_undo;
5702 		}
5703 
5704 		/* Now ACK is acceptable.
5705 		 *
5706 		 * "If the RST bit is set
5707 		 *    If the ACK was acceptable then signal the user "error:
5708 		 *    connection reset", drop the segment, enter CLOSED state,
5709 		 *    delete TCB, and return."
5710 		 */
5711 
5712 		if (th->rst) {
5713 			tcp_reset(sk);
5714 			goto discard;
5715 		}
5716 
5717 		/* rfc793:
5718 		 *   "fifth, if neither of the SYN or RST bits is set then
5719 		 *    drop the segment and return."
5720 		 *
5721 		 *    See note below!
5722 		 *                                        --ANK(990513)
5723 		 */
5724 		if (!th->syn)
5725 			goto discard_and_undo;
5726 
5727 		/* rfc793:
5728 		 *   "If the SYN bit is on ...
5729 		 *    are acceptable then ...
5730 		 *    (our SYN has been ACKed), change the connection
5731 		 *    state to ESTABLISHED..."
5732 		 */
5733 
5734 		tcp_ecn_rcv_synack(tp, th);
5735 
5736 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5737 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5738 
5739 		/* Ok.. it's good. Set up sequence numbers and
5740 		 * move to established.
5741 		 */
5742 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5743 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5744 
5745 		/* RFC1323: The window in SYN & SYN/ACK segments is
5746 		 * never scaled.
5747 		 */
5748 		tp->snd_wnd = ntohs(th->window);
5749 
5750 		if (!tp->rx_opt.wscale_ok) {
5751 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5752 			tp->window_clamp = min(tp->window_clamp, 65535U);
5753 		}
5754 
5755 		if (tp->rx_opt.saw_tstamp) {
5756 			tp->rx_opt.tstamp_ok	   = 1;
5757 			tp->tcp_header_len =
5758 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5759 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5760 			tcp_store_ts_recent(tp);
5761 		} else {
5762 			tp->tcp_header_len = sizeof(struct tcphdr);
5763 		}
5764 
5765 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5766 			tcp_enable_fack(tp);
5767 
5768 		tcp_mtup_init(sk);
5769 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5770 		tcp_initialize_rcv_mss(sk);
5771 
5772 		/* Remember, tcp_poll() does not lock socket!
5773 		 * Change state from SYN-SENT only after copied_seq
5774 		 * is initialized. */
5775 		tp->copied_seq = tp->rcv_nxt;
5776 
5777 		smp_mb();
5778 
5779 		tcp_finish_connect(sk, skb);
5780 
5781 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5782 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5783 
5784 		if (!sock_flag(sk, SOCK_DEAD)) {
5785 			sk->sk_state_change(sk);
5786 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5787 		}
5788 		if (fastopen_fail)
5789 			return -1;
5790 		if (sk->sk_write_pending ||
5791 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5792 		    icsk->icsk_ack.pingpong) {
5793 			/* Save one ACK. Data will be ready after
5794 			 * several ticks, if write_pending is set.
5795 			 *
5796 			 * It may be deleted, but with this feature tcpdumps
5797 			 * look so _wonderfully_ clever, that I was not able
5798 			 * to stand against the temptation 8)     --ANK
5799 			 */
5800 			inet_csk_schedule_ack(sk);
5801 			tcp_enter_quickack_mode(sk);
5802 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5803 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5804 
5805 discard:
5806 			tcp_drop(sk, skb);
5807 			return 0;
5808 		} else {
5809 			tcp_send_ack(sk);
5810 		}
5811 		return -1;
5812 	}
5813 
5814 	/* No ACK in the segment */
5815 
5816 	if (th->rst) {
5817 		/* rfc793:
5818 		 * "If the RST bit is set
5819 		 *
5820 		 *      Otherwise (no ACK) drop the segment and return."
5821 		 */
5822 
5823 		goto discard_and_undo;
5824 	}
5825 
5826 	/* PAWS check. */
5827 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5828 	    tcp_paws_reject(&tp->rx_opt, 0))
5829 		goto discard_and_undo;
5830 
5831 	if (th->syn) {
5832 		/* We see SYN without ACK. It is attempt of
5833 		 * simultaneous connect with crossed SYNs.
5834 		 * Particularly, it can be connect to self.
5835 		 */
5836 		tcp_set_state(sk, TCP_SYN_RECV);
5837 
5838 		if (tp->rx_opt.saw_tstamp) {
5839 			tp->rx_opt.tstamp_ok = 1;
5840 			tcp_store_ts_recent(tp);
5841 			tp->tcp_header_len =
5842 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5843 		} else {
5844 			tp->tcp_header_len = sizeof(struct tcphdr);
5845 		}
5846 
5847 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5848 		tp->copied_seq = tp->rcv_nxt;
5849 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5850 
5851 		/* RFC1323: The window in SYN & SYN/ACK segments is
5852 		 * never scaled.
5853 		 */
5854 		tp->snd_wnd    = ntohs(th->window);
5855 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5856 		tp->max_window = tp->snd_wnd;
5857 
5858 		tcp_ecn_rcv_syn(tp, th);
5859 
5860 		tcp_mtup_init(sk);
5861 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5862 		tcp_initialize_rcv_mss(sk);
5863 
5864 		tcp_send_synack(sk);
5865 #if 0
5866 		/* Note, we could accept data and URG from this segment.
5867 		 * There are no obstacles to make this (except that we must
5868 		 * either change tcp_recvmsg() to prevent it from returning data
5869 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5870 		 *
5871 		 * However, if we ignore data in ACKless segments sometimes,
5872 		 * we have no reasons to accept it sometimes.
5873 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5874 		 * is not flawless. So, discard packet for sanity.
5875 		 * Uncomment this return to process the data.
5876 		 */
5877 		return -1;
5878 #else
5879 		goto discard;
5880 #endif
5881 	}
5882 	/* "fifth, if neither of the SYN or RST bits is set then
5883 	 * drop the segment and return."
5884 	 */
5885 
5886 discard_and_undo:
5887 	tcp_clear_options(&tp->rx_opt);
5888 	tp->rx_opt.mss_clamp = saved_clamp;
5889 	goto discard;
5890 
5891 reset_and_undo:
5892 	tcp_clear_options(&tp->rx_opt);
5893 	tp->rx_opt.mss_clamp = saved_clamp;
5894 	return 1;
5895 }
5896 
5897 /*
5898  *	This function implements the receiving procedure of RFC 793 for
5899  *	all states except ESTABLISHED and TIME_WAIT.
5900  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5901  *	address independent.
5902  */
5903 
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)5904 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5905 {
5906 	struct tcp_sock *tp = tcp_sk(sk);
5907 	struct inet_connection_sock *icsk = inet_csk(sk);
5908 	const struct tcphdr *th = tcp_hdr(skb);
5909 	struct request_sock *req;
5910 	int queued = 0;
5911 	bool acceptable;
5912 
5913 	switch (sk->sk_state) {
5914 	case TCP_CLOSE:
5915 		goto discard;
5916 
5917 	case TCP_LISTEN:
5918 		if (th->ack)
5919 			return 1;
5920 
5921 		if (th->rst)
5922 			goto discard;
5923 
5924 		if (th->syn) {
5925 			if (th->fin)
5926 				goto discard;
5927 			/* It is possible that we process SYN packets from backlog,
5928 			 * so we need to make sure to disable BH right there.
5929 			 */
5930 			local_bh_disable();
5931 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5932 			local_bh_enable();
5933 
5934 			if (!acceptable)
5935 				return 1;
5936 			consume_skb(skb);
5937 			return 0;
5938 		}
5939 		goto discard;
5940 
5941 	case TCP_SYN_SENT:
5942 		tp->rx_opt.saw_tstamp = 0;
5943 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5944 		if (queued >= 0)
5945 			return queued;
5946 
5947 		/* Do step6 onward by hand. */
5948 		tcp_urg(sk, skb, th);
5949 		__kfree_skb(skb);
5950 		tcp_data_snd_check(sk);
5951 		return 0;
5952 	}
5953 
5954 	tp->rx_opt.saw_tstamp = 0;
5955 	req = tp->fastopen_rsk;
5956 	if (req) {
5957 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5958 		    sk->sk_state != TCP_FIN_WAIT1);
5959 
5960 		if (!tcp_check_req(sk, skb, req, true))
5961 			goto discard;
5962 	}
5963 
5964 	if (!th->ack && !th->rst && !th->syn)
5965 		goto discard;
5966 
5967 	if (!tcp_validate_incoming(sk, skb, th, 0))
5968 		return 0;
5969 
5970 	/* step 5: check the ACK field */
5971 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5972 				      FLAG_UPDATE_TS_RECENT |
5973 				      FLAG_NO_CHALLENGE_ACK) > 0;
5974 
5975 	if (!acceptable) {
5976 		if (sk->sk_state == TCP_SYN_RECV)
5977 			return 1;	/* send one RST */
5978 		tcp_send_challenge_ack(sk, skb);
5979 		goto discard;
5980 	}
5981 	switch (sk->sk_state) {
5982 	case TCP_SYN_RECV:
5983 		if (!tp->srtt_us)
5984 			tcp_synack_rtt_meas(sk, req);
5985 
5986 		/* Once we leave TCP_SYN_RECV, we no longer need req
5987 		 * so release it.
5988 		 */
5989 		if (req) {
5990 			inet_csk(sk)->icsk_retransmits = 0;
5991 			reqsk_fastopen_remove(sk, req, false);
5992 		} else {
5993 			/* Make sure socket is routed, for correct metrics. */
5994 			icsk->icsk_af_ops->rebuild_header(sk);
5995 			tcp_init_congestion_control(sk);
5996 
5997 			tcp_mtup_init(sk);
5998 			tp->copied_seq = tp->rcv_nxt;
5999 			tcp_init_buffer_space(sk);
6000 		}
6001 		smp_mb();
6002 		tcp_set_state(sk, TCP_ESTABLISHED);
6003 		sk->sk_state_change(sk);
6004 
6005 		/* Note, that this wakeup is only for marginal crossed SYN case.
6006 		 * Passively open sockets are not waked up, because
6007 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6008 		 */
6009 		if (sk->sk_socket)
6010 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6011 
6012 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6013 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6014 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6015 
6016 		if (tp->rx_opt.tstamp_ok)
6017 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6018 
6019 		if (req) {
6020 			/* Re-arm the timer because data may have been sent out.
6021 			 * This is similar to the regular data transmission case
6022 			 * when new data has just been ack'ed.
6023 			 *
6024 			 * (TFO) - we could try to be more aggressive and
6025 			 * retransmitting any data sooner based on when they
6026 			 * are sent out.
6027 			 */
6028 			tcp_rearm_rto(sk);
6029 		} else
6030 			tcp_init_metrics(sk);
6031 
6032 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6033 			tcp_update_pacing_rate(sk);
6034 
6035 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6036 		tp->lsndtime = tcp_time_stamp;
6037 
6038 		tcp_initialize_rcv_mss(sk);
6039 		tcp_fast_path_on(tp);
6040 		break;
6041 
6042 	case TCP_FIN_WAIT1: {
6043 		struct dst_entry *dst;
6044 		int tmo;
6045 
6046 		/* If we enter the TCP_FIN_WAIT1 state and we are a
6047 		 * Fast Open socket and this is the first acceptable
6048 		 * ACK we have received, this would have acknowledged
6049 		 * our SYNACK so stop the SYNACK timer.
6050 		 */
6051 		if (req) {
6052 			/* We no longer need the request sock. */
6053 			reqsk_fastopen_remove(sk, req, false);
6054 			tcp_rearm_rto(sk);
6055 		}
6056 		if (tp->snd_una != tp->write_seq)
6057 			break;
6058 
6059 		tcp_set_state(sk, TCP_FIN_WAIT2);
6060 		sk->sk_shutdown |= SEND_SHUTDOWN;
6061 
6062 		dst = __sk_dst_get(sk);
6063 		if (dst)
6064 			dst_confirm(dst);
6065 
6066 		if (!sock_flag(sk, SOCK_DEAD)) {
6067 			/* Wake up lingering close() */
6068 			sk->sk_state_change(sk);
6069 			break;
6070 		}
6071 
6072 		if (tp->linger2 < 0 ||
6073 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6074 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6075 			tcp_done(sk);
6076 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6077 			return 1;
6078 		}
6079 
6080 		tmo = tcp_fin_time(sk);
6081 		if (tmo > TCP_TIMEWAIT_LEN) {
6082 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6083 		} else if (th->fin || sock_owned_by_user(sk)) {
6084 			/* Bad case. We could lose such FIN otherwise.
6085 			 * It is not a big problem, but it looks confusing
6086 			 * and not so rare event. We still can lose it now,
6087 			 * if it spins in bh_lock_sock(), but it is really
6088 			 * marginal case.
6089 			 */
6090 			inet_csk_reset_keepalive_timer(sk, tmo);
6091 		} else {
6092 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6093 			goto discard;
6094 		}
6095 		break;
6096 	}
6097 
6098 	case TCP_CLOSING:
6099 		if (tp->snd_una == tp->write_seq) {
6100 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6101 			goto discard;
6102 		}
6103 		break;
6104 
6105 	case TCP_LAST_ACK:
6106 		if (tp->snd_una == tp->write_seq) {
6107 			tcp_update_metrics(sk);
6108 			tcp_done(sk);
6109 			goto discard;
6110 		}
6111 		break;
6112 	}
6113 
6114 	/* step 6: check the URG bit */
6115 	tcp_urg(sk, skb, th);
6116 
6117 	/* step 7: process the segment text */
6118 	switch (sk->sk_state) {
6119 	case TCP_CLOSE_WAIT:
6120 	case TCP_CLOSING:
6121 	case TCP_LAST_ACK:
6122 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6123 			break;
6124 	case TCP_FIN_WAIT1:
6125 	case TCP_FIN_WAIT2:
6126 		/* RFC 793 says to queue data in these states,
6127 		 * RFC 1122 says we MUST send a reset.
6128 		 * BSD 4.4 also does reset.
6129 		 */
6130 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6131 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6132 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6133 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6134 				tcp_reset(sk);
6135 				return 1;
6136 			}
6137 		}
6138 		/* Fall through */
6139 	case TCP_ESTABLISHED:
6140 		tcp_data_queue(sk, skb);
6141 		queued = 1;
6142 		break;
6143 	}
6144 
6145 	/* tcp_data could move socket to TIME-WAIT */
6146 	if (sk->sk_state != TCP_CLOSE) {
6147 		tcp_data_snd_check(sk);
6148 		tcp_ack_snd_check(sk);
6149 	}
6150 
6151 	if (!queued) {
6152 discard:
6153 		tcp_drop(sk, skb);
6154 	}
6155 	return 0;
6156 }
6157 EXPORT_SYMBOL(tcp_rcv_state_process);
6158 
pr_drop_req(struct request_sock * req,__u16 port,int family)6159 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6160 {
6161 	struct inet_request_sock *ireq = inet_rsk(req);
6162 
6163 	if (family == AF_INET)
6164 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6165 				    &ireq->ir_rmt_addr, port);
6166 #if IS_ENABLED(CONFIG_IPV6)
6167 	else if (family == AF_INET6)
6168 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6169 				    &ireq->ir_v6_rmt_addr, port);
6170 #endif
6171 }
6172 
6173 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6174  *
6175  * If we receive a SYN packet with these bits set, it means a
6176  * network is playing bad games with TOS bits. In order to
6177  * avoid possible false congestion notifications, we disable
6178  * TCP ECN negotiation.
6179  *
6180  * Exception: tcp_ca wants ECN. This is required for DCTCP
6181  * congestion control: Linux DCTCP asserts ECT on all packets,
6182  * including SYN, which is most optimal solution; however,
6183  * others, such as FreeBSD do not.
6184  */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6185 static void tcp_ecn_create_request(struct request_sock *req,
6186 				   const struct sk_buff *skb,
6187 				   const struct sock *listen_sk,
6188 				   const struct dst_entry *dst)
6189 {
6190 	const struct tcphdr *th = tcp_hdr(skb);
6191 	const struct net *net = sock_net(listen_sk);
6192 	bool th_ecn = th->ece && th->cwr;
6193 	bool ect, ecn_ok;
6194 	u32 ecn_ok_dst;
6195 
6196 	if (!th_ecn)
6197 		return;
6198 
6199 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6200 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6201 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6202 
6203 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6204 	    (ecn_ok_dst & DST_FEATURE_ECN_CA))
6205 		inet_rsk(req)->ecn_ok = 1;
6206 }
6207 
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6208 static void tcp_openreq_init(struct request_sock *req,
6209 			     const struct tcp_options_received *rx_opt,
6210 			     struct sk_buff *skb, const struct sock *sk)
6211 {
6212 	struct inet_request_sock *ireq = inet_rsk(req);
6213 
6214 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6215 	req->cookie_ts = 0;
6216 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6217 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6218 	skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6219 	tcp_rsk(req)->last_oow_ack_time = 0;
6220 	req->mss = rx_opt->mss_clamp;
6221 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6222 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6223 	ireq->sack_ok = rx_opt->sack_ok;
6224 	ireq->snd_wscale = rx_opt->snd_wscale;
6225 	ireq->wscale_ok = rx_opt->wscale_ok;
6226 	ireq->acked = 0;
6227 	ireq->ecn_ok = 0;
6228 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6229 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6230 	ireq->ir_mark = inet_request_mark(sk, skb);
6231 }
6232 
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6233 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6234 				      struct sock *sk_listener,
6235 				      bool attach_listener)
6236 {
6237 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6238 					       attach_listener);
6239 
6240 	if (req) {
6241 		struct inet_request_sock *ireq = inet_rsk(req);
6242 
6243 		kmemcheck_annotate_bitfield(ireq, flags);
6244 		ireq->ireq_opt = NULL;
6245 #if IS_ENABLED(CONFIG_IPV6)
6246 		ireq->pktopts = NULL;
6247 #endif
6248 		atomic64_set(&ireq->ir_cookie, 0);
6249 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6250 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6251 		ireq->ireq_family = sk_listener->sk_family;
6252 	}
6253 
6254 	return req;
6255 }
6256 EXPORT_SYMBOL(inet_reqsk_alloc);
6257 
6258 /*
6259  * Return true if a syncookie should be sent
6260  */
tcp_syn_flood_action(const struct sock * sk,const struct sk_buff * skb,const char * proto)6261 static bool tcp_syn_flood_action(const struct sock *sk,
6262 				 const struct sk_buff *skb,
6263 				 const char *proto)
6264 {
6265 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6266 	const char *msg = "Dropping request";
6267 	bool want_cookie = false;
6268 	struct net *net = sock_net(sk);
6269 
6270 #ifdef CONFIG_SYN_COOKIES
6271 	if (net->ipv4.sysctl_tcp_syncookies) {
6272 		msg = "Sending cookies";
6273 		want_cookie = true;
6274 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6275 	} else
6276 #endif
6277 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6278 
6279 	if (!queue->synflood_warned &&
6280 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6281 	    xchg(&queue->synflood_warned, 1) == 0)
6282 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6283 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6284 
6285 	return want_cookie;
6286 }
6287 
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6288 static void tcp_reqsk_record_syn(const struct sock *sk,
6289 				 struct request_sock *req,
6290 				 const struct sk_buff *skb)
6291 {
6292 	if (tcp_sk(sk)->save_syn) {
6293 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6294 		u32 *copy;
6295 
6296 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6297 		if (copy) {
6298 			copy[0] = len;
6299 			memcpy(&copy[1], skb_network_header(skb), len);
6300 			req->saved_syn = copy;
6301 		}
6302 	}
6303 }
6304 
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6305 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6306 		     const struct tcp_request_sock_ops *af_ops,
6307 		     struct sock *sk, struct sk_buff *skb)
6308 {
6309 	struct tcp_fastopen_cookie foc = { .len = -1 };
6310 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6311 	struct tcp_options_received tmp_opt;
6312 	struct tcp_sock *tp = tcp_sk(sk);
6313 	struct net *net = sock_net(sk);
6314 	struct sock *fastopen_sk = NULL;
6315 	struct dst_entry *dst = NULL;
6316 	struct request_sock *req;
6317 	bool want_cookie = false;
6318 	struct flowi fl;
6319 
6320 	/* TW buckets are converted to open requests without
6321 	 * limitations, they conserve resources and peer is
6322 	 * evidently real one.
6323 	 */
6324 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6325 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6326 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6327 		if (!want_cookie)
6328 			goto drop;
6329 	}
6330 
6331 
6332 	/* Accept backlog is full. If we have already queued enough
6333 	 * of warm entries in syn queue, drop request. It is better than
6334 	 * clogging syn queue with openreqs with exponentially increasing
6335 	 * timeout.
6336 	 */
6337 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6338 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6339 		goto drop;
6340 	}
6341 
6342 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6343 	if (!req)
6344 		goto drop;
6345 
6346 	tcp_rsk(req)->af_specific = af_ops;
6347 
6348 	tcp_clear_options(&tmp_opt);
6349 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6350 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6351 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6352 
6353 	if (want_cookie && !tmp_opt.saw_tstamp)
6354 		tcp_clear_options(&tmp_opt);
6355 
6356 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6357 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6358 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6359 
6360 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6361 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6362 
6363 	af_ops->init_req(req, sk, skb);
6364 
6365 	if (security_inet_conn_request(sk, skb, req))
6366 		goto drop_and_free;
6367 
6368 	if (!want_cookie && !isn) {
6369 		/* VJ's idea. We save last timestamp seen
6370 		 * from the destination in peer table, when entering
6371 		 * state TIME-WAIT, and check against it before
6372 		 * accepting new connection request.
6373 		 *
6374 		 * If "isn" is not zero, this request hit alive
6375 		 * timewait bucket, so that all the necessary checks
6376 		 * are made in the function processing timewait state.
6377 		 */
6378 		if (tcp_death_row.sysctl_tw_recycle) {
6379 			bool strict;
6380 
6381 			dst = af_ops->route_req(sk, &fl, req, &strict);
6382 
6383 			if (dst && strict &&
6384 			    !tcp_peer_is_proven(req, dst, true,
6385 						tmp_opt.saw_tstamp)) {
6386 				NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6387 				goto drop_and_release;
6388 			}
6389 		}
6390 		/* Kill the following clause, if you dislike this way. */
6391 		else if (!net->ipv4.sysctl_tcp_syncookies &&
6392 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6393 			  (sysctl_max_syn_backlog >> 2)) &&
6394 			 !tcp_peer_is_proven(req, dst, false,
6395 					     tmp_opt.saw_tstamp)) {
6396 			/* Without syncookies last quarter of
6397 			 * backlog is filled with destinations,
6398 			 * proven to be alive.
6399 			 * It means that we continue to communicate
6400 			 * to destinations, already remembered
6401 			 * to the moment of synflood.
6402 			 */
6403 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6404 				    rsk_ops->family);
6405 			goto drop_and_release;
6406 		}
6407 
6408 		isn = af_ops->init_seq(skb);
6409 	}
6410 	if (!dst) {
6411 		dst = af_ops->route_req(sk, &fl, req, NULL);
6412 		if (!dst)
6413 			goto drop_and_free;
6414 	}
6415 
6416 	tcp_ecn_create_request(req, skb, sk, dst);
6417 
6418 	if (want_cookie) {
6419 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6420 		req->cookie_ts = tmp_opt.tstamp_ok;
6421 		if (!tmp_opt.tstamp_ok)
6422 			inet_rsk(req)->ecn_ok = 0;
6423 	}
6424 
6425 	tcp_rsk(req)->snt_isn = isn;
6426 	tcp_rsk(req)->txhash = net_tx_rndhash();
6427 	tcp_openreq_init_rwin(req, sk, dst);
6428 	if (!want_cookie) {
6429 		tcp_reqsk_record_syn(sk, req, skb);
6430 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6431 	}
6432 	if (fastopen_sk) {
6433 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6434 				    &foc, TCP_SYNACK_FASTOPEN);
6435 		/* Add the child socket directly into the accept queue */
6436 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6437 		sk->sk_data_ready(sk);
6438 		bh_unlock_sock(fastopen_sk);
6439 		sock_put(fastopen_sk);
6440 	} else {
6441 		tcp_rsk(req)->tfo_listener = false;
6442 		if (!want_cookie)
6443 			inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6444 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6445 				    !want_cookie ? TCP_SYNACK_NORMAL :
6446 						   TCP_SYNACK_COOKIE);
6447 		if (want_cookie) {
6448 			reqsk_free(req);
6449 			return 0;
6450 		}
6451 	}
6452 	reqsk_put(req);
6453 	return 0;
6454 
6455 drop_and_release:
6456 	dst_release(dst);
6457 drop_and_free:
6458 	reqsk_free(req);
6459 drop:
6460 	tcp_listendrop(sk);
6461 	return 0;
6462 }
6463 EXPORT_SYMBOL(tcp_conn_request);
6464