1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 1000;
91
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
97
98 int sysctl_tcp_thin_dupack __read_mostly;
99
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_early_retrans __read_mostly = 3;
102 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
103 int sysctl_tcp_default_init_rwnd __read_mostly = TCP_INIT_CWND * 2;
104
105 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
106 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
107 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
108 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
109 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
110 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
111 #define FLAG_ECE 0x40 /* ECE in this ACK */
112 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
113 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
114 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
115 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
116 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
117 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
118 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
119 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
120
121 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
122 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
123 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
124 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
125
126 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
127 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
128
129 #define REXMIT_NONE 0 /* no loss recovery to do */
130 #define REXMIT_LOST 1 /* retransmit packets marked lost */
131 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
132
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb)133 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb)
134 {
135 static bool __once __read_mostly;
136
137 if (!__once) {
138 struct net_device *dev;
139
140 __once = true;
141
142 rcu_read_lock();
143 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
144 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
145 dev ? dev->name : "Unknown driver");
146 rcu_read_unlock();
147 }
148 }
149
150 /* Adapt the MSS value used to make delayed ack decision to the
151 * real world.
152 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)153 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
154 {
155 struct inet_connection_sock *icsk = inet_csk(sk);
156 const unsigned int lss = icsk->icsk_ack.last_seg_size;
157 unsigned int len;
158
159 icsk->icsk_ack.last_seg_size = 0;
160
161 /* skb->len may jitter because of SACKs, even if peer
162 * sends good full-sized frames.
163 */
164 len = skb_shinfo(skb)->gso_size ? : skb->len;
165 if (len >= icsk->icsk_ack.rcv_mss) {
166 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
167 tcp_sk(sk)->advmss);
168 if (unlikely(icsk->icsk_ack.rcv_mss != len))
169 tcp_gro_dev_warn(sk, skb);
170 } else {
171 /* Otherwise, we make more careful check taking into account,
172 * that SACKs block is variable.
173 *
174 * "len" is invariant segment length, including TCP header.
175 */
176 len += skb->data - skb_transport_header(skb);
177 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
178 /* If PSH is not set, packet should be
179 * full sized, provided peer TCP is not badly broken.
180 * This observation (if it is correct 8)) allows
181 * to handle super-low mtu links fairly.
182 */
183 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
184 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
185 /* Subtract also invariant (if peer is RFC compliant),
186 * tcp header plus fixed timestamp option length.
187 * Resulting "len" is MSS free of SACK jitter.
188 */
189 len -= tcp_sk(sk)->tcp_header_len;
190 icsk->icsk_ack.last_seg_size = len;
191 if (len == lss) {
192 icsk->icsk_ack.rcv_mss = len;
193 return;
194 }
195 }
196 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
197 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
198 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
199 }
200 }
201
tcp_incr_quickack(struct sock * sk)202 static void tcp_incr_quickack(struct sock *sk)
203 {
204 struct inet_connection_sock *icsk = inet_csk(sk);
205 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
206
207 if (quickacks == 0)
208 quickacks = 2;
209 if (quickacks > icsk->icsk_ack.quick)
210 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
211 }
212
tcp_enter_quickack_mode(struct sock * sk)213 static void tcp_enter_quickack_mode(struct sock *sk)
214 {
215 struct inet_connection_sock *icsk = inet_csk(sk);
216 tcp_incr_quickack(sk);
217 icsk->icsk_ack.pingpong = 0;
218 icsk->icsk_ack.ato = TCP_ATO_MIN;
219 }
220
221 /* Send ACKs quickly, if "quick" count is not exhausted
222 * and the session is not interactive.
223 */
224
tcp_in_quickack_mode(struct sock * sk)225 static bool tcp_in_quickack_mode(struct sock *sk)
226 {
227 const struct inet_connection_sock *icsk = inet_csk(sk);
228 const struct dst_entry *dst = __sk_dst_get(sk);
229
230 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
231 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
232 }
233
tcp_ecn_queue_cwr(struct tcp_sock * tp)234 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
235 {
236 if (tp->ecn_flags & TCP_ECN_OK)
237 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
238 }
239
tcp_ecn_accept_cwr(struct tcp_sock * tp,const struct sk_buff * skb)240 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
241 {
242 if (tcp_hdr(skb)->cwr)
243 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
244 }
245
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)246 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
247 {
248 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
249 }
250
__tcp_ecn_check_ce(struct tcp_sock * tp,const struct sk_buff * skb)251 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
252 {
253 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
254 case INET_ECN_NOT_ECT:
255 /* Funny extension: if ECT is not set on a segment,
256 * and we already seen ECT on a previous segment,
257 * it is probably a retransmit.
258 */
259 if (tp->ecn_flags & TCP_ECN_SEEN)
260 tcp_enter_quickack_mode((struct sock *)tp);
261 break;
262 case INET_ECN_CE:
263 if (tcp_ca_needs_ecn((struct sock *)tp))
264 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
265
266 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
267 /* Better not delay acks, sender can have a very low cwnd */
268 tcp_enter_quickack_mode((struct sock *)tp);
269 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
270 }
271 tp->ecn_flags |= TCP_ECN_SEEN;
272 break;
273 default:
274 if (tcp_ca_needs_ecn((struct sock *)tp))
275 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
276 tp->ecn_flags |= TCP_ECN_SEEN;
277 break;
278 }
279 }
280
tcp_ecn_check_ce(struct tcp_sock * tp,const struct sk_buff * skb)281 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
282 {
283 if (tp->ecn_flags & TCP_ECN_OK)
284 __tcp_ecn_check_ce(tp, skb);
285 }
286
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)287 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
288 {
289 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
290 tp->ecn_flags &= ~TCP_ECN_OK;
291 }
292
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)293 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
294 {
295 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
296 tp->ecn_flags &= ~TCP_ECN_OK;
297 }
298
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)299 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
300 {
301 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
302 return true;
303 return false;
304 }
305
306 /* Buffer size and advertised window tuning.
307 *
308 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
309 */
310
tcp_sndbuf_expand(struct sock * sk)311 static void tcp_sndbuf_expand(struct sock *sk)
312 {
313 const struct tcp_sock *tp = tcp_sk(sk);
314 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
315 int sndmem, per_mss;
316 u32 nr_segs;
317
318 /* Worst case is non GSO/TSO : each frame consumes one skb
319 * and skb->head is kmalloced using power of two area of memory
320 */
321 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
322 MAX_TCP_HEADER +
323 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
324
325 per_mss = roundup_pow_of_two(per_mss) +
326 SKB_DATA_ALIGN(sizeof(struct sk_buff));
327
328 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
329 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
330
331 /* Fast Recovery (RFC 5681 3.2) :
332 * Cubic needs 1.7 factor, rounded to 2 to include
333 * extra cushion (application might react slowly to POLLOUT)
334 */
335 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
336 sndmem *= nr_segs * per_mss;
337
338 if (sk->sk_sndbuf < sndmem)
339 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
340 }
341
342 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
343 *
344 * All tcp_full_space() is split to two parts: "network" buffer, allocated
345 * forward and advertised in receiver window (tp->rcv_wnd) and
346 * "application buffer", required to isolate scheduling/application
347 * latencies from network.
348 * window_clamp is maximal advertised window. It can be less than
349 * tcp_full_space(), in this case tcp_full_space() - window_clamp
350 * is reserved for "application" buffer. The less window_clamp is
351 * the smoother our behaviour from viewpoint of network, but the lower
352 * throughput and the higher sensitivity of the connection to losses. 8)
353 *
354 * rcv_ssthresh is more strict window_clamp used at "slow start"
355 * phase to predict further behaviour of this connection.
356 * It is used for two goals:
357 * - to enforce header prediction at sender, even when application
358 * requires some significant "application buffer". It is check #1.
359 * - to prevent pruning of receive queue because of misprediction
360 * of receiver window. Check #2.
361 *
362 * The scheme does not work when sender sends good segments opening
363 * window and then starts to feed us spaghetti. But it should work
364 * in common situations. Otherwise, we have to rely on queue collapsing.
365 */
366
367 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb)368 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
369 {
370 struct tcp_sock *tp = tcp_sk(sk);
371 /* Optimize this! */
372 int truesize = tcp_win_from_space(skb->truesize) >> 1;
373 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
374
375 while (tp->rcv_ssthresh <= window) {
376 if (truesize <= skb->len)
377 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
378
379 truesize >>= 1;
380 window >>= 1;
381 }
382 return 0;
383 }
384
tcp_grow_window(struct sock * sk,const struct sk_buff * skb)385 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
386 {
387 struct tcp_sock *tp = tcp_sk(sk);
388
389 /* Check #1 */
390 if (tp->rcv_ssthresh < tp->window_clamp &&
391 (int)tp->rcv_ssthresh < tcp_space(sk) &&
392 !tcp_under_memory_pressure(sk)) {
393 int incr;
394
395 /* Check #2. Increase window, if skb with such overhead
396 * will fit to rcvbuf in future.
397 */
398 if (tcp_win_from_space(skb->truesize) <= skb->len)
399 incr = 2 * tp->advmss;
400 else
401 incr = __tcp_grow_window(sk, skb);
402
403 if (incr) {
404 incr = max_t(int, incr, 2 * skb->len);
405 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
406 tp->window_clamp);
407 inet_csk(sk)->icsk_ack.quick |= 1;
408 }
409 }
410 }
411
412 /* 3. Tuning rcvbuf, when connection enters established state. */
tcp_fixup_rcvbuf(struct sock * sk)413 static void tcp_fixup_rcvbuf(struct sock *sk)
414 {
415 u32 mss = tcp_sk(sk)->advmss;
416 int rcvmem;
417
418 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
419 tcp_default_init_rwnd(mss);
420
421 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
422 * Allow enough cushion so that sender is not limited by our window
423 */
424 if (sysctl_tcp_moderate_rcvbuf)
425 rcvmem <<= 2;
426
427 if (sk->sk_rcvbuf < rcvmem)
428 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
429 }
430
431 /* 4. Try to fixup all. It is made immediately after connection enters
432 * established state.
433 */
tcp_init_buffer_space(struct sock * sk)434 void tcp_init_buffer_space(struct sock *sk)
435 {
436 struct tcp_sock *tp = tcp_sk(sk);
437 int maxwin;
438
439 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
440 tcp_fixup_rcvbuf(sk);
441 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
442 tcp_sndbuf_expand(sk);
443
444 tp->rcvq_space.space = tp->rcv_wnd;
445 tp->rcvq_space.time = tcp_time_stamp;
446 tp->rcvq_space.seq = tp->copied_seq;
447
448 maxwin = tcp_full_space(sk);
449
450 if (tp->window_clamp >= maxwin) {
451 tp->window_clamp = maxwin;
452
453 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
454 tp->window_clamp = max(maxwin -
455 (maxwin >> sysctl_tcp_app_win),
456 4 * tp->advmss);
457 }
458
459 /* Force reservation of one segment. */
460 if (sysctl_tcp_app_win &&
461 tp->window_clamp > 2 * tp->advmss &&
462 tp->window_clamp + tp->advmss > maxwin)
463 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
464
465 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
466 tp->snd_cwnd_stamp = tcp_time_stamp;
467 }
468
469 /* 5. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)470 static void tcp_clamp_window(struct sock *sk)
471 {
472 struct tcp_sock *tp = tcp_sk(sk);
473 struct inet_connection_sock *icsk = inet_csk(sk);
474
475 icsk->icsk_ack.quick = 0;
476
477 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
478 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
479 !tcp_under_memory_pressure(sk) &&
480 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
481 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
482 sysctl_tcp_rmem[2]);
483 }
484 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
485 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
486 }
487
488 /* Initialize RCV_MSS value.
489 * RCV_MSS is an our guess about MSS used by the peer.
490 * We haven't any direct information about the MSS.
491 * It's better to underestimate the RCV_MSS rather than overestimate.
492 * Overestimations make us ACKing less frequently than needed.
493 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
494 */
tcp_initialize_rcv_mss(struct sock * sk)495 void tcp_initialize_rcv_mss(struct sock *sk)
496 {
497 const struct tcp_sock *tp = tcp_sk(sk);
498 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
499
500 hint = min(hint, tp->rcv_wnd / 2);
501 hint = min(hint, TCP_MSS_DEFAULT);
502 hint = max(hint, TCP_MIN_MSS);
503
504 inet_csk(sk)->icsk_ack.rcv_mss = hint;
505 }
506 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
507
508 /* Receiver "autotuning" code.
509 *
510 * The algorithm for RTT estimation w/o timestamps is based on
511 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
512 * <http://public.lanl.gov/radiant/pubs.html#DRS>
513 *
514 * More detail on this code can be found at
515 * <http://staff.psc.edu/jheffner/>,
516 * though this reference is out of date. A new paper
517 * is pending.
518 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)519 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
520 {
521 u32 new_sample = tp->rcv_rtt_est.rtt;
522 long m = sample;
523
524 if (m == 0)
525 m = 1;
526
527 if (new_sample != 0) {
528 /* If we sample in larger samples in the non-timestamp
529 * case, we could grossly overestimate the RTT especially
530 * with chatty applications or bulk transfer apps which
531 * are stalled on filesystem I/O.
532 *
533 * Also, since we are only going for a minimum in the
534 * non-timestamp case, we do not smooth things out
535 * else with timestamps disabled convergence takes too
536 * long.
537 */
538 if (!win_dep) {
539 m -= (new_sample >> 3);
540 new_sample += m;
541 } else {
542 m <<= 3;
543 if (m < new_sample)
544 new_sample = m;
545 }
546 } else {
547 /* No previous measure. */
548 new_sample = m << 3;
549 }
550
551 if (tp->rcv_rtt_est.rtt != new_sample)
552 tp->rcv_rtt_est.rtt = new_sample;
553 }
554
tcp_rcv_rtt_measure(struct tcp_sock * tp)555 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
556 {
557 if (tp->rcv_rtt_est.time == 0)
558 goto new_measure;
559 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
560 return;
561 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
562
563 new_measure:
564 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
565 tp->rcv_rtt_est.time = tcp_time_stamp;
566 }
567
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)568 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
569 const struct sk_buff *skb)
570 {
571 struct tcp_sock *tp = tcp_sk(sk);
572 if (tp->rx_opt.rcv_tsecr &&
573 (TCP_SKB_CB(skb)->end_seq -
574 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
575 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
576 }
577
578 /*
579 * This function should be called every time data is copied to user space.
580 * It calculates the appropriate TCP receive buffer space.
581 */
tcp_rcv_space_adjust(struct sock * sk)582 void tcp_rcv_space_adjust(struct sock *sk)
583 {
584 struct tcp_sock *tp = tcp_sk(sk);
585 int time;
586 int copied;
587
588 time = tcp_time_stamp - tp->rcvq_space.time;
589 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
590 return;
591
592 /* Number of bytes copied to user in last RTT */
593 copied = tp->copied_seq - tp->rcvq_space.seq;
594 if (copied <= tp->rcvq_space.space)
595 goto new_measure;
596
597 /* A bit of theory :
598 * copied = bytes received in previous RTT, our base window
599 * To cope with packet losses, we need a 2x factor
600 * To cope with slow start, and sender growing its cwin by 100 %
601 * every RTT, we need a 4x factor, because the ACK we are sending
602 * now is for the next RTT, not the current one :
603 * <prev RTT . ><current RTT .. ><next RTT .... >
604 */
605
606 if (sysctl_tcp_moderate_rcvbuf &&
607 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
608 int rcvwin, rcvmem, rcvbuf;
609
610 /* minimal window to cope with packet losses, assuming
611 * steady state. Add some cushion because of small variations.
612 */
613 rcvwin = (copied << 1) + 16 * tp->advmss;
614
615 /* If rate increased by 25%,
616 * assume slow start, rcvwin = 3 * copied
617 * If rate increased by 50%,
618 * assume sender can use 2x growth, rcvwin = 4 * copied
619 */
620 if (copied >=
621 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
622 if (copied >=
623 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
624 rcvwin <<= 1;
625 else
626 rcvwin += (rcvwin >> 1);
627 }
628
629 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
630 while (tcp_win_from_space(rcvmem) < tp->advmss)
631 rcvmem += 128;
632
633 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
634 if (rcvbuf > sk->sk_rcvbuf) {
635 sk->sk_rcvbuf = rcvbuf;
636
637 /* Make the window clamp follow along. */
638 tp->window_clamp = rcvwin;
639 }
640 }
641 tp->rcvq_space.space = copied;
642
643 new_measure:
644 tp->rcvq_space.seq = tp->copied_seq;
645 tp->rcvq_space.time = tcp_time_stamp;
646 }
647
648 /* There is something which you must keep in mind when you analyze the
649 * behavior of the tp->ato delayed ack timeout interval. When a
650 * connection starts up, we want to ack as quickly as possible. The
651 * problem is that "good" TCP's do slow start at the beginning of data
652 * transmission. The means that until we send the first few ACK's the
653 * sender will sit on his end and only queue most of his data, because
654 * he can only send snd_cwnd unacked packets at any given time. For
655 * each ACK we send, he increments snd_cwnd and transmits more of his
656 * queue. -DaveM
657 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)658 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
659 {
660 struct tcp_sock *tp = tcp_sk(sk);
661 struct inet_connection_sock *icsk = inet_csk(sk);
662 u32 now;
663
664 inet_csk_schedule_ack(sk);
665
666 tcp_measure_rcv_mss(sk, skb);
667
668 tcp_rcv_rtt_measure(tp);
669
670 now = tcp_time_stamp;
671
672 if (!icsk->icsk_ack.ato) {
673 /* The _first_ data packet received, initialize
674 * delayed ACK engine.
675 */
676 tcp_incr_quickack(sk);
677 icsk->icsk_ack.ato = TCP_ATO_MIN;
678 } else {
679 int m = now - icsk->icsk_ack.lrcvtime;
680
681 if (m <= TCP_ATO_MIN / 2) {
682 /* The fastest case is the first. */
683 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
684 } else if (m < icsk->icsk_ack.ato) {
685 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
686 if (icsk->icsk_ack.ato > icsk->icsk_rto)
687 icsk->icsk_ack.ato = icsk->icsk_rto;
688 } else if (m > icsk->icsk_rto) {
689 /* Too long gap. Apparently sender failed to
690 * restart window, so that we send ACKs quickly.
691 */
692 tcp_incr_quickack(sk);
693 sk_mem_reclaim(sk);
694 }
695 }
696 icsk->icsk_ack.lrcvtime = now;
697
698 tcp_ecn_check_ce(tp, skb);
699
700 if (skb->len >= 128)
701 tcp_grow_window(sk, skb);
702 }
703
704 /* Called to compute a smoothed rtt estimate. The data fed to this
705 * routine either comes from timestamps, or from segments that were
706 * known _not_ to have been retransmitted [see Karn/Partridge
707 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
708 * piece by Van Jacobson.
709 * NOTE: the next three routines used to be one big routine.
710 * To save cycles in the RFC 1323 implementation it was better to break
711 * it up into three procedures. -- erics
712 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)713 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
714 {
715 struct tcp_sock *tp = tcp_sk(sk);
716 long m = mrtt_us; /* RTT */
717 u32 srtt = tp->srtt_us;
718
719 /* The following amusing code comes from Jacobson's
720 * article in SIGCOMM '88. Note that rtt and mdev
721 * are scaled versions of rtt and mean deviation.
722 * This is designed to be as fast as possible
723 * m stands for "measurement".
724 *
725 * On a 1990 paper the rto value is changed to:
726 * RTO = rtt + 4 * mdev
727 *
728 * Funny. This algorithm seems to be very broken.
729 * These formulae increase RTO, when it should be decreased, increase
730 * too slowly, when it should be increased quickly, decrease too quickly
731 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
732 * does not matter how to _calculate_ it. Seems, it was trap
733 * that VJ failed to avoid. 8)
734 */
735 if (srtt != 0) {
736 m -= (srtt >> 3); /* m is now error in rtt est */
737 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
738 if (m < 0) {
739 m = -m; /* m is now abs(error) */
740 m -= (tp->mdev_us >> 2); /* similar update on mdev */
741 /* This is similar to one of Eifel findings.
742 * Eifel blocks mdev updates when rtt decreases.
743 * This solution is a bit different: we use finer gain
744 * for mdev in this case (alpha*beta).
745 * Like Eifel it also prevents growth of rto,
746 * but also it limits too fast rto decreases,
747 * happening in pure Eifel.
748 */
749 if (m > 0)
750 m >>= 3;
751 } else {
752 m -= (tp->mdev_us >> 2); /* similar update on mdev */
753 }
754 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
755 if (tp->mdev_us > tp->mdev_max_us) {
756 tp->mdev_max_us = tp->mdev_us;
757 if (tp->mdev_max_us > tp->rttvar_us)
758 tp->rttvar_us = tp->mdev_max_us;
759 }
760 if (after(tp->snd_una, tp->rtt_seq)) {
761 if (tp->mdev_max_us < tp->rttvar_us)
762 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
763 tp->rtt_seq = tp->snd_nxt;
764 tp->mdev_max_us = tcp_rto_min_us(sk);
765 }
766 } else {
767 /* no previous measure. */
768 srtt = m << 3; /* take the measured time to be rtt */
769 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
770 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
771 tp->mdev_max_us = tp->rttvar_us;
772 tp->rtt_seq = tp->snd_nxt;
773 }
774 tp->srtt_us = max(1U, srtt);
775 }
776
777 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
778 * Note: TCP stack does not yet implement pacing.
779 * FQ packet scheduler can be used to implement cheap but effective
780 * TCP pacing, to smooth the burst on large writes when packets
781 * in flight is significantly lower than cwnd (or rwin)
782 */
783 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
784 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
785
tcp_update_pacing_rate(struct sock * sk)786 static void tcp_update_pacing_rate(struct sock *sk)
787 {
788 const struct tcp_sock *tp = tcp_sk(sk);
789 u64 rate;
790
791 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
792 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
793
794 /* current rate is (cwnd * mss) / srtt
795 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
796 * In Congestion Avoidance phase, set it to 120 % the current rate.
797 *
798 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
799 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
800 * end of slow start and should slow down.
801 */
802 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
803 rate *= sysctl_tcp_pacing_ss_ratio;
804 else
805 rate *= sysctl_tcp_pacing_ca_ratio;
806
807 rate *= max(tp->snd_cwnd, tp->packets_out);
808
809 if (likely(tp->srtt_us))
810 do_div(rate, tp->srtt_us);
811
812 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
813 * without any lock. We want to make sure compiler wont store
814 * intermediate values in this location.
815 */
816 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
817 sk->sk_max_pacing_rate);
818 }
819
820 /* Calculate rto without backoff. This is the second half of Van Jacobson's
821 * routine referred to above.
822 */
tcp_set_rto(struct sock * sk)823 static void tcp_set_rto(struct sock *sk)
824 {
825 const struct tcp_sock *tp = tcp_sk(sk);
826 /* Old crap is replaced with new one. 8)
827 *
828 * More seriously:
829 * 1. If rtt variance happened to be less 50msec, it is hallucination.
830 * It cannot be less due to utterly erratic ACK generation made
831 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
832 * to do with delayed acks, because at cwnd>2 true delack timeout
833 * is invisible. Actually, Linux-2.4 also generates erratic
834 * ACKs in some circumstances.
835 */
836 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
837
838 /* 2. Fixups made earlier cannot be right.
839 * If we do not estimate RTO correctly without them,
840 * all the algo is pure shit and should be replaced
841 * with correct one. It is exactly, which we pretend to do.
842 */
843
844 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
845 * guarantees that rto is higher.
846 */
847 tcp_bound_rto(sk);
848 }
849
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)850 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
851 {
852 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
853
854 if (!cwnd)
855 cwnd = TCP_INIT_CWND;
856 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
857 }
858
859 /*
860 * Packet counting of FACK is based on in-order assumptions, therefore TCP
861 * disables it when reordering is detected
862 */
tcp_disable_fack(struct tcp_sock * tp)863 void tcp_disable_fack(struct tcp_sock *tp)
864 {
865 /* RFC3517 uses different metric in lost marker => reset on change */
866 if (tcp_is_fack(tp))
867 tp->lost_skb_hint = NULL;
868 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
869 }
870
871 /* Take a notice that peer is sending D-SACKs */
tcp_dsack_seen(struct tcp_sock * tp)872 static void tcp_dsack_seen(struct tcp_sock *tp)
873 {
874 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
875 }
876
tcp_update_reordering(struct sock * sk,const int metric,const int ts)877 static void tcp_update_reordering(struct sock *sk, const int metric,
878 const int ts)
879 {
880 struct tcp_sock *tp = tcp_sk(sk);
881 if (metric > tp->reordering) {
882 int mib_idx;
883
884 tp->reordering = min(sysctl_tcp_max_reordering, metric);
885
886 /* This exciting event is worth to be remembered. 8) */
887 if (ts)
888 mib_idx = LINUX_MIB_TCPTSREORDER;
889 else if (tcp_is_reno(tp))
890 mib_idx = LINUX_MIB_TCPRENOREORDER;
891 else if (tcp_is_fack(tp))
892 mib_idx = LINUX_MIB_TCPFACKREORDER;
893 else
894 mib_idx = LINUX_MIB_TCPSACKREORDER;
895
896 NET_INC_STATS(sock_net(sk), mib_idx);
897 #if FASTRETRANS_DEBUG > 1
898 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
899 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
900 tp->reordering,
901 tp->fackets_out,
902 tp->sacked_out,
903 tp->undo_marker ? tp->undo_retrans : 0);
904 #endif
905 tcp_disable_fack(tp);
906 }
907
908 if (metric > 0)
909 tcp_disable_early_retrans(tp);
910 tp->rack.reord = 1;
911 }
912
913 /* This must be called before lost_out is incremented */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)914 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
915 {
916 if (!tp->retransmit_skb_hint ||
917 before(TCP_SKB_CB(skb)->seq,
918 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
919 tp->retransmit_skb_hint = skb;
920
921 if (!tp->lost_out ||
922 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
923 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
924 }
925
926 /* Sum the number of packets on the wire we have marked as lost.
927 * There are two cases we care about here:
928 * a) Packet hasn't been marked lost (nor retransmitted),
929 * and this is the first loss.
930 * b) Packet has been marked both lost and retransmitted,
931 * and this means we think it was lost again.
932 */
tcp_sum_lost(struct tcp_sock * tp,struct sk_buff * skb)933 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
934 {
935 __u8 sacked = TCP_SKB_CB(skb)->sacked;
936
937 if (!(sacked & TCPCB_LOST) ||
938 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
939 tp->lost += tcp_skb_pcount(skb);
940 }
941
tcp_skb_mark_lost(struct tcp_sock * tp,struct sk_buff * skb)942 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
943 {
944 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
945 tcp_verify_retransmit_hint(tp, skb);
946
947 tp->lost_out += tcp_skb_pcount(skb);
948 tcp_sum_lost(tp, skb);
949 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
950 }
951 }
952
tcp_skb_mark_lost_uncond_verify(struct tcp_sock * tp,struct sk_buff * skb)953 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
954 {
955 tcp_verify_retransmit_hint(tp, skb);
956
957 tcp_sum_lost(tp, skb);
958 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
959 tp->lost_out += tcp_skb_pcount(skb);
960 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
961 }
962 }
963
964 /* This procedure tags the retransmission queue when SACKs arrive.
965 *
966 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
967 * Packets in queue with these bits set are counted in variables
968 * sacked_out, retrans_out and lost_out, correspondingly.
969 *
970 * Valid combinations are:
971 * Tag InFlight Description
972 * 0 1 - orig segment is in flight.
973 * S 0 - nothing flies, orig reached receiver.
974 * L 0 - nothing flies, orig lost by net.
975 * R 2 - both orig and retransmit are in flight.
976 * L|R 1 - orig is lost, retransmit is in flight.
977 * S|R 1 - orig reached receiver, retrans is still in flight.
978 * (L|S|R is logically valid, it could occur when L|R is sacked,
979 * but it is equivalent to plain S and code short-curcuits it to S.
980 * L|S is logically invalid, it would mean -1 packet in flight 8))
981 *
982 * These 6 states form finite state machine, controlled by the following events:
983 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
984 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
985 * 3. Loss detection event of two flavors:
986 * A. Scoreboard estimator decided the packet is lost.
987 * A'. Reno "three dupacks" marks head of queue lost.
988 * A''. Its FACK modification, head until snd.fack is lost.
989 * B. SACK arrives sacking SND.NXT at the moment, when the
990 * segment was retransmitted.
991 * 4. D-SACK added new rule: D-SACK changes any tag to S.
992 *
993 * It is pleasant to note, that state diagram turns out to be commutative,
994 * so that we are allowed not to be bothered by order of our actions,
995 * when multiple events arrive simultaneously. (see the function below).
996 *
997 * Reordering detection.
998 * --------------------
999 * Reordering metric is maximal distance, which a packet can be displaced
1000 * in packet stream. With SACKs we can estimate it:
1001 *
1002 * 1. SACK fills old hole and the corresponding segment was not
1003 * ever retransmitted -> reordering. Alas, we cannot use it
1004 * when segment was retransmitted.
1005 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1006 * for retransmitted and already SACKed segment -> reordering..
1007 * Both of these heuristics are not used in Loss state, when we cannot
1008 * account for retransmits accurately.
1009 *
1010 * SACK block validation.
1011 * ----------------------
1012 *
1013 * SACK block range validation checks that the received SACK block fits to
1014 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1015 * Note that SND.UNA is not included to the range though being valid because
1016 * it means that the receiver is rather inconsistent with itself reporting
1017 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1018 * perfectly valid, however, in light of RFC2018 which explicitly states
1019 * that "SACK block MUST reflect the newest segment. Even if the newest
1020 * segment is going to be discarded ...", not that it looks very clever
1021 * in case of head skb. Due to potentional receiver driven attacks, we
1022 * choose to avoid immediate execution of a walk in write queue due to
1023 * reneging and defer head skb's loss recovery to standard loss recovery
1024 * procedure that will eventually trigger (nothing forbids us doing this).
1025 *
1026 * Implements also blockage to start_seq wrap-around. Problem lies in the
1027 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1028 * there's no guarantee that it will be before snd_nxt (n). The problem
1029 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1030 * wrap (s_w):
1031 *
1032 * <- outs wnd -> <- wrapzone ->
1033 * u e n u_w e_w s n_w
1034 * | | | | | | |
1035 * |<------------+------+----- TCP seqno space --------------+---------->|
1036 * ...-- <2^31 ->| |<--------...
1037 * ...---- >2^31 ------>| |<--------...
1038 *
1039 * Current code wouldn't be vulnerable but it's better still to discard such
1040 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1041 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1042 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1043 * equal to the ideal case (infinite seqno space without wrap caused issues).
1044 *
1045 * With D-SACK the lower bound is extended to cover sequence space below
1046 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1047 * again, D-SACK block must not to go across snd_una (for the same reason as
1048 * for the normal SACK blocks, explained above). But there all simplicity
1049 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1050 * fully below undo_marker they do not affect behavior in anyway and can
1051 * therefore be safely ignored. In rare cases (which are more or less
1052 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1053 * fragmentation and packet reordering past skb's retransmission. To consider
1054 * them correctly, the acceptable range must be extended even more though
1055 * the exact amount is rather hard to quantify. However, tp->max_window can
1056 * be used as an exaggerated estimate.
1057 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1058 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1059 u32 start_seq, u32 end_seq)
1060 {
1061 /* Too far in future, or reversed (interpretation is ambiguous) */
1062 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1063 return false;
1064
1065 /* Nasty start_seq wrap-around check (see comments above) */
1066 if (!before(start_seq, tp->snd_nxt))
1067 return false;
1068
1069 /* In outstanding window? ...This is valid exit for D-SACKs too.
1070 * start_seq == snd_una is non-sensical (see comments above)
1071 */
1072 if (after(start_seq, tp->snd_una))
1073 return true;
1074
1075 if (!is_dsack || !tp->undo_marker)
1076 return false;
1077
1078 /* ...Then it's D-SACK, and must reside below snd_una completely */
1079 if (after(end_seq, tp->snd_una))
1080 return false;
1081
1082 if (!before(start_seq, tp->undo_marker))
1083 return true;
1084
1085 /* Too old */
1086 if (!after(end_seq, tp->undo_marker))
1087 return false;
1088
1089 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1090 * start_seq < undo_marker and end_seq >= undo_marker.
1091 */
1092 return !before(start_seq, end_seq - tp->max_window);
1093 }
1094
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una)1095 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1096 struct tcp_sack_block_wire *sp, int num_sacks,
1097 u32 prior_snd_una)
1098 {
1099 struct tcp_sock *tp = tcp_sk(sk);
1100 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1101 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1102 bool dup_sack = false;
1103
1104 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1105 dup_sack = true;
1106 tcp_dsack_seen(tp);
1107 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1108 } else if (num_sacks > 1) {
1109 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1110 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1111
1112 if (!after(end_seq_0, end_seq_1) &&
1113 !before(start_seq_0, start_seq_1)) {
1114 dup_sack = true;
1115 tcp_dsack_seen(tp);
1116 NET_INC_STATS(sock_net(sk),
1117 LINUX_MIB_TCPDSACKOFORECV);
1118 }
1119 }
1120
1121 /* D-SACK for already forgotten data... Do dumb counting. */
1122 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1123 !after(end_seq_0, prior_snd_una) &&
1124 after(end_seq_0, tp->undo_marker))
1125 tp->undo_retrans--;
1126
1127 return dup_sack;
1128 }
1129
1130 struct tcp_sacktag_state {
1131 int reord;
1132 int fack_count;
1133 /* Timestamps for earliest and latest never-retransmitted segment
1134 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1135 * but congestion control should still get an accurate delay signal.
1136 */
1137 struct skb_mstamp first_sackt;
1138 struct skb_mstamp last_sackt;
1139 struct rate_sample *rate;
1140 int flag;
1141 };
1142
1143 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1144 * the incoming SACK may not exactly match but we can find smaller MSS
1145 * aligned portion of it that matches. Therefore we might need to fragment
1146 * which may fail and creates some hassle (caller must handle error case
1147 * returns).
1148 *
1149 * FIXME: this could be merged to shift decision code
1150 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1151 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1152 u32 start_seq, u32 end_seq)
1153 {
1154 int err;
1155 bool in_sack;
1156 unsigned int pkt_len;
1157 unsigned int mss;
1158
1159 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1160 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1161
1162 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1163 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1164 mss = tcp_skb_mss(skb);
1165 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1166
1167 if (!in_sack) {
1168 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1169 if (pkt_len < mss)
1170 pkt_len = mss;
1171 } else {
1172 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1173 if (pkt_len < mss)
1174 return -EINVAL;
1175 }
1176
1177 /* Round if necessary so that SACKs cover only full MSSes
1178 * and/or the remaining small portion (if present)
1179 */
1180 if (pkt_len > mss) {
1181 unsigned int new_len = (pkt_len / mss) * mss;
1182 if (!in_sack && new_len < pkt_len)
1183 new_len += mss;
1184 pkt_len = new_len;
1185 }
1186
1187 if (pkt_len >= skb->len && !in_sack)
1188 return 0;
1189
1190 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1191 if (err < 0)
1192 return err;
1193 }
1194
1195 return in_sack;
1196 }
1197
1198 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,const struct skb_mstamp * xmit_time)1199 static u8 tcp_sacktag_one(struct sock *sk,
1200 struct tcp_sacktag_state *state, u8 sacked,
1201 u32 start_seq, u32 end_seq,
1202 int dup_sack, int pcount,
1203 const struct skb_mstamp *xmit_time)
1204 {
1205 struct tcp_sock *tp = tcp_sk(sk);
1206 int fack_count = state->fack_count;
1207
1208 /* Account D-SACK for retransmitted packet. */
1209 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1210 if (tp->undo_marker && tp->undo_retrans > 0 &&
1211 after(end_seq, tp->undo_marker))
1212 tp->undo_retrans--;
1213 if (sacked & TCPCB_SACKED_ACKED)
1214 state->reord = min(fack_count, state->reord);
1215 }
1216
1217 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1218 if (!after(end_seq, tp->snd_una))
1219 return sacked;
1220
1221 if (!(sacked & TCPCB_SACKED_ACKED)) {
1222 tcp_rack_advance(tp, xmit_time, sacked);
1223
1224 if (sacked & TCPCB_SACKED_RETRANS) {
1225 /* If the segment is not tagged as lost,
1226 * we do not clear RETRANS, believing
1227 * that retransmission is still in flight.
1228 */
1229 if (sacked & TCPCB_LOST) {
1230 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1231 tp->lost_out -= pcount;
1232 tp->retrans_out -= pcount;
1233 }
1234 } else {
1235 if (!(sacked & TCPCB_RETRANS)) {
1236 /* New sack for not retransmitted frame,
1237 * which was in hole. It is reordering.
1238 */
1239 if (before(start_seq,
1240 tcp_highest_sack_seq(tp)))
1241 state->reord = min(fack_count,
1242 state->reord);
1243 if (!after(end_seq, tp->high_seq))
1244 state->flag |= FLAG_ORIG_SACK_ACKED;
1245 if (state->first_sackt.v64 == 0)
1246 state->first_sackt = *xmit_time;
1247 state->last_sackt = *xmit_time;
1248 }
1249
1250 if (sacked & TCPCB_LOST) {
1251 sacked &= ~TCPCB_LOST;
1252 tp->lost_out -= pcount;
1253 }
1254 }
1255
1256 sacked |= TCPCB_SACKED_ACKED;
1257 state->flag |= FLAG_DATA_SACKED;
1258 tp->sacked_out += pcount;
1259 tp->delivered += pcount; /* Out-of-order packets delivered */
1260
1261 fack_count += pcount;
1262
1263 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1264 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1265 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1266 tp->lost_cnt_hint += pcount;
1267
1268 if (fack_count > tp->fackets_out)
1269 tp->fackets_out = fack_count;
1270 }
1271
1272 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1273 * frames and clear it. undo_retrans is decreased above, L|R frames
1274 * are accounted above as well.
1275 */
1276 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1277 sacked &= ~TCPCB_SACKED_RETRANS;
1278 tp->retrans_out -= pcount;
1279 }
1280
1281 return sacked;
1282 }
1283
1284 /* Shift newly-SACKed bytes from this skb to the immediately previous
1285 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1286 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1287 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1288 struct tcp_sacktag_state *state,
1289 unsigned int pcount, int shifted, int mss,
1290 bool dup_sack)
1291 {
1292 struct tcp_sock *tp = tcp_sk(sk);
1293 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1294 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1295 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1296
1297 BUG_ON(!pcount);
1298
1299 /* Adjust counters and hints for the newly sacked sequence
1300 * range but discard the return value since prev is already
1301 * marked. We must tag the range first because the seq
1302 * advancement below implicitly advances
1303 * tcp_highest_sack_seq() when skb is highest_sack.
1304 */
1305 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1306 start_seq, end_seq, dup_sack, pcount,
1307 &skb->skb_mstamp);
1308 tcp_rate_skb_delivered(sk, skb, state->rate);
1309
1310 if (skb == tp->lost_skb_hint)
1311 tp->lost_cnt_hint += pcount;
1312
1313 TCP_SKB_CB(prev)->end_seq += shifted;
1314 TCP_SKB_CB(skb)->seq += shifted;
1315
1316 tcp_skb_pcount_add(prev, pcount);
1317 BUG_ON(tcp_skb_pcount(skb) < pcount);
1318 tcp_skb_pcount_add(skb, -pcount);
1319
1320 /* When we're adding to gso_segs == 1, gso_size will be zero,
1321 * in theory this shouldn't be necessary but as long as DSACK
1322 * code can come after this skb later on it's better to keep
1323 * setting gso_size to something.
1324 */
1325 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1326 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1327
1328 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1329 if (tcp_skb_pcount(skb) <= 1)
1330 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1331
1332 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1333 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1334
1335 if (skb->len > 0) {
1336 BUG_ON(!tcp_skb_pcount(skb));
1337 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1338 return false;
1339 }
1340
1341 /* Whole SKB was eaten :-) */
1342
1343 if (skb == tp->retransmit_skb_hint)
1344 tp->retransmit_skb_hint = prev;
1345 if (skb == tp->lost_skb_hint) {
1346 tp->lost_skb_hint = prev;
1347 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1348 }
1349
1350 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1351 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1352 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1353 TCP_SKB_CB(prev)->end_seq++;
1354
1355 if (skb == tcp_highest_sack(sk))
1356 tcp_advance_highest_sack(sk, skb);
1357
1358 tcp_skb_collapse_tstamp(prev, skb);
1359 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1360 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1361
1362 tcp_unlink_write_queue(skb, sk);
1363 sk_wmem_free_skb(sk, skb);
1364
1365 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1366
1367 return true;
1368 }
1369
1370 /* I wish gso_size would have a bit more sane initialization than
1371 * something-or-zero which complicates things
1372 */
tcp_skb_seglen(const struct sk_buff * skb)1373 static int tcp_skb_seglen(const struct sk_buff *skb)
1374 {
1375 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1376 }
1377
1378 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1379 static int skb_can_shift(const struct sk_buff *skb)
1380 {
1381 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1382 }
1383
1384 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1385 * skb.
1386 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1387 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1388 struct tcp_sacktag_state *state,
1389 u32 start_seq, u32 end_seq,
1390 bool dup_sack)
1391 {
1392 struct tcp_sock *tp = tcp_sk(sk);
1393 struct sk_buff *prev;
1394 int mss;
1395 int pcount = 0;
1396 int len;
1397 int in_sack;
1398
1399 if (!sk_can_gso(sk))
1400 goto fallback;
1401
1402 /* Normally R but no L won't result in plain S */
1403 if (!dup_sack &&
1404 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1405 goto fallback;
1406 if (!skb_can_shift(skb))
1407 goto fallback;
1408 /* This frame is about to be dropped (was ACKed). */
1409 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1410 goto fallback;
1411
1412 /* Can only happen with delayed DSACK + discard craziness */
1413 if (unlikely(skb == tcp_write_queue_head(sk)))
1414 goto fallback;
1415 prev = tcp_write_queue_prev(sk, skb);
1416
1417 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1418 goto fallback;
1419
1420 if (!tcp_skb_can_collapse_to(prev))
1421 goto fallback;
1422
1423 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1424 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1425
1426 if (in_sack) {
1427 len = skb->len;
1428 pcount = tcp_skb_pcount(skb);
1429 mss = tcp_skb_seglen(skb);
1430
1431 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1432 * drop this restriction as unnecessary
1433 */
1434 if (mss != tcp_skb_seglen(prev))
1435 goto fallback;
1436 } else {
1437 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1438 goto noop;
1439 /* CHECKME: This is non-MSS split case only?, this will
1440 * cause skipped skbs due to advancing loop btw, original
1441 * has that feature too
1442 */
1443 if (tcp_skb_pcount(skb) <= 1)
1444 goto noop;
1445
1446 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1447 if (!in_sack) {
1448 /* TODO: head merge to next could be attempted here
1449 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1450 * though it might not be worth of the additional hassle
1451 *
1452 * ...we can probably just fallback to what was done
1453 * previously. We could try merging non-SACKed ones
1454 * as well but it probably isn't going to buy off
1455 * because later SACKs might again split them, and
1456 * it would make skb timestamp tracking considerably
1457 * harder problem.
1458 */
1459 goto fallback;
1460 }
1461
1462 len = end_seq - TCP_SKB_CB(skb)->seq;
1463 BUG_ON(len < 0);
1464 BUG_ON(len > skb->len);
1465
1466 /* MSS boundaries should be honoured or else pcount will
1467 * severely break even though it makes things bit trickier.
1468 * Optimize common case to avoid most of the divides
1469 */
1470 mss = tcp_skb_mss(skb);
1471
1472 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1473 * drop this restriction as unnecessary
1474 */
1475 if (mss != tcp_skb_seglen(prev))
1476 goto fallback;
1477
1478 if (len == mss) {
1479 pcount = 1;
1480 } else if (len < mss) {
1481 goto noop;
1482 } else {
1483 pcount = len / mss;
1484 len = pcount * mss;
1485 }
1486 }
1487
1488 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1489 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1490 goto fallback;
1491
1492 if (!skb_shift(prev, skb, len))
1493 goto fallback;
1494 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1495 goto out;
1496
1497 /* Hole filled allows collapsing with the next as well, this is very
1498 * useful when hole on every nth skb pattern happens
1499 */
1500 if (prev == tcp_write_queue_tail(sk))
1501 goto out;
1502 skb = tcp_write_queue_next(sk, prev);
1503
1504 if (!skb_can_shift(skb) ||
1505 (skb == tcp_send_head(sk)) ||
1506 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1507 (mss != tcp_skb_seglen(skb)))
1508 goto out;
1509
1510 len = skb->len;
1511 if (skb_shift(prev, skb, len)) {
1512 pcount += tcp_skb_pcount(skb);
1513 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1514 }
1515
1516 out:
1517 state->fack_count += pcount;
1518 return prev;
1519
1520 noop:
1521 return skb;
1522
1523 fallback:
1524 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1525 return NULL;
1526 }
1527
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1528 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1529 struct tcp_sack_block *next_dup,
1530 struct tcp_sacktag_state *state,
1531 u32 start_seq, u32 end_seq,
1532 bool dup_sack_in)
1533 {
1534 struct tcp_sock *tp = tcp_sk(sk);
1535 struct sk_buff *tmp;
1536
1537 tcp_for_write_queue_from(skb, sk) {
1538 int in_sack = 0;
1539 bool dup_sack = dup_sack_in;
1540
1541 if (skb == tcp_send_head(sk))
1542 break;
1543
1544 /* queue is in-order => we can short-circuit the walk early */
1545 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1546 break;
1547
1548 if (next_dup &&
1549 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1550 in_sack = tcp_match_skb_to_sack(sk, skb,
1551 next_dup->start_seq,
1552 next_dup->end_seq);
1553 if (in_sack > 0)
1554 dup_sack = true;
1555 }
1556
1557 /* skb reference here is a bit tricky to get right, since
1558 * shifting can eat and free both this skb and the next,
1559 * so not even _safe variant of the loop is enough.
1560 */
1561 if (in_sack <= 0) {
1562 tmp = tcp_shift_skb_data(sk, skb, state,
1563 start_seq, end_seq, dup_sack);
1564 if (tmp) {
1565 if (tmp != skb) {
1566 skb = tmp;
1567 continue;
1568 }
1569
1570 in_sack = 0;
1571 } else {
1572 in_sack = tcp_match_skb_to_sack(sk, skb,
1573 start_seq,
1574 end_seq);
1575 }
1576 }
1577
1578 if (unlikely(in_sack < 0))
1579 break;
1580
1581 if (in_sack) {
1582 TCP_SKB_CB(skb)->sacked =
1583 tcp_sacktag_one(sk,
1584 state,
1585 TCP_SKB_CB(skb)->sacked,
1586 TCP_SKB_CB(skb)->seq,
1587 TCP_SKB_CB(skb)->end_seq,
1588 dup_sack,
1589 tcp_skb_pcount(skb),
1590 &skb->skb_mstamp);
1591 tcp_rate_skb_delivered(sk, skb, state->rate);
1592
1593 if (!before(TCP_SKB_CB(skb)->seq,
1594 tcp_highest_sack_seq(tp)))
1595 tcp_advance_highest_sack(sk, skb);
1596 }
1597
1598 state->fack_count += tcp_skb_pcount(skb);
1599 }
1600 return skb;
1601 }
1602
1603 /* Avoid all extra work that is being done by sacktag while walking in
1604 * a normal way
1605 */
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,struct tcp_sacktag_state * state,u32 skip_to_seq)1606 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1607 struct tcp_sacktag_state *state,
1608 u32 skip_to_seq)
1609 {
1610 tcp_for_write_queue_from(skb, sk) {
1611 if (skb == tcp_send_head(sk))
1612 break;
1613
1614 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1615 break;
1616
1617 state->fack_count += tcp_skb_pcount(skb);
1618 }
1619 return skb;
1620 }
1621
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1622 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1623 struct sock *sk,
1624 struct tcp_sack_block *next_dup,
1625 struct tcp_sacktag_state *state,
1626 u32 skip_to_seq)
1627 {
1628 if (!next_dup)
1629 return skb;
1630
1631 if (before(next_dup->start_seq, skip_to_seq)) {
1632 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1633 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1634 next_dup->start_seq, next_dup->end_seq,
1635 1);
1636 }
1637
1638 return skb;
1639 }
1640
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1641 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1642 {
1643 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1644 }
1645
1646 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1647 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1648 u32 prior_snd_una, struct tcp_sacktag_state *state)
1649 {
1650 struct tcp_sock *tp = tcp_sk(sk);
1651 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1652 TCP_SKB_CB(ack_skb)->sacked);
1653 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1654 struct tcp_sack_block sp[TCP_NUM_SACKS];
1655 struct tcp_sack_block *cache;
1656 struct sk_buff *skb;
1657 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1658 int used_sacks;
1659 bool found_dup_sack = false;
1660 int i, j;
1661 int first_sack_index;
1662
1663 state->flag = 0;
1664 state->reord = tp->packets_out;
1665
1666 if (!tp->sacked_out) {
1667 if (WARN_ON(tp->fackets_out))
1668 tp->fackets_out = 0;
1669 tcp_highest_sack_reset(sk);
1670 }
1671
1672 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1673 num_sacks, prior_snd_una);
1674 if (found_dup_sack) {
1675 state->flag |= FLAG_DSACKING_ACK;
1676 tp->delivered++; /* A spurious retransmission is delivered */
1677 }
1678
1679 /* Eliminate too old ACKs, but take into
1680 * account more or less fresh ones, they can
1681 * contain valid SACK info.
1682 */
1683 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1684 return 0;
1685
1686 if (!tp->packets_out)
1687 goto out;
1688
1689 used_sacks = 0;
1690 first_sack_index = 0;
1691 for (i = 0; i < num_sacks; i++) {
1692 bool dup_sack = !i && found_dup_sack;
1693
1694 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1695 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1696
1697 if (!tcp_is_sackblock_valid(tp, dup_sack,
1698 sp[used_sacks].start_seq,
1699 sp[used_sacks].end_seq)) {
1700 int mib_idx;
1701
1702 if (dup_sack) {
1703 if (!tp->undo_marker)
1704 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1705 else
1706 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1707 } else {
1708 /* Don't count olds caused by ACK reordering */
1709 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1710 !after(sp[used_sacks].end_seq, tp->snd_una))
1711 continue;
1712 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1713 }
1714
1715 NET_INC_STATS(sock_net(sk), mib_idx);
1716 if (i == 0)
1717 first_sack_index = -1;
1718 continue;
1719 }
1720
1721 /* Ignore very old stuff early */
1722 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1723 continue;
1724
1725 used_sacks++;
1726 }
1727
1728 /* order SACK blocks to allow in order walk of the retrans queue */
1729 for (i = used_sacks - 1; i > 0; i--) {
1730 for (j = 0; j < i; j++) {
1731 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1732 swap(sp[j], sp[j + 1]);
1733
1734 /* Track where the first SACK block goes to */
1735 if (j == first_sack_index)
1736 first_sack_index = j + 1;
1737 }
1738 }
1739 }
1740
1741 skb = tcp_write_queue_head(sk);
1742 state->fack_count = 0;
1743 i = 0;
1744
1745 if (!tp->sacked_out) {
1746 /* It's already past, so skip checking against it */
1747 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1748 } else {
1749 cache = tp->recv_sack_cache;
1750 /* Skip empty blocks in at head of the cache */
1751 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1752 !cache->end_seq)
1753 cache++;
1754 }
1755
1756 while (i < used_sacks) {
1757 u32 start_seq = sp[i].start_seq;
1758 u32 end_seq = sp[i].end_seq;
1759 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1760 struct tcp_sack_block *next_dup = NULL;
1761
1762 if (found_dup_sack && ((i + 1) == first_sack_index))
1763 next_dup = &sp[i + 1];
1764
1765 /* Skip too early cached blocks */
1766 while (tcp_sack_cache_ok(tp, cache) &&
1767 !before(start_seq, cache->end_seq))
1768 cache++;
1769
1770 /* Can skip some work by looking recv_sack_cache? */
1771 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1772 after(end_seq, cache->start_seq)) {
1773
1774 /* Head todo? */
1775 if (before(start_seq, cache->start_seq)) {
1776 skb = tcp_sacktag_skip(skb, sk, state,
1777 start_seq);
1778 skb = tcp_sacktag_walk(skb, sk, next_dup,
1779 state,
1780 start_seq,
1781 cache->start_seq,
1782 dup_sack);
1783 }
1784
1785 /* Rest of the block already fully processed? */
1786 if (!after(end_seq, cache->end_seq))
1787 goto advance_sp;
1788
1789 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1790 state,
1791 cache->end_seq);
1792
1793 /* ...tail remains todo... */
1794 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1795 /* ...but better entrypoint exists! */
1796 skb = tcp_highest_sack(sk);
1797 if (!skb)
1798 break;
1799 state->fack_count = tp->fackets_out;
1800 cache++;
1801 goto walk;
1802 }
1803
1804 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1805 /* Check overlap against next cached too (past this one already) */
1806 cache++;
1807 continue;
1808 }
1809
1810 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1811 skb = tcp_highest_sack(sk);
1812 if (!skb)
1813 break;
1814 state->fack_count = tp->fackets_out;
1815 }
1816 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1817
1818 walk:
1819 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1820 start_seq, end_seq, dup_sack);
1821
1822 advance_sp:
1823 i++;
1824 }
1825
1826 /* Clear the head of the cache sack blocks so we can skip it next time */
1827 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1828 tp->recv_sack_cache[i].start_seq = 0;
1829 tp->recv_sack_cache[i].end_seq = 0;
1830 }
1831 for (j = 0; j < used_sacks; j++)
1832 tp->recv_sack_cache[i++] = sp[j];
1833
1834 if ((state->reord < tp->fackets_out) &&
1835 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1836 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1837
1838 tcp_verify_left_out(tp);
1839 out:
1840
1841 #if FASTRETRANS_DEBUG > 0
1842 WARN_ON((int)tp->sacked_out < 0);
1843 WARN_ON((int)tp->lost_out < 0);
1844 WARN_ON((int)tp->retrans_out < 0);
1845 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1846 #endif
1847 return state->flag;
1848 }
1849
1850 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1851 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1852 */
tcp_limit_reno_sacked(struct tcp_sock * tp)1853 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1854 {
1855 u32 holes;
1856
1857 holes = max(tp->lost_out, 1U);
1858 holes = min(holes, tp->packets_out);
1859
1860 if ((tp->sacked_out + holes) > tp->packets_out) {
1861 tp->sacked_out = tp->packets_out - holes;
1862 return true;
1863 }
1864 return false;
1865 }
1866
1867 /* If we receive more dupacks than we expected counting segments
1868 * in assumption of absent reordering, interpret this as reordering.
1869 * The only another reason could be bug in receiver TCP.
1870 */
tcp_check_reno_reordering(struct sock * sk,const int addend)1871 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1872 {
1873 struct tcp_sock *tp = tcp_sk(sk);
1874 if (tcp_limit_reno_sacked(tp))
1875 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1876 }
1877
1878 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1879
tcp_add_reno_sack(struct sock * sk)1880 static void tcp_add_reno_sack(struct sock *sk)
1881 {
1882 struct tcp_sock *tp = tcp_sk(sk);
1883 u32 prior_sacked = tp->sacked_out;
1884
1885 tp->sacked_out++;
1886 tcp_check_reno_reordering(sk, 0);
1887 if (tp->sacked_out > prior_sacked)
1888 tp->delivered++; /* Some out-of-order packet is delivered */
1889 tcp_verify_left_out(tp);
1890 }
1891
1892 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1893
tcp_remove_reno_sacks(struct sock * sk,int acked)1894 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1895 {
1896 struct tcp_sock *tp = tcp_sk(sk);
1897
1898 if (acked > 0) {
1899 /* One ACK acked hole. The rest eat duplicate ACKs. */
1900 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1901 if (acked - 1 >= tp->sacked_out)
1902 tp->sacked_out = 0;
1903 else
1904 tp->sacked_out -= acked - 1;
1905 }
1906 tcp_check_reno_reordering(sk, acked);
1907 tcp_verify_left_out(tp);
1908 }
1909
tcp_reset_reno_sack(struct tcp_sock * tp)1910 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1911 {
1912 tp->sacked_out = 0;
1913 }
1914
tcp_clear_retrans(struct tcp_sock * tp)1915 void tcp_clear_retrans(struct tcp_sock *tp)
1916 {
1917 tp->retrans_out = 0;
1918 tp->lost_out = 0;
1919 tp->undo_marker = 0;
1920 tp->undo_retrans = -1;
1921 tp->fackets_out = 0;
1922 tp->sacked_out = 0;
1923 }
1924
tcp_init_undo(struct tcp_sock * tp)1925 static inline void tcp_init_undo(struct tcp_sock *tp)
1926 {
1927 tp->undo_marker = tp->snd_una;
1928 /* Retransmission still in flight may cause DSACKs later. */
1929 tp->undo_retrans = tp->retrans_out ? : -1;
1930 }
1931
1932 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1933 * and reset tags completely, otherwise preserve SACKs. If receiver
1934 * dropped its ofo queue, we will know this due to reneging detection.
1935 */
tcp_enter_loss(struct sock * sk)1936 void tcp_enter_loss(struct sock *sk)
1937 {
1938 const struct inet_connection_sock *icsk = inet_csk(sk);
1939 struct tcp_sock *tp = tcp_sk(sk);
1940 struct net *net = sock_net(sk);
1941 struct sk_buff *skb;
1942 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1943 bool is_reneg; /* is receiver reneging on SACKs? */
1944 bool mark_lost;
1945
1946 /* Reduce ssthresh if it has not yet been made inside this window. */
1947 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1948 !after(tp->high_seq, tp->snd_una) ||
1949 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1950 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1951 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1952 tcp_ca_event(sk, CA_EVENT_LOSS);
1953 tcp_init_undo(tp);
1954 }
1955 tp->snd_cwnd = 1;
1956 tp->snd_cwnd_cnt = 0;
1957 tp->snd_cwnd_stamp = tcp_time_stamp;
1958
1959 tp->retrans_out = 0;
1960 tp->lost_out = 0;
1961
1962 if (tcp_is_reno(tp))
1963 tcp_reset_reno_sack(tp);
1964
1965 skb = tcp_write_queue_head(sk);
1966 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1967 if (is_reneg) {
1968 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1969 tp->sacked_out = 0;
1970 tp->fackets_out = 0;
1971 /* Mark SACK reneging until we recover from this loss event. */
1972 tp->is_sack_reneg = 1;
1973 }
1974 tcp_clear_all_retrans_hints(tp);
1975
1976 tcp_for_write_queue(skb, sk) {
1977 if (skb == tcp_send_head(sk))
1978 break;
1979
1980 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1981 is_reneg);
1982 if (mark_lost)
1983 tcp_sum_lost(tp, skb);
1984 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1985 if (mark_lost) {
1986 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1987 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1988 tp->lost_out += tcp_skb_pcount(skb);
1989 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1990 }
1991 }
1992 tcp_verify_left_out(tp);
1993
1994 /* Timeout in disordered state after receiving substantial DUPACKs
1995 * suggests that the degree of reordering is over-estimated.
1996 */
1997 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1998 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1999 tp->reordering = min_t(unsigned int, tp->reordering,
2000 net->ipv4.sysctl_tcp_reordering);
2001 tcp_set_ca_state(sk, TCP_CA_Loss);
2002 tp->high_seq = tp->snd_nxt;
2003 tcp_ecn_queue_cwr(tp);
2004
2005 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2006 * loss recovery is underway except recurring timeout(s) on
2007 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2008 */
2009 tp->frto = sysctl_tcp_frto &&
2010 (new_recovery || icsk->icsk_retransmits) &&
2011 !inet_csk(sk)->icsk_mtup.probe_size;
2012 }
2013
2014 /* If ACK arrived pointing to a remembered SACK, it means that our
2015 * remembered SACKs do not reflect real state of receiver i.e.
2016 * receiver _host_ is heavily congested (or buggy).
2017 *
2018 * To avoid big spurious retransmission bursts due to transient SACK
2019 * scoreboard oddities that look like reneging, we give the receiver a
2020 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2021 * restore sanity to the SACK scoreboard. If the apparent reneging
2022 * persists until this RTO then we'll clear the SACK scoreboard.
2023 */
tcp_check_sack_reneging(struct sock * sk,int flag)2024 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2025 {
2026 if (flag & FLAG_SACK_RENEGING) {
2027 struct tcp_sock *tp = tcp_sk(sk);
2028 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2029 msecs_to_jiffies(10));
2030
2031 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2032 delay, TCP_RTO_MAX);
2033 return true;
2034 }
2035 return false;
2036 }
2037
tcp_fackets_out(const struct tcp_sock * tp)2038 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2039 {
2040 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2041 }
2042
2043 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2044 * counter when SACK is enabled (without SACK, sacked_out is used for
2045 * that purpose).
2046 *
2047 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2048 * segments up to the highest received SACK block so far and holes in
2049 * between them.
2050 *
2051 * With reordering, holes may still be in flight, so RFC3517 recovery
2052 * uses pure sacked_out (total number of SACKed segments) even though
2053 * it violates the RFC that uses duplicate ACKs, often these are equal
2054 * but when e.g. out-of-window ACKs or packet duplication occurs,
2055 * they differ. Since neither occurs due to loss, TCP should really
2056 * ignore them.
2057 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2058 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2059 {
2060 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2061 }
2062
tcp_pause_early_retransmit(struct sock * sk,int flag)2063 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2064 {
2065 struct tcp_sock *tp = tcp_sk(sk);
2066 unsigned long delay;
2067
2068 /* Delay early retransmit and entering fast recovery for
2069 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2070 * available, or RTO is scheduled to fire first.
2071 */
2072 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2073 (flag & FLAG_ECE) || !tp->srtt_us)
2074 return false;
2075
2076 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2077 msecs_to_jiffies(2));
2078
2079 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2080 return false;
2081
2082 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2083 TCP_RTO_MAX);
2084 return true;
2085 }
2086
2087 /* Linux NewReno/SACK/FACK/ECN state machine.
2088 * --------------------------------------
2089 *
2090 * "Open" Normal state, no dubious events, fast path.
2091 * "Disorder" In all the respects it is "Open",
2092 * but requires a bit more attention. It is entered when
2093 * we see some SACKs or dupacks. It is split of "Open"
2094 * mainly to move some processing from fast path to slow one.
2095 * "CWR" CWND was reduced due to some Congestion Notification event.
2096 * It can be ECN, ICMP source quench, local device congestion.
2097 * "Recovery" CWND was reduced, we are fast-retransmitting.
2098 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2099 *
2100 * tcp_fastretrans_alert() is entered:
2101 * - each incoming ACK, if state is not "Open"
2102 * - when arrived ACK is unusual, namely:
2103 * * SACK
2104 * * Duplicate ACK.
2105 * * ECN ECE.
2106 *
2107 * Counting packets in flight is pretty simple.
2108 *
2109 * in_flight = packets_out - left_out + retrans_out
2110 *
2111 * packets_out is SND.NXT-SND.UNA counted in packets.
2112 *
2113 * retrans_out is number of retransmitted segments.
2114 *
2115 * left_out is number of segments left network, but not ACKed yet.
2116 *
2117 * left_out = sacked_out + lost_out
2118 *
2119 * sacked_out: Packets, which arrived to receiver out of order
2120 * and hence not ACKed. With SACKs this number is simply
2121 * amount of SACKed data. Even without SACKs
2122 * it is easy to give pretty reliable estimate of this number,
2123 * counting duplicate ACKs.
2124 *
2125 * lost_out: Packets lost by network. TCP has no explicit
2126 * "loss notification" feedback from network (for now).
2127 * It means that this number can be only _guessed_.
2128 * Actually, it is the heuristics to predict lossage that
2129 * distinguishes different algorithms.
2130 *
2131 * F.e. after RTO, when all the queue is considered as lost,
2132 * lost_out = packets_out and in_flight = retrans_out.
2133 *
2134 * Essentially, we have now two algorithms counting
2135 * lost packets.
2136 *
2137 * FACK: It is the simplest heuristics. As soon as we decided
2138 * that something is lost, we decide that _all_ not SACKed
2139 * packets until the most forward SACK are lost. I.e.
2140 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2141 * It is absolutely correct estimate, if network does not reorder
2142 * packets. And it loses any connection to reality when reordering
2143 * takes place. We use FACK by default until reordering
2144 * is suspected on the path to this destination.
2145 *
2146 * NewReno: when Recovery is entered, we assume that one segment
2147 * is lost (classic Reno). While we are in Recovery and
2148 * a partial ACK arrives, we assume that one more packet
2149 * is lost (NewReno). This heuristics are the same in NewReno
2150 * and SACK.
2151 *
2152 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2153 * deflation etc. CWND is real congestion window, never inflated, changes
2154 * only according to classic VJ rules.
2155 *
2156 * Really tricky (and requiring careful tuning) part of algorithm
2157 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2158 * The first determines the moment _when_ we should reduce CWND and,
2159 * hence, slow down forward transmission. In fact, it determines the moment
2160 * when we decide that hole is caused by loss, rather than by a reorder.
2161 *
2162 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2163 * holes, caused by lost packets.
2164 *
2165 * And the most logically complicated part of algorithm is undo
2166 * heuristics. We detect false retransmits due to both too early
2167 * fast retransmit (reordering) and underestimated RTO, analyzing
2168 * timestamps and D-SACKs. When we detect that some segments were
2169 * retransmitted by mistake and CWND reduction was wrong, we undo
2170 * window reduction and abort recovery phase. This logic is hidden
2171 * inside several functions named tcp_try_undo_<something>.
2172 */
2173
2174 /* This function decides, when we should leave Disordered state
2175 * and enter Recovery phase, reducing congestion window.
2176 *
2177 * Main question: may we further continue forward transmission
2178 * with the same cwnd?
2179 */
tcp_time_to_recover(struct sock * sk,int flag)2180 static bool tcp_time_to_recover(struct sock *sk, int flag)
2181 {
2182 struct tcp_sock *tp = tcp_sk(sk);
2183 __u32 packets_out;
2184 int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
2185
2186 /* Trick#1: The loss is proven. */
2187 if (tp->lost_out)
2188 return true;
2189
2190 /* Not-A-Trick#2 : Classic rule... */
2191 if (tcp_dupack_heuristics(tp) > tp->reordering)
2192 return true;
2193
2194 /* Trick#4: It is still not OK... But will it be useful to delay
2195 * recovery more?
2196 */
2197 packets_out = tp->packets_out;
2198 if (packets_out <= tp->reordering &&
2199 tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2200 !tcp_may_send_now(sk)) {
2201 /* We have nothing to send. This connection is limited
2202 * either by receiver window or by application.
2203 */
2204 return true;
2205 }
2206
2207 /* If a thin stream is detected, retransmit after first
2208 * received dupack. Employ only if SACK is supported in order
2209 * to avoid possible corner-case series of spurious retransmissions
2210 * Use only if there are no unsent data.
2211 */
2212 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2213 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2214 tcp_is_sack(tp) && !tcp_send_head(sk))
2215 return true;
2216
2217 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2218 * retransmissions due to small network reorderings, we implement
2219 * Mitigation A.3 in the RFC and delay the retransmission for a short
2220 * interval if appropriate.
2221 */
2222 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2223 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2224 !tcp_may_send_now(sk))
2225 return !tcp_pause_early_retransmit(sk, flag);
2226
2227 return false;
2228 }
2229
2230 /* Detect loss in event "A" above by marking head of queue up as lost.
2231 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2232 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2233 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2234 * the maximum SACKed segments to pass before reaching this limit.
2235 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2236 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2237 {
2238 struct tcp_sock *tp = tcp_sk(sk);
2239 struct sk_buff *skb;
2240 int cnt, oldcnt, lost;
2241 unsigned int mss;
2242 /* Use SACK to deduce losses of new sequences sent during recovery */
2243 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2244
2245 WARN_ON(packets > tp->packets_out);
2246 if (tp->lost_skb_hint) {
2247 skb = tp->lost_skb_hint;
2248 cnt = tp->lost_cnt_hint;
2249 /* Head already handled? */
2250 if (mark_head && skb != tcp_write_queue_head(sk))
2251 return;
2252 } else {
2253 skb = tcp_write_queue_head(sk);
2254 cnt = 0;
2255 }
2256
2257 tcp_for_write_queue_from(skb, sk) {
2258 if (skb == tcp_send_head(sk))
2259 break;
2260 /* TODO: do this better */
2261 /* this is not the most efficient way to do this... */
2262 tp->lost_skb_hint = skb;
2263 tp->lost_cnt_hint = cnt;
2264
2265 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2266 break;
2267
2268 oldcnt = cnt;
2269 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2270 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2271 cnt += tcp_skb_pcount(skb);
2272
2273 if (cnt > packets) {
2274 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2275 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2276 (oldcnt >= packets))
2277 break;
2278
2279 mss = tcp_skb_mss(skb);
2280 /* If needed, chop off the prefix to mark as lost. */
2281 lost = (packets - oldcnt) * mss;
2282 if (lost < skb->len &&
2283 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2284 break;
2285 cnt = packets;
2286 }
2287
2288 tcp_skb_mark_lost(tp, skb);
2289
2290 if (mark_head)
2291 break;
2292 }
2293 tcp_verify_left_out(tp);
2294 }
2295
2296 /* Account newly detected lost packet(s) */
2297
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2298 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2299 {
2300 struct tcp_sock *tp = tcp_sk(sk);
2301
2302 if (tcp_is_reno(tp)) {
2303 tcp_mark_head_lost(sk, 1, 1);
2304 } else if (tcp_is_fack(tp)) {
2305 int lost = tp->fackets_out - tp->reordering;
2306 if (lost <= 0)
2307 lost = 1;
2308 tcp_mark_head_lost(sk, lost, 0);
2309 } else {
2310 int sacked_upto = tp->sacked_out - tp->reordering;
2311 if (sacked_upto >= 0)
2312 tcp_mark_head_lost(sk, sacked_upto, 0);
2313 else if (fast_rexmit)
2314 tcp_mark_head_lost(sk, 1, 1);
2315 }
2316 }
2317
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2318 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2319 {
2320 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2321 before(tp->rx_opt.rcv_tsecr, when);
2322 }
2323
2324 /* skb is spurious retransmitted if the returned timestamp echo
2325 * reply is prior to the skb transmission time
2326 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2327 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2328 const struct sk_buff *skb)
2329 {
2330 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2331 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2332 }
2333
2334 /* Nothing was retransmitted or returned timestamp is less
2335 * than timestamp of the first retransmission.
2336 */
tcp_packet_delayed(const struct tcp_sock * tp)2337 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2338 {
2339 return !tp->retrans_stamp ||
2340 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2341 }
2342
2343 /* Undo procedures. */
2344
2345 /* We can clear retrans_stamp when there are no retransmissions in the
2346 * window. It would seem that it is trivially available for us in
2347 * tp->retrans_out, however, that kind of assumptions doesn't consider
2348 * what will happen if errors occur when sending retransmission for the
2349 * second time. ...It could the that such segment has only
2350 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2351 * the head skb is enough except for some reneging corner cases that
2352 * are not worth the effort.
2353 *
2354 * Main reason for all this complexity is the fact that connection dying
2355 * time now depends on the validity of the retrans_stamp, in particular,
2356 * that successive retransmissions of a segment must not advance
2357 * retrans_stamp under any conditions.
2358 */
tcp_any_retrans_done(const struct sock * sk)2359 static bool tcp_any_retrans_done(const struct sock *sk)
2360 {
2361 const struct tcp_sock *tp = tcp_sk(sk);
2362 struct sk_buff *skb;
2363
2364 if (tp->retrans_out)
2365 return true;
2366
2367 skb = tcp_write_queue_head(sk);
2368 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2369 return true;
2370
2371 return false;
2372 }
2373
2374 #if FASTRETRANS_DEBUG > 1
DBGUNDO(struct sock * sk,const char * msg)2375 static void DBGUNDO(struct sock *sk, const char *msg)
2376 {
2377 struct tcp_sock *tp = tcp_sk(sk);
2378 struct inet_sock *inet = inet_sk(sk);
2379
2380 if (sk->sk_family == AF_INET) {
2381 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2382 msg,
2383 &inet->inet_daddr, ntohs(inet->inet_dport),
2384 tp->snd_cwnd, tcp_left_out(tp),
2385 tp->snd_ssthresh, tp->prior_ssthresh,
2386 tp->packets_out);
2387 }
2388 #if IS_ENABLED(CONFIG_IPV6)
2389 else if (sk->sk_family == AF_INET6) {
2390 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2391 msg,
2392 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2393 tp->snd_cwnd, tcp_left_out(tp),
2394 tp->snd_ssthresh, tp->prior_ssthresh,
2395 tp->packets_out);
2396 }
2397 #endif
2398 }
2399 #else
2400 #define DBGUNDO(x...) do { } while (0)
2401 #endif
2402
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2403 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2404 {
2405 struct tcp_sock *tp = tcp_sk(sk);
2406
2407 if (unmark_loss) {
2408 struct sk_buff *skb;
2409
2410 tcp_for_write_queue(skb, sk) {
2411 if (skb == tcp_send_head(sk))
2412 break;
2413 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2414 }
2415 tp->lost_out = 0;
2416 tcp_clear_all_retrans_hints(tp);
2417 }
2418
2419 if (tp->prior_ssthresh) {
2420 const struct inet_connection_sock *icsk = inet_csk(sk);
2421
2422 if (icsk->icsk_ca_ops->undo_cwnd)
2423 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2424 else
2425 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2426
2427 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2428 tp->snd_ssthresh = tp->prior_ssthresh;
2429 tcp_ecn_withdraw_cwr(tp);
2430 }
2431 }
2432 tp->snd_cwnd_stamp = tcp_time_stamp;
2433 tp->undo_marker = 0;
2434 }
2435
tcp_may_undo(const struct tcp_sock * tp)2436 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2437 {
2438 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2439 }
2440
2441 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2442 static bool tcp_try_undo_recovery(struct sock *sk)
2443 {
2444 struct tcp_sock *tp = tcp_sk(sk);
2445
2446 if (tcp_may_undo(tp)) {
2447 int mib_idx;
2448
2449 /* Happy end! We did not retransmit anything
2450 * or our original transmission succeeded.
2451 */
2452 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2453 tcp_undo_cwnd_reduction(sk, false);
2454 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2455 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2456 else
2457 mib_idx = LINUX_MIB_TCPFULLUNDO;
2458
2459 NET_INC_STATS(sock_net(sk), mib_idx);
2460 }
2461 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2462 /* Hold old state until something *above* high_seq
2463 * is ACKed. For Reno it is MUST to prevent false
2464 * fast retransmits (RFC2582). SACK TCP is safe. */
2465 if (!tcp_any_retrans_done(sk))
2466 tp->retrans_stamp = 0;
2467 return true;
2468 }
2469 tcp_set_ca_state(sk, TCP_CA_Open);
2470 tp->is_sack_reneg = 0;
2471 return false;
2472 }
2473
2474 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2475 static bool tcp_try_undo_dsack(struct sock *sk)
2476 {
2477 struct tcp_sock *tp = tcp_sk(sk);
2478
2479 if (tp->undo_marker && !tp->undo_retrans) {
2480 DBGUNDO(sk, "D-SACK");
2481 tcp_undo_cwnd_reduction(sk, false);
2482 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2483 return true;
2484 }
2485 return false;
2486 }
2487
2488 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2489 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2490 {
2491 struct tcp_sock *tp = tcp_sk(sk);
2492
2493 if (frto_undo || tcp_may_undo(tp)) {
2494 tcp_undo_cwnd_reduction(sk, true);
2495
2496 DBGUNDO(sk, "partial loss");
2497 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2498 if (frto_undo)
2499 NET_INC_STATS(sock_net(sk),
2500 LINUX_MIB_TCPSPURIOUSRTOS);
2501 inet_csk(sk)->icsk_retransmits = 0;
2502 if (frto_undo || tcp_is_sack(tp)) {
2503 tcp_set_ca_state(sk, TCP_CA_Open);
2504 tp->is_sack_reneg = 0;
2505 }
2506 return true;
2507 }
2508 return false;
2509 }
2510
2511 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2512 * It computes the number of packets to send (sndcnt) based on packets newly
2513 * delivered:
2514 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2515 * cwnd reductions across a full RTT.
2516 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2517 * But when the retransmits are acked without further losses, PRR
2518 * slow starts cwnd up to ssthresh to speed up the recovery.
2519 */
tcp_init_cwnd_reduction(struct sock * sk)2520 static void tcp_init_cwnd_reduction(struct sock *sk)
2521 {
2522 struct tcp_sock *tp = tcp_sk(sk);
2523
2524 tp->high_seq = tp->snd_nxt;
2525 tp->tlp_high_seq = 0;
2526 tp->snd_cwnd_cnt = 0;
2527 tp->prior_cwnd = tp->snd_cwnd;
2528 tp->prr_delivered = 0;
2529 tp->prr_out = 0;
2530 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2531 tcp_ecn_queue_cwr(tp);
2532 }
2533
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int flag)2534 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2535 int flag)
2536 {
2537 struct tcp_sock *tp = tcp_sk(sk);
2538 int sndcnt = 0;
2539 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2540
2541 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2542 return;
2543
2544 tp->prr_delivered += newly_acked_sacked;
2545 if (delta < 0) {
2546 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2547 tp->prior_cwnd - 1;
2548 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2549 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2550 !(flag & FLAG_LOST_RETRANS)) {
2551 sndcnt = min_t(int, delta,
2552 max_t(int, tp->prr_delivered - tp->prr_out,
2553 newly_acked_sacked) + 1);
2554 } else {
2555 sndcnt = min(delta, newly_acked_sacked);
2556 }
2557 /* Force a fast retransmit upon entering fast recovery */
2558 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2559 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2560 }
2561
tcp_end_cwnd_reduction(struct sock * sk)2562 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2563 {
2564 struct tcp_sock *tp = tcp_sk(sk);
2565
2566 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2567 return;
2568
2569 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2570 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2571 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2572 tp->snd_cwnd = tp->snd_ssthresh;
2573 tp->snd_cwnd_stamp = tcp_time_stamp;
2574 }
2575 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2576 }
2577
2578 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2579 void tcp_enter_cwr(struct sock *sk)
2580 {
2581 struct tcp_sock *tp = tcp_sk(sk);
2582
2583 tp->prior_ssthresh = 0;
2584 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2585 tp->undo_marker = 0;
2586 tcp_init_cwnd_reduction(sk);
2587 tcp_set_ca_state(sk, TCP_CA_CWR);
2588 }
2589 }
2590 EXPORT_SYMBOL(tcp_enter_cwr);
2591
tcp_try_keep_open(struct sock * sk)2592 static void tcp_try_keep_open(struct sock *sk)
2593 {
2594 struct tcp_sock *tp = tcp_sk(sk);
2595 int state = TCP_CA_Open;
2596
2597 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2598 state = TCP_CA_Disorder;
2599
2600 if (inet_csk(sk)->icsk_ca_state != state) {
2601 tcp_set_ca_state(sk, state);
2602 tp->high_seq = tp->snd_nxt;
2603 }
2604 }
2605
tcp_try_to_open(struct sock * sk,int flag)2606 static void tcp_try_to_open(struct sock *sk, int flag)
2607 {
2608 struct tcp_sock *tp = tcp_sk(sk);
2609
2610 tcp_verify_left_out(tp);
2611
2612 if (!tcp_any_retrans_done(sk))
2613 tp->retrans_stamp = 0;
2614
2615 if (flag & FLAG_ECE)
2616 tcp_enter_cwr(sk);
2617
2618 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2619 tcp_try_keep_open(sk);
2620 }
2621 }
2622
tcp_mtup_probe_failed(struct sock * sk)2623 static void tcp_mtup_probe_failed(struct sock *sk)
2624 {
2625 struct inet_connection_sock *icsk = inet_csk(sk);
2626
2627 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2628 icsk->icsk_mtup.probe_size = 0;
2629 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2630 }
2631
tcp_mtup_probe_success(struct sock * sk)2632 static void tcp_mtup_probe_success(struct sock *sk)
2633 {
2634 struct tcp_sock *tp = tcp_sk(sk);
2635 struct inet_connection_sock *icsk = inet_csk(sk);
2636
2637 /* FIXME: breaks with very large cwnd */
2638 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2639 tp->snd_cwnd = tp->snd_cwnd *
2640 tcp_mss_to_mtu(sk, tp->mss_cache) /
2641 icsk->icsk_mtup.probe_size;
2642 tp->snd_cwnd_cnt = 0;
2643 tp->snd_cwnd_stamp = tcp_time_stamp;
2644 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2645
2646 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2647 icsk->icsk_mtup.probe_size = 0;
2648 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2649 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2650 }
2651
2652 /* Do a simple retransmit without using the backoff mechanisms in
2653 * tcp_timer. This is used for path mtu discovery.
2654 * The socket is already locked here.
2655 */
tcp_simple_retransmit(struct sock * sk)2656 void tcp_simple_retransmit(struct sock *sk)
2657 {
2658 const struct inet_connection_sock *icsk = inet_csk(sk);
2659 struct tcp_sock *tp = tcp_sk(sk);
2660 struct sk_buff *skb;
2661 unsigned int mss = tcp_current_mss(sk);
2662 u32 prior_lost = tp->lost_out;
2663
2664 tcp_for_write_queue(skb, sk) {
2665 if (skb == tcp_send_head(sk))
2666 break;
2667 if (tcp_skb_seglen(skb) > mss &&
2668 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2669 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2670 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2671 tp->retrans_out -= tcp_skb_pcount(skb);
2672 }
2673 tcp_skb_mark_lost_uncond_verify(tp, skb);
2674 }
2675 }
2676
2677 tcp_clear_retrans_hints_partial(tp);
2678
2679 if (prior_lost == tp->lost_out)
2680 return;
2681
2682 if (tcp_is_reno(tp))
2683 tcp_limit_reno_sacked(tp);
2684
2685 tcp_verify_left_out(tp);
2686
2687 /* Don't muck with the congestion window here.
2688 * Reason is that we do not increase amount of _data_
2689 * in network, but units changed and effective
2690 * cwnd/ssthresh really reduced now.
2691 */
2692 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2693 tp->high_seq = tp->snd_nxt;
2694 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2695 tp->prior_ssthresh = 0;
2696 tp->undo_marker = 0;
2697 tcp_set_ca_state(sk, TCP_CA_Loss);
2698 }
2699 tcp_xmit_retransmit_queue(sk);
2700 }
2701 EXPORT_SYMBOL(tcp_simple_retransmit);
2702
tcp_enter_recovery(struct sock * sk,bool ece_ack)2703 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2704 {
2705 struct tcp_sock *tp = tcp_sk(sk);
2706 int mib_idx;
2707
2708 if (tcp_is_reno(tp))
2709 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2710 else
2711 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2712
2713 NET_INC_STATS(sock_net(sk), mib_idx);
2714
2715 tp->prior_ssthresh = 0;
2716 tcp_init_undo(tp);
2717
2718 if (!tcp_in_cwnd_reduction(sk)) {
2719 if (!ece_ack)
2720 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2721 tcp_init_cwnd_reduction(sk);
2722 }
2723 tcp_set_ca_state(sk, TCP_CA_Recovery);
2724 }
2725
2726 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2727 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2728 */
tcp_process_loss(struct sock * sk,int flag,bool is_dupack,int * rexmit)2729 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2730 int *rexmit)
2731 {
2732 struct tcp_sock *tp = tcp_sk(sk);
2733 bool recovered = !before(tp->snd_una, tp->high_seq);
2734
2735 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2736 tcp_try_undo_loss(sk, false))
2737 return;
2738
2739 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2740 /* Step 3.b. A timeout is spurious if not all data are
2741 * lost, i.e., never-retransmitted data are (s)acked.
2742 */
2743 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2744 tcp_try_undo_loss(sk, true))
2745 return;
2746
2747 if (after(tp->snd_nxt, tp->high_seq)) {
2748 if (flag & FLAG_DATA_SACKED || is_dupack)
2749 tp->frto = 0; /* Step 3.a. loss was real */
2750 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2751 tp->high_seq = tp->snd_nxt;
2752 /* Step 2.b. Try send new data (but deferred until cwnd
2753 * is updated in tcp_ack()). Otherwise fall back to
2754 * the conventional recovery.
2755 */
2756 if (tcp_send_head(sk) &&
2757 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2758 *rexmit = REXMIT_NEW;
2759 return;
2760 }
2761 tp->frto = 0;
2762 }
2763 }
2764
2765 if (recovered) {
2766 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2767 tcp_try_undo_recovery(sk);
2768 return;
2769 }
2770 if (tcp_is_reno(tp)) {
2771 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2772 * delivered. Lower inflight to clock out (re)tranmissions.
2773 */
2774 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2775 tcp_add_reno_sack(sk);
2776 else if (flag & FLAG_SND_UNA_ADVANCED)
2777 tcp_reset_reno_sack(tp);
2778 }
2779 *rexmit = REXMIT_LOST;
2780 }
2781
2782 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,const int acked)2783 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2784 {
2785 struct tcp_sock *tp = tcp_sk(sk);
2786
2787 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2788 /* Plain luck! Hole if filled with delayed
2789 * packet, rather than with a retransmit.
2790 */
2791 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2792
2793 /* We are getting evidence that the reordering degree is higher
2794 * than we realized. If there are no retransmits out then we
2795 * can undo. Otherwise we clock out new packets but do not
2796 * mark more packets lost or retransmit more.
2797 */
2798 if (tp->retrans_out)
2799 return true;
2800
2801 if (!tcp_any_retrans_done(sk))
2802 tp->retrans_stamp = 0;
2803
2804 DBGUNDO(sk, "partial recovery");
2805 tcp_undo_cwnd_reduction(sk, true);
2806 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2807 tcp_try_keep_open(sk);
2808 return true;
2809 }
2810 return false;
2811 }
2812
2813 /* Process an event, which can update packets-in-flight not trivially.
2814 * Main goal of this function is to calculate new estimate for left_out,
2815 * taking into account both packets sitting in receiver's buffer and
2816 * packets lost by network.
2817 *
2818 * Besides that it updates the congestion state when packet loss or ECN
2819 * is detected. But it does not reduce the cwnd, it is done by the
2820 * congestion control later.
2821 *
2822 * It does _not_ decide what to send, it is made in function
2823 * tcp_xmit_retransmit_queue().
2824 */
tcp_fastretrans_alert(struct sock * sk,const int acked,bool is_dupack,int * ack_flag,int * rexmit)2825 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2826 bool is_dupack, int *ack_flag, int *rexmit)
2827 {
2828 struct inet_connection_sock *icsk = inet_csk(sk);
2829 struct tcp_sock *tp = tcp_sk(sk);
2830 int fast_rexmit = 0, flag = *ack_flag;
2831 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2832 (tcp_fackets_out(tp) > tp->reordering));
2833
2834 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2835 tp->sacked_out = 0;
2836 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2837 tp->fackets_out = 0;
2838
2839 /* Now state machine starts.
2840 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2841 if (flag & FLAG_ECE)
2842 tp->prior_ssthresh = 0;
2843
2844 /* B. In all the states check for reneging SACKs. */
2845 if (tcp_check_sack_reneging(sk, flag))
2846 return;
2847
2848 /* C. Check consistency of the current state. */
2849 tcp_verify_left_out(tp);
2850
2851 /* D. Check state exit conditions. State can be terminated
2852 * when high_seq is ACKed. */
2853 if (icsk->icsk_ca_state == TCP_CA_Open) {
2854 WARN_ON(tp->retrans_out != 0);
2855 tp->retrans_stamp = 0;
2856 } else if (!before(tp->snd_una, tp->high_seq)) {
2857 switch (icsk->icsk_ca_state) {
2858 case TCP_CA_CWR:
2859 /* CWR is to be held something *above* high_seq
2860 * is ACKed for CWR bit to reach receiver. */
2861 if (tp->snd_una != tp->high_seq) {
2862 tcp_end_cwnd_reduction(sk);
2863 tcp_set_ca_state(sk, TCP_CA_Open);
2864 }
2865 break;
2866
2867 case TCP_CA_Recovery:
2868 if (tcp_is_reno(tp))
2869 tcp_reset_reno_sack(tp);
2870 if (tcp_try_undo_recovery(sk))
2871 return;
2872 tcp_end_cwnd_reduction(sk);
2873 break;
2874 }
2875 }
2876
2877 /* Use RACK to detect loss */
2878 if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2879 tcp_rack_mark_lost(sk)) {
2880 flag |= FLAG_LOST_RETRANS;
2881 *ack_flag |= FLAG_LOST_RETRANS;
2882 }
2883
2884 /* E. Process state. */
2885 switch (icsk->icsk_ca_state) {
2886 case TCP_CA_Recovery:
2887 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2888 if (tcp_is_reno(tp) && is_dupack)
2889 tcp_add_reno_sack(sk);
2890 } else {
2891 if (tcp_try_undo_partial(sk, acked))
2892 return;
2893 /* Partial ACK arrived. Force fast retransmit. */
2894 do_lost = tcp_is_reno(tp) ||
2895 tcp_fackets_out(tp) > tp->reordering;
2896 }
2897 if (tcp_try_undo_dsack(sk)) {
2898 tcp_try_keep_open(sk);
2899 return;
2900 }
2901 break;
2902 case TCP_CA_Loss:
2903 tcp_process_loss(sk, flag, is_dupack, rexmit);
2904 if (icsk->icsk_ca_state != TCP_CA_Open &&
2905 !(flag & FLAG_LOST_RETRANS))
2906 return;
2907 /* Change state if cwnd is undone or retransmits are lost */
2908 default:
2909 if (tcp_is_reno(tp)) {
2910 if (flag & FLAG_SND_UNA_ADVANCED)
2911 tcp_reset_reno_sack(tp);
2912 if (is_dupack)
2913 tcp_add_reno_sack(sk);
2914 }
2915
2916 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2917 tcp_try_undo_dsack(sk);
2918
2919 if (!tcp_time_to_recover(sk, flag)) {
2920 tcp_try_to_open(sk, flag);
2921 return;
2922 }
2923
2924 /* MTU probe failure: don't reduce cwnd */
2925 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2926 icsk->icsk_mtup.probe_size &&
2927 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2928 tcp_mtup_probe_failed(sk);
2929 /* Restores the reduction we did in tcp_mtup_probe() */
2930 tp->snd_cwnd++;
2931 tcp_simple_retransmit(sk);
2932 return;
2933 }
2934
2935 /* Otherwise enter Recovery state */
2936 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2937 fast_rexmit = 1;
2938 }
2939
2940 if (do_lost)
2941 tcp_update_scoreboard(sk, fast_rexmit);
2942 *rexmit = REXMIT_LOST;
2943 }
2944
tcp_update_rtt_min(struct sock * sk,u32 rtt_us)2945 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2946 {
2947 struct tcp_sock *tp = tcp_sk(sk);
2948 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2949
2950 minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp,
2951 rtt_us ? : jiffies_to_usecs(1));
2952 }
2953
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us)2954 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2955 long seq_rtt_us, long sack_rtt_us,
2956 long ca_rtt_us)
2957 {
2958 const struct tcp_sock *tp = tcp_sk(sk);
2959
2960 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2961 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2962 * Karn's algorithm forbids taking RTT if some retransmitted data
2963 * is acked (RFC6298).
2964 */
2965 if (seq_rtt_us < 0)
2966 seq_rtt_us = sack_rtt_us;
2967
2968 /* RTTM Rule: A TSecr value received in a segment is used to
2969 * update the averaged RTT measurement only if the segment
2970 * acknowledges some new data, i.e., only if it advances the
2971 * left edge of the send window.
2972 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2973 */
2974 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2975 flag & FLAG_ACKED)
2976 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2977 tp->rx_opt.rcv_tsecr);
2978 if (seq_rtt_us < 0)
2979 return false;
2980
2981 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2982 * always taken together with ACK, SACK, or TS-opts. Any negative
2983 * values will be skipped with the seq_rtt_us < 0 check above.
2984 */
2985 tcp_update_rtt_min(sk, ca_rtt_us);
2986 tcp_rtt_estimator(sk, seq_rtt_us);
2987 tcp_set_rto(sk);
2988
2989 /* RFC6298: only reset backoff on valid RTT measurement. */
2990 inet_csk(sk)->icsk_backoff = 0;
2991 return true;
2992 }
2993
2994 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)2995 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2996 {
2997 long rtt_us = -1L;
2998
2999 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
3000 struct skb_mstamp now;
3001
3002 skb_mstamp_get(&now);
3003 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
3004 }
3005
3006 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
3007 }
3008
3009
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3010 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3011 {
3012 const struct inet_connection_sock *icsk = inet_csk(sk);
3013
3014 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3015 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3016 }
3017
3018 /* Restart timer after forward progress on connection.
3019 * RFC2988 recommends to restart timer to now+rto.
3020 */
tcp_rearm_rto(struct sock * sk)3021 void tcp_rearm_rto(struct sock *sk)
3022 {
3023 const struct inet_connection_sock *icsk = inet_csk(sk);
3024 struct tcp_sock *tp = tcp_sk(sk);
3025
3026 /* If the retrans timer is currently being used by Fast Open
3027 * for SYN-ACK retrans purpose, stay put.
3028 */
3029 if (tp->fastopen_rsk)
3030 return;
3031
3032 if (!tp->packets_out) {
3033 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3034 } else {
3035 u32 rto = inet_csk(sk)->icsk_rto;
3036 /* Offset the time elapsed after installing regular RTO */
3037 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3038 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3039 struct sk_buff *skb = tcp_write_queue_head(sk);
3040 const u32 rto_time_stamp =
3041 tcp_skb_timestamp(skb) + rto;
3042 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3043 /* delta may not be positive if the socket is locked
3044 * when the retrans timer fires and is rescheduled.
3045 */
3046 rto = max(delta, 1);
3047 }
3048 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3049 TCP_RTO_MAX);
3050 }
3051 }
3052
3053 /* This function is called when the delayed ER timer fires. TCP enters
3054 * fast recovery and performs fast-retransmit.
3055 */
tcp_resume_early_retransmit(struct sock * sk)3056 void tcp_resume_early_retransmit(struct sock *sk)
3057 {
3058 struct tcp_sock *tp = tcp_sk(sk);
3059
3060 tcp_rearm_rto(sk);
3061
3062 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3063 if (!tp->do_early_retrans)
3064 return;
3065
3066 tcp_enter_recovery(sk, false);
3067 tcp_update_scoreboard(sk, 1);
3068 tcp_xmit_retransmit_queue(sk);
3069 }
3070
3071 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3072 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3073 {
3074 struct tcp_sock *tp = tcp_sk(sk);
3075 u32 packets_acked;
3076
3077 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3078
3079 packets_acked = tcp_skb_pcount(skb);
3080 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3081 return 0;
3082 packets_acked -= tcp_skb_pcount(skb);
3083
3084 if (packets_acked) {
3085 BUG_ON(tcp_skb_pcount(skb) == 0);
3086 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3087 }
3088
3089 return packets_acked;
3090 }
3091
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,u32 prior_snd_una)3092 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3093 u32 prior_snd_una)
3094 {
3095 const struct skb_shared_info *shinfo;
3096
3097 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3098 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3099 return;
3100
3101 shinfo = skb_shinfo(skb);
3102 if (!before(shinfo->tskey, prior_snd_una) &&
3103 before(shinfo->tskey, tcp_sk(sk)->snd_una))
3104 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3105 }
3106
3107 /* Remove acknowledged frames from the retransmission queue. If our packet
3108 * is before the ack sequence we can discard it as it's confirmed to have
3109 * arrived at the other end.
3110 */
tcp_clean_rtx_queue(struct sock * sk,int prior_fackets,u32 prior_snd_una,int * acked,struct tcp_sacktag_state * sack,struct skb_mstamp * now)3111 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3112 u32 prior_snd_una, int *acked,
3113 struct tcp_sacktag_state *sack,
3114 struct skb_mstamp *now)
3115 {
3116 const struct inet_connection_sock *icsk = inet_csk(sk);
3117 struct skb_mstamp first_ackt, last_ackt;
3118 struct tcp_sock *tp = tcp_sk(sk);
3119 u32 prior_sacked = tp->sacked_out;
3120 u32 reord = tp->packets_out;
3121 bool fully_acked = true;
3122 long sack_rtt_us = -1L;
3123 long seq_rtt_us = -1L;
3124 long ca_rtt_us = -1L;
3125 struct sk_buff *skb;
3126 u32 pkts_acked = 0;
3127 u32 last_in_flight = 0;
3128 bool rtt_update;
3129 int flag = 0;
3130
3131 first_ackt.v64 = 0;
3132
3133 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3134 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3135 u8 sacked = scb->sacked;
3136 u32 acked_pcount;
3137
3138 tcp_ack_tstamp(sk, skb, prior_snd_una);
3139
3140 /* Determine how many packets and what bytes were acked, tso and else */
3141 if (after(scb->end_seq, tp->snd_una)) {
3142 if (tcp_skb_pcount(skb) == 1 ||
3143 !after(tp->snd_una, scb->seq))
3144 break;
3145
3146 acked_pcount = tcp_tso_acked(sk, skb);
3147 if (!acked_pcount)
3148 break;
3149 fully_acked = false;
3150 } else {
3151 /* Speedup tcp_unlink_write_queue() and next loop */
3152 prefetchw(skb->next);
3153 acked_pcount = tcp_skb_pcount(skb);
3154 }
3155
3156 if (unlikely(sacked & TCPCB_RETRANS)) {
3157 if (sacked & TCPCB_SACKED_RETRANS)
3158 tp->retrans_out -= acked_pcount;
3159 flag |= FLAG_RETRANS_DATA_ACKED;
3160 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3161 last_ackt = skb->skb_mstamp;
3162 WARN_ON_ONCE(last_ackt.v64 == 0);
3163 if (!first_ackt.v64)
3164 first_ackt = last_ackt;
3165
3166 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3167 reord = min(pkts_acked, reord);
3168 if (!after(scb->end_seq, tp->high_seq))
3169 flag |= FLAG_ORIG_SACK_ACKED;
3170 }
3171
3172 if (sacked & TCPCB_SACKED_ACKED) {
3173 tp->sacked_out -= acked_pcount;
3174 } else if (tcp_is_sack(tp)) {
3175 tp->delivered += acked_pcount;
3176 if (!tcp_skb_spurious_retrans(tp, skb))
3177 tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3178 }
3179 if (sacked & TCPCB_LOST)
3180 tp->lost_out -= acked_pcount;
3181
3182 tp->packets_out -= acked_pcount;
3183 pkts_acked += acked_pcount;
3184 tcp_rate_skb_delivered(sk, skb, sack->rate);
3185
3186 /* Initial outgoing SYN's get put onto the write_queue
3187 * just like anything else we transmit. It is not
3188 * true data, and if we misinform our callers that
3189 * this ACK acks real data, we will erroneously exit
3190 * connection startup slow start one packet too
3191 * quickly. This is severely frowned upon behavior.
3192 */
3193 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3194 flag |= FLAG_DATA_ACKED;
3195 } else {
3196 flag |= FLAG_SYN_ACKED;
3197 tp->retrans_stamp = 0;
3198 }
3199
3200 if (!fully_acked)
3201 break;
3202
3203 tcp_unlink_write_queue(skb, sk);
3204 sk_wmem_free_skb(sk, skb);
3205 if (unlikely(skb == tp->retransmit_skb_hint))
3206 tp->retransmit_skb_hint = NULL;
3207 if (unlikely(skb == tp->lost_skb_hint))
3208 tp->lost_skb_hint = NULL;
3209 }
3210
3211 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3212 tp->snd_up = tp->snd_una;
3213
3214 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3215 flag |= FLAG_SACK_RENEGING;
3216
3217 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3218 seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt);
3219 ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt);
3220 }
3221 if (sack->first_sackt.v64) {
3222 sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt);
3223 ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt);
3224 }
3225 sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */
3226 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3227 ca_rtt_us);
3228
3229 if (flag & FLAG_ACKED) {
3230 tcp_rearm_rto(sk);
3231 if (unlikely(icsk->icsk_mtup.probe_size &&
3232 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3233 tcp_mtup_probe_success(sk);
3234 }
3235
3236 if (tcp_is_reno(tp)) {
3237 tcp_remove_reno_sacks(sk, pkts_acked);
3238 } else {
3239 int delta;
3240
3241 /* Non-retransmitted hole got filled? That's reordering */
3242 if (reord < prior_fackets && reord <= tp->fackets_out)
3243 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3244
3245 delta = tcp_is_fack(tp) ? pkts_acked :
3246 prior_sacked - tp->sacked_out;
3247 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3248 }
3249
3250 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3251
3252 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3253 sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) {
3254 /* Do not re-arm RTO if the sack RTT is measured from data sent
3255 * after when the head was last (re)transmitted. Otherwise the
3256 * timeout may continue to extend in loss recovery.
3257 */
3258 tcp_rearm_rto(sk);
3259 }
3260
3261 if (icsk->icsk_ca_ops->pkts_acked) {
3262 struct ack_sample sample = { .pkts_acked = pkts_acked,
3263 .rtt_us = ca_rtt_us,
3264 .in_flight = last_in_flight };
3265
3266 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3267 }
3268
3269 #if FASTRETRANS_DEBUG > 0
3270 WARN_ON((int)tp->sacked_out < 0);
3271 WARN_ON((int)tp->lost_out < 0);
3272 WARN_ON((int)tp->retrans_out < 0);
3273 if (!tp->packets_out && tcp_is_sack(tp)) {
3274 icsk = inet_csk(sk);
3275 if (tp->lost_out) {
3276 pr_debug("Leak l=%u %d\n",
3277 tp->lost_out, icsk->icsk_ca_state);
3278 tp->lost_out = 0;
3279 }
3280 if (tp->sacked_out) {
3281 pr_debug("Leak s=%u %d\n",
3282 tp->sacked_out, icsk->icsk_ca_state);
3283 tp->sacked_out = 0;
3284 }
3285 if (tp->retrans_out) {
3286 pr_debug("Leak r=%u %d\n",
3287 tp->retrans_out, icsk->icsk_ca_state);
3288 tp->retrans_out = 0;
3289 }
3290 }
3291 #endif
3292 *acked = pkts_acked;
3293 return flag;
3294 }
3295
tcp_ack_probe(struct sock * sk)3296 static void tcp_ack_probe(struct sock *sk)
3297 {
3298 const struct tcp_sock *tp = tcp_sk(sk);
3299 struct inet_connection_sock *icsk = inet_csk(sk);
3300
3301 /* Was it a usable window open? */
3302
3303 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3304 icsk->icsk_backoff = 0;
3305 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3306 /* Socket must be waked up by subsequent tcp_data_snd_check().
3307 * This function is not for random using!
3308 */
3309 } else {
3310 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3311
3312 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3313 when, TCP_RTO_MAX);
3314 }
3315 }
3316
tcp_ack_is_dubious(const struct sock * sk,const int flag)3317 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3318 {
3319 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3320 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3321 }
3322
3323 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3324 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3325 {
3326 /* If reordering is high then always grow cwnd whenever data is
3327 * delivered regardless of its ordering. Otherwise stay conservative
3328 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3329 * new SACK or ECE mark may first advance cwnd here and later reduce
3330 * cwnd in tcp_fastretrans_alert() based on more states.
3331 */
3332 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3333 return flag & FLAG_FORWARD_PROGRESS;
3334
3335 return flag & FLAG_DATA_ACKED;
3336 }
3337
3338 /* The "ultimate" congestion control function that aims to replace the rigid
3339 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3340 * It's called toward the end of processing an ACK with precise rate
3341 * information. All transmission or retransmission are delayed afterwards.
3342 */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3343 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3344 int flag, const struct rate_sample *rs)
3345 {
3346 const struct inet_connection_sock *icsk = inet_csk(sk);
3347
3348 if (icsk->icsk_ca_ops->cong_control) {
3349 icsk->icsk_ca_ops->cong_control(sk, rs);
3350 return;
3351 }
3352
3353 if (tcp_in_cwnd_reduction(sk)) {
3354 /* Reduce cwnd if state mandates */
3355 tcp_cwnd_reduction(sk, acked_sacked, flag);
3356 } else if (tcp_may_raise_cwnd(sk, flag)) {
3357 /* Advance cwnd if state allows */
3358 tcp_cong_avoid(sk, ack, acked_sacked);
3359 }
3360 tcp_update_pacing_rate(sk);
3361 }
3362
3363 /* Check that window update is acceptable.
3364 * The function assumes that snd_una<=ack<=snd_next.
3365 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3366 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3367 const u32 ack, const u32 ack_seq,
3368 const u32 nwin)
3369 {
3370 return after(ack, tp->snd_una) ||
3371 after(ack_seq, tp->snd_wl1) ||
3372 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3373 }
3374
3375 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3376 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3377 {
3378 u32 delta = ack - tp->snd_una;
3379
3380 sock_owned_by_me((struct sock *)tp);
3381 u64_stats_update_begin_raw(&tp->syncp);
3382 tp->bytes_acked += delta;
3383 u64_stats_update_end_raw(&tp->syncp);
3384 tp->snd_una = ack;
3385 }
3386
3387 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3388 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3389 {
3390 u32 delta = seq - tp->rcv_nxt;
3391
3392 sock_owned_by_me((struct sock *)tp);
3393 u64_stats_update_begin_raw(&tp->syncp);
3394 tp->bytes_received += delta;
3395 u64_stats_update_end_raw(&tp->syncp);
3396 tp->rcv_nxt = seq;
3397 }
3398
3399 /* Update our send window.
3400 *
3401 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3402 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3403 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3404 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3405 u32 ack_seq)
3406 {
3407 struct tcp_sock *tp = tcp_sk(sk);
3408 int flag = 0;
3409 u32 nwin = ntohs(tcp_hdr(skb)->window);
3410
3411 if (likely(!tcp_hdr(skb)->syn))
3412 nwin <<= tp->rx_opt.snd_wscale;
3413
3414 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3415 flag |= FLAG_WIN_UPDATE;
3416 tcp_update_wl(tp, ack_seq);
3417
3418 if (tp->snd_wnd != nwin) {
3419 tp->snd_wnd = nwin;
3420
3421 /* Note, it is the only place, where
3422 * fast path is recovered for sending TCP.
3423 */
3424 tp->pred_flags = 0;
3425 tcp_fast_path_check(sk);
3426
3427 if (tcp_send_head(sk))
3428 tcp_slow_start_after_idle_check(sk);
3429
3430 if (nwin > tp->max_window) {
3431 tp->max_window = nwin;
3432 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3433 }
3434 }
3435 }
3436
3437 tcp_snd_una_update(tp, ack);
3438
3439 return flag;
3440 }
3441
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3442 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3443 u32 *last_oow_ack_time)
3444 {
3445 if (*last_oow_ack_time) {
3446 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3447
3448 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3449 NET_INC_STATS(net, mib_idx);
3450 return true; /* rate-limited: don't send yet! */
3451 }
3452 }
3453
3454 *last_oow_ack_time = tcp_time_stamp;
3455
3456 return false; /* not rate-limited: go ahead, send dupack now! */
3457 }
3458
3459 /* Return true if we're currently rate-limiting out-of-window ACKs and
3460 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3461 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3462 * attacks that send repeated SYNs or ACKs for the same connection. To
3463 * do this, we do not send a duplicate SYNACK or ACK if the remote
3464 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3465 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3466 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3467 int mib_idx, u32 *last_oow_ack_time)
3468 {
3469 /* Data packets without SYNs are not likely part of an ACK loop. */
3470 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3471 !tcp_hdr(skb)->syn)
3472 return false;
3473
3474 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3475 }
3476
3477 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3478 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3479 {
3480 /* unprotected vars, we dont care of overwrites */
3481 static u32 challenge_timestamp;
3482 static unsigned int challenge_count;
3483 struct tcp_sock *tp = tcp_sk(sk);
3484 u32 count, now;
3485
3486 /* First check our per-socket dupack rate limit. */
3487 if (__tcp_oow_rate_limited(sock_net(sk),
3488 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3489 &tp->last_oow_ack_time))
3490 return;
3491
3492 /* Then check host-wide RFC 5961 rate limit. */
3493 now = jiffies / HZ;
3494 if (now != challenge_timestamp) {
3495 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3496
3497 challenge_timestamp = now;
3498 WRITE_ONCE(challenge_count, half +
3499 prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3500 }
3501 count = READ_ONCE(challenge_count);
3502 if (count > 0) {
3503 WRITE_ONCE(challenge_count, count - 1);
3504 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3505 tcp_send_ack(sk);
3506 }
3507 }
3508
tcp_store_ts_recent(struct tcp_sock * tp)3509 static void tcp_store_ts_recent(struct tcp_sock *tp)
3510 {
3511 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3512 tp->rx_opt.ts_recent_stamp = get_seconds();
3513 }
3514
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3515 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3516 {
3517 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3518 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3519 * extra check below makes sure this can only happen
3520 * for pure ACK frames. -DaveM
3521 *
3522 * Not only, also it occurs for expired timestamps.
3523 */
3524
3525 if (tcp_paws_check(&tp->rx_opt, 0))
3526 tcp_store_ts_recent(tp);
3527 }
3528 }
3529
3530 /* This routine deals with acks during a TLP episode.
3531 * We mark the end of a TLP episode on receiving TLP dupack or when
3532 * ack is after tlp_high_seq.
3533 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3534 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3535 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3536 {
3537 struct tcp_sock *tp = tcp_sk(sk);
3538
3539 if (before(ack, tp->tlp_high_seq))
3540 return;
3541
3542 if (flag & FLAG_DSACKING_ACK) {
3543 /* This DSACK means original and TLP probe arrived; no loss */
3544 tp->tlp_high_seq = 0;
3545 } else if (after(ack, tp->tlp_high_seq)) {
3546 /* ACK advances: there was a loss, so reduce cwnd. Reset
3547 * tlp_high_seq in tcp_init_cwnd_reduction()
3548 */
3549 tcp_init_cwnd_reduction(sk);
3550 tcp_set_ca_state(sk, TCP_CA_CWR);
3551 tcp_end_cwnd_reduction(sk);
3552 tcp_try_keep_open(sk);
3553 NET_INC_STATS(sock_net(sk),
3554 LINUX_MIB_TCPLOSSPROBERECOVERY);
3555 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3556 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3557 /* Pure dupack: original and TLP probe arrived; no loss */
3558 tp->tlp_high_seq = 0;
3559 }
3560 }
3561
tcp_in_ack_event(struct sock * sk,u32 flags)3562 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3563 {
3564 const struct inet_connection_sock *icsk = inet_csk(sk);
3565
3566 if (icsk->icsk_ca_ops->in_ack_event)
3567 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3568 }
3569
3570 /* Congestion control has updated the cwnd already. So if we're in
3571 * loss recovery then now we do any new sends (for FRTO) or
3572 * retransmits (for CA_Loss or CA_recovery) that make sense.
3573 */
tcp_xmit_recovery(struct sock * sk,int rexmit)3574 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3575 {
3576 struct tcp_sock *tp = tcp_sk(sk);
3577
3578 if (rexmit == REXMIT_NONE)
3579 return;
3580
3581 if (unlikely(rexmit == 2)) {
3582 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3583 TCP_NAGLE_OFF);
3584 if (after(tp->snd_nxt, tp->high_seq))
3585 return;
3586 tp->frto = 0;
3587 }
3588 tcp_xmit_retransmit_queue(sk);
3589 }
3590
3591 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3592 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3593 {
3594 struct inet_connection_sock *icsk = inet_csk(sk);
3595 struct tcp_sock *tp = tcp_sk(sk);
3596 struct tcp_sacktag_state sack_state;
3597 struct rate_sample rs = { .prior_delivered = 0 };
3598 u32 prior_snd_una = tp->snd_una;
3599 bool is_sack_reneg = tp->is_sack_reneg;
3600 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3601 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3602 bool is_dupack = false;
3603 u32 prior_fackets;
3604 int prior_packets = tp->packets_out;
3605 u32 delivered = tp->delivered;
3606 u32 lost = tp->lost;
3607 int acked = 0; /* Number of packets newly acked */
3608 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3609 struct skb_mstamp now;
3610
3611 sack_state.first_sackt.v64 = 0;
3612 sack_state.rate = &rs;
3613
3614 /* We very likely will need to access write queue head. */
3615 prefetchw(sk->sk_write_queue.next);
3616
3617 /* If the ack is older than previous acks
3618 * then we can probably ignore it.
3619 */
3620 if (before(ack, prior_snd_una)) {
3621 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3622 if (before(ack, prior_snd_una - tp->max_window)) {
3623 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3624 tcp_send_challenge_ack(sk, skb);
3625 return -1;
3626 }
3627 goto old_ack;
3628 }
3629
3630 /* If the ack includes data we haven't sent yet, discard
3631 * this segment (RFC793 Section 3.9).
3632 */
3633 if (after(ack, tp->snd_nxt))
3634 goto invalid_ack;
3635
3636 skb_mstamp_get(&now);
3637
3638 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3639 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3640 tcp_rearm_rto(sk);
3641
3642 if (after(ack, prior_snd_una)) {
3643 flag |= FLAG_SND_UNA_ADVANCED;
3644 icsk->icsk_retransmits = 0;
3645 }
3646
3647 prior_fackets = tp->fackets_out;
3648 rs.prior_in_flight = tcp_packets_in_flight(tp);
3649
3650 /* ts_recent update must be made after we are sure that the packet
3651 * is in window.
3652 */
3653 if (flag & FLAG_UPDATE_TS_RECENT)
3654 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3655
3656 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3657 /* Window is constant, pure forward advance.
3658 * No more checks are required.
3659 * Note, we use the fact that SND.UNA>=SND.WL2.
3660 */
3661 tcp_update_wl(tp, ack_seq);
3662 tcp_snd_una_update(tp, ack);
3663 flag |= FLAG_WIN_UPDATE;
3664
3665 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3666
3667 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3668 } else {
3669 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3670
3671 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3672 flag |= FLAG_DATA;
3673 else
3674 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3675
3676 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3677
3678 if (TCP_SKB_CB(skb)->sacked)
3679 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3680 &sack_state);
3681
3682 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3683 flag |= FLAG_ECE;
3684 ack_ev_flags |= CA_ACK_ECE;
3685 }
3686
3687 if (flag & FLAG_WIN_UPDATE)
3688 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3689
3690 tcp_in_ack_event(sk, ack_ev_flags);
3691 }
3692
3693 /* We passed data and got it acked, remove any soft error
3694 * log. Something worked...
3695 */
3696 sk->sk_err_soft = 0;
3697 icsk->icsk_probes_out = 0;
3698 tp->rcv_tstamp = tcp_time_stamp;
3699 if (!prior_packets)
3700 goto no_queue;
3701
3702 /* See if we can take anything off of the retransmit queue. */
3703 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3704 &sack_state, &now);
3705
3706 if (tcp_ack_is_dubious(sk, flag)) {
3707 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3708 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3709 }
3710 if (tp->tlp_high_seq)
3711 tcp_process_tlp_ack(sk, ack, flag);
3712
3713 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3714 struct dst_entry *dst = __sk_dst_get(sk);
3715 if (dst)
3716 dst_confirm(dst);
3717 }
3718
3719 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3720 tcp_schedule_loss_probe(sk);
3721 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
3722 lost = tp->lost - lost; /* freshly marked lost */
3723 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, &now, &rs);
3724 tcp_cong_control(sk, ack, delivered, flag, &rs);
3725 tcp_xmit_recovery(sk, rexmit);
3726 return 1;
3727
3728 no_queue:
3729 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3730 if (flag & FLAG_DSACKING_ACK)
3731 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3732 /* If this ack opens up a zero window, clear backoff. It was
3733 * being used to time the probes, and is probably far higher than
3734 * it needs to be for normal retransmission.
3735 */
3736 if (tcp_send_head(sk))
3737 tcp_ack_probe(sk);
3738
3739 if (tp->tlp_high_seq)
3740 tcp_process_tlp_ack(sk, ack, flag);
3741 return 1;
3742
3743 invalid_ack:
3744 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3745 return -1;
3746
3747 old_ack:
3748 /* If data was SACKed, tag it and see if we should send more data.
3749 * If data was DSACKed, see if we can undo a cwnd reduction.
3750 */
3751 if (TCP_SKB_CB(skb)->sacked) {
3752 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3753 &sack_state);
3754 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3755 tcp_xmit_recovery(sk, rexmit);
3756 }
3757
3758 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3759 return 0;
3760 }
3761
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3762 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3763 bool syn, struct tcp_fastopen_cookie *foc,
3764 bool exp_opt)
3765 {
3766 /* Valid only in SYN or SYN-ACK with an even length. */
3767 if (!foc || !syn || len < 0 || (len & 1))
3768 return;
3769
3770 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3771 len <= TCP_FASTOPEN_COOKIE_MAX)
3772 memcpy(foc->val, cookie, len);
3773 else if (len != 0)
3774 len = -1;
3775 foc->len = len;
3776 foc->exp = exp_opt;
3777 }
3778
3779 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3780 * But, this can also be called on packets in the established flow when
3781 * the fast version below fails.
3782 */
tcp_parse_options(const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)3783 void tcp_parse_options(const struct sk_buff *skb,
3784 struct tcp_options_received *opt_rx, int estab,
3785 struct tcp_fastopen_cookie *foc)
3786 {
3787 const unsigned char *ptr;
3788 const struct tcphdr *th = tcp_hdr(skb);
3789 int length = (th->doff * 4) - sizeof(struct tcphdr);
3790
3791 ptr = (const unsigned char *)(th + 1);
3792 opt_rx->saw_tstamp = 0;
3793
3794 while (length > 0) {
3795 int opcode = *ptr++;
3796 int opsize;
3797
3798 switch (opcode) {
3799 case TCPOPT_EOL:
3800 return;
3801 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3802 length--;
3803 continue;
3804 default:
3805 opsize = *ptr++;
3806 if (opsize < 2) /* "silly options" */
3807 return;
3808 if (opsize > length)
3809 return; /* don't parse partial options */
3810 switch (opcode) {
3811 case TCPOPT_MSS:
3812 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3813 u16 in_mss = get_unaligned_be16(ptr);
3814 if (in_mss) {
3815 if (opt_rx->user_mss &&
3816 opt_rx->user_mss < in_mss)
3817 in_mss = opt_rx->user_mss;
3818 opt_rx->mss_clamp = in_mss;
3819 }
3820 }
3821 break;
3822 case TCPOPT_WINDOW:
3823 if (opsize == TCPOLEN_WINDOW && th->syn &&
3824 !estab && sysctl_tcp_window_scaling) {
3825 __u8 snd_wscale = *(__u8 *)ptr;
3826 opt_rx->wscale_ok = 1;
3827 if (snd_wscale > 14) {
3828 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3829 __func__,
3830 snd_wscale);
3831 snd_wscale = 14;
3832 }
3833 opt_rx->snd_wscale = snd_wscale;
3834 }
3835 break;
3836 case TCPOPT_TIMESTAMP:
3837 if ((opsize == TCPOLEN_TIMESTAMP) &&
3838 ((estab && opt_rx->tstamp_ok) ||
3839 (!estab && sysctl_tcp_timestamps))) {
3840 opt_rx->saw_tstamp = 1;
3841 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3842 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3843 }
3844 break;
3845 case TCPOPT_SACK_PERM:
3846 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3847 !estab && sysctl_tcp_sack) {
3848 opt_rx->sack_ok = TCP_SACK_SEEN;
3849 tcp_sack_reset(opt_rx);
3850 }
3851 break;
3852
3853 case TCPOPT_SACK:
3854 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3855 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3856 opt_rx->sack_ok) {
3857 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3858 }
3859 break;
3860 #ifdef CONFIG_TCP_MD5SIG
3861 case TCPOPT_MD5SIG:
3862 /*
3863 * The MD5 Hash has already been
3864 * checked (see tcp_v{4,6}_do_rcv()).
3865 */
3866 break;
3867 #endif
3868 case TCPOPT_FASTOPEN:
3869 tcp_parse_fastopen_option(
3870 opsize - TCPOLEN_FASTOPEN_BASE,
3871 ptr, th->syn, foc, false);
3872 break;
3873
3874 case TCPOPT_EXP:
3875 /* Fast Open option shares code 254 using a
3876 * 16 bits magic number.
3877 */
3878 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3879 get_unaligned_be16(ptr) ==
3880 TCPOPT_FASTOPEN_MAGIC)
3881 tcp_parse_fastopen_option(opsize -
3882 TCPOLEN_EXP_FASTOPEN_BASE,
3883 ptr + 2, th->syn, foc, true);
3884 break;
3885
3886 }
3887 ptr += opsize-2;
3888 length -= opsize;
3889 }
3890 }
3891 }
3892 EXPORT_SYMBOL(tcp_parse_options);
3893
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)3894 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3895 {
3896 const __be32 *ptr = (const __be32 *)(th + 1);
3897
3898 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3899 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3900 tp->rx_opt.saw_tstamp = 1;
3901 ++ptr;
3902 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3903 ++ptr;
3904 if (*ptr)
3905 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3906 else
3907 tp->rx_opt.rcv_tsecr = 0;
3908 return true;
3909 }
3910 return false;
3911 }
3912
3913 /* Fast parse options. This hopes to only see timestamps.
3914 * If it is wrong it falls back on tcp_parse_options().
3915 */
tcp_fast_parse_options(const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)3916 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3917 const struct tcphdr *th, struct tcp_sock *tp)
3918 {
3919 /* In the spirit of fast parsing, compare doff directly to constant
3920 * values. Because equality is used, short doff can be ignored here.
3921 */
3922 if (th->doff == (sizeof(*th) / 4)) {
3923 tp->rx_opt.saw_tstamp = 0;
3924 return false;
3925 } else if (tp->rx_opt.tstamp_ok &&
3926 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3927 if (tcp_parse_aligned_timestamp(tp, th))
3928 return true;
3929 }
3930
3931 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3932 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3933 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3934
3935 return true;
3936 }
3937
3938 #ifdef CONFIG_TCP_MD5SIG
3939 /*
3940 * Parse MD5 Signature option
3941 */
tcp_parse_md5sig_option(const struct tcphdr * th)3942 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3943 {
3944 int length = (th->doff << 2) - sizeof(*th);
3945 const u8 *ptr = (const u8 *)(th + 1);
3946
3947 /* If not enough data remaining, we can short cut */
3948 while (length >= TCPOLEN_MD5SIG) {
3949 int opcode = *ptr++;
3950 int opsize;
3951
3952 switch (opcode) {
3953 case TCPOPT_EOL:
3954 return NULL;
3955 case TCPOPT_NOP:
3956 length--;
3957 continue;
3958 default:
3959 opsize = *ptr++;
3960 if (opsize < 2 || opsize > length)
3961 return NULL;
3962 if (opcode == TCPOPT_MD5SIG)
3963 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3964 }
3965 ptr += opsize - 2;
3966 length -= opsize;
3967 }
3968 return NULL;
3969 }
3970 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3971 #endif
3972
3973 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3974 *
3975 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3976 * it can pass through stack. So, the following predicate verifies that
3977 * this segment is not used for anything but congestion avoidance or
3978 * fast retransmit. Moreover, we even are able to eliminate most of such
3979 * second order effects, if we apply some small "replay" window (~RTO)
3980 * to timestamp space.
3981 *
3982 * All these measures still do not guarantee that we reject wrapped ACKs
3983 * on networks with high bandwidth, when sequence space is recycled fastly,
3984 * but it guarantees that such events will be very rare and do not affect
3985 * connection seriously. This doesn't look nice, but alas, PAWS is really
3986 * buggy extension.
3987 *
3988 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3989 * states that events when retransmit arrives after original data are rare.
3990 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3991 * the biggest problem on large power networks even with minor reordering.
3992 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3993 * up to bandwidth of 18Gigabit/sec. 8) ]
3994 */
3995
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)3996 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3997 {
3998 const struct tcp_sock *tp = tcp_sk(sk);
3999 const struct tcphdr *th = tcp_hdr(skb);
4000 u32 seq = TCP_SKB_CB(skb)->seq;
4001 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4002
4003 return (/* 1. Pure ACK with correct sequence number. */
4004 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4005
4006 /* 2. ... and duplicate ACK. */
4007 ack == tp->snd_una &&
4008
4009 /* 3. ... and does not update window. */
4010 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4011
4012 /* 4. ... and sits in replay window. */
4013 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4014 }
4015
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4016 static inline bool tcp_paws_discard(const struct sock *sk,
4017 const struct sk_buff *skb)
4018 {
4019 const struct tcp_sock *tp = tcp_sk(sk);
4020
4021 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4022 !tcp_disordered_ack(sk, skb);
4023 }
4024
4025 /* Check segment sequence number for validity.
4026 *
4027 * Segment controls are considered valid, if the segment
4028 * fits to the window after truncation to the window. Acceptability
4029 * of data (and SYN, FIN, of course) is checked separately.
4030 * See tcp_data_queue(), for example.
4031 *
4032 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4033 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4034 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4035 * (borrowed from freebsd)
4036 */
4037
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4038 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4039 {
4040 return !before(end_seq, tp->rcv_wup) &&
4041 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4042 }
4043
4044 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4045 void tcp_reset(struct sock *sk)
4046 {
4047 /* We want the right error as BSD sees it (and indeed as we do). */
4048 switch (sk->sk_state) {
4049 case TCP_SYN_SENT:
4050 sk->sk_err = ECONNREFUSED;
4051 break;
4052 case TCP_CLOSE_WAIT:
4053 sk->sk_err = EPIPE;
4054 break;
4055 case TCP_CLOSE:
4056 return;
4057 default:
4058 sk->sk_err = ECONNRESET;
4059 }
4060 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4061 smp_wmb();
4062
4063 if (!sock_flag(sk, SOCK_DEAD))
4064 sk->sk_error_report(sk);
4065
4066 tcp_done(sk);
4067 }
4068
4069 /*
4070 * Process the FIN bit. This now behaves as it is supposed to work
4071 * and the FIN takes effect when it is validly part of sequence
4072 * space. Not before when we get holes.
4073 *
4074 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4075 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4076 * TIME-WAIT)
4077 *
4078 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4079 * close and we go into CLOSING (and later onto TIME-WAIT)
4080 *
4081 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4082 */
tcp_fin(struct sock * sk)4083 void tcp_fin(struct sock *sk)
4084 {
4085 struct tcp_sock *tp = tcp_sk(sk);
4086
4087 inet_csk_schedule_ack(sk);
4088
4089 sk->sk_shutdown |= RCV_SHUTDOWN;
4090 sock_set_flag(sk, SOCK_DONE);
4091
4092 switch (sk->sk_state) {
4093 case TCP_SYN_RECV:
4094 case TCP_ESTABLISHED:
4095 /* Move to CLOSE_WAIT */
4096 tcp_set_state(sk, TCP_CLOSE_WAIT);
4097 inet_csk(sk)->icsk_ack.pingpong = 1;
4098 break;
4099
4100 case TCP_CLOSE_WAIT:
4101 case TCP_CLOSING:
4102 /* Received a retransmission of the FIN, do
4103 * nothing.
4104 */
4105 break;
4106 case TCP_LAST_ACK:
4107 /* RFC793: Remain in the LAST-ACK state. */
4108 break;
4109
4110 case TCP_FIN_WAIT1:
4111 /* This case occurs when a simultaneous close
4112 * happens, we must ack the received FIN and
4113 * enter the CLOSING state.
4114 */
4115 tcp_send_ack(sk);
4116 tcp_set_state(sk, TCP_CLOSING);
4117 break;
4118 case TCP_FIN_WAIT2:
4119 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4120 tcp_send_ack(sk);
4121 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4122 break;
4123 default:
4124 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4125 * cases we should never reach this piece of code.
4126 */
4127 pr_err("%s: Impossible, sk->sk_state=%d\n",
4128 __func__, sk->sk_state);
4129 break;
4130 }
4131
4132 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4133 * Probably, we should reset in this case. For now drop them.
4134 */
4135 skb_rbtree_purge(&tp->out_of_order_queue);
4136 if (tcp_is_sack(tp))
4137 tcp_sack_reset(&tp->rx_opt);
4138 sk_mem_reclaim(sk);
4139
4140 if (!sock_flag(sk, SOCK_DEAD)) {
4141 sk->sk_state_change(sk);
4142
4143 /* Do not send POLL_HUP for half duplex close. */
4144 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4145 sk->sk_state == TCP_CLOSE)
4146 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4147 else
4148 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4149 }
4150 }
4151
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4152 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4153 u32 end_seq)
4154 {
4155 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4156 if (before(seq, sp->start_seq))
4157 sp->start_seq = seq;
4158 if (after(end_seq, sp->end_seq))
4159 sp->end_seq = end_seq;
4160 return true;
4161 }
4162 return false;
4163 }
4164
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4165 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4166 {
4167 struct tcp_sock *tp = tcp_sk(sk);
4168
4169 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4170 int mib_idx;
4171
4172 if (before(seq, tp->rcv_nxt))
4173 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4174 else
4175 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4176
4177 NET_INC_STATS(sock_net(sk), mib_idx);
4178
4179 tp->rx_opt.dsack = 1;
4180 tp->duplicate_sack[0].start_seq = seq;
4181 tp->duplicate_sack[0].end_seq = end_seq;
4182 }
4183 }
4184
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4185 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4186 {
4187 struct tcp_sock *tp = tcp_sk(sk);
4188
4189 if (!tp->rx_opt.dsack)
4190 tcp_dsack_set(sk, seq, end_seq);
4191 else
4192 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4193 }
4194
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4195 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4196 {
4197 struct tcp_sock *tp = tcp_sk(sk);
4198
4199 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4200 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4201 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4202 tcp_enter_quickack_mode(sk);
4203
4204 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4205 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4206
4207 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4208 end_seq = tp->rcv_nxt;
4209 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4210 }
4211 }
4212
4213 tcp_send_ack(sk);
4214 }
4215
4216 /* These routines update the SACK block as out-of-order packets arrive or
4217 * in-order packets close up the sequence space.
4218 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4219 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4220 {
4221 int this_sack;
4222 struct tcp_sack_block *sp = &tp->selective_acks[0];
4223 struct tcp_sack_block *swalk = sp + 1;
4224
4225 /* See if the recent change to the first SACK eats into
4226 * or hits the sequence space of other SACK blocks, if so coalesce.
4227 */
4228 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4229 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4230 int i;
4231
4232 /* Zap SWALK, by moving every further SACK up by one slot.
4233 * Decrease num_sacks.
4234 */
4235 tp->rx_opt.num_sacks--;
4236 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4237 sp[i] = sp[i + 1];
4238 continue;
4239 }
4240 this_sack++, swalk++;
4241 }
4242 }
4243
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4244 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4245 {
4246 struct tcp_sock *tp = tcp_sk(sk);
4247 struct tcp_sack_block *sp = &tp->selective_acks[0];
4248 int cur_sacks = tp->rx_opt.num_sacks;
4249 int this_sack;
4250
4251 if (!cur_sacks)
4252 goto new_sack;
4253
4254 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4255 if (tcp_sack_extend(sp, seq, end_seq)) {
4256 /* Rotate this_sack to the first one. */
4257 for (; this_sack > 0; this_sack--, sp--)
4258 swap(*sp, *(sp - 1));
4259 if (cur_sacks > 1)
4260 tcp_sack_maybe_coalesce(tp);
4261 return;
4262 }
4263 }
4264
4265 /* Could not find an adjacent existing SACK, build a new one,
4266 * put it at the front, and shift everyone else down. We
4267 * always know there is at least one SACK present already here.
4268 *
4269 * If the sack array is full, forget about the last one.
4270 */
4271 if (this_sack >= TCP_NUM_SACKS) {
4272 this_sack--;
4273 tp->rx_opt.num_sacks--;
4274 sp--;
4275 }
4276 for (; this_sack > 0; this_sack--, sp--)
4277 *sp = *(sp - 1);
4278
4279 new_sack:
4280 /* Build the new head SACK, and we're done. */
4281 sp->start_seq = seq;
4282 sp->end_seq = end_seq;
4283 tp->rx_opt.num_sacks++;
4284 }
4285
4286 /* RCV.NXT advances, some SACKs should be eaten. */
4287
tcp_sack_remove(struct tcp_sock * tp)4288 static void tcp_sack_remove(struct tcp_sock *tp)
4289 {
4290 struct tcp_sack_block *sp = &tp->selective_acks[0];
4291 int num_sacks = tp->rx_opt.num_sacks;
4292 int this_sack;
4293
4294 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4295 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4296 tp->rx_opt.num_sacks = 0;
4297 return;
4298 }
4299
4300 for (this_sack = 0; this_sack < num_sacks;) {
4301 /* Check if the start of the sack is covered by RCV.NXT. */
4302 if (!before(tp->rcv_nxt, sp->start_seq)) {
4303 int i;
4304
4305 /* RCV.NXT must cover all the block! */
4306 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4307
4308 /* Zap this SACK, by moving forward any other SACKS. */
4309 for (i = this_sack+1; i < num_sacks; i++)
4310 tp->selective_acks[i-1] = tp->selective_acks[i];
4311 num_sacks--;
4312 continue;
4313 }
4314 this_sack++;
4315 sp++;
4316 }
4317 tp->rx_opt.num_sacks = num_sacks;
4318 }
4319
4320 /**
4321 * tcp_try_coalesce - try to merge skb to prior one
4322 * @sk: socket
4323 * @to: prior buffer
4324 * @from: buffer to add in queue
4325 * @fragstolen: pointer to boolean
4326 *
4327 * Before queueing skb @from after @to, try to merge them
4328 * to reduce overall memory use and queue lengths, if cost is small.
4329 * Packets in ofo or receive queues can stay a long time.
4330 * Better try to coalesce them right now to avoid future collapses.
4331 * Returns true if caller should free @from instead of queueing it
4332 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4333 static bool tcp_try_coalesce(struct sock *sk,
4334 struct sk_buff *to,
4335 struct sk_buff *from,
4336 bool *fragstolen)
4337 {
4338 int delta;
4339
4340 *fragstolen = false;
4341
4342 /* Its possible this segment overlaps with prior segment in queue */
4343 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4344 return false;
4345
4346 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4347 return false;
4348
4349 atomic_add(delta, &sk->sk_rmem_alloc);
4350 sk_mem_charge(sk, delta);
4351 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4352 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4353 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4354 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4355 return true;
4356 }
4357
tcp_drop(struct sock * sk,struct sk_buff * skb)4358 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4359 {
4360 sk_drops_add(sk, skb);
4361 __kfree_skb(skb);
4362 }
4363
4364 /* This one checks to see if we can put data from the
4365 * out_of_order queue into the receive_queue.
4366 */
tcp_ofo_queue(struct sock * sk)4367 static void tcp_ofo_queue(struct sock *sk)
4368 {
4369 struct tcp_sock *tp = tcp_sk(sk);
4370 __u32 dsack_high = tp->rcv_nxt;
4371 bool fin, fragstolen, eaten;
4372 struct sk_buff *skb, *tail;
4373 struct rb_node *p;
4374
4375 p = rb_first(&tp->out_of_order_queue);
4376 while (p) {
4377 skb = rb_entry(p, struct sk_buff, rbnode);
4378 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4379 break;
4380
4381 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4382 __u32 dsack = dsack_high;
4383 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4384 dsack_high = TCP_SKB_CB(skb)->end_seq;
4385 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4386 }
4387 p = rb_next(p);
4388 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4389
4390 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4391 SOCK_DEBUG(sk, "ofo packet was already received\n");
4392 tcp_drop(sk, skb);
4393 continue;
4394 }
4395 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4396 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4397 TCP_SKB_CB(skb)->end_seq);
4398
4399 tail = skb_peek_tail(&sk->sk_receive_queue);
4400 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4401 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4402 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4403 if (!eaten)
4404 __skb_queue_tail(&sk->sk_receive_queue, skb);
4405 else
4406 kfree_skb_partial(skb, fragstolen);
4407
4408 if (unlikely(fin)) {
4409 tcp_fin(sk);
4410 /* tcp_fin() purges tp->out_of_order_queue,
4411 * so we must end this loop right now.
4412 */
4413 break;
4414 }
4415 }
4416 }
4417
4418 static bool tcp_prune_ofo_queue(struct sock *sk);
4419 static int tcp_prune_queue(struct sock *sk);
4420
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4421 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4422 unsigned int size)
4423 {
4424 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4425 !sk_rmem_schedule(sk, skb, size)) {
4426
4427 if (tcp_prune_queue(sk) < 0)
4428 return -1;
4429
4430 while (!sk_rmem_schedule(sk, skb, size)) {
4431 if (!tcp_prune_ofo_queue(sk))
4432 return -1;
4433 }
4434 }
4435 return 0;
4436 }
4437
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4438 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4439 {
4440 struct tcp_sock *tp = tcp_sk(sk);
4441 struct rb_node **p, *q, *parent;
4442 struct sk_buff *skb1;
4443 u32 seq, end_seq;
4444 bool fragstolen;
4445
4446 tcp_ecn_check_ce(tp, skb);
4447
4448 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4449 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4450 tcp_drop(sk, skb);
4451 return;
4452 }
4453
4454 /* Disable header prediction. */
4455 tp->pred_flags = 0;
4456 inet_csk_schedule_ack(sk);
4457
4458 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4459 seq = TCP_SKB_CB(skb)->seq;
4460 end_seq = TCP_SKB_CB(skb)->end_seq;
4461 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4462 tp->rcv_nxt, seq, end_seq);
4463
4464 p = &tp->out_of_order_queue.rb_node;
4465 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4466 /* Initial out of order segment, build 1 SACK. */
4467 if (tcp_is_sack(tp)) {
4468 tp->rx_opt.num_sacks = 1;
4469 tp->selective_acks[0].start_seq = seq;
4470 tp->selective_acks[0].end_seq = end_seq;
4471 }
4472 rb_link_node(&skb->rbnode, NULL, p);
4473 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4474 tp->ooo_last_skb = skb;
4475 goto end;
4476 }
4477
4478 /* In the typical case, we are adding an skb to the end of the list.
4479 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4480 */
4481 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4482 coalesce_done:
4483 tcp_grow_window(sk, skb);
4484 kfree_skb_partial(skb, fragstolen);
4485 skb = NULL;
4486 goto add_sack;
4487 }
4488 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4489 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4490 parent = &tp->ooo_last_skb->rbnode;
4491 p = &parent->rb_right;
4492 goto insert;
4493 }
4494
4495 /* Find place to insert this segment. Handle overlaps on the way. */
4496 parent = NULL;
4497 while (*p) {
4498 parent = *p;
4499 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4500 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4501 p = &parent->rb_left;
4502 continue;
4503 }
4504 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4505 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4506 /* All the bits are present. Drop. */
4507 NET_INC_STATS(sock_net(sk),
4508 LINUX_MIB_TCPOFOMERGE);
4509 __kfree_skb(skb);
4510 skb = NULL;
4511 tcp_dsack_set(sk, seq, end_seq);
4512 goto add_sack;
4513 }
4514 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4515 /* Partial overlap. */
4516 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4517 } else {
4518 /* skb's seq == skb1's seq and skb covers skb1.
4519 * Replace skb1 with skb.
4520 */
4521 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4522 &tp->out_of_order_queue);
4523 tcp_dsack_extend(sk,
4524 TCP_SKB_CB(skb1)->seq,
4525 TCP_SKB_CB(skb1)->end_seq);
4526 NET_INC_STATS(sock_net(sk),
4527 LINUX_MIB_TCPOFOMERGE);
4528 __kfree_skb(skb1);
4529 goto merge_right;
4530 }
4531 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4532 goto coalesce_done;
4533 }
4534 p = &parent->rb_right;
4535 }
4536 insert:
4537 /* Insert segment into RB tree. */
4538 rb_link_node(&skb->rbnode, parent, p);
4539 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4540
4541 merge_right:
4542 /* Remove other segments covered by skb. */
4543 while ((q = rb_next(&skb->rbnode)) != NULL) {
4544 skb1 = rb_entry(q, struct sk_buff, rbnode);
4545
4546 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4547 break;
4548 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4549 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4550 end_seq);
4551 break;
4552 }
4553 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4554 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4555 TCP_SKB_CB(skb1)->end_seq);
4556 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4557 tcp_drop(sk, skb1);
4558 }
4559 /* If there is no skb after us, we are the last_skb ! */
4560 if (!q)
4561 tp->ooo_last_skb = skb;
4562
4563 add_sack:
4564 if (tcp_is_sack(tp))
4565 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4566 end:
4567 if (skb) {
4568 tcp_grow_window(sk, skb);
4569 skb_set_owner_r(skb, sk);
4570 }
4571 }
4572
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,int hdrlen,bool * fragstolen)4573 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4574 bool *fragstolen)
4575 {
4576 int eaten;
4577 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4578
4579 __skb_pull(skb, hdrlen);
4580 eaten = (tail &&
4581 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4582 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4583 if (!eaten) {
4584 __skb_queue_tail(&sk->sk_receive_queue, skb);
4585 skb_set_owner_r(skb, sk);
4586 }
4587 return eaten;
4588 }
4589
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4590 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4591 {
4592 struct sk_buff *skb;
4593 int err = -ENOMEM;
4594 int data_len = 0;
4595 bool fragstolen;
4596
4597 if (size == 0)
4598 return 0;
4599
4600 if (size > PAGE_SIZE) {
4601 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4602
4603 data_len = npages << PAGE_SHIFT;
4604 size = data_len + (size & ~PAGE_MASK);
4605 }
4606 skb = alloc_skb_with_frags(size - data_len, data_len,
4607 PAGE_ALLOC_COSTLY_ORDER,
4608 &err, sk->sk_allocation);
4609 if (!skb)
4610 goto err;
4611
4612 skb_put(skb, size - data_len);
4613 skb->data_len = data_len;
4614 skb->len = size;
4615
4616 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4617 goto err_free;
4618
4619 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4620 if (err)
4621 goto err_free;
4622
4623 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4624 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4625 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4626
4627 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4628 WARN_ON_ONCE(fragstolen); /* should not happen */
4629 __kfree_skb(skb);
4630 }
4631 return size;
4632
4633 err_free:
4634 kfree_skb(skb);
4635 err:
4636 return err;
4637
4638 }
4639
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4640 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4641 {
4642 struct tcp_sock *tp = tcp_sk(sk);
4643 bool fragstolen = false;
4644 int eaten = -1;
4645
4646 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4647 __kfree_skb(skb);
4648 return;
4649 }
4650 skb_dst_drop(skb);
4651 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4652
4653 tcp_ecn_accept_cwr(tp, skb);
4654
4655 tp->rx_opt.dsack = 0;
4656
4657 /* Queue data for delivery to the user.
4658 * Packets in sequence go to the receive queue.
4659 * Out of sequence packets to the out_of_order_queue.
4660 */
4661 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4662 if (tcp_receive_window(tp) == 0)
4663 goto out_of_window;
4664
4665 /* Ok. In sequence. In window. */
4666 if (tp->ucopy.task == current &&
4667 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4668 sock_owned_by_user(sk) && !tp->urg_data) {
4669 int chunk = min_t(unsigned int, skb->len,
4670 tp->ucopy.len);
4671
4672 __set_current_state(TASK_RUNNING);
4673
4674 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4675 tp->ucopy.len -= chunk;
4676 tp->copied_seq += chunk;
4677 eaten = (chunk == skb->len);
4678 tcp_rcv_space_adjust(sk);
4679 }
4680 }
4681
4682 if (eaten <= 0) {
4683 queue_and_out:
4684 if (eaten < 0) {
4685 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4686 sk_forced_mem_schedule(sk, skb->truesize);
4687 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4688 goto drop;
4689 }
4690 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4691 }
4692 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4693 if (skb->len)
4694 tcp_event_data_recv(sk, skb);
4695 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4696 tcp_fin(sk);
4697
4698 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4699 tcp_ofo_queue(sk);
4700
4701 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4702 * gap in queue is filled.
4703 */
4704 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4705 inet_csk(sk)->icsk_ack.pingpong = 0;
4706 }
4707
4708 if (tp->rx_opt.num_sacks)
4709 tcp_sack_remove(tp);
4710
4711 tcp_fast_path_check(sk);
4712
4713 if (eaten > 0)
4714 kfree_skb_partial(skb, fragstolen);
4715 if (!sock_flag(sk, SOCK_DEAD))
4716 sk->sk_data_ready(sk);
4717 return;
4718 }
4719
4720 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4721 /* A retransmit, 2nd most common case. Force an immediate ack. */
4722 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4723 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4724
4725 out_of_window:
4726 tcp_enter_quickack_mode(sk);
4727 inet_csk_schedule_ack(sk);
4728 drop:
4729 tcp_drop(sk, skb);
4730 return;
4731 }
4732
4733 /* Out of window. F.e. zero window probe. */
4734 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4735 goto out_of_window;
4736
4737 tcp_enter_quickack_mode(sk);
4738
4739 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4740 /* Partial packet, seq < rcv_next < end_seq */
4741 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4742 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4743 TCP_SKB_CB(skb)->end_seq);
4744
4745 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4746
4747 /* If window is closed, drop tail of packet. But after
4748 * remembering D-SACK for its head made in previous line.
4749 */
4750 if (!tcp_receive_window(tp))
4751 goto out_of_window;
4752 goto queue_and_out;
4753 }
4754
4755 tcp_data_queue_ofo(sk, skb);
4756 }
4757
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)4758 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4759 {
4760 if (list)
4761 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4762
4763 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4764 }
4765
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)4766 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4767 struct sk_buff_head *list,
4768 struct rb_root *root)
4769 {
4770 struct sk_buff *next = tcp_skb_next(skb, list);
4771
4772 if (list)
4773 __skb_unlink(skb, list);
4774 else
4775 rb_erase(&skb->rbnode, root);
4776
4777 __kfree_skb(skb);
4778 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4779
4780 return next;
4781 }
4782
4783 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)4784 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4785 {
4786 struct rb_node **p = &root->rb_node;
4787 struct rb_node *parent = NULL;
4788 struct sk_buff *skb1;
4789
4790 while (*p) {
4791 parent = *p;
4792 skb1 = rb_entry(parent, struct sk_buff, rbnode);
4793 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4794 p = &parent->rb_left;
4795 else
4796 p = &parent->rb_right;
4797 }
4798 rb_link_node(&skb->rbnode, parent, p);
4799 rb_insert_color(&skb->rbnode, root);
4800 }
4801
4802 /* Collapse contiguous sequence of skbs head..tail with
4803 * sequence numbers start..end.
4804 *
4805 * If tail is NULL, this means until the end of the queue.
4806 *
4807 * Segments with FIN/SYN are not collapsed (only because this
4808 * simplifies code)
4809 */
4810 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)4811 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4812 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4813 {
4814 struct sk_buff *skb = head, *n;
4815 struct sk_buff_head tmp;
4816 bool end_of_skbs;
4817
4818 /* First, check that queue is collapsible and find
4819 * the point where collapsing can be useful.
4820 */
4821 restart:
4822 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4823 n = tcp_skb_next(skb, list);
4824
4825 /* No new bits? It is possible on ofo queue. */
4826 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4827 skb = tcp_collapse_one(sk, skb, list, root);
4828 if (!skb)
4829 break;
4830 goto restart;
4831 }
4832
4833 /* The first skb to collapse is:
4834 * - not SYN/FIN and
4835 * - bloated or contains data before "start" or
4836 * overlaps to the next one.
4837 */
4838 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4839 (tcp_win_from_space(skb->truesize) > skb->len ||
4840 before(TCP_SKB_CB(skb)->seq, start))) {
4841 end_of_skbs = false;
4842 break;
4843 }
4844
4845 if (n && n != tail &&
4846 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4847 end_of_skbs = false;
4848 break;
4849 }
4850
4851 /* Decided to skip this, advance start seq. */
4852 start = TCP_SKB_CB(skb)->end_seq;
4853 }
4854 if (end_of_skbs ||
4855 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4856 return;
4857
4858 __skb_queue_head_init(&tmp);
4859
4860 while (before(start, end)) {
4861 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4862 struct sk_buff *nskb;
4863
4864 nskb = alloc_skb(copy, GFP_ATOMIC);
4865 if (!nskb)
4866 break;
4867
4868 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4869 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4870 if (list)
4871 __skb_queue_before(list, skb, nskb);
4872 else
4873 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4874 skb_set_owner_r(nskb, sk);
4875
4876 /* Copy data, releasing collapsed skbs. */
4877 while (copy > 0) {
4878 int offset = start - TCP_SKB_CB(skb)->seq;
4879 int size = TCP_SKB_CB(skb)->end_seq - start;
4880
4881 BUG_ON(offset < 0);
4882 if (size > 0) {
4883 size = min(copy, size);
4884 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4885 BUG();
4886 TCP_SKB_CB(nskb)->end_seq += size;
4887 copy -= size;
4888 start += size;
4889 }
4890 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4891 skb = tcp_collapse_one(sk, skb, list, root);
4892 if (!skb ||
4893 skb == tail ||
4894 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4895 goto end;
4896 }
4897 }
4898 }
4899 end:
4900 skb_queue_walk_safe(&tmp, skb, n)
4901 tcp_rbtree_insert(root, skb);
4902 }
4903
4904 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4905 * and tcp_collapse() them until all the queue is collapsed.
4906 */
tcp_collapse_ofo_queue(struct sock * sk)4907 static void tcp_collapse_ofo_queue(struct sock *sk)
4908 {
4909 struct tcp_sock *tp = tcp_sk(sk);
4910 struct sk_buff *skb, *head;
4911 struct rb_node *p;
4912 u32 start, end;
4913
4914 p = rb_first(&tp->out_of_order_queue);
4915 skb = rb_entry_safe(p, struct sk_buff, rbnode);
4916 new_range:
4917 if (!skb) {
4918 p = rb_last(&tp->out_of_order_queue);
4919 /* Note: This is possible p is NULL here. We do not
4920 * use rb_entry_safe(), as ooo_last_skb is valid only
4921 * if rbtree is not empty.
4922 */
4923 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4924 return;
4925 }
4926 start = TCP_SKB_CB(skb)->seq;
4927 end = TCP_SKB_CB(skb)->end_seq;
4928
4929 for (head = skb;;) {
4930 skb = tcp_skb_next(skb, NULL);
4931
4932 /* Range is terminated when we see a gap or when
4933 * we are at the queue end.
4934 */
4935 if (!skb ||
4936 after(TCP_SKB_CB(skb)->seq, end) ||
4937 before(TCP_SKB_CB(skb)->end_seq, start)) {
4938 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4939 head, skb, start, end);
4940 goto new_range;
4941 }
4942
4943 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4944 start = TCP_SKB_CB(skb)->seq;
4945 if (after(TCP_SKB_CB(skb)->end_seq, end))
4946 end = TCP_SKB_CB(skb)->end_seq;
4947 }
4948 }
4949
4950 /*
4951 * Clean the out-of-order queue to make room.
4952 * We drop high sequences packets to :
4953 * 1) Let a chance for holes to be filled.
4954 * 2) not add too big latencies if thousands of packets sit there.
4955 * (But if application shrinks SO_RCVBUF, we could still end up
4956 * freeing whole queue here)
4957 *
4958 * Return true if queue has shrunk.
4959 */
tcp_prune_ofo_queue(struct sock * sk)4960 static bool tcp_prune_ofo_queue(struct sock *sk)
4961 {
4962 struct tcp_sock *tp = tcp_sk(sk);
4963 struct rb_node *node, *prev;
4964
4965 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4966 return false;
4967
4968 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4969 node = &tp->ooo_last_skb->rbnode;
4970 do {
4971 prev = rb_prev(node);
4972 rb_erase(node, &tp->out_of_order_queue);
4973 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4974 sk_mem_reclaim(sk);
4975 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4976 !tcp_under_memory_pressure(sk))
4977 break;
4978 node = prev;
4979 } while (node);
4980 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4981
4982 /* Reset SACK state. A conforming SACK implementation will
4983 * do the same at a timeout based retransmit. When a connection
4984 * is in a sad state like this, we care only about integrity
4985 * of the connection not performance.
4986 */
4987 if (tp->rx_opt.sack_ok)
4988 tcp_sack_reset(&tp->rx_opt);
4989 return true;
4990 }
4991
4992 /* Reduce allocated memory if we can, trying to get
4993 * the socket within its memory limits again.
4994 *
4995 * Return less than zero if we should start dropping frames
4996 * until the socket owning process reads some of the data
4997 * to stabilize the situation.
4998 */
tcp_prune_queue(struct sock * sk)4999 static int tcp_prune_queue(struct sock *sk)
5000 {
5001 struct tcp_sock *tp = tcp_sk(sk);
5002
5003 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5004
5005 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5006
5007 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5008 tcp_clamp_window(sk);
5009 else if (tcp_under_memory_pressure(sk))
5010 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5011
5012 tcp_collapse_ofo_queue(sk);
5013 if (!skb_queue_empty(&sk->sk_receive_queue))
5014 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5015 skb_peek(&sk->sk_receive_queue),
5016 NULL,
5017 tp->copied_seq, tp->rcv_nxt);
5018 sk_mem_reclaim(sk);
5019
5020 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5021 return 0;
5022
5023 /* Collapsing did not help, destructive actions follow.
5024 * This must not ever occur. */
5025
5026 tcp_prune_ofo_queue(sk);
5027
5028 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5029 return 0;
5030
5031 /* If we are really being abused, tell the caller to silently
5032 * drop receive data on the floor. It will get retransmitted
5033 * and hopefully then we'll have sufficient space.
5034 */
5035 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5036
5037 /* Massive buffer overcommit. */
5038 tp->pred_flags = 0;
5039 return -1;
5040 }
5041
tcp_should_expand_sndbuf(const struct sock * sk)5042 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5043 {
5044 const struct tcp_sock *tp = tcp_sk(sk);
5045
5046 /* If the user specified a specific send buffer setting, do
5047 * not modify it.
5048 */
5049 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5050 return false;
5051
5052 /* If we are under global TCP memory pressure, do not expand. */
5053 if (tcp_under_memory_pressure(sk))
5054 return false;
5055
5056 /* If we are under soft global TCP memory pressure, do not expand. */
5057 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5058 return false;
5059
5060 /* If we filled the congestion window, do not expand. */
5061 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5062 return false;
5063
5064 return true;
5065 }
5066
5067 /* When incoming ACK allowed to free some skb from write_queue,
5068 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5069 * on the exit from tcp input handler.
5070 *
5071 * PROBLEM: sndbuf expansion does not work well with largesend.
5072 */
tcp_new_space(struct sock * sk)5073 static void tcp_new_space(struct sock *sk)
5074 {
5075 struct tcp_sock *tp = tcp_sk(sk);
5076
5077 if (tcp_should_expand_sndbuf(sk)) {
5078 tcp_sndbuf_expand(sk);
5079 tp->snd_cwnd_stamp = tcp_time_stamp;
5080 }
5081
5082 sk->sk_write_space(sk);
5083 }
5084
tcp_check_space(struct sock * sk)5085 static void tcp_check_space(struct sock *sk)
5086 {
5087 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5088 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5089 /* pairs with tcp_poll() */
5090 smp_mb();
5091 if (sk->sk_socket &&
5092 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5093 tcp_new_space(sk);
5094 }
5095 }
5096
tcp_data_snd_check(struct sock * sk)5097 static inline void tcp_data_snd_check(struct sock *sk)
5098 {
5099 tcp_push_pending_frames(sk);
5100 tcp_check_space(sk);
5101 }
5102
5103 /*
5104 * Check if sending an ack is needed.
5105 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5106 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5107 {
5108 struct tcp_sock *tp = tcp_sk(sk);
5109
5110 /* More than one full frame received... */
5111 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5112 /* ... and right edge of window advances far enough.
5113 * (tcp_recvmsg() will send ACK otherwise). Or...
5114 */
5115 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5116 /* We ACK each frame or... */
5117 tcp_in_quickack_mode(sk) ||
5118 /* We have out of order data. */
5119 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5120 /* Then ack it now */
5121 tcp_send_ack(sk);
5122 } else {
5123 /* Else, send delayed ack. */
5124 tcp_send_delayed_ack(sk);
5125 }
5126 }
5127
tcp_ack_snd_check(struct sock * sk)5128 static inline void tcp_ack_snd_check(struct sock *sk)
5129 {
5130 if (!inet_csk_ack_scheduled(sk)) {
5131 /* We sent a data segment already. */
5132 return;
5133 }
5134 __tcp_ack_snd_check(sk, 1);
5135 }
5136
5137 /*
5138 * This routine is only called when we have urgent data
5139 * signaled. Its the 'slow' part of tcp_urg. It could be
5140 * moved inline now as tcp_urg is only called from one
5141 * place. We handle URGent data wrong. We have to - as
5142 * BSD still doesn't use the correction from RFC961.
5143 * For 1003.1g we should support a new option TCP_STDURG to permit
5144 * either form (or just set the sysctl tcp_stdurg).
5145 */
5146
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5147 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5148 {
5149 struct tcp_sock *tp = tcp_sk(sk);
5150 u32 ptr = ntohs(th->urg_ptr);
5151
5152 if (ptr && !sysctl_tcp_stdurg)
5153 ptr--;
5154 ptr += ntohl(th->seq);
5155
5156 /* Ignore urgent data that we've already seen and read. */
5157 if (after(tp->copied_seq, ptr))
5158 return;
5159
5160 /* Do not replay urg ptr.
5161 *
5162 * NOTE: interesting situation not covered by specs.
5163 * Misbehaving sender may send urg ptr, pointing to segment,
5164 * which we already have in ofo queue. We are not able to fetch
5165 * such data and will stay in TCP_URG_NOTYET until will be eaten
5166 * by recvmsg(). Seems, we are not obliged to handle such wicked
5167 * situations. But it is worth to think about possibility of some
5168 * DoSes using some hypothetical application level deadlock.
5169 */
5170 if (before(ptr, tp->rcv_nxt))
5171 return;
5172
5173 /* Do we already have a newer (or duplicate) urgent pointer? */
5174 if (tp->urg_data && !after(ptr, tp->urg_seq))
5175 return;
5176
5177 /* Tell the world about our new urgent pointer. */
5178 sk_send_sigurg(sk);
5179
5180 /* We may be adding urgent data when the last byte read was
5181 * urgent. To do this requires some care. We cannot just ignore
5182 * tp->copied_seq since we would read the last urgent byte again
5183 * as data, nor can we alter copied_seq until this data arrives
5184 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5185 *
5186 * NOTE. Double Dutch. Rendering to plain English: author of comment
5187 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5188 * and expect that both A and B disappear from stream. This is _wrong_.
5189 * Though this happens in BSD with high probability, this is occasional.
5190 * Any application relying on this is buggy. Note also, that fix "works"
5191 * only in this artificial test. Insert some normal data between A and B and we will
5192 * decline of BSD again. Verdict: it is better to remove to trap
5193 * buggy users.
5194 */
5195 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5196 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5197 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5198 tp->copied_seq++;
5199 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5200 __skb_unlink(skb, &sk->sk_receive_queue);
5201 __kfree_skb(skb);
5202 }
5203 }
5204
5205 tp->urg_data = TCP_URG_NOTYET;
5206 tp->urg_seq = ptr;
5207
5208 /* Disable header prediction. */
5209 tp->pred_flags = 0;
5210 }
5211
5212 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5213 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5214 {
5215 struct tcp_sock *tp = tcp_sk(sk);
5216
5217 /* Check if we get a new urgent pointer - normally not. */
5218 if (th->urg)
5219 tcp_check_urg(sk, th);
5220
5221 /* Do we wait for any urgent data? - normally not... */
5222 if (tp->urg_data == TCP_URG_NOTYET) {
5223 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5224 th->syn;
5225
5226 /* Is the urgent pointer pointing into this packet? */
5227 if (ptr < skb->len) {
5228 u8 tmp;
5229 if (skb_copy_bits(skb, ptr, &tmp, 1))
5230 BUG();
5231 tp->urg_data = TCP_URG_VALID | tmp;
5232 if (!sock_flag(sk, SOCK_DEAD))
5233 sk->sk_data_ready(sk);
5234 }
5235 }
5236 }
5237
tcp_copy_to_iovec(struct sock * sk,struct sk_buff * skb,int hlen)5238 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5239 {
5240 struct tcp_sock *tp = tcp_sk(sk);
5241 int chunk = skb->len - hlen;
5242 int err;
5243
5244 if (skb_csum_unnecessary(skb))
5245 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5246 else
5247 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5248
5249 if (!err) {
5250 tp->ucopy.len -= chunk;
5251 tp->copied_seq += chunk;
5252 tcp_rcv_space_adjust(sk);
5253 }
5254
5255 return err;
5256 }
5257
5258 /* Does PAWS and seqno based validation of an incoming segment, flags will
5259 * play significant role here.
5260 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5261 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5262 const struct tcphdr *th, int syn_inerr)
5263 {
5264 struct tcp_sock *tp = tcp_sk(sk);
5265 bool rst_seq_match = false;
5266
5267 /* RFC1323: H1. Apply PAWS check first. */
5268 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5269 tcp_paws_discard(sk, skb)) {
5270 if (!th->rst) {
5271 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5272 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5273 LINUX_MIB_TCPACKSKIPPEDPAWS,
5274 &tp->last_oow_ack_time))
5275 tcp_send_dupack(sk, skb);
5276 goto discard;
5277 }
5278 /* Reset is accepted even if it did not pass PAWS. */
5279 }
5280
5281 /* Step 1: check sequence number */
5282 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5283 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5284 * (RST) segments are validated by checking their SEQ-fields."
5285 * And page 69: "If an incoming segment is not acceptable,
5286 * an acknowledgment should be sent in reply (unless the RST
5287 * bit is set, if so drop the segment and return)".
5288 */
5289 if (!th->rst) {
5290 if (th->syn)
5291 goto syn_challenge;
5292 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5293 LINUX_MIB_TCPACKSKIPPEDSEQ,
5294 &tp->last_oow_ack_time))
5295 tcp_send_dupack(sk, skb);
5296 }
5297 goto discard;
5298 }
5299
5300 /* Step 2: check RST bit */
5301 if (th->rst) {
5302 /* RFC 5961 3.2 (extend to match against SACK too if available):
5303 * If seq num matches RCV.NXT or the right-most SACK block,
5304 * then
5305 * RESET the connection
5306 * else
5307 * Send a challenge ACK
5308 */
5309 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5310 rst_seq_match = true;
5311 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5312 struct tcp_sack_block *sp = &tp->selective_acks[0];
5313 int max_sack = sp[0].end_seq;
5314 int this_sack;
5315
5316 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5317 ++this_sack) {
5318 max_sack = after(sp[this_sack].end_seq,
5319 max_sack) ?
5320 sp[this_sack].end_seq : max_sack;
5321 }
5322
5323 if (TCP_SKB_CB(skb)->seq == max_sack)
5324 rst_seq_match = true;
5325 }
5326
5327 if (rst_seq_match)
5328 tcp_reset(sk);
5329 else
5330 tcp_send_challenge_ack(sk, skb);
5331 goto discard;
5332 }
5333
5334 /* step 3: check security and precedence [ignored] */
5335
5336 /* step 4: Check for a SYN
5337 * RFC 5961 4.2 : Send a challenge ack
5338 */
5339 if (th->syn) {
5340 syn_challenge:
5341 if (syn_inerr)
5342 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5343 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5344 tcp_send_challenge_ack(sk, skb);
5345 goto discard;
5346 }
5347
5348 return true;
5349
5350 discard:
5351 tcp_drop(sk, skb);
5352 return false;
5353 }
5354
5355 /*
5356 * TCP receive function for the ESTABLISHED state.
5357 *
5358 * It is split into a fast path and a slow path. The fast path is
5359 * disabled when:
5360 * - A zero window was announced from us - zero window probing
5361 * is only handled properly in the slow path.
5362 * - Out of order segments arrived.
5363 * - Urgent data is expected.
5364 * - There is no buffer space left
5365 * - Unexpected TCP flags/window values/header lengths are received
5366 * (detected by checking the TCP header against pred_flags)
5367 * - Data is sent in both directions. Fast path only supports pure senders
5368 * or pure receivers (this means either the sequence number or the ack
5369 * value must stay constant)
5370 * - Unexpected TCP option.
5371 *
5372 * When these conditions are not satisfied it drops into a standard
5373 * receive procedure patterned after RFC793 to handle all cases.
5374 * The first three cases are guaranteed by proper pred_flags setting,
5375 * the rest is checked inline. Fast processing is turned on in
5376 * tcp_data_queue when everything is OK.
5377 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,unsigned int len)5378 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5379 const struct tcphdr *th, unsigned int len)
5380 {
5381 struct tcp_sock *tp = tcp_sk(sk);
5382
5383 if (unlikely(!sk->sk_rx_dst))
5384 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5385 /*
5386 * Header prediction.
5387 * The code loosely follows the one in the famous
5388 * "30 instruction TCP receive" Van Jacobson mail.
5389 *
5390 * Van's trick is to deposit buffers into socket queue
5391 * on a device interrupt, to call tcp_recv function
5392 * on the receive process context and checksum and copy
5393 * the buffer to user space. smart...
5394 *
5395 * Our current scheme is not silly either but we take the
5396 * extra cost of the net_bh soft interrupt processing...
5397 * We do checksum and copy also but from device to kernel.
5398 */
5399
5400 tp->rx_opt.saw_tstamp = 0;
5401
5402 /* pred_flags is 0xS?10 << 16 + snd_wnd
5403 * if header_prediction is to be made
5404 * 'S' will always be tp->tcp_header_len >> 2
5405 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5406 * turn it off (when there are holes in the receive
5407 * space for instance)
5408 * PSH flag is ignored.
5409 */
5410
5411 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5412 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5413 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5414 int tcp_header_len = tp->tcp_header_len;
5415
5416 /* Timestamp header prediction: tcp_header_len
5417 * is automatically equal to th->doff*4 due to pred_flags
5418 * match.
5419 */
5420
5421 /* Check timestamp */
5422 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5423 /* No? Slow path! */
5424 if (!tcp_parse_aligned_timestamp(tp, th))
5425 goto slow_path;
5426
5427 /* If PAWS failed, check it more carefully in slow path */
5428 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5429 goto slow_path;
5430
5431 /* DO NOT update ts_recent here, if checksum fails
5432 * and timestamp was corrupted part, it will result
5433 * in a hung connection since we will drop all
5434 * future packets due to the PAWS test.
5435 */
5436 }
5437
5438 if (len <= tcp_header_len) {
5439 /* Bulk data transfer: sender */
5440 if (len == tcp_header_len) {
5441 /* Predicted packet is in window by definition.
5442 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5443 * Hence, check seq<=rcv_wup reduces to:
5444 */
5445 if (tcp_header_len ==
5446 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5447 tp->rcv_nxt == tp->rcv_wup)
5448 tcp_store_ts_recent(tp);
5449
5450 /* We know that such packets are checksummed
5451 * on entry.
5452 */
5453 tcp_ack(sk, skb, 0);
5454 __kfree_skb(skb);
5455 tcp_data_snd_check(sk);
5456 return;
5457 } else { /* Header too small */
5458 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5459 goto discard;
5460 }
5461 } else {
5462 int eaten = 0;
5463 bool fragstolen = false;
5464
5465 if (tp->ucopy.task == current &&
5466 tp->copied_seq == tp->rcv_nxt &&
5467 len - tcp_header_len <= tp->ucopy.len &&
5468 sock_owned_by_user(sk)) {
5469 __set_current_state(TASK_RUNNING);
5470
5471 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5472 /* Predicted packet is in window by definition.
5473 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5474 * Hence, check seq<=rcv_wup reduces to:
5475 */
5476 if (tcp_header_len ==
5477 (sizeof(struct tcphdr) +
5478 TCPOLEN_TSTAMP_ALIGNED) &&
5479 tp->rcv_nxt == tp->rcv_wup)
5480 tcp_store_ts_recent(tp);
5481
5482 tcp_rcv_rtt_measure_ts(sk, skb);
5483
5484 __skb_pull(skb, tcp_header_len);
5485 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5486 NET_INC_STATS(sock_net(sk),
5487 LINUX_MIB_TCPHPHITSTOUSER);
5488 eaten = 1;
5489 }
5490 }
5491 if (!eaten) {
5492 if (tcp_checksum_complete(skb))
5493 goto csum_error;
5494
5495 if ((int)skb->truesize > sk->sk_forward_alloc)
5496 goto step5;
5497
5498 /* Predicted packet is in window by definition.
5499 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5500 * Hence, check seq<=rcv_wup reduces to:
5501 */
5502 if (tcp_header_len ==
5503 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5504 tp->rcv_nxt == tp->rcv_wup)
5505 tcp_store_ts_recent(tp);
5506
5507 tcp_rcv_rtt_measure_ts(sk, skb);
5508
5509 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5510
5511 /* Bulk data transfer: receiver */
5512 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5513 &fragstolen);
5514 }
5515
5516 tcp_event_data_recv(sk, skb);
5517
5518 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5519 /* Well, only one small jumplet in fast path... */
5520 tcp_ack(sk, skb, FLAG_DATA);
5521 tcp_data_snd_check(sk);
5522 if (!inet_csk_ack_scheduled(sk))
5523 goto no_ack;
5524 }
5525
5526 __tcp_ack_snd_check(sk, 0);
5527 no_ack:
5528 if (eaten)
5529 kfree_skb_partial(skb, fragstolen);
5530 sk->sk_data_ready(sk);
5531 return;
5532 }
5533 }
5534
5535 slow_path:
5536 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5537 goto csum_error;
5538
5539 if (!th->ack && !th->rst && !th->syn)
5540 goto discard;
5541
5542 /*
5543 * Standard slow path.
5544 */
5545
5546 if (!tcp_validate_incoming(sk, skb, th, 1))
5547 return;
5548
5549 step5:
5550 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5551 goto discard;
5552
5553 tcp_rcv_rtt_measure_ts(sk, skb);
5554
5555 /* Process urgent data. */
5556 tcp_urg(sk, skb, th);
5557
5558 /* step 7: process the segment text */
5559 tcp_data_queue(sk, skb);
5560
5561 tcp_data_snd_check(sk);
5562 tcp_ack_snd_check(sk);
5563 return;
5564
5565 csum_error:
5566 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5567 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5568
5569 discard:
5570 tcp_drop(sk, skb);
5571 }
5572 EXPORT_SYMBOL(tcp_rcv_established);
5573
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)5574 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5575 {
5576 struct tcp_sock *tp = tcp_sk(sk);
5577 struct inet_connection_sock *icsk = inet_csk(sk);
5578
5579 tcp_set_state(sk, TCP_ESTABLISHED);
5580 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5581
5582 if (skb) {
5583 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5584 security_inet_conn_established(sk, skb);
5585 }
5586
5587 /* Make sure socket is routed, for correct metrics. */
5588 icsk->icsk_af_ops->rebuild_header(sk);
5589
5590 tcp_init_metrics(sk);
5591
5592 tcp_init_congestion_control(sk);
5593
5594 /* Prevent spurious tcp_cwnd_restart() on first data
5595 * packet.
5596 */
5597 tp->lsndtime = tcp_time_stamp;
5598
5599 tcp_init_buffer_space(sk);
5600
5601 if (sock_flag(sk, SOCK_KEEPOPEN))
5602 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5603
5604 if (!tp->rx_opt.snd_wscale)
5605 __tcp_fast_path_on(tp, tp->snd_wnd);
5606 else
5607 tp->pred_flags = 0;
5608
5609 }
5610
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)5611 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5612 struct tcp_fastopen_cookie *cookie)
5613 {
5614 struct tcp_sock *tp = tcp_sk(sk);
5615 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5616 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5617 bool syn_drop = false;
5618
5619 if (mss == tp->rx_opt.user_mss) {
5620 struct tcp_options_received opt;
5621
5622 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5623 tcp_clear_options(&opt);
5624 opt.user_mss = opt.mss_clamp = 0;
5625 tcp_parse_options(synack, &opt, 0, NULL);
5626 mss = opt.mss_clamp;
5627 }
5628
5629 if (!tp->syn_fastopen) {
5630 /* Ignore an unsolicited cookie */
5631 cookie->len = -1;
5632 } else if (tp->total_retrans) {
5633 /* SYN timed out and the SYN-ACK neither has a cookie nor
5634 * acknowledges data. Presumably the remote received only
5635 * the retransmitted (regular) SYNs: either the original
5636 * SYN-data or the corresponding SYN-ACK was dropped.
5637 */
5638 syn_drop = (cookie->len < 0 && data);
5639 } else if (cookie->len < 0 && !tp->syn_data) {
5640 /* We requested a cookie but didn't get it. If we did not use
5641 * the (old) exp opt format then try so next time (try_exp=1).
5642 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5643 */
5644 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5645 }
5646
5647 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5648
5649 if (data) { /* Retransmit unacked data in SYN */
5650 tcp_for_write_queue_from(data, sk) {
5651 if (data == tcp_send_head(sk) ||
5652 __tcp_retransmit_skb(sk, data, 1))
5653 break;
5654 }
5655 tcp_rearm_rto(sk);
5656 NET_INC_STATS(sock_net(sk),
5657 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5658 return true;
5659 }
5660 tp->syn_data_acked = tp->syn_data;
5661 if (tp->syn_data_acked)
5662 NET_INC_STATS(sock_net(sk),
5663 LINUX_MIB_TCPFASTOPENACTIVE);
5664
5665 tcp_fastopen_add_skb(sk, synack);
5666
5667 return false;
5668 }
5669
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5670 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5671 const struct tcphdr *th)
5672 {
5673 struct inet_connection_sock *icsk = inet_csk(sk);
5674 struct tcp_sock *tp = tcp_sk(sk);
5675 struct tcp_fastopen_cookie foc = { .len = -1 };
5676 int saved_clamp = tp->rx_opt.mss_clamp;
5677 bool fastopen_fail;
5678
5679 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5680 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5681 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5682
5683 if (th->ack) {
5684 /* rfc793:
5685 * "If the state is SYN-SENT then
5686 * first check the ACK bit
5687 * If the ACK bit is set
5688 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5689 * a reset (unless the RST bit is set, if so drop
5690 * the segment and return)"
5691 */
5692 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5693 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5694 goto reset_and_undo;
5695
5696 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5697 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5698 tcp_time_stamp)) {
5699 NET_INC_STATS(sock_net(sk),
5700 LINUX_MIB_PAWSACTIVEREJECTED);
5701 goto reset_and_undo;
5702 }
5703
5704 /* Now ACK is acceptable.
5705 *
5706 * "If the RST bit is set
5707 * If the ACK was acceptable then signal the user "error:
5708 * connection reset", drop the segment, enter CLOSED state,
5709 * delete TCB, and return."
5710 */
5711
5712 if (th->rst) {
5713 tcp_reset(sk);
5714 goto discard;
5715 }
5716
5717 /* rfc793:
5718 * "fifth, if neither of the SYN or RST bits is set then
5719 * drop the segment and return."
5720 *
5721 * See note below!
5722 * --ANK(990513)
5723 */
5724 if (!th->syn)
5725 goto discard_and_undo;
5726
5727 /* rfc793:
5728 * "If the SYN bit is on ...
5729 * are acceptable then ...
5730 * (our SYN has been ACKed), change the connection
5731 * state to ESTABLISHED..."
5732 */
5733
5734 tcp_ecn_rcv_synack(tp, th);
5735
5736 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5737 tcp_ack(sk, skb, FLAG_SLOWPATH);
5738
5739 /* Ok.. it's good. Set up sequence numbers and
5740 * move to established.
5741 */
5742 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5743 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5744
5745 /* RFC1323: The window in SYN & SYN/ACK segments is
5746 * never scaled.
5747 */
5748 tp->snd_wnd = ntohs(th->window);
5749
5750 if (!tp->rx_opt.wscale_ok) {
5751 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5752 tp->window_clamp = min(tp->window_clamp, 65535U);
5753 }
5754
5755 if (tp->rx_opt.saw_tstamp) {
5756 tp->rx_opt.tstamp_ok = 1;
5757 tp->tcp_header_len =
5758 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5759 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5760 tcp_store_ts_recent(tp);
5761 } else {
5762 tp->tcp_header_len = sizeof(struct tcphdr);
5763 }
5764
5765 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5766 tcp_enable_fack(tp);
5767
5768 tcp_mtup_init(sk);
5769 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5770 tcp_initialize_rcv_mss(sk);
5771
5772 /* Remember, tcp_poll() does not lock socket!
5773 * Change state from SYN-SENT only after copied_seq
5774 * is initialized. */
5775 tp->copied_seq = tp->rcv_nxt;
5776
5777 smp_mb();
5778
5779 tcp_finish_connect(sk, skb);
5780
5781 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5782 tcp_rcv_fastopen_synack(sk, skb, &foc);
5783
5784 if (!sock_flag(sk, SOCK_DEAD)) {
5785 sk->sk_state_change(sk);
5786 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5787 }
5788 if (fastopen_fail)
5789 return -1;
5790 if (sk->sk_write_pending ||
5791 icsk->icsk_accept_queue.rskq_defer_accept ||
5792 icsk->icsk_ack.pingpong) {
5793 /* Save one ACK. Data will be ready after
5794 * several ticks, if write_pending is set.
5795 *
5796 * It may be deleted, but with this feature tcpdumps
5797 * look so _wonderfully_ clever, that I was not able
5798 * to stand against the temptation 8) --ANK
5799 */
5800 inet_csk_schedule_ack(sk);
5801 tcp_enter_quickack_mode(sk);
5802 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5803 TCP_DELACK_MAX, TCP_RTO_MAX);
5804
5805 discard:
5806 tcp_drop(sk, skb);
5807 return 0;
5808 } else {
5809 tcp_send_ack(sk);
5810 }
5811 return -1;
5812 }
5813
5814 /* No ACK in the segment */
5815
5816 if (th->rst) {
5817 /* rfc793:
5818 * "If the RST bit is set
5819 *
5820 * Otherwise (no ACK) drop the segment and return."
5821 */
5822
5823 goto discard_and_undo;
5824 }
5825
5826 /* PAWS check. */
5827 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5828 tcp_paws_reject(&tp->rx_opt, 0))
5829 goto discard_and_undo;
5830
5831 if (th->syn) {
5832 /* We see SYN without ACK. It is attempt of
5833 * simultaneous connect with crossed SYNs.
5834 * Particularly, it can be connect to self.
5835 */
5836 tcp_set_state(sk, TCP_SYN_RECV);
5837
5838 if (tp->rx_opt.saw_tstamp) {
5839 tp->rx_opt.tstamp_ok = 1;
5840 tcp_store_ts_recent(tp);
5841 tp->tcp_header_len =
5842 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5843 } else {
5844 tp->tcp_header_len = sizeof(struct tcphdr);
5845 }
5846
5847 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5848 tp->copied_seq = tp->rcv_nxt;
5849 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5850
5851 /* RFC1323: The window in SYN & SYN/ACK segments is
5852 * never scaled.
5853 */
5854 tp->snd_wnd = ntohs(th->window);
5855 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5856 tp->max_window = tp->snd_wnd;
5857
5858 tcp_ecn_rcv_syn(tp, th);
5859
5860 tcp_mtup_init(sk);
5861 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5862 tcp_initialize_rcv_mss(sk);
5863
5864 tcp_send_synack(sk);
5865 #if 0
5866 /* Note, we could accept data and URG from this segment.
5867 * There are no obstacles to make this (except that we must
5868 * either change tcp_recvmsg() to prevent it from returning data
5869 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5870 *
5871 * However, if we ignore data in ACKless segments sometimes,
5872 * we have no reasons to accept it sometimes.
5873 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5874 * is not flawless. So, discard packet for sanity.
5875 * Uncomment this return to process the data.
5876 */
5877 return -1;
5878 #else
5879 goto discard;
5880 #endif
5881 }
5882 /* "fifth, if neither of the SYN or RST bits is set then
5883 * drop the segment and return."
5884 */
5885
5886 discard_and_undo:
5887 tcp_clear_options(&tp->rx_opt);
5888 tp->rx_opt.mss_clamp = saved_clamp;
5889 goto discard;
5890
5891 reset_and_undo:
5892 tcp_clear_options(&tp->rx_opt);
5893 tp->rx_opt.mss_clamp = saved_clamp;
5894 return 1;
5895 }
5896
5897 /*
5898 * This function implements the receiving procedure of RFC 793 for
5899 * all states except ESTABLISHED and TIME_WAIT.
5900 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5901 * address independent.
5902 */
5903
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)5904 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5905 {
5906 struct tcp_sock *tp = tcp_sk(sk);
5907 struct inet_connection_sock *icsk = inet_csk(sk);
5908 const struct tcphdr *th = tcp_hdr(skb);
5909 struct request_sock *req;
5910 int queued = 0;
5911 bool acceptable;
5912
5913 switch (sk->sk_state) {
5914 case TCP_CLOSE:
5915 goto discard;
5916
5917 case TCP_LISTEN:
5918 if (th->ack)
5919 return 1;
5920
5921 if (th->rst)
5922 goto discard;
5923
5924 if (th->syn) {
5925 if (th->fin)
5926 goto discard;
5927 /* It is possible that we process SYN packets from backlog,
5928 * so we need to make sure to disable BH right there.
5929 */
5930 local_bh_disable();
5931 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5932 local_bh_enable();
5933
5934 if (!acceptable)
5935 return 1;
5936 consume_skb(skb);
5937 return 0;
5938 }
5939 goto discard;
5940
5941 case TCP_SYN_SENT:
5942 tp->rx_opt.saw_tstamp = 0;
5943 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5944 if (queued >= 0)
5945 return queued;
5946
5947 /* Do step6 onward by hand. */
5948 tcp_urg(sk, skb, th);
5949 __kfree_skb(skb);
5950 tcp_data_snd_check(sk);
5951 return 0;
5952 }
5953
5954 tp->rx_opt.saw_tstamp = 0;
5955 req = tp->fastopen_rsk;
5956 if (req) {
5957 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5958 sk->sk_state != TCP_FIN_WAIT1);
5959
5960 if (!tcp_check_req(sk, skb, req, true))
5961 goto discard;
5962 }
5963
5964 if (!th->ack && !th->rst && !th->syn)
5965 goto discard;
5966
5967 if (!tcp_validate_incoming(sk, skb, th, 0))
5968 return 0;
5969
5970 /* step 5: check the ACK field */
5971 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5972 FLAG_UPDATE_TS_RECENT |
5973 FLAG_NO_CHALLENGE_ACK) > 0;
5974
5975 if (!acceptable) {
5976 if (sk->sk_state == TCP_SYN_RECV)
5977 return 1; /* send one RST */
5978 tcp_send_challenge_ack(sk, skb);
5979 goto discard;
5980 }
5981 switch (sk->sk_state) {
5982 case TCP_SYN_RECV:
5983 if (!tp->srtt_us)
5984 tcp_synack_rtt_meas(sk, req);
5985
5986 /* Once we leave TCP_SYN_RECV, we no longer need req
5987 * so release it.
5988 */
5989 if (req) {
5990 inet_csk(sk)->icsk_retransmits = 0;
5991 reqsk_fastopen_remove(sk, req, false);
5992 } else {
5993 /* Make sure socket is routed, for correct metrics. */
5994 icsk->icsk_af_ops->rebuild_header(sk);
5995 tcp_init_congestion_control(sk);
5996
5997 tcp_mtup_init(sk);
5998 tp->copied_seq = tp->rcv_nxt;
5999 tcp_init_buffer_space(sk);
6000 }
6001 smp_mb();
6002 tcp_set_state(sk, TCP_ESTABLISHED);
6003 sk->sk_state_change(sk);
6004
6005 /* Note, that this wakeup is only for marginal crossed SYN case.
6006 * Passively open sockets are not waked up, because
6007 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6008 */
6009 if (sk->sk_socket)
6010 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6011
6012 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6013 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6014 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6015
6016 if (tp->rx_opt.tstamp_ok)
6017 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6018
6019 if (req) {
6020 /* Re-arm the timer because data may have been sent out.
6021 * This is similar to the regular data transmission case
6022 * when new data has just been ack'ed.
6023 *
6024 * (TFO) - we could try to be more aggressive and
6025 * retransmitting any data sooner based on when they
6026 * are sent out.
6027 */
6028 tcp_rearm_rto(sk);
6029 } else
6030 tcp_init_metrics(sk);
6031
6032 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6033 tcp_update_pacing_rate(sk);
6034
6035 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6036 tp->lsndtime = tcp_time_stamp;
6037
6038 tcp_initialize_rcv_mss(sk);
6039 tcp_fast_path_on(tp);
6040 break;
6041
6042 case TCP_FIN_WAIT1: {
6043 struct dst_entry *dst;
6044 int tmo;
6045
6046 /* If we enter the TCP_FIN_WAIT1 state and we are a
6047 * Fast Open socket and this is the first acceptable
6048 * ACK we have received, this would have acknowledged
6049 * our SYNACK so stop the SYNACK timer.
6050 */
6051 if (req) {
6052 /* We no longer need the request sock. */
6053 reqsk_fastopen_remove(sk, req, false);
6054 tcp_rearm_rto(sk);
6055 }
6056 if (tp->snd_una != tp->write_seq)
6057 break;
6058
6059 tcp_set_state(sk, TCP_FIN_WAIT2);
6060 sk->sk_shutdown |= SEND_SHUTDOWN;
6061
6062 dst = __sk_dst_get(sk);
6063 if (dst)
6064 dst_confirm(dst);
6065
6066 if (!sock_flag(sk, SOCK_DEAD)) {
6067 /* Wake up lingering close() */
6068 sk->sk_state_change(sk);
6069 break;
6070 }
6071
6072 if (tp->linger2 < 0 ||
6073 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6074 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6075 tcp_done(sk);
6076 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6077 return 1;
6078 }
6079
6080 tmo = tcp_fin_time(sk);
6081 if (tmo > TCP_TIMEWAIT_LEN) {
6082 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6083 } else if (th->fin || sock_owned_by_user(sk)) {
6084 /* Bad case. We could lose such FIN otherwise.
6085 * It is not a big problem, but it looks confusing
6086 * and not so rare event. We still can lose it now,
6087 * if it spins in bh_lock_sock(), but it is really
6088 * marginal case.
6089 */
6090 inet_csk_reset_keepalive_timer(sk, tmo);
6091 } else {
6092 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6093 goto discard;
6094 }
6095 break;
6096 }
6097
6098 case TCP_CLOSING:
6099 if (tp->snd_una == tp->write_seq) {
6100 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6101 goto discard;
6102 }
6103 break;
6104
6105 case TCP_LAST_ACK:
6106 if (tp->snd_una == tp->write_seq) {
6107 tcp_update_metrics(sk);
6108 tcp_done(sk);
6109 goto discard;
6110 }
6111 break;
6112 }
6113
6114 /* step 6: check the URG bit */
6115 tcp_urg(sk, skb, th);
6116
6117 /* step 7: process the segment text */
6118 switch (sk->sk_state) {
6119 case TCP_CLOSE_WAIT:
6120 case TCP_CLOSING:
6121 case TCP_LAST_ACK:
6122 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6123 break;
6124 case TCP_FIN_WAIT1:
6125 case TCP_FIN_WAIT2:
6126 /* RFC 793 says to queue data in these states,
6127 * RFC 1122 says we MUST send a reset.
6128 * BSD 4.4 also does reset.
6129 */
6130 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6131 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6132 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6133 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6134 tcp_reset(sk);
6135 return 1;
6136 }
6137 }
6138 /* Fall through */
6139 case TCP_ESTABLISHED:
6140 tcp_data_queue(sk, skb);
6141 queued = 1;
6142 break;
6143 }
6144
6145 /* tcp_data could move socket to TIME-WAIT */
6146 if (sk->sk_state != TCP_CLOSE) {
6147 tcp_data_snd_check(sk);
6148 tcp_ack_snd_check(sk);
6149 }
6150
6151 if (!queued) {
6152 discard:
6153 tcp_drop(sk, skb);
6154 }
6155 return 0;
6156 }
6157 EXPORT_SYMBOL(tcp_rcv_state_process);
6158
pr_drop_req(struct request_sock * req,__u16 port,int family)6159 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6160 {
6161 struct inet_request_sock *ireq = inet_rsk(req);
6162
6163 if (family == AF_INET)
6164 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6165 &ireq->ir_rmt_addr, port);
6166 #if IS_ENABLED(CONFIG_IPV6)
6167 else if (family == AF_INET6)
6168 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6169 &ireq->ir_v6_rmt_addr, port);
6170 #endif
6171 }
6172
6173 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6174 *
6175 * If we receive a SYN packet with these bits set, it means a
6176 * network is playing bad games with TOS bits. In order to
6177 * avoid possible false congestion notifications, we disable
6178 * TCP ECN negotiation.
6179 *
6180 * Exception: tcp_ca wants ECN. This is required for DCTCP
6181 * congestion control: Linux DCTCP asserts ECT on all packets,
6182 * including SYN, which is most optimal solution; however,
6183 * others, such as FreeBSD do not.
6184 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6185 static void tcp_ecn_create_request(struct request_sock *req,
6186 const struct sk_buff *skb,
6187 const struct sock *listen_sk,
6188 const struct dst_entry *dst)
6189 {
6190 const struct tcphdr *th = tcp_hdr(skb);
6191 const struct net *net = sock_net(listen_sk);
6192 bool th_ecn = th->ece && th->cwr;
6193 bool ect, ecn_ok;
6194 u32 ecn_ok_dst;
6195
6196 if (!th_ecn)
6197 return;
6198
6199 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6200 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6201 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6202
6203 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6204 (ecn_ok_dst & DST_FEATURE_ECN_CA))
6205 inet_rsk(req)->ecn_ok = 1;
6206 }
6207
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6208 static void tcp_openreq_init(struct request_sock *req,
6209 const struct tcp_options_received *rx_opt,
6210 struct sk_buff *skb, const struct sock *sk)
6211 {
6212 struct inet_request_sock *ireq = inet_rsk(req);
6213
6214 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6215 req->cookie_ts = 0;
6216 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6217 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6218 skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6219 tcp_rsk(req)->last_oow_ack_time = 0;
6220 req->mss = rx_opt->mss_clamp;
6221 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6222 ireq->tstamp_ok = rx_opt->tstamp_ok;
6223 ireq->sack_ok = rx_opt->sack_ok;
6224 ireq->snd_wscale = rx_opt->snd_wscale;
6225 ireq->wscale_ok = rx_opt->wscale_ok;
6226 ireq->acked = 0;
6227 ireq->ecn_ok = 0;
6228 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6229 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6230 ireq->ir_mark = inet_request_mark(sk, skb);
6231 }
6232
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6233 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6234 struct sock *sk_listener,
6235 bool attach_listener)
6236 {
6237 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6238 attach_listener);
6239
6240 if (req) {
6241 struct inet_request_sock *ireq = inet_rsk(req);
6242
6243 kmemcheck_annotate_bitfield(ireq, flags);
6244 ireq->ireq_opt = NULL;
6245 #if IS_ENABLED(CONFIG_IPV6)
6246 ireq->pktopts = NULL;
6247 #endif
6248 atomic64_set(&ireq->ir_cookie, 0);
6249 ireq->ireq_state = TCP_NEW_SYN_RECV;
6250 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6251 ireq->ireq_family = sk_listener->sk_family;
6252 }
6253
6254 return req;
6255 }
6256 EXPORT_SYMBOL(inet_reqsk_alloc);
6257
6258 /*
6259 * Return true if a syncookie should be sent
6260 */
tcp_syn_flood_action(const struct sock * sk,const struct sk_buff * skb,const char * proto)6261 static bool tcp_syn_flood_action(const struct sock *sk,
6262 const struct sk_buff *skb,
6263 const char *proto)
6264 {
6265 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6266 const char *msg = "Dropping request";
6267 bool want_cookie = false;
6268 struct net *net = sock_net(sk);
6269
6270 #ifdef CONFIG_SYN_COOKIES
6271 if (net->ipv4.sysctl_tcp_syncookies) {
6272 msg = "Sending cookies";
6273 want_cookie = true;
6274 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6275 } else
6276 #endif
6277 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6278
6279 if (!queue->synflood_warned &&
6280 net->ipv4.sysctl_tcp_syncookies != 2 &&
6281 xchg(&queue->synflood_warned, 1) == 0)
6282 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6283 proto, ntohs(tcp_hdr(skb)->dest), msg);
6284
6285 return want_cookie;
6286 }
6287
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6288 static void tcp_reqsk_record_syn(const struct sock *sk,
6289 struct request_sock *req,
6290 const struct sk_buff *skb)
6291 {
6292 if (tcp_sk(sk)->save_syn) {
6293 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6294 u32 *copy;
6295
6296 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6297 if (copy) {
6298 copy[0] = len;
6299 memcpy(©[1], skb_network_header(skb), len);
6300 req->saved_syn = copy;
6301 }
6302 }
6303 }
6304
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6305 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6306 const struct tcp_request_sock_ops *af_ops,
6307 struct sock *sk, struct sk_buff *skb)
6308 {
6309 struct tcp_fastopen_cookie foc = { .len = -1 };
6310 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6311 struct tcp_options_received tmp_opt;
6312 struct tcp_sock *tp = tcp_sk(sk);
6313 struct net *net = sock_net(sk);
6314 struct sock *fastopen_sk = NULL;
6315 struct dst_entry *dst = NULL;
6316 struct request_sock *req;
6317 bool want_cookie = false;
6318 struct flowi fl;
6319
6320 /* TW buckets are converted to open requests without
6321 * limitations, they conserve resources and peer is
6322 * evidently real one.
6323 */
6324 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6325 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6326 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6327 if (!want_cookie)
6328 goto drop;
6329 }
6330
6331
6332 /* Accept backlog is full. If we have already queued enough
6333 * of warm entries in syn queue, drop request. It is better than
6334 * clogging syn queue with openreqs with exponentially increasing
6335 * timeout.
6336 */
6337 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6338 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6339 goto drop;
6340 }
6341
6342 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6343 if (!req)
6344 goto drop;
6345
6346 tcp_rsk(req)->af_specific = af_ops;
6347
6348 tcp_clear_options(&tmp_opt);
6349 tmp_opt.mss_clamp = af_ops->mss_clamp;
6350 tmp_opt.user_mss = tp->rx_opt.user_mss;
6351 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6352
6353 if (want_cookie && !tmp_opt.saw_tstamp)
6354 tcp_clear_options(&tmp_opt);
6355
6356 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6357 tcp_openreq_init(req, &tmp_opt, skb, sk);
6358 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6359
6360 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6361 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6362
6363 af_ops->init_req(req, sk, skb);
6364
6365 if (security_inet_conn_request(sk, skb, req))
6366 goto drop_and_free;
6367
6368 if (!want_cookie && !isn) {
6369 /* VJ's idea. We save last timestamp seen
6370 * from the destination in peer table, when entering
6371 * state TIME-WAIT, and check against it before
6372 * accepting new connection request.
6373 *
6374 * If "isn" is not zero, this request hit alive
6375 * timewait bucket, so that all the necessary checks
6376 * are made in the function processing timewait state.
6377 */
6378 if (tcp_death_row.sysctl_tw_recycle) {
6379 bool strict;
6380
6381 dst = af_ops->route_req(sk, &fl, req, &strict);
6382
6383 if (dst && strict &&
6384 !tcp_peer_is_proven(req, dst, true,
6385 tmp_opt.saw_tstamp)) {
6386 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6387 goto drop_and_release;
6388 }
6389 }
6390 /* Kill the following clause, if you dislike this way. */
6391 else if (!net->ipv4.sysctl_tcp_syncookies &&
6392 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6393 (sysctl_max_syn_backlog >> 2)) &&
6394 !tcp_peer_is_proven(req, dst, false,
6395 tmp_opt.saw_tstamp)) {
6396 /* Without syncookies last quarter of
6397 * backlog is filled with destinations,
6398 * proven to be alive.
6399 * It means that we continue to communicate
6400 * to destinations, already remembered
6401 * to the moment of synflood.
6402 */
6403 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6404 rsk_ops->family);
6405 goto drop_and_release;
6406 }
6407
6408 isn = af_ops->init_seq(skb);
6409 }
6410 if (!dst) {
6411 dst = af_ops->route_req(sk, &fl, req, NULL);
6412 if (!dst)
6413 goto drop_and_free;
6414 }
6415
6416 tcp_ecn_create_request(req, skb, sk, dst);
6417
6418 if (want_cookie) {
6419 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6420 req->cookie_ts = tmp_opt.tstamp_ok;
6421 if (!tmp_opt.tstamp_ok)
6422 inet_rsk(req)->ecn_ok = 0;
6423 }
6424
6425 tcp_rsk(req)->snt_isn = isn;
6426 tcp_rsk(req)->txhash = net_tx_rndhash();
6427 tcp_openreq_init_rwin(req, sk, dst);
6428 if (!want_cookie) {
6429 tcp_reqsk_record_syn(sk, req, skb);
6430 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6431 }
6432 if (fastopen_sk) {
6433 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6434 &foc, TCP_SYNACK_FASTOPEN);
6435 /* Add the child socket directly into the accept queue */
6436 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6437 sk->sk_data_ready(sk);
6438 bh_unlock_sock(fastopen_sk);
6439 sock_put(fastopen_sk);
6440 } else {
6441 tcp_rsk(req)->tfo_listener = false;
6442 if (!want_cookie)
6443 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6444 af_ops->send_synack(sk, dst, &fl, req, &foc,
6445 !want_cookie ? TCP_SYNACK_NORMAL :
6446 TCP_SYNACK_COOKIE);
6447 if (want_cookie) {
6448 reqsk_free(req);
6449 return 0;
6450 }
6451 }
6452 reqsk_put(req);
6453 return 0;
6454
6455 drop_and_release:
6456 dst_release(dst);
6457 drop_and_free:
6458 reqsk_free(req);
6459 drop:
6460 tcp_listendrop(sk);
6461 return 0;
6462 }
6463 EXPORT_SYMBOL(tcp_conn_request);
6464