1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26 #include <asm/div64.h>
27 #include "linux/delay.h"
28 #include "pp_acpi.h"
29 #include "pp_debug.h"
30 #include "ppatomctrl.h"
31 #include "atombios.h"
32 #include "pptable_v1_0.h"
33 #include "pppcielanes.h"
34 #include "amd_pcie_helpers.h"
35 #include "hardwaremanager.h"
36 #include "process_pptables_v1_0.h"
37 #include "cgs_common.h"
38
39 #include "smu7_common.h"
40
41 #include "hwmgr.h"
42 #include "smu7_hwmgr.h"
43 #include "smu7_powertune.h"
44 #include "smu7_dyn_defaults.h"
45 #include "smu7_thermal.h"
46 #include "smu7_clockpowergating.h"
47 #include "processpptables.h"
48
49 #define MC_CG_ARB_FREQ_F0 0x0a
50 #define MC_CG_ARB_FREQ_F1 0x0b
51 #define MC_CG_ARB_FREQ_F2 0x0c
52 #define MC_CG_ARB_FREQ_F3 0x0d
53
54 #define MC_CG_SEQ_DRAMCONF_S0 0x05
55 #define MC_CG_SEQ_DRAMCONF_S1 0x06
56 #define MC_CG_SEQ_YCLK_SUSPEND 0x04
57 #define MC_CG_SEQ_YCLK_RESUME 0x0a
58
59 #define SMC_CG_IND_START 0xc0030000
60 #define SMC_CG_IND_END 0xc0040000
61
62 #define VOLTAGE_SCALE 4
63 #define VOLTAGE_VID_OFFSET_SCALE1 625
64 #define VOLTAGE_VID_OFFSET_SCALE2 100
65
66 #define MEM_FREQ_LOW_LATENCY 25000
67 #define MEM_FREQ_HIGH_LATENCY 80000
68
69 #define MEM_LATENCY_HIGH 45
70 #define MEM_LATENCY_LOW 35
71 #define MEM_LATENCY_ERR 0xFFFF
72
73 #define MC_SEQ_MISC0_GDDR5_SHIFT 28
74 #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
75 #define MC_SEQ_MISC0_GDDR5_VALUE 5
76
77 #define PCIE_BUS_CLK 10000
78 #define TCLK (PCIE_BUS_CLK / 10)
79
80
81 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
82 enum DPM_EVENT_SRC {
83 DPM_EVENT_SRC_ANALOG = 0,
84 DPM_EVENT_SRC_EXTERNAL = 1,
85 DPM_EVENT_SRC_DIGITAL = 2,
86 DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,
87 DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4
88 };
89
90 static const unsigned long PhwVIslands_Magic = (unsigned long)(PHM_VIslands_Magic);
91
cast_phw_smu7_power_state(struct pp_hw_power_state * hw_ps)92 struct smu7_power_state *cast_phw_smu7_power_state(
93 struct pp_hw_power_state *hw_ps)
94 {
95 PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
96 "Invalid Powerstate Type!",
97 return NULL);
98
99 return (struct smu7_power_state *)hw_ps;
100 }
101
cast_const_phw_smu7_power_state(const struct pp_hw_power_state * hw_ps)102 const struct smu7_power_state *cast_const_phw_smu7_power_state(
103 const struct pp_hw_power_state *hw_ps)
104 {
105 PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
106 "Invalid Powerstate Type!",
107 return NULL);
108
109 return (const struct smu7_power_state *)hw_ps;
110 }
111
112 /**
113 * Find the MC microcode version and store it in the HwMgr struct
114 *
115 * @param hwmgr the address of the powerplay hardware manager.
116 * @return always 0
117 */
smu7_get_mc_microcode_version(struct pp_hwmgr * hwmgr)118 int smu7_get_mc_microcode_version (struct pp_hwmgr *hwmgr)
119 {
120 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
121
122 hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
123
124 return 0;
125 }
126
smu7_get_current_pcie_speed(struct pp_hwmgr * hwmgr)127 uint16_t smu7_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
128 {
129 uint32_t speedCntl = 0;
130
131 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
132 speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
133 ixPCIE_LC_SPEED_CNTL);
134 return((uint16_t)PHM_GET_FIELD(speedCntl,
135 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
136 }
137
smu7_get_current_pcie_lane_number(struct pp_hwmgr * hwmgr)138 int smu7_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
139 {
140 uint32_t link_width;
141
142 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
143 link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
144 PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
145
146 PP_ASSERT_WITH_CODE((7 >= link_width),
147 "Invalid PCIe lane width!", return 0);
148
149 return decode_pcie_lane_width(link_width);
150 }
151
152 /**
153 * Enable voltage control
154 *
155 * @param pHwMgr the address of the powerplay hardware manager.
156 * @return always PP_Result_OK
157 */
smu7_enable_smc_voltage_controller(struct pp_hwmgr * hwmgr)158 int smu7_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr)
159 {
160 if (hwmgr->feature_mask & PP_SMC_VOLTAGE_CONTROL_MASK)
161 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_Voltage_Cntl_Enable);
162
163 return 0;
164 }
165
166 /**
167 * Checks if we want to support voltage control
168 *
169 * @param hwmgr the address of the powerplay hardware manager.
170 */
smu7_voltage_control(const struct pp_hwmgr * hwmgr)171 static bool smu7_voltage_control(const struct pp_hwmgr *hwmgr)
172 {
173 const struct smu7_hwmgr *data =
174 (const struct smu7_hwmgr *)(hwmgr->backend);
175
176 return (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control);
177 }
178
179 /**
180 * Enable voltage control
181 *
182 * @param hwmgr the address of the powerplay hardware manager.
183 * @return always 0
184 */
smu7_enable_voltage_control(struct pp_hwmgr * hwmgr)185 static int smu7_enable_voltage_control(struct pp_hwmgr *hwmgr)
186 {
187 /* enable voltage control */
188 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
189 GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
190
191 return 0;
192 }
193
phm_get_svi2_voltage_table_v0(pp_atomctrl_voltage_table * voltage_table,struct phm_clock_voltage_dependency_table * voltage_dependency_table)194 static int phm_get_svi2_voltage_table_v0(pp_atomctrl_voltage_table *voltage_table,
195 struct phm_clock_voltage_dependency_table *voltage_dependency_table
196 )
197 {
198 uint32_t i;
199
200 PP_ASSERT_WITH_CODE((NULL != voltage_table),
201 "Voltage Dependency Table empty.", return -EINVAL;);
202
203 voltage_table->mask_low = 0;
204 voltage_table->phase_delay = 0;
205 voltage_table->count = voltage_dependency_table->count;
206
207 for (i = 0; i < voltage_dependency_table->count; i++) {
208 voltage_table->entries[i].value =
209 voltage_dependency_table->entries[i].v;
210 voltage_table->entries[i].smio_low = 0;
211 }
212
213 return 0;
214 }
215
216
217 /**
218 * Create Voltage Tables.
219 *
220 * @param hwmgr the address of the powerplay hardware manager.
221 * @return always 0
222 */
smu7_construct_voltage_tables(struct pp_hwmgr * hwmgr)223 static int smu7_construct_voltage_tables(struct pp_hwmgr *hwmgr)
224 {
225 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
226 struct phm_ppt_v1_information *table_info =
227 (struct phm_ppt_v1_information *)hwmgr->pptable;
228 int result = 0;
229 uint32_t tmp;
230
231 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
232 result = atomctrl_get_voltage_table_v3(hwmgr,
233 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
234 &(data->mvdd_voltage_table));
235 PP_ASSERT_WITH_CODE((0 == result),
236 "Failed to retrieve MVDD table.",
237 return result);
238 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
239 if (hwmgr->pp_table_version == PP_TABLE_V1)
240 result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table),
241 table_info->vdd_dep_on_mclk);
242 else if (hwmgr->pp_table_version == PP_TABLE_V0)
243 result = phm_get_svi2_voltage_table_v0(&(data->mvdd_voltage_table),
244 hwmgr->dyn_state.mvdd_dependency_on_mclk);
245
246 PP_ASSERT_WITH_CODE((0 == result),
247 "Failed to retrieve SVI2 MVDD table from dependancy table.",
248 return result;);
249 }
250
251 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
252 result = atomctrl_get_voltage_table_v3(hwmgr,
253 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
254 &(data->vddci_voltage_table));
255 PP_ASSERT_WITH_CODE((0 == result),
256 "Failed to retrieve VDDCI table.",
257 return result);
258 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
259 if (hwmgr->pp_table_version == PP_TABLE_V1)
260 result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table),
261 table_info->vdd_dep_on_mclk);
262 else if (hwmgr->pp_table_version == PP_TABLE_V0)
263 result = phm_get_svi2_voltage_table_v0(&(data->vddci_voltage_table),
264 hwmgr->dyn_state.vddci_dependency_on_mclk);
265 PP_ASSERT_WITH_CODE((0 == result),
266 "Failed to retrieve SVI2 VDDCI table from dependancy table.",
267 return result);
268 }
269
270 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
271 /* VDDGFX has only SVI2 voltage control */
272 result = phm_get_svi2_vdd_voltage_table(&(data->vddgfx_voltage_table),
273 table_info->vddgfx_lookup_table);
274 PP_ASSERT_WITH_CODE((0 == result),
275 "Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;);
276 }
277
278
279 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
280 result = atomctrl_get_voltage_table_v3(hwmgr,
281 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT,
282 &data->vddc_voltage_table);
283 PP_ASSERT_WITH_CODE((0 == result),
284 "Failed to retrieve VDDC table.", return result;);
285 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
286
287 if (hwmgr->pp_table_version == PP_TABLE_V0)
288 result = phm_get_svi2_voltage_table_v0(&data->vddc_voltage_table,
289 hwmgr->dyn_state.vddc_dependency_on_mclk);
290 else if (hwmgr->pp_table_version == PP_TABLE_V1)
291 result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table),
292 table_info->vddc_lookup_table);
293
294 PP_ASSERT_WITH_CODE((0 == result),
295 "Failed to retrieve SVI2 VDDC table from dependancy table.", return result;);
296 }
297
298 tmp = smum_get_mac_definition(hwmgr->smumgr, SMU_MAX_LEVELS_VDDC);
299 PP_ASSERT_WITH_CODE(
300 (data->vddc_voltage_table.count <= tmp),
301 "Too many voltage values for VDDC. Trimming to fit state table.",
302 phm_trim_voltage_table_to_fit_state_table(tmp,
303 &(data->vddc_voltage_table)));
304
305 tmp = smum_get_mac_definition(hwmgr->smumgr, SMU_MAX_LEVELS_VDDGFX);
306 PP_ASSERT_WITH_CODE(
307 (data->vddgfx_voltage_table.count <= tmp),
308 "Too many voltage values for VDDC. Trimming to fit state table.",
309 phm_trim_voltage_table_to_fit_state_table(tmp,
310 &(data->vddgfx_voltage_table)));
311
312 tmp = smum_get_mac_definition(hwmgr->smumgr, SMU_MAX_LEVELS_VDDCI);
313 PP_ASSERT_WITH_CODE(
314 (data->vddci_voltage_table.count <= tmp),
315 "Too many voltage values for VDDCI. Trimming to fit state table.",
316 phm_trim_voltage_table_to_fit_state_table(tmp,
317 &(data->vddci_voltage_table)));
318
319 tmp = smum_get_mac_definition(hwmgr->smumgr, SMU_MAX_LEVELS_MVDD);
320 PP_ASSERT_WITH_CODE(
321 (data->mvdd_voltage_table.count <= tmp),
322 "Too many voltage values for MVDD. Trimming to fit state table.",
323 phm_trim_voltage_table_to_fit_state_table(tmp,
324 &(data->mvdd_voltage_table)));
325
326 return 0;
327 }
328
329 /**
330 * Programs static screed detection parameters
331 *
332 * @param hwmgr the address of the powerplay hardware manager.
333 * @return always 0
334 */
smu7_program_static_screen_threshold_parameters(struct pp_hwmgr * hwmgr)335 static int smu7_program_static_screen_threshold_parameters(
336 struct pp_hwmgr *hwmgr)
337 {
338 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
339
340 /* Set static screen threshold unit */
341 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
342 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
343 data->static_screen_threshold_unit);
344 /* Set static screen threshold */
345 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
346 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
347 data->static_screen_threshold);
348
349 return 0;
350 }
351
352 /**
353 * Setup display gap for glitch free memory clock switching.
354 *
355 * @param hwmgr the address of the powerplay hardware manager.
356 * @return always 0
357 */
smu7_enable_display_gap(struct pp_hwmgr * hwmgr)358 static int smu7_enable_display_gap(struct pp_hwmgr *hwmgr)
359 {
360 uint32_t display_gap =
361 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
362 ixCG_DISPLAY_GAP_CNTL);
363
364 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
365 DISP_GAP, DISPLAY_GAP_IGNORE);
366
367 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
368 DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
369
370 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
371 ixCG_DISPLAY_GAP_CNTL, display_gap);
372
373 return 0;
374 }
375
376 /**
377 * Programs activity state transition voting clients
378 *
379 * @param hwmgr the address of the powerplay hardware manager.
380 * @return always 0
381 */
smu7_program_voting_clients(struct pp_hwmgr * hwmgr)382 static int smu7_program_voting_clients(struct pp_hwmgr *hwmgr)
383 {
384 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
385
386 /* Clear reset for voting clients before enabling DPM */
387 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
388 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
389 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
390 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
391
392 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
393 ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
394 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
395 ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
396 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
397 ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
398 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
399 ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
400 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
401 ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
402 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
403 ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
404 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
405 ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
406 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
407 ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
408
409 return 0;
410 }
411
smu7_clear_voting_clients(struct pp_hwmgr * hwmgr)412 static int smu7_clear_voting_clients(struct pp_hwmgr *hwmgr)
413 {
414 /* Reset voting clients before disabling DPM */
415 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
416 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 1);
417 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
418 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 1);
419
420 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
421 ixCG_FREQ_TRAN_VOTING_0, 0);
422 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
423 ixCG_FREQ_TRAN_VOTING_1, 0);
424 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
425 ixCG_FREQ_TRAN_VOTING_2, 0);
426 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
427 ixCG_FREQ_TRAN_VOTING_3, 0);
428 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
429 ixCG_FREQ_TRAN_VOTING_4, 0);
430 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
431 ixCG_FREQ_TRAN_VOTING_5, 0);
432 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
433 ixCG_FREQ_TRAN_VOTING_6, 0);
434 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
435 ixCG_FREQ_TRAN_VOTING_7, 0);
436
437 return 0;
438 }
439
440 /* Copy one arb setting to another and then switch the active set.
441 * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
442 */
smu7_copy_and_switch_arb_sets(struct pp_hwmgr * hwmgr,uint32_t arb_src,uint32_t arb_dest)443 static int smu7_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
444 uint32_t arb_src, uint32_t arb_dest)
445 {
446 uint32_t mc_arb_dram_timing;
447 uint32_t mc_arb_dram_timing2;
448 uint32_t burst_time;
449 uint32_t mc_cg_config;
450
451 switch (arb_src) {
452 case MC_CG_ARB_FREQ_F0:
453 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
454 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
455 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
456 break;
457 case MC_CG_ARB_FREQ_F1:
458 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
459 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
460 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
461 break;
462 default:
463 return -EINVAL;
464 }
465
466 switch (arb_dest) {
467 case MC_CG_ARB_FREQ_F0:
468 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
469 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
470 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
471 break;
472 case MC_CG_ARB_FREQ_F1:
473 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
474 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
475 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
476 break;
477 default:
478 return -EINVAL;
479 }
480
481 mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
482 mc_cg_config |= 0x0000000F;
483 cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
484 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
485
486 return 0;
487 }
488
smu7_reset_to_default(struct pp_hwmgr * hwmgr)489 static int smu7_reset_to_default(struct pp_hwmgr *hwmgr)
490 {
491 return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_ResetToDefaults);
492 }
493
494 /**
495 * Initial switch from ARB F0->F1
496 *
497 * @param hwmgr the address of the powerplay hardware manager.
498 * @return always 0
499 * This function is to be called from the SetPowerState table.
500 */
smu7_initial_switch_from_arbf0_to_f1(struct pp_hwmgr * hwmgr)501 static int smu7_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
502 {
503 return smu7_copy_and_switch_arb_sets(hwmgr,
504 MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
505 }
506
smu7_force_switch_to_arbf0(struct pp_hwmgr * hwmgr)507 static int smu7_force_switch_to_arbf0(struct pp_hwmgr *hwmgr)
508 {
509 uint32_t tmp;
510
511 tmp = (cgs_read_ind_register(hwmgr->device,
512 CGS_IND_REG__SMC, ixSMC_SCRATCH9) &
513 0x0000ff00) >> 8;
514
515 if (tmp == MC_CG_ARB_FREQ_F0)
516 return 0;
517
518 return smu7_copy_and_switch_arb_sets(hwmgr,
519 tmp, MC_CG_ARB_FREQ_F0);
520 }
521
smu7_setup_default_pcie_table(struct pp_hwmgr * hwmgr)522 static int smu7_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
523 {
524 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
525
526 struct phm_ppt_v1_information *table_info =
527 (struct phm_ppt_v1_information *)(hwmgr->pptable);
528 struct phm_ppt_v1_pcie_table *pcie_table = NULL;
529
530 uint32_t i, max_entry;
531 uint32_t tmp;
532
533 PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
534 data->use_pcie_power_saving_levels), "No pcie performance levels!",
535 return -EINVAL);
536
537 if (table_info != NULL)
538 pcie_table = table_info->pcie_table;
539
540 if (data->use_pcie_performance_levels &&
541 !data->use_pcie_power_saving_levels) {
542 data->pcie_gen_power_saving = data->pcie_gen_performance;
543 data->pcie_lane_power_saving = data->pcie_lane_performance;
544 } else if (!data->use_pcie_performance_levels &&
545 data->use_pcie_power_saving_levels) {
546 data->pcie_gen_performance = data->pcie_gen_power_saving;
547 data->pcie_lane_performance = data->pcie_lane_power_saving;
548 }
549 tmp = smum_get_mac_definition(hwmgr->smumgr, SMU_MAX_LEVELS_LINK);
550 phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table,
551 tmp,
552 MAX_REGULAR_DPM_NUMBER);
553
554 if (pcie_table != NULL) {
555 /* max_entry is used to make sure we reserve one PCIE level
556 * for boot level (fix for A+A PSPP issue).
557 * If PCIE table from PPTable have ULV entry + 8 entries,
558 * then ignore the last entry.*/
559 max_entry = (tmp < pcie_table->count) ? tmp : pcie_table->count;
560 for (i = 1; i < max_entry; i++) {
561 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
562 get_pcie_gen_support(data->pcie_gen_cap,
563 pcie_table->entries[i].gen_speed),
564 get_pcie_lane_support(data->pcie_lane_cap,
565 pcie_table->entries[i].lane_width));
566 }
567 data->dpm_table.pcie_speed_table.count = max_entry - 1;
568 smum_update_smc_table(hwmgr, SMU_BIF_TABLE);
569 } else {
570 /* Hardcode Pcie Table */
571 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
572 get_pcie_gen_support(data->pcie_gen_cap,
573 PP_Min_PCIEGen),
574 get_pcie_lane_support(data->pcie_lane_cap,
575 PP_Max_PCIELane));
576 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
577 get_pcie_gen_support(data->pcie_gen_cap,
578 PP_Min_PCIEGen),
579 get_pcie_lane_support(data->pcie_lane_cap,
580 PP_Max_PCIELane));
581 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
582 get_pcie_gen_support(data->pcie_gen_cap,
583 PP_Max_PCIEGen),
584 get_pcie_lane_support(data->pcie_lane_cap,
585 PP_Max_PCIELane));
586 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
587 get_pcie_gen_support(data->pcie_gen_cap,
588 PP_Max_PCIEGen),
589 get_pcie_lane_support(data->pcie_lane_cap,
590 PP_Max_PCIELane));
591 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
592 get_pcie_gen_support(data->pcie_gen_cap,
593 PP_Max_PCIEGen),
594 get_pcie_lane_support(data->pcie_lane_cap,
595 PP_Max_PCIELane));
596 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
597 get_pcie_gen_support(data->pcie_gen_cap,
598 PP_Max_PCIEGen),
599 get_pcie_lane_support(data->pcie_lane_cap,
600 PP_Max_PCIELane));
601
602 data->dpm_table.pcie_speed_table.count = 6;
603 }
604 /* Populate last level for boot PCIE level, but do not increment count. */
605 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
606 data->dpm_table.pcie_speed_table.count,
607 get_pcie_gen_support(data->pcie_gen_cap,
608 PP_Min_PCIEGen),
609 get_pcie_lane_support(data->pcie_lane_cap,
610 PP_Max_PCIELane));
611
612 return 0;
613 }
614
smu7_reset_dpm_tables(struct pp_hwmgr * hwmgr)615 static int smu7_reset_dpm_tables(struct pp_hwmgr *hwmgr)
616 {
617 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
618
619 memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table));
620
621 phm_reset_single_dpm_table(
622 &data->dpm_table.sclk_table,
623 smum_get_mac_definition(hwmgr->smumgr,
624 SMU_MAX_LEVELS_GRAPHICS),
625 MAX_REGULAR_DPM_NUMBER);
626 phm_reset_single_dpm_table(
627 &data->dpm_table.mclk_table,
628 smum_get_mac_definition(hwmgr->smumgr,
629 SMU_MAX_LEVELS_MEMORY), MAX_REGULAR_DPM_NUMBER);
630
631 phm_reset_single_dpm_table(
632 &data->dpm_table.vddc_table,
633 smum_get_mac_definition(hwmgr->smumgr,
634 SMU_MAX_LEVELS_VDDC),
635 MAX_REGULAR_DPM_NUMBER);
636 phm_reset_single_dpm_table(
637 &data->dpm_table.vddci_table,
638 smum_get_mac_definition(hwmgr->smumgr,
639 SMU_MAX_LEVELS_VDDCI), MAX_REGULAR_DPM_NUMBER);
640
641 phm_reset_single_dpm_table(
642 &data->dpm_table.mvdd_table,
643 smum_get_mac_definition(hwmgr->smumgr,
644 SMU_MAX_LEVELS_MVDD),
645 MAX_REGULAR_DPM_NUMBER);
646 return 0;
647 }
648 /*
649 * This function is to initialize all DPM state tables
650 * for SMU7 based on the dependency table.
651 * Dynamic state patching function will then trim these
652 * state tables to the allowed range based
653 * on the power policy or external client requests,
654 * such as UVD request, etc.
655 */
656
smu7_setup_dpm_tables_v0(struct pp_hwmgr * hwmgr)657 static int smu7_setup_dpm_tables_v0(struct pp_hwmgr *hwmgr)
658 {
659 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
660 struct phm_clock_voltage_dependency_table *allowed_vdd_sclk_table =
661 hwmgr->dyn_state.vddc_dependency_on_sclk;
662 struct phm_clock_voltage_dependency_table *allowed_vdd_mclk_table =
663 hwmgr->dyn_state.vddc_dependency_on_mclk;
664 struct phm_cac_leakage_table *std_voltage_table =
665 hwmgr->dyn_state.cac_leakage_table;
666 uint32_t i;
667
668 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
669 "SCLK dependency table is missing. This table is mandatory", return -EINVAL);
670 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1,
671 "SCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
672
673 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
674 "MCLK dependency table is missing. This table is mandatory", return -EINVAL);
675 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1,
676 "VMCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
677
678
679 /* Initialize Sclk DPM table based on allow Sclk values*/
680 data->dpm_table.sclk_table.count = 0;
681
682 for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
683 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value !=
684 allowed_vdd_sclk_table->entries[i].clk) {
685 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
686 allowed_vdd_sclk_table->entries[i].clk;
687 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; to do */
688 data->dpm_table.sclk_table.count++;
689 }
690 }
691
692 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
693 "MCLK dependency table is missing. This table is mandatory", return -EINVAL);
694 /* Initialize Mclk DPM table based on allow Mclk values */
695 data->dpm_table.mclk_table.count = 0;
696 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
697 if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value !=
698 allowed_vdd_mclk_table->entries[i].clk) {
699 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
700 allowed_vdd_mclk_table->entries[i].clk;
701 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; */
702 data->dpm_table.mclk_table.count++;
703 }
704 }
705
706 /* Initialize Vddc DPM table based on allow Vddc values. And populate corresponding std values. */
707 for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
708 data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
709 data->dpm_table.vddc_table.dpm_levels[i].param1 = std_voltage_table->entries[i].Leakage;
710 /* param1 is for corresponding std voltage */
711 data->dpm_table.vddc_table.dpm_levels[i].enabled = 1;
712 }
713
714 data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count;
715 allowed_vdd_mclk_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
716
717 if (NULL != allowed_vdd_mclk_table) {
718 /* Initialize Vddci DPM table based on allow Mclk values */
719 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
720 data->dpm_table.vddci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
721 data->dpm_table.vddci_table.dpm_levels[i].enabled = 1;
722 }
723 data->dpm_table.vddci_table.count = allowed_vdd_mclk_table->count;
724 }
725
726 allowed_vdd_mclk_table = hwmgr->dyn_state.mvdd_dependency_on_mclk;
727
728 if (NULL != allowed_vdd_mclk_table) {
729 /*
730 * Initialize MVDD DPM table based on allow Mclk
731 * values
732 */
733 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
734 data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
735 data->dpm_table.mvdd_table.dpm_levels[i].enabled = 1;
736 }
737 data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count;
738 }
739
740 return 0;
741 }
742
smu7_setup_dpm_tables_v1(struct pp_hwmgr * hwmgr)743 static int smu7_setup_dpm_tables_v1(struct pp_hwmgr *hwmgr)
744 {
745 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
746 struct phm_ppt_v1_information *table_info =
747 (struct phm_ppt_v1_information *)(hwmgr->pptable);
748 uint32_t i;
749
750 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
751 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
752
753 if (table_info == NULL)
754 return -EINVAL;
755
756 dep_sclk_table = table_info->vdd_dep_on_sclk;
757 dep_mclk_table = table_info->vdd_dep_on_mclk;
758
759 PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
760 "SCLK dependency table is missing.",
761 return -EINVAL);
762 PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
763 "SCLK dependency table count is 0.",
764 return -EINVAL);
765
766 PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
767 "MCLK dependency table is missing.",
768 return -EINVAL);
769 PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
770 "MCLK dependency table count is 0",
771 return -EINVAL);
772
773 /* Initialize Sclk DPM table based on allow Sclk values */
774 data->dpm_table.sclk_table.count = 0;
775 for (i = 0; i < dep_sclk_table->count; i++) {
776 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value !=
777 dep_sclk_table->entries[i].clk) {
778
779 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
780 dep_sclk_table->entries[i].clk;
781
782 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled =
783 (i == 0) ? true : false;
784 data->dpm_table.sclk_table.count++;
785 }
786 }
787
788 /* Initialize Mclk DPM table based on allow Mclk values */
789 data->dpm_table.mclk_table.count = 0;
790 for (i = 0; i < dep_mclk_table->count; i++) {
791 if (i == 0 || data->dpm_table.mclk_table.dpm_levels
792 [data->dpm_table.mclk_table.count - 1].value !=
793 dep_mclk_table->entries[i].clk) {
794 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
795 dep_mclk_table->entries[i].clk;
796 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled =
797 (i == 0) ? true : false;
798 data->dpm_table.mclk_table.count++;
799 }
800 }
801
802 return 0;
803 }
804
smu7_setup_default_dpm_tables(struct pp_hwmgr * hwmgr)805 int smu7_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
806 {
807 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
808
809 smu7_reset_dpm_tables(hwmgr);
810
811 if (hwmgr->pp_table_version == PP_TABLE_V1)
812 smu7_setup_dpm_tables_v1(hwmgr);
813 else if (hwmgr->pp_table_version == PP_TABLE_V0)
814 smu7_setup_dpm_tables_v0(hwmgr);
815
816 smu7_setup_default_pcie_table(hwmgr);
817
818 /* save a copy of the default DPM table */
819 memcpy(&(data->golden_dpm_table), &(data->dpm_table),
820 sizeof(struct smu7_dpm_table));
821 return 0;
822 }
823
smu7_get_xclk(struct pp_hwmgr * hwmgr)824 uint32_t smu7_get_xclk(struct pp_hwmgr *hwmgr)
825 {
826 uint32_t reference_clock, tmp;
827 struct cgs_display_info info = {0};
828 struct cgs_mode_info mode_info = {0};
829
830 info.mode_info = &mode_info;
831
832 tmp = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL_2, MUX_TCLK_TO_XCLK);
833
834 if (tmp)
835 return TCLK;
836
837 cgs_get_active_displays_info(hwmgr->device, &info);
838 reference_clock = mode_info.ref_clock;
839
840 tmp = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL, XTALIN_DIVIDE);
841
842 if (0 != tmp)
843 return reference_clock / 4;
844
845 return reference_clock;
846 }
847
smu7_enable_vrhot_gpio_interrupt(struct pp_hwmgr * hwmgr)848 static int smu7_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
849 {
850
851 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
852 PHM_PlatformCaps_RegulatorHot))
853 return smum_send_msg_to_smc(hwmgr->smumgr,
854 PPSMC_MSG_EnableVRHotGPIOInterrupt);
855
856 return 0;
857 }
858
smu7_enable_sclk_control(struct pp_hwmgr * hwmgr)859 static int smu7_enable_sclk_control(struct pp_hwmgr *hwmgr)
860 {
861 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
862 SCLK_PWRMGT_OFF, 0);
863 return 0;
864 }
865
smu7_enable_ulv(struct pp_hwmgr * hwmgr)866 static int smu7_enable_ulv(struct pp_hwmgr *hwmgr)
867 {
868 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
869
870 if (data->ulv_supported)
871 return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV);
872
873 return 0;
874 }
875
smu7_disable_ulv(struct pp_hwmgr * hwmgr)876 static int smu7_disable_ulv(struct pp_hwmgr *hwmgr)
877 {
878 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
879
880 if (data->ulv_supported)
881 return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DisableULV);
882
883 return 0;
884 }
885
smu7_enable_deep_sleep_master_switch(struct pp_hwmgr * hwmgr)886 static int smu7_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
887 {
888 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
889 PHM_PlatformCaps_SclkDeepSleep)) {
890 if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON))
891 PP_ASSERT_WITH_CODE(false,
892 "Attempt to enable Master Deep Sleep switch failed!",
893 return -EINVAL);
894 } else {
895 if (smum_send_msg_to_smc(hwmgr->smumgr,
896 PPSMC_MSG_MASTER_DeepSleep_OFF)) {
897 PP_ASSERT_WITH_CODE(false,
898 "Attempt to disable Master Deep Sleep switch failed!",
899 return -EINVAL);
900 }
901 }
902
903 return 0;
904 }
905
smu7_disable_deep_sleep_master_switch(struct pp_hwmgr * hwmgr)906 static int smu7_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
907 {
908 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
909 PHM_PlatformCaps_SclkDeepSleep)) {
910 if (smum_send_msg_to_smc(hwmgr->smumgr,
911 PPSMC_MSG_MASTER_DeepSleep_OFF)) {
912 PP_ASSERT_WITH_CODE(false,
913 "Attempt to disable Master Deep Sleep switch failed!",
914 return -EINVAL);
915 }
916 }
917
918 return 0;
919 }
920
smu7_disable_handshake_uvd(struct pp_hwmgr * hwmgr)921 static int smu7_disable_handshake_uvd(struct pp_hwmgr *hwmgr)
922 {
923 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
924 uint32_t soft_register_value = 0;
925 uint32_t handshake_disables_offset = data->soft_regs_start
926 + smum_get_offsetof(hwmgr->smumgr,
927 SMU_SoftRegisters, HandshakeDisables);
928
929 soft_register_value = cgs_read_ind_register(hwmgr->device,
930 CGS_IND_REG__SMC, handshake_disables_offset);
931 soft_register_value |= smum_get_mac_definition(hwmgr->smumgr,
932 SMU_UVD_MCLK_HANDSHAKE_DISABLE);
933 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
934 handshake_disables_offset, soft_register_value);
935 return 0;
936 }
937
smu7_enable_sclk_mclk_dpm(struct pp_hwmgr * hwmgr)938 static int smu7_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
939 {
940 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
941
942 /* enable SCLK dpm */
943 if (!data->sclk_dpm_key_disabled)
944 PP_ASSERT_WITH_CODE(
945 (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)),
946 "Failed to enable SCLK DPM during DPM Start Function!",
947 return -EINVAL);
948
949 /* enable MCLK dpm */
950 if (0 == data->mclk_dpm_key_disabled) {
951 if (!(hwmgr->feature_mask & PP_UVD_HANDSHAKE_MASK))
952 smu7_disable_handshake_uvd(hwmgr);
953 PP_ASSERT_WITH_CODE(
954 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
955 PPSMC_MSG_MCLKDPM_Enable)),
956 "Failed to enable MCLK DPM during DPM Start Function!",
957 return -EINVAL);
958
959 PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
960
961 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5);
962 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5);
963 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005);
964 udelay(10);
965 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005);
966 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005);
967 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005);
968 }
969
970 return 0;
971 }
972
smu7_start_dpm(struct pp_hwmgr * hwmgr)973 static int smu7_start_dpm(struct pp_hwmgr *hwmgr)
974 {
975 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
976
977 /*enable general power management */
978
979 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
980 GLOBAL_PWRMGT_EN, 1);
981
982 /* enable sclk deep sleep */
983
984 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
985 DYNAMIC_PM_EN, 1);
986
987 /* prepare for PCIE DPM */
988
989 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
990 data->soft_regs_start +
991 smum_get_offsetof(hwmgr->smumgr, SMU_SoftRegisters,
992 VoltageChangeTimeout), 0x1000);
993 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
994 SWRST_COMMAND_1, RESETLC, 0x0);
995
996 PP_ASSERT_WITH_CODE(
997 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
998 PPSMC_MSG_Voltage_Cntl_Enable)),
999 "Failed to enable voltage DPM during DPM Start Function!",
1000 return -EINVAL);
1001
1002
1003 if (smu7_enable_sclk_mclk_dpm(hwmgr)) {
1004 printk(KERN_ERR "Failed to enable Sclk DPM and Mclk DPM!");
1005 return -EINVAL;
1006 }
1007
1008 /* enable PCIE dpm */
1009 if (0 == data->pcie_dpm_key_disabled) {
1010 PP_ASSERT_WITH_CODE(
1011 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
1012 PPSMC_MSG_PCIeDPM_Enable)),
1013 "Failed to enable pcie DPM during DPM Start Function!",
1014 return -EINVAL);
1015 }
1016
1017 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1018 PHM_PlatformCaps_Falcon_QuickTransition)) {
1019 PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr->smumgr,
1020 PPSMC_MSG_EnableACDCGPIOInterrupt)),
1021 "Failed to enable AC DC GPIO Interrupt!",
1022 );
1023 }
1024
1025 return 0;
1026 }
1027
smu7_disable_sclk_mclk_dpm(struct pp_hwmgr * hwmgr)1028 static int smu7_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
1029 {
1030 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1031
1032 /* disable SCLK dpm */
1033 if (!data->sclk_dpm_key_disabled) {
1034 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1035 "Trying to disable SCLK DPM when DPM is disabled",
1036 return 0);
1037 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Disable);
1038 }
1039
1040 /* disable MCLK dpm */
1041 if (!data->mclk_dpm_key_disabled) {
1042 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1043 "Trying to disable MCLK DPM when DPM is disabled",
1044 return 0);
1045 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MCLKDPM_Disable);
1046 }
1047
1048 return 0;
1049 }
1050
smu7_stop_dpm(struct pp_hwmgr * hwmgr)1051 static int smu7_stop_dpm(struct pp_hwmgr *hwmgr)
1052 {
1053 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1054
1055 /* disable general power management */
1056 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1057 GLOBAL_PWRMGT_EN, 0);
1058 /* disable sclk deep sleep */
1059 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1060 DYNAMIC_PM_EN, 0);
1061
1062 /* disable PCIE dpm */
1063 if (!data->pcie_dpm_key_disabled) {
1064 PP_ASSERT_WITH_CODE(
1065 (smum_send_msg_to_smc(hwmgr->smumgr,
1066 PPSMC_MSG_PCIeDPM_Disable) == 0),
1067 "Failed to disable pcie DPM during DPM Stop Function!",
1068 return -EINVAL);
1069 }
1070
1071 smu7_disable_sclk_mclk_dpm(hwmgr);
1072
1073 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1074 "Trying to disable voltage DPM when DPM is disabled",
1075 return 0);
1076
1077 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_Voltage_Cntl_Disable);
1078
1079 return 0;
1080 }
1081
smu7_set_dpm_event_sources(struct pp_hwmgr * hwmgr,uint32_t sources)1082 static void smu7_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources)
1083 {
1084 bool protection;
1085 enum DPM_EVENT_SRC src;
1086
1087 switch (sources) {
1088 default:
1089 printk(KERN_ERR "Unknown throttling event sources.");
1090 /* fall through */
1091 case 0:
1092 protection = false;
1093 /* src is unused */
1094 break;
1095 case (1 << PHM_AutoThrottleSource_Thermal):
1096 protection = true;
1097 src = DPM_EVENT_SRC_DIGITAL;
1098 break;
1099 case (1 << PHM_AutoThrottleSource_External):
1100 protection = true;
1101 src = DPM_EVENT_SRC_EXTERNAL;
1102 break;
1103 case (1 << PHM_AutoThrottleSource_External) |
1104 (1 << PHM_AutoThrottleSource_Thermal):
1105 protection = true;
1106 src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
1107 break;
1108 }
1109 /* Order matters - don't enable thermal protection for the wrong source. */
1110 if (protection) {
1111 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
1112 DPM_EVENT_SRC, src);
1113 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1114 THERMAL_PROTECTION_DIS,
1115 !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1116 PHM_PlatformCaps_ThermalController));
1117 } else
1118 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1119 THERMAL_PROTECTION_DIS, 1);
1120 }
1121
smu7_enable_auto_throttle_source(struct pp_hwmgr * hwmgr,PHM_AutoThrottleSource source)1122 static int smu7_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
1123 PHM_AutoThrottleSource source)
1124 {
1125 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1126
1127 if (!(data->active_auto_throttle_sources & (1 << source))) {
1128 data->active_auto_throttle_sources |= 1 << source;
1129 smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
1130 }
1131 return 0;
1132 }
1133
smu7_enable_thermal_auto_throttle(struct pp_hwmgr * hwmgr)1134 static int smu7_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
1135 {
1136 return smu7_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
1137 }
1138
smu7_disable_auto_throttle_source(struct pp_hwmgr * hwmgr,PHM_AutoThrottleSource source)1139 static int smu7_disable_auto_throttle_source(struct pp_hwmgr *hwmgr,
1140 PHM_AutoThrottleSource source)
1141 {
1142 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1143
1144 if (data->active_auto_throttle_sources & (1 << source)) {
1145 data->active_auto_throttle_sources &= ~(1 << source);
1146 smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
1147 }
1148 return 0;
1149 }
1150
smu7_disable_thermal_auto_throttle(struct pp_hwmgr * hwmgr)1151 static int smu7_disable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
1152 {
1153 return smu7_disable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
1154 }
1155
smu7_pcie_performance_request(struct pp_hwmgr * hwmgr)1156 int smu7_pcie_performance_request(struct pp_hwmgr *hwmgr)
1157 {
1158 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1159 data->pcie_performance_request = true;
1160
1161 return 0;
1162 }
1163
smu7_enable_dpm_tasks(struct pp_hwmgr * hwmgr)1164 int smu7_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
1165 {
1166 int tmp_result = 0;
1167 int result = 0;
1168
1169 tmp_result = (!smum_is_dpm_running(hwmgr)) ? 0 : -1;
1170 PP_ASSERT_WITH_CODE(tmp_result == 0,
1171 "DPM is already running",
1172 );
1173
1174 if (smu7_voltage_control(hwmgr)) {
1175 tmp_result = smu7_enable_voltage_control(hwmgr);
1176 PP_ASSERT_WITH_CODE(tmp_result == 0,
1177 "Failed to enable voltage control!",
1178 result = tmp_result);
1179
1180 tmp_result = smu7_construct_voltage_tables(hwmgr);
1181 PP_ASSERT_WITH_CODE((0 == tmp_result),
1182 "Failed to contruct voltage tables!",
1183 result = tmp_result);
1184 }
1185 smum_initialize_mc_reg_table(hwmgr);
1186
1187 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1188 PHM_PlatformCaps_EngineSpreadSpectrumSupport))
1189 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1190 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
1191
1192 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1193 PHM_PlatformCaps_ThermalController))
1194 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1195 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
1196
1197 tmp_result = smu7_program_static_screen_threshold_parameters(hwmgr);
1198 PP_ASSERT_WITH_CODE((0 == tmp_result),
1199 "Failed to program static screen threshold parameters!",
1200 result = tmp_result);
1201
1202 tmp_result = smu7_enable_display_gap(hwmgr);
1203 PP_ASSERT_WITH_CODE((0 == tmp_result),
1204 "Failed to enable display gap!", result = tmp_result);
1205
1206 tmp_result = smu7_program_voting_clients(hwmgr);
1207 PP_ASSERT_WITH_CODE((0 == tmp_result),
1208 "Failed to program voting clients!", result = tmp_result);
1209
1210 tmp_result = smum_process_firmware_header(hwmgr);
1211 PP_ASSERT_WITH_CODE((0 == tmp_result),
1212 "Failed to process firmware header!", result = tmp_result);
1213
1214 tmp_result = smu7_initial_switch_from_arbf0_to_f1(hwmgr);
1215 PP_ASSERT_WITH_CODE((0 == tmp_result),
1216 "Failed to initialize switch from ArbF0 to F1!",
1217 result = tmp_result);
1218
1219 result = smu7_setup_default_dpm_tables(hwmgr);
1220 PP_ASSERT_WITH_CODE(0 == result,
1221 "Failed to setup default DPM tables!", return result);
1222
1223 tmp_result = smum_init_smc_table(hwmgr);
1224 PP_ASSERT_WITH_CODE((0 == tmp_result),
1225 "Failed to initialize SMC table!", result = tmp_result);
1226
1227 tmp_result = smu7_enable_vrhot_gpio_interrupt(hwmgr);
1228 PP_ASSERT_WITH_CODE((0 == tmp_result),
1229 "Failed to enable VR hot GPIO interrupt!", result = tmp_result);
1230
1231 smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)PPSMC_NoDisplay);
1232
1233 tmp_result = smu7_enable_sclk_control(hwmgr);
1234 PP_ASSERT_WITH_CODE((0 == tmp_result),
1235 "Failed to enable SCLK control!", result = tmp_result);
1236
1237 tmp_result = smu7_enable_smc_voltage_controller(hwmgr);
1238 PP_ASSERT_WITH_CODE((0 == tmp_result),
1239 "Failed to enable voltage control!", result = tmp_result);
1240
1241 tmp_result = smu7_enable_ulv(hwmgr);
1242 PP_ASSERT_WITH_CODE((0 == tmp_result),
1243 "Failed to enable ULV!", result = tmp_result);
1244
1245 tmp_result = smu7_enable_deep_sleep_master_switch(hwmgr);
1246 PP_ASSERT_WITH_CODE((0 == tmp_result),
1247 "Failed to enable deep sleep master switch!", result = tmp_result);
1248
1249 tmp_result = smu7_enable_didt_config(hwmgr);
1250 PP_ASSERT_WITH_CODE((tmp_result == 0),
1251 "Failed to enable deep sleep master switch!", result = tmp_result);
1252
1253 tmp_result = smu7_start_dpm(hwmgr);
1254 PP_ASSERT_WITH_CODE((0 == tmp_result),
1255 "Failed to start DPM!", result = tmp_result);
1256
1257 tmp_result = smu7_enable_smc_cac(hwmgr);
1258 PP_ASSERT_WITH_CODE((0 == tmp_result),
1259 "Failed to enable SMC CAC!", result = tmp_result);
1260
1261 tmp_result = smu7_enable_power_containment(hwmgr);
1262 PP_ASSERT_WITH_CODE((0 == tmp_result),
1263 "Failed to enable power containment!", result = tmp_result);
1264
1265 tmp_result = smu7_power_control_set_level(hwmgr);
1266 PP_ASSERT_WITH_CODE((0 == tmp_result),
1267 "Failed to power control set level!", result = tmp_result);
1268
1269 tmp_result = smu7_enable_thermal_auto_throttle(hwmgr);
1270 PP_ASSERT_WITH_CODE((0 == tmp_result),
1271 "Failed to enable thermal auto throttle!", result = tmp_result);
1272
1273 tmp_result = smu7_pcie_performance_request(hwmgr);
1274 PP_ASSERT_WITH_CODE((0 == tmp_result),
1275 "pcie performance request failed!", result = tmp_result);
1276
1277 return 0;
1278 }
1279
smu7_disable_dpm_tasks(struct pp_hwmgr * hwmgr)1280 int smu7_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
1281 {
1282 int tmp_result, result = 0;
1283
1284 tmp_result = (smum_is_dpm_running(hwmgr)) ? 0 : -1;
1285 PP_ASSERT_WITH_CODE(tmp_result == 0,
1286 "DPM is not running right now, no need to disable DPM!",
1287 return 0);
1288
1289 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1290 PHM_PlatformCaps_ThermalController))
1291 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1292 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1);
1293
1294 tmp_result = smu7_disable_power_containment(hwmgr);
1295 PP_ASSERT_WITH_CODE((tmp_result == 0),
1296 "Failed to disable power containment!", result = tmp_result);
1297
1298 tmp_result = smu7_disable_smc_cac(hwmgr);
1299 PP_ASSERT_WITH_CODE((tmp_result == 0),
1300 "Failed to disable SMC CAC!", result = tmp_result);
1301
1302 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1303 CG_SPLL_SPREAD_SPECTRUM, SSEN, 0);
1304 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1305 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 0);
1306
1307 tmp_result = smu7_disable_thermal_auto_throttle(hwmgr);
1308 PP_ASSERT_WITH_CODE((tmp_result == 0),
1309 "Failed to disable thermal auto throttle!", result = tmp_result);
1310
1311 if (1 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) {
1312 PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DisableAvfs)),
1313 "Failed to disable AVFS!",
1314 return -EINVAL);
1315 }
1316
1317 tmp_result = smu7_stop_dpm(hwmgr);
1318 PP_ASSERT_WITH_CODE((tmp_result == 0),
1319 "Failed to stop DPM!", result = tmp_result);
1320
1321 tmp_result = smu7_disable_deep_sleep_master_switch(hwmgr);
1322 PP_ASSERT_WITH_CODE((tmp_result == 0),
1323 "Failed to disable deep sleep master switch!", result = tmp_result);
1324
1325 tmp_result = smu7_disable_ulv(hwmgr);
1326 PP_ASSERT_WITH_CODE((tmp_result == 0),
1327 "Failed to disable ULV!", result = tmp_result);
1328
1329 tmp_result = smu7_clear_voting_clients(hwmgr);
1330 PP_ASSERT_WITH_CODE((tmp_result == 0),
1331 "Failed to clear voting clients!", result = tmp_result);
1332
1333 tmp_result = smu7_reset_to_default(hwmgr);
1334 PP_ASSERT_WITH_CODE((tmp_result == 0),
1335 "Failed to reset to default!", result = tmp_result);
1336
1337 tmp_result = smu7_force_switch_to_arbf0(hwmgr);
1338 PP_ASSERT_WITH_CODE((tmp_result == 0),
1339 "Failed to force to switch arbf0!", result = tmp_result);
1340
1341 return result;
1342 }
1343
smu7_reset_asic_tasks(struct pp_hwmgr * hwmgr)1344 int smu7_reset_asic_tasks(struct pp_hwmgr *hwmgr)
1345 {
1346
1347 return 0;
1348 }
1349
smu7_init_dpm_defaults(struct pp_hwmgr * hwmgr)1350 static void smu7_init_dpm_defaults(struct pp_hwmgr *hwmgr)
1351 {
1352 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1353 struct phm_ppt_v1_information *table_info =
1354 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1355
1356 data->dll_default_on = false;
1357 data->mclk_dpm0_activity_target = 0xa;
1358 data->mclk_activity_target = SMU7_MCLK_TARGETACTIVITY_DFLT;
1359 data->vddc_vddgfx_delta = 300;
1360 data->static_screen_threshold = SMU7_STATICSCREENTHRESHOLD_DFLT;
1361 data->static_screen_threshold_unit = SMU7_STATICSCREENTHRESHOLDUNIT_DFLT;
1362 data->voting_rights_clients0 = SMU7_VOTINGRIGHTSCLIENTS_DFLT0;
1363 data->voting_rights_clients1 = SMU7_VOTINGRIGHTSCLIENTS_DFLT1;
1364 data->voting_rights_clients2 = SMU7_VOTINGRIGHTSCLIENTS_DFLT2;
1365 data->voting_rights_clients3 = SMU7_VOTINGRIGHTSCLIENTS_DFLT3;
1366 data->voting_rights_clients4 = SMU7_VOTINGRIGHTSCLIENTS_DFLT4;
1367 data->voting_rights_clients5 = SMU7_VOTINGRIGHTSCLIENTS_DFLT5;
1368 data->voting_rights_clients6 = SMU7_VOTINGRIGHTSCLIENTS_DFLT6;
1369 data->voting_rights_clients7 = SMU7_VOTINGRIGHTSCLIENTS_DFLT7;
1370
1371 data->mclk_dpm_key_disabled = hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
1372 data->sclk_dpm_key_disabled = hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
1373 data->pcie_dpm_key_disabled = hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true;
1374 /* need to set voltage control types before EVV patching */
1375 data->voltage_control = SMU7_VOLTAGE_CONTROL_NONE;
1376 data->vddci_control = SMU7_VOLTAGE_CONTROL_NONE;
1377 data->mvdd_control = SMU7_VOLTAGE_CONTROL_NONE;
1378 data->enable_tdc_limit_feature = true;
1379 data->enable_pkg_pwr_tracking_feature = true;
1380 data->force_pcie_gen = PP_PCIEGenInvalid;
1381 data->ulv_supported = hwmgr->feature_mask & PP_ULV_MASK ? true : false;
1382
1383 data->fast_watermark_threshold = 100;
1384 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
1385 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
1386 data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1387
1388 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1389 PHM_PlatformCaps_ControlVDDGFX)) {
1390 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
1391 VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
1392 data->vdd_gfx_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1393 }
1394 }
1395
1396 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1397 PHM_PlatformCaps_EnableMVDDControl)) {
1398 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
1399 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
1400 data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1401 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
1402 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2))
1403 data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1404 }
1405
1406 if (SMU7_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control) {
1407 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1408 PHM_PlatformCaps_ControlVDDGFX);
1409 }
1410
1411 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1412 PHM_PlatformCaps_ControlVDDCI)) {
1413 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
1414 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
1415 data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1416 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
1417 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
1418 data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1419 }
1420
1421 if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE)
1422 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1423 PHM_PlatformCaps_EnableMVDDControl);
1424
1425 if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE)
1426 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1427 PHM_PlatformCaps_ControlVDDCI);
1428
1429 if ((hwmgr->pp_table_version != PP_TABLE_V0)
1430 && (table_info->cac_dtp_table->usClockStretchAmount != 0))
1431 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1432 PHM_PlatformCaps_ClockStretcher);
1433
1434 data->pcie_gen_performance.max = PP_PCIEGen1;
1435 data->pcie_gen_performance.min = PP_PCIEGen3;
1436 data->pcie_gen_power_saving.max = PP_PCIEGen1;
1437 data->pcie_gen_power_saving.min = PP_PCIEGen3;
1438 data->pcie_lane_performance.max = 0;
1439 data->pcie_lane_performance.min = 16;
1440 data->pcie_lane_power_saving.max = 0;
1441 data->pcie_lane_power_saving.min = 16;
1442 }
1443
1444 /**
1445 * Get Leakage VDDC based on leakage ID.
1446 *
1447 * @param hwmgr the address of the powerplay hardware manager.
1448 * @return always 0
1449 */
smu7_get_evv_voltages(struct pp_hwmgr * hwmgr)1450 static int smu7_get_evv_voltages(struct pp_hwmgr *hwmgr)
1451 {
1452 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1453 uint16_t vv_id;
1454 uint16_t vddc = 0;
1455 uint16_t vddgfx = 0;
1456 uint16_t i, j;
1457 uint32_t sclk = 0;
1458 struct phm_ppt_v1_information *table_info =
1459 (struct phm_ppt_v1_information *)hwmgr->pptable;
1460 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = NULL;
1461
1462
1463 for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
1464 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
1465
1466 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1467 if ((hwmgr->pp_table_version == PP_TABLE_V1)
1468 && !phm_get_sclk_for_voltage_evv(hwmgr,
1469 table_info->vddgfx_lookup_table, vv_id, &sclk)) {
1470 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1471 PHM_PlatformCaps_ClockStretcher)) {
1472 sclk_table = table_info->vdd_dep_on_sclk;
1473
1474 for (j = 1; j < sclk_table->count; j++) {
1475 if (sclk_table->entries[j].clk == sclk &&
1476 sclk_table->entries[j].cks_enable == 0) {
1477 sclk += 5000;
1478 break;
1479 }
1480 }
1481 }
1482 if (0 == atomctrl_get_voltage_evv_on_sclk
1483 (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk,
1484 vv_id, &vddgfx)) {
1485 /* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */
1486 PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -EINVAL);
1487
1488 /* the voltage should not be zero nor equal to leakage ID */
1489 if (vddgfx != 0 && vddgfx != vv_id) {
1490 data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx;
1491 data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = vv_id;
1492 data->vddcgfx_leakage.count++;
1493 }
1494 } else {
1495 printk("Error retrieving EVV voltage value!\n");
1496 }
1497 }
1498 } else {
1499 if ((hwmgr->pp_table_version == PP_TABLE_V0)
1500 || !phm_get_sclk_for_voltage_evv(hwmgr,
1501 table_info->vddc_lookup_table, vv_id, &sclk)) {
1502 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1503 PHM_PlatformCaps_ClockStretcher)) {
1504 if (table_info == NULL)
1505 return -EINVAL;
1506 sclk_table = table_info->vdd_dep_on_sclk;
1507
1508 for (j = 1; j < sclk_table->count; j++) {
1509 if (sclk_table->entries[j].clk == sclk &&
1510 sclk_table->entries[j].cks_enable == 0) {
1511 sclk += 5000;
1512 break;
1513 }
1514 }
1515 }
1516
1517 if (phm_get_voltage_evv_on_sclk(hwmgr,
1518 VOLTAGE_TYPE_VDDC,
1519 sclk, vv_id, &vddc) == 0) {
1520 if (vddc >= 2000 || vddc == 0)
1521 return -EINVAL;
1522 } else {
1523 printk(KERN_WARNING "failed to retrieving EVV voltage!\n");
1524 continue;
1525 }
1526
1527 /* the voltage should not be zero nor equal to leakage ID */
1528 if (vddc != 0 && vddc != vv_id) {
1529 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc);
1530 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
1531 data->vddc_leakage.count++;
1532 }
1533 }
1534 }
1535 }
1536
1537 return 0;
1538 }
1539
1540 /**
1541 * Change virtual leakage voltage to actual value.
1542 *
1543 * @param hwmgr the address of the powerplay hardware manager.
1544 * @param pointer to changing voltage
1545 * @param pointer to leakage table
1546 */
smu7_patch_ppt_v1_with_vdd_leakage(struct pp_hwmgr * hwmgr,uint16_t * voltage,struct smu7_leakage_voltage * leakage_table)1547 static void smu7_patch_ppt_v1_with_vdd_leakage(struct pp_hwmgr *hwmgr,
1548 uint16_t *voltage, struct smu7_leakage_voltage *leakage_table)
1549 {
1550 uint32_t index;
1551
1552 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
1553 for (index = 0; index < leakage_table->count; index++) {
1554 /* if this voltage matches a leakage voltage ID */
1555 /* patch with actual leakage voltage */
1556 if (leakage_table->leakage_id[index] == *voltage) {
1557 *voltage = leakage_table->actual_voltage[index];
1558 break;
1559 }
1560 }
1561
1562 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
1563 printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n");
1564 }
1565
1566 /**
1567 * Patch voltage lookup table by EVV leakages.
1568 *
1569 * @param hwmgr the address of the powerplay hardware manager.
1570 * @param pointer to voltage lookup table
1571 * @param pointer to leakage table
1572 * @return always 0
1573 */
smu7_patch_lookup_table_with_leakage(struct pp_hwmgr * hwmgr,phm_ppt_v1_voltage_lookup_table * lookup_table,struct smu7_leakage_voltage * leakage_table)1574 static int smu7_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
1575 phm_ppt_v1_voltage_lookup_table *lookup_table,
1576 struct smu7_leakage_voltage *leakage_table)
1577 {
1578 uint32_t i;
1579
1580 for (i = 0; i < lookup_table->count; i++)
1581 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
1582 &lookup_table->entries[i].us_vdd, leakage_table);
1583
1584 return 0;
1585 }
1586
smu7_patch_clock_voltage_limits_with_vddc_leakage(struct pp_hwmgr * hwmgr,struct smu7_leakage_voltage * leakage_table,uint16_t * vddc)1587 static int smu7_patch_clock_voltage_limits_with_vddc_leakage(
1588 struct pp_hwmgr *hwmgr, struct smu7_leakage_voltage *leakage_table,
1589 uint16_t *vddc)
1590 {
1591 struct phm_ppt_v1_information *table_info =
1592 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1593 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
1594 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
1595 table_info->max_clock_voltage_on_dc.vddc;
1596 return 0;
1597 }
1598
smu7_patch_voltage_dependency_tables_with_lookup_table(struct pp_hwmgr * hwmgr)1599 static int smu7_patch_voltage_dependency_tables_with_lookup_table(
1600 struct pp_hwmgr *hwmgr)
1601 {
1602 uint8_t entry_id;
1603 uint8_t voltage_id;
1604 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1605 struct phm_ppt_v1_information *table_info =
1606 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1607
1608 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1609 table_info->vdd_dep_on_sclk;
1610 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
1611 table_info->vdd_dep_on_mclk;
1612 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1613 table_info->mm_dep_table;
1614
1615 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1616 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
1617 voltage_id = sclk_table->entries[entry_id].vddInd;
1618 sclk_table->entries[entry_id].vddgfx =
1619 table_info->vddgfx_lookup_table->entries[voltage_id].us_vdd;
1620 }
1621 } else {
1622 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
1623 voltage_id = sclk_table->entries[entry_id].vddInd;
1624 sclk_table->entries[entry_id].vddc =
1625 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
1626 }
1627 }
1628
1629 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
1630 voltage_id = mclk_table->entries[entry_id].vddInd;
1631 mclk_table->entries[entry_id].vddc =
1632 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
1633 }
1634
1635 for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
1636 voltage_id = mm_table->entries[entry_id].vddcInd;
1637 mm_table->entries[entry_id].vddc =
1638 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
1639 }
1640
1641 return 0;
1642
1643 }
1644
phm_add_voltage(struct pp_hwmgr * hwmgr,phm_ppt_v1_voltage_lookup_table * look_up_table,phm_ppt_v1_voltage_lookup_record * record)1645 static int phm_add_voltage(struct pp_hwmgr *hwmgr,
1646 phm_ppt_v1_voltage_lookup_table *look_up_table,
1647 phm_ppt_v1_voltage_lookup_record *record)
1648 {
1649 uint32_t i;
1650
1651 PP_ASSERT_WITH_CODE((NULL != look_up_table),
1652 "Lookup Table empty.", return -EINVAL);
1653 PP_ASSERT_WITH_CODE((0 != look_up_table->count),
1654 "Lookup Table empty.", return -EINVAL);
1655
1656 i = smum_get_mac_definition(hwmgr->smumgr, SMU_MAX_LEVELS_VDDGFX);
1657 PP_ASSERT_WITH_CODE((i >= look_up_table->count),
1658 "Lookup Table is full.", return -EINVAL);
1659
1660 /* This is to avoid entering duplicate calculated records. */
1661 for (i = 0; i < look_up_table->count; i++) {
1662 if (look_up_table->entries[i].us_vdd == record->us_vdd) {
1663 if (look_up_table->entries[i].us_calculated == 1)
1664 return 0;
1665 break;
1666 }
1667 }
1668
1669 look_up_table->entries[i].us_calculated = 1;
1670 look_up_table->entries[i].us_vdd = record->us_vdd;
1671 look_up_table->entries[i].us_cac_low = record->us_cac_low;
1672 look_up_table->entries[i].us_cac_mid = record->us_cac_mid;
1673 look_up_table->entries[i].us_cac_high = record->us_cac_high;
1674 /* Only increment the count when we're appending, not replacing duplicate entry. */
1675 if (i == look_up_table->count)
1676 look_up_table->count++;
1677
1678 return 0;
1679 }
1680
1681
smu7_calc_voltage_dependency_tables(struct pp_hwmgr * hwmgr)1682 static int smu7_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
1683 {
1684 uint8_t entry_id;
1685 struct phm_ppt_v1_voltage_lookup_record v_record;
1686 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1687 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1688
1689 phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
1690 phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
1691
1692 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1693 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
1694 if (sclk_table->entries[entry_id].vdd_offset & (1 << 15))
1695 v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
1696 sclk_table->entries[entry_id].vdd_offset - 0xFFFF;
1697 else
1698 v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
1699 sclk_table->entries[entry_id].vdd_offset;
1700
1701 sclk_table->entries[entry_id].vddc =
1702 v_record.us_cac_low = v_record.us_cac_mid =
1703 v_record.us_cac_high = v_record.us_vdd;
1704
1705 phm_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record);
1706 }
1707
1708 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
1709 if (mclk_table->entries[entry_id].vdd_offset & (1 << 15))
1710 v_record.us_vdd = mclk_table->entries[entry_id].vddc +
1711 mclk_table->entries[entry_id].vdd_offset - 0xFFFF;
1712 else
1713 v_record.us_vdd = mclk_table->entries[entry_id].vddc +
1714 mclk_table->entries[entry_id].vdd_offset;
1715
1716 mclk_table->entries[entry_id].vddgfx = v_record.us_cac_low =
1717 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
1718 phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
1719 }
1720 }
1721 return 0;
1722 }
1723
smu7_calc_mm_voltage_dependency_table(struct pp_hwmgr * hwmgr)1724 static int smu7_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
1725 {
1726 uint8_t entry_id;
1727 struct phm_ppt_v1_voltage_lookup_record v_record;
1728 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1729 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1730 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1731
1732 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1733 for (entry_id = 0; entry_id < mm_table->count; entry_id++) {
1734 if (mm_table->entries[entry_id].vddgfx_offset & (1 << 15))
1735 v_record.us_vdd = mm_table->entries[entry_id].vddc +
1736 mm_table->entries[entry_id].vddgfx_offset - 0xFFFF;
1737 else
1738 v_record.us_vdd = mm_table->entries[entry_id].vddc +
1739 mm_table->entries[entry_id].vddgfx_offset;
1740
1741 /* Add the calculated VDDGFX to the VDDGFX lookup table */
1742 mm_table->entries[entry_id].vddgfx = v_record.us_cac_low =
1743 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
1744 phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
1745 }
1746 }
1747 return 0;
1748 }
1749
smu7_sort_lookup_table(struct pp_hwmgr * hwmgr,struct phm_ppt_v1_voltage_lookup_table * lookup_table)1750 static int smu7_sort_lookup_table(struct pp_hwmgr *hwmgr,
1751 struct phm_ppt_v1_voltage_lookup_table *lookup_table)
1752 {
1753 uint32_t table_size, i, j;
1754 struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
1755 table_size = lookup_table->count;
1756
1757 PP_ASSERT_WITH_CODE(0 != lookup_table->count,
1758 "Lookup table is empty", return -EINVAL);
1759
1760 /* Sorting voltages */
1761 for (i = 0; i < table_size - 1; i++) {
1762 for (j = i + 1; j > 0; j--) {
1763 if (lookup_table->entries[j].us_vdd <
1764 lookup_table->entries[j - 1].us_vdd) {
1765 tmp_voltage_lookup_record = lookup_table->entries[j - 1];
1766 lookup_table->entries[j - 1] = lookup_table->entries[j];
1767 lookup_table->entries[j] = tmp_voltage_lookup_record;
1768 }
1769 }
1770 }
1771
1772 return 0;
1773 }
1774
smu7_complete_dependency_tables(struct pp_hwmgr * hwmgr)1775 static int smu7_complete_dependency_tables(struct pp_hwmgr *hwmgr)
1776 {
1777 int result = 0;
1778 int tmp_result;
1779 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1780 struct phm_ppt_v1_information *table_info =
1781 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1782
1783 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1784 tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
1785 table_info->vddgfx_lookup_table, &(data->vddcgfx_leakage));
1786 if (tmp_result != 0)
1787 result = tmp_result;
1788
1789 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
1790 &table_info->max_clock_voltage_on_dc.vddgfx, &(data->vddcgfx_leakage));
1791 } else {
1792
1793 tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
1794 table_info->vddc_lookup_table, &(data->vddc_leakage));
1795 if (tmp_result)
1796 result = tmp_result;
1797
1798 tmp_result = smu7_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
1799 &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
1800 if (tmp_result)
1801 result = tmp_result;
1802 }
1803
1804 tmp_result = smu7_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
1805 if (tmp_result)
1806 result = tmp_result;
1807
1808 tmp_result = smu7_calc_voltage_dependency_tables(hwmgr);
1809 if (tmp_result)
1810 result = tmp_result;
1811
1812 tmp_result = smu7_calc_mm_voltage_dependency_table(hwmgr);
1813 if (tmp_result)
1814 result = tmp_result;
1815
1816 tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddgfx_lookup_table);
1817 if (tmp_result)
1818 result = tmp_result;
1819
1820 tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
1821 if (tmp_result)
1822 result = tmp_result;
1823
1824 return result;
1825 }
1826
smu7_set_private_data_based_on_pptable_v1(struct pp_hwmgr * hwmgr)1827 static int smu7_set_private_data_based_on_pptable_v1(struct pp_hwmgr *hwmgr)
1828 {
1829 struct phm_ppt_v1_information *table_info =
1830 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1831
1832 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
1833 table_info->vdd_dep_on_sclk;
1834 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
1835 table_info->vdd_dep_on_mclk;
1836
1837 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
1838 "VDD dependency on SCLK table is missing.",
1839 return -EINVAL);
1840 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
1841 "VDD dependency on SCLK table has to have is missing.",
1842 return -EINVAL);
1843
1844 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
1845 "VDD dependency on MCLK table is missing",
1846 return -EINVAL);
1847 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
1848 "VDD dependency on MCLK table has to have is missing.",
1849 return -EINVAL);
1850
1851 table_info->max_clock_voltage_on_ac.sclk =
1852 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
1853 table_info->max_clock_voltage_on_ac.mclk =
1854 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
1855 table_info->max_clock_voltage_on_ac.vddc =
1856 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
1857 table_info->max_clock_voltage_on_ac.vddci =
1858 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
1859
1860 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk;
1861 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk;
1862 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc;
1863 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = table_info->max_clock_voltage_on_ac.vddci;
1864
1865 return 0;
1866 }
1867
smu7_patch_voltage_workaround(struct pp_hwmgr * hwmgr)1868 int smu7_patch_voltage_workaround(struct pp_hwmgr *hwmgr)
1869 {
1870 struct phm_ppt_v1_information *table_info =
1871 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1872 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
1873 struct phm_ppt_v1_voltage_lookup_table *lookup_table;
1874 uint32_t i;
1875 uint32_t hw_revision, sub_vendor_id, sub_sys_id;
1876 struct cgs_system_info sys_info = {0};
1877
1878 if (table_info != NULL) {
1879 dep_mclk_table = table_info->vdd_dep_on_mclk;
1880 lookup_table = table_info->vddc_lookup_table;
1881 } else
1882 return 0;
1883
1884 sys_info.size = sizeof(struct cgs_system_info);
1885
1886 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_REV;
1887 cgs_query_system_info(hwmgr->device, &sys_info);
1888 hw_revision = (uint32_t)sys_info.value;
1889
1890 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_SUB_SYS_ID;
1891 cgs_query_system_info(hwmgr->device, &sys_info);
1892 sub_sys_id = (uint32_t)sys_info.value;
1893
1894 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_SUB_SYS_VENDOR_ID;
1895 cgs_query_system_info(hwmgr->device, &sys_info);
1896 sub_vendor_id = (uint32_t)sys_info.value;
1897
1898 if (hwmgr->chip_id == CHIP_POLARIS10 && hw_revision == 0xC7 &&
1899 ((sub_sys_id == 0xb37 && sub_vendor_id == 0x1002) ||
1900 (sub_sys_id == 0x4a8 && sub_vendor_id == 0x1043) ||
1901 (sub_sys_id == 0x9480 && sub_vendor_id == 0x1682))) {
1902 if (lookup_table->entries[dep_mclk_table->entries[dep_mclk_table->count-1].vddInd].us_vdd >= 1000)
1903 return 0;
1904
1905 for (i = 0; i < lookup_table->count; i++) {
1906 if (lookup_table->entries[i].us_vdd < 0xff01 && lookup_table->entries[i].us_vdd >= 1000) {
1907 dep_mclk_table->entries[dep_mclk_table->count-1].vddInd = (uint8_t) i;
1908 return 0;
1909 }
1910 }
1911 }
1912 return 0;
1913 }
1914
smu7_thermal_parameter_init(struct pp_hwmgr * hwmgr)1915 static int smu7_thermal_parameter_init(struct pp_hwmgr *hwmgr)
1916 {
1917 struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
1918 uint32_t temp_reg;
1919 struct phm_ppt_v1_information *table_info =
1920 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1921
1922
1923 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
1924 temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
1925 switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
1926 case 0:
1927 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
1928 break;
1929 case 1:
1930 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
1931 break;
1932 case 2:
1933 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
1934 break;
1935 case 3:
1936 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
1937 break;
1938 case 4:
1939 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
1940 break;
1941 default:
1942 PP_ASSERT_WITH_CODE(0,
1943 "Failed to setup PCC HW register! Wrong GPIO assigned for VDDC_PCC_GPIO_PINID!",
1944 );
1945 break;
1946 }
1947 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg);
1948 }
1949
1950 if (table_info == NULL)
1951 return 0;
1952
1953 if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 &&
1954 hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) {
1955 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit =
1956 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
1957
1958 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit =
1959 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
1960
1961 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1;
1962
1963 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100;
1964
1965 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit =
1966 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
1967
1968 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1;
1969
1970 table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ?
1971 (table_info->cac_dtp_table->usDefaultTargetOperatingTemp - 50) : 0;
1972
1973 table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
1974 table_info->cac_dtp_table->usOperatingTempStep = 1;
1975 table_info->cac_dtp_table->usOperatingTempHyst = 1;
1976
1977 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
1978 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
1979
1980 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
1981 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;
1982
1983 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
1984 table_info->cac_dtp_table->usOperatingTempMinLimit;
1985
1986 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
1987 table_info->cac_dtp_table->usOperatingTempMaxLimit;
1988
1989 hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
1990 table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
1991
1992 hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
1993 table_info->cac_dtp_table->usOperatingTempStep;
1994
1995 hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
1996 table_info->cac_dtp_table->usTargetOperatingTemp;
1997 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1998 PHM_PlatformCaps_ODFuzzyFanControlSupport);
1999 }
2000
2001 return 0;
2002 }
2003
2004 /**
2005 * Change virtual leakage voltage to actual value.
2006 *
2007 * @param hwmgr the address of the powerplay hardware manager.
2008 * @param pointer to changing voltage
2009 * @param pointer to leakage table
2010 */
smu7_patch_ppt_v0_with_vdd_leakage(struct pp_hwmgr * hwmgr,uint32_t * voltage,struct smu7_leakage_voltage * leakage_table)2011 static void smu7_patch_ppt_v0_with_vdd_leakage(struct pp_hwmgr *hwmgr,
2012 uint32_t *voltage, struct smu7_leakage_voltage *leakage_table)
2013 {
2014 uint32_t index;
2015
2016 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
2017 for (index = 0; index < leakage_table->count; index++) {
2018 /* if this voltage matches a leakage voltage ID */
2019 /* patch with actual leakage voltage */
2020 if (leakage_table->leakage_id[index] == *voltage) {
2021 *voltage = leakage_table->actual_voltage[index];
2022 break;
2023 }
2024 }
2025
2026 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
2027 printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n");
2028 }
2029
2030
smu7_patch_vddc(struct pp_hwmgr * hwmgr,struct phm_clock_voltage_dependency_table * tab)2031 static int smu7_patch_vddc(struct pp_hwmgr *hwmgr,
2032 struct phm_clock_voltage_dependency_table *tab)
2033 {
2034 uint16_t i;
2035 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2036
2037 if (tab)
2038 for (i = 0; i < tab->count; i++)
2039 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2040 &data->vddc_leakage);
2041
2042 return 0;
2043 }
2044
smu7_patch_vddci(struct pp_hwmgr * hwmgr,struct phm_clock_voltage_dependency_table * tab)2045 static int smu7_patch_vddci(struct pp_hwmgr *hwmgr,
2046 struct phm_clock_voltage_dependency_table *tab)
2047 {
2048 uint16_t i;
2049 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2050
2051 if (tab)
2052 for (i = 0; i < tab->count; i++)
2053 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2054 &data->vddci_leakage);
2055
2056 return 0;
2057 }
2058
smu7_patch_vce_vddc(struct pp_hwmgr * hwmgr,struct phm_vce_clock_voltage_dependency_table * tab)2059 static int smu7_patch_vce_vddc(struct pp_hwmgr *hwmgr,
2060 struct phm_vce_clock_voltage_dependency_table *tab)
2061 {
2062 uint16_t i;
2063 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2064
2065 if (tab)
2066 for (i = 0; i < tab->count; i++)
2067 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2068 &data->vddc_leakage);
2069
2070 return 0;
2071 }
2072
2073
smu7_patch_uvd_vddc(struct pp_hwmgr * hwmgr,struct phm_uvd_clock_voltage_dependency_table * tab)2074 static int smu7_patch_uvd_vddc(struct pp_hwmgr *hwmgr,
2075 struct phm_uvd_clock_voltage_dependency_table *tab)
2076 {
2077 uint16_t i;
2078 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2079
2080 if (tab)
2081 for (i = 0; i < tab->count; i++)
2082 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2083 &data->vddc_leakage);
2084
2085 return 0;
2086 }
2087
smu7_patch_vddc_shed_limit(struct pp_hwmgr * hwmgr,struct phm_phase_shedding_limits_table * tab)2088 static int smu7_patch_vddc_shed_limit(struct pp_hwmgr *hwmgr,
2089 struct phm_phase_shedding_limits_table *tab)
2090 {
2091 uint16_t i;
2092 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2093
2094 if (tab)
2095 for (i = 0; i < tab->count; i++)
2096 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].Voltage,
2097 &data->vddc_leakage);
2098
2099 return 0;
2100 }
2101
smu7_patch_samu_vddc(struct pp_hwmgr * hwmgr,struct phm_samu_clock_voltage_dependency_table * tab)2102 static int smu7_patch_samu_vddc(struct pp_hwmgr *hwmgr,
2103 struct phm_samu_clock_voltage_dependency_table *tab)
2104 {
2105 uint16_t i;
2106 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2107
2108 if (tab)
2109 for (i = 0; i < tab->count; i++)
2110 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2111 &data->vddc_leakage);
2112
2113 return 0;
2114 }
2115
smu7_patch_acp_vddc(struct pp_hwmgr * hwmgr,struct phm_acp_clock_voltage_dependency_table * tab)2116 static int smu7_patch_acp_vddc(struct pp_hwmgr *hwmgr,
2117 struct phm_acp_clock_voltage_dependency_table *tab)
2118 {
2119 uint16_t i;
2120 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2121
2122 if (tab)
2123 for (i = 0; i < tab->count; i++)
2124 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2125 &data->vddc_leakage);
2126
2127 return 0;
2128 }
2129
smu7_patch_limits_vddc(struct pp_hwmgr * hwmgr,struct phm_clock_and_voltage_limits * tab)2130 static int smu7_patch_limits_vddc(struct pp_hwmgr *hwmgr,
2131 struct phm_clock_and_voltage_limits *tab)
2132 {
2133 uint32_t vddc, vddci;
2134 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2135
2136 if (tab) {
2137 vddc = tab->vddc;
2138 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc,
2139 &data->vddc_leakage);
2140 tab->vddc = vddc;
2141 vddci = tab->vddci;
2142 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddci,
2143 &data->vddci_leakage);
2144 tab->vddci = vddci;
2145 }
2146
2147 return 0;
2148 }
2149
smu7_patch_cac_vddc(struct pp_hwmgr * hwmgr,struct phm_cac_leakage_table * tab)2150 static int smu7_patch_cac_vddc(struct pp_hwmgr *hwmgr, struct phm_cac_leakage_table *tab)
2151 {
2152 uint32_t i;
2153 uint32_t vddc;
2154 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2155
2156 if (tab) {
2157 for (i = 0; i < tab->count; i++) {
2158 vddc = (uint32_t)(tab->entries[i].Vddc);
2159 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, &data->vddc_leakage);
2160 tab->entries[i].Vddc = (uint16_t)vddc;
2161 }
2162 }
2163
2164 return 0;
2165 }
2166
smu7_patch_dependency_tables_with_leakage(struct pp_hwmgr * hwmgr)2167 static int smu7_patch_dependency_tables_with_leakage(struct pp_hwmgr *hwmgr)
2168 {
2169 int tmp;
2170
2171 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_sclk);
2172 if (tmp)
2173 return -EINVAL;
2174
2175 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk);
2176 if (tmp)
2177 return -EINVAL;
2178
2179 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
2180 if (tmp)
2181 return -EINVAL;
2182
2183 tmp = smu7_patch_vddci(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk);
2184 if (tmp)
2185 return -EINVAL;
2186
2187 tmp = smu7_patch_vce_vddc(hwmgr, hwmgr->dyn_state.vce_clock_voltage_dependency_table);
2188 if (tmp)
2189 return -EINVAL;
2190
2191 tmp = smu7_patch_uvd_vddc(hwmgr, hwmgr->dyn_state.uvd_clock_voltage_dependency_table);
2192 if (tmp)
2193 return -EINVAL;
2194
2195 tmp = smu7_patch_samu_vddc(hwmgr, hwmgr->dyn_state.samu_clock_voltage_dependency_table);
2196 if (tmp)
2197 return -EINVAL;
2198
2199 tmp = smu7_patch_acp_vddc(hwmgr, hwmgr->dyn_state.acp_clock_voltage_dependency_table);
2200 if (tmp)
2201 return -EINVAL;
2202
2203 tmp = smu7_patch_vddc_shed_limit(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table);
2204 if (tmp)
2205 return -EINVAL;
2206
2207 tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac);
2208 if (tmp)
2209 return -EINVAL;
2210
2211 tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_dc);
2212 if (tmp)
2213 return -EINVAL;
2214
2215 tmp = smu7_patch_cac_vddc(hwmgr, hwmgr->dyn_state.cac_leakage_table);
2216 if (tmp)
2217 return -EINVAL;
2218
2219 return 0;
2220 }
2221
2222
smu7_set_private_data_based_on_pptable_v0(struct pp_hwmgr * hwmgr)2223 static int smu7_set_private_data_based_on_pptable_v0(struct pp_hwmgr *hwmgr)
2224 {
2225 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2226
2227 struct phm_clock_voltage_dependency_table *allowed_sclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
2228 struct phm_clock_voltage_dependency_table *allowed_mclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
2229 struct phm_clock_voltage_dependency_table *allowed_mclk_vddci_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
2230
2231 PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table != NULL,
2232 "VDDC dependency on SCLK table is missing. This table is mandatory\n", return -EINVAL);
2233 PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table->count >= 1,
2234 "VDDC dependency on SCLK table has to have is missing. This table is mandatory\n", return -EINVAL);
2235
2236 PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table != NULL,
2237 "VDDC dependency on MCLK table is missing. This table is mandatory\n", return -EINVAL);
2238 PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table->count >= 1,
2239 "VDD dependency on MCLK table has to have is missing. This table is mandatory\n", return -EINVAL);
2240
2241 data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[0].v;
2242 data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
2243
2244 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
2245 allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk;
2246 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
2247 allowed_mclk_vddc_table->entries[allowed_mclk_vddc_table->count - 1].clk;
2248 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
2249 allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
2250
2251 if (allowed_mclk_vddci_table != NULL && allowed_mclk_vddci_table->count >= 1) {
2252 data->min_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[0].v;
2253 data->max_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v;
2254 }
2255
2256 if (hwmgr->dyn_state.vddci_dependency_on_mclk != NULL && hwmgr->dyn_state.vddci_dependency_on_mclk->count > 1)
2257 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = hwmgr->dyn_state.vddci_dependency_on_mclk->entries[hwmgr->dyn_state.vddci_dependency_on_mclk->count - 1].v;
2258
2259 return 0;
2260 }
2261
smu7_hwmgr_backend_init(struct pp_hwmgr * hwmgr)2262 int smu7_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
2263 {
2264 struct smu7_hwmgr *data;
2265 int result;
2266
2267 data = kzalloc(sizeof(struct smu7_hwmgr), GFP_KERNEL);
2268 if (data == NULL)
2269 return -ENOMEM;
2270
2271 hwmgr->backend = data;
2272
2273 smu7_patch_voltage_workaround(hwmgr);
2274 smu7_init_dpm_defaults(hwmgr);
2275
2276 /* Get leakage voltage based on leakage ID. */
2277 result = smu7_get_evv_voltages(hwmgr);
2278
2279 if (result) {
2280 printk("Get EVV Voltage Failed. Abort Driver loading!\n");
2281 return -EINVAL;
2282 }
2283
2284 if (hwmgr->pp_table_version == PP_TABLE_V1) {
2285 smu7_complete_dependency_tables(hwmgr);
2286 smu7_set_private_data_based_on_pptable_v1(hwmgr);
2287 } else if (hwmgr->pp_table_version == PP_TABLE_V0) {
2288 smu7_patch_dependency_tables_with_leakage(hwmgr);
2289 smu7_set_private_data_based_on_pptable_v0(hwmgr);
2290 }
2291
2292 /* Initalize Dynamic State Adjustment Rule Settings */
2293 result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
2294
2295 if (0 == result) {
2296 struct cgs_system_info sys_info = {0};
2297
2298 data->is_tlu_enabled = false;
2299
2300 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
2301 SMU7_MAX_HARDWARE_POWERLEVELS;
2302 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
2303 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
2304
2305 sys_info.size = sizeof(struct cgs_system_info);
2306 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
2307 result = cgs_query_system_info(hwmgr->device, &sys_info);
2308 if (result)
2309 data->pcie_gen_cap = AMDGPU_DEFAULT_PCIE_GEN_MASK;
2310 else
2311 data->pcie_gen_cap = (uint32_t)sys_info.value;
2312 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
2313 data->pcie_spc_cap = 20;
2314 sys_info.size = sizeof(struct cgs_system_info);
2315 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
2316 result = cgs_query_system_info(hwmgr->device, &sys_info);
2317 if (result)
2318 data->pcie_lane_cap = AMDGPU_DEFAULT_PCIE_MLW_MASK;
2319 else
2320 data->pcie_lane_cap = (uint32_t)sys_info.value;
2321
2322 hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
2323 /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
2324 hwmgr->platform_descriptor.clockStep.engineClock = 500;
2325 hwmgr->platform_descriptor.clockStep.memoryClock = 500;
2326 smu7_thermal_parameter_init(hwmgr);
2327 } else {
2328 /* Ignore return value in here, we are cleaning up a mess. */
2329 phm_hwmgr_backend_fini(hwmgr);
2330 }
2331
2332 return 0;
2333 }
2334
smu7_force_dpm_highest(struct pp_hwmgr * hwmgr)2335 static int smu7_force_dpm_highest(struct pp_hwmgr *hwmgr)
2336 {
2337 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2338 uint32_t level, tmp;
2339
2340 if (!data->pcie_dpm_key_disabled) {
2341 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
2342 level = 0;
2343 tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
2344 while (tmp >>= 1)
2345 level++;
2346
2347 if (level)
2348 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2349 PPSMC_MSG_PCIeDPM_ForceLevel, level);
2350 }
2351 }
2352
2353 if (!data->sclk_dpm_key_disabled) {
2354 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
2355 level = 0;
2356 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
2357 while (tmp >>= 1)
2358 level++;
2359
2360 if (level)
2361 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2362 PPSMC_MSG_SCLKDPM_SetEnabledMask,
2363 (1 << level));
2364 }
2365 }
2366
2367 if (!data->mclk_dpm_key_disabled) {
2368 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
2369 level = 0;
2370 tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
2371 while (tmp >>= 1)
2372 level++;
2373
2374 if (level)
2375 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2376 PPSMC_MSG_MCLKDPM_SetEnabledMask,
2377 (1 << level));
2378 }
2379 }
2380
2381 return 0;
2382 }
2383
smu7_upload_dpm_level_enable_mask(struct pp_hwmgr * hwmgr)2384 static int smu7_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
2385 {
2386 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2387
2388 if (hwmgr->pp_table_version == PP_TABLE_V1)
2389 phm_apply_dal_min_voltage_request(hwmgr);
2390 /* TO DO for v0 iceland and Ci*/
2391
2392 if (!data->sclk_dpm_key_disabled) {
2393 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
2394 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2395 PPSMC_MSG_SCLKDPM_SetEnabledMask,
2396 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
2397 }
2398
2399 if (!data->mclk_dpm_key_disabled) {
2400 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask)
2401 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2402 PPSMC_MSG_MCLKDPM_SetEnabledMask,
2403 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
2404 }
2405
2406 return 0;
2407 }
2408
smu7_unforce_dpm_levels(struct pp_hwmgr * hwmgr)2409 static int smu7_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
2410 {
2411 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2412
2413 if (!smum_is_dpm_running(hwmgr))
2414 return -EINVAL;
2415
2416 if (!data->pcie_dpm_key_disabled) {
2417 smum_send_msg_to_smc(hwmgr->smumgr,
2418 PPSMC_MSG_PCIeDPM_UnForceLevel);
2419 }
2420
2421 return smu7_upload_dpm_level_enable_mask(hwmgr);
2422 }
2423
smu7_force_dpm_lowest(struct pp_hwmgr * hwmgr)2424 static int smu7_force_dpm_lowest(struct pp_hwmgr *hwmgr)
2425 {
2426 struct smu7_hwmgr *data =
2427 (struct smu7_hwmgr *)(hwmgr->backend);
2428 uint32_t level;
2429
2430 if (!data->sclk_dpm_key_disabled)
2431 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
2432 level = phm_get_lowest_enabled_level(hwmgr,
2433 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
2434 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2435 PPSMC_MSG_SCLKDPM_SetEnabledMask,
2436 (1 << level));
2437
2438 }
2439
2440 if (!data->mclk_dpm_key_disabled) {
2441 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
2442 level = phm_get_lowest_enabled_level(hwmgr,
2443 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
2444 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2445 PPSMC_MSG_MCLKDPM_SetEnabledMask,
2446 (1 << level));
2447 }
2448 }
2449
2450 if (!data->pcie_dpm_key_disabled) {
2451 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
2452 level = phm_get_lowest_enabled_level(hwmgr,
2453 data->dpm_level_enable_mask.pcie_dpm_enable_mask);
2454 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2455 PPSMC_MSG_PCIeDPM_ForceLevel,
2456 (level));
2457 }
2458 }
2459
2460 return 0;
2461
2462 }
smu7_force_dpm_level(struct pp_hwmgr * hwmgr,enum amd_dpm_forced_level level)2463 static int smu7_force_dpm_level(struct pp_hwmgr *hwmgr,
2464 enum amd_dpm_forced_level level)
2465 {
2466 int ret = 0;
2467
2468 switch (level) {
2469 case AMD_DPM_FORCED_LEVEL_HIGH:
2470 ret = smu7_force_dpm_highest(hwmgr);
2471 if (ret)
2472 return ret;
2473 break;
2474 case AMD_DPM_FORCED_LEVEL_LOW:
2475 ret = smu7_force_dpm_lowest(hwmgr);
2476 if (ret)
2477 return ret;
2478 break;
2479 case AMD_DPM_FORCED_LEVEL_AUTO:
2480 ret = smu7_unforce_dpm_levels(hwmgr);
2481 if (ret)
2482 return ret;
2483 break;
2484 default:
2485 break;
2486 }
2487
2488 hwmgr->dpm_level = level;
2489
2490 return ret;
2491 }
2492
smu7_get_power_state_size(struct pp_hwmgr * hwmgr)2493 static int smu7_get_power_state_size(struct pp_hwmgr *hwmgr)
2494 {
2495 return sizeof(struct smu7_power_state);
2496 }
2497
2498
smu7_apply_state_adjust_rules(struct pp_hwmgr * hwmgr,struct pp_power_state * request_ps,const struct pp_power_state * current_ps)2499 static int smu7_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
2500 struct pp_power_state *request_ps,
2501 const struct pp_power_state *current_ps)
2502 {
2503
2504 struct smu7_power_state *smu7_ps =
2505 cast_phw_smu7_power_state(&request_ps->hardware);
2506 uint32_t sclk;
2507 uint32_t mclk;
2508 struct PP_Clocks minimum_clocks = {0};
2509 bool disable_mclk_switching;
2510 bool disable_mclk_switching_for_frame_lock;
2511 struct cgs_display_info info = {0};
2512 const struct phm_clock_and_voltage_limits *max_limits;
2513 uint32_t i;
2514 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2515 struct phm_ppt_v1_information *table_info =
2516 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2517 int32_t count;
2518 int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
2519
2520 data->battery_state = (PP_StateUILabel_Battery ==
2521 request_ps->classification.ui_label);
2522
2523 PP_ASSERT_WITH_CODE(smu7_ps->performance_level_count == 2,
2524 "VI should always have 2 performance levels",
2525 );
2526
2527 max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
2528 &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
2529 &(hwmgr->dyn_state.max_clock_voltage_on_dc);
2530
2531 /* Cap clock DPM tables at DC MAX if it is in DC. */
2532 if (PP_PowerSource_DC == hwmgr->power_source) {
2533 for (i = 0; i < smu7_ps->performance_level_count; i++) {
2534 if (smu7_ps->performance_levels[i].memory_clock > max_limits->mclk)
2535 smu7_ps->performance_levels[i].memory_clock = max_limits->mclk;
2536 if (smu7_ps->performance_levels[i].engine_clock > max_limits->sclk)
2537 smu7_ps->performance_levels[i].engine_clock = max_limits->sclk;
2538 }
2539 }
2540
2541 smu7_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk;
2542 smu7_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk;
2543
2544 cgs_get_active_displays_info(hwmgr->device, &info);
2545
2546 /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
2547
2548 minimum_clocks.engineClock = hwmgr->display_config.min_core_set_clock;
2549 minimum_clocks.memoryClock = hwmgr->display_config.min_mem_set_clock;
2550
2551 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2552 PHM_PlatformCaps_StablePState)) {
2553 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
2554 stable_pstate_sclk = (max_limits->sclk * 75) / 100;
2555
2556 for (count = table_info->vdd_dep_on_sclk->count - 1;
2557 count >= 0; count--) {
2558 if (stable_pstate_sclk >=
2559 table_info->vdd_dep_on_sclk->entries[count].clk) {
2560 stable_pstate_sclk =
2561 table_info->vdd_dep_on_sclk->entries[count].clk;
2562 break;
2563 }
2564 }
2565
2566 if (count < 0)
2567 stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
2568
2569 stable_pstate_mclk = max_limits->mclk;
2570
2571 minimum_clocks.engineClock = stable_pstate_sclk;
2572 minimum_clocks.memoryClock = stable_pstate_mclk;
2573 }
2574
2575 if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
2576 minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
2577
2578 if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
2579 minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
2580
2581 smu7_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
2582
2583 if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
2584 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <=
2585 hwmgr->platform_descriptor.overdriveLimit.engineClock),
2586 "Overdrive sclk exceeds limit",
2587 hwmgr->gfx_arbiter.sclk_over_drive =
2588 hwmgr->platform_descriptor.overdriveLimit.engineClock);
2589
2590 if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
2591 smu7_ps->performance_levels[1].engine_clock =
2592 hwmgr->gfx_arbiter.sclk_over_drive;
2593 }
2594
2595 if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
2596 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <=
2597 hwmgr->platform_descriptor.overdriveLimit.memoryClock),
2598 "Overdrive mclk exceeds limit",
2599 hwmgr->gfx_arbiter.mclk_over_drive =
2600 hwmgr->platform_descriptor.overdriveLimit.memoryClock);
2601
2602 if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
2603 smu7_ps->performance_levels[1].memory_clock =
2604 hwmgr->gfx_arbiter.mclk_over_drive;
2605 }
2606
2607 disable_mclk_switching_for_frame_lock = phm_cap_enabled(
2608 hwmgr->platform_descriptor.platformCaps,
2609 PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
2610
2611
2612 disable_mclk_switching = (1 < info.display_count) ||
2613 disable_mclk_switching_for_frame_lock;
2614
2615 sclk = smu7_ps->performance_levels[0].engine_clock;
2616 mclk = smu7_ps->performance_levels[0].memory_clock;
2617
2618 if (disable_mclk_switching)
2619 mclk = smu7_ps->performance_levels
2620 [smu7_ps->performance_level_count - 1].memory_clock;
2621
2622 if (sclk < minimum_clocks.engineClock)
2623 sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
2624 max_limits->sclk : minimum_clocks.engineClock;
2625
2626 if (mclk < minimum_clocks.memoryClock)
2627 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
2628 max_limits->mclk : minimum_clocks.memoryClock;
2629
2630 smu7_ps->performance_levels[0].engine_clock = sclk;
2631 smu7_ps->performance_levels[0].memory_clock = mclk;
2632
2633 smu7_ps->performance_levels[1].engine_clock =
2634 (smu7_ps->performance_levels[1].engine_clock >=
2635 smu7_ps->performance_levels[0].engine_clock) ?
2636 smu7_ps->performance_levels[1].engine_clock :
2637 smu7_ps->performance_levels[0].engine_clock;
2638
2639 if (disable_mclk_switching) {
2640 if (mclk < smu7_ps->performance_levels[1].memory_clock)
2641 mclk = smu7_ps->performance_levels[1].memory_clock;
2642
2643 smu7_ps->performance_levels[0].memory_clock = mclk;
2644 smu7_ps->performance_levels[1].memory_clock = mclk;
2645 } else {
2646 if (smu7_ps->performance_levels[1].memory_clock <
2647 smu7_ps->performance_levels[0].memory_clock)
2648 smu7_ps->performance_levels[1].memory_clock =
2649 smu7_ps->performance_levels[0].memory_clock;
2650 }
2651
2652 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2653 PHM_PlatformCaps_StablePState)) {
2654 for (i = 0; i < smu7_ps->performance_level_count; i++) {
2655 smu7_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
2656 smu7_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
2657 smu7_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
2658 smu7_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
2659 }
2660 }
2661 return 0;
2662 }
2663
2664
smu7_dpm_get_mclk(struct pp_hwmgr * hwmgr,bool low)2665 static int smu7_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
2666 {
2667 struct pp_power_state *ps;
2668 struct smu7_power_state *smu7_ps;
2669
2670 if (hwmgr == NULL)
2671 return -EINVAL;
2672
2673 ps = hwmgr->request_ps;
2674
2675 if (ps == NULL)
2676 return -EINVAL;
2677
2678 smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
2679
2680 if (low)
2681 return smu7_ps->performance_levels[0].memory_clock;
2682 else
2683 return smu7_ps->performance_levels
2684 [smu7_ps->performance_level_count-1].memory_clock;
2685 }
2686
smu7_dpm_get_sclk(struct pp_hwmgr * hwmgr,bool low)2687 static int smu7_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
2688 {
2689 struct pp_power_state *ps;
2690 struct smu7_power_state *smu7_ps;
2691
2692 if (hwmgr == NULL)
2693 return -EINVAL;
2694
2695 ps = hwmgr->request_ps;
2696
2697 if (ps == NULL)
2698 return -EINVAL;
2699
2700 smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
2701
2702 if (low)
2703 return smu7_ps->performance_levels[0].engine_clock;
2704 else
2705 return smu7_ps->performance_levels
2706 [smu7_ps->performance_level_count-1].engine_clock;
2707 }
2708
smu7_dpm_patch_boot_state(struct pp_hwmgr * hwmgr,struct pp_hw_power_state * hw_ps)2709 static int smu7_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
2710 struct pp_hw_power_state *hw_ps)
2711 {
2712 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2713 struct smu7_power_state *ps = (struct smu7_power_state *)hw_ps;
2714 ATOM_FIRMWARE_INFO_V2_2 *fw_info;
2715 uint16_t size;
2716 uint8_t frev, crev;
2717 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
2718
2719 /* First retrieve the Boot clocks and VDDC from the firmware info table.
2720 * We assume here that fw_info is unchanged if this call fails.
2721 */
2722 fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
2723 hwmgr->device, index,
2724 &size, &frev, &crev);
2725 if (!fw_info)
2726 /* During a test, there is no firmware info table. */
2727 return 0;
2728
2729 /* Patch the state. */
2730 data->vbios_boot_state.sclk_bootup_value =
2731 le32_to_cpu(fw_info->ulDefaultEngineClock);
2732 data->vbios_boot_state.mclk_bootup_value =
2733 le32_to_cpu(fw_info->ulDefaultMemoryClock);
2734 data->vbios_boot_state.mvdd_bootup_value =
2735 le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
2736 data->vbios_boot_state.vddc_bootup_value =
2737 le16_to_cpu(fw_info->usBootUpVDDCVoltage);
2738 data->vbios_boot_state.vddci_bootup_value =
2739 le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
2740 data->vbios_boot_state.pcie_gen_bootup_value =
2741 smu7_get_current_pcie_speed(hwmgr);
2742
2743 data->vbios_boot_state.pcie_lane_bootup_value =
2744 (uint16_t)smu7_get_current_pcie_lane_number(hwmgr);
2745
2746 /* set boot power state */
2747 ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
2748 ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
2749 ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
2750 ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
2751
2752 return 0;
2753 }
2754
smu7_get_number_of_powerplay_table_entries(struct pp_hwmgr * hwmgr)2755 static int smu7_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr)
2756 {
2757 int result;
2758 unsigned long ret = 0;
2759
2760 if (hwmgr->pp_table_version == PP_TABLE_V0) {
2761 result = pp_tables_get_num_of_entries(hwmgr, &ret);
2762 return result ? 0 : ret;
2763 } else if (hwmgr->pp_table_version == PP_TABLE_V1) {
2764 result = get_number_of_powerplay_table_entries_v1_0(hwmgr);
2765 return result;
2766 }
2767 return 0;
2768 }
2769
smu7_get_pp_table_entry_callback_func_v1(struct pp_hwmgr * hwmgr,void * state,struct pp_power_state * power_state,void * pp_table,uint32_t classification_flag)2770 static int smu7_get_pp_table_entry_callback_func_v1(struct pp_hwmgr *hwmgr,
2771 void *state, struct pp_power_state *power_state,
2772 void *pp_table, uint32_t classification_flag)
2773 {
2774 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2775 struct smu7_power_state *smu7_power_state =
2776 (struct smu7_power_state *)(&(power_state->hardware));
2777 struct smu7_performance_level *performance_level;
2778 ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
2779 ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
2780 (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
2781 PPTable_Generic_SubTable_Header *sclk_dep_table =
2782 (PPTable_Generic_SubTable_Header *)
2783 (((unsigned long)powerplay_table) +
2784 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
2785
2786 ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
2787 (ATOM_Tonga_MCLK_Dependency_Table *)
2788 (((unsigned long)powerplay_table) +
2789 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
2790
2791 /* The following fields are not initialized here: id orderedList allStatesList */
2792 power_state->classification.ui_label =
2793 (le16_to_cpu(state_entry->usClassification) &
2794 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
2795 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
2796 power_state->classification.flags = classification_flag;
2797 /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
2798
2799 power_state->classification.temporary_state = false;
2800 power_state->classification.to_be_deleted = false;
2801
2802 power_state->validation.disallowOnDC =
2803 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
2804 ATOM_Tonga_DISALLOW_ON_DC));
2805
2806 power_state->pcie.lanes = 0;
2807
2808 power_state->display.disableFrameModulation = false;
2809 power_state->display.limitRefreshrate = false;
2810 power_state->display.enableVariBright =
2811 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
2812 ATOM_Tonga_ENABLE_VARIBRIGHT));
2813
2814 power_state->validation.supportedPowerLevels = 0;
2815 power_state->uvd_clocks.VCLK = 0;
2816 power_state->uvd_clocks.DCLK = 0;
2817 power_state->temperatures.min = 0;
2818 power_state->temperatures.max = 0;
2819
2820 performance_level = &(smu7_power_state->performance_levels
2821 [smu7_power_state->performance_level_count++]);
2822
2823 PP_ASSERT_WITH_CODE(
2824 (smu7_power_state->performance_level_count < smum_get_mac_definition(hwmgr->smumgr, SMU_MAX_LEVELS_GRAPHICS)),
2825 "Performance levels exceeds SMC limit!",
2826 return -EINVAL);
2827
2828 PP_ASSERT_WITH_CODE(
2829 (smu7_power_state->performance_level_count <=
2830 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
2831 "Performance levels exceeds Driver limit!",
2832 return -EINVAL);
2833
2834 /* Performance levels are arranged from low to high. */
2835 performance_level->memory_clock = mclk_dep_table->entries
2836 [state_entry->ucMemoryClockIndexLow].ulMclk;
2837 if (sclk_dep_table->ucRevId == 0)
2838 performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
2839 [state_entry->ucEngineClockIndexLow].ulSclk;
2840 else if (sclk_dep_table->ucRevId == 1)
2841 performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
2842 [state_entry->ucEngineClockIndexLow].ulSclk;
2843 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
2844 state_entry->ucPCIEGenLow);
2845 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
2846 state_entry->ucPCIELaneHigh);
2847
2848 performance_level = &(smu7_power_state->performance_levels
2849 [smu7_power_state->performance_level_count++]);
2850 performance_level->memory_clock = mclk_dep_table->entries
2851 [state_entry->ucMemoryClockIndexHigh].ulMclk;
2852
2853 if (sclk_dep_table->ucRevId == 0)
2854 performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
2855 [state_entry->ucEngineClockIndexHigh].ulSclk;
2856 else if (sclk_dep_table->ucRevId == 1)
2857 performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
2858 [state_entry->ucEngineClockIndexHigh].ulSclk;
2859
2860 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
2861 state_entry->ucPCIEGenHigh);
2862 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
2863 state_entry->ucPCIELaneHigh);
2864
2865 return 0;
2866 }
2867
smu7_get_pp_table_entry_v1(struct pp_hwmgr * hwmgr,unsigned long entry_index,struct pp_power_state * state)2868 static int smu7_get_pp_table_entry_v1(struct pp_hwmgr *hwmgr,
2869 unsigned long entry_index, struct pp_power_state *state)
2870 {
2871 int result;
2872 struct smu7_power_state *ps;
2873 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2874 struct phm_ppt_v1_information *table_info =
2875 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2876 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
2877 table_info->vdd_dep_on_mclk;
2878
2879 state->hardware.magic = PHM_VIslands_Magic;
2880
2881 ps = (struct smu7_power_state *)(&state->hardware);
2882
2883 result = get_powerplay_table_entry_v1_0(hwmgr, entry_index, state,
2884 smu7_get_pp_table_entry_callback_func_v1);
2885
2886 /* This is the earliest time we have all the dependency table and the VBIOS boot state
2887 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
2888 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
2889 */
2890 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
2891 if (dep_mclk_table->entries[0].clk !=
2892 data->vbios_boot_state.mclk_bootup_value)
2893 printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
2894 "does not match VBIOS boot MCLK level");
2895 if (dep_mclk_table->entries[0].vddci !=
2896 data->vbios_boot_state.vddci_bootup_value)
2897 printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
2898 "does not match VBIOS boot VDDCI level");
2899 }
2900
2901 /* set DC compatible flag if this state supports DC */
2902 if (!state->validation.disallowOnDC)
2903 ps->dc_compatible = true;
2904
2905 if (state->classification.flags & PP_StateClassificationFlag_ACPI)
2906 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
2907
2908 ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
2909 ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
2910
2911 if (!result) {
2912 uint32_t i;
2913
2914 switch (state->classification.ui_label) {
2915 case PP_StateUILabel_Performance:
2916 data->use_pcie_performance_levels = true;
2917 for (i = 0; i < ps->performance_level_count; i++) {
2918 if (data->pcie_gen_performance.max <
2919 ps->performance_levels[i].pcie_gen)
2920 data->pcie_gen_performance.max =
2921 ps->performance_levels[i].pcie_gen;
2922
2923 if (data->pcie_gen_performance.min >
2924 ps->performance_levels[i].pcie_gen)
2925 data->pcie_gen_performance.min =
2926 ps->performance_levels[i].pcie_gen;
2927
2928 if (data->pcie_lane_performance.max <
2929 ps->performance_levels[i].pcie_lane)
2930 data->pcie_lane_performance.max =
2931 ps->performance_levels[i].pcie_lane;
2932 if (data->pcie_lane_performance.min >
2933 ps->performance_levels[i].pcie_lane)
2934 data->pcie_lane_performance.min =
2935 ps->performance_levels[i].pcie_lane;
2936 }
2937 break;
2938 case PP_StateUILabel_Battery:
2939 data->use_pcie_power_saving_levels = true;
2940
2941 for (i = 0; i < ps->performance_level_count; i++) {
2942 if (data->pcie_gen_power_saving.max <
2943 ps->performance_levels[i].pcie_gen)
2944 data->pcie_gen_power_saving.max =
2945 ps->performance_levels[i].pcie_gen;
2946
2947 if (data->pcie_gen_power_saving.min >
2948 ps->performance_levels[i].pcie_gen)
2949 data->pcie_gen_power_saving.min =
2950 ps->performance_levels[i].pcie_gen;
2951
2952 if (data->pcie_lane_power_saving.max <
2953 ps->performance_levels[i].pcie_lane)
2954 data->pcie_lane_power_saving.max =
2955 ps->performance_levels[i].pcie_lane;
2956
2957 if (data->pcie_lane_power_saving.min >
2958 ps->performance_levels[i].pcie_lane)
2959 data->pcie_lane_power_saving.min =
2960 ps->performance_levels[i].pcie_lane;
2961 }
2962 break;
2963 default:
2964 break;
2965 }
2966 }
2967 return 0;
2968 }
2969
smu7_get_pp_table_entry_callback_func_v0(struct pp_hwmgr * hwmgr,struct pp_hw_power_state * power_state,unsigned int index,const void * clock_info)2970 static int smu7_get_pp_table_entry_callback_func_v0(struct pp_hwmgr *hwmgr,
2971 struct pp_hw_power_state *power_state,
2972 unsigned int index, const void *clock_info)
2973 {
2974 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2975 struct smu7_power_state *ps = cast_phw_smu7_power_state(power_state);
2976 const ATOM_PPLIB_CI_CLOCK_INFO *visland_clk_info = clock_info;
2977 struct smu7_performance_level *performance_level;
2978 uint32_t engine_clock, memory_clock;
2979 uint16_t pcie_gen_from_bios;
2980
2981 engine_clock = visland_clk_info->ucEngineClockHigh << 16 | visland_clk_info->usEngineClockLow;
2982 memory_clock = visland_clk_info->ucMemoryClockHigh << 16 | visland_clk_info->usMemoryClockLow;
2983
2984 if (!(data->mc_micro_code_feature & DISABLE_MC_LOADMICROCODE) && memory_clock > data->highest_mclk)
2985 data->highest_mclk = memory_clock;
2986
2987 PP_ASSERT_WITH_CODE(
2988 (ps->performance_level_count < smum_get_mac_definition(hwmgr->smumgr, SMU_MAX_LEVELS_GRAPHICS)),
2989 "Performance levels exceeds SMC limit!",
2990 return -EINVAL);
2991
2992 PP_ASSERT_WITH_CODE(
2993 (ps->performance_level_count <
2994 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
2995 "Performance levels exceeds Driver limit, Skip!",
2996 return 0);
2997
2998 performance_level = &(ps->performance_levels
2999 [ps->performance_level_count++]);
3000
3001 /* Performance levels are arranged from low to high. */
3002 performance_level->memory_clock = memory_clock;
3003 performance_level->engine_clock = engine_clock;
3004
3005 pcie_gen_from_bios = visland_clk_info->ucPCIEGen;
3006
3007 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, pcie_gen_from_bios);
3008 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, visland_clk_info->usPCIELane);
3009
3010 return 0;
3011 }
3012
smu7_get_pp_table_entry_v0(struct pp_hwmgr * hwmgr,unsigned long entry_index,struct pp_power_state * state)3013 static int smu7_get_pp_table_entry_v0(struct pp_hwmgr *hwmgr,
3014 unsigned long entry_index, struct pp_power_state *state)
3015 {
3016 int result;
3017 struct smu7_power_state *ps;
3018 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3019 struct phm_clock_voltage_dependency_table *dep_mclk_table =
3020 hwmgr->dyn_state.vddci_dependency_on_mclk;
3021
3022 memset(&state->hardware, 0x00, sizeof(struct pp_hw_power_state));
3023
3024 state->hardware.magic = PHM_VIslands_Magic;
3025
3026 ps = (struct smu7_power_state *)(&state->hardware);
3027
3028 result = pp_tables_get_entry(hwmgr, entry_index, state,
3029 smu7_get_pp_table_entry_callback_func_v0);
3030
3031 /*
3032 * This is the earliest time we have all the dependency table
3033 * and the VBIOS boot state as
3034 * PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot
3035 * state if there is only one VDDCI/MCLK level, check if it's
3036 * the same as VBIOS boot state
3037 */
3038 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3039 if (dep_mclk_table->entries[0].clk !=
3040 data->vbios_boot_state.mclk_bootup_value)
3041 printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
3042 "does not match VBIOS boot MCLK level");
3043 if (dep_mclk_table->entries[0].v !=
3044 data->vbios_boot_state.vddci_bootup_value)
3045 printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
3046 "does not match VBIOS boot VDDCI level");
3047 }
3048
3049 /* set DC compatible flag if this state supports DC */
3050 if (!state->validation.disallowOnDC)
3051 ps->dc_compatible = true;
3052
3053 if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3054 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3055
3056 ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3057 ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3058
3059 if (!result) {
3060 uint32_t i;
3061
3062 switch (state->classification.ui_label) {
3063 case PP_StateUILabel_Performance:
3064 data->use_pcie_performance_levels = true;
3065
3066 for (i = 0; i < ps->performance_level_count; i++) {
3067 if (data->pcie_gen_performance.max <
3068 ps->performance_levels[i].pcie_gen)
3069 data->pcie_gen_performance.max =
3070 ps->performance_levels[i].pcie_gen;
3071
3072 if (data->pcie_gen_performance.min >
3073 ps->performance_levels[i].pcie_gen)
3074 data->pcie_gen_performance.min =
3075 ps->performance_levels[i].pcie_gen;
3076
3077 if (data->pcie_lane_performance.max <
3078 ps->performance_levels[i].pcie_lane)
3079 data->pcie_lane_performance.max =
3080 ps->performance_levels[i].pcie_lane;
3081
3082 if (data->pcie_lane_performance.min >
3083 ps->performance_levels[i].pcie_lane)
3084 data->pcie_lane_performance.min =
3085 ps->performance_levels[i].pcie_lane;
3086 }
3087 break;
3088 case PP_StateUILabel_Battery:
3089 data->use_pcie_power_saving_levels = true;
3090
3091 for (i = 0; i < ps->performance_level_count; i++) {
3092 if (data->pcie_gen_power_saving.max <
3093 ps->performance_levels[i].pcie_gen)
3094 data->pcie_gen_power_saving.max =
3095 ps->performance_levels[i].pcie_gen;
3096
3097 if (data->pcie_gen_power_saving.min >
3098 ps->performance_levels[i].pcie_gen)
3099 data->pcie_gen_power_saving.min =
3100 ps->performance_levels[i].pcie_gen;
3101
3102 if (data->pcie_lane_power_saving.max <
3103 ps->performance_levels[i].pcie_lane)
3104 data->pcie_lane_power_saving.max =
3105 ps->performance_levels[i].pcie_lane;
3106
3107 if (data->pcie_lane_power_saving.min >
3108 ps->performance_levels[i].pcie_lane)
3109 data->pcie_lane_power_saving.min =
3110 ps->performance_levels[i].pcie_lane;
3111 }
3112 break;
3113 default:
3114 break;
3115 }
3116 }
3117 return 0;
3118 }
3119
smu7_get_pp_table_entry(struct pp_hwmgr * hwmgr,unsigned long entry_index,struct pp_power_state * state)3120 static int smu7_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3121 unsigned long entry_index, struct pp_power_state *state)
3122 {
3123 if (hwmgr->pp_table_version == PP_TABLE_V0)
3124 return smu7_get_pp_table_entry_v0(hwmgr, entry_index, state);
3125 else if (hwmgr->pp_table_version == PP_TABLE_V1)
3126 return smu7_get_pp_table_entry_v1(hwmgr, entry_index, state);
3127
3128 return 0;
3129 }
3130
smu7_read_sensor(struct pp_hwmgr * hwmgr,int idx,int32_t * value)3131 static int smu7_read_sensor(struct pp_hwmgr *hwmgr, int idx, int32_t *value)
3132 {
3133 uint32_t sclk, mclk, activity_percent;
3134 uint32_t offset;
3135 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3136
3137 switch (idx) {
3138 case AMDGPU_PP_SENSOR_GFX_SCLK:
3139 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
3140 sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
3141 *value = sclk;
3142 return 0;
3143 case AMDGPU_PP_SENSOR_GFX_MCLK:
3144 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
3145 mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
3146 *value = mclk;
3147 return 0;
3148 case AMDGPU_PP_SENSOR_GPU_LOAD:
3149 offset = data->soft_regs_start + smum_get_offsetof(hwmgr->smumgr,
3150 SMU_SoftRegisters,
3151 AverageGraphicsActivity);
3152
3153 activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
3154 activity_percent += 0x80;
3155 activity_percent >>= 8;
3156 *value = activity_percent > 100 ? 100 : activity_percent;
3157 return 0;
3158 case AMDGPU_PP_SENSOR_GPU_TEMP:
3159 *value = smu7_thermal_get_temperature(hwmgr);
3160 return 0;
3161 case AMDGPU_PP_SENSOR_UVD_POWER:
3162 *value = data->uvd_power_gated ? 0 : 1;
3163 return 0;
3164 case AMDGPU_PP_SENSOR_VCE_POWER:
3165 *value = data->vce_power_gated ? 0 : 1;
3166 return 0;
3167 default:
3168 return -EINVAL;
3169 }
3170 }
3171
smu7_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr * hwmgr,const void * input)3172 static int smu7_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
3173 {
3174 const struct phm_set_power_state_input *states =
3175 (const struct phm_set_power_state_input *)input;
3176 const struct smu7_power_state *smu7_ps =
3177 cast_const_phw_smu7_power_state(states->pnew_state);
3178 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3179 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
3180 uint32_t sclk = smu7_ps->performance_levels
3181 [smu7_ps->performance_level_count - 1].engine_clock;
3182 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
3183 uint32_t mclk = smu7_ps->performance_levels
3184 [smu7_ps->performance_level_count - 1].memory_clock;
3185 struct PP_Clocks min_clocks = {0};
3186 uint32_t i;
3187 struct cgs_display_info info = {0};
3188
3189 data->need_update_smu7_dpm_table = 0;
3190
3191 for (i = 0; i < sclk_table->count; i++) {
3192 if (sclk == sclk_table->dpm_levels[i].value)
3193 break;
3194 }
3195
3196 if (i >= sclk_table->count)
3197 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
3198 else {
3199 /* TODO: Check SCLK in DAL's minimum clocks
3200 * in case DeepSleep divider update is required.
3201 */
3202 if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR &&
3203 (min_clocks.engineClockInSR >= SMU7_MINIMUM_ENGINE_CLOCK ||
3204 data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
3205 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
3206 }
3207
3208 for (i = 0; i < mclk_table->count; i++) {
3209 if (mclk == mclk_table->dpm_levels[i].value)
3210 break;
3211 }
3212
3213 if (i >= mclk_table->count)
3214 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
3215
3216 cgs_get_active_displays_info(hwmgr->device, &info);
3217
3218 if (data->display_timing.num_existing_displays != info.display_count)
3219 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
3220
3221 return 0;
3222 }
3223
smu7_get_maximum_link_speed(struct pp_hwmgr * hwmgr,const struct smu7_power_state * smu7_ps)3224 static uint16_t smu7_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
3225 const struct smu7_power_state *smu7_ps)
3226 {
3227 uint32_t i;
3228 uint32_t sclk, max_sclk = 0;
3229 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3230 struct smu7_dpm_table *dpm_table = &data->dpm_table;
3231
3232 for (i = 0; i < smu7_ps->performance_level_count; i++) {
3233 sclk = smu7_ps->performance_levels[i].engine_clock;
3234 if (max_sclk < sclk)
3235 max_sclk = sclk;
3236 }
3237
3238 for (i = 0; i < dpm_table->sclk_table.count; i++) {
3239 if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
3240 return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
3241 dpm_table->pcie_speed_table.dpm_levels
3242 [dpm_table->pcie_speed_table.count - 1].value :
3243 dpm_table->pcie_speed_table.dpm_levels[i].value);
3244 }
3245
3246 return 0;
3247 }
3248
smu7_request_link_speed_change_before_state_change(struct pp_hwmgr * hwmgr,const void * input)3249 static int smu7_request_link_speed_change_before_state_change(
3250 struct pp_hwmgr *hwmgr, const void *input)
3251 {
3252 const struct phm_set_power_state_input *states =
3253 (const struct phm_set_power_state_input *)input;
3254 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3255 const struct smu7_power_state *smu7_nps =
3256 cast_const_phw_smu7_power_state(states->pnew_state);
3257 const struct smu7_power_state *polaris10_cps =
3258 cast_const_phw_smu7_power_state(states->pcurrent_state);
3259
3260 uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_nps);
3261 uint16_t current_link_speed;
3262
3263 if (data->force_pcie_gen == PP_PCIEGenInvalid)
3264 current_link_speed = smu7_get_maximum_link_speed(hwmgr, polaris10_cps);
3265 else
3266 current_link_speed = data->force_pcie_gen;
3267
3268 data->force_pcie_gen = PP_PCIEGenInvalid;
3269 data->pspp_notify_required = false;
3270
3271 if (target_link_speed > current_link_speed) {
3272 switch (target_link_speed) {
3273 case PP_PCIEGen3:
3274 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
3275 break;
3276 data->force_pcie_gen = PP_PCIEGen2;
3277 if (current_link_speed == PP_PCIEGen2)
3278 break;
3279 case PP_PCIEGen2:
3280 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
3281 break;
3282 default:
3283 data->force_pcie_gen = smu7_get_current_pcie_speed(hwmgr);
3284 break;
3285 }
3286 } else {
3287 if (target_link_speed < current_link_speed)
3288 data->pspp_notify_required = true;
3289 }
3290
3291 return 0;
3292 }
3293
smu7_freeze_sclk_mclk_dpm(struct pp_hwmgr * hwmgr)3294 static int smu7_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3295 {
3296 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3297
3298 if (0 == data->need_update_smu7_dpm_table)
3299 return 0;
3300
3301 if ((0 == data->sclk_dpm_key_disabled) &&
3302 (data->need_update_smu7_dpm_table &
3303 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
3304 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
3305 "Trying to freeze SCLK DPM when DPM is disabled",
3306 );
3307 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
3308 PPSMC_MSG_SCLKDPM_FreezeLevel),
3309 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
3310 return -EINVAL);
3311 }
3312
3313 if ((0 == data->mclk_dpm_key_disabled) &&
3314 (data->need_update_smu7_dpm_table &
3315 DPMTABLE_OD_UPDATE_MCLK)) {
3316 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
3317 "Trying to freeze MCLK DPM when DPM is disabled",
3318 );
3319 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
3320 PPSMC_MSG_MCLKDPM_FreezeLevel),
3321 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
3322 return -EINVAL);
3323 }
3324
3325 return 0;
3326 }
3327
smu7_populate_and_upload_sclk_mclk_dpm_levels(struct pp_hwmgr * hwmgr,const void * input)3328 static int smu7_populate_and_upload_sclk_mclk_dpm_levels(
3329 struct pp_hwmgr *hwmgr, const void *input)
3330 {
3331 int result = 0;
3332 const struct phm_set_power_state_input *states =
3333 (const struct phm_set_power_state_input *)input;
3334 const struct smu7_power_state *smu7_ps =
3335 cast_const_phw_smu7_power_state(states->pnew_state);
3336 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3337 uint32_t sclk = smu7_ps->performance_levels
3338 [smu7_ps->performance_level_count - 1].engine_clock;
3339 uint32_t mclk = smu7_ps->performance_levels
3340 [smu7_ps->performance_level_count - 1].memory_clock;
3341 struct smu7_dpm_table *dpm_table = &data->dpm_table;
3342
3343 struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table;
3344 uint32_t dpm_count, clock_percent;
3345 uint32_t i;
3346
3347 if (0 == data->need_update_smu7_dpm_table)
3348 return 0;
3349
3350 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
3351 dpm_table->sclk_table.dpm_levels
3352 [dpm_table->sclk_table.count - 1].value = sclk;
3353
3354 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
3355 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
3356 /* Need to do calculation based on the golden DPM table
3357 * as the Heatmap GPU Clock axis is also based on the default values
3358 */
3359 PP_ASSERT_WITH_CODE(
3360 (golden_dpm_table->sclk_table.dpm_levels
3361 [golden_dpm_table->sclk_table.count - 1].value != 0),
3362 "Divide by 0!",
3363 return -EINVAL);
3364 dpm_count = dpm_table->sclk_table.count < 2 ? 0 : dpm_table->sclk_table.count - 2;
3365
3366 for (i = dpm_count; i > 1; i--) {
3367 if (sclk > golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value) {
3368 clock_percent =
3369 ((sclk
3370 - golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value
3371 ) * 100)
3372 / golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value;
3373
3374 dpm_table->sclk_table.dpm_levels[i].value =
3375 golden_dpm_table->sclk_table.dpm_levels[i].value +
3376 (golden_dpm_table->sclk_table.dpm_levels[i].value *
3377 clock_percent)/100;
3378
3379 } else if (golden_dpm_table->sclk_table.dpm_levels[dpm_table->sclk_table.count-1].value > sclk) {
3380 clock_percent =
3381 ((golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value
3382 - sclk) * 100)
3383 / golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value;
3384
3385 dpm_table->sclk_table.dpm_levels[i].value =
3386 golden_dpm_table->sclk_table.dpm_levels[i].value -
3387 (golden_dpm_table->sclk_table.dpm_levels[i].value *
3388 clock_percent) / 100;
3389 } else
3390 dpm_table->sclk_table.dpm_levels[i].value =
3391 golden_dpm_table->sclk_table.dpm_levels[i].value;
3392 }
3393 }
3394 }
3395
3396 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
3397 dpm_table->mclk_table.dpm_levels
3398 [dpm_table->mclk_table.count - 1].value = mclk;
3399
3400 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
3401 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
3402
3403 PP_ASSERT_WITH_CODE(
3404 (golden_dpm_table->mclk_table.dpm_levels
3405 [golden_dpm_table->mclk_table.count-1].value != 0),
3406 "Divide by 0!",
3407 return -EINVAL);
3408 dpm_count = dpm_table->mclk_table.count < 2 ? 0 : dpm_table->mclk_table.count - 2;
3409 for (i = dpm_count; i > 1; i--) {
3410 if (golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value < mclk) {
3411 clock_percent = ((mclk -
3412 golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value) * 100)
3413 / golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value;
3414
3415 dpm_table->mclk_table.dpm_levels[i].value =
3416 golden_dpm_table->mclk_table.dpm_levels[i].value +
3417 (golden_dpm_table->mclk_table.dpm_levels[i].value *
3418 clock_percent) / 100;
3419
3420 } else if (golden_dpm_table->mclk_table.dpm_levels[dpm_table->mclk_table.count-1].value > mclk) {
3421 clock_percent = (
3422 (golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value - mclk)
3423 * 100)
3424 / golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value;
3425
3426 dpm_table->mclk_table.dpm_levels[i].value =
3427 golden_dpm_table->mclk_table.dpm_levels[i].value -
3428 (golden_dpm_table->mclk_table.dpm_levels[i].value *
3429 clock_percent) / 100;
3430 } else
3431 dpm_table->mclk_table.dpm_levels[i].value =
3432 golden_dpm_table->mclk_table.dpm_levels[i].value;
3433 }
3434 }
3435 }
3436
3437 if (data->need_update_smu7_dpm_table &
3438 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
3439 result = smum_populate_all_graphic_levels(hwmgr);
3440 PP_ASSERT_WITH_CODE((0 == result),
3441 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
3442 return result);
3443 }
3444
3445 if (data->need_update_smu7_dpm_table &
3446 (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
3447 /*populate MCLK dpm table to SMU7 */
3448 result = smum_populate_all_memory_levels(hwmgr);
3449 PP_ASSERT_WITH_CODE((0 == result),
3450 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
3451 return result);
3452 }
3453
3454 return result;
3455 }
3456
smu7_trim_single_dpm_states(struct pp_hwmgr * hwmgr,struct smu7_single_dpm_table * dpm_table,uint32_t low_limit,uint32_t high_limit)3457 static int smu7_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
3458 struct smu7_single_dpm_table *dpm_table,
3459 uint32_t low_limit, uint32_t high_limit)
3460 {
3461 uint32_t i;
3462
3463 for (i = 0; i < dpm_table->count; i++) {
3464 if ((dpm_table->dpm_levels[i].value < low_limit)
3465 || (dpm_table->dpm_levels[i].value > high_limit))
3466 dpm_table->dpm_levels[i].enabled = false;
3467 else
3468 dpm_table->dpm_levels[i].enabled = true;
3469 }
3470
3471 return 0;
3472 }
3473
smu7_trim_dpm_states(struct pp_hwmgr * hwmgr,const struct smu7_power_state * smu7_ps)3474 static int smu7_trim_dpm_states(struct pp_hwmgr *hwmgr,
3475 const struct smu7_power_state *smu7_ps)
3476 {
3477 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3478 uint32_t high_limit_count;
3479
3480 PP_ASSERT_WITH_CODE((smu7_ps->performance_level_count >= 1),
3481 "power state did not have any performance level",
3482 return -EINVAL);
3483
3484 high_limit_count = (1 == smu7_ps->performance_level_count) ? 0 : 1;
3485
3486 smu7_trim_single_dpm_states(hwmgr,
3487 &(data->dpm_table.sclk_table),
3488 smu7_ps->performance_levels[0].engine_clock,
3489 smu7_ps->performance_levels[high_limit_count].engine_clock);
3490
3491 smu7_trim_single_dpm_states(hwmgr,
3492 &(data->dpm_table.mclk_table),
3493 smu7_ps->performance_levels[0].memory_clock,
3494 smu7_ps->performance_levels[high_limit_count].memory_clock);
3495
3496 return 0;
3497 }
3498
smu7_generate_dpm_level_enable_mask(struct pp_hwmgr * hwmgr,const void * input)3499 static int smu7_generate_dpm_level_enable_mask(
3500 struct pp_hwmgr *hwmgr, const void *input)
3501 {
3502 int result;
3503 const struct phm_set_power_state_input *states =
3504 (const struct phm_set_power_state_input *)input;
3505 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3506 const struct smu7_power_state *smu7_ps =
3507 cast_const_phw_smu7_power_state(states->pnew_state);
3508
3509 result = smu7_trim_dpm_states(hwmgr, smu7_ps);
3510 if (result)
3511 return result;
3512
3513 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
3514 phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
3515 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
3516 phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
3517 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
3518 phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
3519
3520 return 0;
3521 }
3522
smu7_unfreeze_sclk_mclk_dpm(struct pp_hwmgr * hwmgr)3523 static int smu7_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3524 {
3525 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3526
3527 if (0 == data->need_update_smu7_dpm_table)
3528 return 0;
3529
3530 if ((0 == data->sclk_dpm_key_disabled) &&
3531 (data->need_update_smu7_dpm_table &
3532 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
3533
3534 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
3535 "Trying to Unfreeze SCLK DPM when DPM is disabled",
3536 );
3537 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
3538 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
3539 "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
3540 return -EINVAL);
3541 }
3542
3543 if ((0 == data->mclk_dpm_key_disabled) &&
3544 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
3545
3546 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
3547 "Trying to Unfreeze MCLK DPM when DPM is disabled",
3548 );
3549 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
3550 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
3551 "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
3552 return -EINVAL);
3553 }
3554
3555 data->need_update_smu7_dpm_table = 0;
3556
3557 return 0;
3558 }
3559
smu7_notify_link_speed_change_after_state_change(struct pp_hwmgr * hwmgr,const void * input)3560 static int smu7_notify_link_speed_change_after_state_change(
3561 struct pp_hwmgr *hwmgr, const void *input)
3562 {
3563 const struct phm_set_power_state_input *states =
3564 (const struct phm_set_power_state_input *)input;
3565 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3566 const struct smu7_power_state *smu7_ps =
3567 cast_const_phw_smu7_power_state(states->pnew_state);
3568 uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_ps);
3569 uint8_t request;
3570
3571 if (data->pspp_notify_required) {
3572 if (target_link_speed == PP_PCIEGen3)
3573 request = PCIE_PERF_REQ_GEN3;
3574 else if (target_link_speed == PP_PCIEGen2)
3575 request = PCIE_PERF_REQ_GEN2;
3576 else
3577 request = PCIE_PERF_REQ_GEN1;
3578
3579 if (request == PCIE_PERF_REQ_GEN1 &&
3580 smu7_get_current_pcie_speed(hwmgr) > 0)
3581 return 0;
3582
3583 if (acpi_pcie_perf_request(hwmgr->device, request, false)) {
3584 if (PP_PCIEGen2 == target_link_speed)
3585 printk("PSPP request to switch to Gen2 from Gen3 Failed!");
3586 else
3587 printk("PSPP request to switch to Gen1 from Gen2 Failed!");
3588 }
3589 }
3590
3591 return 0;
3592 }
3593
smu7_notify_smc_display(struct pp_hwmgr * hwmgr)3594 static int smu7_notify_smc_display(struct pp_hwmgr *hwmgr)
3595 {
3596 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3597
3598 if (hwmgr->feature_mask & PP_VBI_TIME_SUPPORT_MASK)
3599 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3600 (PPSMC_Msg)PPSMC_MSG_SetVBITimeout, data->frame_time_x2);
3601 return (smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)PPSMC_HasDisplay) == 0) ? 0 : -EINVAL;
3602 }
3603
smu7_set_power_state_tasks(struct pp_hwmgr * hwmgr,const void * input)3604 static int smu7_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
3605 {
3606 int tmp_result, result = 0;
3607 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3608
3609 tmp_result = smu7_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
3610 PP_ASSERT_WITH_CODE((0 == tmp_result),
3611 "Failed to find DPM states clocks in DPM table!",
3612 result = tmp_result);
3613
3614 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3615 PHM_PlatformCaps_PCIEPerformanceRequest)) {
3616 tmp_result =
3617 smu7_request_link_speed_change_before_state_change(hwmgr, input);
3618 PP_ASSERT_WITH_CODE((0 == tmp_result),
3619 "Failed to request link speed change before state change!",
3620 result = tmp_result);
3621 }
3622
3623 tmp_result = smu7_freeze_sclk_mclk_dpm(hwmgr);
3624 PP_ASSERT_WITH_CODE((0 == tmp_result),
3625 "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
3626
3627 tmp_result = smu7_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
3628 PP_ASSERT_WITH_CODE((0 == tmp_result),
3629 "Failed to populate and upload SCLK MCLK DPM levels!",
3630 result = tmp_result);
3631
3632 tmp_result = smu7_generate_dpm_level_enable_mask(hwmgr, input);
3633 PP_ASSERT_WITH_CODE((0 == tmp_result),
3634 "Failed to generate DPM level enabled mask!",
3635 result = tmp_result);
3636
3637 tmp_result = smum_update_sclk_threshold(hwmgr);
3638 PP_ASSERT_WITH_CODE((0 == tmp_result),
3639 "Failed to update SCLK threshold!",
3640 result = tmp_result);
3641
3642 tmp_result = smu7_notify_smc_display(hwmgr);
3643 PP_ASSERT_WITH_CODE((0 == tmp_result),
3644 "Failed to notify smc display settings!",
3645 result = tmp_result);
3646
3647 tmp_result = smu7_unfreeze_sclk_mclk_dpm(hwmgr);
3648 PP_ASSERT_WITH_CODE((0 == tmp_result),
3649 "Failed to unfreeze SCLK MCLK DPM!",
3650 result = tmp_result);
3651
3652 tmp_result = smu7_upload_dpm_level_enable_mask(hwmgr);
3653 PP_ASSERT_WITH_CODE((0 == tmp_result),
3654 "Failed to upload DPM level enabled mask!",
3655 result = tmp_result);
3656
3657 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3658 PHM_PlatformCaps_PCIEPerformanceRequest)) {
3659 tmp_result =
3660 smu7_notify_link_speed_change_after_state_change(hwmgr, input);
3661 PP_ASSERT_WITH_CODE((0 == tmp_result),
3662 "Failed to notify link speed change after state change!",
3663 result = tmp_result);
3664 }
3665 data->apply_optimized_settings = false;
3666 return result;
3667 }
3668
smu7_set_max_fan_pwm_output(struct pp_hwmgr * hwmgr,uint16_t us_max_fan_pwm)3669 static int smu7_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
3670 {
3671 hwmgr->thermal_controller.
3672 advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
3673
3674 if (phm_is_hw_access_blocked(hwmgr))
3675 return 0;
3676
3677 return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3678 PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm);
3679 }
3680
smu7_notify_smc_display_change(struct pp_hwmgr * hwmgr,bool has_display)3681 int smu7_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display)
3682 {
3683 PPSMC_Msg msg = has_display ? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay;
3684
3685 return (smum_send_msg_to_smc(hwmgr->smumgr, msg) == 0) ? 0 : -1;
3686 }
3687
smu7_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr * hwmgr)3688 int smu7_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
3689 {
3690 uint32_t num_active_displays = 0;
3691 struct cgs_display_info info = {0};
3692
3693 info.mode_info = NULL;
3694 cgs_get_active_displays_info(hwmgr->device, &info);
3695
3696 num_active_displays = info.display_count;
3697
3698 if (num_active_displays > 1 && hwmgr->display_config.multi_monitor_in_sync != true)
3699 smu7_notify_smc_display_change(hwmgr, false);
3700
3701 return 0;
3702 }
3703
3704 /**
3705 * Programs the display gap
3706 *
3707 * @param hwmgr the address of the powerplay hardware manager.
3708 * @return always OK
3709 */
smu7_program_display_gap(struct pp_hwmgr * hwmgr)3710 int smu7_program_display_gap(struct pp_hwmgr *hwmgr)
3711 {
3712 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3713 uint32_t num_active_displays = 0;
3714 uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
3715 uint32_t display_gap2;
3716 uint32_t pre_vbi_time_in_us;
3717 uint32_t frame_time_in_us;
3718 uint32_t ref_clock;
3719 uint32_t refresh_rate = 0;
3720 struct cgs_display_info info = {0};
3721 struct cgs_mode_info mode_info = {0};
3722
3723 info.mode_info = &mode_info;
3724 cgs_get_active_displays_info(hwmgr->device, &info);
3725 num_active_displays = info.display_count;
3726
3727 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (num_active_displays > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
3728 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);
3729
3730 ref_clock = mode_info.ref_clock;
3731 refresh_rate = mode_info.refresh_rate;
3732
3733 if (0 == refresh_rate)
3734 refresh_rate = 60;
3735
3736 frame_time_in_us = 1000000 / refresh_rate;
3737
3738 pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
3739
3740 data->frame_time_x2 = frame_time_in_us * 2 / 100;
3741
3742 display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
3743
3744 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);
3745
3746 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3747 data->soft_regs_start + smum_get_offsetof(hwmgr->smumgr,
3748 SMU_SoftRegisters,
3749 PreVBlankGap), 0x64);
3750
3751 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3752 data->soft_regs_start + smum_get_offsetof(hwmgr->smumgr,
3753 SMU_SoftRegisters,
3754 VBlankTimeout),
3755 (frame_time_in_us - pre_vbi_time_in_us));
3756
3757 return 0;
3758 }
3759
smu7_display_configuration_changed_task(struct pp_hwmgr * hwmgr)3760 int smu7_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
3761 {
3762 return smu7_program_display_gap(hwmgr);
3763 }
3764
3765 /**
3766 * Set maximum target operating fan output RPM
3767 *
3768 * @param hwmgr: the address of the powerplay hardware manager.
3769 * @param usMaxFanRpm: max operating fan RPM value.
3770 * @return The response that came from the SMC.
3771 */
smu7_set_max_fan_rpm_output(struct pp_hwmgr * hwmgr,uint16_t us_max_fan_rpm)3772 static int smu7_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm)
3773 {
3774 hwmgr->thermal_controller.
3775 advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;
3776
3777 if (phm_is_hw_access_blocked(hwmgr))
3778 return 0;
3779
3780 return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3781 PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm);
3782 }
3783
smu7_register_internal_thermal_interrupt(struct pp_hwmgr * hwmgr,const void * thermal_interrupt_info)3784 int smu7_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
3785 const void *thermal_interrupt_info)
3786 {
3787 return 0;
3788 }
3789
smu7_check_smc_update_required_for_display_configuration(struct pp_hwmgr * hwmgr)3790 bool smu7_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
3791 {
3792 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3793 bool is_update_required = false;
3794 struct cgs_display_info info = {0, 0, NULL};
3795
3796 cgs_get_active_displays_info(hwmgr->device, &info);
3797
3798 if (data->display_timing.num_existing_displays != info.display_count)
3799 is_update_required = true;
3800
3801 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
3802 if (data->display_timing.min_clock_in_sr != hwmgr->display_config.min_core_set_clock_in_sr &&
3803 (data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK ||
3804 hwmgr->display_config.min_core_set_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
3805 is_update_required = true;
3806 }
3807 return is_update_required;
3808 }
3809
smu7_are_power_levels_equal(const struct smu7_performance_level * pl1,const struct smu7_performance_level * pl2)3810 static inline bool smu7_are_power_levels_equal(const struct smu7_performance_level *pl1,
3811 const struct smu7_performance_level *pl2)
3812 {
3813 return ((pl1->memory_clock == pl2->memory_clock) &&
3814 (pl1->engine_clock == pl2->engine_clock) &&
3815 (pl1->pcie_gen == pl2->pcie_gen) &&
3816 (pl1->pcie_lane == pl2->pcie_lane));
3817 }
3818
smu7_check_states_equal(struct pp_hwmgr * hwmgr,const struct pp_hw_power_state * pstate1,const struct pp_hw_power_state * pstate2,bool * equal)3819 int smu7_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal)
3820 {
3821 const struct smu7_power_state *psa;
3822 const struct smu7_power_state *psb;
3823 int i;
3824
3825 if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
3826 return -EINVAL;
3827
3828 psa = cast_const_phw_smu7_power_state(pstate1);
3829 psb = cast_const_phw_smu7_power_state(pstate2);
3830 /* If the two states don't even have the same number of performance levels they cannot be the same state. */
3831 if (psa->performance_level_count != psb->performance_level_count) {
3832 *equal = false;
3833 return 0;
3834 }
3835
3836 for (i = 0; i < psa->performance_level_count; i++) {
3837 if (!smu7_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
3838 /* If we have found even one performance level pair that is different the states are different. */
3839 *equal = false;
3840 return 0;
3841 }
3842 }
3843
3844 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/
3845 *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
3846 *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
3847 *equal &= (psa->sclk_threshold == psb->sclk_threshold);
3848
3849 return 0;
3850 }
3851
smu7_upload_mc_firmware(struct pp_hwmgr * hwmgr)3852 int smu7_upload_mc_firmware(struct pp_hwmgr *hwmgr)
3853 {
3854 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3855
3856 uint32_t vbios_version;
3857 uint32_t tmp;
3858
3859 /* Read MC indirect register offset 0x9F bits [3:0] to see
3860 * if VBIOS has already loaded a full version of MC ucode
3861 * or not.
3862 */
3863
3864 smu7_get_mc_microcode_version(hwmgr);
3865 vbios_version = hwmgr->microcode_version_info.MC & 0xf;
3866
3867 data->need_long_memory_training = false;
3868
3869 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX,
3870 ixMC_IO_DEBUG_UP_13);
3871 tmp = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
3872
3873 if (tmp & (1 << 23)) {
3874 data->mem_latency_high = MEM_LATENCY_HIGH;
3875 data->mem_latency_low = MEM_LATENCY_LOW;
3876 } else {
3877 data->mem_latency_high = 330;
3878 data->mem_latency_low = 330;
3879 }
3880
3881 return 0;
3882 }
3883
smu7_read_clock_registers(struct pp_hwmgr * hwmgr)3884 static int smu7_read_clock_registers(struct pp_hwmgr *hwmgr)
3885 {
3886 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3887
3888 data->clock_registers.vCG_SPLL_FUNC_CNTL =
3889 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL);
3890 data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
3891 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2);
3892 data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
3893 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3);
3894 data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
3895 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4);
3896 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
3897 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM);
3898 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
3899 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2);
3900 data->clock_registers.vDLL_CNTL =
3901 cgs_read_register(hwmgr->device, mmDLL_CNTL);
3902 data->clock_registers.vMCLK_PWRMGT_CNTL =
3903 cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL);
3904 data->clock_registers.vMPLL_AD_FUNC_CNTL =
3905 cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL);
3906 data->clock_registers.vMPLL_DQ_FUNC_CNTL =
3907 cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL);
3908 data->clock_registers.vMPLL_FUNC_CNTL =
3909 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL);
3910 data->clock_registers.vMPLL_FUNC_CNTL_1 =
3911 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1);
3912 data->clock_registers.vMPLL_FUNC_CNTL_2 =
3913 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2);
3914 data->clock_registers.vMPLL_SS1 =
3915 cgs_read_register(hwmgr->device, mmMPLL_SS1);
3916 data->clock_registers.vMPLL_SS2 =
3917 cgs_read_register(hwmgr->device, mmMPLL_SS2);
3918 return 0;
3919
3920 }
3921
3922 /**
3923 * Find out if memory is GDDR5.
3924 *
3925 * @param hwmgr the address of the powerplay hardware manager.
3926 * @return always 0
3927 */
smu7_get_memory_type(struct pp_hwmgr * hwmgr)3928 static int smu7_get_memory_type(struct pp_hwmgr *hwmgr)
3929 {
3930 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3931 uint32_t temp;
3932
3933 temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
3934
3935 data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
3936 ((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
3937 MC_SEQ_MISC0_GDDR5_SHIFT));
3938
3939 return 0;
3940 }
3941
3942 /**
3943 * Enables Dynamic Power Management by SMC
3944 *
3945 * @param hwmgr the address of the powerplay hardware manager.
3946 * @return always 0
3947 */
smu7_enable_acpi_power_management(struct pp_hwmgr * hwmgr)3948 static int smu7_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
3949 {
3950 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3951 GENERAL_PWRMGT, STATIC_PM_EN, 1);
3952
3953 return 0;
3954 }
3955
3956 /**
3957 * Initialize PowerGating States for different engines
3958 *
3959 * @param hwmgr the address of the powerplay hardware manager.
3960 * @return always 0
3961 */
smu7_init_power_gate_state(struct pp_hwmgr * hwmgr)3962 static int smu7_init_power_gate_state(struct pp_hwmgr *hwmgr)
3963 {
3964 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3965
3966 data->uvd_power_gated = false;
3967 data->vce_power_gated = false;
3968 data->samu_power_gated = false;
3969
3970 return 0;
3971 }
3972
smu7_init_sclk_threshold(struct pp_hwmgr * hwmgr)3973 static int smu7_init_sclk_threshold(struct pp_hwmgr *hwmgr)
3974 {
3975 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3976
3977 data->low_sclk_interrupt_threshold = 0;
3978 return 0;
3979 }
3980
smu7_setup_asic_task(struct pp_hwmgr * hwmgr)3981 int smu7_setup_asic_task(struct pp_hwmgr *hwmgr)
3982 {
3983 int tmp_result, result = 0;
3984
3985 smu7_upload_mc_firmware(hwmgr);
3986
3987 tmp_result = smu7_read_clock_registers(hwmgr);
3988 PP_ASSERT_WITH_CODE((0 == tmp_result),
3989 "Failed to read clock registers!", result = tmp_result);
3990
3991 tmp_result = smu7_get_memory_type(hwmgr);
3992 PP_ASSERT_WITH_CODE((0 == tmp_result),
3993 "Failed to get memory type!", result = tmp_result);
3994
3995 tmp_result = smu7_enable_acpi_power_management(hwmgr);
3996 PP_ASSERT_WITH_CODE((0 == tmp_result),
3997 "Failed to enable ACPI power management!", result = tmp_result);
3998
3999 tmp_result = smu7_init_power_gate_state(hwmgr);
4000 PP_ASSERT_WITH_CODE((0 == tmp_result),
4001 "Failed to init power gate state!", result = tmp_result);
4002
4003 tmp_result = smu7_get_mc_microcode_version(hwmgr);
4004 PP_ASSERT_WITH_CODE((0 == tmp_result),
4005 "Failed to get MC microcode version!", result = tmp_result);
4006
4007 tmp_result = smu7_init_sclk_threshold(hwmgr);
4008 PP_ASSERT_WITH_CODE((0 == tmp_result),
4009 "Failed to init sclk threshold!", result = tmp_result);
4010
4011 return result;
4012 }
4013
smu7_force_clock_level(struct pp_hwmgr * hwmgr,enum pp_clock_type type,uint32_t mask)4014 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
4015 enum pp_clock_type type, uint32_t mask)
4016 {
4017 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4018
4019 if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
4020 return -EINVAL;
4021
4022 switch (type) {
4023 case PP_SCLK:
4024 if (!data->sclk_dpm_key_disabled)
4025 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4026 PPSMC_MSG_SCLKDPM_SetEnabledMask,
4027 data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask);
4028 break;
4029 case PP_MCLK:
4030 if (!data->mclk_dpm_key_disabled)
4031 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4032 PPSMC_MSG_MCLKDPM_SetEnabledMask,
4033 data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask);
4034 break;
4035 case PP_PCIE:
4036 {
4037 uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
4038 uint32_t level = 0;
4039
4040 while (tmp >>= 1)
4041 level++;
4042
4043 if (!data->pcie_dpm_key_disabled)
4044 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4045 PPSMC_MSG_PCIeDPM_ForceLevel,
4046 level);
4047 break;
4048 }
4049 default:
4050 break;
4051 }
4052
4053 return 0;
4054 }
4055
smu7_print_clock_levels(struct pp_hwmgr * hwmgr,enum pp_clock_type type,char * buf)4056 static int smu7_print_clock_levels(struct pp_hwmgr *hwmgr,
4057 enum pp_clock_type type, char *buf)
4058 {
4059 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4060 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4061 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4062 struct smu7_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
4063 int i, now, size = 0;
4064 uint32_t clock, pcie_speed;
4065
4066 switch (type) {
4067 case PP_SCLK:
4068 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
4069 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
4070
4071 for (i = 0; i < sclk_table->count; i++) {
4072 if (clock > sclk_table->dpm_levels[i].value)
4073 continue;
4074 break;
4075 }
4076 now = i;
4077
4078 for (i = 0; i < sclk_table->count; i++)
4079 size += sprintf(buf + size, "%d: %uMhz %s\n",
4080 i, sclk_table->dpm_levels[i].value / 100,
4081 (i == now) ? "*" : "");
4082 break;
4083 case PP_MCLK:
4084 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
4085 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
4086
4087 for (i = 0; i < mclk_table->count; i++) {
4088 if (clock > mclk_table->dpm_levels[i].value)
4089 continue;
4090 break;
4091 }
4092 now = i;
4093
4094 for (i = 0; i < mclk_table->count; i++)
4095 size += sprintf(buf + size, "%d: %uMhz %s\n",
4096 i, mclk_table->dpm_levels[i].value / 100,
4097 (i == now) ? "*" : "");
4098 break;
4099 case PP_PCIE:
4100 pcie_speed = smu7_get_current_pcie_speed(hwmgr);
4101 for (i = 0; i < pcie_table->count; i++) {
4102 if (pcie_speed != pcie_table->dpm_levels[i].value)
4103 continue;
4104 break;
4105 }
4106 now = i;
4107
4108 for (i = 0; i < pcie_table->count; i++)
4109 size += sprintf(buf + size, "%d: %s %s\n", i,
4110 (pcie_table->dpm_levels[i].value == 0) ? "2.5GB, x8" :
4111 (pcie_table->dpm_levels[i].value == 1) ? "5.0GB, x16" :
4112 (pcie_table->dpm_levels[i].value == 2) ? "8.0GB, x16" : "",
4113 (i == now) ? "*" : "");
4114 break;
4115 default:
4116 break;
4117 }
4118 return size;
4119 }
4120
smu7_set_fan_control_mode(struct pp_hwmgr * hwmgr,uint32_t mode)4121 static int smu7_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
4122 {
4123 if (mode) {
4124 /* stop auto-manage */
4125 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4126 PHM_PlatformCaps_MicrocodeFanControl))
4127 smu7_fan_ctrl_stop_smc_fan_control(hwmgr);
4128 smu7_fan_ctrl_set_static_mode(hwmgr, mode);
4129 } else
4130 /* restart auto-manage */
4131 smu7_fan_ctrl_reset_fan_speed_to_default(hwmgr);
4132
4133 return 0;
4134 }
4135
smu7_get_fan_control_mode(struct pp_hwmgr * hwmgr)4136 static int smu7_get_fan_control_mode(struct pp_hwmgr *hwmgr)
4137 {
4138 if (hwmgr->fan_ctrl_is_in_default_mode)
4139 return hwmgr->fan_ctrl_default_mode;
4140 else
4141 return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4142 CG_FDO_CTRL2, FDO_PWM_MODE);
4143 }
4144
smu7_get_sclk_od(struct pp_hwmgr * hwmgr)4145 static int smu7_get_sclk_od(struct pp_hwmgr *hwmgr)
4146 {
4147 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4148 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4149 struct smu7_single_dpm_table *golden_sclk_table =
4150 &(data->golden_dpm_table.sclk_table);
4151 int value;
4152
4153 value = (sclk_table->dpm_levels[sclk_table->count - 1].value -
4154 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value) *
4155 100 /
4156 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
4157
4158 return value;
4159 }
4160
smu7_set_sclk_od(struct pp_hwmgr * hwmgr,uint32_t value)4161 static int smu7_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
4162 {
4163 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4164 struct smu7_single_dpm_table *golden_sclk_table =
4165 &(data->golden_dpm_table.sclk_table);
4166 struct pp_power_state *ps;
4167 struct smu7_power_state *smu7_ps;
4168
4169 if (value > 20)
4170 value = 20;
4171
4172 ps = hwmgr->request_ps;
4173
4174 if (ps == NULL)
4175 return -EINVAL;
4176
4177 smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
4178
4179 smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].engine_clock =
4180 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value *
4181 value / 100 +
4182 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
4183
4184 return 0;
4185 }
4186
smu7_get_mclk_od(struct pp_hwmgr * hwmgr)4187 static int smu7_get_mclk_od(struct pp_hwmgr *hwmgr)
4188 {
4189 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4190 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4191 struct smu7_single_dpm_table *golden_mclk_table =
4192 &(data->golden_dpm_table.mclk_table);
4193 int value;
4194
4195 value = (mclk_table->dpm_levels[mclk_table->count - 1].value -
4196 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value) *
4197 100 /
4198 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
4199
4200 return value;
4201 }
4202
smu7_set_mclk_od(struct pp_hwmgr * hwmgr,uint32_t value)4203 static int smu7_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
4204 {
4205 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4206 struct smu7_single_dpm_table *golden_mclk_table =
4207 &(data->golden_dpm_table.mclk_table);
4208 struct pp_power_state *ps;
4209 struct smu7_power_state *smu7_ps;
4210
4211 if (value > 20)
4212 value = 20;
4213
4214 ps = hwmgr->request_ps;
4215
4216 if (ps == NULL)
4217 return -EINVAL;
4218
4219 smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
4220
4221 smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].memory_clock =
4222 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value *
4223 value / 100 +
4224 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
4225
4226 return 0;
4227 }
4228
4229
smu7_get_sclks(struct pp_hwmgr * hwmgr,struct amd_pp_clocks * clocks)4230 static int smu7_get_sclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
4231 {
4232 struct phm_ppt_v1_information *table_info =
4233 (struct phm_ppt_v1_information *)hwmgr->pptable;
4234 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = NULL;
4235 struct phm_clock_voltage_dependency_table *sclk_table;
4236 int i;
4237
4238 if (hwmgr->pp_table_version == PP_TABLE_V1) {
4239 if (table_info == NULL || table_info->vdd_dep_on_sclk == NULL)
4240 return -EINVAL;
4241 dep_sclk_table = table_info->vdd_dep_on_sclk;
4242 for (i = 0; i < dep_sclk_table->count; i++) {
4243 clocks->clock[i] = dep_sclk_table->entries[i].clk;
4244 clocks->count++;
4245 }
4246 } else if (hwmgr->pp_table_version == PP_TABLE_V0) {
4247 sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
4248 for (i = 0; i < sclk_table->count; i++) {
4249 clocks->clock[i] = sclk_table->entries[i].clk;
4250 clocks->count++;
4251 }
4252 }
4253
4254 return 0;
4255 }
4256
smu7_get_mem_latency(struct pp_hwmgr * hwmgr,uint32_t clk)4257 static uint32_t smu7_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clk)
4258 {
4259 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4260
4261 if (clk >= MEM_FREQ_LOW_LATENCY && clk < MEM_FREQ_HIGH_LATENCY)
4262 return data->mem_latency_high;
4263 else if (clk >= MEM_FREQ_HIGH_LATENCY)
4264 return data->mem_latency_low;
4265 else
4266 return MEM_LATENCY_ERR;
4267 }
4268
smu7_get_mclks(struct pp_hwmgr * hwmgr,struct amd_pp_clocks * clocks)4269 static int smu7_get_mclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
4270 {
4271 struct phm_ppt_v1_information *table_info =
4272 (struct phm_ppt_v1_information *)hwmgr->pptable;
4273 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
4274 int i;
4275 struct phm_clock_voltage_dependency_table *mclk_table;
4276
4277 if (hwmgr->pp_table_version == PP_TABLE_V1) {
4278 if (table_info == NULL)
4279 return -EINVAL;
4280 dep_mclk_table = table_info->vdd_dep_on_mclk;
4281 for (i = 0; i < dep_mclk_table->count; i++) {
4282 clocks->clock[i] = dep_mclk_table->entries[i].clk;
4283 clocks->latency[i] = smu7_get_mem_latency(hwmgr,
4284 dep_mclk_table->entries[i].clk);
4285 clocks->count++;
4286 }
4287 } else if (hwmgr->pp_table_version == PP_TABLE_V0) {
4288 mclk_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
4289 for (i = 0; i < mclk_table->count; i++) {
4290 clocks->clock[i] = mclk_table->entries[i].clk;
4291 clocks->count++;
4292 }
4293 }
4294 return 0;
4295 }
4296
smu7_get_clock_by_type(struct pp_hwmgr * hwmgr,enum amd_pp_clock_type type,struct amd_pp_clocks * clocks)4297 static int smu7_get_clock_by_type(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type,
4298 struct amd_pp_clocks *clocks)
4299 {
4300 switch (type) {
4301 case amd_pp_sys_clock:
4302 smu7_get_sclks(hwmgr, clocks);
4303 break;
4304 case amd_pp_mem_clock:
4305 smu7_get_mclks(hwmgr, clocks);
4306 break;
4307 default:
4308 return -EINVAL;
4309 }
4310
4311 return 0;
4312 }
4313
4314 static const struct pp_hwmgr_func smu7_hwmgr_funcs = {
4315 .backend_init = &smu7_hwmgr_backend_init,
4316 .backend_fini = &phm_hwmgr_backend_fini,
4317 .asic_setup = &smu7_setup_asic_task,
4318 .dynamic_state_management_enable = &smu7_enable_dpm_tasks,
4319 .apply_state_adjust_rules = smu7_apply_state_adjust_rules,
4320 .force_dpm_level = &smu7_force_dpm_level,
4321 .power_state_set = smu7_set_power_state_tasks,
4322 .get_power_state_size = smu7_get_power_state_size,
4323 .get_mclk = smu7_dpm_get_mclk,
4324 .get_sclk = smu7_dpm_get_sclk,
4325 .patch_boot_state = smu7_dpm_patch_boot_state,
4326 .get_pp_table_entry = smu7_get_pp_table_entry,
4327 .get_num_of_pp_table_entries = smu7_get_number_of_powerplay_table_entries,
4328 .powerdown_uvd = smu7_powerdown_uvd,
4329 .powergate_uvd = smu7_powergate_uvd,
4330 .powergate_vce = smu7_powergate_vce,
4331 .disable_clock_power_gating = smu7_disable_clock_power_gating,
4332 .update_clock_gatings = smu7_update_clock_gatings,
4333 .notify_smc_display_config_after_ps_adjustment = smu7_notify_smc_display_config_after_ps_adjustment,
4334 .display_config_changed = smu7_display_configuration_changed_task,
4335 .set_max_fan_pwm_output = smu7_set_max_fan_pwm_output,
4336 .set_max_fan_rpm_output = smu7_set_max_fan_rpm_output,
4337 .get_temperature = smu7_thermal_get_temperature,
4338 .stop_thermal_controller = smu7_thermal_stop_thermal_controller,
4339 .get_fan_speed_info = smu7_fan_ctrl_get_fan_speed_info,
4340 .get_fan_speed_percent = smu7_fan_ctrl_get_fan_speed_percent,
4341 .set_fan_speed_percent = smu7_fan_ctrl_set_fan_speed_percent,
4342 .reset_fan_speed_to_default = smu7_fan_ctrl_reset_fan_speed_to_default,
4343 .get_fan_speed_rpm = smu7_fan_ctrl_get_fan_speed_rpm,
4344 .set_fan_speed_rpm = smu7_fan_ctrl_set_fan_speed_rpm,
4345 .uninitialize_thermal_controller = smu7_thermal_ctrl_uninitialize_thermal_controller,
4346 .register_internal_thermal_interrupt = smu7_register_internal_thermal_interrupt,
4347 .check_smc_update_required_for_display_configuration = smu7_check_smc_update_required_for_display_configuration,
4348 .check_states_equal = smu7_check_states_equal,
4349 .set_fan_control_mode = smu7_set_fan_control_mode,
4350 .get_fan_control_mode = smu7_get_fan_control_mode,
4351 .force_clock_level = smu7_force_clock_level,
4352 .print_clock_levels = smu7_print_clock_levels,
4353 .enable_per_cu_power_gating = smu7_enable_per_cu_power_gating,
4354 .get_sclk_od = smu7_get_sclk_od,
4355 .set_sclk_od = smu7_set_sclk_od,
4356 .get_mclk_od = smu7_get_mclk_od,
4357 .set_mclk_od = smu7_set_mclk_od,
4358 .get_clock_by_type = smu7_get_clock_by_type,
4359 .read_sensor = smu7_read_sensor,
4360 .dynamic_state_management_disable = smu7_disable_dpm_tasks,
4361 };
4362
smu7_get_sleep_divider_id_from_clock(uint32_t clock,uint32_t clock_insr)4363 uint8_t smu7_get_sleep_divider_id_from_clock(uint32_t clock,
4364 uint32_t clock_insr)
4365 {
4366 uint8_t i;
4367 uint32_t temp;
4368 uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
4369
4370 PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0);
4371 for (i = SMU7_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) {
4372 temp = clock >> i;
4373
4374 if (temp >= min || i == 0)
4375 break;
4376 }
4377 return i;
4378 }
4379
smu7_hwmgr_init(struct pp_hwmgr * hwmgr)4380 int smu7_hwmgr_init(struct pp_hwmgr *hwmgr)
4381 {
4382 int ret = 0;
4383
4384 hwmgr->hwmgr_func = &smu7_hwmgr_funcs;
4385 if (hwmgr->pp_table_version == PP_TABLE_V0)
4386 hwmgr->pptable_func = &pptable_funcs;
4387 else if (hwmgr->pp_table_version == PP_TABLE_V1)
4388 hwmgr->pptable_func = &pptable_v1_0_funcs;
4389
4390 pp_smu7_thermal_initialize(hwmgr);
4391 return ret;
4392 }
4393
4394