• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17 #include <linux/shmem_fs.h>
18 
19 #include <asm/elf.h>
20 #include <asm/uaccess.h>
21 #include <asm/tlbflush.h>
22 #include "internal.h"
23 
task_mem(struct seq_file * m,struct mm_struct * mm)24 void task_mem(struct seq_file *m, struct mm_struct *mm)
25 {
26 	unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
27 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
28 
29 	anon = get_mm_counter(mm, MM_ANONPAGES);
30 	file = get_mm_counter(mm, MM_FILEPAGES);
31 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
32 
33 	/*
34 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
35 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
36 	 * collector of these hiwater stats must therefore get total_vm
37 	 * and rss too, which will usually be the higher.  Barriers? not
38 	 * worth the effort, such snapshots can always be inconsistent.
39 	 */
40 	hiwater_vm = total_vm = mm->total_vm;
41 	if (hiwater_vm < mm->hiwater_vm)
42 		hiwater_vm = mm->hiwater_vm;
43 	hiwater_rss = total_rss = anon + file + shmem;
44 	if (hiwater_rss < mm->hiwater_rss)
45 		hiwater_rss = mm->hiwater_rss;
46 
47 	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
48 	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
49 	swap = get_mm_counter(mm, MM_SWAPENTS);
50 	ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
51 	pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
52 	seq_printf(m,
53 		"VmPeak:\t%8lu kB\n"
54 		"VmSize:\t%8lu kB\n"
55 		"VmLck:\t%8lu kB\n"
56 		"VmPin:\t%8lu kB\n"
57 		"VmHWM:\t%8lu kB\n"
58 		"VmRSS:\t%8lu kB\n"
59 		"RssAnon:\t%8lu kB\n"
60 		"RssFile:\t%8lu kB\n"
61 		"RssShmem:\t%8lu kB\n"
62 		"VmData:\t%8lu kB\n"
63 		"VmStk:\t%8lu kB\n"
64 		"VmExe:\t%8lu kB\n"
65 		"VmLib:\t%8lu kB\n"
66 		"VmPTE:\t%8lu kB\n"
67 		"VmPMD:\t%8lu kB\n"
68 		"VmSwap:\t%8lu kB\n",
69 		hiwater_vm << (PAGE_SHIFT-10),
70 		total_vm << (PAGE_SHIFT-10),
71 		mm->locked_vm << (PAGE_SHIFT-10),
72 		mm->pinned_vm << (PAGE_SHIFT-10),
73 		hiwater_rss << (PAGE_SHIFT-10),
74 		total_rss << (PAGE_SHIFT-10),
75 		anon << (PAGE_SHIFT-10),
76 		file << (PAGE_SHIFT-10),
77 		shmem << (PAGE_SHIFT-10),
78 		mm->data_vm << (PAGE_SHIFT-10),
79 		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
80 		ptes >> 10,
81 		pmds >> 10,
82 		swap << (PAGE_SHIFT-10));
83 	hugetlb_report_usage(m, mm);
84 }
85 
task_vsize(struct mm_struct * mm)86 unsigned long task_vsize(struct mm_struct *mm)
87 {
88 	return PAGE_SIZE * mm->total_vm;
89 }
90 
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)91 unsigned long task_statm(struct mm_struct *mm,
92 			 unsigned long *shared, unsigned long *text,
93 			 unsigned long *data, unsigned long *resident)
94 {
95 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
96 			get_mm_counter(mm, MM_SHMEMPAGES);
97 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98 								>> PAGE_SHIFT;
99 	*data = mm->data_vm + mm->stack_vm;
100 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101 	return mm->total_vm;
102 }
103 
104 #ifdef CONFIG_NUMA
105 /*
106  * Save get_task_policy() for show_numa_map().
107  */
hold_task_mempolicy(struct proc_maps_private * priv)108 static void hold_task_mempolicy(struct proc_maps_private *priv)
109 {
110 	struct task_struct *task = priv->task;
111 
112 	task_lock(task);
113 	priv->task_mempolicy = get_task_policy(task);
114 	mpol_get(priv->task_mempolicy);
115 	task_unlock(task);
116 }
release_task_mempolicy(struct proc_maps_private * priv)117 static void release_task_mempolicy(struct proc_maps_private *priv)
118 {
119 	mpol_put(priv->task_mempolicy);
120 }
121 #else
hold_task_mempolicy(struct proc_maps_private * priv)122 static void hold_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
release_task_mempolicy(struct proc_maps_private * priv)125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
128 #endif
129 
seq_print_vma_name(struct seq_file * m,struct vm_area_struct * vma)130 static void seq_print_vma_name(struct seq_file *m, struct vm_area_struct *vma)
131 {
132 	const char __user *name = vma_get_anon_name(vma);
133 	struct mm_struct *mm = vma->vm_mm;
134 
135 	unsigned long page_start_vaddr;
136 	unsigned long page_offset;
137 	unsigned long num_pages;
138 	unsigned long max_len = NAME_MAX;
139 	int i;
140 
141 	page_start_vaddr = (unsigned long)name & PAGE_MASK;
142 	page_offset = (unsigned long)name - page_start_vaddr;
143 	num_pages = DIV_ROUND_UP(page_offset + max_len, PAGE_SIZE);
144 
145 	seq_puts(m, "[anon:");
146 
147 	for (i = 0; i < num_pages; i++) {
148 		int len;
149 		int write_len;
150 		const char *kaddr;
151 		long pages_pinned;
152 		struct page *page;
153 
154 		pages_pinned = get_user_pages_remote(current, mm,
155 				page_start_vaddr, 1, 0, &page, NULL);
156 		if (pages_pinned < 1) {
157 			seq_puts(m, "<fault>]");
158 			return;
159 		}
160 
161 		kaddr = (const char *)kmap(page);
162 		len = min(max_len, PAGE_SIZE - page_offset);
163 		write_len = strnlen(kaddr + page_offset, len);
164 		seq_write(m, kaddr + page_offset, write_len);
165 		kunmap(page);
166 		put_page(page);
167 
168 		/* if strnlen hit a null terminator then we're done */
169 		if (write_len != len)
170 			break;
171 
172 		max_len -= len;
173 		page_offset = 0;
174 		page_start_vaddr += PAGE_SIZE;
175 	}
176 
177 	seq_putc(m, ']');
178 }
179 
vma_stop(struct proc_maps_private * priv)180 static void vma_stop(struct proc_maps_private *priv)
181 {
182 	struct mm_struct *mm = priv->mm;
183 
184 	release_task_mempolicy(priv);
185 	up_read(&mm->mmap_sem);
186 	mmput(mm);
187 }
188 
189 static struct vm_area_struct *
m_next_vma(struct proc_maps_private * priv,struct vm_area_struct * vma)190 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
191 {
192 	if (vma == priv->tail_vma)
193 		return NULL;
194 	return vma->vm_next ?: priv->tail_vma;
195 }
196 
m_cache_vma(struct seq_file * m,struct vm_area_struct * vma)197 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
198 {
199 	if (m->count < m->size)	/* vma is copied successfully */
200 		m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
201 }
202 
m_start(struct seq_file * m,loff_t * ppos)203 static void *m_start(struct seq_file *m, loff_t *ppos)
204 {
205 	struct proc_maps_private *priv = m->private;
206 	unsigned long last_addr = m->version;
207 	struct mm_struct *mm;
208 	struct vm_area_struct *vma;
209 	unsigned int pos = *ppos;
210 
211 	/* See m_cache_vma(). Zero at the start or after lseek. */
212 	if (last_addr == -1UL)
213 		return NULL;
214 
215 	priv->task = get_proc_task(priv->inode);
216 	if (!priv->task)
217 		return ERR_PTR(-ESRCH);
218 
219 	mm = priv->mm;
220 	if (!mm || !atomic_inc_not_zero(&mm->mm_users))
221 		return NULL;
222 
223 	down_read(&mm->mmap_sem);
224 	hold_task_mempolicy(priv);
225 	priv->tail_vma = get_gate_vma(mm);
226 
227 	if (last_addr) {
228 		vma = find_vma(mm, last_addr - 1);
229 		if (vma && vma->vm_start <= last_addr)
230 			vma = m_next_vma(priv, vma);
231 		if (vma)
232 			return vma;
233 	}
234 
235 	m->version = 0;
236 	if (pos < mm->map_count) {
237 		for (vma = mm->mmap; pos; pos--) {
238 			m->version = vma->vm_start;
239 			vma = vma->vm_next;
240 		}
241 		return vma;
242 	}
243 
244 	/* we do not bother to update m->version in this case */
245 	if (pos == mm->map_count && priv->tail_vma)
246 		return priv->tail_vma;
247 
248 	vma_stop(priv);
249 	return NULL;
250 }
251 
m_next(struct seq_file * m,void * v,loff_t * pos)252 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
253 {
254 	struct proc_maps_private *priv = m->private;
255 	struct vm_area_struct *next;
256 
257 	(*pos)++;
258 	next = m_next_vma(priv, v);
259 	if (!next)
260 		vma_stop(priv);
261 	return next;
262 }
263 
m_stop(struct seq_file * m,void * v)264 static void m_stop(struct seq_file *m, void *v)
265 {
266 	struct proc_maps_private *priv = m->private;
267 
268 	if (!IS_ERR_OR_NULL(v))
269 		vma_stop(priv);
270 	if (priv->task) {
271 		put_task_struct(priv->task);
272 		priv->task = NULL;
273 	}
274 }
275 
proc_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops,int psize)276 static int proc_maps_open(struct inode *inode, struct file *file,
277 			const struct seq_operations *ops, int psize)
278 {
279 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
280 
281 	if (!priv)
282 		return -ENOMEM;
283 
284 	priv->inode = inode;
285 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
286 	if (IS_ERR(priv->mm)) {
287 		int err = PTR_ERR(priv->mm);
288 
289 		seq_release_private(inode, file);
290 		return err;
291 	}
292 
293 	return 0;
294 }
295 
proc_map_release(struct inode * inode,struct file * file)296 static int proc_map_release(struct inode *inode, struct file *file)
297 {
298 	struct seq_file *seq = file->private_data;
299 	struct proc_maps_private *priv = seq->private;
300 
301 	if (priv->mm)
302 		mmdrop(priv->mm);
303 
304 	return seq_release_private(inode, file);
305 }
306 
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)307 static int do_maps_open(struct inode *inode, struct file *file,
308 			const struct seq_operations *ops)
309 {
310 	return proc_maps_open(inode, file, ops,
311 				sizeof(struct proc_maps_private));
312 }
313 
314 /*
315  * Indicate if the VMA is a stack for the given task; for
316  * /proc/PID/maps that is the stack of the main task.
317  */
is_stack(struct proc_maps_private * priv,struct vm_area_struct * vma)318 static int is_stack(struct proc_maps_private *priv,
319 		    struct vm_area_struct *vma)
320 {
321 	/*
322 	 * We make no effort to guess what a given thread considers to be
323 	 * its "stack".  It's not even well-defined for programs written
324 	 * languages like Go.
325 	 */
326 	return vma->vm_start <= vma->vm_mm->start_stack &&
327 		vma->vm_end >= vma->vm_mm->start_stack;
328 }
329 
330 static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma,int is_pid)331 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
332 {
333 	struct mm_struct *mm = vma->vm_mm;
334 	struct file *file = vma->vm_file;
335 	struct proc_maps_private *priv = m->private;
336 	vm_flags_t flags = vma->vm_flags;
337 	unsigned long ino = 0;
338 	unsigned long long pgoff = 0;
339 	unsigned long start, end;
340 	dev_t dev = 0;
341 	const char *name = NULL;
342 
343 	if (file) {
344 		struct inode *inode = file_inode(vma->vm_file);
345 		dev = inode->i_sb->s_dev;
346 		ino = inode->i_ino;
347 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
348 	}
349 
350 	/* We don't show the stack guard page in /proc/maps */
351 	start = vma->vm_start;
352 	end = vma->vm_end;
353 
354 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
355 	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
356 			start,
357 			end,
358 			flags & VM_READ ? 'r' : '-',
359 			flags & VM_WRITE ? 'w' : '-',
360 			flags & VM_EXEC ? 'x' : '-',
361 			flags & VM_MAYSHARE ? 's' : 'p',
362 			pgoff,
363 			MAJOR(dev), MINOR(dev), ino);
364 
365 	/*
366 	 * Print the dentry name for named mappings, and a
367 	 * special [heap] marker for the heap:
368 	 */
369 	if (file) {
370 		seq_pad(m, ' ');
371 		seq_file_path(m, file, "\n");
372 		goto done;
373 	}
374 
375 	if (vma->vm_ops && vma->vm_ops->name) {
376 		name = vma->vm_ops->name(vma);
377 		if (name)
378 			goto done;
379 	}
380 
381 	name = arch_vma_name(vma);
382 	if (!name) {
383 		if (!mm) {
384 			name = "[vdso]";
385 			goto done;
386 		}
387 
388 		if (vma->vm_start <= mm->brk &&
389 		    vma->vm_end >= mm->start_brk) {
390 			name = "[heap]";
391 			goto done;
392 		}
393 
394 		if (is_stack(priv, vma)) {
395 			name = "[stack]";
396 			goto done;
397 		}
398 
399 		if (vma_get_anon_name(vma)) {
400 			seq_pad(m, ' ');
401 			seq_print_vma_name(m, vma);
402 		}
403 	}
404 
405 done:
406 	if (name) {
407 		seq_pad(m, ' ');
408 		seq_puts(m, name);
409 	}
410 	seq_putc(m, '\n');
411 }
412 
show_map(struct seq_file * m,void * v,int is_pid)413 static int show_map(struct seq_file *m, void *v, int is_pid)
414 {
415 	show_map_vma(m, v, is_pid);
416 	m_cache_vma(m, v);
417 	return 0;
418 }
419 
show_pid_map(struct seq_file * m,void * v)420 static int show_pid_map(struct seq_file *m, void *v)
421 {
422 	return show_map(m, v, 1);
423 }
424 
show_tid_map(struct seq_file * m,void * v)425 static int show_tid_map(struct seq_file *m, void *v)
426 {
427 	return show_map(m, v, 0);
428 }
429 
430 static const struct seq_operations proc_pid_maps_op = {
431 	.start	= m_start,
432 	.next	= m_next,
433 	.stop	= m_stop,
434 	.show	= show_pid_map
435 };
436 
437 static const struct seq_operations proc_tid_maps_op = {
438 	.start	= m_start,
439 	.next	= m_next,
440 	.stop	= m_stop,
441 	.show	= show_tid_map
442 };
443 
pid_maps_open(struct inode * inode,struct file * file)444 static int pid_maps_open(struct inode *inode, struct file *file)
445 {
446 	return do_maps_open(inode, file, &proc_pid_maps_op);
447 }
448 
tid_maps_open(struct inode * inode,struct file * file)449 static int tid_maps_open(struct inode *inode, struct file *file)
450 {
451 	return do_maps_open(inode, file, &proc_tid_maps_op);
452 }
453 
454 const struct file_operations proc_pid_maps_operations = {
455 	.open		= pid_maps_open,
456 	.read		= seq_read,
457 	.llseek		= seq_lseek,
458 	.release	= proc_map_release,
459 };
460 
461 const struct file_operations proc_tid_maps_operations = {
462 	.open		= tid_maps_open,
463 	.read		= seq_read,
464 	.llseek		= seq_lseek,
465 	.release	= proc_map_release,
466 };
467 
468 /*
469  * Proportional Set Size(PSS): my share of RSS.
470  *
471  * PSS of a process is the count of pages it has in memory, where each
472  * page is divided by the number of processes sharing it.  So if a
473  * process has 1000 pages all to itself, and 1000 shared with one other
474  * process, its PSS will be 1500.
475  *
476  * To keep (accumulated) division errors low, we adopt a 64bit
477  * fixed-point pss counter to minimize division errors. So (pss >>
478  * PSS_SHIFT) would be the real byte count.
479  *
480  * A shift of 12 before division means (assuming 4K page size):
481  * 	- 1M 3-user-pages add up to 8KB errors;
482  * 	- supports mapcount up to 2^24, or 16M;
483  * 	- supports PSS up to 2^52 bytes, or 4PB.
484  */
485 #define PSS_SHIFT 12
486 
487 #ifdef CONFIG_PROC_PAGE_MONITOR
488 struct mem_size_stats {
489 	unsigned long resident;
490 	unsigned long shared_clean;
491 	unsigned long shared_dirty;
492 	unsigned long private_clean;
493 	unsigned long private_dirty;
494 	unsigned long referenced;
495 	unsigned long anonymous;
496 	unsigned long anonymous_thp;
497 	unsigned long shmem_thp;
498 	unsigned long swap;
499 	unsigned long shared_hugetlb;
500 	unsigned long private_hugetlb;
501 	u64 pss;
502 	u64 swap_pss;
503 	bool check_shmem_swap;
504 };
505 
smaps_account(struct mem_size_stats * mss,struct page * page,bool compound,bool young,bool dirty)506 static void smaps_account(struct mem_size_stats *mss, struct page *page,
507 		bool compound, bool young, bool dirty)
508 {
509 	int i, nr = compound ? 1 << compound_order(page) : 1;
510 	unsigned long size = nr * PAGE_SIZE;
511 
512 	if (PageAnon(page))
513 		mss->anonymous += size;
514 
515 	mss->resident += size;
516 	/* Accumulate the size in pages that have been accessed. */
517 	if (young || page_is_young(page) || PageReferenced(page))
518 		mss->referenced += size;
519 
520 	/*
521 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
522 	 * If any subpage of the compound page mapped with PTE it would elevate
523 	 * page_count().
524 	 */
525 	if (page_count(page) == 1) {
526 		if (dirty || PageDirty(page))
527 			mss->private_dirty += size;
528 		else
529 			mss->private_clean += size;
530 		mss->pss += (u64)size << PSS_SHIFT;
531 		return;
532 	}
533 
534 	for (i = 0; i < nr; i++, page++) {
535 		int mapcount = page_mapcount(page);
536 
537 		if (mapcount >= 2) {
538 			if (dirty || PageDirty(page))
539 				mss->shared_dirty += PAGE_SIZE;
540 			else
541 				mss->shared_clean += PAGE_SIZE;
542 			mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
543 		} else {
544 			if (dirty || PageDirty(page))
545 				mss->private_dirty += PAGE_SIZE;
546 			else
547 				mss->private_clean += PAGE_SIZE;
548 			mss->pss += PAGE_SIZE << PSS_SHIFT;
549 		}
550 	}
551 }
552 
553 #ifdef CONFIG_SHMEM
smaps_pte_hole(unsigned long addr,unsigned long end,struct mm_walk * walk)554 static int smaps_pte_hole(unsigned long addr, unsigned long end,
555 		struct mm_walk *walk)
556 {
557 	struct mem_size_stats *mss = walk->private;
558 
559 	mss->swap += shmem_partial_swap_usage(
560 			walk->vma->vm_file->f_mapping, addr, end);
561 
562 	return 0;
563 }
564 #endif
565 
smaps_pte_entry(pte_t * pte,unsigned long addr,struct mm_walk * walk)566 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
567 		struct mm_walk *walk)
568 {
569 	struct mem_size_stats *mss = walk->private;
570 	struct vm_area_struct *vma = walk->vma;
571 	struct page *page = NULL;
572 
573 	if (pte_present(*pte)) {
574 		page = vm_normal_page(vma, addr, *pte);
575 	} else if (is_swap_pte(*pte)) {
576 		swp_entry_t swpent = pte_to_swp_entry(*pte);
577 
578 		if (!non_swap_entry(swpent)) {
579 			int mapcount;
580 
581 			mss->swap += PAGE_SIZE;
582 			mapcount = swp_swapcount(swpent);
583 			if (mapcount >= 2) {
584 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
585 
586 				do_div(pss_delta, mapcount);
587 				mss->swap_pss += pss_delta;
588 			} else {
589 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
590 			}
591 		} else if (is_migration_entry(swpent))
592 			page = migration_entry_to_page(swpent);
593 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
594 							&& pte_none(*pte))) {
595 		page = find_get_entry(vma->vm_file->f_mapping,
596 						linear_page_index(vma, addr));
597 		if (!page)
598 			return;
599 
600 		if (radix_tree_exceptional_entry(page))
601 			mss->swap += PAGE_SIZE;
602 		else
603 			put_page(page);
604 
605 		return;
606 	}
607 
608 	if (!page)
609 		return;
610 
611 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
612 }
613 
614 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)615 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
616 		struct mm_walk *walk)
617 {
618 	struct mem_size_stats *mss = walk->private;
619 	struct vm_area_struct *vma = walk->vma;
620 	struct page *page;
621 
622 	/* FOLL_DUMP will return -EFAULT on huge zero page */
623 	page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
624 	if (IS_ERR_OR_NULL(page))
625 		return;
626 	if (PageAnon(page))
627 		mss->anonymous_thp += HPAGE_PMD_SIZE;
628 	else if (PageSwapBacked(page))
629 		mss->shmem_thp += HPAGE_PMD_SIZE;
630 	else if (is_zone_device_page(page))
631 		/* pass */;
632 	else
633 		VM_BUG_ON_PAGE(1, page);
634 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
635 }
636 #else
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)637 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
638 		struct mm_walk *walk)
639 {
640 }
641 #endif
642 
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)643 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
644 			   struct mm_walk *walk)
645 {
646 	struct vm_area_struct *vma = walk->vma;
647 	pte_t *pte;
648 	spinlock_t *ptl;
649 
650 	ptl = pmd_trans_huge_lock(pmd, vma);
651 	if (ptl) {
652 		smaps_pmd_entry(pmd, addr, walk);
653 		spin_unlock(ptl);
654 		return 0;
655 	}
656 
657 	if (pmd_trans_unstable(pmd))
658 		return 0;
659 	/*
660 	 * The mmap_sem held all the way back in m_start() is what
661 	 * keeps khugepaged out of here and from collapsing things
662 	 * in here.
663 	 */
664 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
665 	for (; addr != end; pte++, addr += PAGE_SIZE)
666 		smaps_pte_entry(pte, addr, walk);
667 	pte_unmap_unlock(pte - 1, ptl);
668 	cond_resched();
669 	return 0;
670 }
671 
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)672 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
673 {
674 	/*
675 	 * Don't forget to update Documentation/ on changes.
676 	 */
677 	static const char mnemonics[BITS_PER_LONG][2] = {
678 		/*
679 		 * In case if we meet a flag we don't know about.
680 		 */
681 		[0 ... (BITS_PER_LONG-1)] = "??",
682 
683 		[ilog2(VM_READ)]	= "rd",
684 		[ilog2(VM_WRITE)]	= "wr",
685 		[ilog2(VM_EXEC)]	= "ex",
686 		[ilog2(VM_SHARED)]	= "sh",
687 		[ilog2(VM_MAYREAD)]	= "mr",
688 		[ilog2(VM_MAYWRITE)]	= "mw",
689 		[ilog2(VM_MAYEXEC)]	= "me",
690 		[ilog2(VM_MAYSHARE)]	= "ms",
691 		[ilog2(VM_GROWSDOWN)]	= "gd",
692 		[ilog2(VM_PFNMAP)]	= "pf",
693 		[ilog2(VM_DENYWRITE)]	= "dw",
694 #ifdef CONFIG_X86_INTEL_MPX
695 		[ilog2(VM_MPX)]		= "mp",
696 #endif
697 		[ilog2(VM_LOCKED)]	= "lo",
698 		[ilog2(VM_IO)]		= "io",
699 		[ilog2(VM_SEQ_READ)]	= "sr",
700 		[ilog2(VM_RAND_READ)]	= "rr",
701 		[ilog2(VM_DONTCOPY)]	= "dc",
702 		[ilog2(VM_DONTEXPAND)]	= "de",
703 		[ilog2(VM_ACCOUNT)]	= "ac",
704 		[ilog2(VM_NORESERVE)]	= "nr",
705 		[ilog2(VM_HUGETLB)]	= "ht",
706 		[ilog2(VM_ARCH_1)]	= "ar",
707 		[ilog2(VM_DONTDUMP)]	= "dd",
708 #ifdef CONFIG_MEM_SOFT_DIRTY
709 		[ilog2(VM_SOFTDIRTY)]	= "sd",
710 #endif
711 		[ilog2(VM_MIXEDMAP)]	= "mm",
712 		[ilog2(VM_HUGEPAGE)]	= "hg",
713 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
714 		[ilog2(VM_MERGEABLE)]	= "mg",
715 		[ilog2(VM_UFFD_MISSING)]= "um",
716 		[ilog2(VM_UFFD_WP)]	= "uw",
717 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
718 		/* These come out via ProtectionKey: */
719 		[ilog2(VM_PKEY_BIT0)]	= "",
720 		[ilog2(VM_PKEY_BIT1)]	= "",
721 		[ilog2(VM_PKEY_BIT2)]	= "",
722 		[ilog2(VM_PKEY_BIT3)]	= "",
723 #endif
724 	};
725 	size_t i;
726 
727 	seq_puts(m, "VmFlags: ");
728 	for (i = 0; i < BITS_PER_LONG; i++) {
729 		if (!mnemonics[i][0])
730 			continue;
731 		if (vma->vm_flags & (1UL << i)) {
732 			seq_printf(m, "%c%c ",
733 				   mnemonics[i][0], mnemonics[i][1]);
734 		}
735 	}
736 	seq_putc(m, '\n');
737 }
738 
739 #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)740 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
741 				 unsigned long addr, unsigned long end,
742 				 struct mm_walk *walk)
743 {
744 	struct mem_size_stats *mss = walk->private;
745 	struct vm_area_struct *vma = walk->vma;
746 	struct page *page = NULL;
747 
748 	if (pte_present(*pte)) {
749 		page = vm_normal_page(vma, addr, *pte);
750 	} else if (is_swap_pte(*pte)) {
751 		swp_entry_t swpent = pte_to_swp_entry(*pte);
752 
753 		if (is_migration_entry(swpent))
754 			page = migration_entry_to_page(swpent);
755 	}
756 	if (page) {
757 		int mapcount = page_mapcount(page);
758 
759 		if (mapcount >= 2)
760 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
761 		else
762 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
763 	}
764 	return 0;
765 }
766 #endif /* HUGETLB_PAGE */
767 
arch_show_smap(struct seq_file * m,struct vm_area_struct * vma)768 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
769 {
770 }
771 
show_smap(struct seq_file * m,void * v,int is_pid)772 static int show_smap(struct seq_file *m, void *v, int is_pid)
773 {
774 	struct vm_area_struct *vma = v;
775 	struct mem_size_stats mss;
776 	struct mm_walk smaps_walk = {
777 		.pmd_entry = smaps_pte_range,
778 #ifdef CONFIG_HUGETLB_PAGE
779 		.hugetlb_entry = smaps_hugetlb_range,
780 #endif
781 		.mm = vma->vm_mm,
782 		.private = &mss,
783 	};
784 
785 	memset(&mss, 0, sizeof mss);
786 
787 #ifdef CONFIG_SHMEM
788 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
789 		/*
790 		 * For shared or readonly shmem mappings we know that all
791 		 * swapped out pages belong to the shmem object, and we can
792 		 * obtain the swap value much more efficiently. For private
793 		 * writable mappings, we might have COW pages that are
794 		 * not affected by the parent swapped out pages of the shmem
795 		 * object, so we have to distinguish them during the page walk.
796 		 * Unless we know that the shmem object (or the part mapped by
797 		 * our VMA) has no swapped out pages at all.
798 		 */
799 		unsigned long shmem_swapped = shmem_swap_usage(vma);
800 
801 		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
802 					!(vma->vm_flags & VM_WRITE)) {
803 			mss.swap = shmem_swapped;
804 		} else {
805 			mss.check_shmem_swap = true;
806 			smaps_walk.pte_hole = smaps_pte_hole;
807 		}
808 	}
809 #endif
810 
811 	/* mmap_sem is held in m_start */
812 	walk_page_vma(vma, &smaps_walk);
813 
814 	show_map_vma(m, vma, is_pid);
815 
816 	if (vma_get_anon_name(vma)) {
817 		seq_puts(m, "Name:           ");
818 		seq_print_vma_name(m, vma);
819 		seq_putc(m, '\n');
820 	}
821 
822 	seq_printf(m,
823 		   "Size:           %8lu kB\n"
824 		   "Rss:            %8lu kB\n"
825 		   "Pss:            %8lu kB\n"
826 		   "Shared_Clean:   %8lu kB\n"
827 		   "Shared_Dirty:   %8lu kB\n"
828 		   "Private_Clean:  %8lu kB\n"
829 		   "Private_Dirty:  %8lu kB\n"
830 		   "Referenced:     %8lu kB\n"
831 		   "Anonymous:      %8lu kB\n"
832 		   "AnonHugePages:  %8lu kB\n"
833 		   "ShmemPmdMapped: %8lu kB\n"
834 		   "Shared_Hugetlb: %8lu kB\n"
835 		   "Private_Hugetlb: %7lu kB\n"
836 		   "Swap:           %8lu kB\n"
837 		   "SwapPss:        %8lu kB\n"
838 		   "KernelPageSize: %8lu kB\n"
839 		   "MMUPageSize:    %8lu kB\n"
840 		   "Locked:         %8lu kB\n",
841 		   (vma->vm_end - vma->vm_start) >> 10,
842 		   mss.resident >> 10,
843 		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
844 		   mss.shared_clean  >> 10,
845 		   mss.shared_dirty  >> 10,
846 		   mss.private_clean >> 10,
847 		   mss.private_dirty >> 10,
848 		   mss.referenced >> 10,
849 		   mss.anonymous >> 10,
850 		   mss.anonymous_thp >> 10,
851 		   mss.shmem_thp >> 10,
852 		   mss.shared_hugetlb >> 10,
853 		   mss.private_hugetlb >> 10,
854 		   mss.swap >> 10,
855 		   (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
856 		   vma_kernel_pagesize(vma) >> 10,
857 		   vma_mmu_pagesize(vma) >> 10,
858 		   (vma->vm_flags & VM_LOCKED) ?
859 			(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
860 
861 	arch_show_smap(m, vma);
862 	show_smap_vma_flags(m, vma);
863 	m_cache_vma(m, vma);
864 	return 0;
865 }
866 
show_pid_smap(struct seq_file * m,void * v)867 static int show_pid_smap(struct seq_file *m, void *v)
868 {
869 	return show_smap(m, v, 1);
870 }
871 
show_tid_smap(struct seq_file * m,void * v)872 static int show_tid_smap(struct seq_file *m, void *v)
873 {
874 	return show_smap(m, v, 0);
875 }
876 
877 static const struct seq_operations proc_pid_smaps_op = {
878 	.start	= m_start,
879 	.next	= m_next,
880 	.stop	= m_stop,
881 	.show	= show_pid_smap
882 };
883 
884 static const struct seq_operations proc_tid_smaps_op = {
885 	.start	= m_start,
886 	.next	= m_next,
887 	.stop	= m_stop,
888 	.show	= show_tid_smap
889 };
890 
pid_smaps_open(struct inode * inode,struct file * file)891 static int pid_smaps_open(struct inode *inode, struct file *file)
892 {
893 	return do_maps_open(inode, file, &proc_pid_smaps_op);
894 }
895 
tid_smaps_open(struct inode * inode,struct file * file)896 static int tid_smaps_open(struct inode *inode, struct file *file)
897 {
898 	return do_maps_open(inode, file, &proc_tid_smaps_op);
899 }
900 
901 const struct file_operations proc_pid_smaps_operations = {
902 	.open		= pid_smaps_open,
903 	.read		= seq_read,
904 	.llseek		= seq_lseek,
905 	.release	= proc_map_release,
906 };
907 
908 const struct file_operations proc_tid_smaps_operations = {
909 	.open		= tid_smaps_open,
910 	.read		= seq_read,
911 	.llseek		= seq_lseek,
912 	.release	= proc_map_release,
913 };
914 
915 enum clear_refs_types {
916 	CLEAR_REFS_ALL = 1,
917 	CLEAR_REFS_ANON,
918 	CLEAR_REFS_MAPPED,
919 	CLEAR_REFS_SOFT_DIRTY,
920 	CLEAR_REFS_MM_HIWATER_RSS,
921 	CLEAR_REFS_LAST,
922 };
923 
924 struct clear_refs_private {
925 	enum clear_refs_types type;
926 };
927 
928 #ifdef CONFIG_MEM_SOFT_DIRTY
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)929 static inline void clear_soft_dirty(struct vm_area_struct *vma,
930 		unsigned long addr, pte_t *pte)
931 {
932 	/*
933 	 * The soft-dirty tracker uses #PF-s to catch writes
934 	 * to pages, so write-protect the pte as well. See the
935 	 * Documentation/vm/soft-dirty.txt for full description
936 	 * of how soft-dirty works.
937 	 */
938 	pte_t ptent = *pte;
939 
940 	if (pte_present(ptent)) {
941 		ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
942 		ptent = pte_wrprotect(ptent);
943 		ptent = pte_clear_soft_dirty(ptent);
944 		ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
945 	} else if (is_swap_pte(ptent)) {
946 		ptent = pte_swp_clear_soft_dirty(ptent);
947 		set_pte_at(vma->vm_mm, addr, pte, ptent);
948 	}
949 }
950 #else
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)951 static inline void clear_soft_dirty(struct vm_area_struct *vma,
952 		unsigned long addr, pte_t *pte)
953 {
954 }
955 #endif
956 
957 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)958 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
959 		unsigned long addr, pmd_t *pmdp)
960 {
961 	pmd_t pmd = *pmdp;
962 
963 	/* See comment in change_huge_pmd() */
964 	pmdp_invalidate(vma, addr, pmdp);
965 	if (pmd_dirty(*pmdp))
966 		pmd = pmd_mkdirty(pmd);
967 	if (pmd_young(*pmdp))
968 		pmd = pmd_mkyoung(pmd);
969 
970 	pmd = pmd_wrprotect(pmd);
971 	pmd = pmd_clear_soft_dirty(pmd);
972 
973 	set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
974 }
975 #else
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)976 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
977 		unsigned long addr, pmd_t *pmdp)
978 {
979 }
980 #endif
981 
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)982 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
983 				unsigned long end, struct mm_walk *walk)
984 {
985 	struct clear_refs_private *cp = walk->private;
986 	struct vm_area_struct *vma = walk->vma;
987 	pte_t *pte, ptent;
988 	spinlock_t *ptl;
989 	struct page *page;
990 
991 	ptl = pmd_trans_huge_lock(pmd, vma);
992 	if (ptl) {
993 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
994 			clear_soft_dirty_pmd(vma, addr, pmd);
995 			goto out;
996 		}
997 
998 		page = pmd_page(*pmd);
999 
1000 		/* Clear accessed and referenced bits. */
1001 		pmdp_test_and_clear_young(vma, addr, pmd);
1002 		test_and_clear_page_young(page);
1003 		ClearPageReferenced(page);
1004 out:
1005 		spin_unlock(ptl);
1006 		return 0;
1007 	}
1008 
1009 	if (pmd_trans_unstable(pmd))
1010 		return 0;
1011 
1012 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1013 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1014 		ptent = *pte;
1015 
1016 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1017 			clear_soft_dirty(vma, addr, pte);
1018 			continue;
1019 		}
1020 
1021 		if (!pte_present(ptent))
1022 			continue;
1023 
1024 		page = vm_normal_page(vma, addr, ptent);
1025 		if (!page)
1026 			continue;
1027 
1028 		/* Clear accessed and referenced bits. */
1029 		ptep_test_and_clear_young(vma, addr, pte);
1030 		test_and_clear_page_young(page);
1031 		ClearPageReferenced(page);
1032 	}
1033 	pte_unmap_unlock(pte - 1, ptl);
1034 	cond_resched();
1035 	return 0;
1036 }
1037 
clear_refs_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)1038 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1039 				struct mm_walk *walk)
1040 {
1041 	struct clear_refs_private *cp = walk->private;
1042 	struct vm_area_struct *vma = walk->vma;
1043 
1044 	if (vma->vm_flags & VM_PFNMAP)
1045 		return 1;
1046 
1047 	/*
1048 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1049 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1050 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1051 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1052 	 */
1053 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1054 		return 1;
1055 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1056 		return 1;
1057 	return 0;
1058 }
1059 
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1060 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1061 				size_t count, loff_t *ppos)
1062 {
1063 	struct task_struct *task;
1064 	char buffer[PROC_NUMBUF];
1065 	struct mm_struct *mm;
1066 	struct vm_area_struct *vma;
1067 	enum clear_refs_types type;
1068 	int itype;
1069 	int rv;
1070 
1071 	memset(buffer, 0, sizeof(buffer));
1072 	if (count > sizeof(buffer) - 1)
1073 		count = sizeof(buffer) - 1;
1074 	if (copy_from_user(buffer, buf, count))
1075 		return -EFAULT;
1076 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1077 	if (rv < 0)
1078 		return rv;
1079 	type = (enum clear_refs_types)itype;
1080 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1081 		return -EINVAL;
1082 
1083 	task = get_proc_task(file_inode(file));
1084 	if (!task)
1085 		return -ESRCH;
1086 	mm = get_task_mm(task);
1087 	if (mm) {
1088 		struct clear_refs_private cp = {
1089 			.type = type,
1090 		};
1091 		struct mm_walk clear_refs_walk = {
1092 			.pmd_entry = clear_refs_pte_range,
1093 			.test_walk = clear_refs_test_walk,
1094 			.mm = mm,
1095 			.private = &cp,
1096 		};
1097 
1098 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1099 			if (down_write_killable(&mm->mmap_sem)) {
1100 				count = -EINTR;
1101 				goto out_mm;
1102 			}
1103 
1104 			/*
1105 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1106 			 * resident set size to this mm's current rss value.
1107 			 */
1108 			reset_mm_hiwater_rss(mm);
1109 			up_write(&mm->mmap_sem);
1110 			goto out_mm;
1111 		}
1112 
1113 		down_read(&mm->mmap_sem);
1114 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1115 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1116 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1117 					continue;
1118 				up_read(&mm->mmap_sem);
1119 				if (down_write_killable(&mm->mmap_sem)) {
1120 					count = -EINTR;
1121 					goto out_mm;
1122 				}
1123 				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1124 					vma->vm_flags &= ~VM_SOFTDIRTY;
1125 					vma_set_page_prot(vma);
1126 				}
1127 				downgrade_write(&mm->mmap_sem);
1128 				break;
1129 			}
1130 			mmu_notifier_invalidate_range_start(mm, 0, -1);
1131 		}
1132 		walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1133 		if (type == CLEAR_REFS_SOFT_DIRTY)
1134 			mmu_notifier_invalidate_range_end(mm, 0, -1);
1135 		flush_tlb_mm(mm);
1136 		up_read(&mm->mmap_sem);
1137 out_mm:
1138 		mmput(mm);
1139 	}
1140 	put_task_struct(task);
1141 
1142 	return count;
1143 }
1144 
1145 const struct file_operations proc_clear_refs_operations = {
1146 	.write		= clear_refs_write,
1147 	.llseek		= noop_llseek,
1148 };
1149 
1150 typedef struct {
1151 	u64 pme;
1152 } pagemap_entry_t;
1153 
1154 struct pagemapread {
1155 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1156 	pagemap_entry_t *buffer;
1157 	bool show_pfn;
1158 };
1159 
1160 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1161 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1162 
1163 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1164 #define PM_PFRAME_BITS		55
1165 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1166 #define PM_SOFT_DIRTY		BIT_ULL(55)
1167 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1168 #define PM_FILE			BIT_ULL(61)
1169 #define PM_SWAP			BIT_ULL(62)
1170 #define PM_PRESENT		BIT_ULL(63)
1171 
1172 #define PM_END_OF_BUFFER    1
1173 
make_pme(u64 frame,u64 flags)1174 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1175 {
1176 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1177 }
1178 
add_to_pagemap(unsigned long addr,pagemap_entry_t * pme,struct pagemapread * pm)1179 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1180 			  struct pagemapread *pm)
1181 {
1182 	pm->buffer[pm->pos++] = *pme;
1183 	if (pm->pos >= pm->len)
1184 		return PM_END_OF_BUFFER;
1185 	return 0;
1186 }
1187 
pagemap_pte_hole(unsigned long start,unsigned long end,struct mm_walk * walk)1188 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1189 				struct mm_walk *walk)
1190 {
1191 	struct pagemapread *pm = walk->private;
1192 	unsigned long addr = start;
1193 	int err = 0;
1194 
1195 	while (addr < end) {
1196 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1197 		pagemap_entry_t pme = make_pme(0, 0);
1198 		/* End of address space hole, which we mark as non-present. */
1199 		unsigned long hole_end;
1200 
1201 		if (vma)
1202 			hole_end = min(end, vma->vm_start);
1203 		else
1204 			hole_end = end;
1205 
1206 		for (; addr < hole_end; addr += PAGE_SIZE) {
1207 			err = add_to_pagemap(addr, &pme, pm);
1208 			if (err)
1209 				goto out;
1210 		}
1211 
1212 		if (!vma)
1213 			break;
1214 
1215 		/* Addresses in the VMA. */
1216 		if (vma->vm_flags & VM_SOFTDIRTY)
1217 			pme = make_pme(0, PM_SOFT_DIRTY);
1218 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1219 			err = add_to_pagemap(addr, &pme, pm);
1220 			if (err)
1221 				goto out;
1222 		}
1223 	}
1224 out:
1225 	return err;
1226 }
1227 
pte_to_pagemap_entry(struct pagemapread * pm,struct vm_area_struct * vma,unsigned long addr,pte_t pte)1228 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1229 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1230 {
1231 	u64 frame = 0, flags = 0;
1232 	struct page *page = NULL;
1233 
1234 	if (pte_present(pte)) {
1235 		if (pm->show_pfn)
1236 			frame = pte_pfn(pte);
1237 		flags |= PM_PRESENT;
1238 		page = vm_normal_page(vma, addr, pte);
1239 		if (pte_soft_dirty(pte))
1240 			flags |= PM_SOFT_DIRTY;
1241 	} else if (is_swap_pte(pte)) {
1242 		swp_entry_t entry;
1243 		if (pte_swp_soft_dirty(pte))
1244 			flags |= PM_SOFT_DIRTY;
1245 		entry = pte_to_swp_entry(pte);
1246 		frame = swp_type(entry) |
1247 			(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1248 		flags |= PM_SWAP;
1249 		if (is_migration_entry(entry))
1250 			page = migration_entry_to_page(entry);
1251 	}
1252 
1253 	if (page && !PageAnon(page))
1254 		flags |= PM_FILE;
1255 	if (page && page_mapcount(page) == 1)
1256 		flags |= PM_MMAP_EXCLUSIVE;
1257 	if (vma->vm_flags & VM_SOFTDIRTY)
1258 		flags |= PM_SOFT_DIRTY;
1259 
1260 	return make_pme(frame, flags);
1261 }
1262 
pagemap_pmd_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)1263 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1264 			     struct mm_walk *walk)
1265 {
1266 	struct vm_area_struct *vma = walk->vma;
1267 	struct pagemapread *pm = walk->private;
1268 	spinlock_t *ptl;
1269 	pte_t *pte, *orig_pte;
1270 	int err = 0;
1271 
1272 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1273 	ptl = pmd_trans_huge_lock(pmdp, vma);
1274 	if (ptl) {
1275 		u64 flags = 0, frame = 0;
1276 		pmd_t pmd = *pmdp;
1277 
1278 		if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1279 			flags |= PM_SOFT_DIRTY;
1280 
1281 		/*
1282 		 * Currently pmd for thp is always present because thp
1283 		 * can not be swapped-out, migrated, or HWPOISONed
1284 		 * (split in such cases instead.)
1285 		 * This if-check is just to prepare for future implementation.
1286 		 */
1287 		if (pmd_present(pmd)) {
1288 			struct page *page = pmd_page(pmd);
1289 
1290 			if (page_mapcount(page) == 1)
1291 				flags |= PM_MMAP_EXCLUSIVE;
1292 
1293 			flags |= PM_PRESENT;
1294 			if (pm->show_pfn)
1295 				frame = pmd_pfn(pmd) +
1296 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1297 		}
1298 
1299 		for (; addr != end; addr += PAGE_SIZE) {
1300 			pagemap_entry_t pme = make_pme(frame, flags);
1301 
1302 			err = add_to_pagemap(addr, &pme, pm);
1303 			if (err)
1304 				break;
1305 			if (pm->show_pfn && (flags & PM_PRESENT))
1306 				frame++;
1307 		}
1308 		spin_unlock(ptl);
1309 		return err;
1310 	}
1311 
1312 	if (pmd_trans_unstable(pmdp))
1313 		return 0;
1314 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1315 
1316 	/*
1317 	 * We can assume that @vma always points to a valid one and @end never
1318 	 * goes beyond vma->vm_end.
1319 	 */
1320 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1321 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1322 		pagemap_entry_t pme;
1323 
1324 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1325 		err = add_to_pagemap(addr, &pme, pm);
1326 		if (err)
1327 			break;
1328 	}
1329 	pte_unmap_unlock(orig_pte, ptl);
1330 
1331 	cond_resched();
1332 
1333 	return err;
1334 }
1335 
1336 #ifdef CONFIG_HUGETLB_PAGE
1337 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1338 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1339 				 unsigned long addr, unsigned long end,
1340 				 struct mm_walk *walk)
1341 {
1342 	struct pagemapread *pm = walk->private;
1343 	struct vm_area_struct *vma = walk->vma;
1344 	u64 flags = 0, frame = 0;
1345 	int err = 0;
1346 	pte_t pte;
1347 
1348 	if (vma->vm_flags & VM_SOFTDIRTY)
1349 		flags |= PM_SOFT_DIRTY;
1350 
1351 	pte = huge_ptep_get(ptep);
1352 	if (pte_present(pte)) {
1353 		struct page *page = pte_page(pte);
1354 
1355 		if (!PageAnon(page))
1356 			flags |= PM_FILE;
1357 
1358 		if (page_mapcount(page) == 1)
1359 			flags |= PM_MMAP_EXCLUSIVE;
1360 
1361 		flags |= PM_PRESENT;
1362 		if (pm->show_pfn)
1363 			frame = pte_pfn(pte) +
1364 				((addr & ~hmask) >> PAGE_SHIFT);
1365 	}
1366 
1367 	for (; addr != end; addr += PAGE_SIZE) {
1368 		pagemap_entry_t pme = make_pme(frame, flags);
1369 
1370 		err = add_to_pagemap(addr, &pme, pm);
1371 		if (err)
1372 			return err;
1373 		if (pm->show_pfn && (flags & PM_PRESENT))
1374 			frame++;
1375 	}
1376 
1377 	cond_resched();
1378 
1379 	return err;
1380 }
1381 #endif /* HUGETLB_PAGE */
1382 
1383 /*
1384  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1385  *
1386  * For each page in the address space, this file contains one 64-bit entry
1387  * consisting of the following:
1388  *
1389  * Bits 0-54  page frame number (PFN) if present
1390  * Bits 0-4   swap type if swapped
1391  * Bits 5-54  swap offset if swapped
1392  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1393  * Bit  56    page exclusively mapped
1394  * Bits 57-60 zero
1395  * Bit  61    page is file-page or shared-anon
1396  * Bit  62    page swapped
1397  * Bit  63    page present
1398  *
1399  * If the page is not present but in swap, then the PFN contains an
1400  * encoding of the swap file number and the page's offset into the
1401  * swap. Unmapped pages return a null PFN. This allows determining
1402  * precisely which pages are mapped (or in swap) and comparing mapped
1403  * pages between processes.
1404  *
1405  * Efficient users of this interface will use /proc/pid/maps to
1406  * determine which areas of memory are actually mapped and llseek to
1407  * skip over unmapped regions.
1408  */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1409 static ssize_t pagemap_read(struct file *file, char __user *buf,
1410 			    size_t count, loff_t *ppos)
1411 {
1412 	struct mm_struct *mm = file->private_data;
1413 	struct pagemapread pm;
1414 	struct mm_walk pagemap_walk = {};
1415 	unsigned long src;
1416 	unsigned long svpfn;
1417 	unsigned long start_vaddr;
1418 	unsigned long end_vaddr;
1419 	int ret = 0, copied = 0;
1420 
1421 	if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1422 		goto out;
1423 
1424 	ret = -EINVAL;
1425 	/* file position must be aligned */
1426 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1427 		goto out_mm;
1428 
1429 	ret = 0;
1430 	if (!count)
1431 		goto out_mm;
1432 
1433 	/* do not disclose physical addresses: attack vector */
1434 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1435 
1436 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1437 	pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1438 	ret = -ENOMEM;
1439 	if (!pm.buffer)
1440 		goto out_mm;
1441 
1442 	pagemap_walk.pmd_entry = pagemap_pmd_range;
1443 	pagemap_walk.pte_hole = pagemap_pte_hole;
1444 #ifdef CONFIG_HUGETLB_PAGE
1445 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1446 #endif
1447 	pagemap_walk.mm = mm;
1448 	pagemap_walk.private = &pm;
1449 
1450 	src = *ppos;
1451 	svpfn = src / PM_ENTRY_BYTES;
1452 	start_vaddr = svpfn << PAGE_SHIFT;
1453 	end_vaddr = mm->task_size;
1454 
1455 	/* watch out for wraparound */
1456 	if (svpfn > mm->task_size >> PAGE_SHIFT)
1457 		start_vaddr = end_vaddr;
1458 
1459 	/*
1460 	 * The odds are that this will stop walking way
1461 	 * before end_vaddr, because the length of the
1462 	 * user buffer is tracked in "pm", and the walk
1463 	 * will stop when we hit the end of the buffer.
1464 	 */
1465 	ret = 0;
1466 	while (count && (start_vaddr < end_vaddr)) {
1467 		int len;
1468 		unsigned long end;
1469 
1470 		pm.pos = 0;
1471 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1472 		/* overflow ? */
1473 		if (end < start_vaddr || end > end_vaddr)
1474 			end = end_vaddr;
1475 		down_read(&mm->mmap_sem);
1476 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1477 		up_read(&mm->mmap_sem);
1478 		start_vaddr = end;
1479 
1480 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1481 		if (copy_to_user(buf, pm.buffer, len)) {
1482 			ret = -EFAULT;
1483 			goto out_free;
1484 		}
1485 		copied += len;
1486 		buf += len;
1487 		count -= len;
1488 	}
1489 	*ppos += copied;
1490 	if (!ret || ret == PM_END_OF_BUFFER)
1491 		ret = copied;
1492 
1493 out_free:
1494 	kfree(pm.buffer);
1495 out_mm:
1496 	mmput(mm);
1497 out:
1498 	return ret;
1499 }
1500 
pagemap_open(struct inode * inode,struct file * file)1501 static int pagemap_open(struct inode *inode, struct file *file)
1502 {
1503 	struct mm_struct *mm;
1504 
1505 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1506 	if (IS_ERR(mm))
1507 		return PTR_ERR(mm);
1508 	file->private_data = mm;
1509 	return 0;
1510 }
1511 
pagemap_release(struct inode * inode,struct file * file)1512 static int pagemap_release(struct inode *inode, struct file *file)
1513 {
1514 	struct mm_struct *mm = file->private_data;
1515 
1516 	if (mm)
1517 		mmdrop(mm);
1518 	return 0;
1519 }
1520 
1521 const struct file_operations proc_pagemap_operations = {
1522 	.llseek		= mem_lseek, /* borrow this */
1523 	.read		= pagemap_read,
1524 	.open		= pagemap_open,
1525 	.release	= pagemap_release,
1526 };
1527 #endif /* CONFIG_PROC_PAGE_MONITOR */
1528 
1529 #ifdef CONFIG_NUMA
1530 
1531 struct numa_maps {
1532 	unsigned long pages;
1533 	unsigned long anon;
1534 	unsigned long active;
1535 	unsigned long writeback;
1536 	unsigned long mapcount_max;
1537 	unsigned long dirty;
1538 	unsigned long swapcache;
1539 	unsigned long node[MAX_NUMNODES];
1540 };
1541 
1542 struct numa_maps_private {
1543 	struct proc_maps_private proc_maps;
1544 	struct numa_maps md;
1545 };
1546 
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)1547 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1548 			unsigned long nr_pages)
1549 {
1550 	int count = page_mapcount(page);
1551 
1552 	md->pages += nr_pages;
1553 	if (pte_dirty || PageDirty(page))
1554 		md->dirty += nr_pages;
1555 
1556 	if (PageSwapCache(page))
1557 		md->swapcache += nr_pages;
1558 
1559 	if (PageActive(page) || PageUnevictable(page))
1560 		md->active += nr_pages;
1561 
1562 	if (PageWriteback(page))
1563 		md->writeback += nr_pages;
1564 
1565 	if (PageAnon(page))
1566 		md->anon += nr_pages;
1567 
1568 	if (count > md->mapcount_max)
1569 		md->mapcount_max = count;
1570 
1571 	md->node[page_to_nid(page)] += nr_pages;
1572 }
1573 
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)1574 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1575 		unsigned long addr)
1576 {
1577 	struct page *page;
1578 	int nid;
1579 
1580 	if (!pte_present(pte))
1581 		return NULL;
1582 
1583 	page = vm_normal_page(vma, addr, pte);
1584 	if (!page)
1585 		return NULL;
1586 
1587 	if (PageReserved(page))
1588 		return NULL;
1589 
1590 	nid = page_to_nid(page);
1591 	if (!node_isset(nid, node_states[N_MEMORY]))
1592 		return NULL;
1593 
1594 	return page;
1595 }
1596 
1597 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)1598 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1599 					      struct vm_area_struct *vma,
1600 					      unsigned long addr)
1601 {
1602 	struct page *page;
1603 	int nid;
1604 
1605 	if (!pmd_present(pmd))
1606 		return NULL;
1607 
1608 	page = vm_normal_page_pmd(vma, addr, pmd);
1609 	if (!page)
1610 		return NULL;
1611 
1612 	if (PageReserved(page))
1613 		return NULL;
1614 
1615 	nid = page_to_nid(page);
1616 	if (!node_isset(nid, node_states[N_MEMORY]))
1617 		return NULL;
1618 
1619 	return page;
1620 }
1621 #endif
1622 
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1623 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1624 		unsigned long end, struct mm_walk *walk)
1625 {
1626 	struct numa_maps *md = walk->private;
1627 	struct vm_area_struct *vma = walk->vma;
1628 	spinlock_t *ptl;
1629 	pte_t *orig_pte;
1630 	pte_t *pte;
1631 
1632 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1633 	ptl = pmd_trans_huge_lock(pmd, vma);
1634 	if (ptl) {
1635 		struct page *page;
1636 
1637 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1638 		if (page)
1639 			gather_stats(page, md, pmd_dirty(*pmd),
1640 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1641 		spin_unlock(ptl);
1642 		return 0;
1643 	}
1644 
1645 	if (pmd_trans_unstable(pmd))
1646 		return 0;
1647 #endif
1648 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1649 	do {
1650 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1651 		if (!page)
1652 			continue;
1653 		gather_stats(page, md, pte_dirty(*pte), 1);
1654 
1655 	} while (pte++, addr += PAGE_SIZE, addr != end);
1656 	pte_unmap_unlock(orig_pte, ptl);
1657 	return 0;
1658 }
1659 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1660 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1661 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1662 {
1663 	pte_t huge_pte = huge_ptep_get(pte);
1664 	struct numa_maps *md;
1665 	struct page *page;
1666 
1667 	if (!pte_present(huge_pte))
1668 		return 0;
1669 
1670 	page = pte_page(huge_pte);
1671 	if (!page)
1672 		return 0;
1673 
1674 	md = walk->private;
1675 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1676 	return 0;
1677 }
1678 
1679 #else
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1680 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1681 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1682 {
1683 	return 0;
1684 }
1685 #endif
1686 
1687 /*
1688  * Display pages allocated per node and memory policy via /proc.
1689  */
show_numa_map(struct seq_file * m,void * v,int is_pid)1690 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1691 {
1692 	struct numa_maps_private *numa_priv = m->private;
1693 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1694 	struct vm_area_struct *vma = v;
1695 	struct numa_maps *md = &numa_priv->md;
1696 	struct file *file = vma->vm_file;
1697 	struct mm_struct *mm = vma->vm_mm;
1698 	struct mm_walk walk = {
1699 		.hugetlb_entry = gather_hugetlb_stats,
1700 		.pmd_entry = gather_pte_stats,
1701 		.private = md,
1702 		.mm = mm,
1703 	};
1704 	struct mempolicy *pol;
1705 	char buffer[64];
1706 	int nid;
1707 
1708 	if (!mm)
1709 		return 0;
1710 
1711 	/* Ensure we start with an empty set of numa_maps statistics. */
1712 	memset(md, 0, sizeof(*md));
1713 
1714 	pol = __get_vma_policy(vma, vma->vm_start);
1715 	if (pol) {
1716 		mpol_to_str(buffer, sizeof(buffer), pol);
1717 		mpol_cond_put(pol);
1718 	} else {
1719 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1720 	}
1721 
1722 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1723 
1724 	if (file) {
1725 		seq_puts(m, " file=");
1726 		seq_file_path(m, file, "\n\t= ");
1727 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1728 		seq_puts(m, " heap");
1729 	} else if (is_stack(proc_priv, vma)) {
1730 		seq_puts(m, " stack");
1731 	}
1732 
1733 	if (is_vm_hugetlb_page(vma))
1734 		seq_puts(m, " huge");
1735 
1736 	/* mmap_sem is held by m_start */
1737 	walk_page_vma(vma, &walk);
1738 
1739 	if (!md->pages)
1740 		goto out;
1741 
1742 	if (md->anon)
1743 		seq_printf(m, " anon=%lu", md->anon);
1744 
1745 	if (md->dirty)
1746 		seq_printf(m, " dirty=%lu", md->dirty);
1747 
1748 	if (md->pages != md->anon && md->pages != md->dirty)
1749 		seq_printf(m, " mapped=%lu", md->pages);
1750 
1751 	if (md->mapcount_max > 1)
1752 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1753 
1754 	if (md->swapcache)
1755 		seq_printf(m, " swapcache=%lu", md->swapcache);
1756 
1757 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1758 		seq_printf(m, " active=%lu", md->active);
1759 
1760 	if (md->writeback)
1761 		seq_printf(m, " writeback=%lu", md->writeback);
1762 
1763 	for_each_node_state(nid, N_MEMORY)
1764 		if (md->node[nid])
1765 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1766 
1767 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1768 out:
1769 	seq_putc(m, '\n');
1770 	m_cache_vma(m, vma);
1771 	return 0;
1772 }
1773 
show_pid_numa_map(struct seq_file * m,void * v)1774 static int show_pid_numa_map(struct seq_file *m, void *v)
1775 {
1776 	return show_numa_map(m, v, 1);
1777 }
1778 
show_tid_numa_map(struct seq_file * m,void * v)1779 static int show_tid_numa_map(struct seq_file *m, void *v)
1780 {
1781 	return show_numa_map(m, v, 0);
1782 }
1783 
1784 static const struct seq_operations proc_pid_numa_maps_op = {
1785 	.start  = m_start,
1786 	.next   = m_next,
1787 	.stop   = m_stop,
1788 	.show   = show_pid_numa_map,
1789 };
1790 
1791 static const struct seq_operations proc_tid_numa_maps_op = {
1792 	.start  = m_start,
1793 	.next   = m_next,
1794 	.stop   = m_stop,
1795 	.show   = show_tid_numa_map,
1796 };
1797 
numa_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)1798 static int numa_maps_open(struct inode *inode, struct file *file,
1799 			  const struct seq_operations *ops)
1800 {
1801 	return proc_maps_open(inode, file, ops,
1802 				sizeof(struct numa_maps_private));
1803 }
1804 
pid_numa_maps_open(struct inode * inode,struct file * file)1805 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1806 {
1807 	return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1808 }
1809 
tid_numa_maps_open(struct inode * inode,struct file * file)1810 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1811 {
1812 	return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1813 }
1814 
1815 const struct file_operations proc_pid_numa_maps_operations = {
1816 	.open		= pid_numa_maps_open,
1817 	.read		= seq_read,
1818 	.llseek		= seq_lseek,
1819 	.release	= proc_map_release,
1820 };
1821 
1822 const struct file_operations proc_tid_numa_maps_operations = {
1823 	.open		= tid_numa_maps_open,
1824 	.read		= seq_read,
1825 	.llseek		= seq_lseek,
1826 	.release	= proc_map_release,
1827 };
1828 #endif /* CONFIG_NUMA */
1829