1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17 #include <linux/shmem_fs.h>
18
19 #include <asm/elf.h>
20 #include <asm/uaccess.h>
21 #include <asm/tlbflush.h>
22 #include "internal.h"
23
task_mem(struct seq_file * m,struct mm_struct * mm)24 void task_mem(struct seq_file *m, struct mm_struct *mm)
25 {
26 unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
27 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
28
29 anon = get_mm_counter(mm, MM_ANONPAGES);
30 file = get_mm_counter(mm, MM_FILEPAGES);
31 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
32
33 /*
34 * Note: to minimize their overhead, mm maintains hiwater_vm and
35 * hiwater_rss only when about to *lower* total_vm or rss. Any
36 * collector of these hiwater stats must therefore get total_vm
37 * and rss too, which will usually be the higher. Barriers? not
38 * worth the effort, such snapshots can always be inconsistent.
39 */
40 hiwater_vm = total_vm = mm->total_vm;
41 if (hiwater_vm < mm->hiwater_vm)
42 hiwater_vm = mm->hiwater_vm;
43 hiwater_rss = total_rss = anon + file + shmem;
44 if (hiwater_rss < mm->hiwater_rss)
45 hiwater_rss = mm->hiwater_rss;
46
47 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
48 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
49 swap = get_mm_counter(mm, MM_SWAPENTS);
50 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
51 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
52 seq_printf(m,
53 "VmPeak:\t%8lu kB\n"
54 "VmSize:\t%8lu kB\n"
55 "VmLck:\t%8lu kB\n"
56 "VmPin:\t%8lu kB\n"
57 "VmHWM:\t%8lu kB\n"
58 "VmRSS:\t%8lu kB\n"
59 "RssAnon:\t%8lu kB\n"
60 "RssFile:\t%8lu kB\n"
61 "RssShmem:\t%8lu kB\n"
62 "VmData:\t%8lu kB\n"
63 "VmStk:\t%8lu kB\n"
64 "VmExe:\t%8lu kB\n"
65 "VmLib:\t%8lu kB\n"
66 "VmPTE:\t%8lu kB\n"
67 "VmPMD:\t%8lu kB\n"
68 "VmSwap:\t%8lu kB\n",
69 hiwater_vm << (PAGE_SHIFT-10),
70 total_vm << (PAGE_SHIFT-10),
71 mm->locked_vm << (PAGE_SHIFT-10),
72 mm->pinned_vm << (PAGE_SHIFT-10),
73 hiwater_rss << (PAGE_SHIFT-10),
74 total_rss << (PAGE_SHIFT-10),
75 anon << (PAGE_SHIFT-10),
76 file << (PAGE_SHIFT-10),
77 shmem << (PAGE_SHIFT-10),
78 mm->data_vm << (PAGE_SHIFT-10),
79 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
80 ptes >> 10,
81 pmds >> 10,
82 swap << (PAGE_SHIFT-10));
83 hugetlb_report_usage(m, mm);
84 }
85
task_vsize(struct mm_struct * mm)86 unsigned long task_vsize(struct mm_struct *mm)
87 {
88 return PAGE_SIZE * mm->total_vm;
89 }
90
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)91 unsigned long task_statm(struct mm_struct *mm,
92 unsigned long *shared, unsigned long *text,
93 unsigned long *data, unsigned long *resident)
94 {
95 *shared = get_mm_counter(mm, MM_FILEPAGES) +
96 get_mm_counter(mm, MM_SHMEMPAGES);
97 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98 >> PAGE_SHIFT;
99 *data = mm->data_vm + mm->stack_vm;
100 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101 return mm->total_vm;
102 }
103
104 #ifdef CONFIG_NUMA
105 /*
106 * Save get_task_policy() for show_numa_map().
107 */
hold_task_mempolicy(struct proc_maps_private * priv)108 static void hold_task_mempolicy(struct proc_maps_private *priv)
109 {
110 struct task_struct *task = priv->task;
111
112 task_lock(task);
113 priv->task_mempolicy = get_task_policy(task);
114 mpol_get(priv->task_mempolicy);
115 task_unlock(task);
116 }
release_task_mempolicy(struct proc_maps_private * priv)117 static void release_task_mempolicy(struct proc_maps_private *priv)
118 {
119 mpol_put(priv->task_mempolicy);
120 }
121 #else
hold_task_mempolicy(struct proc_maps_private * priv)122 static void hold_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
release_task_mempolicy(struct proc_maps_private * priv)125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
128 #endif
129
seq_print_vma_name(struct seq_file * m,struct vm_area_struct * vma)130 static void seq_print_vma_name(struct seq_file *m, struct vm_area_struct *vma)
131 {
132 const char __user *name = vma_get_anon_name(vma);
133 struct mm_struct *mm = vma->vm_mm;
134
135 unsigned long page_start_vaddr;
136 unsigned long page_offset;
137 unsigned long num_pages;
138 unsigned long max_len = NAME_MAX;
139 int i;
140
141 page_start_vaddr = (unsigned long)name & PAGE_MASK;
142 page_offset = (unsigned long)name - page_start_vaddr;
143 num_pages = DIV_ROUND_UP(page_offset + max_len, PAGE_SIZE);
144
145 seq_puts(m, "[anon:");
146
147 for (i = 0; i < num_pages; i++) {
148 int len;
149 int write_len;
150 const char *kaddr;
151 long pages_pinned;
152 struct page *page;
153
154 pages_pinned = get_user_pages_remote(current, mm,
155 page_start_vaddr, 1, 0, &page, NULL);
156 if (pages_pinned < 1) {
157 seq_puts(m, "<fault>]");
158 return;
159 }
160
161 kaddr = (const char *)kmap(page);
162 len = min(max_len, PAGE_SIZE - page_offset);
163 write_len = strnlen(kaddr + page_offset, len);
164 seq_write(m, kaddr + page_offset, write_len);
165 kunmap(page);
166 put_page(page);
167
168 /* if strnlen hit a null terminator then we're done */
169 if (write_len != len)
170 break;
171
172 max_len -= len;
173 page_offset = 0;
174 page_start_vaddr += PAGE_SIZE;
175 }
176
177 seq_putc(m, ']');
178 }
179
vma_stop(struct proc_maps_private * priv)180 static void vma_stop(struct proc_maps_private *priv)
181 {
182 struct mm_struct *mm = priv->mm;
183
184 release_task_mempolicy(priv);
185 up_read(&mm->mmap_sem);
186 mmput(mm);
187 }
188
189 static struct vm_area_struct *
m_next_vma(struct proc_maps_private * priv,struct vm_area_struct * vma)190 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
191 {
192 if (vma == priv->tail_vma)
193 return NULL;
194 return vma->vm_next ?: priv->tail_vma;
195 }
196
m_cache_vma(struct seq_file * m,struct vm_area_struct * vma)197 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
198 {
199 if (m->count < m->size) /* vma is copied successfully */
200 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
201 }
202
m_start(struct seq_file * m,loff_t * ppos)203 static void *m_start(struct seq_file *m, loff_t *ppos)
204 {
205 struct proc_maps_private *priv = m->private;
206 unsigned long last_addr = m->version;
207 struct mm_struct *mm;
208 struct vm_area_struct *vma;
209 unsigned int pos = *ppos;
210
211 /* See m_cache_vma(). Zero at the start or after lseek. */
212 if (last_addr == -1UL)
213 return NULL;
214
215 priv->task = get_proc_task(priv->inode);
216 if (!priv->task)
217 return ERR_PTR(-ESRCH);
218
219 mm = priv->mm;
220 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
221 return NULL;
222
223 down_read(&mm->mmap_sem);
224 hold_task_mempolicy(priv);
225 priv->tail_vma = get_gate_vma(mm);
226
227 if (last_addr) {
228 vma = find_vma(mm, last_addr - 1);
229 if (vma && vma->vm_start <= last_addr)
230 vma = m_next_vma(priv, vma);
231 if (vma)
232 return vma;
233 }
234
235 m->version = 0;
236 if (pos < mm->map_count) {
237 for (vma = mm->mmap; pos; pos--) {
238 m->version = vma->vm_start;
239 vma = vma->vm_next;
240 }
241 return vma;
242 }
243
244 /* we do not bother to update m->version in this case */
245 if (pos == mm->map_count && priv->tail_vma)
246 return priv->tail_vma;
247
248 vma_stop(priv);
249 return NULL;
250 }
251
m_next(struct seq_file * m,void * v,loff_t * pos)252 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
253 {
254 struct proc_maps_private *priv = m->private;
255 struct vm_area_struct *next;
256
257 (*pos)++;
258 next = m_next_vma(priv, v);
259 if (!next)
260 vma_stop(priv);
261 return next;
262 }
263
m_stop(struct seq_file * m,void * v)264 static void m_stop(struct seq_file *m, void *v)
265 {
266 struct proc_maps_private *priv = m->private;
267
268 if (!IS_ERR_OR_NULL(v))
269 vma_stop(priv);
270 if (priv->task) {
271 put_task_struct(priv->task);
272 priv->task = NULL;
273 }
274 }
275
proc_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops,int psize)276 static int proc_maps_open(struct inode *inode, struct file *file,
277 const struct seq_operations *ops, int psize)
278 {
279 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
280
281 if (!priv)
282 return -ENOMEM;
283
284 priv->inode = inode;
285 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
286 if (IS_ERR(priv->mm)) {
287 int err = PTR_ERR(priv->mm);
288
289 seq_release_private(inode, file);
290 return err;
291 }
292
293 return 0;
294 }
295
proc_map_release(struct inode * inode,struct file * file)296 static int proc_map_release(struct inode *inode, struct file *file)
297 {
298 struct seq_file *seq = file->private_data;
299 struct proc_maps_private *priv = seq->private;
300
301 if (priv->mm)
302 mmdrop(priv->mm);
303
304 return seq_release_private(inode, file);
305 }
306
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)307 static int do_maps_open(struct inode *inode, struct file *file,
308 const struct seq_operations *ops)
309 {
310 return proc_maps_open(inode, file, ops,
311 sizeof(struct proc_maps_private));
312 }
313
314 /*
315 * Indicate if the VMA is a stack for the given task; for
316 * /proc/PID/maps that is the stack of the main task.
317 */
is_stack(struct proc_maps_private * priv,struct vm_area_struct * vma)318 static int is_stack(struct proc_maps_private *priv,
319 struct vm_area_struct *vma)
320 {
321 /*
322 * We make no effort to guess what a given thread considers to be
323 * its "stack". It's not even well-defined for programs written
324 * languages like Go.
325 */
326 return vma->vm_start <= vma->vm_mm->start_stack &&
327 vma->vm_end >= vma->vm_mm->start_stack;
328 }
329
330 static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma,int is_pid)331 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
332 {
333 struct mm_struct *mm = vma->vm_mm;
334 struct file *file = vma->vm_file;
335 struct proc_maps_private *priv = m->private;
336 vm_flags_t flags = vma->vm_flags;
337 unsigned long ino = 0;
338 unsigned long long pgoff = 0;
339 unsigned long start, end;
340 dev_t dev = 0;
341 const char *name = NULL;
342
343 if (file) {
344 struct inode *inode = file_inode(vma->vm_file);
345 dev = inode->i_sb->s_dev;
346 ino = inode->i_ino;
347 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
348 }
349
350 /* We don't show the stack guard page in /proc/maps */
351 start = vma->vm_start;
352 end = vma->vm_end;
353
354 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
355 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
356 start,
357 end,
358 flags & VM_READ ? 'r' : '-',
359 flags & VM_WRITE ? 'w' : '-',
360 flags & VM_EXEC ? 'x' : '-',
361 flags & VM_MAYSHARE ? 's' : 'p',
362 pgoff,
363 MAJOR(dev), MINOR(dev), ino);
364
365 /*
366 * Print the dentry name for named mappings, and a
367 * special [heap] marker for the heap:
368 */
369 if (file) {
370 seq_pad(m, ' ');
371 seq_file_path(m, file, "\n");
372 goto done;
373 }
374
375 if (vma->vm_ops && vma->vm_ops->name) {
376 name = vma->vm_ops->name(vma);
377 if (name)
378 goto done;
379 }
380
381 name = arch_vma_name(vma);
382 if (!name) {
383 if (!mm) {
384 name = "[vdso]";
385 goto done;
386 }
387
388 if (vma->vm_start <= mm->brk &&
389 vma->vm_end >= mm->start_brk) {
390 name = "[heap]";
391 goto done;
392 }
393
394 if (is_stack(priv, vma)) {
395 name = "[stack]";
396 goto done;
397 }
398
399 if (vma_get_anon_name(vma)) {
400 seq_pad(m, ' ');
401 seq_print_vma_name(m, vma);
402 }
403 }
404
405 done:
406 if (name) {
407 seq_pad(m, ' ');
408 seq_puts(m, name);
409 }
410 seq_putc(m, '\n');
411 }
412
show_map(struct seq_file * m,void * v,int is_pid)413 static int show_map(struct seq_file *m, void *v, int is_pid)
414 {
415 show_map_vma(m, v, is_pid);
416 m_cache_vma(m, v);
417 return 0;
418 }
419
show_pid_map(struct seq_file * m,void * v)420 static int show_pid_map(struct seq_file *m, void *v)
421 {
422 return show_map(m, v, 1);
423 }
424
show_tid_map(struct seq_file * m,void * v)425 static int show_tid_map(struct seq_file *m, void *v)
426 {
427 return show_map(m, v, 0);
428 }
429
430 static const struct seq_operations proc_pid_maps_op = {
431 .start = m_start,
432 .next = m_next,
433 .stop = m_stop,
434 .show = show_pid_map
435 };
436
437 static const struct seq_operations proc_tid_maps_op = {
438 .start = m_start,
439 .next = m_next,
440 .stop = m_stop,
441 .show = show_tid_map
442 };
443
pid_maps_open(struct inode * inode,struct file * file)444 static int pid_maps_open(struct inode *inode, struct file *file)
445 {
446 return do_maps_open(inode, file, &proc_pid_maps_op);
447 }
448
tid_maps_open(struct inode * inode,struct file * file)449 static int tid_maps_open(struct inode *inode, struct file *file)
450 {
451 return do_maps_open(inode, file, &proc_tid_maps_op);
452 }
453
454 const struct file_operations proc_pid_maps_operations = {
455 .open = pid_maps_open,
456 .read = seq_read,
457 .llseek = seq_lseek,
458 .release = proc_map_release,
459 };
460
461 const struct file_operations proc_tid_maps_operations = {
462 .open = tid_maps_open,
463 .read = seq_read,
464 .llseek = seq_lseek,
465 .release = proc_map_release,
466 };
467
468 /*
469 * Proportional Set Size(PSS): my share of RSS.
470 *
471 * PSS of a process is the count of pages it has in memory, where each
472 * page is divided by the number of processes sharing it. So if a
473 * process has 1000 pages all to itself, and 1000 shared with one other
474 * process, its PSS will be 1500.
475 *
476 * To keep (accumulated) division errors low, we adopt a 64bit
477 * fixed-point pss counter to minimize division errors. So (pss >>
478 * PSS_SHIFT) would be the real byte count.
479 *
480 * A shift of 12 before division means (assuming 4K page size):
481 * - 1M 3-user-pages add up to 8KB errors;
482 * - supports mapcount up to 2^24, or 16M;
483 * - supports PSS up to 2^52 bytes, or 4PB.
484 */
485 #define PSS_SHIFT 12
486
487 #ifdef CONFIG_PROC_PAGE_MONITOR
488 struct mem_size_stats {
489 unsigned long resident;
490 unsigned long shared_clean;
491 unsigned long shared_dirty;
492 unsigned long private_clean;
493 unsigned long private_dirty;
494 unsigned long referenced;
495 unsigned long anonymous;
496 unsigned long anonymous_thp;
497 unsigned long shmem_thp;
498 unsigned long swap;
499 unsigned long shared_hugetlb;
500 unsigned long private_hugetlb;
501 u64 pss;
502 u64 swap_pss;
503 bool check_shmem_swap;
504 };
505
smaps_account(struct mem_size_stats * mss,struct page * page,bool compound,bool young,bool dirty)506 static void smaps_account(struct mem_size_stats *mss, struct page *page,
507 bool compound, bool young, bool dirty)
508 {
509 int i, nr = compound ? 1 << compound_order(page) : 1;
510 unsigned long size = nr * PAGE_SIZE;
511
512 if (PageAnon(page))
513 mss->anonymous += size;
514
515 mss->resident += size;
516 /* Accumulate the size in pages that have been accessed. */
517 if (young || page_is_young(page) || PageReferenced(page))
518 mss->referenced += size;
519
520 /*
521 * page_count(page) == 1 guarantees the page is mapped exactly once.
522 * If any subpage of the compound page mapped with PTE it would elevate
523 * page_count().
524 */
525 if (page_count(page) == 1) {
526 if (dirty || PageDirty(page))
527 mss->private_dirty += size;
528 else
529 mss->private_clean += size;
530 mss->pss += (u64)size << PSS_SHIFT;
531 return;
532 }
533
534 for (i = 0; i < nr; i++, page++) {
535 int mapcount = page_mapcount(page);
536
537 if (mapcount >= 2) {
538 if (dirty || PageDirty(page))
539 mss->shared_dirty += PAGE_SIZE;
540 else
541 mss->shared_clean += PAGE_SIZE;
542 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
543 } else {
544 if (dirty || PageDirty(page))
545 mss->private_dirty += PAGE_SIZE;
546 else
547 mss->private_clean += PAGE_SIZE;
548 mss->pss += PAGE_SIZE << PSS_SHIFT;
549 }
550 }
551 }
552
553 #ifdef CONFIG_SHMEM
smaps_pte_hole(unsigned long addr,unsigned long end,struct mm_walk * walk)554 static int smaps_pte_hole(unsigned long addr, unsigned long end,
555 struct mm_walk *walk)
556 {
557 struct mem_size_stats *mss = walk->private;
558
559 mss->swap += shmem_partial_swap_usage(
560 walk->vma->vm_file->f_mapping, addr, end);
561
562 return 0;
563 }
564 #endif
565
smaps_pte_entry(pte_t * pte,unsigned long addr,struct mm_walk * walk)566 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
567 struct mm_walk *walk)
568 {
569 struct mem_size_stats *mss = walk->private;
570 struct vm_area_struct *vma = walk->vma;
571 struct page *page = NULL;
572
573 if (pte_present(*pte)) {
574 page = vm_normal_page(vma, addr, *pte);
575 } else if (is_swap_pte(*pte)) {
576 swp_entry_t swpent = pte_to_swp_entry(*pte);
577
578 if (!non_swap_entry(swpent)) {
579 int mapcount;
580
581 mss->swap += PAGE_SIZE;
582 mapcount = swp_swapcount(swpent);
583 if (mapcount >= 2) {
584 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
585
586 do_div(pss_delta, mapcount);
587 mss->swap_pss += pss_delta;
588 } else {
589 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
590 }
591 } else if (is_migration_entry(swpent))
592 page = migration_entry_to_page(swpent);
593 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
594 && pte_none(*pte))) {
595 page = find_get_entry(vma->vm_file->f_mapping,
596 linear_page_index(vma, addr));
597 if (!page)
598 return;
599
600 if (radix_tree_exceptional_entry(page))
601 mss->swap += PAGE_SIZE;
602 else
603 put_page(page);
604
605 return;
606 }
607
608 if (!page)
609 return;
610
611 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
612 }
613
614 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)615 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
616 struct mm_walk *walk)
617 {
618 struct mem_size_stats *mss = walk->private;
619 struct vm_area_struct *vma = walk->vma;
620 struct page *page;
621
622 /* FOLL_DUMP will return -EFAULT on huge zero page */
623 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
624 if (IS_ERR_OR_NULL(page))
625 return;
626 if (PageAnon(page))
627 mss->anonymous_thp += HPAGE_PMD_SIZE;
628 else if (PageSwapBacked(page))
629 mss->shmem_thp += HPAGE_PMD_SIZE;
630 else if (is_zone_device_page(page))
631 /* pass */;
632 else
633 VM_BUG_ON_PAGE(1, page);
634 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
635 }
636 #else
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)637 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
638 struct mm_walk *walk)
639 {
640 }
641 #endif
642
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)643 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
644 struct mm_walk *walk)
645 {
646 struct vm_area_struct *vma = walk->vma;
647 pte_t *pte;
648 spinlock_t *ptl;
649
650 ptl = pmd_trans_huge_lock(pmd, vma);
651 if (ptl) {
652 smaps_pmd_entry(pmd, addr, walk);
653 spin_unlock(ptl);
654 return 0;
655 }
656
657 if (pmd_trans_unstable(pmd))
658 return 0;
659 /*
660 * The mmap_sem held all the way back in m_start() is what
661 * keeps khugepaged out of here and from collapsing things
662 * in here.
663 */
664 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
665 for (; addr != end; pte++, addr += PAGE_SIZE)
666 smaps_pte_entry(pte, addr, walk);
667 pte_unmap_unlock(pte - 1, ptl);
668 cond_resched();
669 return 0;
670 }
671
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)672 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
673 {
674 /*
675 * Don't forget to update Documentation/ on changes.
676 */
677 static const char mnemonics[BITS_PER_LONG][2] = {
678 /*
679 * In case if we meet a flag we don't know about.
680 */
681 [0 ... (BITS_PER_LONG-1)] = "??",
682
683 [ilog2(VM_READ)] = "rd",
684 [ilog2(VM_WRITE)] = "wr",
685 [ilog2(VM_EXEC)] = "ex",
686 [ilog2(VM_SHARED)] = "sh",
687 [ilog2(VM_MAYREAD)] = "mr",
688 [ilog2(VM_MAYWRITE)] = "mw",
689 [ilog2(VM_MAYEXEC)] = "me",
690 [ilog2(VM_MAYSHARE)] = "ms",
691 [ilog2(VM_GROWSDOWN)] = "gd",
692 [ilog2(VM_PFNMAP)] = "pf",
693 [ilog2(VM_DENYWRITE)] = "dw",
694 #ifdef CONFIG_X86_INTEL_MPX
695 [ilog2(VM_MPX)] = "mp",
696 #endif
697 [ilog2(VM_LOCKED)] = "lo",
698 [ilog2(VM_IO)] = "io",
699 [ilog2(VM_SEQ_READ)] = "sr",
700 [ilog2(VM_RAND_READ)] = "rr",
701 [ilog2(VM_DONTCOPY)] = "dc",
702 [ilog2(VM_DONTEXPAND)] = "de",
703 [ilog2(VM_ACCOUNT)] = "ac",
704 [ilog2(VM_NORESERVE)] = "nr",
705 [ilog2(VM_HUGETLB)] = "ht",
706 [ilog2(VM_ARCH_1)] = "ar",
707 [ilog2(VM_DONTDUMP)] = "dd",
708 #ifdef CONFIG_MEM_SOFT_DIRTY
709 [ilog2(VM_SOFTDIRTY)] = "sd",
710 #endif
711 [ilog2(VM_MIXEDMAP)] = "mm",
712 [ilog2(VM_HUGEPAGE)] = "hg",
713 [ilog2(VM_NOHUGEPAGE)] = "nh",
714 [ilog2(VM_MERGEABLE)] = "mg",
715 [ilog2(VM_UFFD_MISSING)]= "um",
716 [ilog2(VM_UFFD_WP)] = "uw",
717 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
718 /* These come out via ProtectionKey: */
719 [ilog2(VM_PKEY_BIT0)] = "",
720 [ilog2(VM_PKEY_BIT1)] = "",
721 [ilog2(VM_PKEY_BIT2)] = "",
722 [ilog2(VM_PKEY_BIT3)] = "",
723 #endif
724 };
725 size_t i;
726
727 seq_puts(m, "VmFlags: ");
728 for (i = 0; i < BITS_PER_LONG; i++) {
729 if (!mnemonics[i][0])
730 continue;
731 if (vma->vm_flags & (1UL << i)) {
732 seq_printf(m, "%c%c ",
733 mnemonics[i][0], mnemonics[i][1]);
734 }
735 }
736 seq_putc(m, '\n');
737 }
738
739 #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)740 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
741 unsigned long addr, unsigned long end,
742 struct mm_walk *walk)
743 {
744 struct mem_size_stats *mss = walk->private;
745 struct vm_area_struct *vma = walk->vma;
746 struct page *page = NULL;
747
748 if (pte_present(*pte)) {
749 page = vm_normal_page(vma, addr, *pte);
750 } else if (is_swap_pte(*pte)) {
751 swp_entry_t swpent = pte_to_swp_entry(*pte);
752
753 if (is_migration_entry(swpent))
754 page = migration_entry_to_page(swpent);
755 }
756 if (page) {
757 int mapcount = page_mapcount(page);
758
759 if (mapcount >= 2)
760 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
761 else
762 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
763 }
764 return 0;
765 }
766 #endif /* HUGETLB_PAGE */
767
arch_show_smap(struct seq_file * m,struct vm_area_struct * vma)768 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
769 {
770 }
771
show_smap(struct seq_file * m,void * v,int is_pid)772 static int show_smap(struct seq_file *m, void *v, int is_pid)
773 {
774 struct vm_area_struct *vma = v;
775 struct mem_size_stats mss;
776 struct mm_walk smaps_walk = {
777 .pmd_entry = smaps_pte_range,
778 #ifdef CONFIG_HUGETLB_PAGE
779 .hugetlb_entry = smaps_hugetlb_range,
780 #endif
781 .mm = vma->vm_mm,
782 .private = &mss,
783 };
784
785 memset(&mss, 0, sizeof mss);
786
787 #ifdef CONFIG_SHMEM
788 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
789 /*
790 * For shared or readonly shmem mappings we know that all
791 * swapped out pages belong to the shmem object, and we can
792 * obtain the swap value much more efficiently. For private
793 * writable mappings, we might have COW pages that are
794 * not affected by the parent swapped out pages of the shmem
795 * object, so we have to distinguish them during the page walk.
796 * Unless we know that the shmem object (or the part mapped by
797 * our VMA) has no swapped out pages at all.
798 */
799 unsigned long shmem_swapped = shmem_swap_usage(vma);
800
801 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
802 !(vma->vm_flags & VM_WRITE)) {
803 mss.swap = shmem_swapped;
804 } else {
805 mss.check_shmem_swap = true;
806 smaps_walk.pte_hole = smaps_pte_hole;
807 }
808 }
809 #endif
810
811 /* mmap_sem is held in m_start */
812 walk_page_vma(vma, &smaps_walk);
813
814 show_map_vma(m, vma, is_pid);
815
816 if (vma_get_anon_name(vma)) {
817 seq_puts(m, "Name: ");
818 seq_print_vma_name(m, vma);
819 seq_putc(m, '\n');
820 }
821
822 seq_printf(m,
823 "Size: %8lu kB\n"
824 "Rss: %8lu kB\n"
825 "Pss: %8lu kB\n"
826 "Shared_Clean: %8lu kB\n"
827 "Shared_Dirty: %8lu kB\n"
828 "Private_Clean: %8lu kB\n"
829 "Private_Dirty: %8lu kB\n"
830 "Referenced: %8lu kB\n"
831 "Anonymous: %8lu kB\n"
832 "AnonHugePages: %8lu kB\n"
833 "ShmemPmdMapped: %8lu kB\n"
834 "Shared_Hugetlb: %8lu kB\n"
835 "Private_Hugetlb: %7lu kB\n"
836 "Swap: %8lu kB\n"
837 "SwapPss: %8lu kB\n"
838 "KernelPageSize: %8lu kB\n"
839 "MMUPageSize: %8lu kB\n"
840 "Locked: %8lu kB\n",
841 (vma->vm_end - vma->vm_start) >> 10,
842 mss.resident >> 10,
843 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
844 mss.shared_clean >> 10,
845 mss.shared_dirty >> 10,
846 mss.private_clean >> 10,
847 mss.private_dirty >> 10,
848 mss.referenced >> 10,
849 mss.anonymous >> 10,
850 mss.anonymous_thp >> 10,
851 mss.shmem_thp >> 10,
852 mss.shared_hugetlb >> 10,
853 mss.private_hugetlb >> 10,
854 mss.swap >> 10,
855 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
856 vma_kernel_pagesize(vma) >> 10,
857 vma_mmu_pagesize(vma) >> 10,
858 (vma->vm_flags & VM_LOCKED) ?
859 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
860
861 arch_show_smap(m, vma);
862 show_smap_vma_flags(m, vma);
863 m_cache_vma(m, vma);
864 return 0;
865 }
866
show_pid_smap(struct seq_file * m,void * v)867 static int show_pid_smap(struct seq_file *m, void *v)
868 {
869 return show_smap(m, v, 1);
870 }
871
show_tid_smap(struct seq_file * m,void * v)872 static int show_tid_smap(struct seq_file *m, void *v)
873 {
874 return show_smap(m, v, 0);
875 }
876
877 static const struct seq_operations proc_pid_smaps_op = {
878 .start = m_start,
879 .next = m_next,
880 .stop = m_stop,
881 .show = show_pid_smap
882 };
883
884 static const struct seq_operations proc_tid_smaps_op = {
885 .start = m_start,
886 .next = m_next,
887 .stop = m_stop,
888 .show = show_tid_smap
889 };
890
pid_smaps_open(struct inode * inode,struct file * file)891 static int pid_smaps_open(struct inode *inode, struct file *file)
892 {
893 return do_maps_open(inode, file, &proc_pid_smaps_op);
894 }
895
tid_smaps_open(struct inode * inode,struct file * file)896 static int tid_smaps_open(struct inode *inode, struct file *file)
897 {
898 return do_maps_open(inode, file, &proc_tid_smaps_op);
899 }
900
901 const struct file_operations proc_pid_smaps_operations = {
902 .open = pid_smaps_open,
903 .read = seq_read,
904 .llseek = seq_lseek,
905 .release = proc_map_release,
906 };
907
908 const struct file_operations proc_tid_smaps_operations = {
909 .open = tid_smaps_open,
910 .read = seq_read,
911 .llseek = seq_lseek,
912 .release = proc_map_release,
913 };
914
915 enum clear_refs_types {
916 CLEAR_REFS_ALL = 1,
917 CLEAR_REFS_ANON,
918 CLEAR_REFS_MAPPED,
919 CLEAR_REFS_SOFT_DIRTY,
920 CLEAR_REFS_MM_HIWATER_RSS,
921 CLEAR_REFS_LAST,
922 };
923
924 struct clear_refs_private {
925 enum clear_refs_types type;
926 };
927
928 #ifdef CONFIG_MEM_SOFT_DIRTY
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)929 static inline void clear_soft_dirty(struct vm_area_struct *vma,
930 unsigned long addr, pte_t *pte)
931 {
932 /*
933 * The soft-dirty tracker uses #PF-s to catch writes
934 * to pages, so write-protect the pte as well. See the
935 * Documentation/vm/soft-dirty.txt for full description
936 * of how soft-dirty works.
937 */
938 pte_t ptent = *pte;
939
940 if (pte_present(ptent)) {
941 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
942 ptent = pte_wrprotect(ptent);
943 ptent = pte_clear_soft_dirty(ptent);
944 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
945 } else if (is_swap_pte(ptent)) {
946 ptent = pte_swp_clear_soft_dirty(ptent);
947 set_pte_at(vma->vm_mm, addr, pte, ptent);
948 }
949 }
950 #else
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)951 static inline void clear_soft_dirty(struct vm_area_struct *vma,
952 unsigned long addr, pte_t *pte)
953 {
954 }
955 #endif
956
957 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)958 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
959 unsigned long addr, pmd_t *pmdp)
960 {
961 pmd_t pmd = *pmdp;
962
963 /* See comment in change_huge_pmd() */
964 pmdp_invalidate(vma, addr, pmdp);
965 if (pmd_dirty(*pmdp))
966 pmd = pmd_mkdirty(pmd);
967 if (pmd_young(*pmdp))
968 pmd = pmd_mkyoung(pmd);
969
970 pmd = pmd_wrprotect(pmd);
971 pmd = pmd_clear_soft_dirty(pmd);
972
973 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
974 }
975 #else
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)976 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
977 unsigned long addr, pmd_t *pmdp)
978 {
979 }
980 #endif
981
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)982 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
983 unsigned long end, struct mm_walk *walk)
984 {
985 struct clear_refs_private *cp = walk->private;
986 struct vm_area_struct *vma = walk->vma;
987 pte_t *pte, ptent;
988 spinlock_t *ptl;
989 struct page *page;
990
991 ptl = pmd_trans_huge_lock(pmd, vma);
992 if (ptl) {
993 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
994 clear_soft_dirty_pmd(vma, addr, pmd);
995 goto out;
996 }
997
998 page = pmd_page(*pmd);
999
1000 /* Clear accessed and referenced bits. */
1001 pmdp_test_and_clear_young(vma, addr, pmd);
1002 test_and_clear_page_young(page);
1003 ClearPageReferenced(page);
1004 out:
1005 spin_unlock(ptl);
1006 return 0;
1007 }
1008
1009 if (pmd_trans_unstable(pmd))
1010 return 0;
1011
1012 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1013 for (; addr != end; pte++, addr += PAGE_SIZE) {
1014 ptent = *pte;
1015
1016 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1017 clear_soft_dirty(vma, addr, pte);
1018 continue;
1019 }
1020
1021 if (!pte_present(ptent))
1022 continue;
1023
1024 page = vm_normal_page(vma, addr, ptent);
1025 if (!page)
1026 continue;
1027
1028 /* Clear accessed and referenced bits. */
1029 ptep_test_and_clear_young(vma, addr, pte);
1030 test_and_clear_page_young(page);
1031 ClearPageReferenced(page);
1032 }
1033 pte_unmap_unlock(pte - 1, ptl);
1034 cond_resched();
1035 return 0;
1036 }
1037
clear_refs_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)1038 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1039 struct mm_walk *walk)
1040 {
1041 struct clear_refs_private *cp = walk->private;
1042 struct vm_area_struct *vma = walk->vma;
1043
1044 if (vma->vm_flags & VM_PFNMAP)
1045 return 1;
1046
1047 /*
1048 * Writing 1 to /proc/pid/clear_refs affects all pages.
1049 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1050 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1051 * Writing 4 to /proc/pid/clear_refs affects all pages.
1052 */
1053 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1054 return 1;
1055 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1056 return 1;
1057 return 0;
1058 }
1059
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1060 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1061 size_t count, loff_t *ppos)
1062 {
1063 struct task_struct *task;
1064 char buffer[PROC_NUMBUF];
1065 struct mm_struct *mm;
1066 struct vm_area_struct *vma;
1067 enum clear_refs_types type;
1068 int itype;
1069 int rv;
1070
1071 memset(buffer, 0, sizeof(buffer));
1072 if (count > sizeof(buffer) - 1)
1073 count = sizeof(buffer) - 1;
1074 if (copy_from_user(buffer, buf, count))
1075 return -EFAULT;
1076 rv = kstrtoint(strstrip(buffer), 10, &itype);
1077 if (rv < 0)
1078 return rv;
1079 type = (enum clear_refs_types)itype;
1080 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1081 return -EINVAL;
1082
1083 task = get_proc_task(file_inode(file));
1084 if (!task)
1085 return -ESRCH;
1086 mm = get_task_mm(task);
1087 if (mm) {
1088 struct clear_refs_private cp = {
1089 .type = type,
1090 };
1091 struct mm_walk clear_refs_walk = {
1092 .pmd_entry = clear_refs_pte_range,
1093 .test_walk = clear_refs_test_walk,
1094 .mm = mm,
1095 .private = &cp,
1096 };
1097
1098 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1099 if (down_write_killable(&mm->mmap_sem)) {
1100 count = -EINTR;
1101 goto out_mm;
1102 }
1103
1104 /*
1105 * Writing 5 to /proc/pid/clear_refs resets the peak
1106 * resident set size to this mm's current rss value.
1107 */
1108 reset_mm_hiwater_rss(mm);
1109 up_write(&mm->mmap_sem);
1110 goto out_mm;
1111 }
1112
1113 down_read(&mm->mmap_sem);
1114 if (type == CLEAR_REFS_SOFT_DIRTY) {
1115 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1116 if (!(vma->vm_flags & VM_SOFTDIRTY))
1117 continue;
1118 up_read(&mm->mmap_sem);
1119 if (down_write_killable(&mm->mmap_sem)) {
1120 count = -EINTR;
1121 goto out_mm;
1122 }
1123 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1124 vma->vm_flags &= ~VM_SOFTDIRTY;
1125 vma_set_page_prot(vma);
1126 }
1127 downgrade_write(&mm->mmap_sem);
1128 break;
1129 }
1130 mmu_notifier_invalidate_range_start(mm, 0, -1);
1131 }
1132 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1133 if (type == CLEAR_REFS_SOFT_DIRTY)
1134 mmu_notifier_invalidate_range_end(mm, 0, -1);
1135 flush_tlb_mm(mm);
1136 up_read(&mm->mmap_sem);
1137 out_mm:
1138 mmput(mm);
1139 }
1140 put_task_struct(task);
1141
1142 return count;
1143 }
1144
1145 const struct file_operations proc_clear_refs_operations = {
1146 .write = clear_refs_write,
1147 .llseek = noop_llseek,
1148 };
1149
1150 typedef struct {
1151 u64 pme;
1152 } pagemap_entry_t;
1153
1154 struct pagemapread {
1155 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1156 pagemap_entry_t *buffer;
1157 bool show_pfn;
1158 };
1159
1160 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1161 #define PAGEMAP_WALK_MASK (PMD_MASK)
1162
1163 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1164 #define PM_PFRAME_BITS 55
1165 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1166 #define PM_SOFT_DIRTY BIT_ULL(55)
1167 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1168 #define PM_FILE BIT_ULL(61)
1169 #define PM_SWAP BIT_ULL(62)
1170 #define PM_PRESENT BIT_ULL(63)
1171
1172 #define PM_END_OF_BUFFER 1
1173
make_pme(u64 frame,u64 flags)1174 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1175 {
1176 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1177 }
1178
add_to_pagemap(unsigned long addr,pagemap_entry_t * pme,struct pagemapread * pm)1179 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1180 struct pagemapread *pm)
1181 {
1182 pm->buffer[pm->pos++] = *pme;
1183 if (pm->pos >= pm->len)
1184 return PM_END_OF_BUFFER;
1185 return 0;
1186 }
1187
pagemap_pte_hole(unsigned long start,unsigned long end,struct mm_walk * walk)1188 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1189 struct mm_walk *walk)
1190 {
1191 struct pagemapread *pm = walk->private;
1192 unsigned long addr = start;
1193 int err = 0;
1194
1195 while (addr < end) {
1196 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1197 pagemap_entry_t pme = make_pme(0, 0);
1198 /* End of address space hole, which we mark as non-present. */
1199 unsigned long hole_end;
1200
1201 if (vma)
1202 hole_end = min(end, vma->vm_start);
1203 else
1204 hole_end = end;
1205
1206 for (; addr < hole_end; addr += PAGE_SIZE) {
1207 err = add_to_pagemap(addr, &pme, pm);
1208 if (err)
1209 goto out;
1210 }
1211
1212 if (!vma)
1213 break;
1214
1215 /* Addresses in the VMA. */
1216 if (vma->vm_flags & VM_SOFTDIRTY)
1217 pme = make_pme(0, PM_SOFT_DIRTY);
1218 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1219 err = add_to_pagemap(addr, &pme, pm);
1220 if (err)
1221 goto out;
1222 }
1223 }
1224 out:
1225 return err;
1226 }
1227
pte_to_pagemap_entry(struct pagemapread * pm,struct vm_area_struct * vma,unsigned long addr,pte_t pte)1228 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1229 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1230 {
1231 u64 frame = 0, flags = 0;
1232 struct page *page = NULL;
1233
1234 if (pte_present(pte)) {
1235 if (pm->show_pfn)
1236 frame = pte_pfn(pte);
1237 flags |= PM_PRESENT;
1238 page = vm_normal_page(vma, addr, pte);
1239 if (pte_soft_dirty(pte))
1240 flags |= PM_SOFT_DIRTY;
1241 } else if (is_swap_pte(pte)) {
1242 swp_entry_t entry;
1243 if (pte_swp_soft_dirty(pte))
1244 flags |= PM_SOFT_DIRTY;
1245 entry = pte_to_swp_entry(pte);
1246 frame = swp_type(entry) |
1247 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1248 flags |= PM_SWAP;
1249 if (is_migration_entry(entry))
1250 page = migration_entry_to_page(entry);
1251 }
1252
1253 if (page && !PageAnon(page))
1254 flags |= PM_FILE;
1255 if (page && page_mapcount(page) == 1)
1256 flags |= PM_MMAP_EXCLUSIVE;
1257 if (vma->vm_flags & VM_SOFTDIRTY)
1258 flags |= PM_SOFT_DIRTY;
1259
1260 return make_pme(frame, flags);
1261 }
1262
pagemap_pmd_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)1263 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1264 struct mm_walk *walk)
1265 {
1266 struct vm_area_struct *vma = walk->vma;
1267 struct pagemapread *pm = walk->private;
1268 spinlock_t *ptl;
1269 pte_t *pte, *orig_pte;
1270 int err = 0;
1271
1272 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1273 ptl = pmd_trans_huge_lock(pmdp, vma);
1274 if (ptl) {
1275 u64 flags = 0, frame = 0;
1276 pmd_t pmd = *pmdp;
1277
1278 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1279 flags |= PM_SOFT_DIRTY;
1280
1281 /*
1282 * Currently pmd for thp is always present because thp
1283 * can not be swapped-out, migrated, or HWPOISONed
1284 * (split in such cases instead.)
1285 * This if-check is just to prepare for future implementation.
1286 */
1287 if (pmd_present(pmd)) {
1288 struct page *page = pmd_page(pmd);
1289
1290 if (page_mapcount(page) == 1)
1291 flags |= PM_MMAP_EXCLUSIVE;
1292
1293 flags |= PM_PRESENT;
1294 if (pm->show_pfn)
1295 frame = pmd_pfn(pmd) +
1296 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1297 }
1298
1299 for (; addr != end; addr += PAGE_SIZE) {
1300 pagemap_entry_t pme = make_pme(frame, flags);
1301
1302 err = add_to_pagemap(addr, &pme, pm);
1303 if (err)
1304 break;
1305 if (pm->show_pfn && (flags & PM_PRESENT))
1306 frame++;
1307 }
1308 spin_unlock(ptl);
1309 return err;
1310 }
1311
1312 if (pmd_trans_unstable(pmdp))
1313 return 0;
1314 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1315
1316 /*
1317 * We can assume that @vma always points to a valid one and @end never
1318 * goes beyond vma->vm_end.
1319 */
1320 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1321 for (; addr < end; pte++, addr += PAGE_SIZE) {
1322 pagemap_entry_t pme;
1323
1324 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1325 err = add_to_pagemap(addr, &pme, pm);
1326 if (err)
1327 break;
1328 }
1329 pte_unmap_unlock(orig_pte, ptl);
1330
1331 cond_resched();
1332
1333 return err;
1334 }
1335
1336 #ifdef CONFIG_HUGETLB_PAGE
1337 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1338 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1339 unsigned long addr, unsigned long end,
1340 struct mm_walk *walk)
1341 {
1342 struct pagemapread *pm = walk->private;
1343 struct vm_area_struct *vma = walk->vma;
1344 u64 flags = 0, frame = 0;
1345 int err = 0;
1346 pte_t pte;
1347
1348 if (vma->vm_flags & VM_SOFTDIRTY)
1349 flags |= PM_SOFT_DIRTY;
1350
1351 pte = huge_ptep_get(ptep);
1352 if (pte_present(pte)) {
1353 struct page *page = pte_page(pte);
1354
1355 if (!PageAnon(page))
1356 flags |= PM_FILE;
1357
1358 if (page_mapcount(page) == 1)
1359 flags |= PM_MMAP_EXCLUSIVE;
1360
1361 flags |= PM_PRESENT;
1362 if (pm->show_pfn)
1363 frame = pte_pfn(pte) +
1364 ((addr & ~hmask) >> PAGE_SHIFT);
1365 }
1366
1367 for (; addr != end; addr += PAGE_SIZE) {
1368 pagemap_entry_t pme = make_pme(frame, flags);
1369
1370 err = add_to_pagemap(addr, &pme, pm);
1371 if (err)
1372 return err;
1373 if (pm->show_pfn && (flags & PM_PRESENT))
1374 frame++;
1375 }
1376
1377 cond_resched();
1378
1379 return err;
1380 }
1381 #endif /* HUGETLB_PAGE */
1382
1383 /*
1384 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1385 *
1386 * For each page in the address space, this file contains one 64-bit entry
1387 * consisting of the following:
1388 *
1389 * Bits 0-54 page frame number (PFN) if present
1390 * Bits 0-4 swap type if swapped
1391 * Bits 5-54 swap offset if swapped
1392 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1393 * Bit 56 page exclusively mapped
1394 * Bits 57-60 zero
1395 * Bit 61 page is file-page or shared-anon
1396 * Bit 62 page swapped
1397 * Bit 63 page present
1398 *
1399 * If the page is not present but in swap, then the PFN contains an
1400 * encoding of the swap file number and the page's offset into the
1401 * swap. Unmapped pages return a null PFN. This allows determining
1402 * precisely which pages are mapped (or in swap) and comparing mapped
1403 * pages between processes.
1404 *
1405 * Efficient users of this interface will use /proc/pid/maps to
1406 * determine which areas of memory are actually mapped and llseek to
1407 * skip over unmapped regions.
1408 */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1409 static ssize_t pagemap_read(struct file *file, char __user *buf,
1410 size_t count, loff_t *ppos)
1411 {
1412 struct mm_struct *mm = file->private_data;
1413 struct pagemapread pm;
1414 struct mm_walk pagemap_walk = {};
1415 unsigned long src;
1416 unsigned long svpfn;
1417 unsigned long start_vaddr;
1418 unsigned long end_vaddr;
1419 int ret = 0, copied = 0;
1420
1421 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1422 goto out;
1423
1424 ret = -EINVAL;
1425 /* file position must be aligned */
1426 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1427 goto out_mm;
1428
1429 ret = 0;
1430 if (!count)
1431 goto out_mm;
1432
1433 /* do not disclose physical addresses: attack vector */
1434 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1435
1436 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1437 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1438 ret = -ENOMEM;
1439 if (!pm.buffer)
1440 goto out_mm;
1441
1442 pagemap_walk.pmd_entry = pagemap_pmd_range;
1443 pagemap_walk.pte_hole = pagemap_pte_hole;
1444 #ifdef CONFIG_HUGETLB_PAGE
1445 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1446 #endif
1447 pagemap_walk.mm = mm;
1448 pagemap_walk.private = ±
1449
1450 src = *ppos;
1451 svpfn = src / PM_ENTRY_BYTES;
1452 start_vaddr = svpfn << PAGE_SHIFT;
1453 end_vaddr = mm->task_size;
1454
1455 /* watch out for wraparound */
1456 if (svpfn > mm->task_size >> PAGE_SHIFT)
1457 start_vaddr = end_vaddr;
1458
1459 /*
1460 * The odds are that this will stop walking way
1461 * before end_vaddr, because the length of the
1462 * user buffer is tracked in "pm", and the walk
1463 * will stop when we hit the end of the buffer.
1464 */
1465 ret = 0;
1466 while (count && (start_vaddr < end_vaddr)) {
1467 int len;
1468 unsigned long end;
1469
1470 pm.pos = 0;
1471 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1472 /* overflow ? */
1473 if (end < start_vaddr || end > end_vaddr)
1474 end = end_vaddr;
1475 down_read(&mm->mmap_sem);
1476 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1477 up_read(&mm->mmap_sem);
1478 start_vaddr = end;
1479
1480 len = min(count, PM_ENTRY_BYTES * pm.pos);
1481 if (copy_to_user(buf, pm.buffer, len)) {
1482 ret = -EFAULT;
1483 goto out_free;
1484 }
1485 copied += len;
1486 buf += len;
1487 count -= len;
1488 }
1489 *ppos += copied;
1490 if (!ret || ret == PM_END_OF_BUFFER)
1491 ret = copied;
1492
1493 out_free:
1494 kfree(pm.buffer);
1495 out_mm:
1496 mmput(mm);
1497 out:
1498 return ret;
1499 }
1500
pagemap_open(struct inode * inode,struct file * file)1501 static int pagemap_open(struct inode *inode, struct file *file)
1502 {
1503 struct mm_struct *mm;
1504
1505 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1506 if (IS_ERR(mm))
1507 return PTR_ERR(mm);
1508 file->private_data = mm;
1509 return 0;
1510 }
1511
pagemap_release(struct inode * inode,struct file * file)1512 static int pagemap_release(struct inode *inode, struct file *file)
1513 {
1514 struct mm_struct *mm = file->private_data;
1515
1516 if (mm)
1517 mmdrop(mm);
1518 return 0;
1519 }
1520
1521 const struct file_operations proc_pagemap_operations = {
1522 .llseek = mem_lseek, /* borrow this */
1523 .read = pagemap_read,
1524 .open = pagemap_open,
1525 .release = pagemap_release,
1526 };
1527 #endif /* CONFIG_PROC_PAGE_MONITOR */
1528
1529 #ifdef CONFIG_NUMA
1530
1531 struct numa_maps {
1532 unsigned long pages;
1533 unsigned long anon;
1534 unsigned long active;
1535 unsigned long writeback;
1536 unsigned long mapcount_max;
1537 unsigned long dirty;
1538 unsigned long swapcache;
1539 unsigned long node[MAX_NUMNODES];
1540 };
1541
1542 struct numa_maps_private {
1543 struct proc_maps_private proc_maps;
1544 struct numa_maps md;
1545 };
1546
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)1547 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1548 unsigned long nr_pages)
1549 {
1550 int count = page_mapcount(page);
1551
1552 md->pages += nr_pages;
1553 if (pte_dirty || PageDirty(page))
1554 md->dirty += nr_pages;
1555
1556 if (PageSwapCache(page))
1557 md->swapcache += nr_pages;
1558
1559 if (PageActive(page) || PageUnevictable(page))
1560 md->active += nr_pages;
1561
1562 if (PageWriteback(page))
1563 md->writeback += nr_pages;
1564
1565 if (PageAnon(page))
1566 md->anon += nr_pages;
1567
1568 if (count > md->mapcount_max)
1569 md->mapcount_max = count;
1570
1571 md->node[page_to_nid(page)] += nr_pages;
1572 }
1573
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)1574 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1575 unsigned long addr)
1576 {
1577 struct page *page;
1578 int nid;
1579
1580 if (!pte_present(pte))
1581 return NULL;
1582
1583 page = vm_normal_page(vma, addr, pte);
1584 if (!page)
1585 return NULL;
1586
1587 if (PageReserved(page))
1588 return NULL;
1589
1590 nid = page_to_nid(page);
1591 if (!node_isset(nid, node_states[N_MEMORY]))
1592 return NULL;
1593
1594 return page;
1595 }
1596
1597 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)1598 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1599 struct vm_area_struct *vma,
1600 unsigned long addr)
1601 {
1602 struct page *page;
1603 int nid;
1604
1605 if (!pmd_present(pmd))
1606 return NULL;
1607
1608 page = vm_normal_page_pmd(vma, addr, pmd);
1609 if (!page)
1610 return NULL;
1611
1612 if (PageReserved(page))
1613 return NULL;
1614
1615 nid = page_to_nid(page);
1616 if (!node_isset(nid, node_states[N_MEMORY]))
1617 return NULL;
1618
1619 return page;
1620 }
1621 #endif
1622
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1623 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1624 unsigned long end, struct mm_walk *walk)
1625 {
1626 struct numa_maps *md = walk->private;
1627 struct vm_area_struct *vma = walk->vma;
1628 spinlock_t *ptl;
1629 pte_t *orig_pte;
1630 pte_t *pte;
1631
1632 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1633 ptl = pmd_trans_huge_lock(pmd, vma);
1634 if (ptl) {
1635 struct page *page;
1636
1637 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1638 if (page)
1639 gather_stats(page, md, pmd_dirty(*pmd),
1640 HPAGE_PMD_SIZE/PAGE_SIZE);
1641 spin_unlock(ptl);
1642 return 0;
1643 }
1644
1645 if (pmd_trans_unstable(pmd))
1646 return 0;
1647 #endif
1648 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1649 do {
1650 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1651 if (!page)
1652 continue;
1653 gather_stats(page, md, pte_dirty(*pte), 1);
1654
1655 } while (pte++, addr += PAGE_SIZE, addr != end);
1656 pte_unmap_unlock(orig_pte, ptl);
1657 return 0;
1658 }
1659 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1660 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1661 unsigned long addr, unsigned long end, struct mm_walk *walk)
1662 {
1663 pte_t huge_pte = huge_ptep_get(pte);
1664 struct numa_maps *md;
1665 struct page *page;
1666
1667 if (!pte_present(huge_pte))
1668 return 0;
1669
1670 page = pte_page(huge_pte);
1671 if (!page)
1672 return 0;
1673
1674 md = walk->private;
1675 gather_stats(page, md, pte_dirty(huge_pte), 1);
1676 return 0;
1677 }
1678
1679 #else
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1680 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1681 unsigned long addr, unsigned long end, struct mm_walk *walk)
1682 {
1683 return 0;
1684 }
1685 #endif
1686
1687 /*
1688 * Display pages allocated per node and memory policy via /proc.
1689 */
show_numa_map(struct seq_file * m,void * v,int is_pid)1690 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1691 {
1692 struct numa_maps_private *numa_priv = m->private;
1693 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1694 struct vm_area_struct *vma = v;
1695 struct numa_maps *md = &numa_priv->md;
1696 struct file *file = vma->vm_file;
1697 struct mm_struct *mm = vma->vm_mm;
1698 struct mm_walk walk = {
1699 .hugetlb_entry = gather_hugetlb_stats,
1700 .pmd_entry = gather_pte_stats,
1701 .private = md,
1702 .mm = mm,
1703 };
1704 struct mempolicy *pol;
1705 char buffer[64];
1706 int nid;
1707
1708 if (!mm)
1709 return 0;
1710
1711 /* Ensure we start with an empty set of numa_maps statistics. */
1712 memset(md, 0, sizeof(*md));
1713
1714 pol = __get_vma_policy(vma, vma->vm_start);
1715 if (pol) {
1716 mpol_to_str(buffer, sizeof(buffer), pol);
1717 mpol_cond_put(pol);
1718 } else {
1719 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1720 }
1721
1722 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1723
1724 if (file) {
1725 seq_puts(m, " file=");
1726 seq_file_path(m, file, "\n\t= ");
1727 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1728 seq_puts(m, " heap");
1729 } else if (is_stack(proc_priv, vma)) {
1730 seq_puts(m, " stack");
1731 }
1732
1733 if (is_vm_hugetlb_page(vma))
1734 seq_puts(m, " huge");
1735
1736 /* mmap_sem is held by m_start */
1737 walk_page_vma(vma, &walk);
1738
1739 if (!md->pages)
1740 goto out;
1741
1742 if (md->anon)
1743 seq_printf(m, " anon=%lu", md->anon);
1744
1745 if (md->dirty)
1746 seq_printf(m, " dirty=%lu", md->dirty);
1747
1748 if (md->pages != md->anon && md->pages != md->dirty)
1749 seq_printf(m, " mapped=%lu", md->pages);
1750
1751 if (md->mapcount_max > 1)
1752 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1753
1754 if (md->swapcache)
1755 seq_printf(m, " swapcache=%lu", md->swapcache);
1756
1757 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1758 seq_printf(m, " active=%lu", md->active);
1759
1760 if (md->writeback)
1761 seq_printf(m, " writeback=%lu", md->writeback);
1762
1763 for_each_node_state(nid, N_MEMORY)
1764 if (md->node[nid])
1765 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1766
1767 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1768 out:
1769 seq_putc(m, '\n');
1770 m_cache_vma(m, vma);
1771 return 0;
1772 }
1773
show_pid_numa_map(struct seq_file * m,void * v)1774 static int show_pid_numa_map(struct seq_file *m, void *v)
1775 {
1776 return show_numa_map(m, v, 1);
1777 }
1778
show_tid_numa_map(struct seq_file * m,void * v)1779 static int show_tid_numa_map(struct seq_file *m, void *v)
1780 {
1781 return show_numa_map(m, v, 0);
1782 }
1783
1784 static const struct seq_operations proc_pid_numa_maps_op = {
1785 .start = m_start,
1786 .next = m_next,
1787 .stop = m_stop,
1788 .show = show_pid_numa_map,
1789 };
1790
1791 static const struct seq_operations proc_tid_numa_maps_op = {
1792 .start = m_start,
1793 .next = m_next,
1794 .stop = m_stop,
1795 .show = show_tid_numa_map,
1796 };
1797
numa_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)1798 static int numa_maps_open(struct inode *inode, struct file *file,
1799 const struct seq_operations *ops)
1800 {
1801 return proc_maps_open(inode, file, ops,
1802 sizeof(struct numa_maps_private));
1803 }
1804
pid_numa_maps_open(struct inode * inode,struct file * file)1805 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1806 {
1807 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1808 }
1809
tid_numa_maps_open(struct inode * inode,struct file * file)1810 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1811 {
1812 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1813 }
1814
1815 const struct file_operations proc_pid_numa_maps_operations = {
1816 .open = pid_numa_maps_open,
1817 .read = seq_read,
1818 .llseek = seq_lseek,
1819 .release = proc_map_release,
1820 };
1821
1822 const struct file_operations proc_tid_numa_maps_operations = {
1823 .open = tid_numa_maps_open,
1824 .read = seq_read,
1825 .llseek = seq_lseek,
1826 .release = proc_map_release,
1827 };
1828 #endif /* CONFIG_NUMA */
1829