• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SH RSPI driver
3  *
4  * Copyright (C) 2012, 2013  Renesas Solutions Corp.
5  * Copyright (C) 2014 Glider bvba
6  *
7  * Based on spi-sh.c:
8  * Copyright (C) 2011 Renesas Solutions Corp.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; version 2 of the License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/clk.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of_device.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/sh_dma.h>
33 #include <linux/spi/spi.h>
34 #include <linux/spi/rspi.h>
35 
36 #define RSPI_SPCR		0x00	/* Control Register */
37 #define RSPI_SSLP		0x01	/* Slave Select Polarity Register */
38 #define RSPI_SPPCR		0x02	/* Pin Control Register */
39 #define RSPI_SPSR		0x03	/* Status Register */
40 #define RSPI_SPDR		0x04	/* Data Register */
41 #define RSPI_SPSCR		0x08	/* Sequence Control Register */
42 #define RSPI_SPSSR		0x09	/* Sequence Status Register */
43 #define RSPI_SPBR		0x0a	/* Bit Rate Register */
44 #define RSPI_SPDCR		0x0b	/* Data Control Register */
45 #define RSPI_SPCKD		0x0c	/* Clock Delay Register */
46 #define RSPI_SSLND		0x0d	/* Slave Select Negation Delay Register */
47 #define RSPI_SPND		0x0e	/* Next-Access Delay Register */
48 #define RSPI_SPCR2		0x0f	/* Control Register 2 (SH only) */
49 #define RSPI_SPCMD0		0x10	/* Command Register 0 */
50 #define RSPI_SPCMD1		0x12	/* Command Register 1 */
51 #define RSPI_SPCMD2		0x14	/* Command Register 2 */
52 #define RSPI_SPCMD3		0x16	/* Command Register 3 */
53 #define RSPI_SPCMD4		0x18	/* Command Register 4 */
54 #define RSPI_SPCMD5		0x1a	/* Command Register 5 */
55 #define RSPI_SPCMD6		0x1c	/* Command Register 6 */
56 #define RSPI_SPCMD7		0x1e	/* Command Register 7 */
57 #define RSPI_SPCMD(i)		(RSPI_SPCMD0 + (i) * 2)
58 #define RSPI_NUM_SPCMD		8
59 #define RSPI_RZ_NUM_SPCMD	4
60 #define QSPI_NUM_SPCMD		4
61 
62 /* RSPI on RZ only */
63 #define RSPI_SPBFCR		0x20	/* Buffer Control Register */
64 #define RSPI_SPBFDR		0x22	/* Buffer Data Count Setting Register */
65 
66 /* QSPI only */
67 #define QSPI_SPBFCR		0x18	/* Buffer Control Register */
68 #define QSPI_SPBDCR		0x1a	/* Buffer Data Count Register */
69 #define QSPI_SPBMUL0		0x1c	/* Transfer Data Length Multiplier Setting Register 0 */
70 #define QSPI_SPBMUL1		0x20	/* Transfer Data Length Multiplier Setting Register 1 */
71 #define QSPI_SPBMUL2		0x24	/* Transfer Data Length Multiplier Setting Register 2 */
72 #define QSPI_SPBMUL3		0x28	/* Transfer Data Length Multiplier Setting Register 3 */
73 #define QSPI_SPBMUL(i)		(QSPI_SPBMUL0 + (i) * 4)
74 
75 /* SPCR - Control Register */
76 #define SPCR_SPRIE		0x80	/* Receive Interrupt Enable */
77 #define SPCR_SPE		0x40	/* Function Enable */
78 #define SPCR_SPTIE		0x20	/* Transmit Interrupt Enable */
79 #define SPCR_SPEIE		0x10	/* Error Interrupt Enable */
80 #define SPCR_MSTR		0x08	/* Master/Slave Mode Select */
81 #define SPCR_MODFEN		0x04	/* Mode Fault Error Detection Enable */
82 /* RSPI on SH only */
83 #define SPCR_TXMD		0x02	/* TX Only Mode (vs. Full Duplex) */
84 #define SPCR_SPMS		0x01	/* 3-wire Mode (vs. 4-wire) */
85 /* QSPI on R-Car Gen2 only */
86 #define SPCR_WSWAP		0x02	/* Word Swap of read-data for DMAC */
87 #define SPCR_BSWAP		0x01	/* Byte Swap of read-data for DMAC */
88 
89 /* SSLP - Slave Select Polarity Register */
90 #define SSLP_SSL1P		0x02	/* SSL1 Signal Polarity Setting */
91 #define SSLP_SSL0P		0x01	/* SSL0 Signal Polarity Setting */
92 
93 /* SPPCR - Pin Control Register */
94 #define SPPCR_MOIFE		0x20	/* MOSI Idle Value Fixing Enable */
95 #define SPPCR_MOIFV		0x10	/* MOSI Idle Fixed Value */
96 #define SPPCR_SPOM		0x04
97 #define SPPCR_SPLP2		0x02	/* Loopback Mode 2 (non-inverting) */
98 #define SPPCR_SPLP		0x01	/* Loopback Mode (inverting) */
99 
100 #define SPPCR_IO3FV		0x04	/* Single-/Dual-SPI Mode IO3 Output Fixed Value */
101 #define SPPCR_IO2FV		0x04	/* Single-/Dual-SPI Mode IO2 Output Fixed Value */
102 
103 /* SPSR - Status Register */
104 #define SPSR_SPRF		0x80	/* Receive Buffer Full Flag */
105 #define SPSR_TEND		0x40	/* Transmit End */
106 #define SPSR_SPTEF		0x20	/* Transmit Buffer Empty Flag */
107 #define SPSR_PERF		0x08	/* Parity Error Flag */
108 #define SPSR_MODF		0x04	/* Mode Fault Error Flag */
109 #define SPSR_IDLNF		0x02	/* RSPI Idle Flag */
110 #define SPSR_OVRF		0x01	/* Overrun Error Flag (RSPI only) */
111 
112 /* SPSCR - Sequence Control Register */
113 #define SPSCR_SPSLN_MASK	0x07	/* Sequence Length Specification */
114 
115 /* SPSSR - Sequence Status Register */
116 #define SPSSR_SPECM_MASK	0x70	/* Command Error Mask */
117 #define SPSSR_SPCP_MASK		0x07	/* Command Pointer Mask */
118 
119 /* SPDCR - Data Control Register */
120 #define SPDCR_TXDMY		0x80	/* Dummy Data Transmission Enable */
121 #define SPDCR_SPLW1		0x40	/* Access Width Specification (RZ) */
122 #define SPDCR_SPLW0		0x20	/* Access Width Specification (RZ) */
123 #define SPDCR_SPLLWORD		(SPDCR_SPLW1 | SPDCR_SPLW0)
124 #define SPDCR_SPLWORD		SPDCR_SPLW1
125 #define SPDCR_SPLBYTE		SPDCR_SPLW0
126 #define SPDCR_SPLW		0x20	/* Access Width Specification (SH) */
127 #define SPDCR_SPRDTD		0x10	/* Receive Transmit Data Select (SH) */
128 #define SPDCR_SLSEL1		0x08
129 #define SPDCR_SLSEL0		0x04
130 #define SPDCR_SLSEL_MASK	0x0c	/* SSL1 Output Select (SH) */
131 #define SPDCR_SPFC1		0x02
132 #define SPDCR_SPFC0		0x01
133 #define SPDCR_SPFC_MASK		0x03	/* Frame Count Setting (1-4) (SH) */
134 
135 /* SPCKD - Clock Delay Register */
136 #define SPCKD_SCKDL_MASK	0x07	/* Clock Delay Setting (1-8) */
137 
138 /* SSLND - Slave Select Negation Delay Register */
139 #define SSLND_SLNDL_MASK	0x07	/* SSL Negation Delay Setting (1-8) */
140 
141 /* SPND - Next-Access Delay Register */
142 #define SPND_SPNDL_MASK		0x07	/* Next-Access Delay Setting (1-8) */
143 
144 /* SPCR2 - Control Register 2 */
145 #define SPCR2_PTE		0x08	/* Parity Self-Test Enable */
146 #define SPCR2_SPIE		0x04	/* Idle Interrupt Enable */
147 #define SPCR2_SPOE		0x02	/* Odd Parity Enable (vs. Even) */
148 #define SPCR2_SPPE		0x01	/* Parity Enable */
149 
150 /* SPCMDn - Command Registers */
151 #define SPCMD_SCKDEN		0x8000	/* Clock Delay Setting Enable */
152 #define SPCMD_SLNDEN		0x4000	/* SSL Negation Delay Setting Enable */
153 #define SPCMD_SPNDEN		0x2000	/* Next-Access Delay Enable */
154 #define SPCMD_LSBF		0x1000	/* LSB First */
155 #define SPCMD_SPB_MASK		0x0f00	/* Data Length Setting */
156 #define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
157 #define SPCMD_SPB_8BIT		0x0000	/* QSPI only */
158 #define SPCMD_SPB_16BIT		0x0100
159 #define SPCMD_SPB_20BIT		0x0000
160 #define SPCMD_SPB_24BIT		0x0100
161 #define SPCMD_SPB_32BIT		0x0200
162 #define SPCMD_SSLKP		0x0080	/* SSL Signal Level Keeping */
163 #define SPCMD_SPIMOD_MASK	0x0060	/* SPI Operating Mode (QSPI only) */
164 #define SPCMD_SPIMOD1		0x0040
165 #define SPCMD_SPIMOD0		0x0020
166 #define SPCMD_SPIMOD_SINGLE	0
167 #define SPCMD_SPIMOD_DUAL	SPCMD_SPIMOD0
168 #define SPCMD_SPIMOD_QUAD	SPCMD_SPIMOD1
169 #define SPCMD_SPRW		0x0010	/* SPI Read/Write Access (Dual/Quad) */
170 #define SPCMD_SSLA_MASK		0x0030	/* SSL Assert Signal Setting (RSPI) */
171 #define SPCMD_BRDV_MASK		0x000c	/* Bit Rate Division Setting */
172 #define SPCMD_CPOL		0x0002	/* Clock Polarity Setting */
173 #define SPCMD_CPHA		0x0001	/* Clock Phase Setting */
174 
175 /* SPBFCR - Buffer Control Register */
176 #define SPBFCR_TXRST		0x80	/* Transmit Buffer Data Reset */
177 #define SPBFCR_RXRST		0x40	/* Receive Buffer Data Reset */
178 #define SPBFCR_TXTRG_MASK	0x30	/* Transmit Buffer Data Triggering Number */
179 #define SPBFCR_RXTRG_MASK	0x07	/* Receive Buffer Data Triggering Number */
180 /* QSPI on R-Car Gen2 */
181 #define SPBFCR_TXTRG_1B		0x00	/* 31 bytes (1 byte available) */
182 #define SPBFCR_TXTRG_32B	0x30	/* 0 byte (32 bytes available) */
183 #define SPBFCR_RXTRG_1B		0x00	/* 1 byte (31 bytes available) */
184 #define SPBFCR_RXTRG_32B	0x07	/* 32 bytes (0 byte available) */
185 
186 #define QSPI_BUFFER_SIZE        32u
187 
188 struct rspi_data {
189 	void __iomem *addr;
190 	u32 max_speed_hz;
191 	struct spi_master *master;
192 	wait_queue_head_t wait;
193 	struct clk *clk;
194 	u16 spcmd;
195 	u8 spsr;
196 	u8 sppcr;
197 	int rx_irq, tx_irq;
198 	const struct spi_ops *ops;
199 
200 	unsigned dma_callbacked:1;
201 	unsigned byte_access:1;
202 };
203 
rspi_write8(const struct rspi_data * rspi,u8 data,u16 offset)204 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
205 {
206 	iowrite8(data, rspi->addr + offset);
207 }
208 
rspi_write16(const struct rspi_data * rspi,u16 data,u16 offset)209 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
210 {
211 	iowrite16(data, rspi->addr + offset);
212 }
213 
rspi_write32(const struct rspi_data * rspi,u32 data,u16 offset)214 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
215 {
216 	iowrite32(data, rspi->addr + offset);
217 }
218 
rspi_read8(const struct rspi_data * rspi,u16 offset)219 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
220 {
221 	return ioread8(rspi->addr + offset);
222 }
223 
rspi_read16(const struct rspi_data * rspi,u16 offset)224 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
225 {
226 	return ioread16(rspi->addr + offset);
227 }
228 
rspi_write_data(const struct rspi_data * rspi,u16 data)229 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
230 {
231 	if (rspi->byte_access)
232 		rspi_write8(rspi, data, RSPI_SPDR);
233 	else /* 16 bit */
234 		rspi_write16(rspi, data, RSPI_SPDR);
235 }
236 
rspi_read_data(const struct rspi_data * rspi)237 static u16 rspi_read_data(const struct rspi_data *rspi)
238 {
239 	if (rspi->byte_access)
240 		return rspi_read8(rspi, RSPI_SPDR);
241 	else /* 16 bit */
242 		return rspi_read16(rspi, RSPI_SPDR);
243 }
244 
245 /* optional functions */
246 struct spi_ops {
247 	int (*set_config_register)(struct rspi_data *rspi, int access_size);
248 	int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
249 			    struct spi_transfer *xfer);
250 	u16 mode_bits;
251 	u16 flags;
252 	u16 fifo_size;
253 };
254 
255 /*
256  * functions for RSPI on legacy SH
257  */
rspi_set_config_register(struct rspi_data * rspi,int access_size)258 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
259 {
260 	int spbr;
261 
262 	/* Sets output mode, MOSI signal, and (optionally) loopback */
263 	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
264 
265 	/* Sets transfer bit rate */
266 	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
267 			    2 * rspi->max_speed_hz) - 1;
268 	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
269 
270 	/* Disable dummy transmission, set 16-bit word access, 1 frame */
271 	rspi_write8(rspi, 0, RSPI_SPDCR);
272 	rspi->byte_access = 0;
273 
274 	/* Sets RSPCK, SSL, next-access delay value */
275 	rspi_write8(rspi, 0x00, RSPI_SPCKD);
276 	rspi_write8(rspi, 0x00, RSPI_SSLND);
277 	rspi_write8(rspi, 0x00, RSPI_SPND);
278 
279 	/* Sets parity, interrupt mask */
280 	rspi_write8(rspi, 0x00, RSPI_SPCR2);
281 
282 	/* Sets SPCMD */
283 	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
284 	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
285 
286 	/* Sets RSPI mode */
287 	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
288 
289 	return 0;
290 }
291 
292 /*
293  * functions for RSPI on RZ
294  */
rspi_rz_set_config_register(struct rspi_data * rspi,int access_size)295 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
296 {
297 	int spbr;
298 	int div = 0;
299 	unsigned long clksrc;
300 
301 	/* Sets output mode, MOSI signal, and (optionally) loopback */
302 	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
303 
304 	clksrc = clk_get_rate(rspi->clk);
305 	while (div < 3) {
306 		if (rspi->max_speed_hz >= clksrc/4) /* 4=(CLK/2)/2 */
307 			break;
308 		div++;
309 		clksrc /= 2;
310 	}
311 
312 	/* Sets transfer bit rate */
313 	spbr = DIV_ROUND_UP(clksrc, 2 * rspi->max_speed_hz) - 1;
314 	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
315 	rspi->spcmd |= div << 2;
316 
317 	/* Disable dummy transmission, set byte access */
318 	rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
319 	rspi->byte_access = 1;
320 
321 	/* Sets RSPCK, SSL, next-access delay value */
322 	rspi_write8(rspi, 0x00, RSPI_SPCKD);
323 	rspi_write8(rspi, 0x00, RSPI_SSLND);
324 	rspi_write8(rspi, 0x00, RSPI_SPND);
325 
326 	/* Sets SPCMD */
327 	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
328 	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
329 
330 	/* Sets RSPI mode */
331 	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
332 
333 	return 0;
334 }
335 
336 /*
337  * functions for QSPI
338  */
qspi_set_config_register(struct rspi_data * rspi,int access_size)339 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
340 {
341 	int spbr;
342 
343 	/* Sets output mode, MOSI signal, and (optionally) loopback */
344 	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
345 
346 	/* Sets transfer bit rate */
347 	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
348 	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
349 
350 	/* Disable dummy transmission, set byte access */
351 	rspi_write8(rspi, 0, RSPI_SPDCR);
352 	rspi->byte_access = 1;
353 
354 	/* Sets RSPCK, SSL, next-access delay value */
355 	rspi_write8(rspi, 0x00, RSPI_SPCKD);
356 	rspi_write8(rspi, 0x00, RSPI_SSLND);
357 	rspi_write8(rspi, 0x00, RSPI_SPND);
358 
359 	/* Data Length Setting */
360 	if (access_size == 8)
361 		rspi->spcmd |= SPCMD_SPB_8BIT;
362 	else if (access_size == 16)
363 		rspi->spcmd |= SPCMD_SPB_16BIT;
364 	else
365 		rspi->spcmd |= SPCMD_SPB_32BIT;
366 
367 	rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
368 
369 	/* Resets transfer data length */
370 	rspi_write32(rspi, 0, QSPI_SPBMUL0);
371 
372 	/* Resets transmit and receive buffer */
373 	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
374 	/* Sets buffer to allow normal operation */
375 	rspi_write8(rspi, 0x00, QSPI_SPBFCR);
376 
377 	/* Sets SPCMD */
378 	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
379 
380 	/* Enables SPI function in master mode */
381 	rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
382 
383 	return 0;
384 }
385 
qspi_update(const struct rspi_data * rspi,u8 mask,u8 val,u8 reg)386 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
387 {
388 	u8 data;
389 
390 	data = rspi_read8(rspi, reg);
391 	data &= ~mask;
392 	data |= (val & mask);
393 	rspi_write8(rspi, data, reg);
394 }
395 
qspi_set_send_trigger(struct rspi_data * rspi,unsigned int len)396 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
397 					  unsigned int len)
398 {
399 	unsigned int n;
400 
401 	n = min(len, QSPI_BUFFER_SIZE);
402 
403 	if (len >= QSPI_BUFFER_SIZE) {
404 		/* sets triggering number to 32 bytes */
405 		qspi_update(rspi, SPBFCR_TXTRG_MASK,
406 			     SPBFCR_TXTRG_32B, QSPI_SPBFCR);
407 	} else {
408 		/* sets triggering number to 1 byte */
409 		qspi_update(rspi, SPBFCR_TXTRG_MASK,
410 			     SPBFCR_TXTRG_1B, QSPI_SPBFCR);
411 	}
412 
413 	return n;
414 }
415 
qspi_set_receive_trigger(struct rspi_data * rspi,unsigned int len)416 static void qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
417 {
418 	unsigned int n;
419 
420 	n = min(len, QSPI_BUFFER_SIZE);
421 
422 	if (len >= QSPI_BUFFER_SIZE) {
423 		/* sets triggering number to 32 bytes */
424 		qspi_update(rspi, SPBFCR_RXTRG_MASK,
425 			     SPBFCR_RXTRG_32B, QSPI_SPBFCR);
426 	} else {
427 		/* sets triggering number to 1 byte */
428 		qspi_update(rspi, SPBFCR_RXTRG_MASK,
429 			     SPBFCR_RXTRG_1B, QSPI_SPBFCR);
430 	}
431 }
432 
433 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
434 
rspi_enable_irq(const struct rspi_data * rspi,u8 enable)435 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
436 {
437 	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
438 }
439 
rspi_disable_irq(const struct rspi_data * rspi,u8 disable)440 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
441 {
442 	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
443 }
444 
rspi_wait_for_interrupt(struct rspi_data * rspi,u8 wait_mask,u8 enable_bit)445 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
446 				   u8 enable_bit)
447 {
448 	int ret;
449 
450 	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
451 	if (rspi->spsr & wait_mask)
452 		return 0;
453 
454 	rspi_enable_irq(rspi, enable_bit);
455 	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
456 	if (ret == 0 && !(rspi->spsr & wait_mask))
457 		return -ETIMEDOUT;
458 
459 	return 0;
460 }
461 
rspi_wait_for_tx_empty(struct rspi_data * rspi)462 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
463 {
464 	return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
465 }
466 
rspi_wait_for_rx_full(struct rspi_data * rspi)467 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
468 {
469 	return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
470 }
471 
rspi_data_out(struct rspi_data * rspi,u8 data)472 static int rspi_data_out(struct rspi_data *rspi, u8 data)
473 {
474 	int error = rspi_wait_for_tx_empty(rspi);
475 	if (error < 0) {
476 		dev_err(&rspi->master->dev, "transmit timeout\n");
477 		return error;
478 	}
479 	rspi_write_data(rspi, data);
480 	return 0;
481 }
482 
rspi_data_in(struct rspi_data * rspi)483 static int rspi_data_in(struct rspi_data *rspi)
484 {
485 	int error;
486 	u8 data;
487 
488 	error = rspi_wait_for_rx_full(rspi);
489 	if (error < 0) {
490 		dev_err(&rspi->master->dev, "receive timeout\n");
491 		return error;
492 	}
493 	data = rspi_read_data(rspi);
494 	return data;
495 }
496 
rspi_pio_transfer(struct rspi_data * rspi,const u8 * tx,u8 * rx,unsigned int n)497 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
498 			     unsigned int n)
499 {
500 	while (n-- > 0) {
501 		if (tx) {
502 			int ret = rspi_data_out(rspi, *tx++);
503 			if (ret < 0)
504 				return ret;
505 		}
506 		if (rx) {
507 			int ret = rspi_data_in(rspi);
508 			if (ret < 0)
509 				return ret;
510 			*rx++ = ret;
511 		}
512 	}
513 
514 	return 0;
515 }
516 
rspi_dma_complete(void * arg)517 static void rspi_dma_complete(void *arg)
518 {
519 	struct rspi_data *rspi = arg;
520 
521 	rspi->dma_callbacked = 1;
522 	wake_up_interruptible(&rspi->wait);
523 }
524 
rspi_dma_transfer(struct rspi_data * rspi,struct sg_table * tx,struct sg_table * rx)525 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
526 			     struct sg_table *rx)
527 {
528 	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
529 	u8 irq_mask = 0;
530 	unsigned int other_irq = 0;
531 	dma_cookie_t cookie;
532 	int ret;
533 
534 	/* First prepare and submit the DMA request(s), as this may fail */
535 	if (rx) {
536 		desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
537 					rx->sgl, rx->nents, DMA_FROM_DEVICE,
538 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
539 		if (!desc_rx) {
540 			ret = -EAGAIN;
541 			goto no_dma_rx;
542 		}
543 
544 		desc_rx->callback = rspi_dma_complete;
545 		desc_rx->callback_param = rspi;
546 		cookie = dmaengine_submit(desc_rx);
547 		if (dma_submit_error(cookie)) {
548 			ret = cookie;
549 			goto no_dma_rx;
550 		}
551 
552 		irq_mask |= SPCR_SPRIE;
553 	}
554 
555 	if (tx) {
556 		desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
557 					tx->sgl, tx->nents, DMA_TO_DEVICE,
558 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
559 		if (!desc_tx) {
560 			ret = -EAGAIN;
561 			goto no_dma_tx;
562 		}
563 
564 		if (rx) {
565 			/* No callback */
566 			desc_tx->callback = NULL;
567 		} else {
568 			desc_tx->callback = rspi_dma_complete;
569 			desc_tx->callback_param = rspi;
570 		}
571 		cookie = dmaengine_submit(desc_tx);
572 		if (dma_submit_error(cookie)) {
573 			ret = cookie;
574 			goto no_dma_tx;
575 		}
576 
577 		irq_mask |= SPCR_SPTIE;
578 	}
579 
580 	/*
581 	 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
582 	 * called. So, this driver disables the IRQ while DMA transfer.
583 	 */
584 	if (tx)
585 		disable_irq(other_irq = rspi->tx_irq);
586 	if (rx && rspi->rx_irq != other_irq)
587 		disable_irq(rspi->rx_irq);
588 
589 	rspi_enable_irq(rspi, irq_mask);
590 	rspi->dma_callbacked = 0;
591 
592 	/* Now start DMA */
593 	if (rx)
594 		dma_async_issue_pending(rspi->master->dma_rx);
595 	if (tx)
596 		dma_async_issue_pending(rspi->master->dma_tx);
597 
598 	ret = wait_event_interruptible_timeout(rspi->wait,
599 					       rspi->dma_callbacked, HZ);
600 	if (ret > 0 && rspi->dma_callbacked)
601 		ret = 0;
602 	else if (!ret) {
603 		dev_err(&rspi->master->dev, "DMA timeout\n");
604 		ret = -ETIMEDOUT;
605 		if (tx)
606 			dmaengine_terminate_all(rspi->master->dma_tx);
607 		if (rx)
608 			dmaengine_terminate_all(rspi->master->dma_rx);
609 	}
610 
611 	rspi_disable_irq(rspi, irq_mask);
612 
613 	if (tx)
614 		enable_irq(rspi->tx_irq);
615 	if (rx && rspi->rx_irq != other_irq)
616 		enable_irq(rspi->rx_irq);
617 
618 	return ret;
619 
620 no_dma_tx:
621 	if (rx)
622 		dmaengine_terminate_all(rspi->master->dma_rx);
623 no_dma_rx:
624 	if (ret == -EAGAIN) {
625 		pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
626 			     dev_driver_string(&rspi->master->dev),
627 			     dev_name(&rspi->master->dev));
628 	}
629 	return ret;
630 }
631 
rspi_receive_init(const struct rspi_data * rspi)632 static void rspi_receive_init(const struct rspi_data *rspi)
633 {
634 	u8 spsr;
635 
636 	spsr = rspi_read8(rspi, RSPI_SPSR);
637 	if (spsr & SPSR_SPRF)
638 		rspi_read_data(rspi);	/* dummy read */
639 	if (spsr & SPSR_OVRF)
640 		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
641 			    RSPI_SPSR);
642 }
643 
rspi_rz_receive_init(const struct rspi_data * rspi)644 static void rspi_rz_receive_init(const struct rspi_data *rspi)
645 {
646 	rspi_receive_init(rspi);
647 	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
648 	rspi_write8(rspi, 0, RSPI_SPBFCR);
649 }
650 
qspi_receive_init(const struct rspi_data * rspi)651 static void qspi_receive_init(const struct rspi_data *rspi)
652 {
653 	u8 spsr;
654 
655 	spsr = rspi_read8(rspi, RSPI_SPSR);
656 	if (spsr & SPSR_SPRF)
657 		rspi_read_data(rspi);   /* dummy read */
658 	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
659 	rspi_write8(rspi, 0, QSPI_SPBFCR);
660 }
661 
__rspi_can_dma(const struct rspi_data * rspi,const struct spi_transfer * xfer)662 static bool __rspi_can_dma(const struct rspi_data *rspi,
663 			   const struct spi_transfer *xfer)
664 {
665 	return xfer->len > rspi->ops->fifo_size;
666 }
667 
rspi_can_dma(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)668 static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
669 			 struct spi_transfer *xfer)
670 {
671 	struct rspi_data *rspi = spi_master_get_devdata(master);
672 
673 	return __rspi_can_dma(rspi, xfer);
674 }
675 
rspi_dma_check_then_transfer(struct rspi_data * rspi,struct spi_transfer * xfer)676 static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
677 					 struct spi_transfer *xfer)
678 {
679 	if (!rspi->master->can_dma || !__rspi_can_dma(rspi, xfer))
680 		return -EAGAIN;
681 
682 	/* rx_buf can be NULL on RSPI on SH in TX-only Mode */
683 	return rspi_dma_transfer(rspi, &xfer->tx_sg,
684 				xfer->rx_buf ? &xfer->rx_sg : NULL);
685 }
686 
rspi_common_transfer(struct rspi_data * rspi,struct spi_transfer * xfer)687 static int rspi_common_transfer(struct rspi_data *rspi,
688 				struct spi_transfer *xfer)
689 {
690 	int ret;
691 
692 	ret = rspi_dma_check_then_transfer(rspi, xfer);
693 	if (ret != -EAGAIN)
694 		return ret;
695 
696 	ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
697 	if (ret < 0)
698 		return ret;
699 
700 	/* Wait for the last transmission */
701 	rspi_wait_for_tx_empty(rspi);
702 
703 	return 0;
704 }
705 
rspi_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)706 static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
707 			     struct spi_transfer *xfer)
708 {
709 	struct rspi_data *rspi = spi_master_get_devdata(master);
710 	u8 spcr;
711 
712 	spcr = rspi_read8(rspi, RSPI_SPCR);
713 	if (xfer->rx_buf) {
714 		rspi_receive_init(rspi);
715 		spcr &= ~SPCR_TXMD;
716 	} else {
717 		spcr |= SPCR_TXMD;
718 	}
719 	rspi_write8(rspi, spcr, RSPI_SPCR);
720 
721 	return rspi_common_transfer(rspi, xfer);
722 }
723 
rspi_rz_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)724 static int rspi_rz_transfer_one(struct spi_master *master,
725 				struct spi_device *spi,
726 				struct spi_transfer *xfer)
727 {
728 	struct rspi_data *rspi = spi_master_get_devdata(master);
729 
730 	rspi_rz_receive_init(rspi);
731 
732 	return rspi_common_transfer(rspi, xfer);
733 }
734 
qspi_trigger_transfer_out_in(struct rspi_data * rspi,const u8 * tx,u8 * rx,unsigned int len)735 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
736 					u8 *rx, unsigned int len)
737 {
738 	unsigned int i, n;
739 	int ret;
740 
741 	while (len > 0) {
742 		n = qspi_set_send_trigger(rspi, len);
743 		qspi_set_receive_trigger(rspi, len);
744 		if (n == QSPI_BUFFER_SIZE) {
745 			ret = rspi_wait_for_tx_empty(rspi);
746 			if (ret < 0) {
747 				dev_err(&rspi->master->dev, "transmit timeout\n");
748 				return ret;
749 			}
750 			for (i = 0; i < n; i++)
751 				rspi_write_data(rspi, *tx++);
752 
753 			ret = rspi_wait_for_rx_full(rspi);
754 			if (ret < 0) {
755 				dev_err(&rspi->master->dev, "receive timeout\n");
756 				return ret;
757 			}
758 			for (i = 0; i < n; i++)
759 				*rx++ = rspi_read_data(rspi);
760 		} else {
761 			ret = rspi_pio_transfer(rspi, tx, rx, n);
762 			if (ret < 0)
763 				return ret;
764 		}
765 		len -= n;
766 	}
767 
768 	return 0;
769 }
770 
qspi_transfer_out_in(struct rspi_data * rspi,struct spi_transfer * xfer)771 static int qspi_transfer_out_in(struct rspi_data *rspi,
772 				struct spi_transfer *xfer)
773 {
774 	int ret;
775 
776 	qspi_receive_init(rspi);
777 
778 	ret = rspi_dma_check_then_transfer(rspi, xfer);
779 	if (ret != -EAGAIN)
780 		return ret;
781 
782 	return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
783 					    xfer->rx_buf, xfer->len);
784 }
785 
qspi_transfer_out(struct rspi_data * rspi,struct spi_transfer * xfer)786 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
787 {
788 	int ret;
789 
790 	if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
791 		ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
792 		if (ret != -EAGAIN)
793 			return ret;
794 	}
795 
796 	ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len);
797 	if (ret < 0)
798 		return ret;
799 
800 	/* Wait for the last transmission */
801 	rspi_wait_for_tx_empty(rspi);
802 
803 	return 0;
804 }
805 
qspi_transfer_in(struct rspi_data * rspi,struct spi_transfer * xfer)806 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
807 {
808 	if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
809 		int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
810 		if (ret != -EAGAIN)
811 			return ret;
812 	}
813 
814 	return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len);
815 }
816 
qspi_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)817 static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
818 			     struct spi_transfer *xfer)
819 {
820 	struct rspi_data *rspi = spi_master_get_devdata(master);
821 
822 	if (spi->mode & SPI_LOOP) {
823 		return qspi_transfer_out_in(rspi, xfer);
824 	} else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
825 		/* Quad or Dual SPI Write */
826 		return qspi_transfer_out(rspi, xfer);
827 	} else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
828 		/* Quad or Dual SPI Read */
829 		return qspi_transfer_in(rspi, xfer);
830 	} else {
831 		/* Single SPI Transfer */
832 		return qspi_transfer_out_in(rspi, xfer);
833 	}
834 }
835 
rspi_setup(struct spi_device * spi)836 static int rspi_setup(struct spi_device *spi)
837 {
838 	struct rspi_data *rspi = spi_master_get_devdata(spi->master);
839 
840 	rspi->max_speed_hz = spi->max_speed_hz;
841 
842 	rspi->spcmd = SPCMD_SSLKP;
843 	if (spi->mode & SPI_CPOL)
844 		rspi->spcmd |= SPCMD_CPOL;
845 	if (spi->mode & SPI_CPHA)
846 		rspi->spcmd |= SPCMD_CPHA;
847 
848 	/* CMOS output mode and MOSI signal from previous transfer */
849 	rspi->sppcr = 0;
850 	if (spi->mode & SPI_LOOP)
851 		rspi->sppcr |= SPPCR_SPLP;
852 
853 	set_config_register(rspi, 8);
854 
855 	return 0;
856 }
857 
qspi_transfer_mode(const struct spi_transfer * xfer)858 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
859 {
860 	if (xfer->tx_buf)
861 		switch (xfer->tx_nbits) {
862 		case SPI_NBITS_QUAD:
863 			return SPCMD_SPIMOD_QUAD;
864 		case SPI_NBITS_DUAL:
865 			return SPCMD_SPIMOD_DUAL;
866 		default:
867 			return 0;
868 		}
869 	if (xfer->rx_buf)
870 		switch (xfer->rx_nbits) {
871 		case SPI_NBITS_QUAD:
872 			return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
873 		case SPI_NBITS_DUAL:
874 			return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
875 		default:
876 			return 0;
877 		}
878 
879 	return 0;
880 }
881 
qspi_setup_sequencer(struct rspi_data * rspi,const struct spi_message * msg)882 static int qspi_setup_sequencer(struct rspi_data *rspi,
883 				const struct spi_message *msg)
884 {
885 	const struct spi_transfer *xfer;
886 	unsigned int i = 0, len = 0;
887 	u16 current_mode = 0xffff, mode;
888 
889 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
890 		mode = qspi_transfer_mode(xfer);
891 		if (mode == current_mode) {
892 			len += xfer->len;
893 			continue;
894 		}
895 
896 		/* Transfer mode change */
897 		if (i) {
898 			/* Set transfer data length of previous transfer */
899 			rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
900 		}
901 
902 		if (i >= QSPI_NUM_SPCMD) {
903 			dev_err(&msg->spi->dev,
904 				"Too many different transfer modes");
905 			return -EINVAL;
906 		}
907 
908 		/* Program transfer mode for this transfer */
909 		rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
910 		current_mode = mode;
911 		len = xfer->len;
912 		i++;
913 	}
914 	if (i) {
915 		/* Set final transfer data length and sequence length */
916 		rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
917 		rspi_write8(rspi, i - 1, RSPI_SPSCR);
918 	}
919 
920 	return 0;
921 }
922 
rspi_prepare_message(struct spi_master * master,struct spi_message * msg)923 static int rspi_prepare_message(struct spi_master *master,
924 				struct spi_message *msg)
925 {
926 	struct rspi_data *rspi = spi_master_get_devdata(master);
927 	int ret;
928 
929 	if (msg->spi->mode &
930 	    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
931 		/* Setup sequencer for messages with multiple transfer modes */
932 		ret = qspi_setup_sequencer(rspi, msg);
933 		if (ret < 0)
934 			return ret;
935 	}
936 
937 	/* Enable SPI function in master mode */
938 	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
939 	return 0;
940 }
941 
rspi_unprepare_message(struct spi_master * master,struct spi_message * msg)942 static int rspi_unprepare_message(struct spi_master *master,
943 				  struct spi_message *msg)
944 {
945 	struct rspi_data *rspi = spi_master_get_devdata(master);
946 
947 	/* Disable SPI function */
948 	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
949 
950 	/* Reset sequencer for Single SPI Transfers */
951 	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
952 	rspi_write8(rspi, 0, RSPI_SPSCR);
953 	return 0;
954 }
955 
rspi_irq_mux(int irq,void * _sr)956 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
957 {
958 	struct rspi_data *rspi = _sr;
959 	u8 spsr;
960 	irqreturn_t ret = IRQ_NONE;
961 	u8 disable_irq = 0;
962 
963 	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
964 	if (spsr & SPSR_SPRF)
965 		disable_irq |= SPCR_SPRIE;
966 	if (spsr & SPSR_SPTEF)
967 		disable_irq |= SPCR_SPTIE;
968 
969 	if (disable_irq) {
970 		ret = IRQ_HANDLED;
971 		rspi_disable_irq(rspi, disable_irq);
972 		wake_up(&rspi->wait);
973 	}
974 
975 	return ret;
976 }
977 
rspi_irq_rx(int irq,void * _sr)978 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
979 {
980 	struct rspi_data *rspi = _sr;
981 	u8 spsr;
982 
983 	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
984 	if (spsr & SPSR_SPRF) {
985 		rspi_disable_irq(rspi, SPCR_SPRIE);
986 		wake_up(&rspi->wait);
987 		return IRQ_HANDLED;
988 	}
989 
990 	return 0;
991 }
992 
rspi_irq_tx(int irq,void * _sr)993 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
994 {
995 	struct rspi_data *rspi = _sr;
996 	u8 spsr;
997 
998 	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
999 	if (spsr & SPSR_SPTEF) {
1000 		rspi_disable_irq(rspi, SPCR_SPTIE);
1001 		wake_up(&rspi->wait);
1002 		return IRQ_HANDLED;
1003 	}
1004 
1005 	return 0;
1006 }
1007 
rspi_request_dma_chan(struct device * dev,enum dma_transfer_direction dir,unsigned int id,dma_addr_t port_addr)1008 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1009 					      enum dma_transfer_direction dir,
1010 					      unsigned int id,
1011 					      dma_addr_t port_addr)
1012 {
1013 	dma_cap_mask_t mask;
1014 	struct dma_chan *chan;
1015 	struct dma_slave_config cfg;
1016 	int ret;
1017 
1018 	dma_cap_zero(mask);
1019 	dma_cap_set(DMA_SLAVE, mask);
1020 
1021 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1022 				(void *)(unsigned long)id, dev,
1023 				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1024 	if (!chan) {
1025 		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1026 		return NULL;
1027 	}
1028 
1029 	memset(&cfg, 0, sizeof(cfg));
1030 	cfg.direction = dir;
1031 	if (dir == DMA_MEM_TO_DEV) {
1032 		cfg.dst_addr = port_addr;
1033 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1034 	} else {
1035 		cfg.src_addr = port_addr;
1036 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1037 	}
1038 
1039 	ret = dmaengine_slave_config(chan, &cfg);
1040 	if (ret) {
1041 		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1042 		dma_release_channel(chan);
1043 		return NULL;
1044 	}
1045 
1046 	return chan;
1047 }
1048 
rspi_request_dma(struct device * dev,struct spi_master * master,const struct resource * res)1049 static int rspi_request_dma(struct device *dev, struct spi_master *master,
1050 			    const struct resource *res)
1051 {
1052 	const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1053 	unsigned int dma_tx_id, dma_rx_id;
1054 
1055 	if (dev->of_node) {
1056 		/* In the OF case we will get the slave IDs from the DT */
1057 		dma_tx_id = 0;
1058 		dma_rx_id = 0;
1059 	} else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1060 		dma_tx_id = rspi_pd->dma_tx_id;
1061 		dma_rx_id = rspi_pd->dma_rx_id;
1062 	} else {
1063 		/* The driver assumes no error. */
1064 		return 0;
1065 	}
1066 
1067 	master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1068 					       res->start + RSPI_SPDR);
1069 	if (!master->dma_tx)
1070 		return -ENODEV;
1071 
1072 	master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1073 					       res->start + RSPI_SPDR);
1074 	if (!master->dma_rx) {
1075 		dma_release_channel(master->dma_tx);
1076 		master->dma_tx = NULL;
1077 		return -ENODEV;
1078 	}
1079 
1080 	master->can_dma = rspi_can_dma;
1081 	dev_info(dev, "DMA available");
1082 	return 0;
1083 }
1084 
rspi_release_dma(struct spi_master * master)1085 static void rspi_release_dma(struct spi_master *master)
1086 {
1087 	if (master->dma_tx)
1088 		dma_release_channel(master->dma_tx);
1089 	if (master->dma_rx)
1090 		dma_release_channel(master->dma_rx);
1091 }
1092 
rspi_remove(struct platform_device * pdev)1093 static int rspi_remove(struct platform_device *pdev)
1094 {
1095 	struct rspi_data *rspi = platform_get_drvdata(pdev);
1096 
1097 	rspi_release_dma(rspi->master);
1098 	pm_runtime_disable(&pdev->dev);
1099 
1100 	return 0;
1101 }
1102 
1103 static const struct spi_ops rspi_ops = {
1104 	.set_config_register =	rspi_set_config_register,
1105 	.transfer_one =		rspi_transfer_one,
1106 	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP,
1107 	.flags =		SPI_MASTER_MUST_TX,
1108 	.fifo_size =		8,
1109 };
1110 
1111 static const struct spi_ops rspi_rz_ops = {
1112 	.set_config_register =	rspi_rz_set_config_register,
1113 	.transfer_one =		rspi_rz_transfer_one,
1114 	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP,
1115 	.flags =		SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1116 	.fifo_size =		8,	/* 8 for TX, 32 for RX */
1117 };
1118 
1119 static const struct spi_ops qspi_ops = {
1120 	.set_config_register =	qspi_set_config_register,
1121 	.transfer_one =		qspi_transfer_one,
1122 	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP |
1123 				SPI_TX_DUAL | SPI_TX_QUAD |
1124 				SPI_RX_DUAL | SPI_RX_QUAD,
1125 	.flags =		SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1126 	.fifo_size =		32,
1127 };
1128 
1129 #ifdef CONFIG_OF
1130 static const struct of_device_id rspi_of_match[] = {
1131 	/* RSPI on legacy SH */
1132 	{ .compatible = "renesas,rspi", .data = &rspi_ops },
1133 	/* RSPI on RZ/A1H */
1134 	{ .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1135 	/* QSPI on R-Car Gen2 */
1136 	{ .compatible = "renesas,qspi", .data = &qspi_ops },
1137 	{ /* sentinel */ }
1138 };
1139 
1140 MODULE_DEVICE_TABLE(of, rspi_of_match);
1141 
rspi_parse_dt(struct device * dev,struct spi_master * master)1142 static int rspi_parse_dt(struct device *dev, struct spi_master *master)
1143 {
1144 	u32 num_cs;
1145 	int error;
1146 
1147 	/* Parse DT properties */
1148 	error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1149 	if (error) {
1150 		dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1151 		return error;
1152 	}
1153 
1154 	master->num_chipselect = num_cs;
1155 	return 0;
1156 }
1157 #else
1158 #define rspi_of_match	NULL
rspi_parse_dt(struct device * dev,struct spi_master * master)1159 static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
1160 {
1161 	return -EINVAL;
1162 }
1163 #endif /* CONFIG_OF */
1164 
rspi_request_irq(struct device * dev,unsigned int irq,irq_handler_t handler,const char * suffix,void * dev_id)1165 static int rspi_request_irq(struct device *dev, unsigned int irq,
1166 			    irq_handler_t handler, const char *suffix,
1167 			    void *dev_id)
1168 {
1169 	const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1170 					  dev_name(dev), suffix);
1171 	if (!name)
1172 		return -ENOMEM;
1173 
1174 	return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1175 }
1176 
rspi_probe(struct platform_device * pdev)1177 static int rspi_probe(struct platform_device *pdev)
1178 {
1179 	struct resource *res;
1180 	struct spi_master *master;
1181 	struct rspi_data *rspi;
1182 	int ret;
1183 	const struct of_device_id *of_id;
1184 	const struct rspi_plat_data *rspi_pd;
1185 	const struct spi_ops *ops;
1186 
1187 	master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1188 	if (master == NULL) {
1189 		dev_err(&pdev->dev, "spi_alloc_master error.\n");
1190 		return -ENOMEM;
1191 	}
1192 
1193 	of_id = of_match_device(rspi_of_match, &pdev->dev);
1194 	if (of_id) {
1195 		ops = of_id->data;
1196 		ret = rspi_parse_dt(&pdev->dev, master);
1197 		if (ret)
1198 			goto error1;
1199 	} else {
1200 		ops = (struct spi_ops *)pdev->id_entry->driver_data;
1201 		rspi_pd = dev_get_platdata(&pdev->dev);
1202 		if (rspi_pd && rspi_pd->num_chipselect)
1203 			master->num_chipselect = rspi_pd->num_chipselect;
1204 		else
1205 			master->num_chipselect = 2; /* default */
1206 	}
1207 
1208 	/* ops parameter check */
1209 	if (!ops->set_config_register) {
1210 		dev_err(&pdev->dev, "there is no set_config_register\n");
1211 		ret = -ENODEV;
1212 		goto error1;
1213 	}
1214 
1215 	rspi = spi_master_get_devdata(master);
1216 	platform_set_drvdata(pdev, rspi);
1217 	rspi->ops = ops;
1218 	rspi->master = master;
1219 
1220 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1221 	rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1222 	if (IS_ERR(rspi->addr)) {
1223 		ret = PTR_ERR(rspi->addr);
1224 		goto error1;
1225 	}
1226 
1227 	rspi->clk = devm_clk_get(&pdev->dev, NULL);
1228 	if (IS_ERR(rspi->clk)) {
1229 		dev_err(&pdev->dev, "cannot get clock\n");
1230 		ret = PTR_ERR(rspi->clk);
1231 		goto error1;
1232 	}
1233 
1234 	pm_runtime_enable(&pdev->dev);
1235 
1236 	init_waitqueue_head(&rspi->wait);
1237 
1238 	master->bus_num = pdev->id;
1239 	master->setup = rspi_setup;
1240 	master->auto_runtime_pm = true;
1241 	master->transfer_one = ops->transfer_one;
1242 	master->prepare_message = rspi_prepare_message;
1243 	master->unprepare_message = rspi_unprepare_message;
1244 	master->mode_bits = ops->mode_bits;
1245 	master->flags = ops->flags;
1246 	master->dev.of_node = pdev->dev.of_node;
1247 
1248 	ret = platform_get_irq_byname(pdev, "rx");
1249 	if (ret < 0) {
1250 		ret = platform_get_irq_byname(pdev, "mux");
1251 		if (ret < 0)
1252 			ret = platform_get_irq(pdev, 0);
1253 		if (ret >= 0)
1254 			rspi->rx_irq = rspi->tx_irq = ret;
1255 	} else {
1256 		rspi->rx_irq = ret;
1257 		ret = platform_get_irq_byname(pdev, "tx");
1258 		if (ret >= 0)
1259 			rspi->tx_irq = ret;
1260 	}
1261 	if (ret < 0) {
1262 		dev_err(&pdev->dev, "platform_get_irq error\n");
1263 		goto error2;
1264 	}
1265 
1266 	if (rspi->rx_irq == rspi->tx_irq) {
1267 		/* Single multiplexed interrupt */
1268 		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1269 				       "mux", rspi);
1270 	} else {
1271 		/* Multi-interrupt mode, only SPRI and SPTI are used */
1272 		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1273 				       "rx", rspi);
1274 		if (!ret)
1275 			ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1276 					       rspi_irq_tx, "tx", rspi);
1277 	}
1278 	if (ret < 0) {
1279 		dev_err(&pdev->dev, "request_irq error\n");
1280 		goto error2;
1281 	}
1282 
1283 	ret = rspi_request_dma(&pdev->dev, master, res);
1284 	if (ret < 0)
1285 		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1286 
1287 	ret = devm_spi_register_master(&pdev->dev, master);
1288 	if (ret < 0) {
1289 		dev_err(&pdev->dev, "spi_register_master error.\n");
1290 		goto error3;
1291 	}
1292 
1293 	dev_info(&pdev->dev, "probed\n");
1294 
1295 	return 0;
1296 
1297 error3:
1298 	rspi_release_dma(master);
1299 error2:
1300 	pm_runtime_disable(&pdev->dev);
1301 error1:
1302 	spi_master_put(master);
1303 
1304 	return ret;
1305 }
1306 
1307 static const struct platform_device_id spi_driver_ids[] = {
1308 	{ "rspi",	(kernel_ulong_t)&rspi_ops },
1309 	{ "rspi-rz",	(kernel_ulong_t)&rspi_rz_ops },
1310 	{ "qspi",	(kernel_ulong_t)&qspi_ops },
1311 	{},
1312 };
1313 
1314 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1315 
1316 static struct platform_driver rspi_driver = {
1317 	.probe =	rspi_probe,
1318 	.remove =	rspi_remove,
1319 	.id_table =	spi_driver_ids,
1320 	.driver		= {
1321 		.name = "renesas_spi",
1322 		.of_match_table = of_match_ptr(rspi_of_match),
1323 	},
1324 };
1325 module_platform_driver(rspi_driver);
1326 
1327 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1328 MODULE_LICENSE("GPL v2");
1329 MODULE_AUTHOR("Yoshihiro Shimoda");
1330 MODULE_ALIAS("platform:rspi");
1331