1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uio.h>
24 #include <linux/uuid.h>
25 #include <linux/file.h>
26
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include "trace.h"
34 #include <trace/events/f2fs.h>
35
f2fs_filemap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)36 static int f2fs_filemap_fault(struct vm_area_struct *vma,
37 struct vm_fault *vmf)
38 {
39 struct inode *inode = file_inode(vma->vm_file);
40 int err;
41
42 down_read(&F2FS_I(inode)->i_mmap_sem);
43 err = filemap_fault(vma, vmf);
44 up_read(&F2FS_I(inode)->i_mmap_sem);
45
46 return err;
47 }
48
f2fs_vm_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)49 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
50 struct vm_fault *vmf)
51 {
52 struct page *page = vmf->page;
53 struct inode *inode = file_inode(vma->vm_file);
54 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
55 struct dnode_of_data dn;
56 int err;
57
58 if (unlikely(f2fs_cp_error(sbi))) {
59 err = -EIO;
60 goto err;
61 }
62
63 sb_start_pagefault(inode->i_sb);
64
65 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
66
67 /* block allocation */
68 f2fs_lock_op(sbi);
69 set_new_dnode(&dn, inode, NULL, NULL, 0);
70 err = f2fs_reserve_block(&dn, page->index);
71 if (err) {
72 f2fs_unlock_op(sbi);
73 goto out;
74 }
75 f2fs_put_dnode(&dn);
76 f2fs_unlock_op(sbi);
77
78 f2fs_balance_fs(sbi, dn.node_changed);
79
80 file_update_time(vma->vm_file);
81 down_read(&F2FS_I(inode)->i_mmap_sem);
82 lock_page(page);
83 if (unlikely(page->mapping != inode->i_mapping ||
84 page_offset(page) > i_size_read(inode) ||
85 !PageUptodate(page))) {
86 unlock_page(page);
87 err = -EFAULT;
88 goto out_sem;
89 }
90
91 /*
92 * check to see if the page is mapped already (no holes)
93 */
94 if (PageMappedToDisk(page))
95 goto mapped;
96
97 /* page is wholly or partially inside EOF */
98 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
99 i_size_read(inode)) {
100 unsigned offset;
101 offset = i_size_read(inode) & ~PAGE_MASK;
102 zero_user_segment(page, offset, PAGE_SIZE);
103 }
104 set_page_dirty(page);
105 if (!PageUptodate(page))
106 SetPageUptodate(page);
107
108 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
109
110 trace_f2fs_vm_page_mkwrite(page, DATA);
111 mapped:
112 /* fill the page */
113 f2fs_wait_on_page_writeback(page, DATA, false);
114
115 /* wait for GCed page writeback via META_MAPPING */
116 if (f2fs_post_read_required(inode))
117 f2fs_wait_on_block_writeback(sbi, dn.data_blkaddr);
118
119 out_sem:
120 up_read(&F2FS_I(inode)->i_mmap_sem);
121 out:
122 sb_end_pagefault(inode->i_sb);
123 f2fs_update_time(sbi, REQ_TIME);
124 err:
125 return block_page_mkwrite_return(err);
126 }
127
128 static const struct vm_operations_struct f2fs_file_vm_ops = {
129 .fault = f2fs_filemap_fault,
130 .map_pages = filemap_map_pages,
131 .page_mkwrite = f2fs_vm_page_mkwrite,
132 };
133
get_parent_ino(struct inode * inode,nid_t * pino)134 static int get_parent_ino(struct inode *inode, nid_t *pino)
135 {
136 struct dentry *dentry;
137
138 inode = igrab(inode);
139 dentry = d_find_any_alias(inode);
140 iput(inode);
141 if (!dentry)
142 return 0;
143
144 *pino = parent_ino(dentry);
145 dput(dentry);
146 return 1;
147 }
148
need_do_checkpoint(struct inode * inode)149 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
150 {
151 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
152 enum cp_reason_type cp_reason = CP_NO_NEEDED;
153
154 if (!S_ISREG(inode->i_mode))
155 cp_reason = CP_NON_REGULAR;
156 else if (inode->i_nlink != 1)
157 cp_reason = CP_HARDLINK;
158 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
159 cp_reason = CP_SB_NEED_CP;
160 else if (file_wrong_pino(inode))
161 cp_reason = CP_WRONG_PINO;
162 else if (!space_for_roll_forward(sbi))
163 cp_reason = CP_NO_SPC_ROLL;
164 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
165 cp_reason = CP_NODE_NEED_CP;
166 else if (test_opt(sbi, FASTBOOT))
167 cp_reason = CP_FASTBOOT_MODE;
168 else if (F2FS_OPTION(sbi).active_logs == 2)
169 cp_reason = CP_SPEC_LOG_NUM;
170 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
171 need_dentry_mark(sbi, inode->i_ino) &&
172 exist_written_data(sbi, F2FS_I(inode)->i_pino, TRANS_DIR_INO))
173 cp_reason = CP_RECOVER_DIR;
174
175 return cp_reason;
176 }
177
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)178 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
179 {
180 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
181 bool ret = false;
182 /* But we need to avoid that there are some inode updates */
183 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
184 ret = true;
185 f2fs_put_page(i, 0);
186 return ret;
187 }
188
try_to_fix_pino(struct inode * inode)189 static void try_to_fix_pino(struct inode *inode)
190 {
191 struct f2fs_inode_info *fi = F2FS_I(inode);
192 nid_t pino;
193
194 down_write(&fi->i_sem);
195 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
196 get_parent_ino(inode, &pino)) {
197 f2fs_i_pino_write(inode, pino);
198 file_got_pino(inode);
199 }
200 up_write(&fi->i_sem);
201 }
202
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)203 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
204 int datasync, bool atomic)
205 {
206 struct inode *inode = file->f_mapping->host;
207 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
208 nid_t ino = inode->i_ino;
209 int ret = 0;
210 enum cp_reason_type cp_reason = 0;
211 struct writeback_control wbc = {
212 .sync_mode = WB_SYNC_ALL,
213 .nr_to_write = LONG_MAX,
214 .for_reclaim = 0,
215 };
216
217 if (unlikely(f2fs_readonly(inode->i_sb)))
218 return 0;
219
220 trace_f2fs_sync_file_enter(inode);
221
222 /* if fdatasync is triggered, let's do in-place-update */
223 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
224 set_inode_flag(inode, FI_NEED_IPU);
225 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
226 clear_inode_flag(inode, FI_NEED_IPU);
227
228 if (ret) {
229 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
230 return ret;
231 }
232
233 /* if the inode is dirty, let's recover all the time */
234 if (!f2fs_skip_inode_update(inode, datasync)) {
235 f2fs_write_inode(inode, NULL);
236 goto go_write;
237 }
238
239 /*
240 * if there is no written data, don't waste time to write recovery info.
241 */
242 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
243 !exist_written_data(sbi, ino, APPEND_INO)) {
244
245 /* it may call write_inode just prior to fsync */
246 if (need_inode_page_update(sbi, ino))
247 goto go_write;
248
249 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
250 exist_written_data(sbi, ino, UPDATE_INO))
251 goto flush_out;
252 goto out;
253 }
254 go_write:
255 /*
256 * Both of fdatasync() and fsync() are able to be recovered from
257 * sudden-power-off.
258 */
259 down_read(&F2FS_I(inode)->i_sem);
260 cp_reason = need_do_checkpoint(inode);
261 up_read(&F2FS_I(inode)->i_sem);
262
263 if (cp_reason) {
264 /* all the dirty node pages should be flushed for POR */
265 ret = f2fs_sync_fs(inode->i_sb, 1);
266
267 /*
268 * We've secured consistency through sync_fs. Following pino
269 * will be used only for fsynced inodes after checkpoint.
270 */
271 try_to_fix_pino(inode);
272 clear_inode_flag(inode, FI_APPEND_WRITE);
273 clear_inode_flag(inode, FI_UPDATE_WRITE);
274 goto out;
275 }
276 sync_nodes:
277 ret = fsync_node_pages(sbi, inode, &wbc, atomic);
278 if (ret)
279 goto out;
280
281 /* if cp_error was enabled, we should avoid infinite loop */
282 if (unlikely(f2fs_cp_error(sbi))) {
283 ret = -EIO;
284 goto out;
285 }
286
287 if (need_inode_block_update(sbi, ino)) {
288 f2fs_mark_inode_dirty_sync(inode, true);
289 f2fs_write_inode(inode, NULL);
290 goto sync_nodes;
291 }
292
293 /*
294 * If it's atomic_write, it's just fine to keep write ordering. So
295 * here we don't need to wait for node write completion, since we use
296 * node chain which serializes node blocks. If one of node writes are
297 * reordered, we can see simply broken chain, resulting in stopping
298 * roll-forward recovery. It means we'll recover all or none node blocks
299 * given fsync mark.
300 */
301 if (!atomic) {
302 ret = wait_on_node_pages_writeback(sbi, ino);
303 if (ret)
304 goto out;
305 }
306
307 /* once recovery info is written, don't need to tack this */
308 remove_ino_entry(sbi, ino, APPEND_INO);
309 clear_inode_flag(inode, FI_APPEND_WRITE);
310 flush_out:
311 if (!atomic)
312 ret = f2fs_issue_flush(sbi, inode->i_ino);
313 if (!ret) {
314 remove_ino_entry(sbi, ino, UPDATE_INO);
315 clear_inode_flag(inode, FI_UPDATE_WRITE);
316 remove_ino_entry(sbi, ino, FLUSH_INO);
317 }
318 f2fs_update_time(sbi, REQ_TIME);
319 out:
320 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
321 f2fs_trace_ios(NULL, 1);
322 return ret;
323 }
324
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)325 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
326 {
327 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
328 return -EIO;
329 return f2fs_do_sync_file(file, start, end, datasync, false);
330 }
331
__get_first_dirty_index(struct address_space * mapping,pgoff_t pgofs,int whence)332 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
333 pgoff_t pgofs, int whence)
334 {
335 struct pagevec pvec;
336 int nr_pages;
337
338 if (whence != SEEK_DATA)
339 return 0;
340
341 /* find first dirty page index */
342 pagevec_init(&pvec, 0);
343 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
344 PAGECACHE_TAG_DIRTY, 1);
345 pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
346 pagevec_release(&pvec);
347 return pgofs;
348 }
349
__found_offset(block_t blkaddr,pgoff_t dirty,pgoff_t pgofs,int whence)350 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
351 int whence)
352 {
353 switch (whence) {
354 case SEEK_DATA:
355 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
356 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
357 return true;
358 break;
359 case SEEK_HOLE:
360 if (blkaddr == NULL_ADDR)
361 return true;
362 break;
363 }
364 return false;
365 }
366
f2fs_seek_block(struct file * file,loff_t offset,int whence)367 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
368 {
369 struct inode *inode = file->f_mapping->host;
370 loff_t maxbytes = inode->i_sb->s_maxbytes;
371 struct dnode_of_data dn;
372 pgoff_t pgofs, end_offset, dirty;
373 loff_t data_ofs = offset;
374 loff_t isize;
375 int err = 0;
376
377 inode_lock(inode);
378
379 isize = i_size_read(inode);
380 if (offset >= isize)
381 goto fail;
382
383 /* handle inline data case */
384 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
385 if (whence == SEEK_HOLE)
386 data_ofs = isize;
387 goto found;
388 }
389
390 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
391
392 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
393
394 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
395 set_new_dnode(&dn, inode, NULL, NULL, 0);
396 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
397 if (err && err != -ENOENT) {
398 goto fail;
399 } else if (err == -ENOENT) {
400 /* direct node does not exists */
401 if (whence == SEEK_DATA) {
402 pgofs = get_next_page_offset(&dn, pgofs);
403 continue;
404 } else {
405 goto found;
406 }
407 }
408
409 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
410
411 /* find data/hole in dnode block */
412 for (; dn.ofs_in_node < end_offset;
413 dn.ofs_in_node++, pgofs++,
414 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
415 block_t blkaddr;
416 blkaddr = datablock_addr(dn.inode,
417 dn.node_page, dn.ofs_in_node);
418
419 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
420 f2fs_put_dnode(&dn);
421 goto found;
422 }
423 }
424 f2fs_put_dnode(&dn);
425 }
426
427 if (whence == SEEK_DATA)
428 goto fail;
429 found:
430 if (whence == SEEK_HOLE && data_ofs > isize)
431 data_ofs = isize;
432 inode_unlock(inode);
433 return vfs_setpos(file, data_ofs, maxbytes);
434 fail:
435 inode_unlock(inode);
436 return -ENXIO;
437 }
438
f2fs_llseek(struct file * file,loff_t offset,int whence)439 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
440 {
441 struct inode *inode = file->f_mapping->host;
442 loff_t maxbytes = inode->i_sb->s_maxbytes;
443
444 switch (whence) {
445 case SEEK_SET:
446 case SEEK_CUR:
447 case SEEK_END:
448 return generic_file_llseek_size(file, offset, whence,
449 maxbytes, i_size_read(inode));
450 case SEEK_DATA:
451 case SEEK_HOLE:
452 if (offset < 0)
453 return -ENXIO;
454 return f2fs_seek_block(file, offset, whence);
455 }
456
457 return -EINVAL;
458 }
459
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)460 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
461 {
462 struct inode *inode = file_inode(file);
463 int err;
464
465 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
466 return -EIO;
467
468 /* we don't need to use inline_data strictly */
469 err = f2fs_convert_inline_inode(inode);
470 if (err)
471 return err;
472
473 file_accessed(file);
474 vma->vm_ops = &f2fs_file_vm_ops;
475 return 0;
476 }
477
f2fs_file_open(struct inode * inode,struct file * filp)478 static int f2fs_file_open(struct inode *inode, struct file *filp)
479 {
480 int err = fscrypt_file_open(inode, filp);
481
482 if (err)
483 return err;
484
485 filp->f_mode |= FMODE_NOWAIT;
486
487 return dquot_file_open(inode, filp);
488 }
489
truncate_data_blocks_range(struct dnode_of_data * dn,int count)490 void truncate_data_blocks_range(struct dnode_of_data *dn, int count)
491 {
492 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
493 struct f2fs_node *raw_node;
494 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
495 __le32 *addr;
496 int base = 0;
497
498 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
499 base = get_extra_isize(dn->inode);
500
501 raw_node = F2FS_NODE(dn->node_page);
502 addr = blkaddr_in_node(raw_node) + base + ofs;
503
504 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
505 block_t blkaddr = le32_to_cpu(*addr);
506 if (blkaddr == NULL_ADDR)
507 continue;
508
509 dn->data_blkaddr = NULL_ADDR;
510 set_data_blkaddr(dn);
511 invalidate_blocks(sbi, blkaddr);
512 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
513 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
514 nr_free++;
515 }
516
517 if (nr_free) {
518 pgoff_t fofs;
519 /*
520 * once we invalidate valid blkaddr in range [ofs, ofs + count],
521 * we will invalidate all blkaddr in the whole range.
522 */
523 fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
524 dn->inode) + ofs;
525 f2fs_update_extent_cache_range(dn, fofs, 0, len);
526 dec_valid_block_count(sbi, dn->inode, nr_free);
527 }
528 dn->ofs_in_node = ofs;
529
530 f2fs_update_time(sbi, REQ_TIME);
531 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
532 dn->ofs_in_node, nr_free);
533 }
534
truncate_data_blocks(struct dnode_of_data * dn)535 void truncate_data_blocks(struct dnode_of_data *dn)
536 {
537 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
538 }
539
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)540 static int truncate_partial_data_page(struct inode *inode, u64 from,
541 bool cache_only)
542 {
543 unsigned offset = from & (PAGE_SIZE - 1);
544 pgoff_t index = from >> PAGE_SHIFT;
545 struct address_space *mapping = inode->i_mapping;
546 struct page *page;
547
548 if (!offset && !cache_only)
549 return 0;
550
551 if (cache_only) {
552 page = find_lock_page(mapping, index);
553 if (page && PageUptodate(page))
554 goto truncate_out;
555 f2fs_put_page(page, 1);
556 return 0;
557 }
558
559 page = get_lock_data_page(inode, index, true);
560 if (IS_ERR(page))
561 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
562 truncate_out:
563 f2fs_wait_on_page_writeback(page, DATA, true);
564 zero_user(page, offset, PAGE_SIZE - offset);
565
566 /* An encrypted inode should have a key and truncate the last page. */
567 f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
568 if (!cache_only)
569 set_page_dirty(page);
570 f2fs_put_page(page, 1);
571 return 0;
572 }
573
truncate_blocks(struct inode * inode,u64 from,bool lock)574 int truncate_blocks(struct inode *inode, u64 from, bool lock)
575 {
576 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
577 struct dnode_of_data dn;
578 pgoff_t free_from;
579 int count = 0, err = 0;
580 struct page *ipage;
581 bool truncate_page = false;
582
583 trace_f2fs_truncate_blocks_enter(inode, from);
584
585 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
586
587 if (free_from >= sbi->max_file_blocks)
588 goto free_partial;
589
590 if (lock)
591 f2fs_lock_op(sbi);
592
593 ipage = get_node_page(sbi, inode->i_ino);
594 if (IS_ERR(ipage)) {
595 err = PTR_ERR(ipage);
596 goto out;
597 }
598
599 if (f2fs_has_inline_data(inode)) {
600 truncate_inline_inode(inode, ipage, from);
601 f2fs_put_page(ipage, 1);
602 truncate_page = true;
603 goto out;
604 }
605
606 set_new_dnode(&dn, inode, ipage, NULL, 0);
607 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
608 if (err) {
609 if (err == -ENOENT)
610 goto free_next;
611 goto out;
612 }
613
614 count = ADDRS_PER_PAGE(dn.node_page, inode);
615
616 count -= dn.ofs_in_node;
617 f2fs_bug_on(sbi, count < 0);
618
619 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
620 truncate_data_blocks_range(&dn, count);
621 free_from += count;
622 }
623
624 f2fs_put_dnode(&dn);
625 free_next:
626 err = truncate_inode_blocks(inode, free_from);
627 out:
628 if (lock)
629 f2fs_unlock_op(sbi);
630 free_partial:
631 /* lastly zero out the first data page */
632 if (!err)
633 err = truncate_partial_data_page(inode, from, truncate_page);
634
635 trace_f2fs_truncate_blocks_exit(inode, err);
636 return err;
637 }
638
f2fs_truncate(struct inode * inode)639 int f2fs_truncate(struct inode *inode)
640 {
641 int err;
642
643 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
644 return -EIO;
645
646 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
647 S_ISLNK(inode->i_mode)))
648 return 0;
649
650 trace_f2fs_truncate(inode);
651
652 #ifdef CONFIG_F2FS_FAULT_INJECTION
653 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
654 f2fs_show_injection_info(FAULT_TRUNCATE);
655 return -EIO;
656 }
657 #endif
658 /* we should check inline_data size */
659 if (!f2fs_may_inline_data(inode)) {
660 err = f2fs_convert_inline_inode(inode);
661 if (err)
662 return err;
663 }
664
665 err = truncate_blocks(inode, i_size_read(inode), true);
666 if (err)
667 return err;
668
669 inode->i_mtime = inode->i_ctime = current_time(inode);
670 f2fs_mark_inode_dirty_sync(inode, false);
671 return 0;
672 }
673
f2fs_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)674 int f2fs_getattr(struct vfsmount *mnt,
675 struct dentry *dentry, struct kstat *stat)
676 {
677 struct inode *inode = d_inode(dentry);
678 #if 0
679 struct f2fs_inode_info *fi = F2FS_I(inode);
680 struct f2fs_inode *ri;
681 unsigned int flags;
682
683 if (f2fs_has_extra_attr(inode) &&
684 f2fs_sb_has_inode_crtime(inode->i_sb) &&
685 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
686 stat->result_mask |= STATX_BTIME;
687 stat->btime.tv_sec = fi->i_crtime.tv_sec;
688 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
689 }
690
691 flags = fi->i_flags & (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
692 if (flags & FS_APPEND_FL)
693 stat->attributes |= STATX_ATTR_APPEND;
694 if (flags & FS_COMPR_FL)
695 stat->attributes |= STATX_ATTR_COMPRESSED;
696 if (f2fs_encrypted_inode(inode))
697 stat->attributes |= STATX_ATTR_ENCRYPTED;
698 if (flags & FS_IMMUTABLE_FL)
699 stat->attributes |= STATX_ATTR_IMMUTABLE;
700 if (flags & FS_NODUMP_FL)
701 stat->attributes |= STATX_ATTR_NODUMP;
702
703 stat->attributes_mask |= (STATX_ATTR_APPEND |
704 STATX_ATTR_COMPRESSED |
705 STATX_ATTR_ENCRYPTED |
706 STATX_ATTR_IMMUTABLE |
707 STATX_ATTR_NODUMP);
708 #endif
709 generic_fillattr(inode, stat);
710
711 /* we need to show initial sectors used for inline_data/dentries */
712 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
713 f2fs_has_inline_dentry(inode))
714 stat->blocks += (stat->size + 511) >> 9;
715
716 return 0;
717 }
718
719 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct inode * inode,const struct iattr * attr)720 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
721 {
722 unsigned int ia_valid = attr->ia_valid;
723
724 if (ia_valid & ATTR_UID)
725 inode->i_uid = attr->ia_uid;
726 if (ia_valid & ATTR_GID)
727 inode->i_gid = attr->ia_gid;
728 if (ia_valid & ATTR_ATIME)
729 inode->i_atime = timespec_trunc(attr->ia_atime,
730 inode->i_sb->s_time_gran);
731 if (ia_valid & ATTR_MTIME)
732 inode->i_mtime = timespec_trunc(attr->ia_mtime,
733 inode->i_sb->s_time_gran);
734 if (ia_valid & ATTR_CTIME)
735 inode->i_ctime = timespec_trunc(attr->ia_ctime,
736 inode->i_sb->s_time_gran);
737 if (ia_valid & ATTR_MODE) {
738 umode_t mode = attr->ia_mode;
739
740 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
741 mode &= ~S_ISGID;
742 set_acl_inode(inode, mode);
743 }
744 }
745 #else
746 #define __setattr_copy setattr_copy
747 #endif
748
f2fs_setattr(struct dentry * dentry,struct iattr * attr)749 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
750 {
751 struct inode *inode = d_inode(dentry);
752 int err;
753 bool size_changed = false;
754
755 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
756 return -EIO;
757
758 err = setattr_prepare(dentry, attr);
759 if (err)
760 return err;
761
762 err = fscrypt_prepare_setattr(dentry, attr);
763 if (err)
764 return err;
765
766 if (is_quota_modification(inode, attr)) {
767 err = dquot_initialize(inode);
768 if (err)
769 return err;
770 }
771 if ((attr->ia_valid & ATTR_UID &&
772 !uid_eq(attr->ia_uid, inode->i_uid)) ||
773 (attr->ia_valid & ATTR_GID &&
774 !gid_eq(attr->ia_gid, inode->i_gid))) {
775 err = dquot_transfer(inode, attr);
776 if (err)
777 return err;
778 }
779
780 if (attr->ia_valid & ATTR_SIZE) {
781 if (attr->ia_size <= i_size_read(inode)) {
782 down_write(&F2FS_I(inode)->i_mmap_sem);
783 truncate_setsize(inode, attr->ia_size);
784 err = f2fs_truncate(inode);
785 up_write(&F2FS_I(inode)->i_mmap_sem);
786 if (err)
787 return err;
788 } else {
789 /*
790 * do not trim all blocks after i_size if target size is
791 * larger than i_size.
792 */
793 down_write(&F2FS_I(inode)->i_mmap_sem);
794 truncate_setsize(inode, attr->ia_size);
795 up_write(&F2FS_I(inode)->i_mmap_sem);
796
797 /* should convert inline inode here */
798 if (!f2fs_may_inline_data(inode)) {
799 err = f2fs_convert_inline_inode(inode);
800 if (err)
801 return err;
802 }
803 inode->i_mtime = inode->i_ctime = current_time(inode);
804 }
805
806 down_write(&F2FS_I(inode)->i_sem);
807 F2FS_I(inode)->last_disk_size = i_size_read(inode);
808 up_write(&F2FS_I(inode)->i_sem);
809
810 size_changed = true;
811 }
812
813 __setattr_copy(inode, attr);
814
815 if (attr->ia_valid & ATTR_MODE) {
816 err = posix_acl_chmod(inode, get_inode_mode(inode));
817 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
818 inode->i_mode = F2FS_I(inode)->i_acl_mode;
819 clear_inode_flag(inode, FI_ACL_MODE);
820 }
821 }
822
823 /* file size may changed here */
824 f2fs_mark_inode_dirty_sync(inode, size_changed);
825
826 /* inode change will produce dirty node pages flushed by checkpoint */
827 f2fs_balance_fs(F2FS_I_SB(inode), true);
828
829 return err;
830 }
831
832 const struct inode_operations f2fs_file_inode_operations = {
833 .getattr = f2fs_getattr,
834 .setattr = f2fs_setattr,
835 .get_acl = f2fs_get_acl,
836 .set_acl = f2fs_set_acl,
837 #ifdef CONFIG_F2FS_FS_XATTR
838 .listxattr = f2fs_listxattr,
839 #endif
840 .fiemap = f2fs_fiemap,
841 };
842
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)843 static int fill_zero(struct inode *inode, pgoff_t index,
844 loff_t start, loff_t len)
845 {
846 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
847 struct page *page;
848
849 if (!len)
850 return 0;
851
852 f2fs_balance_fs(sbi, true);
853
854 f2fs_lock_op(sbi);
855 page = get_new_data_page(inode, NULL, index, false);
856 f2fs_unlock_op(sbi);
857
858 if (IS_ERR(page))
859 return PTR_ERR(page);
860
861 f2fs_wait_on_page_writeback(page, DATA, true);
862 zero_user(page, start, len);
863 set_page_dirty(page);
864 f2fs_put_page(page, 1);
865 return 0;
866 }
867
truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)868 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
869 {
870 int err;
871
872 while (pg_start < pg_end) {
873 struct dnode_of_data dn;
874 pgoff_t end_offset, count;
875
876 set_new_dnode(&dn, inode, NULL, NULL, 0);
877 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
878 if (err) {
879 if (err == -ENOENT) {
880 pg_start = get_next_page_offset(&dn, pg_start);
881 continue;
882 }
883 return err;
884 }
885
886 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
887 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
888
889 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
890
891 truncate_data_blocks_range(&dn, count);
892 f2fs_put_dnode(&dn);
893
894 pg_start += count;
895 }
896 return 0;
897 }
898
punch_hole(struct inode * inode,loff_t offset,loff_t len)899 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
900 {
901 pgoff_t pg_start, pg_end;
902 loff_t off_start, off_end;
903 int ret;
904
905 ret = f2fs_convert_inline_inode(inode);
906 if (ret)
907 return ret;
908
909 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
910 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
911
912 off_start = offset & (PAGE_SIZE - 1);
913 off_end = (offset + len) & (PAGE_SIZE - 1);
914
915 if (pg_start == pg_end) {
916 ret = fill_zero(inode, pg_start, off_start,
917 off_end - off_start);
918 if (ret)
919 return ret;
920 } else {
921 if (off_start) {
922 ret = fill_zero(inode, pg_start++, off_start,
923 PAGE_SIZE - off_start);
924 if (ret)
925 return ret;
926 }
927 if (off_end) {
928 ret = fill_zero(inode, pg_end, 0, off_end);
929 if (ret)
930 return ret;
931 }
932
933 if (pg_start < pg_end) {
934 struct address_space *mapping = inode->i_mapping;
935 loff_t blk_start, blk_end;
936 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
937
938 f2fs_balance_fs(sbi, true);
939
940 blk_start = (loff_t)pg_start << PAGE_SHIFT;
941 blk_end = (loff_t)pg_end << PAGE_SHIFT;
942 down_write(&F2FS_I(inode)->i_mmap_sem);
943 truncate_inode_pages_range(mapping, blk_start,
944 blk_end - 1);
945
946 f2fs_lock_op(sbi);
947 ret = truncate_hole(inode, pg_start, pg_end);
948 f2fs_unlock_op(sbi);
949 up_write(&F2FS_I(inode)->i_mmap_sem);
950 }
951 }
952
953 return ret;
954 }
955
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)956 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
957 int *do_replace, pgoff_t off, pgoff_t len)
958 {
959 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
960 struct dnode_of_data dn;
961 int ret, done, i;
962
963 next_dnode:
964 set_new_dnode(&dn, inode, NULL, NULL, 0);
965 ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
966 if (ret && ret != -ENOENT) {
967 return ret;
968 } else if (ret == -ENOENT) {
969 if (dn.max_level == 0)
970 return -ENOENT;
971 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
972 blkaddr += done;
973 do_replace += done;
974 goto next;
975 }
976
977 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
978 dn.ofs_in_node, len);
979 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
980 *blkaddr = datablock_addr(dn.inode,
981 dn.node_page, dn.ofs_in_node);
982 if (!is_checkpointed_data(sbi, *blkaddr)) {
983
984 if (test_opt(sbi, LFS)) {
985 f2fs_put_dnode(&dn);
986 return -ENOTSUPP;
987 }
988
989 /* do not invalidate this block address */
990 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
991 *do_replace = 1;
992 }
993 }
994 f2fs_put_dnode(&dn);
995 next:
996 len -= done;
997 off += done;
998 if (len)
999 goto next_dnode;
1000 return 0;
1001 }
1002
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1003 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1004 int *do_replace, pgoff_t off, int len)
1005 {
1006 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1007 struct dnode_of_data dn;
1008 int ret, i;
1009
1010 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1011 if (*do_replace == 0)
1012 continue;
1013
1014 set_new_dnode(&dn, inode, NULL, NULL, 0);
1015 ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1016 if (ret) {
1017 dec_valid_block_count(sbi, inode, 1);
1018 invalidate_blocks(sbi, *blkaddr);
1019 } else {
1020 f2fs_update_data_blkaddr(&dn, *blkaddr);
1021 }
1022 f2fs_put_dnode(&dn);
1023 }
1024 return 0;
1025 }
1026
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1027 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1028 block_t *blkaddr, int *do_replace,
1029 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1030 {
1031 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1032 pgoff_t i = 0;
1033 int ret;
1034
1035 while (i < len) {
1036 if (blkaddr[i] == NULL_ADDR && !full) {
1037 i++;
1038 continue;
1039 }
1040
1041 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1042 struct dnode_of_data dn;
1043 struct node_info ni;
1044 size_t new_size;
1045 pgoff_t ilen;
1046
1047 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1048 ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1049 if (ret)
1050 return ret;
1051
1052 get_node_info(sbi, dn.nid, &ni);
1053 ilen = min((pgoff_t)
1054 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1055 dn.ofs_in_node, len - i);
1056 do {
1057 dn.data_blkaddr = datablock_addr(dn.inode,
1058 dn.node_page, dn.ofs_in_node);
1059 truncate_data_blocks_range(&dn, 1);
1060
1061 if (do_replace[i]) {
1062 f2fs_i_blocks_write(src_inode,
1063 1, false, false);
1064 f2fs_i_blocks_write(dst_inode,
1065 1, true, false);
1066 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1067 blkaddr[i], ni.version, true, false);
1068
1069 do_replace[i] = 0;
1070 }
1071 dn.ofs_in_node++;
1072 i++;
1073 new_size = (dst + i) << PAGE_SHIFT;
1074 if (dst_inode->i_size < new_size)
1075 f2fs_i_size_write(dst_inode, new_size);
1076 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1077
1078 f2fs_put_dnode(&dn);
1079 } else {
1080 struct page *psrc, *pdst;
1081
1082 psrc = get_lock_data_page(src_inode, src + i, true);
1083 if (IS_ERR(psrc))
1084 return PTR_ERR(psrc);
1085 pdst = get_new_data_page(dst_inode, NULL, dst + i,
1086 true);
1087 if (IS_ERR(pdst)) {
1088 f2fs_put_page(psrc, 1);
1089 return PTR_ERR(pdst);
1090 }
1091 f2fs_copy_page(psrc, pdst);
1092 set_page_dirty(pdst);
1093 f2fs_put_page(pdst, 1);
1094 f2fs_put_page(psrc, 1);
1095
1096 ret = truncate_hole(src_inode, src + i, src + i + 1);
1097 if (ret)
1098 return ret;
1099 i++;
1100 }
1101 }
1102 return 0;
1103 }
1104
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1105 static int __exchange_data_block(struct inode *src_inode,
1106 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1107 pgoff_t len, bool full)
1108 {
1109 block_t *src_blkaddr;
1110 int *do_replace;
1111 pgoff_t olen;
1112 int ret;
1113
1114 while (len) {
1115 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1116
1117 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1118 sizeof(block_t) * olen, GFP_KERNEL);
1119 if (!src_blkaddr)
1120 return -ENOMEM;
1121
1122 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1123 sizeof(int) * olen, GFP_KERNEL);
1124 if (!do_replace) {
1125 kvfree(src_blkaddr);
1126 return -ENOMEM;
1127 }
1128
1129 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1130 do_replace, src, olen);
1131 if (ret)
1132 goto roll_back;
1133
1134 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1135 do_replace, src, dst, olen, full);
1136 if (ret)
1137 goto roll_back;
1138
1139 src += olen;
1140 dst += olen;
1141 len -= olen;
1142
1143 kvfree(src_blkaddr);
1144 kvfree(do_replace);
1145 }
1146 return 0;
1147
1148 roll_back:
1149 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1150 kvfree(src_blkaddr);
1151 kvfree(do_replace);
1152 return ret;
1153 }
1154
f2fs_do_collapse(struct inode * inode,pgoff_t start,pgoff_t end)1155 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1156 {
1157 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1158 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1159 int ret;
1160
1161 f2fs_balance_fs(sbi, true);
1162 f2fs_lock_op(sbi);
1163
1164 f2fs_drop_extent_tree(inode);
1165
1166 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1167 f2fs_unlock_op(sbi);
1168 return ret;
1169 }
1170
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1171 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1172 {
1173 pgoff_t pg_start, pg_end;
1174 loff_t new_size;
1175 int ret;
1176
1177 if (offset + len >= i_size_read(inode))
1178 return -EINVAL;
1179
1180 /* collapse range should be aligned to block size of f2fs. */
1181 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1182 return -EINVAL;
1183
1184 ret = f2fs_convert_inline_inode(inode);
1185 if (ret)
1186 return ret;
1187
1188 pg_start = offset >> PAGE_SHIFT;
1189 pg_end = (offset + len) >> PAGE_SHIFT;
1190
1191 /* avoid gc operation during block exchange */
1192 down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1193
1194 down_write(&F2FS_I(inode)->i_mmap_sem);
1195 /* write out all dirty pages from offset */
1196 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1197 if (ret)
1198 goto out_unlock;
1199
1200 truncate_pagecache(inode, offset);
1201
1202 ret = f2fs_do_collapse(inode, pg_start, pg_end);
1203 if (ret)
1204 goto out_unlock;
1205
1206 /* write out all moved pages, if possible */
1207 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1208 truncate_pagecache(inode, offset);
1209
1210 new_size = i_size_read(inode) - len;
1211 truncate_pagecache(inode, new_size);
1212
1213 ret = truncate_blocks(inode, new_size, true);
1214 if (!ret)
1215 f2fs_i_size_write(inode, new_size);
1216 out_unlock:
1217 up_write(&F2FS_I(inode)->i_mmap_sem);
1218 up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1219 return ret;
1220 }
1221
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1222 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1223 pgoff_t end)
1224 {
1225 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1226 pgoff_t index = start;
1227 unsigned int ofs_in_node = dn->ofs_in_node;
1228 blkcnt_t count = 0;
1229 int ret;
1230
1231 for (; index < end; index++, dn->ofs_in_node++) {
1232 if (datablock_addr(dn->inode, dn->node_page,
1233 dn->ofs_in_node) == NULL_ADDR)
1234 count++;
1235 }
1236
1237 dn->ofs_in_node = ofs_in_node;
1238 ret = reserve_new_blocks(dn, count);
1239 if (ret)
1240 return ret;
1241
1242 dn->ofs_in_node = ofs_in_node;
1243 for (index = start; index < end; index++, dn->ofs_in_node++) {
1244 dn->data_blkaddr = datablock_addr(dn->inode,
1245 dn->node_page, dn->ofs_in_node);
1246 /*
1247 * reserve_new_blocks will not guarantee entire block
1248 * allocation.
1249 */
1250 if (dn->data_blkaddr == NULL_ADDR) {
1251 ret = -ENOSPC;
1252 break;
1253 }
1254 if (dn->data_blkaddr != NEW_ADDR) {
1255 invalidate_blocks(sbi, dn->data_blkaddr);
1256 dn->data_blkaddr = NEW_ADDR;
1257 set_data_blkaddr(dn);
1258 }
1259 }
1260
1261 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1262
1263 return ret;
1264 }
1265
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1266 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1267 int mode)
1268 {
1269 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1270 struct address_space *mapping = inode->i_mapping;
1271 pgoff_t index, pg_start, pg_end;
1272 loff_t new_size = i_size_read(inode);
1273 loff_t off_start, off_end;
1274 int ret = 0;
1275
1276 ret = inode_newsize_ok(inode, (len + offset));
1277 if (ret)
1278 return ret;
1279
1280 ret = f2fs_convert_inline_inode(inode);
1281 if (ret)
1282 return ret;
1283
1284 down_write(&F2FS_I(inode)->i_mmap_sem);
1285 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1286 if (ret)
1287 goto out_sem;
1288
1289 truncate_pagecache_range(inode, offset, offset + len - 1);
1290
1291 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1292 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1293
1294 off_start = offset & (PAGE_SIZE - 1);
1295 off_end = (offset + len) & (PAGE_SIZE - 1);
1296
1297 if (pg_start == pg_end) {
1298 ret = fill_zero(inode, pg_start, off_start,
1299 off_end - off_start);
1300 if (ret)
1301 goto out_sem;
1302
1303 new_size = max_t(loff_t, new_size, offset + len);
1304 } else {
1305 if (off_start) {
1306 ret = fill_zero(inode, pg_start++, off_start,
1307 PAGE_SIZE - off_start);
1308 if (ret)
1309 goto out_sem;
1310
1311 new_size = max_t(loff_t, new_size,
1312 (loff_t)pg_start << PAGE_SHIFT);
1313 }
1314
1315 for (index = pg_start; index < pg_end;) {
1316 struct dnode_of_data dn;
1317 unsigned int end_offset;
1318 pgoff_t end;
1319
1320 f2fs_lock_op(sbi);
1321
1322 set_new_dnode(&dn, inode, NULL, NULL, 0);
1323 ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1324 if (ret) {
1325 f2fs_unlock_op(sbi);
1326 goto out;
1327 }
1328
1329 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1330 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1331
1332 ret = f2fs_do_zero_range(&dn, index, end);
1333 f2fs_put_dnode(&dn);
1334 f2fs_unlock_op(sbi);
1335
1336 f2fs_balance_fs(sbi, dn.node_changed);
1337
1338 if (ret)
1339 goto out;
1340
1341 index = end;
1342 new_size = max_t(loff_t, new_size,
1343 (loff_t)index << PAGE_SHIFT);
1344 }
1345
1346 if (off_end) {
1347 ret = fill_zero(inode, pg_end, 0, off_end);
1348 if (ret)
1349 goto out;
1350
1351 new_size = max_t(loff_t, new_size, offset + len);
1352 }
1353 }
1354
1355 out:
1356 if (new_size > i_size_read(inode)) {
1357 if (mode & FALLOC_FL_KEEP_SIZE)
1358 file_set_keep_isize(inode);
1359 else
1360 f2fs_i_size_write(inode, new_size);
1361 }
1362 out_sem:
1363 up_write(&F2FS_I(inode)->i_mmap_sem);
1364
1365 return ret;
1366 }
1367
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1368 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1369 {
1370 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1371 pgoff_t nr, pg_start, pg_end, delta, idx;
1372 loff_t new_size;
1373 int ret = 0;
1374
1375 new_size = i_size_read(inode) + len;
1376 ret = inode_newsize_ok(inode, new_size);
1377 if (ret)
1378 return ret;
1379
1380 if (offset >= i_size_read(inode))
1381 return -EINVAL;
1382
1383 /* insert range should be aligned to block size of f2fs. */
1384 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1385 return -EINVAL;
1386
1387 ret = f2fs_convert_inline_inode(inode);
1388 if (ret)
1389 return ret;
1390
1391 f2fs_balance_fs(sbi, true);
1392
1393 /* avoid gc operation during block exchange */
1394 down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1395
1396 down_write(&F2FS_I(inode)->i_mmap_sem);
1397 ret = truncate_blocks(inode, i_size_read(inode), true);
1398 if (ret)
1399 goto out;
1400
1401 /* write out all dirty pages from offset */
1402 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1403 if (ret)
1404 goto out;
1405
1406 truncate_pagecache(inode, offset);
1407
1408 pg_start = offset >> PAGE_SHIFT;
1409 pg_end = (offset + len) >> PAGE_SHIFT;
1410 delta = pg_end - pg_start;
1411 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1412
1413 while (!ret && idx > pg_start) {
1414 nr = idx - pg_start;
1415 if (nr > delta)
1416 nr = delta;
1417 idx -= nr;
1418
1419 f2fs_lock_op(sbi);
1420 f2fs_drop_extent_tree(inode);
1421
1422 ret = __exchange_data_block(inode, inode, idx,
1423 idx + delta, nr, false);
1424 f2fs_unlock_op(sbi);
1425 }
1426
1427 /* write out all moved pages, if possible */
1428 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1429 truncate_pagecache(inode, offset);
1430
1431 if (!ret)
1432 f2fs_i_size_write(inode, new_size);
1433 out:
1434 up_write(&F2FS_I(inode)->i_mmap_sem);
1435 up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1436 return ret;
1437 }
1438
expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1439 static int expand_inode_data(struct inode *inode, loff_t offset,
1440 loff_t len, int mode)
1441 {
1442 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1443 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1444 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE };
1445 pgoff_t pg_end;
1446 loff_t new_size = i_size_read(inode);
1447 loff_t off_end;
1448 int err;
1449
1450 err = inode_newsize_ok(inode, (len + offset));
1451 if (err)
1452 return err;
1453
1454 err = f2fs_convert_inline_inode(inode);
1455 if (err)
1456 return err;
1457
1458 f2fs_balance_fs(sbi, true);
1459
1460 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1461 off_end = (offset + len) & (PAGE_SIZE - 1);
1462
1463 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1464 map.m_len = pg_end - map.m_lblk;
1465 if (off_end)
1466 map.m_len++;
1467
1468 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1469 if (err) {
1470 pgoff_t last_off;
1471
1472 if (!map.m_len)
1473 return err;
1474
1475 last_off = map.m_lblk + map.m_len - 1;
1476
1477 /* update new size to the failed position */
1478 new_size = (last_off == pg_end) ? offset + len:
1479 (loff_t)(last_off + 1) << PAGE_SHIFT;
1480 } else {
1481 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1482 }
1483
1484 if (new_size > i_size_read(inode)) {
1485 if (mode & FALLOC_FL_KEEP_SIZE)
1486 file_set_keep_isize(inode);
1487 else
1488 f2fs_i_size_write(inode, new_size);
1489 }
1490
1491 return err;
1492 }
1493
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1494 static long f2fs_fallocate(struct file *file, int mode,
1495 loff_t offset, loff_t len)
1496 {
1497 struct inode *inode = file_inode(file);
1498 long ret = 0;
1499
1500 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1501 return -EIO;
1502
1503 /* f2fs only support ->fallocate for regular file */
1504 if (!S_ISREG(inode->i_mode))
1505 return -EINVAL;
1506
1507 if (f2fs_encrypted_inode(inode) &&
1508 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1509 return -EOPNOTSUPP;
1510
1511 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1512 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1513 FALLOC_FL_INSERT_RANGE))
1514 return -EOPNOTSUPP;
1515
1516 inode_lock(inode);
1517
1518 if (mode & FALLOC_FL_PUNCH_HOLE) {
1519 if (offset >= inode->i_size)
1520 goto out;
1521
1522 ret = punch_hole(inode, offset, len);
1523 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1524 ret = f2fs_collapse_range(inode, offset, len);
1525 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1526 ret = f2fs_zero_range(inode, offset, len, mode);
1527 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1528 ret = f2fs_insert_range(inode, offset, len);
1529 } else {
1530 ret = expand_inode_data(inode, offset, len, mode);
1531 }
1532
1533 if (!ret) {
1534 inode->i_mtime = inode->i_ctime = current_time(inode);
1535 f2fs_mark_inode_dirty_sync(inode, false);
1536 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1537 }
1538
1539 out:
1540 inode_unlock(inode);
1541
1542 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1543 return ret;
1544 }
1545
f2fs_release_file(struct inode * inode,struct file * filp)1546 static int f2fs_release_file(struct inode *inode, struct file *filp)
1547 {
1548 /*
1549 * f2fs_relase_file is called at every close calls. So we should
1550 * not drop any inmemory pages by close called by other process.
1551 */
1552 if (!(filp->f_mode & FMODE_WRITE) ||
1553 atomic_read(&inode->i_writecount) != 1)
1554 return 0;
1555
1556 /* some remained atomic pages should discarded */
1557 if (f2fs_is_atomic_file(inode))
1558 drop_inmem_pages(inode);
1559 if (f2fs_is_volatile_file(inode)) {
1560 clear_inode_flag(inode, FI_VOLATILE_FILE);
1561 stat_dec_volatile_write(inode);
1562 set_inode_flag(inode, FI_DROP_CACHE);
1563 filemap_fdatawrite(inode->i_mapping);
1564 clear_inode_flag(inode, FI_DROP_CACHE);
1565 }
1566 return 0;
1567 }
1568
f2fs_file_flush(struct file * file,fl_owner_t id)1569 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1570 {
1571 struct inode *inode = file_inode(file);
1572
1573 /*
1574 * If the process doing a transaction is crashed, we should do
1575 * roll-back. Otherwise, other reader/write can see corrupted database
1576 * until all the writers close its file. Since this should be done
1577 * before dropping file lock, it needs to do in ->flush.
1578 */
1579 if (f2fs_is_atomic_file(inode) &&
1580 F2FS_I(inode)->inmem_task == current)
1581 drop_inmem_pages(inode);
1582 return 0;
1583 }
1584
f2fs_ioc_getflags(struct file * filp,unsigned long arg)1585 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1586 {
1587 struct inode *inode = file_inode(filp);
1588 struct f2fs_inode_info *fi = F2FS_I(inode);
1589 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1590 return put_user(flags, (int __user *)arg);
1591 }
1592
f2fs_ioc_setflags(struct file * filp,unsigned long arg)1593 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1594 {
1595 struct inode *inode = file_inode(filp);
1596 struct f2fs_inode_info *fi = F2FS_I(inode);
1597 unsigned int flags;
1598 unsigned int oldflags;
1599 int ret;
1600
1601 if (!inode_owner_or_capable(inode))
1602 return -EACCES;
1603
1604 if (get_user(flags, (int __user *)arg))
1605 return -EFAULT;
1606
1607 ret = mnt_want_write_file(filp);
1608 if (ret)
1609 return ret;
1610
1611 inode_lock(inode);
1612
1613 /* Is it quota file? Do not allow user to mess with it */
1614 if (IS_NOQUOTA(inode)) {
1615 ret = -EPERM;
1616 goto unlock_out;
1617 }
1618
1619 flags = f2fs_mask_flags(inode->i_mode, flags);
1620
1621 oldflags = fi->i_flags;
1622
1623 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1624 if (!capable(CAP_LINUX_IMMUTABLE)) {
1625 ret = -EPERM;
1626 goto unlock_out;
1627 }
1628 }
1629
1630 flags = flags & FS_FL_USER_MODIFIABLE;
1631 flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1632 fi->i_flags = flags;
1633
1634 inode->i_ctime = current_time(inode);
1635 f2fs_set_inode_flags(inode);
1636 f2fs_mark_inode_dirty_sync(inode, false);
1637 unlock_out:
1638 inode_unlock(inode);
1639 mnt_drop_write_file(filp);
1640 return ret;
1641 }
1642
f2fs_ioc_getversion(struct file * filp,unsigned long arg)1643 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1644 {
1645 struct inode *inode = file_inode(filp);
1646
1647 return put_user(inode->i_generation, (int __user *)arg);
1648 }
1649
f2fs_ioc_start_atomic_write(struct file * filp)1650 static int f2fs_ioc_start_atomic_write(struct file *filp)
1651 {
1652 struct inode *inode = file_inode(filp);
1653 int ret;
1654
1655 if (!inode_owner_or_capable(inode))
1656 return -EACCES;
1657
1658 if (!S_ISREG(inode->i_mode))
1659 return -EINVAL;
1660
1661 ret = mnt_want_write_file(filp);
1662 if (ret)
1663 return ret;
1664
1665 inode_lock(inode);
1666
1667 if (f2fs_is_atomic_file(inode))
1668 goto out;
1669
1670 ret = f2fs_convert_inline_inode(inode);
1671 if (ret)
1672 goto out;
1673
1674 set_inode_flag(inode, FI_ATOMIC_FILE);
1675 set_inode_flag(inode, FI_HOT_DATA);
1676 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1677
1678 if (!get_dirty_pages(inode))
1679 goto inc_stat;
1680
1681 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1682 "Unexpected flush for atomic writes: ino=%lu, npages=%u",
1683 inode->i_ino, get_dirty_pages(inode));
1684 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1685 if (ret) {
1686 clear_inode_flag(inode, FI_ATOMIC_FILE);
1687 clear_inode_flag(inode, FI_HOT_DATA);
1688 goto out;
1689 }
1690
1691 inc_stat:
1692 F2FS_I(inode)->inmem_task = current;
1693 stat_inc_atomic_write(inode);
1694 stat_update_max_atomic_write(inode);
1695 out:
1696 inode_unlock(inode);
1697 mnt_drop_write_file(filp);
1698 return ret;
1699 }
1700
f2fs_ioc_commit_atomic_write(struct file * filp)1701 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1702 {
1703 struct inode *inode = file_inode(filp);
1704 int ret;
1705
1706 if (!inode_owner_or_capable(inode))
1707 return -EACCES;
1708
1709 ret = mnt_want_write_file(filp);
1710 if (ret)
1711 return ret;
1712
1713 inode_lock(inode);
1714
1715 down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1716
1717 if (f2fs_is_volatile_file(inode))
1718 goto err_out;
1719
1720 if (f2fs_is_atomic_file(inode)) {
1721 ret = commit_inmem_pages(inode);
1722 if (ret)
1723 goto err_out;
1724
1725 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1726 if (!ret) {
1727 clear_inode_flag(inode, FI_ATOMIC_FILE);
1728 clear_inode_flag(inode, FI_HOT_DATA);
1729 stat_dec_atomic_write(inode);
1730 }
1731 } else {
1732 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1733 }
1734 err_out:
1735 up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1736 inode_unlock(inode);
1737 mnt_drop_write_file(filp);
1738 return ret;
1739 }
1740
f2fs_ioc_start_volatile_write(struct file * filp)1741 static int f2fs_ioc_start_volatile_write(struct file *filp)
1742 {
1743 struct inode *inode = file_inode(filp);
1744 int ret;
1745
1746 if (!inode_owner_or_capable(inode))
1747 return -EACCES;
1748
1749 if (!S_ISREG(inode->i_mode))
1750 return -EINVAL;
1751
1752 ret = mnt_want_write_file(filp);
1753 if (ret)
1754 return ret;
1755
1756 inode_lock(inode);
1757
1758 if (f2fs_is_volatile_file(inode))
1759 goto out;
1760
1761 ret = f2fs_convert_inline_inode(inode);
1762 if (ret)
1763 goto out;
1764
1765 stat_inc_volatile_write(inode);
1766 stat_update_max_volatile_write(inode);
1767
1768 set_inode_flag(inode, FI_VOLATILE_FILE);
1769 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1770 out:
1771 inode_unlock(inode);
1772 mnt_drop_write_file(filp);
1773 return ret;
1774 }
1775
f2fs_ioc_release_volatile_write(struct file * filp)1776 static int f2fs_ioc_release_volatile_write(struct file *filp)
1777 {
1778 struct inode *inode = file_inode(filp);
1779 int ret;
1780
1781 if (!inode_owner_or_capable(inode))
1782 return -EACCES;
1783
1784 ret = mnt_want_write_file(filp);
1785 if (ret)
1786 return ret;
1787
1788 inode_lock(inode);
1789
1790 if (!f2fs_is_volatile_file(inode))
1791 goto out;
1792
1793 if (!f2fs_is_first_block_written(inode)) {
1794 ret = truncate_partial_data_page(inode, 0, true);
1795 goto out;
1796 }
1797
1798 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1799 out:
1800 inode_unlock(inode);
1801 mnt_drop_write_file(filp);
1802 return ret;
1803 }
1804
f2fs_ioc_abort_volatile_write(struct file * filp)1805 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1806 {
1807 struct inode *inode = file_inode(filp);
1808 int ret;
1809
1810 if (!inode_owner_or_capable(inode))
1811 return -EACCES;
1812
1813 ret = mnt_want_write_file(filp);
1814 if (ret)
1815 return ret;
1816
1817 inode_lock(inode);
1818
1819 if (f2fs_is_atomic_file(inode))
1820 drop_inmem_pages(inode);
1821 if (f2fs_is_volatile_file(inode)) {
1822 clear_inode_flag(inode, FI_VOLATILE_FILE);
1823 stat_dec_volatile_write(inode);
1824 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1825 }
1826
1827 inode_unlock(inode);
1828
1829 mnt_drop_write_file(filp);
1830 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1831 return ret;
1832 }
1833
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)1834 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1835 {
1836 struct inode *inode = file_inode(filp);
1837 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1838 struct super_block *sb = sbi->sb;
1839 __u32 in;
1840 int ret;
1841
1842 if (!capable(CAP_SYS_ADMIN))
1843 return -EPERM;
1844
1845 if (get_user(in, (__u32 __user *)arg))
1846 return -EFAULT;
1847
1848 ret = mnt_want_write_file(filp);
1849 if (ret)
1850 return ret;
1851
1852 switch (in) {
1853 case F2FS_GOING_DOWN_FULLSYNC:
1854 sb = freeze_bdev(sb->s_bdev);
1855 if (IS_ERR(sb)) {
1856 ret = PTR_ERR(sb);
1857 goto out;
1858 }
1859 if (sb) {
1860 f2fs_stop_checkpoint(sbi, false);
1861 thaw_bdev(sb->s_bdev, sb);
1862 }
1863 break;
1864 case F2FS_GOING_DOWN_METASYNC:
1865 /* do checkpoint only */
1866 ret = f2fs_sync_fs(sb, 1);
1867 if (ret)
1868 goto out;
1869 f2fs_stop_checkpoint(sbi, false);
1870 break;
1871 case F2FS_GOING_DOWN_NOSYNC:
1872 f2fs_stop_checkpoint(sbi, false);
1873 break;
1874 case F2FS_GOING_DOWN_METAFLUSH:
1875 sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
1876 f2fs_stop_checkpoint(sbi, false);
1877 break;
1878 default:
1879 ret = -EINVAL;
1880 goto out;
1881 }
1882
1883 stop_gc_thread(sbi);
1884 stop_discard_thread(sbi);
1885
1886 drop_discard_cmd(sbi);
1887 clear_opt(sbi, DISCARD);
1888
1889 f2fs_update_time(sbi, REQ_TIME);
1890 out:
1891 mnt_drop_write_file(filp);
1892 return ret;
1893 }
1894
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)1895 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1896 {
1897 struct inode *inode = file_inode(filp);
1898 struct super_block *sb = inode->i_sb;
1899 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1900 struct fstrim_range range;
1901 int ret;
1902
1903 if (!capable(CAP_SYS_ADMIN))
1904 return -EPERM;
1905
1906 if (!blk_queue_discard(q))
1907 return -EOPNOTSUPP;
1908
1909 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1910 sizeof(range)))
1911 return -EFAULT;
1912
1913 ret = mnt_want_write_file(filp);
1914 if (ret)
1915 return ret;
1916
1917 range.minlen = max((unsigned int)range.minlen,
1918 q->limits.discard_granularity);
1919 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1920 mnt_drop_write_file(filp);
1921 if (ret < 0)
1922 return ret;
1923
1924 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1925 sizeof(range)))
1926 return -EFAULT;
1927 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1928 return 0;
1929 }
1930
uuid_is_nonzero(__u8 u[16])1931 static bool uuid_is_nonzero(__u8 u[16])
1932 {
1933 int i;
1934
1935 for (i = 0; i < 16; i++)
1936 if (u[i])
1937 return true;
1938 return false;
1939 }
1940
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)1941 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1942 {
1943 struct inode *inode = file_inode(filp);
1944
1945 if (!f2fs_sb_has_encrypt(inode->i_sb))
1946 return -EOPNOTSUPP;
1947
1948 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1949
1950 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1951 }
1952
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)1953 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1954 {
1955 if (!f2fs_sb_has_encrypt(file_inode(filp)->i_sb))
1956 return -EOPNOTSUPP;
1957 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1958 }
1959
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)1960 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1961 {
1962 struct inode *inode = file_inode(filp);
1963 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1964 int err;
1965
1966 if (!f2fs_sb_has_encrypt(inode->i_sb))
1967 return -EOPNOTSUPP;
1968
1969 err = mnt_want_write_file(filp);
1970 if (err)
1971 return err;
1972
1973 down_write(&sbi->sb_lock);
1974
1975 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1976 goto got_it;
1977
1978 /* update superblock with uuid */
1979 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1980
1981 err = f2fs_commit_super(sbi, false);
1982 if (err) {
1983 /* undo new data */
1984 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1985 goto out_err;
1986 }
1987 got_it:
1988 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1989 16))
1990 err = -EFAULT;
1991 out_err:
1992 up_write(&sbi->sb_lock);
1993 mnt_drop_write_file(filp);
1994 return err;
1995 }
1996
f2fs_ioc_gc(struct file * filp,unsigned long arg)1997 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1998 {
1999 struct inode *inode = file_inode(filp);
2000 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2001 __u32 sync;
2002 int ret;
2003
2004 if (!capable(CAP_SYS_ADMIN))
2005 return -EPERM;
2006
2007 if (get_user(sync, (__u32 __user *)arg))
2008 return -EFAULT;
2009
2010 if (f2fs_readonly(sbi->sb))
2011 return -EROFS;
2012
2013 ret = mnt_want_write_file(filp);
2014 if (ret)
2015 return ret;
2016
2017 if (!sync) {
2018 if (!mutex_trylock(&sbi->gc_mutex)) {
2019 ret = -EBUSY;
2020 goto out;
2021 }
2022 } else {
2023 mutex_lock(&sbi->gc_mutex);
2024 }
2025
2026 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2027 out:
2028 mnt_drop_write_file(filp);
2029 return ret;
2030 }
2031
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2032 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2033 {
2034 struct inode *inode = file_inode(filp);
2035 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2036 struct f2fs_gc_range range;
2037 u64 end;
2038 int ret;
2039
2040 if (!capable(CAP_SYS_ADMIN))
2041 return -EPERM;
2042
2043 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2044 sizeof(range)))
2045 return -EFAULT;
2046
2047 if (f2fs_readonly(sbi->sb))
2048 return -EROFS;
2049
2050 ret = mnt_want_write_file(filp);
2051 if (ret)
2052 return ret;
2053
2054 end = range.start + range.len;
2055 if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) {
2056 ret = -EINVAL;
2057 goto out;
2058 }
2059 do_more:
2060 if (!range.sync) {
2061 if (!mutex_trylock(&sbi->gc_mutex)) {
2062 ret = -EBUSY;
2063 goto out;
2064 }
2065 } else {
2066 mutex_lock(&sbi->gc_mutex);
2067 }
2068
2069 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2070 range.start += sbi->blocks_per_seg;
2071 if (range.start <= end)
2072 goto do_more;
2073 out:
2074 mnt_drop_write_file(filp);
2075 return ret;
2076 }
2077
f2fs_ioc_write_checkpoint(struct file * filp,unsigned long arg)2078 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2079 {
2080 struct inode *inode = file_inode(filp);
2081 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2082 int ret;
2083
2084 if (!capable(CAP_SYS_ADMIN))
2085 return -EPERM;
2086
2087 if (f2fs_readonly(sbi->sb))
2088 return -EROFS;
2089
2090 ret = mnt_want_write_file(filp);
2091 if (ret)
2092 return ret;
2093
2094 ret = f2fs_sync_fs(sbi->sb, 1);
2095
2096 mnt_drop_write_file(filp);
2097 return ret;
2098 }
2099
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2100 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2101 struct file *filp,
2102 struct f2fs_defragment *range)
2103 {
2104 struct inode *inode = file_inode(filp);
2105 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2106 .m_seg_type = NO_CHECK_TYPE };
2107 struct extent_info ei = {0,0,0};
2108 pgoff_t pg_start, pg_end, next_pgofs;
2109 unsigned int blk_per_seg = sbi->blocks_per_seg;
2110 unsigned int total = 0, sec_num;
2111 block_t blk_end = 0;
2112 bool fragmented = false;
2113 int err;
2114
2115 /* if in-place-update policy is enabled, don't waste time here */
2116 if (should_update_inplace(inode, NULL))
2117 return -EINVAL;
2118
2119 pg_start = range->start >> PAGE_SHIFT;
2120 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2121
2122 f2fs_balance_fs(sbi, true);
2123
2124 inode_lock(inode);
2125
2126 /* writeback all dirty pages in the range */
2127 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2128 range->start + range->len - 1);
2129 if (err)
2130 goto out;
2131
2132 /*
2133 * lookup mapping info in extent cache, skip defragmenting if physical
2134 * block addresses are continuous.
2135 */
2136 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2137 if (ei.fofs + ei.len >= pg_end)
2138 goto out;
2139 }
2140
2141 map.m_lblk = pg_start;
2142 map.m_next_pgofs = &next_pgofs;
2143
2144 /*
2145 * lookup mapping info in dnode page cache, skip defragmenting if all
2146 * physical block addresses are continuous even if there are hole(s)
2147 * in logical blocks.
2148 */
2149 while (map.m_lblk < pg_end) {
2150 map.m_len = pg_end - map.m_lblk;
2151 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2152 if (err)
2153 goto out;
2154
2155 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2156 map.m_lblk = next_pgofs;
2157 continue;
2158 }
2159
2160 if (blk_end && blk_end != map.m_pblk)
2161 fragmented = true;
2162
2163 /* record total count of block that we're going to move */
2164 total += map.m_len;
2165
2166 blk_end = map.m_pblk + map.m_len;
2167
2168 map.m_lblk += map.m_len;
2169 }
2170
2171 if (!fragmented)
2172 goto out;
2173
2174 sec_num = (total + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2175
2176 /*
2177 * make sure there are enough free section for LFS allocation, this can
2178 * avoid defragment running in SSR mode when free section are allocated
2179 * intensively
2180 */
2181 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2182 err = -EAGAIN;
2183 goto out;
2184 }
2185
2186 map.m_lblk = pg_start;
2187 map.m_len = pg_end - pg_start;
2188 total = 0;
2189
2190 while (map.m_lblk < pg_end) {
2191 pgoff_t idx;
2192 int cnt = 0;
2193
2194 do_map:
2195 map.m_len = pg_end - map.m_lblk;
2196 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2197 if (err)
2198 goto clear_out;
2199
2200 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2201 map.m_lblk = next_pgofs;
2202 continue;
2203 }
2204
2205 set_inode_flag(inode, FI_DO_DEFRAG);
2206
2207 idx = map.m_lblk;
2208 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2209 struct page *page;
2210
2211 page = get_lock_data_page(inode, idx, true);
2212 if (IS_ERR(page)) {
2213 err = PTR_ERR(page);
2214 goto clear_out;
2215 }
2216
2217 set_page_dirty(page);
2218 f2fs_put_page(page, 1);
2219
2220 idx++;
2221 cnt++;
2222 total++;
2223 }
2224
2225 map.m_lblk = idx;
2226
2227 if (idx < pg_end && cnt < blk_per_seg)
2228 goto do_map;
2229
2230 clear_inode_flag(inode, FI_DO_DEFRAG);
2231
2232 err = filemap_fdatawrite(inode->i_mapping);
2233 if (err)
2234 goto out;
2235 }
2236 clear_out:
2237 clear_inode_flag(inode, FI_DO_DEFRAG);
2238 out:
2239 inode_unlock(inode);
2240 if (!err)
2241 range->len = (u64)total << PAGE_SHIFT;
2242 return err;
2243 }
2244
f2fs_ioc_defragment(struct file * filp,unsigned long arg)2245 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2246 {
2247 struct inode *inode = file_inode(filp);
2248 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2249 struct f2fs_defragment range;
2250 int err;
2251
2252 if (!capable(CAP_SYS_ADMIN))
2253 return -EPERM;
2254
2255 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2256 return -EINVAL;
2257
2258 if (f2fs_readonly(sbi->sb))
2259 return -EROFS;
2260
2261 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2262 sizeof(range)))
2263 return -EFAULT;
2264
2265 /* verify alignment of offset & size */
2266 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2267 return -EINVAL;
2268
2269 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2270 sbi->max_file_blocks))
2271 return -EINVAL;
2272
2273 err = mnt_want_write_file(filp);
2274 if (err)
2275 return err;
2276
2277 err = f2fs_defragment_range(sbi, filp, &range);
2278 mnt_drop_write_file(filp);
2279
2280 f2fs_update_time(sbi, REQ_TIME);
2281 if (err < 0)
2282 return err;
2283
2284 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2285 sizeof(range)))
2286 return -EFAULT;
2287
2288 return 0;
2289 }
2290
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)2291 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2292 struct file *file_out, loff_t pos_out, size_t len)
2293 {
2294 struct inode *src = file_inode(file_in);
2295 struct inode *dst = file_inode(file_out);
2296 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2297 size_t olen = len, dst_max_i_size = 0;
2298 size_t dst_osize;
2299 int ret;
2300
2301 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2302 src->i_sb != dst->i_sb)
2303 return -EXDEV;
2304
2305 if (unlikely(f2fs_readonly(src->i_sb)))
2306 return -EROFS;
2307
2308 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2309 return -EINVAL;
2310
2311 if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2312 return -EOPNOTSUPP;
2313
2314 if (src == dst) {
2315 if (pos_in == pos_out)
2316 return 0;
2317 if (pos_out > pos_in && pos_out < pos_in + len)
2318 return -EINVAL;
2319 }
2320
2321 inode_lock(src);
2322 down_write(&F2FS_I(src)->dio_rwsem[WRITE]);
2323 if (src != dst) {
2324 ret = -EBUSY;
2325 if (!inode_trylock(dst))
2326 goto out;
2327 if (!down_write_trylock(&F2FS_I(dst)->dio_rwsem[WRITE])) {
2328 inode_unlock(dst);
2329 goto out;
2330 }
2331 }
2332
2333 ret = -EINVAL;
2334 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2335 goto out_unlock;
2336 if (len == 0)
2337 olen = len = src->i_size - pos_in;
2338 if (pos_in + len == src->i_size)
2339 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2340 if (len == 0) {
2341 ret = 0;
2342 goto out_unlock;
2343 }
2344
2345 dst_osize = dst->i_size;
2346 if (pos_out + olen > dst->i_size)
2347 dst_max_i_size = pos_out + olen;
2348
2349 /* verify the end result is block aligned */
2350 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2351 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2352 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2353 goto out_unlock;
2354
2355 ret = f2fs_convert_inline_inode(src);
2356 if (ret)
2357 goto out_unlock;
2358
2359 ret = f2fs_convert_inline_inode(dst);
2360 if (ret)
2361 goto out_unlock;
2362
2363 /* write out all dirty pages from offset */
2364 ret = filemap_write_and_wait_range(src->i_mapping,
2365 pos_in, pos_in + len);
2366 if (ret)
2367 goto out_unlock;
2368
2369 ret = filemap_write_and_wait_range(dst->i_mapping,
2370 pos_out, pos_out + len);
2371 if (ret)
2372 goto out_unlock;
2373
2374 f2fs_balance_fs(sbi, true);
2375 f2fs_lock_op(sbi);
2376 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2377 pos_out >> F2FS_BLKSIZE_BITS,
2378 len >> F2FS_BLKSIZE_BITS, false);
2379
2380 if (!ret) {
2381 if (dst_max_i_size)
2382 f2fs_i_size_write(dst, dst_max_i_size);
2383 else if (dst_osize != dst->i_size)
2384 f2fs_i_size_write(dst, dst_osize);
2385 }
2386 f2fs_unlock_op(sbi);
2387 out_unlock:
2388 if (src != dst) {
2389 up_write(&F2FS_I(dst)->dio_rwsem[WRITE]);
2390 inode_unlock(dst);
2391 }
2392 out:
2393 up_write(&F2FS_I(src)->dio_rwsem[WRITE]);
2394 inode_unlock(src);
2395 return ret;
2396 }
2397
f2fs_ioc_move_range(struct file * filp,unsigned long arg)2398 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2399 {
2400 struct f2fs_move_range range;
2401 struct fd dst;
2402 int err;
2403
2404 if (!(filp->f_mode & FMODE_READ) ||
2405 !(filp->f_mode & FMODE_WRITE))
2406 return -EBADF;
2407
2408 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2409 sizeof(range)))
2410 return -EFAULT;
2411
2412 dst = fdget(range.dst_fd);
2413 if (!dst.file)
2414 return -EBADF;
2415
2416 if (!(dst.file->f_mode & FMODE_WRITE)) {
2417 err = -EBADF;
2418 goto err_out;
2419 }
2420
2421 err = mnt_want_write_file(filp);
2422 if (err)
2423 goto err_out;
2424
2425 err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2426 range.pos_out, range.len);
2427
2428 mnt_drop_write_file(filp);
2429 if (err)
2430 goto err_out;
2431
2432 if (copy_to_user((struct f2fs_move_range __user *)arg,
2433 &range, sizeof(range)))
2434 err = -EFAULT;
2435 err_out:
2436 fdput(dst);
2437 return err;
2438 }
2439
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)2440 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2441 {
2442 struct inode *inode = file_inode(filp);
2443 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2444 struct sit_info *sm = SIT_I(sbi);
2445 unsigned int start_segno = 0, end_segno = 0;
2446 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2447 struct f2fs_flush_device range;
2448 int ret;
2449
2450 if (!capable(CAP_SYS_ADMIN))
2451 return -EPERM;
2452
2453 if (f2fs_readonly(sbi->sb))
2454 return -EROFS;
2455
2456 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2457 sizeof(range)))
2458 return -EFAULT;
2459
2460 if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
2461 sbi->segs_per_sec != 1) {
2462 f2fs_msg(sbi->sb, KERN_WARNING,
2463 "Can't flush %u in %d for segs_per_sec %u != 1\n",
2464 range.dev_num, sbi->s_ndevs,
2465 sbi->segs_per_sec);
2466 return -EINVAL;
2467 }
2468
2469 ret = mnt_want_write_file(filp);
2470 if (ret)
2471 return ret;
2472
2473 if (range.dev_num != 0)
2474 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2475 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2476
2477 start_segno = sm->last_victim[FLUSH_DEVICE];
2478 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2479 start_segno = dev_start_segno;
2480 end_segno = min(start_segno + range.segments, dev_end_segno);
2481
2482 while (start_segno < end_segno) {
2483 if (!mutex_trylock(&sbi->gc_mutex)) {
2484 ret = -EBUSY;
2485 goto out;
2486 }
2487 sm->last_victim[GC_CB] = end_segno + 1;
2488 sm->last_victim[GC_GREEDY] = end_segno + 1;
2489 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2490 ret = f2fs_gc(sbi, true, true, start_segno);
2491 if (ret == -EAGAIN)
2492 ret = 0;
2493 else if (ret < 0)
2494 break;
2495 start_segno++;
2496 }
2497 out:
2498 mnt_drop_write_file(filp);
2499 return ret;
2500 }
2501
f2fs_ioc_get_features(struct file * filp,unsigned long arg)2502 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2503 {
2504 struct inode *inode = file_inode(filp);
2505 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2506
2507 /* Must validate to set it with SQLite behavior in Android. */
2508 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2509
2510 return put_user(sb_feature, (u32 __user *)arg);
2511 }
2512
f2fs_pin_file_control(struct inode * inode,bool inc)2513 int f2fs_pin_file_control(struct inode *inode, bool inc)
2514 {
2515 struct f2fs_inode_info *fi = F2FS_I(inode);
2516 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2517
2518 /* Use i_gc_failures for normal file as a risk signal. */
2519 if (inc)
2520 f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
2521
2522 if (fi->i_gc_failures > sbi->gc_pin_file_threshold) {
2523 f2fs_msg(sbi->sb, KERN_WARNING,
2524 "%s: Enable GC = ino %lx after %x GC trials\n",
2525 __func__, inode->i_ino, fi->i_gc_failures);
2526 clear_inode_flag(inode, FI_PIN_FILE);
2527 return -EAGAIN;
2528 }
2529 return 0;
2530 }
2531
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)2532 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
2533 {
2534 struct inode *inode = file_inode(filp);
2535 __u32 pin;
2536 int ret = 0;
2537
2538 if (!inode_owner_or_capable(inode))
2539 return -EACCES;
2540
2541 if (get_user(pin, (__u32 __user *)arg))
2542 return -EFAULT;
2543
2544 if (!S_ISREG(inode->i_mode))
2545 return -EINVAL;
2546
2547 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
2548 return -EROFS;
2549
2550 ret = mnt_want_write_file(filp);
2551 if (ret)
2552 return ret;
2553
2554 inode_lock(inode);
2555
2556 if (should_update_outplace(inode, NULL)) {
2557 ret = -EINVAL;
2558 goto out;
2559 }
2560
2561 if (!pin) {
2562 clear_inode_flag(inode, FI_PIN_FILE);
2563 F2FS_I(inode)->i_gc_failures = 1;
2564 goto done;
2565 }
2566
2567 if (f2fs_pin_file_control(inode, false)) {
2568 ret = -EAGAIN;
2569 goto out;
2570 }
2571 ret = f2fs_convert_inline_inode(inode);
2572 if (ret)
2573 goto out;
2574
2575 set_inode_flag(inode, FI_PIN_FILE);
2576 ret = F2FS_I(inode)->i_gc_failures;
2577 done:
2578 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2579 out:
2580 inode_unlock(inode);
2581 mnt_drop_write_file(filp);
2582 return ret;
2583 }
2584
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)2585 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
2586 {
2587 struct inode *inode = file_inode(filp);
2588 __u32 pin = 0;
2589
2590 if (is_inode_flag_set(inode, FI_PIN_FILE))
2591 pin = F2FS_I(inode)->i_gc_failures;
2592 return put_user(pin, (u32 __user *)arg);
2593 }
2594
f2fs_precache_extents(struct inode * inode)2595 int f2fs_precache_extents(struct inode *inode)
2596 {
2597 struct f2fs_inode_info *fi = F2FS_I(inode);
2598 struct f2fs_map_blocks map;
2599 pgoff_t m_next_extent;
2600 loff_t end;
2601 int err;
2602
2603 if (is_inode_flag_set(inode, FI_NO_EXTENT))
2604 return -EOPNOTSUPP;
2605
2606 map.m_lblk = 0;
2607 map.m_next_pgofs = NULL;
2608 map.m_next_extent = &m_next_extent;
2609 map.m_seg_type = NO_CHECK_TYPE;
2610 end = F2FS_I_SB(inode)->max_file_blocks;
2611
2612 while (map.m_lblk < end) {
2613 map.m_len = end - map.m_lblk;
2614
2615 down_write(&fi->dio_rwsem[WRITE]);
2616 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
2617 up_write(&fi->dio_rwsem[WRITE]);
2618 if (err)
2619 return err;
2620
2621 map.m_lblk = m_next_extent;
2622 }
2623
2624 return err;
2625 }
2626
f2fs_ioc_precache_extents(struct file * filp,unsigned long arg)2627 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
2628 {
2629 return f2fs_precache_extents(file_inode(filp));
2630 }
2631
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2632 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2633 {
2634 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
2635 return -EIO;
2636
2637 switch (cmd) {
2638 case F2FS_IOC_GETFLAGS:
2639 return f2fs_ioc_getflags(filp, arg);
2640 case F2FS_IOC_SETFLAGS:
2641 return f2fs_ioc_setflags(filp, arg);
2642 case F2FS_IOC_GETVERSION:
2643 return f2fs_ioc_getversion(filp, arg);
2644 case F2FS_IOC_START_ATOMIC_WRITE:
2645 return f2fs_ioc_start_atomic_write(filp);
2646 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2647 return f2fs_ioc_commit_atomic_write(filp);
2648 case F2FS_IOC_START_VOLATILE_WRITE:
2649 return f2fs_ioc_start_volatile_write(filp);
2650 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2651 return f2fs_ioc_release_volatile_write(filp);
2652 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2653 return f2fs_ioc_abort_volatile_write(filp);
2654 case F2FS_IOC_SHUTDOWN:
2655 return f2fs_ioc_shutdown(filp, arg);
2656 case FITRIM:
2657 return f2fs_ioc_fitrim(filp, arg);
2658 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2659 return f2fs_ioc_set_encryption_policy(filp, arg);
2660 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2661 return f2fs_ioc_get_encryption_policy(filp, arg);
2662 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2663 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2664 case F2FS_IOC_GARBAGE_COLLECT:
2665 return f2fs_ioc_gc(filp, arg);
2666 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2667 return f2fs_ioc_gc_range(filp, arg);
2668 case F2FS_IOC_WRITE_CHECKPOINT:
2669 return f2fs_ioc_write_checkpoint(filp, arg);
2670 case F2FS_IOC_DEFRAGMENT:
2671 return f2fs_ioc_defragment(filp, arg);
2672 case F2FS_IOC_MOVE_RANGE:
2673 return f2fs_ioc_move_range(filp, arg);
2674 case F2FS_IOC_FLUSH_DEVICE:
2675 return f2fs_ioc_flush_device(filp, arg);
2676 case F2FS_IOC_GET_FEATURES:
2677 return f2fs_ioc_get_features(filp, arg);
2678 case F2FS_IOC_GET_PIN_FILE:
2679 return f2fs_ioc_get_pin_file(filp, arg);
2680 case F2FS_IOC_SET_PIN_FILE:
2681 return f2fs_ioc_set_pin_file(filp, arg);
2682 case F2FS_IOC_PRECACHE_EXTENTS:
2683 return f2fs_ioc_precache_extents(filp, arg);
2684 default:
2685 return -ENOTTY;
2686 }
2687 }
2688
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2689 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2690 {
2691 struct file *file = iocb->ki_filp;
2692 struct inode *inode = file_inode(file);
2693 struct blk_plug plug;
2694 ssize_t ret;
2695
2696 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2697 return -EIO;
2698
2699 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2700 return -EINVAL;
2701
2702 if (!inode_trylock(inode)) {
2703 if (iocb->ki_flags & IOCB_NOWAIT)
2704 return -EAGAIN;
2705 inode_lock(inode);
2706 }
2707
2708 ret = generic_write_checks(iocb, from);
2709 if (ret > 0) {
2710 bool preallocated = false;
2711 size_t target_size = 0;
2712 int err;
2713
2714 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2715 set_inode_flag(inode, FI_NO_PREALLOC);
2716
2717 if ((iocb->ki_flags & IOCB_NOWAIT) &&
2718 (iocb->ki_flags & IOCB_DIRECT)) {
2719 if (!f2fs_overwrite_io(inode, iocb->ki_pos,
2720 iov_iter_count(from)) ||
2721 f2fs_has_inline_data(inode) ||
2722 f2fs_force_buffered_io(inode, WRITE)) {
2723 inode_unlock(inode);
2724 return -EAGAIN;
2725 }
2726
2727 } else {
2728 preallocated = true;
2729 target_size = iocb->ki_pos + iov_iter_count(from);
2730
2731 err = f2fs_preallocate_blocks(iocb, from);
2732 if (err) {
2733 clear_inode_flag(inode, FI_NO_PREALLOC);
2734 inode_unlock(inode);
2735 return err;
2736 }
2737 }
2738 blk_start_plug(&plug);
2739 ret = __generic_file_write_iter(iocb, from);
2740 blk_finish_plug(&plug);
2741 clear_inode_flag(inode, FI_NO_PREALLOC);
2742
2743 /* if we couldn't write data, we should deallocate blocks. */
2744 if (preallocated && i_size_read(inode) < target_size)
2745 f2fs_truncate(inode);
2746
2747 if (ret > 0)
2748 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
2749 }
2750 inode_unlock(inode);
2751
2752 if (ret > 0)
2753 ret = generic_write_sync(iocb, ret);
2754 return ret;
2755 }
2756
2757 #ifdef CONFIG_COMPAT
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2758 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2759 {
2760 switch (cmd) {
2761 case F2FS_IOC32_GETFLAGS:
2762 cmd = F2FS_IOC_GETFLAGS;
2763 break;
2764 case F2FS_IOC32_SETFLAGS:
2765 cmd = F2FS_IOC_SETFLAGS;
2766 break;
2767 case F2FS_IOC32_GETVERSION:
2768 cmd = F2FS_IOC_GETVERSION;
2769 break;
2770 case F2FS_IOC_START_ATOMIC_WRITE:
2771 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2772 case F2FS_IOC_START_VOLATILE_WRITE:
2773 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2774 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2775 case F2FS_IOC_SHUTDOWN:
2776 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2777 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2778 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2779 case F2FS_IOC_GARBAGE_COLLECT:
2780 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2781 case F2FS_IOC_WRITE_CHECKPOINT:
2782 case F2FS_IOC_DEFRAGMENT:
2783 case F2FS_IOC_MOVE_RANGE:
2784 case F2FS_IOC_FLUSH_DEVICE:
2785 case F2FS_IOC_GET_FEATURES:
2786 case F2FS_IOC_GET_PIN_FILE:
2787 case F2FS_IOC_SET_PIN_FILE:
2788 case F2FS_IOC_PRECACHE_EXTENTS:
2789 break;
2790 default:
2791 return -ENOIOCTLCMD;
2792 }
2793 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2794 }
2795 #endif
2796
2797 const struct file_operations f2fs_file_operations = {
2798 .llseek = f2fs_llseek,
2799 .read_iter = generic_file_read_iter,
2800 .write_iter = f2fs_file_write_iter,
2801 .open = f2fs_file_open,
2802 .release = f2fs_release_file,
2803 .mmap = f2fs_file_mmap,
2804 .flush = f2fs_file_flush,
2805 .fsync = f2fs_sync_file,
2806 .fallocate = f2fs_fallocate,
2807 .unlocked_ioctl = f2fs_ioctl,
2808 #ifdef CONFIG_COMPAT
2809 .compat_ioctl = f2fs_compat_ioctl,
2810 #endif
2811 .splice_read = generic_file_splice_read,
2812 .splice_write = iter_file_splice_write,
2813 };
2814