• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/f2fs/file.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uio.h>
24 #include <linux/uuid.h>
25 #include <linux/file.h>
26 
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include "trace.h"
34 #include <trace/events/f2fs.h>
35 
f2fs_filemap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)36 static int f2fs_filemap_fault(struct vm_area_struct *vma,
37 					struct vm_fault *vmf)
38 {
39 	struct inode *inode = file_inode(vma->vm_file);
40 	int err;
41 
42 	down_read(&F2FS_I(inode)->i_mmap_sem);
43 	err = filemap_fault(vma, vmf);
44 	up_read(&F2FS_I(inode)->i_mmap_sem);
45 
46 	return err;
47 }
48 
f2fs_vm_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)49 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
50 						struct vm_fault *vmf)
51 {
52 	struct page *page = vmf->page;
53 	struct inode *inode = file_inode(vma->vm_file);
54 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
55 	struct dnode_of_data dn;
56 	int err;
57 
58 	if (unlikely(f2fs_cp_error(sbi))) {
59 		err = -EIO;
60 		goto err;
61 	}
62 
63 	sb_start_pagefault(inode->i_sb);
64 
65 	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
66 
67 	/* block allocation */
68 	f2fs_lock_op(sbi);
69 	set_new_dnode(&dn, inode, NULL, NULL, 0);
70 	err = f2fs_reserve_block(&dn, page->index);
71 	if (err) {
72 		f2fs_unlock_op(sbi);
73 		goto out;
74 	}
75 	f2fs_put_dnode(&dn);
76 	f2fs_unlock_op(sbi);
77 
78 	f2fs_balance_fs(sbi, dn.node_changed);
79 
80 	file_update_time(vma->vm_file);
81 	down_read(&F2FS_I(inode)->i_mmap_sem);
82 	lock_page(page);
83 	if (unlikely(page->mapping != inode->i_mapping ||
84 			page_offset(page) > i_size_read(inode) ||
85 			!PageUptodate(page))) {
86 		unlock_page(page);
87 		err = -EFAULT;
88 		goto out_sem;
89 	}
90 
91 	/*
92 	 * check to see if the page is mapped already (no holes)
93 	 */
94 	if (PageMappedToDisk(page))
95 		goto mapped;
96 
97 	/* page is wholly or partially inside EOF */
98 	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
99 						i_size_read(inode)) {
100 		unsigned offset;
101 		offset = i_size_read(inode) & ~PAGE_MASK;
102 		zero_user_segment(page, offset, PAGE_SIZE);
103 	}
104 	set_page_dirty(page);
105 	if (!PageUptodate(page))
106 		SetPageUptodate(page);
107 
108 	f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
109 
110 	trace_f2fs_vm_page_mkwrite(page, DATA);
111 mapped:
112 	/* fill the page */
113 	f2fs_wait_on_page_writeback(page, DATA, false);
114 
115 	/* wait for GCed page writeback via META_MAPPING */
116 	if (f2fs_post_read_required(inode))
117 		f2fs_wait_on_block_writeback(sbi, dn.data_blkaddr);
118 
119 out_sem:
120 	up_read(&F2FS_I(inode)->i_mmap_sem);
121 out:
122 	sb_end_pagefault(inode->i_sb);
123 	f2fs_update_time(sbi, REQ_TIME);
124 err:
125 	return block_page_mkwrite_return(err);
126 }
127 
128 static const struct vm_operations_struct f2fs_file_vm_ops = {
129 	.fault		= f2fs_filemap_fault,
130 	.map_pages	= filemap_map_pages,
131 	.page_mkwrite	= f2fs_vm_page_mkwrite,
132 };
133 
get_parent_ino(struct inode * inode,nid_t * pino)134 static int get_parent_ino(struct inode *inode, nid_t *pino)
135 {
136 	struct dentry *dentry;
137 
138 	inode = igrab(inode);
139 	dentry = d_find_any_alias(inode);
140 	iput(inode);
141 	if (!dentry)
142 		return 0;
143 
144 	*pino = parent_ino(dentry);
145 	dput(dentry);
146 	return 1;
147 }
148 
need_do_checkpoint(struct inode * inode)149 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
150 {
151 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
152 	enum cp_reason_type cp_reason = CP_NO_NEEDED;
153 
154 	if (!S_ISREG(inode->i_mode))
155 		cp_reason = CP_NON_REGULAR;
156 	else if (inode->i_nlink != 1)
157 		cp_reason = CP_HARDLINK;
158 	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
159 		cp_reason = CP_SB_NEED_CP;
160 	else if (file_wrong_pino(inode))
161 		cp_reason = CP_WRONG_PINO;
162 	else if (!space_for_roll_forward(sbi))
163 		cp_reason = CP_NO_SPC_ROLL;
164 	else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
165 		cp_reason = CP_NODE_NEED_CP;
166 	else if (test_opt(sbi, FASTBOOT))
167 		cp_reason = CP_FASTBOOT_MODE;
168 	else if (F2FS_OPTION(sbi).active_logs == 2)
169 		cp_reason = CP_SPEC_LOG_NUM;
170 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
171 		need_dentry_mark(sbi, inode->i_ino) &&
172 		exist_written_data(sbi, F2FS_I(inode)->i_pino, TRANS_DIR_INO))
173 		cp_reason = CP_RECOVER_DIR;
174 
175 	return cp_reason;
176 }
177 
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)178 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
179 {
180 	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
181 	bool ret = false;
182 	/* But we need to avoid that there are some inode updates */
183 	if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
184 		ret = true;
185 	f2fs_put_page(i, 0);
186 	return ret;
187 }
188 
try_to_fix_pino(struct inode * inode)189 static void try_to_fix_pino(struct inode *inode)
190 {
191 	struct f2fs_inode_info *fi = F2FS_I(inode);
192 	nid_t pino;
193 
194 	down_write(&fi->i_sem);
195 	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
196 			get_parent_ino(inode, &pino)) {
197 		f2fs_i_pino_write(inode, pino);
198 		file_got_pino(inode);
199 	}
200 	up_write(&fi->i_sem);
201 }
202 
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)203 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
204 						int datasync, bool atomic)
205 {
206 	struct inode *inode = file->f_mapping->host;
207 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
208 	nid_t ino = inode->i_ino;
209 	int ret = 0;
210 	enum cp_reason_type cp_reason = 0;
211 	struct writeback_control wbc = {
212 		.sync_mode = WB_SYNC_ALL,
213 		.nr_to_write = LONG_MAX,
214 		.for_reclaim = 0,
215 	};
216 
217 	if (unlikely(f2fs_readonly(inode->i_sb)))
218 		return 0;
219 
220 	trace_f2fs_sync_file_enter(inode);
221 
222 	/* if fdatasync is triggered, let's do in-place-update */
223 	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
224 		set_inode_flag(inode, FI_NEED_IPU);
225 	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
226 	clear_inode_flag(inode, FI_NEED_IPU);
227 
228 	if (ret) {
229 		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
230 		return ret;
231 	}
232 
233 	/* if the inode is dirty, let's recover all the time */
234 	if (!f2fs_skip_inode_update(inode, datasync)) {
235 		f2fs_write_inode(inode, NULL);
236 		goto go_write;
237 	}
238 
239 	/*
240 	 * if there is no written data, don't waste time to write recovery info.
241 	 */
242 	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
243 			!exist_written_data(sbi, ino, APPEND_INO)) {
244 
245 		/* it may call write_inode just prior to fsync */
246 		if (need_inode_page_update(sbi, ino))
247 			goto go_write;
248 
249 		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
250 				exist_written_data(sbi, ino, UPDATE_INO))
251 			goto flush_out;
252 		goto out;
253 	}
254 go_write:
255 	/*
256 	 * Both of fdatasync() and fsync() are able to be recovered from
257 	 * sudden-power-off.
258 	 */
259 	down_read(&F2FS_I(inode)->i_sem);
260 	cp_reason = need_do_checkpoint(inode);
261 	up_read(&F2FS_I(inode)->i_sem);
262 
263 	if (cp_reason) {
264 		/* all the dirty node pages should be flushed for POR */
265 		ret = f2fs_sync_fs(inode->i_sb, 1);
266 
267 		/*
268 		 * We've secured consistency through sync_fs. Following pino
269 		 * will be used only for fsynced inodes after checkpoint.
270 		 */
271 		try_to_fix_pino(inode);
272 		clear_inode_flag(inode, FI_APPEND_WRITE);
273 		clear_inode_flag(inode, FI_UPDATE_WRITE);
274 		goto out;
275 	}
276 sync_nodes:
277 	ret = fsync_node_pages(sbi, inode, &wbc, atomic);
278 	if (ret)
279 		goto out;
280 
281 	/* if cp_error was enabled, we should avoid infinite loop */
282 	if (unlikely(f2fs_cp_error(sbi))) {
283 		ret = -EIO;
284 		goto out;
285 	}
286 
287 	if (need_inode_block_update(sbi, ino)) {
288 		f2fs_mark_inode_dirty_sync(inode, true);
289 		f2fs_write_inode(inode, NULL);
290 		goto sync_nodes;
291 	}
292 
293 	/*
294 	 * If it's atomic_write, it's just fine to keep write ordering. So
295 	 * here we don't need to wait for node write completion, since we use
296 	 * node chain which serializes node blocks. If one of node writes are
297 	 * reordered, we can see simply broken chain, resulting in stopping
298 	 * roll-forward recovery. It means we'll recover all or none node blocks
299 	 * given fsync mark.
300 	 */
301 	if (!atomic) {
302 		ret = wait_on_node_pages_writeback(sbi, ino);
303 		if (ret)
304 			goto out;
305 	}
306 
307 	/* once recovery info is written, don't need to tack this */
308 	remove_ino_entry(sbi, ino, APPEND_INO);
309 	clear_inode_flag(inode, FI_APPEND_WRITE);
310 flush_out:
311 	if (!atomic)
312 		ret = f2fs_issue_flush(sbi, inode->i_ino);
313 	if (!ret) {
314 		remove_ino_entry(sbi, ino, UPDATE_INO);
315 		clear_inode_flag(inode, FI_UPDATE_WRITE);
316 		remove_ino_entry(sbi, ino, FLUSH_INO);
317 	}
318 	f2fs_update_time(sbi, REQ_TIME);
319 out:
320 	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
321 	f2fs_trace_ios(NULL, 1);
322 	return ret;
323 }
324 
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)325 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
326 {
327 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
328 		return -EIO;
329 	return f2fs_do_sync_file(file, start, end, datasync, false);
330 }
331 
__get_first_dirty_index(struct address_space * mapping,pgoff_t pgofs,int whence)332 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
333 						pgoff_t pgofs, int whence)
334 {
335 	struct pagevec pvec;
336 	int nr_pages;
337 
338 	if (whence != SEEK_DATA)
339 		return 0;
340 
341 	/* find first dirty page index */
342 	pagevec_init(&pvec, 0);
343 	nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
344 					PAGECACHE_TAG_DIRTY, 1);
345 	pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
346 	pagevec_release(&pvec);
347 	return pgofs;
348 }
349 
__found_offset(block_t blkaddr,pgoff_t dirty,pgoff_t pgofs,int whence)350 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
351 							int whence)
352 {
353 	switch (whence) {
354 	case SEEK_DATA:
355 		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
356 			(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
357 			return true;
358 		break;
359 	case SEEK_HOLE:
360 		if (blkaddr == NULL_ADDR)
361 			return true;
362 		break;
363 	}
364 	return false;
365 }
366 
f2fs_seek_block(struct file * file,loff_t offset,int whence)367 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
368 {
369 	struct inode *inode = file->f_mapping->host;
370 	loff_t maxbytes = inode->i_sb->s_maxbytes;
371 	struct dnode_of_data dn;
372 	pgoff_t pgofs, end_offset, dirty;
373 	loff_t data_ofs = offset;
374 	loff_t isize;
375 	int err = 0;
376 
377 	inode_lock(inode);
378 
379 	isize = i_size_read(inode);
380 	if (offset >= isize)
381 		goto fail;
382 
383 	/* handle inline data case */
384 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
385 		if (whence == SEEK_HOLE)
386 			data_ofs = isize;
387 		goto found;
388 	}
389 
390 	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
391 
392 	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
393 
394 	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
395 		set_new_dnode(&dn, inode, NULL, NULL, 0);
396 		err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
397 		if (err && err != -ENOENT) {
398 			goto fail;
399 		} else if (err == -ENOENT) {
400 			/* direct node does not exists */
401 			if (whence == SEEK_DATA) {
402 				pgofs = get_next_page_offset(&dn, pgofs);
403 				continue;
404 			} else {
405 				goto found;
406 			}
407 		}
408 
409 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
410 
411 		/* find data/hole in dnode block */
412 		for (; dn.ofs_in_node < end_offset;
413 				dn.ofs_in_node++, pgofs++,
414 				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
415 			block_t blkaddr;
416 			blkaddr = datablock_addr(dn.inode,
417 					dn.node_page, dn.ofs_in_node);
418 
419 			if (__found_offset(blkaddr, dirty, pgofs, whence)) {
420 				f2fs_put_dnode(&dn);
421 				goto found;
422 			}
423 		}
424 		f2fs_put_dnode(&dn);
425 	}
426 
427 	if (whence == SEEK_DATA)
428 		goto fail;
429 found:
430 	if (whence == SEEK_HOLE && data_ofs > isize)
431 		data_ofs = isize;
432 	inode_unlock(inode);
433 	return vfs_setpos(file, data_ofs, maxbytes);
434 fail:
435 	inode_unlock(inode);
436 	return -ENXIO;
437 }
438 
f2fs_llseek(struct file * file,loff_t offset,int whence)439 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
440 {
441 	struct inode *inode = file->f_mapping->host;
442 	loff_t maxbytes = inode->i_sb->s_maxbytes;
443 
444 	switch (whence) {
445 	case SEEK_SET:
446 	case SEEK_CUR:
447 	case SEEK_END:
448 		return generic_file_llseek_size(file, offset, whence,
449 						maxbytes, i_size_read(inode));
450 	case SEEK_DATA:
451 	case SEEK_HOLE:
452 		if (offset < 0)
453 			return -ENXIO;
454 		return f2fs_seek_block(file, offset, whence);
455 	}
456 
457 	return -EINVAL;
458 }
459 
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)460 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
461 {
462 	struct inode *inode = file_inode(file);
463 	int err;
464 
465 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
466 		return -EIO;
467 
468 	/* we don't need to use inline_data strictly */
469 	err = f2fs_convert_inline_inode(inode);
470 	if (err)
471 		return err;
472 
473 	file_accessed(file);
474 	vma->vm_ops = &f2fs_file_vm_ops;
475 	return 0;
476 }
477 
f2fs_file_open(struct inode * inode,struct file * filp)478 static int f2fs_file_open(struct inode *inode, struct file *filp)
479 {
480 	int err = fscrypt_file_open(inode, filp);
481 
482 	if (err)
483 		return err;
484 
485 	filp->f_mode |= FMODE_NOWAIT;
486 
487 	return dquot_file_open(inode, filp);
488 }
489 
truncate_data_blocks_range(struct dnode_of_data * dn,int count)490 void truncate_data_blocks_range(struct dnode_of_data *dn, int count)
491 {
492 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
493 	struct f2fs_node *raw_node;
494 	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
495 	__le32 *addr;
496 	int base = 0;
497 
498 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
499 		base = get_extra_isize(dn->inode);
500 
501 	raw_node = F2FS_NODE(dn->node_page);
502 	addr = blkaddr_in_node(raw_node) + base + ofs;
503 
504 	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
505 		block_t blkaddr = le32_to_cpu(*addr);
506 		if (blkaddr == NULL_ADDR)
507 			continue;
508 
509 		dn->data_blkaddr = NULL_ADDR;
510 		set_data_blkaddr(dn);
511 		invalidate_blocks(sbi, blkaddr);
512 		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
513 			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
514 		nr_free++;
515 	}
516 
517 	if (nr_free) {
518 		pgoff_t fofs;
519 		/*
520 		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
521 		 * we will invalidate all blkaddr in the whole range.
522 		 */
523 		fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
524 							dn->inode) + ofs;
525 		f2fs_update_extent_cache_range(dn, fofs, 0, len);
526 		dec_valid_block_count(sbi, dn->inode, nr_free);
527 	}
528 	dn->ofs_in_node = ofs;
529 
530 	f2fs_update_time(sbi, REQ_TIME);
531 	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
532 					 dn->ofs_in_node, nr_free);
533 }
534 
truncate_data_blocks(struct dnode_of_data * dn)535 void truncate_data_blocks(struct dnode_of_data *dn)
536 {
537 	truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
538 }
539 
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)540 static int truncate_partial_data_page(struct inode *inode, u64 from,
541 								bool cache_only)
542 {
543 	unsigned offset = from & (PAGE_SIZE - 1);
544 	pgoff_t index = from >> PAGE_SHIFT;
545 	struct address_space *mapping = inode->i_mapping;
546 	struct page *page;
547 
548 	if (!offset && !cache_only)
549 		return 0;
550 
551 	if (cache_only) {
552 		page = find_lock_page(mapping, index);
553 		if (page && PageUptodate(page))
554 			goto truncate_out;
555 		f2fs_put_page(page, 1);
556 		return 0;
557 	}
558 
559 	page = get_lock_data_page(inode, index, true);
560 	if (IS_ERR(page))
561 		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
562 truncate_out:
563 	f2fs_wait_on_page_writeback(page, DATA, true);
564 	zero_user(page, offset, PAGE_SIZE - offset);
565 
566 	/* An encrypted inode should have a key and truncate the last page. */
567 	f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
568 	if (!cache_only)
569 		set_page_dirty(page);
570 	f2fs_put_page(page, 1);
571 	return 0;
572 }
573 
truncate_blocks(struct inode * inode,u64 from,bool lock)574 int truncate_blocks(struct inode *inode, u64 from, bool lock)
575 {
576 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
577 	struct dnode_of_data dn;
578 	pgoff_t free_from;
579 	int count = 0, err = 0;
580 	struct page *ipage;
581 	bool truncate_page = false;
582 
583 	trace_f2fs_truncate_blocks_enter(inode, from);
584 
585 	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
586 
587 	if (free_from >= sbi->max_file_blocks)
588 		goto free_partial;
589 
590 	if (lock)
591 		f2fs_lock_op(sbi);
592 
593 	ipage = get_node_page(sbi, inode->i_ino);
594 	if (IS_ERR(ipage)) {
595 		err = PTR_ERR(ipage);
596 		goto out;
597 	}
598 
599 	if (f2fs_has_inline_data(inode)) {
600 		truncate_inline_inode(inode, ipage, from);
601 		f2fs_put_page(ipage, 1);
602 		truncate_page = true;
603 		goto out;
604 	}
605 
606 	set_new_dnode(&dn, inode, ipage, NULL, 0);
607 	err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
608 	if (err) {
609 		if (err == -ENOENT)
610 			goto free_next;
611 		goto out;
612 	}
613 
614 	count = ADDRS_PER_PAGE(dn.node_page, inode);
615 
616 	count -= dn.ofs_in_node;
617 	f2fs_bug_on(sbi, count < 0);
618 
619 	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
620 		truncate_data_blocks_range(&dn, count);
621 		free_from += count;
622 	}
623 
624 	f2fs_put_dnode(&dn);
625 free_next:
626 	err = truncate_inode_blocks(inode, free_from);
627 out:
628 	if (lock)
629 		f2fs_unlock_op(sbi);
630 free_partial:
631 	/* lastly zero out the first data page */
632 	if (!err)
633 		err = truncate_partial_data_page(inode, from, truncate_page);
634 
635 	trace_f2fs_truncate_blocks_exit(inode, err);
636 	return err;
637 }
638 
f2fs_truncate(struct inode * inode)639 int f2fs_truncate(struct inode *inode)
640 {
641 	int err;
642 
643 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
644 		return -EIO;
645 
646 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
647 				S_ISLNK(inode->i_mode)))
648 		return 0;
649 
650 	trace_f2fs_truncate(inode);
651 
652 #ifdef CONFIG_F2FS_FAULT_INJECTION
653 	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
654 		f2fs_show_injection_info(FAULT_TRUNCATE);
655 		return -EIO;
656 	}
657 #endif
658 	/* we should check inline_data size */
659 	if (!f2fs_may_inline_data(inode)) {
660 		err = f2fs_convert_inline_inode(inode);
661 		if (err)
662 			return err;
663 	}
664 
665 	err = truncate_blocks(inode, i_size_read(inode), true);
666 	if (err)
667 		return err;
668 
669 	inode->i_mtime = inode->i_ctime = current_time(inode);
670 	f2fs_mark_inode_dirty_sync(inode, false);
671 	return 0;
672 }
673 
f2fs_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)674 int f2fs_getattr(struct vfsmount *mnt,
675 			struct dentry *dentry, struct kstat *stat)
676 {
677 	struct inode *inode = d_inode(dentry);
678 #if 0
679 	struct f2fs_inode_info *fi = F2FS_I(inode);
680 	struct f2fs_inode *ri;
681 	unsigned int flags;
682 
683 	if (f2fs_has_extra_attr(inode) &&
684 			f2fs_sb_has_inode_crtime(inode->i_sb) &&
685 			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
686 		stat->result_mask |= STATX_BTIME;
687 		stat->btime.tv_sec = fi->i_crtime.tv_sec;
688 		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
689 	}
690 
691 	flags = fi->i_flags & (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
692 	if (flags & FS_APPEND_FL)
693 		stat->attributes |= STATX_ATTR_APPEND;
694 	if (flags & FS_COMPR_FL)
695 		stat->attributes |= STATX_ATTR_COMPRESSED;
696 	if (f2fs_encrypted_inode(inode))
697 		stat->attributes |= STATX_ATTR_ENCRYPTED;
698 	if (flags & FS_IMMUTABLE_FL)
699 		stat->attributes |= STATX_ATTR_IMMUTABLE;
700 	if (flags & FS_NODUMP_FL)
701 		stat->attributes |= STATX_ATTR_NODUMP;
702 
703 	stat->attributes_mask |= (STATX_ATTR_APPEND |
704 				  STATX_ATTR_COMPRESSED |
705 				  STATX_ATTR_ENCRYPTED |
706 				  STATX_ATTR_IMMUTABLE |
707 				  STATX_ATTR_NODUMP);
708 #endif
709 	generic_fillattr(inode, stat);
710 
711 	/* we need to show initial sectors used for inline_data/dentries */
712 	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
713 					f2fs_has_inline_dentry(inode))
714 		stat->blocks += (stat->size + 511) >> 9;
715 
716 	return 0;
717 }
718 
719 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct inode * inode,const struct iattr * attr)720 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
721 {
722 	unsigned int ia_valid = attr->ia_valid;
723 
724 	if (ia_valid & ATTR_UID)
725 		inode->i_uid = attr->ia_uid;
726 	if (ia_valid & ATTR_GID)
727 		inode->i_gid = attr->ia_gid;
728 	if (ia_valid & ATTR_ATIME)
729 		inode->i_atime = timespec_trunc(attr->ia_atime,
730 						inode->i_sb->s_time_gran);
731 	if (ia_valid & ATTR_MTIME)
732 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
733 						inode->i_sb->s_time_gran);
734 	if (ia_valid & ATTR_CTIME)
735 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
736 						inode->i_sb->s_time_gran);
737 	if (ia_valid & ATTR_MODE) {
738 		umode_t mode = attr->ia_mode;
739 
740 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
741 			mode &= ~S_ISGID;
742 		set_acl_inode(inode, mode);
743 	}
744 }
745 #else
746 #define __setattr_copy setattr_copy
747 #endif
748 
f2fs_setattr(struct dentry * dentry,struct iattr * attr)749 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
750 {
751 	struct inode *inode = d_inode(dentry);
752 	int err;
753 	bool size_changed = false;
754 
755 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
756 		return -EIO;
757 
758 	err = setattr_prepare(dentry, attr);
759 	if (err)
760 		return err;
761 
762 	err = fscrypt_prepare_setattr(dentry, attr);
763 	if (err)
764 		return err;
765 
766 	if (is_quota_modification(inode, attr)) {
767 		err = dquot_initialize(inode);
768 		if (err)
769 			return err;
770 	}
771 	if ((attr->ia_valid & ATTR_UID &&
772 		!uid_eq(attr->ia_uid, inode->i_uid)) ||
773 		(attr->ia_valid & ATTR_GID &&
774 		!gid_eq(attr->ia_gid, inode->i_gid))) {
775 		err = dquot_transfer(inode, attr);
776 		if (err)
777 			return err;
778 	}
779 
780 	if (attr->ia_valid & ATTR_SIZE) {
781 		if (attr->ia_size <= i_size_read(inode)) {
782 			down_write(&F2FS_I(inode)->i_mmap_sem);
783 			truncate_setsize(inode, attr->ia_size);
784 			err = f2fs_truncate(inode);
785 			up_write(&F2FS_I(inode)->i_mmap_sem);
786 			if (err)
787 				return err;
788 		} else {
789 			/*
790 			 * do not trim all blocks after i_size if target size is
791 			 * larger than i_size.
792 			 */
793 			down_write(&F2FS_I(inode)->i_mmap_sem);
794 			truncate_setsize(inode, attr->ia_size);
795 			up_write(&F2FS_I(inode)->i_mmap_sem);
796 
797 			/* should convert inline inode here */
798 			if (!f2fs_may_inline_data(inode)) {
799 				err = f2fs_convert_inline_inode(inode);
800 				if (err)
801 					return err;
802 			}
803 			inode->i_mtime = inode->i_ctime = current_time(inode);
804 		}
805 
806 		down_write(&F2FS_I(inode)->i_sem);
807 		F2FS_I(inode)->last_disk_size = i_size_read(inode);
808 		up_write(&F2FS_I(inode)->i_sem);
809 
810 		size_changed = true;
811 	}
812 
813 	__setattr_copy(inode, attr);
814 
815 	if (attr->ia_valid & ATTR_MODE) {
816 		err = posix_acl_chmod(inode, get_inode_mode(inode));
817 		if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
818 			inode->i_mode = F2FS_I(inode)->i_acl_mode;
819 			clear_inode_flag(inode, FI_ACL_MODE);
820 		}
821 	}
822 
823 	/* file size may changed here */
824 	f2fs_mark_inode_dirty_sync(inode, size_changed);
825 
826 	/* inode change will produce dirty node pages flushed by checkpoint */
827 	f2fs_balance_fs(F2FS_I_SB(inode), true);
828 
829 	return err;
830 }
831 
832 const struct inode_operations f2fs_file_inode_operations = {
833 	.getattr	= f2fs_getattr,
834 	.setattr	= f2fs_setattr,
835 	.get_acl	= f2fs_get_acl,
836 	.set_acl	= f2fs_set_acl,
837 #ifdef CONFIG_F2FS_FS_XATTR
838 	.listxattr	= f2fs_listxattr,
839 #endif
840 	.fiemap		= f2fs_fiemap,
841 };
842 
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)843 static int fill_zero(struct inode *inode, pgoff_t index,
844 					loff_t start, loff_t len)
845 {
846 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
847 	struct page *page;
848 
849 	if (!len)
850 		return 0;
851 
852 	f2fs_balance_fs(sbi, true);
853 
854 	f2fs_lock_op(sbi);
855 	page = get_new_data_page(inode, NULL, index, false);
856 	f2fs_unlock_op(sbi);
857 
858 	if (IS_ERR(page))
859 		return PTR_ERR(page);
860 
861 	f2fs_wait_on_page_writeback(page, DATA, true);
862 	zero_user(page, start, len);
863 	set_page_dirty(page);
864 	f2fs_put_page(page, 1);
865 	return 0;
866 }
867 
truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)868 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
869 {
870 	int err;
871 
872 	while (pg_start < pg_end) {
873 		struct dnode_of_data dn;
874 		pgoff_t end_offset, count;
875 
876 		set_new_dnode(&dn, inode, NULL, NULL, 0);
877 		err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
878 		if (err) {
879 			if (err == -ENOENT) {
880 				pg_start = get_next_page_offset(&dn, pg_start);
881 				continue;
882 			}
883 			return err;
884 		}
885 
886 		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
887 		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
888 
889 		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
890 
891 		truncate_data_blocks_range(&dn, count);
892 		f2fs_put_dnode(&dn);
893 
894 		pg_start += count;
895 	}
896 	return 0;
897 }
898 
punch_hole(struct inode * inode,loff_t offset,loff_t len)899 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
900 {
901 	pgoff_t pg_start, pg_end;
902 	loff_t off_start, off_end;
903 	int ret;
904 
905 	ret = f2fs_convert_inline_inode(inode);
906 	if (ret)
907 		return ret;
908 
909 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
910 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
911 
912 	off_start = offset & (PAGE_SIZE - 1);
913 	off_end = (offset + len) & (PAGE_SIZE - 1);
914 
915 	if (pg_start == pg_end) {
916 		ret = fill_zero(inode, pg_start, off_start,
917 						off_end - off_start);
918 		if (ret)
919 			return ret;
920 	} else {
921 		if (off_start) {
922 			ret = fill_zero(inode, pg_start++, off_start,
923 						PAGE_SIZE - off_start);
924 			if (ret)
925 				return ret;
926 		}
927 		if (off_end) {
928 			ret = fill_zero(inode, pg_end, 0, off_end);
929 			if (ret)
930 				return ret;
931 		}
932 
933 		if (pg_start < pg_end) {
934 			struct address_space *mapping = inode->i_mapping;
935 			loff_t blk_start, blk_end;
936 			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
937 
938 			f2fs_balance_fs(sbi, true);
939 
940 			blk_start = (loff_t)pg_start << PAGE_SHIFT;
941 			blk_end = (loff_t)pg_end << PAGE_SHIFT;
942 			down_write(&F2FS_I(inode)->i_mmap_sem);
943 			truncate_inode_pages_range(mapping, blk_start,
944 					blk_end - 1);
945 
946 			f2fs_lock_op(sbi);
947 			ret = truncate_hole(inode, pg_start, pg_end);
948 			f2fs_unlock_op(sbi);
949 			up_write(&F2FS_I(inode)->i_mmap_sem);
950 		}
951 	}
952 
953 	return ret;
954 }
955 
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)956 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
957 				int *do_replace, pgoff_t off, pgoff_t len)
958 {
959 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
960 	struct dnode_of_data dn;
961 	int ret, done, i;
962 
963 next_dnode:
964 	set_new_dnode(&dn, inode, NULL, NULL, 0);
965 	ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
966 	if (ret && ret != -ENOENT) {
967 		return ret;
968 	} else if (ret == -ENOENT) {
969 		if (dn.max_level == 0)
970 			return -ENOENT;
971 		done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
972 		blkaddr += done;
973 		do_replace += done;
974 		goto next;
975 	}
976 
977 	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
978 							dn.ofs_in_node, len);
979 	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
980 		*blkaddr = datablock_addr(dn.inode,
981 					dn.node_page, dn.ofs_in_node);
982 		if (!is_checkpointed_data(sbi, *blkaddr)) {
983 
984 			if (test_opt(sbi, LFS)) {
985 				f2fs_put_dnode(&dn);
986 				return -ENOTSUPP;
987 			}
988 
989 			/* do not invalidate this block address */
990 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
991 			*do_replace = 1;
992 		}
993 	}
994 	f2fs_put_dnode(&dn);
995 next:
996 	len -= done;
997 	off += done;
998 	if (len)
999 		goto next_dnode;
1000 	return 0;
1001 }
1002 
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1003 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1004 				int *do_replace, pgoff_t off, int len)
1005 {
1006 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1007 	struct dnode_of_data dn;
1008 	int ret, i;
1009 
1010 	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1011 		if (*do_replace == 0)
1012 			continue;
1013 
1014 		set_new_dnode(&dn, inode, NULL, NULL, 0);
1015 		ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1016 		if (ret) {
1017 			dec_valid_block_count(sbi, inode, 1);
1018 			invalidate_blocks(sbi, *blkaddr);
1019 		} else {
1020 			f2fs_update_data_blkaddr(&dn, *blkaddr);
1021 		}
1022 		f2fs_put_dnode(&dn);
1023 	}
1024 	return 0;
1025 }
1026 
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1027 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1028 			block_t *blkaddr, int *do_replace,
1029 			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1030 {
1031 	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1032 	pgoff_t i = 0;
1033 	int ret;
1034 
1035 	while (i < len) {
1036 		if (blkaddr[i] == NULL_ADDR && !full) {
1037 			i++;
1038 			continue;
1039 		}
1040 
1041 		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1042 			struct dnode_of_data dn;
1043 			struct node_info ni;
1044 			size_t new_size;
1045 			pgoff_t ilen;
1046 
1047 			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1048 			ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1049 			if (ret)
1050 				return ret;
1051 
1052 			get_node_info(sbi, dn.nid, &ni);
1053 			ilen = min((pgoff_t)
1054 				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1055 						dn.ofs_in_node, len - i);
1056 			do {
1057 				dn.data_blkaddr = datablock_addr(dn.inode,
1058 						dn.node_page, dn.ofs_in_node);
1059 				truncate_data_blocks_range(&dn, 1);
1060 
1061 				if (do_replace[i]) {
1062 					f2fs_i_blocks_write(src_inode,
1063 							1, false, false);
1064 					f2fs_i_blocks_write(dst_inode,
1065 							1, true, false);
1066 					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1067 					blkaddr[i], ni.version, true, false);
1068 
1069 					do_replace[i] = 0;
1070 				}
1071 				dn.ofs_in_node++;
1072 				i++;
1073 				new_size = (dst + i) << PAGE_SHIFT;
1074 				if (dst_inode->i_size < new_size)
1075 					f2fs_i_size_write(dst_inode, new_size);
1076 			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1077 
1078 			f2fs_put_dnode(&dn);
1079 		} else {
1080 			struct page *psrc, *pdst;
1081 
1082 			psrc = get_lock_data_page(src_inode, src + i, true);
1083 			if (IS_ERR(psrc))
1084 				return PTR_ERR(psrc);
1085 			pdst = get_new_data_page(dst_inode, NULL, dst + i,
1086 								true);
1087 			if (IS_ERR(pdst)) {
1088 				f2fs_put_page(psrc, 1);
1089 				return PTR_ERR(pdst);
1090 			}
1091 			f2fs_copy_page(psrc, pdst);
1092 			set_page_dirty(pdst);
1093 			f2fs_put_page(pdst, 1);
1094 			f2fs_put_page(psrc, 1);
1095 
1096 			ret = truncate_hole(src_inode, src + i, src + i + 1);
1097 			if (ret)
1098 				return ret;
1099 			i++;
1100 		}
1101 	}
1102 	return 0;
1103 }
1104 
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1105 static int __exchange_data_block(struct inode *src_inode,
1106 			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1107 			pgoff_t len, bool full)
1108 {
1109 	block_t *src_blkaddr;
1110 	int *do_replace;
1111 	pgoff_t olen;
1112 	int ret;
1113 
1114 	while (len) {
1115 		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1116 
1117 		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1118 					sizeof(block_t) * olen, GFP_KERNEL);
1119 		if (!src_blkaddr)
1120 			return -ENOMEM;
1121 
1122 		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1123 					sizeof(int) * olen, GFP_KERNEL);
1124 		if (!do_replace) {
1125 			kvfree(src_blkaddr);
1126 			return -ENOMEM;
1127 		}
1128 
1129 		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1130 					do_replace, src, olen);
1131 		if (ret)
1132 			goto roll_back;
1133 
1134 		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1135 					do_replace, src, dst, olen, full);
1136 		if (ret)
1137 			goto roll_back;
1138 
1139 		src += olen;
1140 		dst += olen;
1141 		len -= olen;
1142 
1143 		kvfree(src_blkaddr);
1144 		kvfree(do_replace);
1145 	}
1146 	return 0;
1147 
1148 roll_back:
1149 	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1150 	kvfree(src_blkaddr);
1151 	kvfree(do_replace);
1152 	return ret;
1153 }
1154 
f2fs_do_collapse(struct inode * inode,pgoff_t start,pgoff_t end)1155 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1156 {
1157 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1158 	pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1159 	int ret;
1160 
1161 	f2fs_balance_fs(sbi, true);
1162 	f2fs_lock_op(sbi);
1163 
1164 	f2fs_drop_extent_tree(inode);
1165 
1166 	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1167 	f2fs_unlock_op(sbi);
1168 	return ret;
1169 }
1170 
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1171 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1172 {
1173 	pgoff_t pg_start, pg_end;
1174 	loff_t new_size;
1175 	int ret;
1176 
1177 	if (offset + len >= i_size_read(inode))
1178 		return -EINVAL;
1179 
1180 	/* collapse range should be aligned to block size of f2fs. */
1181 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1182 		return -EINVAL;
1183 
1184 	ret = f2fs_convert_inline_inode(inode);
1185 	if (ret)
1186 		return ret;
1187 
1188 	pg_start = offset >> PAGE_SHIFT;
1189 	pg_end = (offset + len) >> PAGE_SHIFT;
1190 
1191 	/* avoid gc operation during block exchange */
1192 	down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1193 
1194 	down_write(&F2FS_I(inode)->i_mmap_sem);
1195 	/* write out all dirty pages from offset */
1196 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1197 	if (ret)
1198 		goto out_unlock;
1199 
1200 	truncate_pagecache(inode, offset);
1201 
1202 	ret = f2fs_do_collapse(inode, pg_start, pg_end);
1203 	if (ret)
1204 		goto out_unlock;
1205 
1206 	/* write out all moved pages, if possible */
1207 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1208 	truncate_pagecache(inode, offset);
1209 
1210 	new_size = i_size_read(inode) - len;
1211 	truncate_pagecache(inode, new_size);
1212 
1213 	ret = truncate_blocks(inode, new_size, true);
1214 	if (!ret)
1215 		f2fs_i_size_write(inode, new_size);
1216 out_unlock:
1217 	up_write(&F2FS_I(inode)->i_mmap_sem);
1218 	up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1219 	return ret;
1220 }
1221 
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1222 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1223 								pgoff_t end)
1224 {
1225 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1226 	pgoff_t index = start;
1227 	unsigned int ofs_in_node = dn->ofs_in_node;
1228 	blkcnt_t count = 0;
1229 	int ret;
1230 
1231 	for (; index < end; index++, dn->ofs_in_node++) {
1232 		if (datablock_addr(dn->inode, dn->node_page,
1233 					dn->ofs_in_node) == NULL_ADDR)
1234 			count++;
1235 	}
1236 
1237 	dn->ofs_in_node = ofs_in_node;
1238 	ret = reserve_new_blocks(dn, count);
1239 	if (ret)
1240 		return ret;
1241 
1242 	dn->ofs_in_node = ofs_in_node;
1243 	for (index = start; index < end; index++, dn->ofs_in_node++) {
1244 		dn->data_blkaddr = datablock_addr(dn->inode,
1245 					dn->node_page, dn->ofs_in_node);
1246 		/*
1247 		 * reserve_new_blocks will not guarantee entire block
1248 		 * allocation.
1249 		 */
1250 		if (dn->data_blkaddr == NULL_ADDR) {
1251 			ret = -ENOSPC;
1252 			break;
1253 		}
1254 		if (dn->data_blkaddr != NEW_ADDR) {
1255 			invalidate_blocks(sbi, dn->data_blkaddr);
1256 			dn->data_blkaddr = NEW_ADDR;
1257 			set_data_blkaddr(dn);
1258 		}
1259 	}
1260 
1261 	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1262 
1263 	return ret;
1264 }
1265 
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1266 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1267 								int mode)
1268 {
1269 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1270 	struct address_space *mapping = inode->i_mapping;
1271 	pgoff_t index, pg_start, pg_end;
1272 	loff_t new_size = i_size_read(inode);
1273 	loff_t off_start, off_end;
1274 	int ret = 0;
1275 
1276 	ret = inode_newsize_ok(inode, (len + offset));
1277 	if (ret)
1278 		return ret;
1279 
1280 	ret = f2fs_convert_inline_inode(inode);
1281 	if (ret)
1282 		return ret;
1283 
1284 	down_write(&F2FS_I(inode)->i_mmap_sem);
1285 	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1286 	if (ret)
1287 		goto out_sem;
1288 
1289 	truncate_pagecache_range(inode, offset, offset + len - 1);
1290 
1291 	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1292 	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1293 
1294 	off_start = offset & (PAGE_SIZE - 1);
1295 	off_end = (offset + len) & (PAGE_SIZE - 1);
1296 
1297 	if (pg_start == pg_end) {
1298 		ret = fill_zero(inode, pg_start, off_start,
1299 						off_end - off_start);
1300 		if (ret)
1301 			goto out_sem;
1302 
1303 		new_size = max_t(loff_t, new_size, offset + len);
1304 	} else {
1305 		if (off_start) {
1306 			ret = fill_zero(inode, pg_start++, off_start,
1307 						PAGE_SIZE - off_start);
1308 			if (ret)
1309 				goto out_sem;
1310 
1311 			new_size = max_t(loff_t, new_size,
1312 					(loff_t)pg_start << PAGE_SHIFT);
1313 		}
1314 
1315 		for (index = pg_start; index < pg_end;) {
1316 			struct dnode_of_data dn;
1317 			unsigned int end_offset;
1318 			pgoff_t end;
1319 
1320 			f2fs_lock_op(sbi);
1321 
1322 			set_new_dnode(&dn, inode, NULL, NULL, 0);
1323 			ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1324 			if (ret) {
1325 				f2fs_unlock_op(sbi);
1326 				goto out;
1327 			}
1328 
1329 			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1330 			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1331 
1332 			ret = f2fs_do_zero_range(&dn, index, end);
1333 			f2fs_put_dnode(&dn);
1334 			f2fs_unlock_op(sbi);
1335 
1336 			f2fs_balance_fs(sbi, dn.node_changed);
1337 
1338 			if (ret)
1339 				goto out;
1340 
1341 			index = end;
1342 			new_size = max_t(loff_t, new_size,
1343 					(loff_t)index << PAGE_SHIFT);
1344 		}
1345 
1346 		if (off_end) {
1347 			ret = fill_zero(inode, pg_end, 0, off_end);
1348 			if (ret)
1349 				goto out;
1350 
1351 			new_size = max_t(loff_t, new_size, offset + len);
1352 		}
1353 	}
1354 
1355 out:
1356 	if (new_size > i_size_read(inode)) {
1357 		if (mode & FALLOC_FL_KEEP_SIZE)
1358 			file_set_keep_isize(inode);
1359 		else
1360 			f2fs_i_size_write(inode, new_size);
1361 	}
1362 out_sem:
1363 	up_write(&F2FS_I(inode)->i_mmap_sem);
1364 
1365 	return ret;
1366 }
1367 
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1368 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1369 {
1370 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1371 	pgoff_t nr, pg_start, pg_end, delta, idx;
1372 	loff_t new_size;
1373 	int ret = 0;
1374 
1375 	new_size = i_size_read(inode) + len;
1376 	ret = inode_newsize_ok(inode, new_size);
1377 	if (ret)
1378 		return ret;
1379 
1380 	if (offset >= i_size_read(inode))
1381 		return -EINVAL;
1382 
1383 	/* insert range should be aligned to block size of f2fs. */
1384 	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1385 		return -EINVAL;
1386 
1387 	ret = f2fs_convert_inline_inode(inode);
1388 	if (ret)
1389 		return ret;
1390 
1391 	f2fs_balance_fs(sbi, true);
1392 
1393 	/* avoid gc operation during block exchange */
1394 	down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1395 
1396 	down_write(&F2FS_I(inode)->i_mmap_sem);
1397 	ret = truncate_blocks(inode, i_size_read(inode), true);
1398 	if (ret)
1399 		goto out;
1400 
1401 	/* write out all dirty pages from offset */
1402 	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1403 	if (ret)
1404 		goto out;
1405 
1406 	truncate_pagecache(inode, offset);
1407 
1408 	pg_start = offset >> PAGE_SHIFT;
1409 	pg_end = (offset + len) >> PAGE_SHIFT;
1410 	delta = pg_end - pg_start;
1411 	idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1412 
1413 	while (!ret && idx > pg_start) {
1414 		nr = idx - pg_start;
1415 		if (nr > delta)
1416 			nr = delta;
1417 		idx -= nr;
1418 
1419 		f2fs_lock_op(sbi);
1420 		f2fs_drop_extent_tree(inode);
1421 
1422 		ret = __exchange_data_block(inode, inode, idx,
1423 					idx + delta, nr, false);
1424 		f2fs_unlock_op(sbi);
1425 	}
1426 
1427 	/* write out all moved pages, if possible */
1428 	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1429 	truncate_pagecache(inode, offset);
1430 
1431 	if (!ret)
1432 		f2fs_i_size_write(inode, new_size);
1433 out:
1434 	up_write(&F2FS_I(inode)->i_mmap_sem);
1435 	up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1436 	return ret;
1437 }
1438 
expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1439 static int expand_inode_data(struct inode *inode, loff_t offset,
1440 					loff_t len, int mode)
1441 {
1442 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1443 	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1444 			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE };
1445 	pgoff_t pg_end;
1446 	loff_t new_size = i_size_read(inode);
1447 	loff_t off_end;
1448 	int err;
1449 
1450 	err = inode_newsize_ok(inode, (len + offset));
1451 	if (err)
1452 		return err;
1453 
1454 	err = f2fs_convert_inline_inode(inode);
1455 	if (err)
1456 		return err;
1457 
1458 	f2fs_balance_fs(sbi, true);
1459 
1460 	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1461 	off_end = (offset + len) & (PAGE_SIZE - 1);
1462 
1463 	map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1464 	map.m_len = pg_end - map.m_lblk;
1465 	if (off_end)
1466 		map.m_len++;
1467 
1468 	err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1469 	if (err) {
1470 		pgoff_t last_off;
1471 
1472 		if (!map.m_len)
1473 			return err;
1474 
1475 		last_off = map.m_lblk + map.m_len - 1;
1476 
1477 		/* update new size to the failed position */
1478 		new_size = (last_off == pg_end) ? offset + len:
1479 					(loff_t)(last_off + 1) << PAGE_SHIFT;
1480 	} else {
1481 		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1482 	}
1483 
1484 	if (new_size > i_size_read(inode)) {
1485 		if (mode & FALLOC_FL_KEEP_SIZE)
1486 			file_set_keep_isize(inode);
1487 		else
1488 			f2fs_i_size_write(inode, new_size);
1489 	}
1490 
1491 	return err;
1492 }
1493 
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1494 static long f2fs_fallocate(struct file *file, int mode,
1495 				loff_t offset, loff_t len)
1496 {
1497 	struct inode *inode = file_inode(file);
1498 	long ret = 0;
1499 
1500 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1501 		return -EIO;
1502 
1503 	/* f2fs only support ->fallocate for regular file */
1504 	if (!S_ISREG(inode->i_mode))
1505 		return -EINVAL;
1506 
1507 	if (f2fs_encrypted_inode(inode) &&
1508 		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1509 		return -EOPNOTSUPP;
1510 
1511 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1512 			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1513 			FALLOC_FL_INSERT_RANGE))
1514 		return -EOPNOTSUPP;
1515 
1516 	inode_lock(inode);
1517 
1518 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1519 		if (offset >= inode->i_size)
1520 			goto out;
1521 
1522 		ret = punch_hole(inode, offset, len);
1523 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1524 		ret = f2fs_collapse_range(inode, offset, len);
1525 	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1526 		ret = f2fs_zero_range(inode, offset, len, mode);
1527 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1528 		ret = f2fs_insert_range(inode, offset, len);
1529 	} else {
1530 		ret = expand_inode_data(inode, offset, len, mode);
1531 	}
1532 
1533 	if (!ret) {
1534 		inode->i_mtime = inode->i_ctime = current_time(inode);
1535 		f2fs_mark_inode_dirty_sync(inode, false);
1536 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1537 	}
1538 
1539 out:
1540 	inode_unlock(inode);
1541 
1542 	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1543 	return ret;
1544 }
1545 
f2fs_release_file(struct inode * inode,struct file * filp)1546 static int f2fs_release_file(struct inode *inode, struct file *filp)
1547 {
1548 	/*
1549 	 * f2fs_relase_file is called at every close calls. So we should
1550 	 * not drop any inmemory pages by close called by other process.
1551 	 */
1552 	if (!(filp->f_mode & FMODE_WRITE) ||
1553 			atomic_read(&inode->i_writecount) != 1)
1554 		return 0;
1555 
1556 	/* some remained atomic pages should discarded */
1557 	if (f2fs_is_atomic_file(inode))
1558 		drop_inmem_pages(inode);
1559 	if (f2fs_is_volatile_file(inode)) {
1560 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1561 		stat_dec_volatile_write(inode);
1562 		set_inode_flag(inode, FI_DROP_CACHE);
1563 		filemap_fdatawrite(inode->i_mapping);
1564 		clear_inode_flag(inode, FI_DROP_CACHE);
1565 	}
1566 	return 0;
1567 }
1568 
f2fs_file_flush(struct file * file,fl_owner_t id)1569 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1570 {
1571 	struct inode *inode = file_inode(file);
1572 
1573 	/*
1574 	 * If the process doing a transaction is crashed, we should do
1575 	 * roll-back. Otherwise, other reader/write can see corrupted database
1576 	 * until all the writers close its file. Since this should be done
1577 	 * before dropping file lock, it needs to do in ->flush.
1578 	 */
1579 	if (f2fs_is_atomic_file(inode) &&
1580 			F2FS_I(inode)->inmem_task == current)
1581 		drop_inmem_pages(inode);
1582 	return 0;
1583 }
1584 
f2fs_ioc_getflags(struct file * filp,unsigned long arg)1585 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1586 {
1587 	struct inode *inode = file_inode(filp);
1588 	struct f2fs_inode_info *fi = F2FS_I(inode);
1589 	unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1590 	return put_user(flags, (int __user *)arg);
1591 }
1592 
f2fs_ioc_setflags(struct file * filp,unsigned long arg)1593 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1594 {
1595 	struct inode *inode = file_inode(filp);
1596 	struct f2fs_inode_info *fi = F2FS_I(inode);
1597 	unsigned int flags;
1598 	unsigned int oldflags;
1599 	int ret;
1600 
1601 	if (!inode_owner_or_capable(inode))
1602 		return -EACCES;
1603 
1604 	if (get_user(flags, (int __user *)arg))
1605 		return -EFAULT;
1606 
1607 	ret = mnt_want_write_file(filp);
1608 	if (ret)
1609 		return ret;
1610 
1611 	inode_lock(inode);
1612 
1613 	/* Is it quota file? Do not allow user to mess with it */
1614 	if (IS_NOQUOTA(inode)) {
1615 		ret = -EPERM;
1616 		goto unlock_out;
1617 	}
1618 
1619 	flags = f2fs_mask_flags(inode->i_mode, flags);
1620 
1621 	oldflags = fi->i_flags;
1622 
1623 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1624 		if (!capable(CAP_LINUX_IMMUTABLE)) {
1625 			ret = -EPERM;
1626 			goto unlock_out;
1627 		}
1628 	}
1629 
1630 	flags = flags & FS_FL_USER_MODIFIABLE;
1631 	flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1632 	fi->i_flags = flags;
1633 
1634 	inode->i_ctime = current_time(inode);
1635 	f2fs_set_inode_flags(inode);
1636 	f2fs_mark_inode_dirty_sync(inode, false);
1637 unlock_out:
1638 	inode_unlock(inode);
1639 	mnt_drop_write_file(filp);
1640 	return ret;
1641 }
1642 
f2fs_ioc_getversion(struct file * filp,unsigned long arg)1643 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1644 {
1645 	struct inode *inode = file_inode(filp);
1646 
1647 	return put_user(inode->i_generation, (int __user *)arg);
1648 }
1649 
f2fs_ioc_start_atomic_write(struct file * filp)1650 static int f2fs_ioc_start_atomic_write(struct file *filp)
1651 {
1652 	struct inode *inode = file_inode(filp);
1653 	int ret;
1654 
1655 	if (!inode_owner_or_capable(inode))
1656 		return -EACCES;
1657 
1658 	if (!S_ISREG(inode->i_mode))
1659 		return -EINVAL;
1660 
1661 	ret = mnt_want_write_file(filp);
1662 	if (ret)
1663 		return ret;
1664 
1665 	inode_lock(inode);
1666 
1667 	if (f2fs_is_atomic_file(inode))
1668 		goto out;
1669 
1670 	ret = f2fs_convert_inline_inode(inode);
1671 	if (ret)
1672 		goto out;
1673 
1674 	set_inode_flag(inode, FI_ATOMIC_FILE);
1675 	set_inode_flag(inode, FI_HOT_DATA);
1676 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1677 
1678 	if (!get_dirty_pages(inode))
1679 		goto inc_stat;
1680 
1681 	f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1682 		"Unexpected flush for atomic writes: ino=%lu, npages=%u",
1683 					inode->i_ino, get_dirty_pages(inode));
1684 	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1685 	if (ret) {
1686 		clear_inode_flag(inode, FI_ATOMIC_FILE);
1687 		clear_inode_flag(inode, FI_HOT_DATA);
1688 		goto out;
1689 	}
1690 
1691 inc_stat:
1692 	F2FS_I(inode)->inmem_task = current;
1693 	stat_inc_atomic_write(inode);
1694 	stat_update_max_atomic_write(inode);
1695 out:
1696 	inode_unlock(inode);
1697 	mnt_drop_write_file(filp);
1698 	return ret;
1699 }
1700 
f2fs_ioc_commit_atomic_write(struct file * filp)1701 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1702 {
1703 	struct inode *inode = file_inode(filp);
1704 	int ret;
1705 
1706 	if (!inode_owner_or_capable(inode))
1707 		return -EACCES;
1708 
1709 	ret = mnt_want_write_file(filp);
1710 	if (ret)
1711 		return ret;
1712 
1713 	inode_lock(inode);
1714 
1715 	down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1716 
1717 	if (f2fs_is_volatile_file(inode))
1718 		goto err_out;
1719 
1720 	if (f2fs_is_atomic_file(inode)) {
1721 		ret = commit_inmem_pages(inode);
1722 		if (ret)
1723 			goto err_out;
1724 
1725 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1726 		if (!ret) {
1727 			clear_inode_flag(inode, FI_ATOMIC_FILE);
1728 			clear_inode_flag(inode, FI_HOT_DATA);
1729 			stat_dec_atomic_write(inode);
1730 		}
1731 	} else {
1732 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1733 	}
1734 err_out:
1735 	up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1736 	inode_unlock(inode);
1737 	mnt_drop_write_file(filp);
1738 	return ret;
1739 }
1740 
f2fs_ioc_start_volatile_write(struct file * filp)1741 static int f2fs_ioc_start_volatile_write(struct file *filp)
1742 {
1743 	struct inode *inode = file_inode(filp);
1744 	int ret;
1745 
1746 	if (!inode_owner_or_capable(inode))
1747 		return -EACCES;
1748 
1749 	if (!S_ISREG(inode->i_mode))
1750 		return -EINVAL;
1751 
1752 	ret = mnt_want_write_file(filp);
1753 	if (ret)
1754 		return ret;
1755 
1756 	inode_lock(inode);
1757 
1758 	if (f2fs_is_volatile_file(inode))
1759 		goto out;
1760 
1761 	ret = f2fs_convert_inline_inode(inode);
1762 	if (ret)
1763 		goto out;
1764 
1765 	stat_inc_volatile_write(inode);
1766 	stat_update_max_volatile_write(inode);
1767 
1768 	set_inode_flag(inode, FI_VOLATILE_FILE);
1769 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1770 out:
1771 	inode_unlock(inode);
1772 	mnt_drop_write_file(filp);
1773 	return ret;
1774 }
1775 
f2fs_ioc_release_volatile_write(struct file * filp)1776 static int f2fs_ioc_release_volatile_write(struct file *filp)
1777 {
1778 	struct inode *inode = file_inode(filp);
1779 	int ret;
1780 
1781 	if (!inode_owner_or_capable(inode))
1782 		return -EACCES;
1783 
1784 	ret = mnt_want_write_file(filp);
1785 	if (ret)
1786 		return ret;
1787 
1788 	inode_lock(inode);
1789 
1790 	if (!f2fs_is_volatile_file(inode))
1791 		goto out;
1792 
1793 	if (!f2fs_is_first_block_written(inode)) {
1794 		ret = truncate_partial_data_page(inode, 0, true);
1795 		goto out;
1796 	}
1797 
1798 	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1799 out:
1800 	inode_unlock(inode);
1801 	mnt_drop_write_file(filp);
1802 	return ret;
1803 }
1804 
f2fs_ioc_abort_volatile_write(struct file * filp)1805 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1806 {
1807 	struct inode *inode = file_inode(filp);
1808 	int ret;
1809 
1810 	if (!inode_owner_or_capable(inode))
1811 		return -EACCES;
1812 
1813 	ret = mnt_want_write_file(filp);
1814 	if (ret)
1815 		return ret;
1816 
1817 	inode_lock(inode);
1818 
1819 	if (f2fs_is_atomic_file(inode))
1820 		drop_inmem_pages(inode);
1821 	if (f2fs_is_volatile_file(inode)) {
1822 		clear_inode_flag(inode, FI_VOLATILE_FILE);
1823 		stat_dec_volatile_write(inode);
1824 		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1825 	}
1826 
1827 	inode_unlock(inode);
1828 
1829 	mnt_drop_write_file(filp);
1830 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1831 	return ret;
1832 }
1833 
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)1834 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1835 {
1836 	struct inode *inode = file_inode(filp);
1837 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1838 	struct super_block *sb = sbi->sb;
1839 	__u32 in;
1840 	int ret;
1841 
1842 	if (!capable(CAP_SYS_ADMIN))
1843 		return -EPERM;
1844 
1845 	if (get_user(in, (__u32 __user *)arg))
1846 		return -EFAULT;
1847 
1848 	ret = mnt_want_write_file(filp);
1849 	if (ret)
1850 		return ret;
1851 
1852 	switch (in) {
1853 	case F2FS_GOING_DOWN_FULLSYNC:
1854 		sb = freeze_bdev(sb->s_bdev);
1855 		if (IS_ERR(sb)) {
1856 			ret = PTR_ERR(sb);
1857 			goto out;
1858 		}
1859 		if (sb) {
1860 			f2fs_stop_checkpoint(sbi, false);
1861 			thaw_bdev(sb->s_bdev, sb);
1862 		}
1863 		break;
1864 	case F2FS_GOING_DOWN_METASYNC:
1865 		/* do checkpoint only */
1866 		ret = f2fs_sync_fs(sb, 1);
1867 		if (ret)
1868 			goto out;
1869 		f2fs_stop_checkpoint(sbi, false);
1870 		break;
1871 	case F2FS_GOING_DOWN_NOSYNC:
1872 		f2fs_stop_checkpoint(sbi, false);
1873 		break;
1874 	case F2FS_GOING_DOWN_METAFLUSH:
1875 		sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
1876 		f2fs_stop_checkpoint(sbi, false);
1877 		break;
1878 	default:
1879 		ret = -EINVAL;
1880 		goto out;
1881 	}
1882 
1883 	stop_gc_thread(sbi);
1884 	stop_discard_thread(sbi);
1885 
1886 	drop_discard_cmd(sbi);
1887 	clear_opt(sbi, DISCARD);
1888 
1889 	f2fs_update_time(sbi, REQ_TIME);
1890 out:
1891 	mnt_drop_write_file(filp);
1892 	return ret;
1893 }
1894 
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)1895 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1896 {
1897 	struct inode *inode = file_inode(filp);
1898 	struct super_block *sb = inode->i_sb;
1899 	struct request_queue *q = bdev_get_queue(sb->s_bdev);
1900 	struct fstrim_range range;
1901 	int ret;
1902 
1903 	if (!capable(CAP_SYS_ADMIN))
1904 		return -EPERM;
1905 
1906 	if (!blk_queue_discard(q))
1907 		return -EOPNOTSUPP;
1908 
1909 	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1910 				sizeof(range)))
1911 		return -EFAULT;
1912 
1913 	ret = mnt_want_write_file(filp);
1914 	if (ret)
1915 		return ret;
1916 
1917 	range.minlen = max((unsigned int)range.minlen,
1918 				q->limits.discard_granularity);
1919 	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1920 	mnt_drop_write_file(filp);
1921 	if (ret < 0)
1922 		return ret;
1923 
1924 	if (copy_to_user((struct fstrim_range __user *)arg, &range,
1925 				sizeof(range)))
1926 		return -EFAULT;
1927 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1928 	return 0;
1929 }
1930 
uuid_is_nonzero(__u8 u[16])1931 static bool uuid_is_nonzero(__u8 u[16])
1932 {
1933 	int i;
1934 
1935 	for (i = 0; i < 16; i++)
1936 		if (u[i])
1937 			return true;
1938 	return false;
1939 }
1940 
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)1941 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1942 {
1943 	struct inode *inode = file_inode(filp);
1944 
1945 	if (!f2fs_sb_has_encrypt(inode->i_sb))
1946 		return -EOPNOTSUPP;
1947 
1948 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1949 
1950 	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1951 }
1952 
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)1953 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1954 {
1955 	if (!f2fs_sb_has_encrypt(file_inode(filp)->i_sb))
1956 		return -EOPNOTSUPP;
1957 	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1958 }
1959 
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)1960 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1961 {
1962 	struct inode *inode = file_inode(filp);
1963 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1964 	int err;
1965 
1966 	if (!f2fs_sb_has_encrypt(inode->i_sb))
1967 		return -EOPNOTSUPP;
1968 
1969 	err = mnt_want_write_file(filp);
1970 	if (err)
1971 		return err;
1972 
1973 	down_write(&sbi->sb_lock);
1974 
1975 	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1976 		goto got_it;
1977 
1978 	/* update superblock with uuid */
1979 	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1980 
1981 	err = f2fs_commit_super(sbi, false);
1982 	if (err) {
1983 		/* undo new data */
1984 		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1985 		goto out_err;
1986 	}
1987 got_it:
1988 	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1989 									16))
1990 		err = -EFAULT;
1991 out_err:
1992 	up_write(&sbi->sb_lock);
1993 	mnt_drop_write_file(filp);
1994 	return err;
1995 }
1996 
f2fs_ioc_gc(struct file * filp,unsigned long arg)1997 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1998 {
1999 	struct inode *inode = file_inode(filp);
2000 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2001 	__u32 sync;
2002 	int ret;
2003 
2004 	if (!capable(CAP_SYS_ADMIN))
2005 		return -EPERM;
2006 
2007 	if (get_user(sync, (__u32 __user *)arg))
2008 		return -EFAULT;
2009 
2010 	if (f2fs_readonly(sbi->sb))
2011 		return -EROFS;
2012 
2013 	ret = mnt_want_write_file(filp);
2014 	if (ret)
2015 		return ret;
2016 
2017 	if (!sync) {
2018 		if (!mutex_trylock(&sbi->gc_mutex)) {
2019 			ret = -EBUSY;
2020 			goto out;
2021 		}
2022 	} else {
2023 		mutex_lock(&sbi->gc_mutex);
2024 	}
2025 
2026 	ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2027 out:
2028 	mnt_drop_write_file(filp);
2029 	return ret;
2030 }
2031 
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2032 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2033 {
2034 	struct inode *inode = file_inode(filp);
2035 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2036 	struct f2fs_gc_range range;
2037 	u64 end;
2038 	int ret;
2039 
2040 	if (!capable(CAP_SYS_ADMIN))
2041 		return -EPERM;
2042 
2043 	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2044 							sizeof(range)))
2045 		return -EFAULT;
2046 
2047 	if (f2fs_readonly(sbi->sb))
2048 		return -EROFS;
2049 
2050 	ret = mnt_want_write_file(filp);
2051 	if (ret)
2052 		return ret;
2053 
2054 	end = range.start + range.len;
2055 	if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) {
2056 		ret = -EINVAL;
2057 		goto out;
2058 	}
2059 do_more:
2060 	if (!range.sync) {
2061 		if (!mutex_trylock(&sbi->gc_mutex)) {
2062 			ret = -EBUSY;
2063 			goto out;
2064 		}
2065 	} else {
2066 		mutex_lock(&sbi->gc_mutex);
2067 	}
2068 
2069 	ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2070 	range.start += sbi->blocks_per_seg;
2071 	if (range.start <= end)
2072 		goto do_more;
2073 out:
2074 	mnt_drop_write_file(filp);
2075 	return ret;
2076 }
2077 
f2fs_ioc_write_checkpoint(struct file * filp,unsigned long arg)2078 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2079 {
2080 	struct inode *inode = file_inode(filp);
2081 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2082 	int ret;
2083 
2084 	if (!capable(CAP_SYS_ADMIN))
2085 		return -EPERM;
2086 
2087 	if (f2fs_readonly(sbi->sb))
2088 		return -EROFS;
2089 
2090 	ret = mnt_want_write_file(filp);
2091 	if (ret)
2092 		return ret;
2093 
2094 	ret = f2fs_sync_fs(sbi->sb, 1);
2095 
2096 	mnt_drop_write_file(filp);
2097 	return ret;
2098 }
2099 
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2100 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2101 					struct file *filp,
2102 					struct f2fs_defragment *range)
2103 {
2104 	struct inode *inode = file_inode(filp);
2105 	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2106 					.m_seg_type = NO_CHECK_TYPE };
2107 	struct extent_info ei = {0,0,0};
2108 	pgoff_t pg_start, pg_end, next_pgofs;
2109 	unsigned int blk_per_seg = sbi->blocks_per_seg;
2110 	unsigned int total = 0, sec_num;
2111 	block_t blk_end = 0;
2112 	bool fragmented = false;
2113 	int err;
2114 
2115 	/* if in-place-update policy is enabled, don't waste time here */
2116 	if (should_update_inplace(inode, NULL))
2117 		return -EINVAL;
2118 
2119 	pg_start = range->start >> PAGE_SHIFT;
2120 	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2121 
2122 	f2fs_balance_fs(sbi, true);
2123 
2124 	inode_lock(inode);
2125 
2126 	/* writeback all dirty pages in the range */
2127 	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2128 						range->start + range->len - 1);
2129 	if (err)
2130 		goto out;
2131 
2132 	/*
2133 	 * lookup mapping info in extent cache, skip defragmenting if physical
2134 	 * block addresses are continuous.
2135 	 */
2136 	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2137 		if (ei.fofs + ei.len >= pg_end)
2138 			goto out;
2139 	}
2140 
2141 	map.m_lblk = pg_start;
2142 	map.m_next_pgofs = &next_pgofs;
2143 
2144 	/*
2145 	 * lookup mapping info in dnode page cache, skip defragmenting if all
2146 	 * physical block addresses are continuous even if there are hole(s)
2147 	 * in logical blocks.
2148 	 */
2149 	while (map.m_lblk < pg_end) {
2150 		map.m_len = pg_end - map.m_lblk;
2151 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2152 		if (err)
2153 			goto out;
2154 
2155 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2156 			map.m_lblk = next_pgofs;
2157 			continue;
2158 		}
2159 
2160 		if (blk_end && blk_end != map.m_pblk)
2161 			fragmented = true;
2162 
2163 		/* record total count of block that we're going to move */
2164 		total += map.m_len;
2165 
2166 		blk_end = map.m_pblk + map.m_len;
2167 
2168 		map.m_lblk += map.m_len;
2169 	}
2170 
2171 	if (!fragmented)
2172 		goto out;
2173 
2174 	sec_num = (total + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2175 
2176 	/*
2177 	 * make sure there are enough free section for LFS allocation, this can
2178 	 * avoid defragment running in SSR mode when free section are allocated
2179 	 * intensively
2180 	 */
2181 	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2182 		err = -EAGAIN;
2183 		goto out;
2184 	}
2185 
2186 	map.m_lblk = pg_start;
2187 	map.m_len = pg_end - pg_start;
2188 	total = 0;
2189 
2190 	while (map.m_lblk < pg_end) {
2191 		pgoff_t idx;
2192 		int cnt = 0;
2193 
2194 do_map:
2195 		map.m_len = pg_end - map.m_lblk;
2196 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2197 		if (err)
2198 			goto clear_out;
2199 
2200 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2201 			map.m_lblk = next_pgofs;
2202 			continue;
2203 		}
2204 
2205 		set_inode_flag(inode, FI_DO_DEFRAG);
2206 
2207 		idx = map.m_lblk;
2208 		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2209 			struct page *page;
2210 
2211 			page = get_lock_data_page(inode, idx, true);
2212 			if (IS_ERR(page)) {
2213 				err = PTR_ERR(page);
2214 				goto clear_out;
2215 			}
2216 
2217 			set_page_dirty(page);
2218 			f2fs_put_page(page, 1);
2219 
2220 			idx++;
2221 			cnt++;
2222 			total++;
2223 		}
2224 
2225 		map.m_lblk = idx;
2226 
2227 		if (idx < pg_end && cnt < blk_per_seg)
2228 			goto do_map;
2229 
2230 		clear_inode_flag(inode, FI_DO_DEFRAG);
2231 
2232 		err = filemap_fdatawrite(inode->i_mapping);
2233 		if (err)
2234 			goto out;
2235 	}
2236 clear_out:
2237 	clear_inode_flag(inode, FI_DO_DEFRAG);
2238 out:
2239 	inode_unlock(inode);
2240 	if (!err)
2241 		range->len = (u64)total << PAGE_SHIFT;
2242 	return err;
2243 }
2244 
f2fs_ioc_defragment(struct file * filp,unsigned long arg)2245 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2246 {
2247 	struct inode *inode = file_inode(filp);
2248 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2249 	struct f2fs_defragment range;
2250 	int err;
2251 
2252 	if (!capable(CAP_SYS_ADMIN))
2253 		return -EPERM;
2254 
2255 	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2256 		return -EINVAL;
2257 
2258 	if (f2fs_readonly(sbi->sb))
2259 		return -EROFS;
2260 
2261 	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2262 							sizeof(range)))
2263 		return -EFAULT;
2264 
2265 	/* verify alignment of offset & size */
2266 	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2267 		return -EINVAL;
2268 
2269 	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2270 					sbi->max_file_blocks))
2271 		return -EINVAL;
2272 
2273 	err = mnt_want_write_file(filp);
2274 	if (err)
2275 		return err;
2276 
2277 	err = f2fs_defragment_range(sbi, filp, &range);
2278 	mnt_drop_write_file(filp);
2279 
2280 	f2fs_update_time(sbi, REQ_TIME);
2281 	if (err < 0)
2282 		return err;
2283 
2284 	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2285 							sizeof(range)))
2286 		return -EFAULT;
2287 
2288 	return 0;
2289 }
2290 
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)2291 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2292 			struct file *file_out, loff_t pos_out, size_t len)
2293 {
2294 	struct inode *src = file_inode(file_in);
2295 	struct inode *dst = file_inode(file_out);
2296 	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2297 	size_t olen = len, dst_max_i_size = 0;
2298 	size_t dst_osize;
2299 	int ret;
2300 
2301 	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2302 				src->i_sb != dst->i_sb)
2303 		return -EXDEV;
2304 
2305 	if (unlikely(f2fs_readonly(src->i_sb)))
2306 		return -EROFS;
2307 
2308 	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2309 		return -EINVAL;
2310 
2311 	if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2312 		return -EOPNOTSUPP;
2313 
2314 	if (src == dst) {
2315 		if (pos_in == pos_out)
2316 			return 0;
2317 		if (pos_out > pos_in && pos_out < pos_in + len)
2318 			return -EINVAL;
2319 	}
2320 
2321 	inode_lock(src);
2322 	down_write(&F2FS_I(src)->dio_rwsem[WRITE]);
2323 	if (src != dst) {
2324 		ret = -EBUSY;
2325 		if (!inode_trylock(dst))
2326 			goto out;
2327 		if (!down_write_trylock(&F2FS_I(dst)->dio_rwsem[WRITE])) {
2328 			inode_unlock(dst);
2329 			goto out;
2330 		}
2331 	}
2332 
2333 	ret = -EINVAL;
2334 	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2335 		goto out_unlock;
2336 	if (len == 0)
2337 		olen = len = src->i_size - pos_in;
2338 	if (pos_in + len == src->i_size)
2339 		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2340 	if (len == 0) {
2341 		ret = 0;
2342 		goto out_unlock;
2343 	}
2344 
2345 	dst_osize = dst->i_size;
2346 	if (pos_out + olen > dst->i_size)
2347 		dst_max_i_size = pos_out + olen;
2348 
2349 	/* verify the end result is block aligned */
2350 	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2351 			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2352 			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2353 		goto out_unlock;
2354 
2355 	ret = f2fs_convert_inline_inode(src);
2356 	if (ret)
2357 		goto out_unlock;
2358 
2359 	ret = f2fs_convert_inline_inode(dst);
2360 	if (ret)
2361 		goto out_unlock;
2362 
2363 	/* write out all dirty pages from offset */
2364 	ret = filemap_write_and_wait_range(src->i_mapping,
2365 					pos_in, pos_in + len);
2366 	if (ret)
2367 		goto out_unlock;
2368 
2369 	ret = filemap_write_and_wait_range(dst->i_mapping,
2370 					pos_out, pos_out + len);
2371 	if (ret)
2372 		goto out_unlock;
2373 
2374 	f2fs_balance_fs(sbi, true);
2375 	f2fs_lock_op(sbi);
2376 	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2377 				pos_out >> F2FS_BLKSIZE_BITS,
2378 				len >> F2FS_BLKSIZE_BITS, false);
2379 
2380 	if (!ret) {
2381 		if (dst_max_i_size)
2382 			f2fs_i_size_write(dst, dst_max_i_size);
2383 		else if (dst_osize != dst->i_size)
2384 			f2fs_i_size_write(dst, dst_osize);
2385 	}
2386 	f2fs_unlock_op(sbi);
2387 out_unlock:
2388 	if (src != dst) {
2389 		up_write(&F2FS_I(dst)->dio_rwsem[WRITE]);
2390 		inode_unlock(dst);
2391 	}
2392 out:
2393 	up_write(&F2FS_I(src)->dio_rwsem[WRITE]);
2394 	inode_unlock(src);
2395 	return ret;
2396 }
2397 
f2fs_ioc_move_range(struct file * filp,unsigned long arg)2398 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2399 {
2400 	struct f2fs_move_range range;
2401 	struct fd dst;
2402 	int err;
2403 
2404 	if (!(filp->f_mode & FMODE_READ) ||
2405 			!(filp->f_mode & FMODE_WRITE))
2406 		return -EBADF;
2407 
2408 	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2409 							sizeof(range)))
2410 		return -EFAULT;
2411 
2412 	dst = fdget(range.dst_fd);
2413 	if (!dst.file)
2414 		return -EBADF;
2415 
2416 	if (!(dst.file->f_mode & FMODE_WRITE)) {
2417 		err = -EBADF;
2418 		goto err_out;
2419 	}
2420 
2421 	err = mnt_want_write_file(filp);
2422 	if (err)
2423 		goto err_out;
2424 
2425 	err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2426 					range.pos_out, range.len);
2427 
2428 	mnt_drop_write_file(filp);
2429 	if (err)
2430 		goto err_out;
2431 
2432 	if (copy_to_user((struct f2fs_move_range __user *)arg,
2433 						&range, sizeof(range)))
2434 		err = -EFAULT;
2435 err_out:
2436 	fdput(dst);
2437 	return err;
2438 }
2439 
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)2440 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2441 {
2442 	struct inode *inode = file_inode(filp);
2443 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2444 	struct sit_info *sm = SIT_I(sbi);
2445 	unsigned int start_segno = 0, end_segno = 0;
2446 	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2447 	struct f2fs_flush_device range;
2448 	int ret;
2449 
2450 	if (!capable(CAP_SYS_ADMIN))
2451 		return -EPERM;
2452 
2453 	if (f2fs_readonly(sbi->sb))
2454 		return -EROFS;
2455 
2456 	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2457 							sizeof(range)))
2458 		return -EFAULT;
2459 
2460 	if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
2461 			sbi->segs_per_sec != 1) {
2462 		f2fs_msg(sbi->sb, KERN_WARNING,
2463 			"Can't flush %u in %d for segs_per_sec %u != 1\n",
2464 				range.dev_num, sbi->s_ndevs,
2465 				sbi->segs_per_sec);
2466 		return -EINVAL;
2467 	}
2468 
2469 	ret = mnt_want_write_file(filp);
2470 	if (ret)
2471 		return ret;
2472 
2473 	if (range.dev_num != 0)
2474 		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2475 	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2476 
2477 	start_segno = sm->last_victim[FLUSH_DEVICE];
2478 	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2479 		start_segno = dev_start_segno;
2480 	end_segno = min(start_segno + range.segments, dev_end_segno);
2481 
2482 	while (start_segno < end_segno) {
2483 		if (!mutex_trylock(&sbi->gc_mutex)) {
2484 			ret = -EBUSY;
2485 			goto out;
2486 		}
2487 		sm->last_victim[GC_CB] = end_segno + 1;
2488 		sm->last_victim[GC_GREEDY] = end_segno + 1;
2489 		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2490 		ret = f2fs_gc(sbi, true, true, start_segno);
2491 		if (ret == -EAGAIN)
2492 			ret = 0;
2493 		else if (ret < 0)
2494 			break;
2495 		start_segno++;
2496 	}
2497 out:
2498 	mnt_drop_write_file(filp);
2499 	return ret;
2500 }
2501 
f2fs_ioc_get_features(struct file * filp,unsigned long arg)2502 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2503 {
2504 	struct inode *inode = file_inode(filp);
2505 	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2506 
2507 	/* Must validate to set it with SQLite behavior in Android. */
2508 	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2509 
2510 	return put_user(sb_feature, (u32 __user *)arg);
2511 }
2512 
f2fs_pin_file_control(struct inode * inode,bool inc)2513 int f2fs_pin_file_control(struct inode *inode, bool inc)
2514 {
2515 	struct f2fs_inode_info *fi = F2FS_I(inode);
2516 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2517 
2518 	/* Use i_gc_failures for normal file as a risk signal. */
2519 	if (inc)
2520 		f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
2521 
2522 	if (fi->i_gc_failures > sbi->gc_pin_file_threshold) {
2523 		f2fs_msg(sbi->sb, KERN_WARNING,
2524 			"%s: Enable GC = ino %lx after %x GC trials\n",
2525 			__func__, inode->i_ino, fi->i_gc_failures);
2526 		clear_inode_flag(inode, FI_PIN_FILE);
2527 		return -EAGAIN;
2528 	}
2529 	return 0;
2530 }
2531 
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)2532 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
2533 {
2534 	struct inode *inode = file_inode(filp);
2535 	__u32 pin;
2536 	int ret = 0;
2537 
2538 	if (!inode_owner_or_capable(inode))
2539 		return -EACCES;
2540 
2541 	if (get_user(pin, (__u32 __user *)arg))
2542 		return -EFAULT;
2543 
2544 	if (!S_ISREG(inode->i_mode))
2545 		return -EINVAL;
2546 
2547 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
2548 		return -EROFS;
2549 
2550 	ret = mnt_want_write_file(filp);
2551 	if (ret)
2552 		return ret;
2553 
2554 	inode_lock(inode);
2555 
2556 	if (should_update_outplace(inode, NULL)) {
2557 		ret = -EINVAL;
2558 		goto out;
2559 	}
2560 
2561 	if (!pin) {
2562 		clear_inode_flag(inode, FI_PIN_FILE);
2563 		F2FS_I(inode)->i_gc_failures = 1;
2564 		goto done;
2565 	}
2566 
2567 	if (f2fs_pin_file_control(inode, false)) {
2568 		ret = -EAGAIN;
2569 		goto out;
2570 	}
2571 	ret = f2fs_convert_inline_inode(inode);
2572 	if (ret)
2573 		goto out;
2574 
2575 	set_inode_flag(inode, FI_PIN_FILE);
2576 	ret = F2FS_I(inode)->i_gc_failures;
2577 done:
2578 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2579 out:
2580 	inode_unlock(inode);
2581 	mnt_drop_write_file(filp);
2582 	return ret;
2583 }
2584 
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)2585 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
2586 {
2587 	struct inode *inode = file_inode(filp);
2588 	__u32 pin = 0;
2589 
2590 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2591 		pin = F2FS_I(inode)->i_gc_failures;
2592 	return put_user(pin, (u32 __user *)arg);
2593 }
2594 
f2fs_precache_extents(struct inode * inode)2595 int f2fs_precache_extents(struct inode *inode)
2596 {
2597 	struct f2fs_inode_info *fi = F2FS_I(inode);
2598 	struct f2fs_map_blocks map;
2599 	pgoff_t m_next_extent;
2600 	loff_t end;
2601 	int err;
2602 
2603 	if (is_inode_flag_set(inode, FI_NO_EXTENT))
2604 		return -EOPNOTSUPP;
2605 
2606 	map.m_lblk = 0;
2607 	map.m_next_pgofs = NULL;
2608 	map.m_next_extent = &m_next_extent;
2609 	map.m_seg_type = NO_CHECK_TYPE;
2610 	end = F2FS_I_SB(inode)->max_file_blocks;
2611 
2612 	while (map.m_lblk < end) {
2613 		map.m_len = end - map.m_lblk;
2614 
2615 		down_write(&fi->dio_rwsem[WRITE]);
2616 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
2617 		up_write(&fi->dio_rwsem[WRITE]);
2618 		if (err)
2619 			return err;
2620 
2621 		map.m_lblk = m_next_extent;
2622 	}
2623 
2624 	return err;
2625 }
2626 
f2fs_ioc_precache_extents(struct file * filp,unsigned long arg)2627 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
2628 {
2629 	return f2fs_precache_extents(file_inode(filp));
2630 }
2631 
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2632 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2633 {
2634 	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
2635 		return -EIO;
2636 
2637 	switch (cmd) {
2638 	case F2FS_IOC_GETFLAGS:
2639 		return f2fs_ioc_getflags(filp, arg);
2640 	case F2FS_IOC_SETFLAGS:
2641 		return f2fs_ioc_setflags(filp, arg);
2642 	case F2FS_IOC_GETVERSION:
2643 		return f2fs_ioc_getversion(filp, arg);
2644 	case F2FS_IOC_START_ATOMIC_WRITE:
2645 		return f2fs_ioc_start_atomic_write(filp);
2646 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2647 		return f2fs_ioc_commit_atomic_write(filp);
2648 	case F2FS_IOC_START_VOLATILE_WRITE:
2649 		return f2fs_ioc_start_volatile_write(filp);
2650 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2651 		return f2fs_ioc_release_volatile_write(filp);
2652 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2653 		return f2fs_ioc_abort_volatile_write(filp);
2654 	case F2FS_IOC_SHUTDOWN:
2655 		return f2fs_ioc_shutdown(filp, arg);
2656 	case FITRIM:
2657 		return f2fs_ioc_fitrim(filp, arg);
2658 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2659 		return f2fs_ioc_set_encryption_policy(filp, arg);
2660 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2661 		return f2fs_ioc_get_encryption_policy(filp, arg);
2662 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2663 		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2664 	case F2FS_IOC_GARBAGE_COLLECT:
2665 		return f2fs_ioc_gc(filp, arg);
2666 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2667 		return f2fs_ioc_gc_range(filp, arg);
2668 	case F2FS_IOC_WRITE_CHECKPOINT:
2669 		return f2fs_ioc_write_checkpoint(filp, arg);
2670 	case F2FS_IOC_DEFRAGMENT:
2671 		return f2fs_ioc_defragment(filp, arg);
2672 	case F2FS_IOC_MOVE_RANGE:
2673 		return f2fs_ioc_move_range(filp, arg);
2674 	case F2FS_IOC_FLUSH_DEVICE:
2675 		return f2fs_ioc_flush_device(filp, arg);
2676 	case F2FS_IOC_GET_FEATURES:
2677 		return f2fs_ioc_get_features(filp, arg);
2678 	case F2FS_IOC_GET_PIN_FILE:
2679 		return f2fs_ioc_get_pin_file(filp, arg);
2680 	case F2FS_IOC_SET_PIN_FILE:
2681 		return f2fs_ioc_set_pin_file(filp, arg);
2682 	case F2FS_IOC_PRECACHE_EXTENTS:
2683 		return f2fs_ioc_precache_extents(filp, arg);
2684 	default:
2685 		return -ENOTTY;
2686 	}
2687 }
2688 
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2689 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2690 {
2691 	struct file *file = iocb->ki_filp;
2692 	struct inode *inode = file_inode(file);
2693 	struct blk_plug plug;
2694 	ssize_t ret;
2695 
2696 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2697 		return -EIO;
2698 
2699 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2700 		return -EINVAL;
2701 
2702 	if (!inode_trylock(inode)) {
2703 		if (iocb->ki_flags & IOCB_NOWAIT)
2704 			return -EAGAIN;
2705 		inode_lock(inode);
2706 	}
2707 
2708 	ret = generic_write_checks(iocb, from);
2709 	if (ret > 0) {
2710 		bool preallocated = false;
2711 		size_t target_size = 0;
2712 		int err;
2713 
2714 		if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2715 			set_inode_flag(inode, FI_NO_PREALLOC);
2716 
2717 		if ((iocb->ki_flags & IOCB_NOWAIT) &&
2718 			(iocb->ki_flags & IOCB_DIRECT)) {
2719 				if (!f2fs_overwrite_io(inode, iocb->ki_pos,
2720 						iov_iter_count(from)) ||
2721 					f2fs_has_inline_data(inode) ||
2722 					f2fs_force_buffered_io(inode, WRITE)) {
2723 						inode_unlock(inode);
2724 						return -EAGAIN;
2725 				}
2726 
2727 		} else {
2728 			preallocated = true;
2729 			target_size = iocb->ki_pos + iov_iter_count(from);
2730 
2731 			err = f2fs_preallocate_blocks(iocb, from);
2732 			if (err) {
2733 				clear_inode_flag(inode, FI_NO_PREALLOC);
2734 				inode_unlock(inode);
2735 				return err;
2736 			}
2737 		}
2738 		blk_start_plug(&plug);
2739 		ret = __generic_file_write_iter(iocb, from);
2740 		blk_finish_plug(&plug);
2741 		clear_inode_flag(inode, FI_NO_PREALLOC);
2742 
2743 		/* if we couldn't write data, we should deallocate blocks. */
2744 		if (preallocated && i_size_read(inode) < target_size)
2745 			f2fs_truncate(inode);
2746 
2747 		if (ret > 0)
2748 			f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
2749 	}
2750 	inode_unlock(inode);
2751 
2752 	if (ret > 0)
2753 		ret = generic_write_sync(iocb, ret);
2754 	return ret;
2755 }
2756 
2757 #ifdef CONFIG_COMPAT
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2758 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2759 {
2760 	switch (cmd) {
2761 	case F2FS_IOC32_GETFLAGS:
2762 		cmd = F2FS_IOC_GETFLAGS;
2763 		break;
2764 	case F2FS_IOC32_SETFLAGS:
2765 		cmd = F2FS_IOC_SETFLAGS;
2766 		break;
2767 	case F2FS_IOC32_GETVERSION:
2768 		cmd = F2FS_IOC_GETVERSION;
2769 		break;
2770 	case F2FS_IOC_START_ATOMIC_WRITE:
2771 	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2772 	case F2FS_IOC_START_VOLATILE_WRITE:
2773 	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2774 	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2775 	case F2FS_IOC_SHUTDOWN:
2776 	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2777 	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2778 	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2779 	case F2FS_IOC_GARBAGE_COLLECT:
2780 	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2781 	case F2FS_IOC_WRITE_CHECKPOINT:
2782 	case F2FS_IOC_DEFRAGMENT:
2783 	case F2FS_IOC_MOVE_RANGE:
2784 	case F2FS_IOC_FLUSH_DEVICE:
2785 	case F2FS_IOC_GET_FEATURES:
2786 	case F2FS_IOC_GET_PIN_FILE:
2787 	case F2FS_IOC_SET_PIN_FILE:
2788 	case F2FS_IOC_PRECACHE_EXTENTS:
2789 		break;
2790 	default:
2791 		return -ENOIOCTLCMD;
2792 	}
2793 	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2794 }
2795 #endif
2796 
2797 const struct file_operations f2fs_file_operations = {
2798 	.llseek		= f2fs_llseek,
2799 	.read_iter	= generic_file_read_iter,
2800 	.write_iter	= f2fs_file_write_iter,
2801 	.open		= f2fs_file_open,
2802 	.release	= f2fs_release_file,
2803 	.mmap		= f2fs_file_mmap,
2804 	.flush		= f2fs_file_flush,
2805 	.fsync		= f2fs_sync_file,
2806 	.fallocate	= f2fs_fallocate,
2807 	.unlocked_ioctl	= f2fs_ioctl,
2808 #ifdef CONFIG_COMPAT
2809 	.compat_ioctl	= f2fs_compat_ioctl,
2810 #endif
2811 	.splice_read	= generic_file_splice_read,
2812 	.splice_write	= iter_file_splice_write,
2813 };
2814