• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/export.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14 #include <linux/static_key.h>
15 
16 #include <asm/hpet.h>
17 #include <asm/timer.h>
18 #include <asm/vgtod.h>
19 #include <asm/time.h>
20 #include <asm/delay.h>
21 #include <asm/hypervisor.h>
22 #include <asm/nmi.h>
23 #include <asm/x86_init.h>
24 #include <asm/geode.h>
25 #include <asm/apic.h>
26 #include <asm/intel-family.h>
27 
28 unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
29 EXPORT_SYMBOL(cpu_khz);
30 
31 unsigned int __read_mostly tsc_khz;
32 EXPORT_SYMBOL(tsc_khz);
33 
34 /*
35  * TSC can be unstable due to cpufreq or due to unsynced TSCs
36  */
37 static int __read_mostly tsc_unstable;
38 
39 /* native_sched_clock() is called before tsc_init(), so
40    we must start with the TSC soft disabled to prevent
41    erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
42 static int __read_mostly tsc_disabled = -1;
43 
44 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
45 
46 int tsc_clocksource_reliable;
47 
48 static u32 art_to_tsc_numerator;
49 static u32 art_to_tsc_denominator;
50 static u64 art_to_tsc_offset;
51 struct clocksource *art_related_clocksource;
52 
53 /*
54  * Use a ring-buffer like data structure, where a writer advances the head by
55  * writing a new data entry and a reader advances the tail when it observes a
56  * new entry.
57  *
58  * Writers are made to wait on readers until there's space to write a new
59  * entry.
60  *
61  * This means that we can always use an {offset, mul} pair to compute a ns
62  * value that is 'roughly' in the right direction, even if we're writing a new
63  * {offset, mul} pair during the clock read.
64  *
65  * The down-side is that we can no longer guarantee strict monotonicity anymore
66  * (assuming the TSC was that to begin with), because while we compute the
67  * intersection point of the two clock slopes and make sure the time is
68  * continuous at the point of switching; we can no longer guarantee a reader is
69  * strictly before or after the switch point.
70  *
71  * It does mean a reader no longer needs to disable IRQs in order to avoid
72  * CPU-Freq updates messing with his times, and similarly an NMI reader will
73  * no longer run the risk of hitting half-written state.
74  */
75 
76 struct cyc2ns {
77 	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
78 	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
79 	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
80 }; /* exactly fits one cacheline */
81 
82 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
83 
cyc2ns_read_begin(void)84 struct cyc2ns_data *cyc2ns_read_begin(void)
85 {
86 	struct cyc2ns_data *head;
87 
88 	preempt_disable();
89 
90 	head = this_cpu_read(cyc2ns.head);
91 	/*
92 	 * Ensure we observe the entry when we observe the pointer to it.
93 	 * matches the wmb from cyc2ns_write_end().
94 	 */
95 	smp_read_barrier_depends();
96 	head->__count++;
97 	barrier();
98 
99 	return head;
100 }
101 
cyc2ns_read_end(struct cyc2ns_data * head)102 void cyc2ns_read_end(struct cyc2ns_data *head)
103 {
104 	barrier();
105 	/*
106 	 * If we're the outer most nested read; update the tail pointer
107 	 * when we're done. This notifies possible pending writers
108 	 * that we've observed the head pointer and that the other
109 	 * entry is now free.
110 	 */
111 	if (!--head->__count) {
112 		/*
113 		 * x86-TSO does not reorder writes with older reads;
114 		 * therefore once this write becomes visible to another
115 		 * cpu, we must be finished reading the cyc2ns_data.
116 		 *
117 		 * matches with cyc2ns_write_begin().
118 		 */
119 		this_cpu_write(cyc2ns.tail, head);
120 	}
121 	preempt_enable();
122 }
123 
124 /*
125  * Begin writing a new @data entry for @cpu.
126  *
127  * Assumes some sort of write side lock; currently 'provided' by the assumption
128  * that cpufreq will call its notifiers sequentially.
129  */
cyc2ns_write_begin(int cpu)130 static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
131 {
132 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
133 	struct cyc2ns_data *data = c2n->data;
134 
135 	if (data == c2n->head)
136 		data++;
137 
138 	/* XXX send an IPI to @cpu in order to guarantee a read? */
139 
140 	/*
141 	 * When we observe the tail write from cyc2ns_read_end(),
142 	 * the cpu must be done with that entry and its safe
143 	 * to start writing to it.
144 	 */
145 	while (c2n->tail == data)
146 		cpu_relax();
147 
148 	return data;
149 }
150 
cyc2ns_write_end(int cpu,struct cyc2ns_data * data)151 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
152 {
153 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
154 
155 	/*
156 	 * Ensure the @data writes are visible before we publish the
157 	 * entry. Matches the data-depencency in cyc2ns_read_begin().
158 	 */
159 	smp_wmb();
160 
161 	ACCESS_ONCE(c2n->head) = data;
162 }
163 
164 /*
165  * Accelerators for sched_clock()
166  * convert from cycles(64bits) => nanoseconds (64bits)
167  *  basic equation:
168  *              ns = cycles / (freq / ns_per_sec)
169  *              ns = cycles * (ns_per_sec / freq)
170  *              ns = cycles * (10^9 / (cpu_khz * 10^3))
171  *              ns = cycles * (10^6 / cpu_khz)
172  *
173  *      Then we use scaling math (suggested by george@mvista.com) to get:
174  *              ns = cycles * (10^6 * SC / cpu_khz) / SC
175  *              ns = cycles * cyc2ns_scale / SC
176  *
177  *      And since SC is a constant power of two, we can convert the div
178  *  into a shift. The larger SC is, the more accurate the conversion, but
179  *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
180  *  (64-bit result) can be used.
181  *
182  *  We can use khz divisor instead of mhz to keep a better precision.
183  *  (mathieu.desnoyers@polymtl.ca)
184  *
185  *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
186  */
187 
cyc2ns_data_init(struct cyc2ns_data * data)188 static void cyc2ns_data_init(struct cyc2ns_data *data)
189 {
190 	data->cyc2ns_mul = 0;
191 	data->cyc2ns_shift = 0;
192 	data->cyc2ns_offset = 0;
193 	data->__count = 0;
194 }
195 
cyc2ns_init(int cpu)196 static void cyc2ns_init(int cpu)
197 {
198 	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
199 
200 	cyc2ns_data_init(&c2n->data[0]);
201 	cyc2ns_data_init(&c2n->data[1]);
202 
203 	c2n->head = c2n->data;
204 	c2n->tail = c2n->data;
205 }
206 
cycles_2_ns(unsigned long long cyc)207 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
208 {
209 	struct cyc2ns_data *data, *tail;
210 	unsigned long long ns;
211 
212 	/*
213 	 * See cyc2ns_read_*() for details; replicated in order to avoid
214 	 * an extra few instructions that came with the abstraction.
215 	 * Notable, it allows us to only do the __count and tail update
216 	 * dance when its actually needed.
217 	 */
218 
219 	preempt_disable_notrace();
220 	data = this_cpu_read(cyc2ns.head);
221 	tail = this_cpu_read(cyc2ns.tail);
222 
223 	if (likely(data == tail)) {
224 		ns = data->cyc2ns_offset;
225 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
226 	} else {
227 		data->__count++;
228 
229 		barrier();
230 
231 		ns = data->cyc2ns_offset;
232 		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
233 
234 		barrier();
235 
236 		if (!--data->__count)
237 			this_cpu_write(cyc2ns.tail, data);
238 	}
239 	preempt_enable_notrace();
240 
241 	return ns;
242 }
243 
set_cyc2ns_scale(unsigned long khz,int cpu)244 static void set_cyc2ns_scale(unsigned long khz, int cpu)
245 {
246 	unsigned long long tsc_now, ns_now;
247 	struct cyc2ns_data *data;
248 	unsigned long flags;
249 
250 	local_irq_save(flags);
251 	sched_clock_idle_sleep_event();
252 
253 	if (!khz)
254 		goto done;
255 
256 	data = cyc2ns_write_begin(cpu);
257 
258 	tsc_now = rdtsc();
259 	ns_now = cycles_2_ns(tsc_now);
260 
261 	/*
262 	 * Compute a new multiplier as per the above comment and ensure our
263 	 * time function is continuous; see the comment near struct
264 	 * cyc2ns_data.
265 	 */
266 	clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
267 			       NSEC_PER_MSEC, 0);
268 
269 	/*
270 	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
271 	 * not expected to be greater than 31 due to the original published
272 	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
273 	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
274 	 */
275 	if (data->cyc2ns_shift == 32) {
276 		data->cyc2ns_shift = 31;
277 		data->cyc2ns_mul >>= 1;
278 	}
279 
280 	data->cyc2ns_offset = ns_now -
281 		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
282 
283 	cyc2ns_write_end(cpu, data);
284 
285 done:
286 	sched_clock_idle_wakeup_event(0);
287 	local_irq_restore(flags);
288 }
289 /*
290  * Scheduler clock - returns current time in nanosec units.
291  */
native_sched_clock(void)292 u64 native_sched_clock(void)
293 {
294 	if (static_branch_likely(&__use_tsc)) {
295 		u64 tsc_now = rdtsc();
296 
297 		/* return the value in ns */
298 		return cycles_2_ns(tsc_now);
299 	}
300 
301 	/*
302 	 * Fall back to jiffies if there's no TSC available:
303 	 * ( But note that we still use it if the TSC is marked
304 	 *   unstable. We do this because unlike Time Of Day,
305 	 *   the scheduler clock tolerates small errors and it's
306 	 *   very important for it to be as fast as the platform
307 	 *   can achieve it. )
308 	 */
309 
310 	/* No locking but a rare wrong value is not a big deal: */
311 	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
312 }
313 
314 /*
315  * Generate a sched_clock if you already have a TSC value.
316  */
native_sched_clock_from_tsc(u64 tsc)317 u64 native_sched_clock_from_tsc(u64 tsc)
318 {
319 	return cycles_2_ns(tsc);
320 }
321 
322 /* We need to define a real function for sched_clock, to override the
323    weak default version */
324 #ifdef CONFIG_PARAVIRT
sched_clock(void)325 unsigned long long sched_clock(void)
326 {
327 	return paravirt_sched_clock();
328 }
329 #else
330 unsigned long long
331 sched_clock(void) __attribute__((alias("native_sched_clock")));
332 #endif
333 
check_tsc_unstable(void)334 int check_tsc_unstable(void)
335 {
336 	return tsc_unstable;
337 }
338 EXPORT_SYMBOL_GPL(check_tsc_unstable);
339 
340 #ifdef CONFIG_X86_TSC
notsc_setup(char * str)341 int __init notsc_setup(char *str)
342 {
343 	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
344 	tsc_disabled = 1;
345 	return 1;
346 }
347 #else
348 /*
349  * disable flag for tsc. Takes effect by clearing the TSC cpu flag
350  * in cpu/common.c
351  */
notsc_setup(char * str)352 int __init notsc_setup(char *str)
353 {
354 	setup_clear_cpu_cap(X86_FEATURE_TSC);
355 	return 1;
356 }
357 #endif
358 
359 __setup("notsc", notsc_setup);
360 
361 static int no_sched_irq_time;
362 
tsc_setup(char * str)363 static int __init tsc_setup(char *str)
364 {
365 	if (!strcmp(str, "reliable"))
366 		tsc_clocksource_reliable = 1;
367 	if (!strncmp(str, "noirqtime", 9))
368 		no_sched_irq_time = 1;
369 	if (!strcmp(str, "unstable"))
370 		mark_tsc_unstable("boot parameter");
371 	return 1;
372 }
373 
374 __setup("tsc=", tsc_setup);
375 
376 #define MAX_RETRIES     5
377 #define SMI_TRESHOLD    50000
378 
379 /*
380  * Read TSC and the reference counters. Take care of SMI disturbance
381  */
tsc_read_refs(u64 * p,int hpet)382 static u64 tsc_read_refs(u64 *p, int hpet)
383 {
384 	u64 t1, t2;
385 	int i;
386 
387 	for (i = 0; i < MAX_RETRIES; i++) {
388 		t1 = get_cycles();
389 		if (hpet)
390 			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
391 		else
392 			*p = acpi_pm_read_early();
393 		t2 = get_cycles();
394 		if ((t2 - t1) < SMI_TRESHOLD)
395 			return t2;
396 	}
397 	return ULLONG_MAX;
398 }
399 
400 /*
401  * Calculate the TSC frequency from HPET reference
402  */
calc_hpet_ref(u64 deltatsc,u64 hpet1,u64 hpet2)403 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
404 {
405 	u64 tmp;
406 
407 	if (hpet2 < hpet1)
408 		hpet2 += 0x100000000ULL;
409 	hpet2 -= hpet1;
410 	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
411 	do_div(tmp, 1000000);
412 	deltatsc = div64_u64(deltatsc, tmp);
413 
414 	return (unsigned long) deltatsc;
415 }
416 
417 /*
418  * Calculate the TSC frequency from PMTimer reference
419  */
calc_pmtimer_ref(u64 deltatsc,u64 pm1,u64 pm2)420 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
421 {
422 	u64 tmp;
423 
424 	if (!pm1 && !pm2)
425 		return ULONG_MAX;
426 
427 	if (pm2 < pm1)
428 		pm2 += (u64)ACPI_PM_OVRRUN;
429 	pm2 -= pm1;
430 	tmp = pm2 * 1000000000LL;
431 	do_div(tmp, PMTMR_TICKS_PER_SEC);
432 	do_div(deltatsc, tmp);
433 
434 	return (unsigned long) deltatsc;
435 }
436 
437 #define CAL_MS		10
438 #define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
439 #define CAL_PIT_LOOPS	1000
440 
441 #define CAL2_MS		50
442 #define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
443 #define CAL2_PIT_LOOPS	5000
444 
445 
446 /*
447  * Try to calibrate the TSC against the Programmable
448  * Interrupt Timer and return the frequency of the TSC
449  * in kHz.
450  *
451  * Return ULONG_MAX on failure to calibrate.
452  */
pit_calibrate_tsc(u32 latch,unsigned long ms,int loopmin)453 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
454 {
455 	u64 tsc, t1, t2, delta;
456 	unsigned long tscmin, tscmax;
457 	int pitcnt;
458 
459 	/* Set the Gate high, disable speaker */
460 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
461 
462 	/*
463 	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
464 	 * count mode), binary count. Set the latch register to 50ms
465 	 * (LSB then MSB) to begin countdown.
466 	 */
467 	outb(0xb0, 0x43);
468 	outb(latch & 0xff, 0x42);
469 	outb(latch >> 8, 0x42);
470 
471 	tsc = t1 = t2 = get_cycles();
472 
473 	pitcnt = 0;
474 	tscmax = 0;
475 	tscmin = ULONG_MAX;
476 	while ((inb(0x61) & 0x20) == 0) {
477 		t2 = get_cycles();
478 		delta = t2 - tsc;
479 		tsc = t2;
480 		if ((unsigned long) delta < tscmin)
481 			tscmin = (unsigned int) delta;
482 		if ((unsigned long) delta > tscmax)
483 			tscmax = (unsigned int) delta;
484 		pitcnt++;
485 	}
486 
487 	/*
488 	 * Sanity checks:
489 	 *
490 	 * If we were not able to read the PIT more than loopmin
491 	 * times, then we have been hit by a massive SMI
492 	 *
493 	 * If the maximum is 10 times larger than the minimum,
494 	 * then we got hit by an SMI as well.
495 	 */
496 	if (pitcnt < loopmin || tscmax > 10 * tscmin)
497 		return ULONG_MAX;
498 
499 	/* Calculate the PIT value */
500 	delta = t2 - t1;
501 	do_div(delta, ms);
502 	return delta;
503 }
504 
505 /*
506  * This reads the current MSB of the PIT counter, and
507  * checks if we are running on sufficiently fast and
508  * non-virtualized hardware.
509  *
510  * Our expectations are:
511  *
512  *  - the PIT is running at roughly 1.19MHz
513  *
514  *  - each IO is going to take about 1us on real hardware,
515  *    but we allow it to be much faster (by a factor of 10) or
516  *    _slightly_ slower (ie we allow up to a 2us read+counter
517  *    update - anything else implies a unacceptably slow CPU
518  *    or PIT for the fast calibration to work.
519  *
520  *  - with 256 PIT ticks to read the value, we have 214us to
521  *    see the same MSB (and overhead like doing a single TSC
522  *    read per MSB value etc).
523  *
524  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
525  *    them each to take about a microsecond on real hardware.
526  *    So we expect a count value of around 100. But we'll be
527  *    generous, and accept anything over 50.
528  *
529  *  - if the PIT is stuck, and we see *many* more reads, we
530  *    return early (and the next caller of pit_expect_msb()
531  *    then consider it a failure when they don't see the
532  *    next expected value).
533  *
534  * These expectations mean that we know that we have seen the
535  * transition from one expected value to another with a fairly
536  * high accuracy, and we didn't miss any events. We can thus
537  * use the TSC value at the transitions to calculate a pretty
538  * good value for the TSC frequencty.
539  */
pit_verify_msb(unsigned char val)540 static inline int pit_verify_msb(unsigned char val)
541 {
542 	/* Ignore LSB */
543 	inb(0x42);
544 	return inb(0x42) == val;
545 }
546 
pit_expect_msb(unsigned char val,u64 * tscp,unsigned long * deltap)547 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
548 {
549 	int count;
550 	u64 tsc = 0, prev_tsc = 0;
551 
552 	for (count = 0; count < 50000; count++) {
553 		if (!pit_verify_msb(val))
554 			break;
555 		prev_tsc = tsc;
556 		tsc = get_cycles();
557 	}
558 	*deltap = get_cycles() - prev_tsc;
559 	*tscp = tsc;
560 
561 	/*
562 	 * We require _some_ success, but the quality control
563 	 * will be based on the error terms on the TSC values.
564 	 */
565 	return count > 5;
566 }
567 
568 /*
569  * How many MSB values do we want to see? We aim for
570  * a maximum error rate of 500ppm (in practice the
571  * real error is much smaller), but refuse to spend
572  * more than 50ms on it.
573  */
574 #define MAX_QUICK_PIT_MS 50
575 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
576 
quick_pit_calibrate(void)577 static unsigned long quick_pit_calibrate(void)
578 {
579 	int i;
580 	u64 tsc, delta;
581 	unsigned long d1, d2;
582 
583 	/* Set the Gate high, disable speaker */
584 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
585 
586 	/*
587 	 * Counter 2, mode 0 (one-shot), binary count
588 	 *
589 	 * NOTE! Mode 2 decrements by two (and then the
590 	 * output is flipped each time, giving the same
591 	 * final output frequency as a decrement-by-one),
592 	 * so mode 0 is much better when looking at the
593 	 * individual counts.
594 	 */
595 	outb(0xb0, 0x43);
596 
597 	/* Start at 0xffff */
598 	outb(0xff, 0x42);
599 	outb(0xff, 0x42);
600 
601 	/*
602 	 * The PIT starts counting at the next edge, so we
603 	 * need to delay for a microsecond. The easiest way
604 	 * to do that is to just read back the 16-bit counter
605 	 * once from the PIT.
606 	 */
607 	pit_verify_msb(0);
608 
609 	if (pit_expect_msb(0xff, &tsc, &d1)) {
610 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
611 			if (!pit_expect_msb(0xff-i, &delta, &d2))
612 				break;
613 
614 			delta -= tsc;
615 
616 			/*
617 			 * Extrapolate the error and fail fast if the error will
618 			 * never be below 500 ppm.
619 			 */
620 			if (i == 1 &&
621 			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
622 				return 0;
623 
624 			/*
625 			 * Iterate until the error is less than 500 ppm
626 			 */
627 			if (d1+d2 >= delta >> 11)
628 				continue;
629 
630 			/*
631 			 * Check the PIT one more time to verify that
632 			 * all TSC reads were stable wrt the PIT.
633 			 *
634 			 * This also guarantees serialization of the
635 			 * last cycle read ('d2') in pit_expect_msb.
636 			 */
637 			if (!pit_verify_msb(0xfe - i))
638 				break;
639 			goto success;
640 		}
641 	}
642 	pr_info("Fast TSC calibration failed\n");
643 	return 0;
644 
645 success:
646 	/*
647 	 * Ok, if we get here, then we've seen the
648 	 * MSB of the PIT decrement 'i' times, and the
649 	 * error has shrunk to less than 500 ppm.
650 	 *
651 	 * As a result, we can depend on there not being
652 	 * any odd delays anywhere, and the TSC reads are
653 	 * reliable (within the error).
654 	 *
655 	 * kHz = ticks / time-in-seconds / 1000;
656 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
657 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
658 	 */
659 	delta *= PIT_TICK_RATE;
660 	do_div(delta, i*256*1000);
661 	pr_info("Fast TSC calibration using PIT\n");
662 	return delta;
663 }
664 
665 /**
666  * native_calibrate_tsc
667  * Determine TSC frequency via CPUID, else return 0.
668  */
native_calibrate_tsc(void)669 unsigned long native_calibrate_tsc(void)
670 {
671 	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
672 	unsigned int crystal_khz;
673 
674 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
675 		return 0;
676 
677 	if (boot_cpu_data.cpuid_level < 0x15)
678 		return 0;
679 
680 	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
681 
682 	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
683 	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
684 
685 	if (ebx_numerator == 0 || eax_denominator == 0)
686 		return 0;
687 
688 	crystal_khz = ecx_hz / 1000;
689 
690 	if (crystal_khz == 0) {
691 		switch (boot_cpu_data.x86_model) {
692 		case INTEL_FAM6_SKYLAKE_MOBILE:
693 		case INTEL_FAM6_SKYLAKE_DESKTOP:
694 		case INTEL_FAM6_KABYLAKE_MOBILE:
695 		case INTEL_FAM6_KABYLAKE_DESKTOP:
696 			crystal_khz = 24000;	/* 24.0 MHz */
697 			break;
698 		case INTEL_FAM6_ATOM_DENVERTON:
699 			crystal_khz = 25000;	/* 25.0 MHz */
700 			break;
701 		case INTEL_FAM6_ATOM_GOLDMONT:
702 			crystal_khz = 19200;	/* 19.2 MHz */
703 			break;
704 		}
705 	}
706 
707 	return crystal_khz * ebx_numerator / eax_denominator;
708 }
709 
cpu_khz_from_cpuid(void)710 static unsigned long cpu_khz_from_cpuid(void)
711 {
712 	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
713 
714 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
715 		return 0;
716 
717 	if (boot_cpu_data.cpuid_level < 0x16)
718 		return 0;
719 
720 	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
721 
722 	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
723 
724 	return eax_base_mhz * 1000;
725 }
726 
727 /**
728  * native_calibrate_cpu - calibrate the cpu on boot
729  */
native_calibrate_cpu(void)730 unsigned long native_calibrate_cpu(void)
731 {
732 	u64 tsc1, tsc2, delta, ref1, ref2;
733 	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
734 	unsigned long flags, latch, ms, fast_calibrate;
735 	int hpet = is_hpet_enabled(), i, loopmin;
736 
737 	fast_calibrate = cpu_khz_from_cpuid();
738 	if (fast_calibrate)
739 		return fast_calibrate;
740 
741 	fast_calibrate = cpu_khz_from_msr();
742 	if (fast_calibrate)
743 		return fast_calibrate;
744 
745 	local_irq_save(flags);
746 	fast_calibrate = quick_pit_calibrate();
747 	local_irq_restore(flags);
748 	if (fast_calibrate)
749 		return fast_calibrate;
750 
751 	/*
752 	 * Run 5 calibration loops to get the lowest frequency value
753 	 * (the best estimate). We use two different calibration modes
754 	 * here:
755 	 *
756 	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
757 	 * load a timeout of 50ms. We read the time right after we
758 	 * started the timer and wait until the PIT count down reaches
759 	 * zero. In each wait loop iteration we read the TSC and check
760 	 * the delta to the previous read. We keep track of the min
761 	 * and max values of that delta. The delta is mostly defined
762 	 * by the IO time of the PIT access, so we can detect when a
763 	 * SMI/SMM disturbance happened between the two reads. If the
764 	 * maximum time is significantly larger than the minimum time,
765 	 * then we discard the result and have another try.
766 	 *
767 	 * 2) Reference counter. If available we use the HPET or the
768 	 * PMTIMER as a reference to check the sanity of that value.
769 	 * We use separate TSC readouts and check inside of the
770 	 * reference read for a SMI/SMM disturbance. We dicard
771 	 * disturbed values here as well. We do that around the PIT
772 	 * calibration delay loop as we have to wait for a certain
773 	 * amount of time anyway.
774 	 */
775 
776 	/* Preset PIT loop values */
777 	latch = CAL_LATCH;
778 	ms = CAL_MS;
779 	loopmin = CAL_PIT_LOOPS;
780 
781 	for (i = 0; i < 3; i++) {
782 		unsigned long tsc_pit_khz;
783 
784 		/*
785 		 * Read the start value and the reference count of
786 		 * hpet/pmtimer when available. Then do the PIT
787 		 * calibration, which will take at least 50ms, and
788 		 * read the end value.
789 		 */
790 		local_irq_save(flags);
791 		tsc1 = tsc_read_refs(&ref1, hpet);
792 		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
793 		tsc2 = tsc_read_refs(&ref2, hpet);
794 		local_irq_restore(flags);
795 
796 		/* Pick the lowest PIT TSC calibration so far */
797 		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
798 
799 		/* hpet or pmtimer available ? */
800 		if (ref1 == ref2)
801 			continue;
802 
803 		/* Check, whether the sampling was disturbed by an SMI */
804 		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
805 			continue;
806 
807 		tsc2 = (tsc2 - tsc1) * 1000000LL;
808 		if (hpet)
809 			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
810 		else
811 			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
812 
813 		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
814 
815 		/* Check the reference deviation */
816 		delta = ((u64) tsc_pit_min) * 100;
817 		do_div(delta, tsc_ref_min);
818 
819 		/*
820 		 * If both calibration results are inside a 10% window
821 		 * then we can be sure, that the calibration
822 		 * succeeded. We break out of the loop right away. We
823 		 * use the reference value, as it is more precise.
824 		 */
825 		if (delta >= 90 && delta <= 110) {
826 			pr_info("PIT calibration matches %s. %d loops\n",
827 				hpet ? "HPET" : "PMTIMER", i + 1);
828 			return tsc_ref_min;
829 		}
830 
831 		/*
832 		 * Check whether PIT failed more than once. This
833 		 * happens in virtualized environments. We need to
834 		 * give the virtual PC a slightly longer timeframe for
835 		 * the HPET/PMTIMER to make the result precise.
836 		 */
837 		if (i == 1 && tsc_pit_min == ULONG_MAX) {
838 			latch = CAL2_LATCH;
839 			ms = CAL2_MS;
840 			loopmin = CAL2_PIT_LOOPS;
841 		}
842 	}
843 
844 	/*
845 	 * Now check the results.
846 	 */
847 	if (tsc_pit_min == ULONG_MAX) {
848 		/* PIT gave no useful value */
849 		pr_warn("Unable to calibrate against PIT\n");
850 
851 		/* We don't have an alternative source, disable TSC */
852 		if (!hpet && !ref1 && !ref2) {
853 			pr_notice("No reference (HPET/PMTIMER) available\n");
854 			return 0;
855 		}
856 
857 		/* The alternative source failed as well, disable TSC */
858 		if (tsc_ref_min == ULONG_MAX) {
859 			pr_warn("HPET/PMTIMER calibration failed\n");
860 			return 0;
861 		}
862 
863 		/* Use the alternative source */
864 		pr_info("using %s reference calibration\n",
865 			hpet ? "HPET" : "PMTIMER");
866 
867 		return tsc_ref_min;
868 	}
869 
870 	/* We don't have an alternative source, use the PIT calibration value */
871 	if (!hpet && !ref1 && !ref2) {
872 		pr_info("Using PIT calibration value\n");
873 		return tsc_pit_min;
874 	}
875 
876 	/* The alternative source failed, use the PIT calibration value */
877 	if (tsc_ref_min == ULONG_MAX) {
878 		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
879 		return tsc_pit_min;
880 	}
881 
882 	/*
883 	 * The calibration values differ too much. In doubt, we use
884 	 * the PIT value as we know that there are PMTIMERs around
885 	 * running at double speed. At least we let the user know:
886 	 */
887 	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
888 		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
889 	pr_info("Using PIT calibration value\n");
890 	return tsc_pit_min;
891 }
892 
recalibrate_cpu_khz(void)893 int recalibrate_cpu_khz(void)
894 {
895 #ifndef CONFIG_SMP
896 	unsigned long cpu_khz_old = cpu_khz;
897 
898 	if (!boot_cpu_has(X86_FEATURE_TSC))
899 		return -ENODEV;
900 
901 	cpu_khz = x86_platform.calibrate_cpu();
902 	tsc_khz = x86_platform.calibrate_tsc();
903 	if (tsc_khz == 0)
904 		tsc_khz = cpu_khz;
905 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
906 		cpu_khz = tsc_khz;
907 	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
908 						    cpu_khz_old, cpu_khz);
909 
910 	return 0;
911 #else
912 	return -ENODEV;
913 #endif
914 }
915 
916 EXPORT_SYMBOL(recalibrate_cpu_khz);
917 
918 
919 static unsigned long long cyc2ns_suspend;
920 
tsc_save_sched_clock_state(void)921 void tsc_save_sched_clock_state(void)
922 {
923 	if (!sched_clock_stable())
924 		return;
925 
926 	cyc2ns_suspend = sched_clock();
927 }
928 
929 /*
930  * Even on processors with invariant TSC, TSC gets reset in some the
931  * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
932  * arbitrary value (still sync'd across cpu's) during resume from such sleep
933  * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
934  * that sched_clock() continues from the point where it was left off during
935  * suspend.
936  */
tsc_restore_sched_clock_state(void)937 void tsc_restore_sched_clock_state(void)
938 {
939 	unsigned long long offset;
940 	unsigned long flags;
941 	int cpu;
942 
943 	if (!sched_clock_stable())
944 		return;
945 
946 	local_irq_save(flags);
947 
948 	/*
949 	 * We're coming out of suspend, there's no concurrency yet; don't
950 	 * bother being nice about the RCU stuff, just write to both
951 	 * data fields.
952 	 */
953 
954 	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
955 	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
956 
957 	offset = cyc2ns_suspend - sched_clock();
958 
959 	for_each_possible_cpu(cpu) {
960 		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
961 		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
962 	}
963 
964 	local_irq_restore(flags);
965 }
966 
967 #ifdef CONFIG_CPU_FREQ
968 
969 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
970  * changes.
971  *
972  * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
973  * not that important because current Opteron setups do not support
974  * scaling on SMP anyroads.
975  *
976  * Should fix up last_tsc too. Currently gettimeofday in the
977  * first tick after the change will be slightly wrong.
978  */
979 
980 static unsigned int  ref_freq;
981 static unsigned long loops_per_jiffy_ref;
982 static unsigned long tsc_khz_ref;
983 
time_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)984 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
985 				void *data)
986 {
987 	struct cpufreq_freqs *freq = data;
988 	unsigned long *lpj;
989 
990 	lpj = &boot_cpu_data.loops_per_jiffy;
991 #ifdef CONFIG_SMP
992 	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
993 		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
994 #endif
995 
996 	if (!ref_freq) {
997 		ref_freq = freq->old;
998 		loops_per_jiffy_ref = *lpj;
999 		tsc_khz_ref = tsc_khz;
1000 	}
1001 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
1002 			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1003 		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1004 
1005 		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1006 		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1007 			mark_tsc_unstable("cpufreq changes");
1008 
1009 		set_cyc2ns_scale(tsc_khz, freq->cpu);
1010 	}
1011 
1012 	return 0;
1013 }
1014 
1015 static struct notifier_block time_cpufreq_notifier_block = {
1016 	.notifier_call  = time_cpufreq_notifier
1017 };
1018 
cpufreq_register_tsc_scaling(void)1019 static int __init cpufreq_register_tsc_scaling(void)
1020 {
1021 	if (!boot_cpu_has(X86_FEATURE_TSC))
1022 		return 0;
1023 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1024 		return 0;
1025 	cpufreq_register_notifier(&time_cpufreq_notifier_block,
1026 				CPUFREQ_TRANSITION_NOTIFIER);
1027 	return 0;
1028 }
1029 
1030 core_initcall(cpufreq_register_tsc_scaling);
1031 
1032 #endif /* CONFIG_CPU_FREQ */
1033 
1034 #define ART_CPUID_LEAF (0x15)
1035 #define ART_MIN_DENOMINATOR (1)
1036 
1037 
1038 /*
1039  * If ART is present detect the numerator:denominator to convert to TSC
1040  */
detect_art(void)1041 static void detect_art(void)
1042 {
1043 	unsigned int unused[2];
1044 
1045 	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1046 		return;
1047 
1048 	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1049 	      &art_to_tsc_numerator, unused, unused+1);
1050 
1051 	/* Don't enable ART in a VM, non-stop TSC required */
1052 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1053 	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1054 	    art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1055 		return;
1056 
1057 	if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset))
1058 		return;
1059 
1060 	/* Make this sticky over multiple CPU init calls */
1061 	setup_force_cpu_cap(X86_FEATURE_ART);
1062 }
1063 
1064 
1065 /* clocksource code */
1066 
1067 static struct clocksource clocksource_tsc;
1068 
1069 /*
1070  * We used to compare the TSC to the cycle_last value in the clocksource
1071  * structure to avoid a nasty time-warp. This can be observed in a
1072  * very small window right after one CPU updated cycle_last under
1073  * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1074  * is smaller than the cycle_last reference value due to a TSC which
1075  * is slighty behind. This delta is nowhere else observable, but in
1076  * that case it results in a forward time jump in the range of hours
1077  * due to the unsigned delta calculation of the time keeping core
1078  * code, which is necessary to support wrapping clocksources like pm
1079  * timer.
1080  *
1081  * This sanity check is now done in the core timekeeping code.
1082  * checking the result of read_tsc() - cycle_last for being negative.
1083  * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1084  */
read_tsc(struct clocksource * cs)1085 static cycle_t read_tsc(struct clocksource *cs)
1086 {
1087 	return (cycle_t)rdtsc_ordered();
1088 }
1089 
1090 /*
1091  * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1092  */
1093 static struct clocksource clocksource_tsc = {
1094 	.name                   = "tsc",
1095 	.rating                 = 300,
1096 	.read                   = read_tsc,
1097 	.mask                   = CLOCKSOURCE_MASK(64),
1098 	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1099 				  CLOCK_SOURCE_MUST_VERIFY,
1100 	.archdata               = { .vclock_mode = VCLOCK_TSC },
1101 };
1102 
mark_tsc_unstable(char * reason)1103 void mark_tsc_unstable(char *reason)
1104 {
1105 	if (!tsc_unstable) {
1106 		tsc_unstable = 1;
1107 		clear_sched_clock_stable();
1108 		disable_sched_clock_irqtime();
1109 		pr_info("Marking TSC unstable due to %s\n", reason);
1110 		/* Change only the rating, when not registered */
1111 		if (clocksource_tsc.mult)
1112 			clocksource_mark_unstable(&clocksource_tsc);
1113 		else {
1114 			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1115 			clocksource_tsc.rating = 0;
1116 		}
1117 	}
1118 }
1119 
1120 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1121 
check_system_tsc_reliable(void)1122 static void __init check_system_tsc_reliable(void)
1123 {
1124 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1125 	if (is_geode_lx()) {
1126 		/* RTSC counts during suspend */
1127 #define RTSC_SUSP 0x100
1128 		unsigned long res_low, res_high;
1129 
1130 		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1131 		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1132 		if (res_low & RTSC_SUSP)
1133 			tsc_clocksource_reliable = 1;
1134 	}
1135 #endif
1136 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1137 		tsc_clocksource_reliable = 1;
1138 }
1139 
1140 /*
1141  * Make an educated guess if the TSC is trustworthy and synchronized
1142  * over all CPUs.
1143  */
unsynchronized_tsc(void)1144 int unsynchronized_tsc(void)
1145 {
1146 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1147 		return 1;
1148 
1149 #ifdef CONFIG_SMP
1150 	if (apic_is_clustered_box())
1151 		return 1;
1152 #endif
1153 
1154 	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1155 		return 0;
1156 
1157 	if (tsc_clocksource_reliable)
1158 		return 0;
1159 	/*
1160 	 * Intel systems are normally all synchronized.
1161 	 * Exceptions must mark TSC as unstable:
1162 	 */
1163 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1164 		/* assume multi socket systems are not synchronized: */
1165 		if (num_possible_cpus() > 1)
1166 			return 1;
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 /*
1173  * Convert ART to TSC given numerator/denominator found in detect_art()
1174  */
convert_art_to_tsc(cycle_t art)1175 struct system_counterval_t convert_art_to_tsc(cycle_t art)
1176 {
1177 	u64 tmp, res, rem;
1178 
1179 	rem = do_div(art, art_to_tsc_denominator);
1180 
1181 	res = art * art_to_tsc_numerator;
1182 	tmp = rem * art_to_tsc_numerator;
1183 
1184 	do_div(tmp, art_to_tsc_denominator);
1185 	res += tmp + art_to_tsc_offset;
1186 
1187 	return (struct system_counterval_t) {.cs = art_related_clocksource,
1188 			.cycles = res};
1189 }
1190 EXPORT_SYMBOL(convert_art_to_tsc);
1191 
1192 static void tsc_refine_calibration_work(struct work_struct *work);
1193 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1194 /**
1195  * tsc_refine_calibration_work - Further refine tsc freq calibration
1196  * @work - ignored.
1197  *
1198  * This functions uses delayed work over a period of a
1199  * second to further refine the TSC freq value. Since this is
1200  * timer based, instead of loop based, we don't block the boot
1201  * process while this longer calibration is done.
1202  *
1203  * If there are any calibration anomalies (too many SMIs, etc),
1204  * or the refined calibration is off by 1% of the fast early
1205  * calibration, we throw out the new calibration and use the
1206  * early calibration.
1207  */
tsc_refine_calibration_work(struct work_struct * work)1208 static void tsc_refine_calibration_work(struct work_struct *work)
1209 {
1210 	static u64 tsc_start = -1, ref_start;
1211 	static int hpet;
1212 	u64 tsc_stop, ref_stop, delta;
1213 	unsigned long freq;
1214 
1215 	/* Don't bother refining TSC on unstable systems */
1216 	if (check_tsc_unstable())
1217 		goto out;
1218 
1219 	/*
1220 	 * Since the work is started early in boot, we may be
1221 	 * delayed the first time we expire. So set the workqueue
1222 	 * again once we know timers are working.
1223 	 */
1224 	if (tsc_start == -1) {
1225 		/*
1226 		 * Only set hpet once, to avoid mixing hardware
1227 		 * if the hpet becomes enabled later.
1228 		 */
1229 		hpet = is_hpet_enabled();
1230 		schedule_delayed_work(&tsc_irqwork, HZ);
1231 		tsc_start = tsc_read_refs(&ref_start, hpet);
1232 		return;
1233 	}
1234 
1235 	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1236 
1237 	/* hpet or pmtimer available ? */
1238 	if (ref_start == ref_stop)
1239 		goto out;
1240 
1241 	/* Check, whether the sampling was disturbed by an SMI */
1242 	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1243 		goto out;
1244 
1245 	delta = tsc_stop - tsc_start;
1246 	delta *= 1000000LL;
1247 	if (hpet)
1248 		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1249 	else
1250 		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1251 
1252 	/* Make sure we're within 1% */
1253 	if (abs(tsc_khz - freq) > tsc_khz/100)
1254 		goto out;
1255 
1256 	tsc_khz = freq;
1257 	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1258 		(unsigned long)tsc_khz / 1000,
1259 		(unsigned long)tsc_khz % 1000);
1260 
1261 	/* Inform the TSC deadline clockevent devices about the recalibration */
1262 	lapic_update_tsc_freq();
1263 
1264 out:
1265 	if (boot_cpu_has(X86_FEATURE_ART))
1266 		art_related_clocksource = &clocksource_tsc;
1267 	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1268 }
1269 
1270 
init_tsc_clocksource(void)1271 static int __init init_tsc_clocksource(void)
1272 {
1273 	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1274 		return 0;
1275 
1276 	if (tsc_clocksource_reliable)
1277 		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1278 	/* lower the rating if we already know its unstable: */
1279 	if (check_tsc_unstable()) {
1280 		clocksource_tsc.rating = 0;
1281 		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1282 	}
1283 
1284 	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1285 		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1286 
1287 	/*
1288 	 * Trust the results of the earlier calibration on systems
1289 	 * exporting a reliable TSC.
1290 	 */
1291 	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1292 		if (boot_cpu_has(X86_FEATURE_ART))
1293 			art_related_clocksource = &clocksource_tsc;
1294 		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1295 		return 0;
1296 	}
1297 
1298 	schedule_delayed_work(&tsc_irqwork, 0);
1299 	return 0;
1300 }
1301 /*
1302  * We use device_initcall here, to ensure we run after the hpet
1303  * is fully initialized, which may occur at fs_initcall time.
1304  */
1305 device_initcall(init_tsc_clocksource);
1306 
tsc_init(void)1307 void __init tsc_init(void)
1308 {
1309 	u64 lpj;
1310 	int cpu;
1311 
1312 	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1313 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1314 		return;
1315 	}
1316 
1317 	cpu_khz = x86_platform.calibrate_cpu();
1318 	tsc_khz = x86_platform.calibrate_tsc();
1319 
1320 	/*
1321 	 * Trust non-zero tsc_khz as authorative,
1322 	 * and use it to sanity check cpu_khz,
1323 	 * which will be off if system timer is off.
1324 	 */
1325 	if (tsc_khz == 0)
1326 		tsc_khz = cpu_khz;
1327 	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1328 		cpu_khz = tsc_khz;
1329 
1330 	if (!tsc_khz) {
1331 		mark_tsc_unstable("could not calculate TSC khz");
1332 		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1333 		return;
1334 	}
1335 
1336 	pr_info("Detected %lu.%03lu MHz processor\n",
1337 		(unsigned long)cpu_khz / 1000,
1338 		(unsigned long)cpu_khz % 1000);
1339 
1340 	/*
1341 	 * Secondary CPUs do not run through tsc_init(), so set up
1342 	 * all the scale factors for all CPUs, assuming the same
1343 	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1344 	 * up if their speed diverges)
1345 	 */
1346 	for_each_possible_cpu(cpu) {
1347 		cyc2ns_init(cpu);
1348 		set_cyc2ns_scale(tsc_khz, cpu);
1349 	}
1350 
1351 	if (tsc_disabled > 0)
1352 		return;
1353 
1354 	/* now allow native_sched_clock() to use rdtsc */
1355 
1356 	tsc_disabled = 0;
1357 	static_branch_enable(&__use_tsc);
1358 
1359 	if (!no_sched_irq_time)
1360 		enable_sched_clock_irqtime();
1361 
1362 	lpj = ((u64)tsc_khz * 1000);
1363 	do_div(lpj, HZ);
1364 	lpj_fine = lpj;
1365 
1366 	use_tsc_delay();
1367 
1368 	if (unsynchronized_tsc())
1369 		mark_tsc_unstable("TSCs unsynchronized");
1370 
1371 	check_system_tsc_reliable();
1372 
1373 	detect_art();
1374 }
1375 
1376 #ifdef CONFIG_SMP
1377 /*
1378  * If we have a constant TSC and are using the TSC for the delay loop,
1379  * we can skip clock calibration if another cpu in the same socket has already
1380  * been calibrated. This assumes that CONSTANT_TSC applies to all
1381  * cpus in the socket - this should be a safe assumption.
1382  */
calibrate_delay_is_known(void)1383 unsigned long calibrate_delay_is_known(void)
1384 {
1385 	int sibling, cpu = smp_processor_id();
1386 	int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1387 	const struct cpumask *mask = topology_core_cpumask(cpu);
1388 
1389 	if (tsc_disabled || !constant_tsc || !mask)
1390 		return 0;
1391 
1392 	sibling = cpumask_any_but(mask, cpu);
1393 	if (sibling < nr_cpu_ids)
1394 		return cpu_data(sibling).loops_per_jiffy;
1395 	return 0;
1396 }
1397 #endif
1398