1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/export.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14 #include <linux/static_key.h>
15
16 #include <asm/hpet.h>
17 #include <asm/timer.h>
18 #include <asm/vgtod.h>
19 #include <asm/time.h>
20 #include <asm/delay.h>
21 #include <asm/hypervisor.h>
22 #include <asm/nmi.h>
23 #include <asm/x86_init.h>
24 #include <asm/geode.h>
25 #include <asm/apic.h>
26 #include <asm/intel-family.h>
27
28 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
29 EXPORT_SYMBOL(cpu_khz);
30
31 unsigned int __read_mostly tsc_khz;
32 EXPORT_SYMBOL(tsc_khz);
33
34 /*
35 * TSC can be unstable due to cpufreq or due to unsynced TSCs
36 */
37 static int __read_mostly tsc_unstable;
38
39 /* native_sched_clock() is called before tsc_init(), so
40 we must start with the TSC soft disabled to prevent
41 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
42 static int __read_mostly tsc_disabled = -1;
43
44 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
45
46 int tsc_clocksource_reliable;
47
48 static u32 art_to_tsc_numerator;
49 static u32 art_to_tsc_denominator;
50 static u64 art_to_tsc_offset;
51 struct clocksource *art_related_clocksource;
52
53 /*
54 * Use a ring-buffer like data structure, where a writer advances the head by
55 * writing a new data entry and a reader advances the tail when it observes a
56 * new entry.
57 *
58 * Writers are made to wait on readers until there's space to write a new
59 * entry.
60 *
61 * This means that we can always use an {offset, mul} pair to compute a ns
62 * value that is 'roughly' in the right direction, even if we're writing a new
63 * {offset, mul} pair during the clock read.
64 *
65 * The down-side is that we can no longer guarantee strict monotonicity anymore
66 * (assuming the TSC was that to begin with), because while we compute the
67 * intersection point of the two clock slopes and make sure the time is
68 * continuous at the point of switching; we can no longer guarantee a reader is
69 * strictly before or after the switch point.
70 *
71 * It does mean a reader no longer needs to disable IRQs in order to avoid
72 * CPU-Freq updates messing with his times, and similarly an NMI reader will
73 * no longer run the risk of hitting half-written state.
74 */
75
76 struct cyc2ns {
77 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
78 struct cyc2ns_data *head; /* 48 + 8 = 56 */
79 struct cyc2ns_data *tail; /* 56 + 8 = 64 */
80 }; /* exactly fits one cacheline */
81
82 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
83
cyc2ns_read_begin(void)84 struct cyc2ns_data *cyc2ns_read_begin(void)
85 {
86 struct cyc2ns_data *head;
87
88 preempt_disable();
89
90 head = this_cpu_read(cyc2ns.head);
91 /*
92 * Ensure we observe the entry when we observe the pointer to it.
93 * matches the wmb from cyc2ns_write_end().
94 */
95 smp_read_barrier_depends();
96 head->__count++;
97 barrier();
98
99 return head;
100 }
101
cyc2ns_read_end(struct cyc2ns_data * head)102 void cyc2ns_read_end(struct cyc2ns_data *head)
103 {
104 barrier();
105 /*
106 * If we're the outer most nested read; update the tail pointer
107 * when we're done. This notifies possible pending writers
108 * that we've observed the head pointer and that the other
109 * entry is now free.
110 */
111 if (!--head->__count) {
112 /*
113 * x86-TSO does not reorder writes with older reads;
114 * therefore once this write becomes visible to another
115 * cpu, we must be finished reading the cyc2ns_data.
116 *
117 * matches with cyc2ns_write_begin().
118 */
119 this_cpu_write(cyc2ns.tail, head);
120 }
121 preempt_enable();
122 }
123
124 /*
125 * Begin writing a new @data entry for @cpu.
126 *
127 * Assumes some sort of write side lock; currently 'provided' by the assumption
128 * that cpufreq will call its notifiers sequentially.
129 */
cyc2ns_write_begin(int cpu)130 static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
131 {
132 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
133 struct cyc2ns_data *data = c2n->data;
134
135 if (data == c2n->head)
136 data++;
137
138 /* XXX send an IPI to @cpu in order to guarantee a read? */
139
140 /*
141 * When we observe the tail write from cyc2ns_read_end(),
142 * the cpu must be done with that entry and its safe
143 * to start writing to it.
144 */
145 while (c2n->tail == data)
146 cpu_relax();
147
148 return data;
149 }
150
cyc2ns_write_end(int cpu,struct cyc2ns_data * data)151 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
152 {
153 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
154
155 /*
156 * Ensure the @data writes are visible before we publish the
157 * entry. Matches the data-depencency in cyc2ns_read_begin().
158 */
159 smp_wmb();
160
161 ACCESS_ONCE(c2n->head) = data;
162 }
163
164 /*
165 * Accelerators for sched_clock()
166 * convert from cycles(64bits) => nanoseconds (64bits)
167 * basic equation:
168 * ns = cycles / (freq / ns_per_sec)
169 * ns = cycles * (ns_per_sec / freq)
170 * ns = cycles * (10^9 / (cpu_khz * 10^3))
171 * ns = cycles * (10^6 / cpu_khz)
172 *
173 * Then we use scaling math (suggested by george@mvista.com) to get:
174 * ns = cycles * (10^6 * SC / cpu_khz) / SC
175 * ns = cycles * cyc2ns_scale / SC
176 *
177 * And since SC is a constant power of two, we can convert the div
178 * into a shift. The larger SC is, the more accurate the conversion, but
179 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
180 * (64-bit result) can be used.
181 *
182 * We can use khz divisor instead of mhz to keep a better precision.
183 * (mathieu.desnoyers@polymtl.ca)
184 *
185 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
186 */
187
cyc2ns_data_init(struct cyc2ns_data * data)188 static void cyc2ns_data_init(struct cyc2ns_data *data)
189 {
190 data->cyc2ns_mul = 0;
191 data->cyc2ns_shift = 0;
192 data->cyc2ns_offset = 0;
193 data->__count = 0;
194 }
195
cyc2ns_init(int cpu)196 static void cyc2ns_init(int cpu)
197 {
198 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
199
200 cyc2ns_data_init(&c2n->data[0]);
201 cyc2ns_data_init(&c2n->data[1]);
202
203 c2n->head = c2n->data;
204 c2n->tail = c2n->data;
205 }
206
cycles_2_ns(unsigned long long cyc)207 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
208 {
209 struct cyc2ns_data *data, *tail;
210 unsigned long long ns;
211
212 /*
213 * See cyc2ns_read_*() for details; replicated in order to avoid
214 * an extra few instructions that came with the abstraction.
215 * Notable, it allows us to only do the __count and tail update
216 * dance when its actually needed.
217 */
218
219 preempt_disable_notrace();
220 data = this_cpu_read(cyc2ns.head);
221 tail = this_cpu_read(cyc2ns.tail);
222
223 if (likely(data == tail)) {
224 ns = data->cyc2ns_offset;
225 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
226 } else {
227 data->__count++;
228
229 barrier();
230
231 ns = data->cyc2ns_offset;
232 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
233
234 barrier();
235
236 if (!--data->__count)
237 this_cpu_write(cyc2ns.tail, data);
238 }
239 preempt_enable_notrace();
240
241 return ns;
242 }
243
set_cyc2ns_scale(unsigned long khz,int cpu)244 static void set_cyc2ns_scale(unsigned long khz, int cpu)
245 {
246 unsigned long long tsc_now, ns_now;
247 struct cyc2ns_data *data;
248 unsigned long flags;
249
250 local_irq_save(flags);
251 sched_clock_idle_sleep_event();
252
253 if (!khz)
254 goto done;
255
256 data = cyc2ns_write_begin(cpu);
257
258 tsc_now = rdtsc();
259 ns_now = cycles_2_ns(tsc_now);
260
261 /*
262 * Compute a new multiplier as per the above comment and ensure our
263 * time function is continuous; see the comment near struct
264 * cyc2ns_data.
265 */
266 clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
267 NSEC_PER_MSEC, 0);
268
269 /*
270 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
271 * not expected to be greater than 31 due to the original published
272 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
273 * value) - refer perf_event_mmap_page documentation in perf_event.h.
274 */
275 if (data->cyc2ns_shift == 32) {
276 data->cyc2ns_shift = 31;
277 data->cyc2ns_mul >>= 1;
278 }
279
280 data->cyc2ns_offset = ns_now -
281 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
282
283 cyc2ns_write_end(cpu, data);
284
285 done:
286 sched_clock_idle_wakeup_event(0);
287 local_irq_restore(flags);
288 }
289 /*
290 * Scheduler clock - returns current time in nanosec units.
291 */
native_sched_clock(void)292 u64 native_sched_clock(void)
293 {
294 if (static_branch_likely(&__use_tsc)) {
295 u64 tsc_now = rdtsc();
296
297 /* return the value in ns */
298 return cycles_2_ns(tsc_now);
299 }
300
301 /*
302 * Fall back to jiffies if there's no TSC available:
303 * ( But note that we still use it if the TSC is marked
304 * unstable. We do this because unlike Time Of Day,
305 * the scheduler clock tolerates small errors and it's
306 * very important for it to be as fast as the platform
307 * can achieve it. )
308 */
309
310 /* No locking but a rare wrong value is not a big deal: */
311 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
312 }
313
314 /*
315 * Generate a sched_clock if you already have a TSC value.
316 */
native_sched_clock_from_tsc(u64 tsc)317 u64 native_sched_clock_from_tsc(u64 tsc)
318 {
319 return cycles_2_ns(tsc);
320 }
321
322 /* We need to define a real function for sched_clock, to override the
323 weak default version */
324 #ifdef CONFIG_PARAVIRT
sched_clock(void)325 unsigned long long sched_clock(void)
326 {
327 return paravirt_sched_clock();
328 }
329 #else
330 unsigned long long
331 sched_clock(void) __attribute__((alias("native_sched_clock")));
332 #endif
333
check_tsc_unstable(void)334 int check_tsc_unstable(void)
335 {
336 return tsc_unstable;
337 }
338 EXPORT_SYMBOL_GPL(check_tsc_unstable);
339
340 #ifdef CONFIG_X86_TSC
notsc_setup(char * str)341 int __init notsc_setup(char *str)
342 {
343 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
344 tsc_disabled = 1;
345 return 1;
346 }
347 #else
348 /*
349 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
350 * in cpu/common.c
351 */
notsc_setup(char * str)352 int __init notsc_setup(char *str)
353 {
354 setup_clear_cpu_cap(X86_FEATURE_TSC);
355 return 1;
356 }
357 #endif
358
359 __setup("notsc", notsc_setup);
360
361 static int no_sched_irq_time;
362
tsc_setup(char * str)363 static int __init tsc_setup(char *str)
364 {
365 if (!strcmp(str, "reliable"))
366 tsc_clocksource_reliable = 1;
367 if (!strncmp(str, "noirqtime", 9))
368 no_sched_irq_time = 1;
369 if (!strcmp(str, "unstable"))
370 mark_tsc_unstable("boot parameter");
371 return 1;
372 }
373
374 __setup("tsc=", tsc_setup);
375
376 #define MAX_RETRIES 5
377 #define SMI_TRESHOLD 50000
378
379 /*
380 * Read TSC and the reference counters. Take care of SMI disturbance
381 */
tsc_read_refs(u64 * p,int hpet)382 static u64 tsc_read_refs(u64 *p, int hpet)
383 {
384 u64 t1, t2;
385 int i;
386
387 for (i = 0; i < MAX_RETRIES; i++) {
388 t1 = get_cycles();
389 if (hpet)
390 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
391 else
392 *p = acpi_pm_read_early();
393 t2 = get_cycles();
394 if ((t2 - t1) < SMI_TRESHOLD)
395 return t2;
396 }
397 return ULLONG_MAX;
398 }
399
400 /*
401 * Calculate the TSC frequency from HPET reference
402 */
calc_hpet_ref(u64 deltatsc,u64 hpet1,u64 hpet2)403 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
404 {
405 u64 tmp;
406
407 if (hpet2 < hpet1)
408 hpet2 += 0x100000000ULL;
409 hpet2 -= hpet1;
410 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
411 do_div(tmp, 1000000);
412 deltatsc = div64_u64(deltatsc, tmp);
413
414 return (unsigned long) deltatsc;
415 }
416
417 /*
418 * Calculate the TSC frequency from PMTimer reference
419 */
calc_pmtimer_ref(u64 deltatsc,u64 pm1,u64 pm2)420 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
421 {
422 u64 tmp;
423
424 if (!pm1 && !pm2)
425 return ULONG_MAX;
426
427 if (pm2 < pm1)
428 pm2 += (u64)ACPI_PM_OVRRUN;
429 pm2 -= pm1;
430 tmp = pm2 * 1000000000LL;
431 do_div(tmp, PMTMR_TICKS_PER_SEC);
432 do_div(deltatsc, tmp);
433
434 return (unsigned long) deltatsc;
435 }
436
437 #define CAL_MS 10
438 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
439 #define CAL_PIT_LOOPS 1000
440
441 #define CAL2_MS 50
442 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
443 #define CAL2_PIT_LOOPS 5000
444
445
446 /*
447 * Try to calibrate the TSC against the Programmable
448 * Interrupt Timer and return the frequency of the TSC
449 * in kHz.
450 *
451 * Return ULONG_MAX on failure to calibrate.
452 */
pit_calibrate_tsc(u32 latch,unsigned long ms,int loopmin)453 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
454 {
455 u64 tsc, t1, t2, delta;
456 unsigned long tscmin, tscmax;
457 int pitcnt;
458
459 /* Set the Gate high, disable speaker */
460 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
461
462 /*
463 * Setup CTC channel 2* for mode 0, (interrupt on terminal
464 * count mode), binary count. Set the latch register to 50ms
465 * (LSB then MSB) to begin countdown.
466 */
467 outb(0xb0, 0x43);
468 outb(latch & 0xff, 0x42);
469 outb(latch >> 8, 0x42);
470
471 tsc = t1 = t2 = get_cycles();
472
473 pitcnt = 0;
474 tscmax = 0;
475 tscmin = ULONG_MAX;
476 while ((inb(0x61) & 0x20) == 0) {
477 t2 = get_cycles();
478 delta = t2 - tsc;
479 tsc = t2;
480 if ((unsigned long) delta < tscmin)
481 tscmin = (unsigned int) delta;
482 if ((unsigned long) delta > tscmax)
483 tscmax = (unsigned int) delta;
484 pitcnt++;
485 }
486
487 /*
488 * Sanity checks:
489 *
490 * If we were not able to read the PIT more than loopmin
491 * times, then we have been hit by a massive SMI
492 *
493 * If the maximum is 10 times larger than the minimum,
494 * then we got hit by an SMI as well.
495 */
496 if (pitcnt < loopmin || tscmax > 10 * tscmin)
497 return ULONG_MAX;
498
499 /* Calculate the PIT value */
500 delta = t2 - t1;
501 do_div(delta, ms);
502 return delta;
503 }
504
505 /*
506 * This reads the current MSB of the PIT counter, and
507 * checks if we are running on sufficiently fast and
508 * non-virtualized hardware.
509 *
510 * Our expectations are:
511 *
512 * - the PIT is running at roughly 1.19MHz
513 *
514 * - each IO is going to take about 1us on real hardware,
515 * but we allow it to be much faster (by a factor of 10) or
516 * _slightly_ slower (ie we allow up to a 2us read+counter
517 * update - anything else implies a unacceptably slow CPU
518 * or PIT for the fast calibration to work.
519 *
520 * - with 256 PIT ticks to read the value, we have 214us to
521 * see the same MSB (and overhead like doing a single TSC
522 * read per MSB value etc).
523 *
524 * - We're doing 2 reads per loop (LSB, MSB), and we expect
525 * them each to take about a microsecond on real hardware.
526 * So we expect a count value of around 100. But we'll be
527 * generous, and accept anything over 50.
528 *
529 * - if the PIT is stuck, and we see *many* more reads, we
530 * return early (and the next caller of pit_expect_msb()
531 * then consider it a failure when they don't see the
532 * next expected value).
533 *
534 * These expectations mean that we know that we have seen the
535 * transition from one expected value to another with a fairly
536 * high accuracy, and we didn't miss any events. We can thus
537 * use the TSC value at the transitions to calculate a pretty
538 * good value for the TSC frequencty.
539 */
pit_verify_msb(unsigned char val)540 static inline int pit_verify_msb(unsigned char val)
541 {
542 /* Ignore LSB */
543 inb(0x42);
544 return inb(0x42) == val;
545 }
546
pit_expect_msb(unsigned char val,u64 * tscp,unsigned long * deltap)547 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
548 {
549 int count;
550 u64 tsc = 0, prev_tsc = 0;
551
552 for (count = 0; count < 50000; count++) {
553 if (!pit_verify_msb(val))
554 break;
555 prev_tsc = tsc;
556 tsc = get_cycles();
557 }
558 *deltap = get_cycles() - prev_tsc;
559 *tscp = tsc;
560
561 /*
562 * We require _some_ success, but the quality control
563 * will be based on the error terms on the TSC values.
564 */
565 return count > 5;
566 }
567
568 /*
569 * How many MSB values do we want to see? We aim for
570 * a maximum error rate of 500ppm (in practice the
571 * real error is much smaller), but refuse to spend
572 * more than 50ms on it.
573 */
574 #define MAX_QUICK_PIT_MS 50
575 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
576
quick_pit_calibrate(void)577 static unsigned long quick_pit_calibrate(void)
578 {
579 int i;
580 u64 tsc, delta;
581 unsigned long d1, d2;
582
583 /* Set the Gate high, disable speaker */
584 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
585
586 /*
587 * Counter 2, mode 0 (one-shot), binary count
588 *
589 * NOTE! Mode 2 decrements by two (and then the
590 * output is flipped each time, giving the same
591 * final output frequency as a decrement-by-one),
592 * so mode 0 is much better when looking at the
593 * individual counts.
594 */
595 outb(0xb0, 0x43);
596
597 /* Start at 0xffff */
598 outb(0xff, 0x42);
599 outb(0xff, 0x42);
600
601 /*
602 * The PIT starts counting at the next edge, so we
603 * need to delay for a microsecond. The easiest way
604 * to do that is to just read back the 16-bit counter
605 * once from the PIT.
606 */
607 pit_verify_msb(0);
608
609 if (pit_expect_msb(0xff, &tsc, &d1)) {
610 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
611 if (!pit_expect_msb(0xff-i, &delta, &d2))
612 break;
613
614 delta -= tsc;
615
616 /*
617 * Extrapolate the error and fail fast if the error will
618 * never be below 500 ppm.
619 */
620 if (i == 1 &&
621 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
622 return 0;
623
624 /*
625 * Iterate until the error is less than 500 ppm
626 */
627 if (d1+d2 >= delta >> 11)
628 continue;
629
630 /*
631 * Check the PIT one more time to verify that
632 * all TSC reads were stable wrt the PIT.
633 *
634 * This also guarantees serialization of the
635 * last cycle read ('d2') in pit_expect_msb.
636 */
637 if (!pit_verify_msb(0xfe - i))
638 break;
639 goto success;
640 }
641 }
642 pr_info("Fast TSC calibration failed\n");
643 return 0;
644
645 success:
646 /*
647 * Ok, if we get here, then we've seen the
648 * MSB of the PIT decrement 'i' times, and the
649 * error has shrunk to less than 500 ppm.
650 *
651 * As a result, we can depend on there not being
652 * any odd delays anywhere, and the TSC reads are
653 * reliable (within the error).
654 *
655 * kHz = ticks / time-in-seconds / 1000;
656 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
657 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
658 */
659 delta *= PIT_TICK_RATE;
660 do_div(delta, i*256*1000);
661 pr_info("Fast TSC calibration using PIT\n");
662 return delta;
663 }
664
665 /**
666 * native_calibrate_tsc
667 * Determine TSC frequency via CPUID, else return 0.
668 */
native_calibrate_tsc(void)669 unsigned long native_calibrate_tsc(void)
670 {
671 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
672 unsigned int crystal_khz;
673
674 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
675 return 0;
676
677 if (boot_cpu_data.cpuid_level < 0x15)
678 return 0;
679
680 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
681
682 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
683 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
684
685 if (ebx_numerator == 0 || eax_denominator == 0)
686 return 0;
687
688 crystal_khz = ecx_hz / 1000;
689
690 if (crystal_khz == 0) {
691 switch (boot_cpu_data.x86_model) {
692 case INTEL_FAM6_SKYLAKE_MOBILE:
693 case INTEL_FAM6_SKYLAKE_DESKTOP:
694 case INTEL_FAM6_KABYLAKE_MOBILE:
695 case INTEL_FAM6_KABYLAKE_DESKTOP:
696 crystal_khz = 24000; /* 24.0 MHz */
697 break;
698 case INTEL_FAM6_ATOM_DENVERTON:
699 crystal_khz = 25000; /* 25.0 MHz */
700 break;
701 case INTEL_FAM6_ATOM_GOLDMONT:
702 crystal_khz = 19200; /* 19.2 MHz */
703 break;
704 }
705 }
706
707 return crystal_khz * ebx_numerator / eax_denominator;
708 }
709
cpu_khz_from_cpuid(void)710 static unsigned long cpu_khz_from_cpuid(void)
711 {
712 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
713
714 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
715 return 0;
716
717 if (boot_cpu_data.cpuid_level < 0x16)
718 return 0;
719
720 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
721
722 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
723
724 return eax_base_mhz * 1000;
725 }
726
727 /**
728 * native_calibrate_cpu - calibrate the cpu on boot
729 */
native_calibrate_cpu(void)730 unsigned long native_calibrate_cpu(void)
731 {
732 u64 tsc1, tsc2, delta, ref1, ref2;
733 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
734 unsigned long flags, latch, ms, fast_calibrate;
735 int hpet = is_hpet_enabled(), i, loopmin;
736
737 fast_calibrate = cpu_khz_from_cpuid();
738 if (fast_calibrate)
739 return fast_calibrate;
740
741 fast_calibrate = cpu_khz_from_msr();
742 if (fast_calibrate)
743 return fast_calibrate;
744
745 local_irq_save(flags);
746 fast_calibrate = quick_pit_calibrate();
747 local_irq_restore(flags);
748 if (fast_calibrate)
749 return fast_calibrate;
750
751 /*
752 * Run 5 calibration loops to get the lowest frequency value
753 * (the best estimate). We use two different calibration modes
754 * here:
755 *
756 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
757 * load a timeout of 50ms. We read the time right after we
758 * started the timer and wait until the PIT count down reaches
759 * zero. In each wait loop iteration we read the TSC and check
760 * the delta to the previous read. We keep track of the min
761 * and max values of that delta. The delta is mostly defined
762 * by the IO time of the PIT access, so we can detect when a
763 * SMI/SMM disturbance happened between the two reads. If the
764 * maximum time is significantly larger than the minimum time,
765 * then we discard the result and have another try.
766 *
767 * 2) Reference counter. If available we use the HPET or the
768 * PMTIMER as a reference to check the sanity of that value.
769 * We use separate TSC readouts and check inside of the
770 * reference read for a SMI/SMM disturbance. We dicard
771 * disturbed values here as well. We do that around the PIT
772 * calibration delay loop as we have to wait for a certain
773 * amount of time anyway.
774 */
775
776 /* Preset PIT loop values */
777 latch = CAL_LATCH;
778 ms = CAL_MS;
779 loopmin = CAL_PIT_LOOPS;
780
781 for (i = 0; i < 3; i++) {
782 unsigned long tsc_pit_khz;
783
784 /*
785 * Read the start value and the reference count of
786 * hpet/pmtimer when available. Then do the PIT
787 * calibration, which will take at least 50ms, and
788 * read the end value.
789 */
790 local_irq_save(flags);
791 tsc1 = tsc_read_refs(&ref1, hpet);
792 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
793 tsc2 = tsc_read_refs(&ref2, hpet);
794 local_irq_restore(flags);
795
796 /* Pick the lowest PIT TSC calibration so far */
797 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
798
799 /* hpet or pmtimer available ? */
800 if (ref1 == ref2)
801 continue;
802
803 /* Check, whether the sampling was disturbed by an SMI */
804 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
805 continue;
806
807 tsc2 = (tsc2 - tsc1) * 1000000LL;
808 if (hpet)
809 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
810 else
811 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
812
813 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
814
815 /* Check the reference deviation */
816 delta = ((u64) tsc_pit_min) * 100;
817 do_div(delta, tsc_ref_min);
818
819 /*
820 * If both calibration results are inside a 10% window
821 * then we can be sure, that the calibration
822 * succeeded. We break out of the loop right away. We
823 * use the reference value, as it is more precise.
824 */
825 if (delta >= 90 && delta <= 110) {
826 pr_info("PIT calibration matches %s. %d loops\n",
827 hpet ? "HPET" : "PMTIMER", i + 1);
828 return tsc_ref_min;
829 }
830
831 /*
832 * Check whether PIT failed more than once. This
833 * happens in virtualized environments. We need to
834 * give the virtual PC a slightly longer timeframe for
835 * the HPET/PMTIMER to make the result precise.
836 */
837 if (i == 1 && tsc_pit_min == ULONG_MAX) {
838 latch = CAL2_LATCH;
839 ms = CAL2_MS;
840 loopmin = CAL2_PIT_LOOPS;
841 }
842 }
843
844 /*
845 * Now check the results.
846 */
847 if (tsc_pit_min == ULONG_MAX) {
848 /* PIT gave no useful value */
849 pr_warn("Unable to calibrate against PIT\n");
850
851 /* We don't have an alternative source, disable TSC */
852 if (!hpet && !ref1 && !ref2) {
853 pr_notice("No reference (HPET/PMTIMER) available\n");
854 return 0;
855 }
856
857 /* The alternative source failed as well, disable TSC */
858 if (tsc_ref_min == ULONG_MAX) {
859 pr_warn("HPET/PMTIMER calibration failed\n");
860 return 0;
861 }
862
863 /* Use the alternative source */
864 pr_info("using %s reference calibration\n",
865 hpet ? "HPET" : "PMTIMER");
866
867 return tsc_ref_min;
868 }
869
870 /* We don't have an alternative source, use the PIT calibration value */
871 if (!hpet && !ref1 && !ref2) {
872 pr_info("Using PIT calibration value\n");
873 return tsc_pit_min;
874 }
875
876 /* The alternative source failed, use the PIT calibration value */
877 if (tsc_ref_min == ULONG_MAX) {
878 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
879 return tsc_pit_min;
880 }
881
882 /*
883 * The calibration values differ too much. In doubt, we use
884 * the PIT value as we know that there are PMTIMERs around
885 * running at double speed. At least we let the user know:
886 */
887 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
888 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
889 pr_info("Using PIT calibration value\n");
890 return tsc_pit_min;
891 }
892
recalibrate_cpu_khz(void)893 int recalibrate_cpu_khz(void)
894 {
895 #ifndef CONFIG_SMP
896 unsigned long cpu_khz_old = cpu_khz;
897
898 if (!boot_cpu_has(X86_FEATURE_TSC))
899 return -ENODEV;
900
901 cpu_khz = x86_platform.calibrate_cpu();
902 tsc_khz = x86_platform.calibrate_tsc();
903 if (tsc_khz == 0)
904 tsc_khz = cpu_khz;
905 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
906 cpu_khz = tsc_khz;
907 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
908 cpu_khz_old, cpu_khz);
909
910 return 0;
911 #else
912 return -ENODEV;
913 #endif
914 }
915
916 EXPORT_SYMBOL(recalibrate_cpu_khz);
917
918
919 static unsigned long long cyc2ns_suspend;
920
tsc_save_sched_clock_state(void)921 void tsc_save_sched_clock_state(void)
922 {
923 if (!sched_clock_stable())
924 return;
925
926 cyc2ns_suspend = sched_clock();
927 }
928
929 /*
930 * Even on processors with invariant TSC, TSC gets reset in some the
931 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
932 * arbitrary value (still sync'd across cpu's) during resume from such sleep
933 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
934 * that sched_clock() continues from the point where it was left off during
935 * suspend.
936 */
tsc_restore_sched_clock_state(void)937 void tsc_restore_sched_clock_state(void)
938 {
939 unsigned long long offset;
940 unsigned long flags;
941 int cpu;
942
943 if (!sched_clock_stable())
944 return;
945
946 local_irq_save(flags);
947
948 /*
949 * We're coming out of suspend, there's no concurrency yet; don't
950 * bother being nice about the RCU stuff, just write to both
951 * data fields.
952 */
953
954 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
955 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
956
957 offset = cyc2ns_suspend - sched_clock();
958
959 for_each_possible_cpu(cpu) {
960 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
961 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
962 }
963
964 local_irq_restore(flags);
965 }
966
967 #ifdef CONFIG_CPU_FREQ
968
969 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
970 * changes.
971 *
972 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
973 * not that important because current Opteron setups do not support
974 * scaling on SMP anyroads.
975 *
976 * Should fix up last_tsc too. Currently gettimeofday in the
977 * first tick after the change will be slightly wrong.
978 */
979
980 static unsigned int ref_freq;
981 static unsigned long loops_per_jiffy_ref;
982 static unsigned long tsc_khz_ref;
983
time_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)984 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
985 void *data)
986 {
987 struct cpufreq_freqs *freq = data;
988 unsigned long *lpj;
989
990 lpj = &boot_cpu_data.loops_per_jiffy;
991 #ifdef CONFIG_SMP
992 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
993 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
994 #endif
995
996 if (!ref_freq) {
997 ref_freq = freq->old;
998 loops_per_jiffy_ref = *lpj;
999 tsc_khz_ref = tsc_khz;
1000 }
1001 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
1002 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1003 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1004
1005 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1006 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1007 mark_tsc_unstable("cpufreq changes");
1008
1009 set_cyc2ns_scale(tsc_khz, freq->cpu);
1010 }
1011
1012 return 0;
1013 }
1014
1015 static struct notifier_block time_cpufreq_notifier_block = {
1016 .notifier_call = time_cpufreq_notifier
1017 };
1018
cpufreq_register_tsc_scaling(void)1019 static int __init cpufreq_register_tsc_scaling(void)
1020 {
1021 if (!boot_cpu_has(X86_FEATURE_TSC))
1022 return 0;
1023 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1024 return 0;
1025 cpufreq_register_notifier(&time_cpufreq_notifier_block,
1026 CPUFREQ_TRANSITION_NOTIFIER);
1027 return 0;
1028 }
1029
1030 core_initcall(cpufreq_register_tsc_scaling);
1031
1032 #endif /* CONFIG_CPU_FREQ */
1033
1034 #define ART_CPUID_LEAF (0x15)
1035 #define ART_MIN_DENOMINATOR (1)
1036
1037
1038 /*
1039 * If ART is present detect the numerator:denominator to convert to TSC
1040 */
detect_art(void)1041 static void detect_art(void)
1042 {
1043 unsigned int unused[2];
1044
1045 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1046 return;
1047
1048 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1049 &art_to_tsc_numerator, unused, unused+1);
1050
1051 /* Don't enable ART in a VM, non-stop TSC required */
1052 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1053 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1054 art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1055 return;
1056
1057 if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset))
1058 return;
1059
1060 /* Make this sticky over multiple CPU init calls */
1061 setup_force_cpu_cap(X86_FEATURE_ART);
1062 }
1063
1064
1065 /* clocksource code */
1066
1067 static struct clocksource clocksource_tsc;
1068
1069 /*
1070 * We used to compare the TSC to the cycle_last value in the clocksource
1071 * structure to avoid a nasty time-warp. This can be observed in a
1072 * very small window right after one CPU updated cycle_last under
1073 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1074 * is smaller than the cycle_last reference value due to a TSC which
1075 * is slighty behind. This delta is nowhere else observable, but in
1076 * that case it results in a forward time jump in the range of hours
1077 * due to the unsigned delta calculation of the time keeping core
1078 * code, which is necessary to support wrapping clocksources like pm
1079 * timer.
1080 *
1081 * This sanity check is now done in the core timekeeping code.
1082 * checking the result of read_tsc() - cycle_last for being negative.
1083 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1084 */
read_tsc(struct clocksource * cs)1085 static cycle_t read_tsc(struct clocksource *cs)
1086 {
1087 return (cycle_t)rdtsc_ordered();
1088 }
1089
1090 /*
1091 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1092 */
1093 static struct clocksource clocksource_tsc = {
1094 .name = "tsc",
1095 .rating = 300,
1096 .read = read_tsc,
1097 .mask = CLOCKSOURCE_MASK(64),
1098 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1099 CLOCK_SOURCE_MUST_VERIFY,
1100 .archdata = { .vclock_mode = VCLOCK_TSC },
1101 };
1102
mark_tsc_unstable(char * reason)1103 void mark_tsc_unstable(char *reason)
1104 {
1105 if (!tsc_unstable) {
1106 tsc_unstable = 1;
1107 clear_sched_clock_stable();
1108 disable_sched_clock_irqtime();
1109 pr_info("Marking TSC unstable due to %s\n", reason);
1110 /* Change only the rating, when not registered */
1111 if (clocksource_tsc.mult)
1112 clocksource_mark_unstable(&clocksource_tsc);
1113 else {
1114 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1115 clocksource_tsc.rating = 0;
1116 }
1117 }
1118 }
1119
1120 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1121
check_system_tsc_reliable(void)1122 static void __init check_system_tsc_reliable(void)
1123 {
1124 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1125 if (is_geode_lx()) {
1126 /* RTSC counts during suspend */
1127 #define RTSC_SUSP 0x100
1128 unsigned long res_low, res_high;
1129
1130 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1131 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1132 if (res_low & RTSC_SUSP)
1133 tsc_clocksource_reliable = 1;
1134 }
1135 #endif
1136 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1137 tsc_clocksource_reliable = 1;
1138 }
1139
1140 /*
1141 * Make an educated guess if the TSC is trustworthy and synchronized
1142 * over all CPUs.
1143 */
unsynchronized_tsc(void)1144 int unsynchronized_tsc(void)
1145 {
1146 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1147 return 1;
1148
1149 #ifdef CONFIG_SMP
1150 if (apic_is_clustered_box())
1151 return 1;
1152 #endif
1153
1154 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1155 return 0;
1156
1157 if (tsc_clocksource_reliable)
1158 return 0;
1159 /*
1160 * Intel systems are normally all synchronized.
1161 * Exceptions must mark TSC as unstable:
1162 */
1163 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1164 /* assume multi socket systems are not synchronized: */
1165 if (num_possible_cpus() > 1)
1166 return 1;
1167 }
1168
1169 return 0;
1170 }
1171
1172 /*
1173 * Convert ART to TSC given numerator/denominator found in detect_art()
1174 */
convert_art_to_tsc(cycle_t art)1175 struct system_counterval_t convert_art_to_tsc(cycle_t art)
1176 {
1177 u64 tmp, res, rem;
1178
1179 rem = do_div(art, art_to_tsc_denominator);
1180
1181 res = art * art_to_tsc_numerator;
1182 tmp = rem * art_to_tsc_numerator;
1183
1184 do_div(tmp, art_to_tsc_denominator);
1185 res += tmp + art_to_tsc_offset;
1186
1187 return (struct system_counterval_t) {.cs = art_related_clocksource,
1188 .cycles = res};
1189 }
1190 EXPORT_SYMBOL(convert_art_to_tsc);
1191
1192 static void tsc_refine_calibration_work(struct work_struct *work);
1193 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1194 /**
1195 * tsc_refine_calibration_work - Further refine tsc freq calibration
1196 * @work - ignored.
1197 *
1198 * This functions uses delayed work over a period of a
1199 * second to further refine the TSC freq value. Since this is
1200 * timer based, instead of loop based, we don't block the boot
1201 * process while this longer calibration is done.
1202 *
1203 * If there are any calibration anomalies (too many SMIs, etc),
1204 * or the refined calibration is off by 1% of the fast early
1205 * calibration, we throw out the new calibration and use the
1206 * early calibration.
1207 */
tsc_refine_calibration_work(struct work_struct * work)1208 static void tsc_refine_calibration_work(struct work_struct *work)
1209 {
1210 static u64 tsc_start = -1, ref_start;
1211 static int hpet;
1212 u64 tsc_stop, ref_stop, delta;
1213 unsigned long freq;
1214
1215 /* Don't bother refining TSC on unstable systems */
1216 if (check_tsc_unstable())
1217 goto out;
1218
1219 /*
1220 * Since the work is started early in boot, we may be
1221 * delayed the first time we expire. So set the workqueue
1222 * again once we know timers are working.
1223 */
1224 if (tsc_start == -1) {
1225 /*
1226 * Only set hpet once, to avoid mixing hardware
1227 * if the hpet becomes enabled later.
1228 */
1229 hpet = is_hpet_enabled();
1230 schedule_delayed_work(&tsc_irqwork, HZ);
1231 tsc_start = tsc_read_refs(&ref_start, hpet);
1232 return;
1233 }
1234
1235 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1236
1237 /* hpet or pmtimer available ? */
1238 if (ref_start == ref_stop)
1239 goto out;
1240
1241 /* Check, whether the sampling was disturbed by an SMI */
1242 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1243 goto out;
1244
1245 delta = tsc_stop - tsc_start;
1246 delta *= 1000000LL;
1247 if (hpet)
1248 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1249 else
1250 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1251
1252 /* Make sure we're within 1% */
1253 if (abs(tsc_khz - freq) > tsc_khz/100)
1254 goto out;
1255
1256 tsc_khz = freq;
1257 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1258 (unsigned long)tsc_khz / 1000,
1259 (unsigned long)tsc_khz % 1000);
1260
1261 /* Inform the TSC deadline clockevent devices about the recalibration */
1262 lapic_update_tsc_freq();
1263
1264 out:
1265 if (boot_cpu_has(X86_FEATURE_ART))
1266 art_related_clocksource = &clocksource_tsc;
1267 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1268 }
1269
1270
init_tsc_clocksource(void)1271 static int __init init_tsc_clocksource(void)
1272 {
1273 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1274 return 0;
1275
1276 if (tsc_clocksource_reliable)
1277 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1278 /* lower the rating if we already know its unstable: */
1279 if (check_tsc_unstable()) {
1280 clocksource_tsc.rating = 0;
1281 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1282 }
1283
1284 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1285 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1286
1287 /*
1288 * Trust the results of the earlier calibration on systems
1289 * exporting a reliable TSC.
1290 */
1291 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1292 if (boot_cpu_has(X86_FEATURE_ART))
1293 art_related_clocksource = &clocksource_tsc;
1294 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1295 return 0;
1296 }
1297
1298 schedule_delayed_work(&tsc_irqwork, 0);
1299 return 0;
1300 }
1301 /*
1302 * We use device_initcall here, to ensure we run after the hpet
1303 * is fully initialized, which may occur at fs_initcall time.
1304 */
1305 device_initcall(init_tsc_clocksource);
1306
tsc_init(void)1307 void __init tsc_init(void)
1308 {
1309 u64 lpj;
1310 int cpu;
1311
1312 if (!boot_cpu_has(X86_FEATURE_TSC)) {
1313 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1314 return;
1315 }
1316
1317 cpu_khz = x86_platform.calibrate_cpu();
1318 tsc_khz = x86_platform.calibrate_tsc();
1319
1320 /*
1321 * Trust non-zero tsc_khz as authorative,
1322 * and use it to sanity check cpu_khz,
1323 * which will be off if system timer is off.
1324 */
1325 if (tsc_khz == 0)
1326 tsc_khz = cpu_khz;
1327 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1328 cpu_khz = tsc_khz;
1329
1330 if (!tsc_khz) {
1331 mark_tsc_unstable("could not calculate TSC khz");
1332 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1333 return;
1334 }
1335
1336 pr_info("Detected %lu.%03lu MHz processor\n",
1337 (unsigned long)cpu_khz / 1000,
1338 (unsigned long)cpu_khz % 1000);
1339
1340 /*
1341 * Secondary CPUs do not run through tsc_init(), so set up
1342 * all the scale factors for all CPUs, assuming the same
1343 * speed as the bootup CPU. (cpufreq notifiers will fix this
1344 * up if their speed diverges)
1345 */
1346 for_each_possible_cpu(cpu) {
1347 cyc2ns_init(cpu);
1348 set_cyc2ns_scale(tsc_khz, cpu);
1349 }
1350
1351 if (tsc_disabled > 0)
1352 return;
1353
1354 /* now allow native_sched_clock() to use rdtsc */
1355
1356 tsc_disabled = 0;
1357 static_branch_enable(&__use_tsc);
1358
1359 if (!no_sched_irq_time)
1360 enable_sched_clock_irqtime();
1361
1362 lpj = ((u64)tsc_khz * 1000);
1363 do_div(lpj, HZ);
1364 lpj_fine = lpj;
1365
1366 use_tsc_delay();
1367
1368 if (unsynchronized_tsc())
1369 mark_tsc_unstable("TSCs unsynchronized");
1370
1371 check_system_tsc_reliable();
1372
1373 detect_art();
1374 }
1375
1376 #ifdef CONFIG_SMP
1377 /*
1378 * If we have a constant TSC and are using the TSC for the delay loop,
1379 * we can skip clock calibration if another cpu in the same socket has already
1380 * been calibrated. This assumes that CONSTANT_TSC applies to all
1381 * cpus in the socket - this should be a safe assumption.
1382 */
calibrate_delay_is_known(void)1383 unsigned long calibrate_delay_is_known(void)
1384 {
1385 int sibling, cpu = smp_processor_id();
1386 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1387 const struct cpumask *mask = topology_core_cpumask(cpu);
1388
1389 if (tsc_disabled || !constant_tsc || !mask)
1390 return 0;
1391
1392 sibling = cpumask_any_but(mask, cpu);
1393 if (sibling < nr_cpu_ids)
1394 return cpu_data(sibling).loops_per_jiffy;
1395 return 0;
1396 }
1397 #endif
1398