• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4 
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *	-- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *	-- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *	-- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66 
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98 
99 #include <linux/uaccess.h>
100 
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104 
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107 
108 #undef TTY_DEBUG_HANGUP
109 #ifdef TTY_DEBUG_HANGUP
110 # define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
111 #else
112 # define tty_debug_hangup(tty, f, args...)	do { } while (0)
113 #endif
114 
115 #define TTY_PARANOIA_CHECK 1
116 #define CHECK_TTY_COUNT 1
117 
118 struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
119 	.c_iflag = ICRNL | IXON,
120 	.c_oflag = OPOST | ONLCR,
121 	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
122 	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
123 		   ECHOCTL | ECHOKE | IEXTEN,
124 	.c_cc = INIT_C_CC,
125 	.c_ispeed = 38400,
126 	.c_ospeed = 38400,
127 	/* .c_line = N_TTY, */
128 };
129 
130 EXPORT_SYMBOL(tty_std_termios);
131 
132 /* This list gets poked at by procfs and various bits of boot up code. This
133    could do with some rationalisation such as pulling the tty proc function
134    into this file */
135 
136 LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
137 
138 /* Mutex to protect creating and releasing a tty */
139 DEFINE_MUTEX(tty_mutex);
140 
141 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143 ssize_t redirected_tty_write(struct file *, const char __user *,
144 							size_t, loff_t *);
145 static unsigned int tty_poll(struct file *, poll_table *);
146 static int tty_open(struct inode *, struct file *);
147 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148 #ifdef CONFIG_COMPAT
149 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150 				unsigned long arg);
151 #else
152 #define tty_compat_ioctl NULL
153 #endif
154 static int __tty_fasync(int fd, struct file *filp, int on);
155 static int tty_fasync(int fd, struct file *filp, int on);
156 static void release_tty(struct tty_struct *tty, int idx);
157 
158 /**
159  *	free_tty_struct		-	free a disused tty
160  *	@tty: tty struct to free
161  *
162  *	Free the write buffers, tty queue and tty memory itself.
163  *
164  *	Locking: none. Must be called after tty is definitely unused
165  */
166 
free_tty_struct(struct tty_struct * tty)167 static void free_tty_struct(struct tty_struct *tty)
168 {
169 	tty_ldisc_deinit(tty);
170 	put_device(tty->dev);
171 	kfree(tty->write_buf);
172 	tty->magic = 0xDEADDEAD;
173 	kfree(tty);
174 }
175 
file_tty(struct file * file)176 static inline struct tty_struct *file_tty(struct file *file)
177 {
178 	return ((struct tty_file_private *)file->private_data)->tty;
179 }
180 
tty_alloc_file(struct file * file)181 int tty_alloc_file(struct file *file)
182 {
183 	struct tty_file_private *priv;
184 
185 	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
186 	if (!priv)
187 		return -ENOMEM;
188 
189 	file->private_data = priv;
190 
191 	return 0;
192 }
193 
194 /* Associate a new file with the tty structure */
tty_add_file(struct tty_struct * tty,struct file * file)195 void tty_add_file(struct tty_struct *tty, struct file *file)
196 {
197 	struct tty_file_private *priv = file->private_data;
198 
199 	priv->tty = tty;
200 	priv->file = file;
201 
202 	spin_lock(&tty->files_lock);
203 	list_add(&priv->list, &tty->tty_files);
204 	spin_unlock(&tty->files_lock);
205 }
206 
207 /**
208  * tty_free_file - free file->private_data
209  *
210  * This shall be used only for fail path handling when tty_add_file was not
211  * called yet.
212  */
tty_free_file(struct file * file)213 void tty_free_file(struct file *file)
214 {
215 	struct tty_file_private *priv = file->private_data;
216 
217 	file->private_data = NULL;
218 	kfree(priv);
219 }
220 
221 /* Delete file from its tty */
tty_del_file(struct file * file)222 static void tty_del_file(struct file *file)
223 {
224 	struct tty_file_private *priv = file->private_data;
225 	struct tty_struct *tty = priv->tty;
226 
227 	spin_lock(&tty->files_lock);
228 	list_del(&priv->list);
229 	spin_unlock(&tty->files_lock);
230 	tty_free_file(file);
231 }
232 
233 /**
234  *	tty_name	-	return tty naming
235  *	@tty: tty structure
236  *
237  *	Convert a tty structure into a name. The name reflects the kernel
238  *	naming policy and if udev is in use may not reflect user space
239  *
240  *	Locking: none
241  */
242 
tty_name(const struct tty_struct * tty)243 const char *tty_name(const struct tty_struct *tty)
244 {
245 	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
246 		return "NULL tty";
247 	return tty->name;
248 }
249 
250 EXPORT_SYMBOL(tty_name);
251 
tty_driver_name(const struct tty_struct * tty)252 const char *tty_driver_name(const struct tty_struct *tty)
253 {
254 	if (!tty || !tty->driver)
255 		return "";
256 	return tty->driver->name;
257 }
258 
tty_paranoia_check(struct tty_struct * tty,struct inode * inode,const char * routine)259 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
260 			      const char *routine)
261 {
262 #ifdef TTY_PARANOIA_CHECK
263 	if (!tty) {
264 		pr_warn("(%d:%d): %s: NULL tty\n",
265 			imajor(inode), iminor(inode), routine);
266 		return 1;
267 	}
268 	if (tty->magic != TTY_MAGIC) {
269 		pr_warn("(%d:%d): %s: bad magic number\n",
270 			imajor(inode), iminor(inode), routine);
271 		return 1;
272 	}
273 #endif
274 	return 0;
275 }
276 
277 /* Caller must hold tty_lock */
check_tty_count(struct tty_struct * tty,const char * routine)278 static int check_tty_count(struct tty_struct *tty, const char *routine)
279 {
280 #ifdef CHECK_TTY_COUNT
281 	struct list_head *p;
282 	int count = 0;
283 
284 	spin_lock(&tty->files_lock);
285 	list_for_each(p, &tty->tty_files) {
286 		count++;
287 	}
288 	spin_unlock(&tty->files_lock);
289 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
290 	    tty->driver->subtype == PTY_TYPE_SLAVE &&
291 	    tty->link && tty->link->count)
292 		count++;
293 	if (tty->count != count) {
294 		tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
295 			 routine, tty->count, count);
296 		return count;
297 	}
298 #endif
299 	return 0;
300 }
301 
302 /**
303  *	get_tty_driver		-	find device of a tty
304  *	@dev_t: device identifier
305  *	@index: returns the index of the tty
306  *
307  *	This routine returns a tty driver structure, given a device number
308  *	and also passes back the index number.
309  *
310  *	Locking: caller must hold tty_mutex
311  */
312 
get_tty_driver(dev_t device,int * index)313 static struct tty_driver *get_tty_driver(dev_t device, int *index)
314 {
315 	struct tty_driver *p;
316 
317 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
318 		dev_t base = MKDEV(p->major, p->minor_start);
319 		if (device < base || device >= base + p->num)
320 			continue;
321 		*index = device - base;
322 		return tty_driver_kref_get(p);
323 	}
324 	return NULL;
325 }
326 
327 #ifdef CONFIG_CONSOLE_POLL
328 
329 /**
330  *	tty_find_polling_driver	-	find device of a polled tty
331  *	@name: name string to match
332  *	@line: pointer to resulting tty line nr
333  *
334  *	This routine returns a tty driver structure, given a name
335  *	and the condition that the tty driver is capable of polled
336  *	operation.
337  */
tty_find_polling_driver(char * name,int * line)338 struct tty_driver *tty_find_polling_driver(char *name, int *line)
339 {
340 	struct tty_driver *p, *res = NULL;
341 	int tty_line = 0;
342 	int len;
343 	char *str, *stp;
344 
345 	for (str = name; *str; str++)
346 		if ((*str >= '0' && *str <= '9') || *str == ',')
347 			break;
348 	if (!*str)
349 		return NULL;
350 
351 	len = str - name;
352 	tty_line = simple_strtoul(str, &str, 10);
353 
354 	mutex_lock(&tty_mutex);
355 	/* Search through the tty devices to look for a match */
356 	list_for_each_entry(p, &tty_drivers, tty_drivers) {
357 		if (strncmp(name, p->name, len) != 0)
358 			continue;
359 		stp = str;
360 		if (*stp == ',')
361 			stp++;
362 		if (*stp == '\0')
363 			stp = NULL;
364 
365 		if (tty_line >= 0 && tty_line < p->num && p->ops &&
366 		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
367 			res = tty_driver_kref_get(p);
368 			*line = tty_line;
369 			break;
370 		}
371 	}
372 	mutex_unlock(&tty_mutex);
373 
374 	return res;
375 }
376 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
377 #endif
378 
is_ignored(int sig)379 static int is_ignored(int sig)
380 {
381 	return (sigismember(&current->blocked, sig) ||
382 		current->sighand->action[sig-1].sa.sa_handler == SIG_IGN);
383 }
384 
385 /**
386  *	tty_check_change	-	check for POSIX terminal changes
387  *	@tty: tty to check
388  *
389  *	If we try to write to, or set the state of, a terminal and we're
390  *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
391  *	ignored, go ahead and perform the operation.  (POSIX 7.2)
392  *
393  *	Locking: ctrl_lock
394  */
395 
__tty_check_change(struct tty_struct * tty,int sig)396 int __tty_check_change(struct tty_struct *tty, int sig)
397 {
398 	unsigned long flags;
399 	struct pid *pgrp, *tty_pgrp;
400 	int ret = 0;
401 
402 	if (current->signal->tty != tty)
403 		return 0;
404 
405 	rcu_read_lock();
406 	pgrp = task_pgrp(current);
407 
408 	spin_lock_irqsave(&tty->ctrl_lock, flags);
409 	tty_pgrp = tty->pgrp;
410 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
411 
412 	if (tty_pgrp && pgrp != tty->pgrp) {
413 		if (is_ignored(sig)) {
414 			if (sig == SIGTTIN)
415 				ret = -EIO;
416 		} else if (is_current_pgrp_orphaned())
417 			ret = -EIO;
418 		else {
419 			kill_pgrp(pgrp, sig, 1);
420 			set_thread_flag(TIF_SIGPENDING);
421 			ret = -ERESTARTSYS;
422 		}
423 	}
424 	rcu_read_unlock();
425 
426 	if (!tty_pgrp)
427 		tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
428 
429 	return ret;
430 }
431 
tty_check_change(struct tty_struct * tty)432 int tty_check_change(struct tty_struct *tty)
433 {
434 	return __tty_check_change(tty, SIGTTOU);
435 }
436 EXPORT_SYMBOL(tty_check_change);
437 
hung_up_tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)438 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
439 				size_t count, loff_t *ppos)
440 {
441 	return 0;
442 }
443 
hung_up_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)444 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
445 				 size_t count, loff_t *ppos)
446 {
447 	return -EIO;
448 }
449 
450 /* No kernel lock held - none needed ;) */
hung_up_tty_poll(struct file * filp,poll_table * wait)451 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
452 {
453 	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
454 }
455 
hung_up_tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)456 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
457 		unsigned long arg)
458 {
459 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
460 }
461 
hung_up_tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)462 static long hung_up_tty_compat_ioctl(struct file *file,
463 				     unsigned int cmd, unsigned long arg)
464 {
465 	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
466 }
467 
hung_up_tty_fasync(int fd,struct file * file,int on)468 static int hung_up_tty_fasync(int fd, struct file *file, int on)
469 {
470 	return -ENOTTY;
471 }
472 
473 static const struct file_operations tty_fops = {
474 	.llseek		= no_llseek,
475 	.read		= tty_read,
476 	.write		= tty_write,
477 	.poll		= tty_poll,
478 	.unlocked_ioctl	= tty_ioctl,
479 	.compat_ioctl	= tty_compat_ioctl,
480 	.open		= tty_open,
481 	.release	= tty_release,
482 	.fasync		= tty_fasync,
483 };
484 
485 static const struct file_operations console_fops = {
486 	.llseek		= no_llseek,
487 	.read		= tty_read,
488 	.write		= redirected_tty_write,
489 	.poll		= tty_poll,
490 	.unlocked_ioctl	= tty_ioctl,
491 	.compat_ioctl	= tty_compat_ioctl,
492 	.open		= tty_open,
493 	.release	= tty_release,
494 	.fasync		= tty_fasync,
495 };
496 
497 static const struct file_operations hung_up_tty_fops = {
498 	.llseek		= no_llseek,
499 	.read		= hung_up_tty_read,
500 	.write		= hung_up_tty_write,
501 	.poll		= hung_up_tty_poll,
502 	.unlocked_ioctl	= hung_up_tty_ioctl,
503 	.compat_ioctl	= hung_up_tty_compat_ioctl,
504 	.release	= tty_release,
505 	.fasync		= hung_up_tty_fasync,
506 };
507 
508 static DEFINE_SPINLOCK(redirect_lock);
509 static struct file *redirect;
510 
511 
proc_clear_tty(struct task_struct * p)512 void proc_clear_tty(struct task_struct *p)
513 {
514 	unsigned long flags;
515 	struct tty_struct *tty;
516 	spin_lock_irqsave(&p->sighand->siglock, flags);
517 	tty = p->signal->tty;
518 	p->signal->tty = NULL;
519 	spin_unlock_irqrestore(&p->sighand->siglock, flags);
520 	tty_kref_put(tty);
521 }
522 
523 /**
524  * proc_set_tty -  set the controlling terminal
525  *
526  * Only callable by the session leader and only if it does not already have
527  * a controlling terminal.
528  *
529  * Caller must hold:  tty_lock()
530  *		      a readlock on tasklist_lock
531  *		      sighand lock
532  */
__proc_set_tty(struct tty_struct * tty)533 static void __proc_set_tty(struct tty_struct *tty)
534 {
535 	unsigned long flags;
536 
537 	spin_lock_irqsave(&tty->ctrl_lock, flags);
538 	/*
539 	 * The session and fg pgrp references will be non-NULL if
540 	 * tiocsctty() is stealing the controlling tty
541 	 */
542 	put_pid(tty->session);
543 	put_pid(tty->pgrp);
544 	tty->pgrp = get_pid(task_pgrp(current));
545 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
546 	tty->session = get_pid(task_session(current));
547 	if (current->signal->tty) {
548 		tty_debug(tty, "current tty %s not NULL!!\n",
549 			  current->signal->tty->name);
550 		tty_kref_put(current->signal->tty);
551 	}
552 	put_pid(current->signal->tty_old_pgrp);
553 	current->signal->tty = tty_kref_get(tty);
554 	current->signal->tty_old_pgrp = NULL;
555 }
556 
proc_set_tty(struct tty_struct * tty)557 static void proc_set_tty(struct tty_struct *tty)
558 {
559 	spin_lock_irq(&current->sighand->siglock);
560 	__proc_set_tty(tty);
561 	spin_unlock_irq(&current->sighand->siglock);
562 }
563 
get_current_tty(void)564 struct tty_struct *get_current_tty(void)
565 {
566 	struct tty_struct *tty;
567 	unsigned long flags;
568 
569 	spin_lock_irqsave(&current->sighand->siglock, flags);
570 	tty = tty_kref_get(current->signal->tty);
571 	spin_unlock_irqrestore(&current->sighand->siglock, flags);
572 	return tty;
573 }
574 EXPORT_SYMBOL_GPL(get_current_tty);
575 
session_clear_tty(struct pid * session)576 static void session_clear_tty(struct pid *session)
577 {
578 	struct task_struct *p;
579 	do_each_pid_task(session, PIDTYPE_SID, p) {
580 		proc_clear_tty(p);
581 	} while_each_pid_task(session, PIDTYPE_SID, p);
582 }
583 
584 /**
585  *	tty_wakeup	-	request more data
586  *	@tty: terminal
587  *
588  *	Internal and external helper for wakeups of tty. This function
589  *	informs the line discipline if present that the driver is ready
590  *	to receive more output data.
591  */
592 
tty_wakeup(struct tty_struct * tty)593 void tty_wakeup(struct tty_struct *tty)
594 {
595 	struct tty_ldisc *ld;
596 
597 	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
598 		ld = tty_ldisc_ref(tty);
599 		if (ld) {
600 			if (ld->ops->write_wakeup)
601 				ld->ops->write_wakeup(tty);
602 			tty_ldisc_deref(ld);
603 		}
604 	}
605 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
606 }
607 
608 EXPORT_SYMBOL_GPL(tty_wakeup);
609 
610 /**
611  *	tty_signal_session_leader	- sends SIGHUP to session leader
612  *	@tty		controlling tty
613  *	@exit_session	if non-zero, signal all foreground group processes
614  *
615  *	Send SIGHUP and SIGCONT to the session leader and its process group.
616  *	Optionally, signal all processes in the foreground process group.
617  *
618  *	Returns the number of processes in the session with this tty
619  *	as their controlling terminal. This value is used to drop
620  *	tty references for those processes.
621  */
tty_signal_session_leader(struct tty_struct * tty,int exit_session)622 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
623 {
624 	struct task_struct *p;
625 	int refs = 0;
626 	struct pid *tty_pgrp = NULL;
627 
628 	read_lock(&tasklist_lock);
629 	if (tty->session) {
630 		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
631 			spin_lock_irq(&p->sighand->siglock);
632 			if (p->signal->tty == tty) {
633 				p->signal->tty = NULL;
634 				/* We defer the dereferences outside fo
635 				   the tasklist lock */
636 				refs++;
637 			}
638 			if (!p->signal->leader) {
639 				spin_unlock_irq(&p->sighand->siglock);
640 				continue;
641 			}
642 			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
643 			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
644 			put_pid(p->signal->tty_old_pgrp);  /* A noop */
645 			spin_lock(&tty->ctrl_lock);
646 			tty_pgrp = get_pid(tty->pgrp);
647 			if (tty->pgrp)
648 				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
649 			spin_unlock(&tty->ctrl_lock);
650 			spin_unlock_irq(&p->sighand->siglock);
651 		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
652 	}
653 	read_unlock(&tasklist_lock);
654 
655 	if (tty_pgrp) {
656 		if (exit_session)
657 			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
658 		put_pid(tty_pgrp);
659 	}
660 
661 	return refs;
662 }
663 
664 /**
665  *	__tty_hangup		-	actual handler for hangup events
666  *	@work: tty device
667  *
668  *	This can be called by a "kworker" kernel thread.  That is process
669  *	synchronous but doesn't hold any locks, so we need to make sure we
670  *	have the appropriate locks for what we're doing.
671  *
672  *	The hangup event clears any pending redirections onto the hung up
673  *	device. It ensures future writes will error and it does the needed
674  *	line discipline hangup and signal delivery. The tty object itself
675  *	remains intact.
676  *
677  *	Locking:
678  *		BTM
679  *		  redirect lock for undoing redirection
680  *		  file list lock for manipulating list of ttys
681  *		  tty_ldiscs_lock from called functions
682  *		  termios_rwsem resetting termios data
683  *		  tasklist_lock to walk task list for hangup event
684  *		    ->siglock to protect ->signal/->sighand
685  */
__tty_hangup(struct tty_struct * tty,int exit_session)686 static void __tty_hangup(struct tty_struct *tty, int exit_session)
687 {
688 	struct file *cons_filp = NULL;
689 	struct file *filp, *f = NULL;
690 	struct tty_file_private *priv;
691 	int    closecount = 0, n;
692 	int refs;
693 
694 	if (!tty)
695 		return;
696 
697 
698 	spin_lock(&redirect_lock);
699 	if (redirect && file_tty(redirect) == tty) {
700 		f = redirect;
701 		redirect = NULL;
702 	}
703 	spin_unlock(&redirect_lock);
704 
705 	tty_lock(tty);
706 
707 	if (test_bit(TTY_HUPPED, &tty->flags)) {
708 		tty_unlock(tty);
709 		return;
710 	}
711 
712 	/*
713 	 * Some console devices aren't actually hung up for technical and
714 	 * historical reasons, which can lead to indefinite interruptible
715 	 * sleep in n_tty_read().  The following explicitly tells
716 	 * n_tty_read() to abort readers.
717 	 */
718 	set_bit(TTY_HUPPING, &tty->flags);
719 
720 	/* inuse_filps is protected by the single tty lock,
721 	   this really needs to change if we want to flush the
722 	   workqueue with the lock held */
723 	check_tty_count(tty, "tty_hangup");
724 
725 	spin_lock(&tty->files_lock);
726 	/* This breaks for file handles being sent over AF_UNIX sockets ? */
727 	list_for_each_entry(priv, &tty->tty_files, list) {
728 		filp = priv->file;
729 		if (filp->f_op->write == redirected_tty_write)
730 			cons_filp = filp;
731 		if (filp->f_op->write != tty_write)
732 			continue;
733 		closecount++;
734 		__tty_fasync(-1, filp, 0);	/* can't block */
735 		filp->f_op = &hung_up_tty_fops;
736 	}
737 	spin_unlock(&tty->files_lock);
738 
739 	refs = tty_signal_session_leader(tty, exit_session);
740 	/* Account for the p->signal references we killed */
741 	while (refs--)
742 		tty_kref_put(tty);
743 
744 	tty_ldisc_hangup(tty, cons_filp != NULL);
745 
746 	spin_lock_irq(&tty->ctrl_lock);
747 	clear_bit(TTY_THROTTLED, &tty->flags);
748 	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
749 	put_pid(tty->session);
750 	put_pid(tty->pgrp);
751 	tty->session = NULL;
752 	tty->pgrp = NULL;
753 	tty->ctrl_status = 0;
754 	spin_unlock_irq(&tty->ctrl_lock);
755 
756 	/*
757 	 * If one of the devices matches a console pointer, we
758 	 * cannot just call hangup() because that will cause
759 	 * tty->count and state->count to go out of sync.
760 	 * So we just call close() the right number of times.
761 	 */
762 	if (cons_filp) {
763 		if (tty->ops->close)
764 			for (n = 0; n < closecount; n++)
765 				tty->ops->close(tty, cons_filp);
766 	} else if (tty->ops->hangup)
767 		tty->ops->hangup(tty);
768 	/*
769 	 * We don't want to have driver/ldisc interactions beyond the ones
770 	 * we did here. The driver layer expects no calls after ->hangup()
771 	 * from the ldisc side, which is now guaranteed.
772 	 */
773 	set_bit(TTY_HUPPED, &tty->flags);
774 	clear_bit(TTY_HUPPING, &tty->flags);
775 	tty_unlock(tty);
776 
777 	if (f)
778 		fput(f);
779 }
780 
do_tty_hangup(struct work_struct * work)781 static void do_tty_hangup(struct work_struct *work)
782 {
783 	struct tty_struct *tty =
784 		container_of(work, struct tty_struct, hangup_work);
785 
786 	__tty_hangup(tty, 0);
787 }
788 
789 /**
790  *	tty_hangup		-	trigger a hangup event
791  *	@tty: tty to hangup
792  *
793  *	A carrier loss (virtual or otherwise) has occurred on this like
794  *	schedule a hangup sequence to run after this event.
795  */
796 
tty_hangup(struct tty_struct * tty)797 void tty_hangup(struct tty_struct *tty)
798 {
799 	tty_debug_hangup(tty, "hangup\n");
800 	schedule_work(&tty->hangup_work);
801 }
802 
803 EXPORT_SYMBOL(tty_hangup);
804 
805 /**
806  *	tty_vhangup		-	process vhangup
807  *	@tty: tty to hangup
808  *
809  *	The user has asked via system call for the terminal to be hung up.
810  *	We do this synchronously so that when the syscall returns the process
811  *	is complete. That guarantee is necessary for security reasons.
812  */
813 
tty_vhangup(struct tty_struct * tty)814 void tty_vhangup(struct tty_struct *tty)
815 {
816 	tty_debug_hangup(tty, "vhangup\n");
817 	__tty_hangup(tty, 0);
818 }
819 
820 EXPORT_SYMBOL(tty_vhangup);
821 
822 
823 /**
824  *	tty_vhangup_self	-	process vhangup for own ctty
825  *
826  *	Perform a vhangup on the current controlling tty
827  */
828 
tty_vhangup_self(void)829 void tty_vhangup_self(void)
830 {
831 	struct tty_struct *tty;
832 
833 	tty = get_current_tty();
834 	if (tty) {
835 		tty_vhangup(tty);
836 		tty_kref_put(tty);
837 	}
838 }
839 
840 /**
841  *	tty_vhangup_session		-	hangup session leader exit
842  *	@tty: tty to hangup
843  *
844  *	The session leader is exiting and hanging up its controlling terminal.
845  *	Every process in the foreground process group is signalled SIGHUP.
846  *
847  *	We do this synchronously so that when the syscall returns the process
848  *	is complete. That guarantee is necessary for security reasons.
849  */
850 
tty_vhangup_session(struct tty_struct * tty)851 static void tty_vhangup_session(struct tty_struct *tty)
852 {
853 	tty_debug_hangup(tty, "session hangup\n");
854 	__tty_hangup(tty, 1);
855 }
856 
857 /**
858  *	tty_hung_up_p		-	was tty hung up
859  *	@filp: file pointer of tty
860  *
861  *	Return true if the tty has been subject to a vhangup or a carrier
862  *	loss
863  */
864 
tty_hung_up_p(struct file * filp)865 int tty_hung_up_p(struct file *filp)
866 {
867 	return (filp->f_op == &hung_up_tty_fops);
868 }
869 
870 EXPORT_SYMBOL(tty_hung_up_p);
871 
872 /**
873  *	disassociate_ctty	-	disconnect controlling tty
874  *	@on_exit: true if exiting so need to "hang up" the session
875  *
876  *	This function is typically called only by the session leader, when
877  *	it wants to disassociate itself from its controlling tty.
878  *
879  *	It performs the following functions:
880  * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
881  * 	(2)  Clears the tty from being controlling the session
882  * 	(3)  Clears the controlling tty for all processes in the
883  * 		session group.
884  *
885  *	The argument on_exit is set to 1 if called when a process is
886  *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
887  *
888  *	Locking:
889  *		BTM is taken for hysterical raisins, and held when
890  *		  called from no_tty().
891  *		  tty_mutex is taken to protect tty
892  *		  ->siglock is taken to protect ->signal/->sighand
893  *		  tasklist_lock is taken to walk process list for sessions
894  *		    ->siglock is taken to protect ->signal/->sighand
895  */
896 
disassociate_ctty(int on_exit)897 void disassociate_ctty(int on_exit)
898 {
899 	struct tty_struct *tty;
900 
901 	if (!current->signal->leader)
902 		return;
903 
904 	tty = get_current_tty();
905 	if (tty) {
906 		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
907 			tty_vhangup_session(tty);
908 		} else {
909 			struct pid *tty_pgrp = tty_get_pgrp(tty);
910 			if (tty_pgrp) {
911 				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
912 				if (!on_exit)
913 					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
914 				put_pid(tty_pgrp);
915 			}
916 		}
917 		tty_kref_put(tty);
918 
919 	} else if (on_exit) {
920 		struct pid *old_pgrp;
921 		spin_lock_irq(&current->sighand->siglock);
922 		old_pgrp = current->signal->tty_old_pgrp;
923 		current->signal->tty_old_pgrp = NULL;
924 		spin_unlock_irq(&current->sighand->siglock);
925 		if (old_pgrp) {
926 			kill_pgrp(old_pgrp, SIGHUP, on_exit);
927 			kill_pgrp(old_pgrp, SIGCONT, on_exit);
928 			put_pid(old_pgrp);
929 		}
930 		return;
931 	}
932 
933 	spin_lock_irq(&current->sighand->siglock);
934 	put_pid(current->signal->tty_old_pgrp);
935 	current->signal->tty_old_pgrp = NULL;
936 
937 	tty = tty_kref_get(current->signal->tty);
938 	if (tty) {
939 		unsigned long flags;
940 		spin_lock_irqsave(&tty->ctrl_lock, flags);
941 		put_pid(tty->session);
942 		put_pid(tty->pgrp);
943 		tty->session = NULL;
944 		tty->pgrp = NULL;
945 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
946 		tty_kref_put(tty);
947 	} else
948 		tty_debug_hangup(tty, "no current tty\n");
949 
950 	spin_unlock_irq(&current->sighand->siglock);
951 	/* Now clear signal->tty under the lock */
952 	read_lock(&tasklist_lock);
953 	session_clear_tty(task_session(current));
954 	read_unlock(&tasklist_lock);
955 }
956 
957 /**
958  *
959  *	no_tty	- Ensure the current process does not have a controlling tty
960  */
no_tty(void)961 void no_tty(void)
962 {
963 	/* FIXME: Review locking here. The tty_lock never covered any race
964 	   between a new association and proc_clear_tty but possible we need
965 	   to protect against this anyway */
966 	struct task_struct *tsk = current;
967 	disassociate_ctty(0);
968 	proc_clear_tty(tsk);
969 }
970 
971 
972 /**
973  *	stop_tty	-	propagate flow control
974  *	@tty: tty to stop
975  *
976  *	Perform flow control to the driver. May be called
977  *	on an already stopped device and will not re-call the driver
978  *	method.
979  *
980  *	This functionality is used by both the line disciplines for
981  *	halting incoming flow and by the driver. It may therefore be
982  *	called from any context, may be under the tty atomic_write_lock
983  *	but not always.
984  *
985  *	Locking:
986  *		flow_lock
987  */
988 
__stop_tty(struct tty_struct * tty)989 void __stop_tty(struct tty_struct *tty)
990 {
991 	if (tty->stopped)
992 		return;
993 	tty->stopped = 1;
994 	if (tty->ops->stop)
995 		tty->ops->stop(tty);
996 }
997 
stop_tty(struct tty_struct * tty)998 void stop_tty(struct tty_struct *tty)
999 {
1000 	unsigned long flags;
1001 
1002 	spin_lock_irqsave(&tty->flow_lock, flags);
1003 	__stop_tty(tty);
1004 	spin_unlock_irqrestore(&tty->flow_lock, flags);
1005 }
1006 EXPORT_SYMBOL(stop_tty);
1007 
1008 /**
1009  *	start_tty	-	propagate flow control
1010  *	@tty: tty to start
1011  *
1012  *	Start a tty that has been stopped if at all possible. If this
1013  *	tty was previous stopped and is now being started, the driver
1014  *	start method is invoked and the line discipline woken.
1015  *
1016  *	Locking:
1017  *		flow_lock
1018  */
1019 
__start_tty(struct tty_struct * tty)1020 void __start_tty(struct tty_struct *tty)
1021 {
1022 	if (!tty->stopped || tty->flow_stopped)
1023 		return;
1024 	tty->stopped = 0;
1025 	if (tty->ops->start)
1026 		tty->ops->start(tty);
1027 	tty_wakeup(tty);
1028 }
1029 
start_tty(struct tty_struct * tty)1030 void start_tty(struct tty_struct *tty)
1031 {
1032 	unsigned long flags;
1033 
1034 	spin_lock_irqsave(&tty->flow_lock, flags);
1035 	__start_tty(tty);
1036 	spin_unlock_irqrestore(&tty->flow_lock, flags);
1037 }
1038 EXPORT_SYMBOL(start_tty);
1039 
tty_update_time(struct timespec * time)1040 static void tty_update_time(struct timespec *time)
1041 {
1042 	unsigned long sec = get_seconds();
1043 
1044 	/*
1045 	 * We only care if the two values differ in anything other than the
1046 	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1047 	 * the time of the tty device, otherwise it could be construded as a
1048 	 * security leak to let userspace know the exact timing of the tty.
1049 	 */
1050 	if ((sec ^ time->tv_sec) & ~7)
1051 		time->tv_sec = sec;
1052 }
1053 
1054 /**
1055  *	tty_read	-	read method for tty device files
1056  *	@file: pointer to tty file
1057  *	@buf: user buffer
1058  *	@count: size of user buffer
1059  *	@ppos: unused
1060  *
1061  *	Perform the read system call function on this terminal device. Checks
1062  *	for hung up devices before calling the line discipline method.
1063  *
1064  *	Locking:
1065  *		Locks the line discipline internally while needed. Multiple
1066  *	read calls may be outstanding in parallel.
1067  */
1068 
tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1069 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1070 			loff_t *ppos)
1071 {
1072 	int i;
1073 	struct inode *inode = file_inode(file);
1074 	struct tty_struct *tty = file_tty(file);
1075 	struct tty_ldisc *ld;
1076 
1077 	if (tty_paranoia_check(tty, inode, "tty_read"))
1078 		return -EIO;
1079 	if (!tty || tty_io_error(tty))
1080 		return -EIO;
1081 
1082 	/* We want to wait for the line discipline to sort out in this
1083 	   situation */
1084 	ld = tty_ldisc_ref_wait(tty);
1085 	if (!ld)
1086 		return hung_up_tty_read(file, buf, count, ppos);
1087 	if (ld->ops->read)
1088 		i = ld->ops->read(tty, file, buf, count);
1089 	else
1090 		i = -EIO;
1091 	tty_ldisc_deref(ld);
1092 
1093 	if (i > 0)
1094 		tty_update_time(&inode->i_atime);
1095 
1096 	return i;
1097 }
1098 
tty_write_unlock(struct tty_struct * tty)1099 static void tty_write_unlock(struct tty_struct *tty)
1100 {
1101 	mutex_unlock(&tty->atomic_write_lock);
1102 	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1103 }
1104 
tty_write_lock(struct tty_struct * tty,int ndelay)1105 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1106 {
1107 	if (!mutex_trylock(&tty->atomic_write_lock)) {
1108 		if (ndelay)
1109 			return -EAGAIN;
1110 		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1111 			return -ERESTARTSYS;
1112 	}
1113 	return 0;
1114 }
1115 
1116 /*
1117  * Split writes up in sane blocksizes to avoid
1118  * denial-of-service type attacks
1119  */
do_tty_write(ssize_t (* write)(struct tty_struct *,struct file *,const unsigned char *,size_t),struct tty_struct * tty,struct file * file,const char __user * buf,size_t count)1120 static inline ssize_t do_tty_write(
1121 	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1122 	struct tty_struct *tty,
1123 	struct file *file,
1124 	const char __user *buf,
1125 	size_t count)
1126 {
1127 	ssize_t ret, written = 0;
1128 	unsigned int chunk;
1129 
1130 	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1131 	if (ret < 0)
1132 		return ret;
1133 
1134 	/*
1135 	 * We chunk up writes into a temporary buffer. This
1136 	 * simplifies low-level drivers immensely, since they
1137 	 * don't have locking issues and user mode accesses.
1138 	 *
1139 	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1140 	 * big chunk-size..
1141 	 *
1142 	 * The default chunk-size is 2kB, because the NTTY
1143 	 * layer has problems with bigger chunks. It will
1144 	 * claim to be able to handle more characters than
1145 	 * it actually does.
1146 	 *
1147 	 * FIXME: This can probably go away now except that 64K chunks
1148 	 * are too likely to fail unless switched to vmalloc...
1149 	 */
1150 	chunk = 2048;
1151 	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1152 		chunk = 65536;
1153 	if (count < chunk)
1154 		chunk = count;
1155 
1156 	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1157 	if (tty->write_cnt < chunk) {
1158 		unsigned char *buf_chunk;
1159 
1160 		if (chunk < 1024)
1161 			chunk = 1024;
1162 
1163 		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1164 		if (!buf_chunk) {
1165 			ret = -ENOMEM;
1166 			goto out;
1167 		}
1168 		kfree(tty->write_buf);
1169 		tty->write_cnt = chunk;
1170 		tty->write_buf = buf_chunk;
1171 	}
1172 
1173 	/* Do the write .. */
1174 	for (;;) {
1175 		size_t size = count;
1176 		if (size > chunk)
1177 			size = chunk;
1178 		ret = -EFAULT;
1179 		if (copy_from_user(tty->write_buf, buf, size))
1180 			break;
1181 		ret = write(tty, file, tty->write_buf, size);
1182 		if (ret <= 0)
1183 			break;
1184 		written += ret;
1185 		buf += ret;
1186 		count -= ret;
1187 		if (!count)
1188 			break;
1189 		ret = -ERESTARTSYS;
1190 		if (signal_pending(current))
1191 			break;
1192 		cond_resched();
1193 	}
1194 	if (written) {
1195 		tty_update_time(&file_inode(file)->i_mtime);
1196 		ret = written;
1197 	}
1198 out:
1199 	tty_write_unlock(tty);
1200 	return ret;
1201 }
1202 
1203 /**
1204  * tty_write_message - write a message to a certain tty, not just the console.
1205  * @tty: the destination tty_struct
1206  * @msg: the message to write
1207  *
1208  * This is used for messages that need to be redirected to a specific tty.
1209  * We don't put it into the syslog queue right now maybe in the future if
1210  * really needed.
1211  *
1212  * We must still hold the BTM and test the CLOSING flag for the moment.
1213  */
1214 
tty_write_message(struct tty_struct * tty,char * msg)1215 void tty_write_message(struct tty_struct *tty, char *msg)
1216 {
1217 	if (tty) {
1218 		mutex_lock(&tty->atomic_write_lock);
1219 		tty_lock(tty);
1220 		if (tty->ops->write && tty->count > 0)
1221 			tty->ops->write(tty, msg, strlen(msg));
1222 		tty_unlock(tty);
1223 		tty_write_unlock(tty);
1224 	}
1225 	return;
1226 }
1227 
1228 
1229 /**
1230  *	tty_write		-	write method for tty device file
1231  *	@file: tty file pointer
1232  *	@buf: user data to write
1233  *	@count: bytes to write
1234  *	@ppos: unused
1235  *
1236  *	Write data to a tty device via the line discipline.
1237  *
1238  *	Locking:
1239  *		Locks the line discipline as required
1240  *		Writes to the tty driver are serialized by the atomic_write_lock
1241  *	and are then processed in chunks to the device. The line discipline
1242  *	write method will not be invoked in parallel for each device.
1243  */
1244 
tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1245 static ssize_t tty_write(struct file *file, const char __user *buf,
1246 						size_t count, loff_t *ppos)
1247 {
1248 	struct tty_struct *tty = file_tty(file);
1249  	struct tty_ldisc *ld;
1250 	ssize_t ret;
1251 
1252 	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1253 		return -EIO;
1254 	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1255 			return -EIO;
1256 	/* Short term debug to catch buggy drivers */
1257 	if (tty->ops->write_room == NULL)
1258 		tty_err(tty, "missing write_room method\n");
1259 	ld = tty_ldisc_ref_wait(tty);
1260 	if (!ld)
1261 		return hung_up_tty_write(file, buf, count, ppos);
1262 	if (!ld->ops->write)
1263 		ret = -EIO;
1264 	else
1265 		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1266 	tty_ldisc_deref(ld);
1267 	return ret;
1268 }
1269 
redirected_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1270 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1271 						size_t count, loff_t *ppos)
1272 {
1273 	struct file *p = NULL;
1274 
1275 	spin_lock(&redirect_lock);
1276 	if (redirect)
1277 		p = get_file(redirect);
1278 	spin_unlock(&redirect_lock);
1279 
1280 	if (p) {
1281 		ssize_t res;
1282 		res = vfs_write(p, buf, count, &p->f_pos);
1283 		fput(p);
1284 		return res;
1285 	}
1286 	return tty_write(file, buf, count, ppos);
1287 }
1288 
1289 /**
1290  *	tty_send_xchar	-	send priority character
1291  *
1292  *	Send a high priority character to the tty even if stopped
1293  *
1294  *	Locking: none for xchar method, write ordering for write method.
1295  */
1296 
tty_send_xchar(struct tty_struct * tty,char ch)1297 int tty_send_xchar(struct tty_struct *tty, char ch)
1298 {
1299 	int	was_stopped = tty->stopped;
1300 
1301 	if (tty->ops->send_xchar) {
1302 		down_read(&tty->termios_rwsem);
1303 		tty->ops->send_xchar(tty, ch);
1304 		up_read(&tty->termios_rwsem);
1305 		return 0;
1306 	}
1307 
1308 	if (tty_write_lock(tty, 0) < 0)
1309 		return -ERESTARTSYS;
1310 
1311 	down_read(&tty->termios_rwsem);
1312 	if (was_stopped)
1313 		start_tty(tty);
1314 	tty->ops->write(tty, &ch, 1);
1315 	if (was_stopped)
1316 		stop_tty(tty);
1317 	up_read(&tty->termios_rwsem);
1318 	tty_write_unlock(tty);
1319 	return 0;
1320 }
1321 
1322 static char ptychar[] = "pqrstuvwxyzabcde";
1323 
1324 /**
1325  *	pty_line_name	-	generate name for a pty
1326  *	@driver: the tty driver in use
1327  *	@index: the minor number
1328  *	@p: output buffer of at least 6 bytes
1329  *
1330  *	Generate a name from a driver reference and write it to the output
1331  *	buffer.
1332  *
1333  *	Locking: None
1334  */
pty_line_name(struct tty_driver * driver,int index,char * p)1335 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1336 {
1337 	int i = index + driver->name_base;
1338 	/* ->name is initialized to "ttyp", but "tty" is expected */
1339 	sprintf(p, "%s%c%x",
1340 		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1341 		ptychar[i >> 4 & 0xf], i & 0xf);
1342 }
1343 
1344 /**
1345  *	tty_line_name	-	generate name for a tty
1346  *	@driver: the tty driver in use
1347  *	@index: the minor number
1348  *	@p: output buffer of at least 7 bytes
1349  *
1350  *	Generate a name from a driver reference and write it to the output
1351  *	buffer.
1352  *
1353  *	Locking: None
1354  */
tty_line_name(struct tty_driver * driver,int index,char * p)1355 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1356 {
1357 	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1358 		return sprintf(p, "%s", driver->name);
1359 	else
1360 		return sprintf(p, "%s%d", driver->name,
1361 			       index + driver->name_base);
1362 }
1363 
1364 /**
1365  *	tty_driver_lookup_tty() - find an existing tty, if any
1366  *	@driver: the driver for the tty
1367  *	@idx:	 the minor number
1368  *
1369  *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1370  *	driver lookup() method returns an error.
1371  *
1372  *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1373  */
tty_driver_lookup_tty(struct tty_driver * driver,struct file * file,int idx)1374 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1375 		struct file *file, int idx)
1376 {
1377 	struct tty_struct *tty;
1378 
1379 	if (driver->ops->lookup)
1380 		tty = driver->ops->lookup(driver, file, idx);
1381 	else
1382 		tty = driver->ttys[idx];
1383 
1384 	if (!IS_ERR(tty))
1385 		tty_kref_get(tty);
1386 	return tty;
1387 }
1388 
1389 /**
1390  *	tty_init_termios	-  helper for termios setup
1391  *	@tty: the tty to set up
1392  *
1393  *	Initialise the termios structures for this tty. Thus runs under
1394  *	the tty_mutex currently so we can be relaxed about ordering.
1395  */
1396 
tty_init_termios(struct tty_struct * tty)1397 void tty_init_termios(struct tty_struct *tty)
1398 {
1399 	struct ktermios *tp;
1400 	int idx = tty->index;
1401 
1402 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1403 		tty->termios = tty->driver->init_termios;
1404 	else {
1405 		/* Check for lazy saved data */
1406 		tp = tty->driver->termios[idx];
1407 		if (tp != NULL) {
1408 			tty->termios = *tp;
1409 			tty->termios.c_line  = tty->driver->init_termios.c_line;
1410 		} else
1411 			tty->termios = tty->driver->init_termios;
1412 	}
1413 	/* Compatibility until drivers always set this */
1414 	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1415 	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1416 }
1417 EXPORT_SYMBOL_GPL(tty_init_termios);
1418 
tty_standard_install(struct tty_driver * driver,struct tty_struct * tty)1419 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1420 {
1421 	tty_init_termios(tty);
1422 	tty_driver_kref_get(driver);
1423 	tty->count++;
1424 	driver->ttys[tty->index] = tty;
1425 	return 0;
1426 }
1427 EXPORT_SYMBOL_GPL(tty_standard_install);
1428 
1429 /**
1430  *	tty_driver_install_tty() - install a tty entry in the driver
1431  *	@driver: the driver for the tty
1432  *	@tty: the tty
1433  *
1434  *	Install a tty object into the driver tables. The tty->index field
1435  *	will be set by the time this is called. This method is responsible
1436  *	for ensuring any need additional structures are allocated and
1437  *	configured.
1438  *
1439  *	Locking: tty_mutex for now
1440  */
tty_driver_install_tty(struct tty_driver * driver,struct tty_struct * tty)1441 static int tty_driver_install_tty(struct tty_driver *driver,
1442 						struct tty_struct *tty)
1443 {
1444 	return driver->ops->install ? driver->ops->install(driver, tty) :
1445 		tty_standard_install(driver, tty);
1446 }
1447 
1448 /**
1449  *	tty_driver_remove_tty() - remove a tty from the driver tables
1450  *	@driver: the driver for the tty
1451  *	@idx:	 the minor number
1452  *
1453  *	Remvoe a tty object from the driver tables. The tty->index field
1454  *	will be set by the time this is called.
1455  *
1456  *	Locking: tty_mutex for now
1457  */
tty_driver_remove_tty(struct tty_driver * driver,struct tty_struct * tty)1458 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1459 {
1460 	if (driver->ops->remove)
1461 		driver->ops->remove(driver, tty);
1462 	else
1463 		driver->ttys[tty->index] = NULL;
1464 }
1465 
1466 /*
1467  * 	tty_reopen()	- fast re-open of an open tty
1468  * 	@tty	- the tty to open
1469  *
1470  *	Return 0 on success, -errno on error.
1471  *	Re-opens on master ptys are not allowed and return -EIO.
1472  *
1473  *	Locking: Caller must hold tty_lock
1474  */
tty_reopen(struct tty_struct * tty)1475 static int tty_reopen(struct tty_struct *tty)
1476 {
1477 	struct tty_driver *driver = tty->driver;
1478 
1479 	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1480 	    driver->subtype == PTY_TYPE_MASTER)
1481 		return -EIO;
1482 
1483 	if (!tty->count)
1484 		return -EAGAIN;
1485 
1486 	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1487 		return -EBUSY;
1488 
1489 	tty->count++;
1490 
1491 	if (!tty->ldisc)
1492 		return tty_ldisc_reinit(tty, tty->termios.c_line);
1493 
1494 	return 0;
1495 }
1496 
1497 /**
1498  *	tty_init_dev		-	initialise a tty device
1499  *	@driver: tty driver we are opening a device on
1500  *	@idx: device index
1501  *	@ret_tty: returned tty structure
1502  *
1503  *	Prepare a tty device. This may not be a "new" clean device but
1504  *	could also be an active device. The pty drivers require special
1505  *	handling because of this.
1506  *
1507  *	Locking:
1508  *		The function is called under the tty_mutex, which
1509  *	protects us from the tty struct or driver itself going away.
1510  *
1511  *	On exit the tty device has the line discipline attached and
1512  *	a reference count of 1. If a pair was created for pty/tty use
1513  *	and the other was a pty master then it too has a reference count of 1.
1514  *
1515  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1516  * failed open.  The new code protects the open with a mutex, so it's
1517  * really quite straightforward.  The mutex locking can probably be
1518  * relaxed for the (most common) case of reopening a tty.
1519  */
1520 
tty_init_dev(struct tty_driver * driver,int idx)1521 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1522 {
1523 	struct tty_struct *tty;
1524 	int retval;
1525 
1526 	/*
1527 	 * First time open is complex, especially for PTY devices.
1528 	 * This code guarantees that either everything succeeds and the
1529 	 * TTY is ready for operation, or else the table slots are vacated
1530 	 * and the allocated memory released.  (Except that the termios
1531 	 * and locked termios may be retained.)
1532 	 */
1533 
1534 	if (!try_module_get(driver->owner))
1535 		return ERR_PTR(-ENODEV);
1536 
1537 	tty = alloc_tty_struct(driver, idx);
1538 	if (!tty) {
1539 		retval = -ENOMEM;
1540 		goto err_module_put;
1541 	}
1542 
1543 	tty_lock(tty);
1544 	retval = tty_driver_install_tty(driver, tty);
1545 	if (retval < 0)
1546 		goto err_free_tty;
1547 
1548 	if (!tty->port)
1549 		tty->port = driver->ports[idx];
1550 
1551 	WARN_RATELIMIT(!tty->port,
1552 			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1553 			__func__, tty->driver->name);
1554 
1555 	retval = tty_ldisc_lock(tty, 5 * HZ);
1556 	if (retval)
1557 		goto err_release_lock;
1558 	tty->port->itty = tty;
1559 
1560 	/*
1561 	 * Structures all installed ... call the ldisc open routines.
1562 	 * If we fail here just call release_tty to clean up.  No need
1563 	 * to decrement the use counts, as release_tty doesn't care.
1564 	 */
1565 	retval = tty_ldisc_setup(tty, tty->link);
1566 	if (retval)
1567 		goto err_release_tty;
1568 	tty_ldisc_unlock(tty);
1569 	/* Return the tty locked so that it cannot vanish under the caller */
1570 	return tty;
1571 
1572 err_free_tty:
1573 	tty_unlock(tty);
1574 	free_tty_struct(tty);
1575 err_module_put:
1576 	module_put(driver->owner);
1577 	return ERR_PTR(retval);
1578 
1579 	/* call the tty release_tty routine to clean out this slot */
1580 err_release_tty:
1581 	tty_ldisc_unlock(tty);
1582 	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1583 			     retval, idx);
1584 err_release_lock:
1585 	tty_unlock(tty);
1586 	release_tty(tty, idx);
1587 	return ERR_PTR(retval);
1588 }
1589 
tty_free_termios(struct tty_struct * tty)1590 static void tty_free_termios(struct tty_struct *tty)
1591 {
1592 	struct ktermios *tp;
1593 	int idx = tty->index;
1594 
1595 	/* If the port is going to reset then it has no termios to save */
1596 	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1597 		return;
1598 
1599 	/* Stash the termios data */
1600 	tp = tty->driver->termios[idx];
1601 	if (tp == NULL) {
1602 		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1603 		if (tp == NULL)
1604 			return;
1605 		tty->driver->termios[idx] = tp;
1606 	}
1607 	*tp = tty->termios;
1608 }
1609 
1610 /**
1611  *	tty_flush_works		-	flush all works of a tty/pty pair
1612  *	@tty: tty device to flush works for (or either end of a pty pair)
1613  *
1614  *	Sync flush all works belonging to @tty (and the 'other' tty).
1615  */
tty_flush_works(struct tty_struct * tty)1616 static void tty_flush_works(struct tty_struct *tty)
1617 {
1618 	flush_work(&tty->SAK_work);
1619 	flush_work(&tty->hangup_work);
1620 	if (tty->link) {
1621 		flush_work(&tty->link->SAK_work);
1622 		flush_work(&tty->link->hangup_work);
1623 	}
1624 }
1625 
1626 /**
1627  *	release_one_tty		-	release tty structure memory
1628  *	@kref: kref of tty we are obliterating
1629  *
1630  *	Releases memory associated with a tty structure, and clears out the
1631  *	driver table slots. This function is called when a device is no longer
1632  *	in use. It also gets called when setup of a device fails.
1633  *
1634  *	Locking:
1635  *		takes the file list lock internally when working on the list
1636  *	of ttys that the driver keeps.
1637  *
1638  *	This method gets called from a work queue so that the driver private
1639  *	cleanup ops can sleep (needed for USB at least)
1640  */
release_one_tty(struct work_struct * work)1641 static void release_one_tty(struct work_struct *work)
1642 {
1643 	struct tty_struct *tty =
1644 		container_of(work, struct tty_struct, hangup_work);
1645 	struct tty_driver *driver = tty->driver;
1646 	struct module *owner = driver->owner;
1647 
1648 	if (tty->ops->cleanup)
1649 		tty->ops->cleanup(tty);
1650 
1651 	tty->magic = 0;
1652 	tty_driver_kref_put(driver);
1653 	module_put(owner);
1654 
1655 	spin_lock(&tty->files_lock);
1656 	list_del_init(&tty->tty_files);
1657 	spin_unlock(&tty->files_lock);
1658 
1659 	put_pid(tty->pgrp);
1660 	put_pid(tty->session);
1661 	free_tty_struct(tty);
1662 }
1663 
queue_release_one_tty(struct kref * kref)1664 static void queue_release_one_tty(struct kref *kref)
1665 {
1666 	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1667 
1668 	/* The hangup queue is now free so we can reuse it rather than
1669 	   waste a chunk of memory for each port */
1670 	INIT_WORK(&tty->hangup_work, release_one_tty);
1671 	schedule_work(&tty->hangup_work);
1672 }
1673 
1674 /**
1675  *	tty_kref_put		-	release a tty kref
1676  *	@tty: tty device
1677  *
1678  *	Release a reference to a tty device and if need be let the kref
1679  *	layer destruct the object for us
1680  */
1681 
tty_kref_put(struct tty_struct * tty)1682 void tty_kref_put(struct tty_struct *tty)
1683 {
1684 	if (tty)
1685 		kref_put(&tty->kref, queue_release_one_tty);
1686 }
1687 EXPORT_SYMBOL(tty_kref_put);
1688 
1689 /**
1690  *	release_tty		-	release tty structure memory
1691  *
1692  *	Release both @tty and a possible linked partner (think pty pair),
1693  *	and decrement the refcount of the backing module.
1694  *
1695  *	Locking:
1696  *		tty_mutex
1697  *		takes the file list lock internally when working on the list
1698  *	of ttys that the driver keeps.
1699  *
1700  */
release_tty(struct tty_struct * tty,int idx)1701 static void release_tty(struct tty_struct *tty, int idx)
1702 {
1703 	/* This should always be true but check for the moment */
1704 	WARN_ON(tty->index != idx);
1705 	WARN_ON(!mutex_is_locked(&tty_mutex));
1706 	if (tty->ops->shutdown)
1707 		tty->ops->shutdown(tty);
1708 	tty_free_termios(tty);
1709 	tty_driver_remove_tty(tty->driver, tty);
1710 	tty->port->itty = NULL;
1711 	if (tty->link)
1712 		tty->link->port->itty = NULL;
1713 	tty_buffer_cancel_work(tty->port);
1714 	if (tty->link)
1715 		tty_buffer_cancel_work(tty->link->port);
1716 
1717 	tty_kref_put(tty->link);
1718 	tty_kref_put(tty);
1719 }
1720 
1721 /**
1722  *	tty_release_checks - check a tty before real release
1723  *	@tty: tty to check
1724  *	@o_tty: link of @tty (if any)
1725  *	@idx: index of the tty
1726  *
1727  *	Performs some paranoid checking before true release of the @tty.
1728  *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1729  */
tty_release_checks(struct tty_struct * tty,int idx)1730 static int tty_release_checks(struct tty_struct *tty, int idx)
1731 {
1732 #ifdef TTY_PARANOIA_CHECK
1733 	if (idx < 0 || idx >= tty->driver->num) {
1734 		tty_debug(tty, "bad idx %d\n", idx);
1735 		return -1;
1736 	}
1737 
1738 	/* not much to check for devpts */
1739 	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1740 		return 0;
1741 
1742 	if (tty != tty->driver->ttys[idx]) {
1743 		tty_debug(tty, "bad driver table[%d] = %p\n",
1744 			  idx, tty->driver->ttys[idx]);
1745 		return -1;
1746 	}
1747 	if (tty->driver->other) {
1748 		struct tty_struct *o_tty = tty->link;
1749 
1750 		if (o_tty != tty->driver->other->ttys[idx]) {
1751 			tty_debug(tty, "bad other table[%d] = %p\n",
1752 				  idx, tty->driver->other->ttys[idx]);
1753 			return -1;
1754 		}
1755 		if (o_tty->link != tty) {
1756 			tty_debug(tty, "bad link = %p\n", o_tty->link);
1757 			return -1;
1758 		}
1759 	}
1760 #endif
1761 	return 0;
1762 }
1763 
1764 /**
1765  *	tty_release		-	vfs callback for close
1766  *	@inode: inode of tty
1767  *	@filp: file pointer for handle to tty
1768  *
1769  *	Called the last time each file handle is closed that references
1770  *	this tty. There may however be several such references.
1771  *
1772  *	Locking:
1773  *		Takes bkl. See tty_release_dev
1774  *
1775  * Even releasing the tty structures is a tricky business.. We have
1776  * to be very careful that the structures are all released at the
1777  * same time, as interrupts might otherwise get the wrong pointers.
1778  *
1779  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1780  * lead to double frees or releasing memory still in use.
1781  */
1782 
tty_release(struct inode * inode,struct file * filp)1783 int tty_release(struct inode *inode, struct file *filp)
1784 {
1785 	struct tty_struct *tty = file_tty(filp);
1786 	struct tty_struct *o_tty = NULL;
1787 	int	do_sleep, final;
1788 	int	idx;
1789 	long	timeout = 0;
1790 	int	once = 1;
1791 
1792 	if (tty_paranoia_check(tty, inode, __func__))
1793 		return 0;
1794 
1795 	tty_lock(tty);
1796 	check_tty_count(tty, __func__);
1797 
1798 	__tty_fasync(-1, filp, 0);
1799 
1800 	idx = tty->index;
1801 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1802 	    tty->driver->subtype == PTY_TYPE_MASTER)
1803 		o_tty = tty->link;
1804 
1805 	if (tty_release_checks(tty, idx)) {
1806 		tty_unlock(tty);
1807 		return 0;
1808 	}
1809 
1810 	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1811 
1812 	if (tty->ops->close)
1813 		tty->ops->close(tty, filp);
1814 
1815 	/* If tty is pty master, lock the slave pty (stable lock order) */
1816 	tty_lock_slave(o_tty);
1817 
1818 	/*
1819 	 * Sanity check: if tty->count is going to zero, there shouldn't be
1820 	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1821 	 * wait queues and kick everyone out _before_ actually starting to
1822 	 * close.  This ensures that we won't block while releasing the tty
1823 	 * structure.
1824 	 *
1825 	 * The test for the o_tty closing is necessary, since the master and
1826 	 * slave sides may close in any order.  If the slave side closes out
1827 	 * first, its count will be one, since the master side holds an open.
1828 	 * Thus this test wouldn't be triggered at the time the slave closed,
1829 	 * so we do it now.
1830 	 */
1831 	while (1) {
1832 		do_sleep = 0;
1833 
1834 		if (tty->count <= 1) {
1835 			if (waitqueue_active(&tty->read_wait)) {
1836 				wake_up_poll(&tty->read_wait, POLLIN);
1837 				do_sleep++;
1838 			}
1839 			if (waitqueue_active(&tty->write_wait)) {
1840 				wake_up_poll(&tty->write_wait, POLLOUT);
1841 				do_sleep++;
1842 			}
1843 		}
1844 		if (o_tty && o_tty->count <= 1) {
1845 			if (waitqueue_active(&o_tty->read_wait)) {
1846 				wake_up_poll(&o_tty->read_wait, POLLIN);
1847 				do_sleep++;
1848 			}
1849 			if (waitqueue_active(&o_tty->write_wait)) {
1850 				wake_up_poll(&o_tty->write_wait, POLLOUT);
1851 				do_sleep++;
1852 			}
1853 		}
1854 		if (!do_sleep)
1855 			break;
1856 
1857 		if (once) {
1858 			once = 0;
1859 			tty_warn(tty, "read/write wait queue active!\n");
1860 		}
1861 		schedule_timeout_killable(timeout);
1862 		if (timeout < 120 * HZ)
1863 			timeout = 2 * timeout + 1;
1864 		else
1865 			timeout = MAX_SCHEDULE_TIMEOUT;
1866 	}
1867 
1868 	if (o_tty) {
1869 		if (--o_tty->count < 0) {
1870 			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1871 			o_tty->count = 0;
1872 		}
1873 	}
1874 	if (--tty->count < 0) {
1875 		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1876 		tty->count = 0;
1877 	}
1878 
1879 	/*
1880 	 * We've decremented tty->count, so we need to remove this file
1881 	 * descriptor off the tty->tty_files list; this serves two
1882 	 * purposes:
1883 	 *  - check_tty_count sees the correct number of file descriptors
1884 	 *    associated with this tty.
1885 	 *  - do_tty_hangup no longer sees this file descriptor as
1886 	 *    something that needs to be handled for hangups.
1887 	 */
1888 	tty_del_file(filp);
1889 
1890 	/*
1891 	 * Perform some housekeeping before deciding whether to return.
1892 	 *
1893 	 * If _either_ side is closing, make sure there aren't any
1894 	 * processes that still think tty or o_tty is their controlling
1895 	 * tty.
1896 	 */
1897 	if (!tty->count) {
1898 		read_lock(&tasklist_lock);
1899 		session_clear_tty(tty->session);
1900 		if (o_tty)
1901 			session_clear_tty(o_tty->session);
1902 		read_unlock(&tasklist_lock);
1903 	}
1904 
1905 	/* check whether both sides are closing ... */
1906 	final = !tty->count && !(o_tty && o_tty->count);
1907 
1908 	tty_unlock_slave(o_tty);
1909 	tty_unlock(tty);
1910 
1911 	/* At this point, the tty->count == 0 should ensure a dead tty
1912 	   cannot be re-opened by a racing opener */
1913 
1914 	if (!final)
1915 		return 0;
1916 
1917 	tty_debug_hangup(tty, "final close\n");
1918 	/*
1919 	 * Ask the line discipline code to release its structures
1920 	 */
1921 	tty_ldisc_release(tty);
1922 
1923 	/* Wait for pending work before tty destruction commmences */
1924 	tty_flush_works(tty);
1925 
1926 	tty_debug_hangup(tty, "freeing structure\n");
1927 	/*
1928 	 * The release_tty function takes care of the details of clearing
1929 	 * the slots and preserving the termios structure. The tty_unlock_pair
1930 	 * should be safe as we keep a kref while the tty is locked (so the
1931 	 * unlock never unlocks a freed tty).
1932 	 */
1933 	mutex_lock(&tty_mutex);
1934 	release_tty(tty, idx);
1935 	mutex_unlock(&tty_mutex);
1936 
1937 	return 0;
1938 }
1939 
1940 /**
1941  *	tty_open_current_tty - get locked tty of current task
1942  *	@device: device number
1943  *	@filp: file pointer to tty
1944  *	@return: locked tty of the current task iff @device is /dev/tty
1945  *
1946  *	Performs a re-open of the current task's controlling tty.
1947  *
1948  *	We cannot return driver and index like for the other nodes because
1949  *	devpts will not work then. It expects inodes to be from devpts FS.
1950  */
tty_open_current_tty(dev_t device,struct file * filp)1951 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1952 {
1953 	struct tty_struct *tty;
1954 	int retval;
1955 
1956 	if (device != MKDEV(TTYAUX_MAJOR, 0))
1957 		return NULL;
1958 
1959 	tty = get_current_tty();
1960 	if (!tty)
1961 		return ERR_PTR(-ENXIO);
1962 
1963 	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1964 	/* noctty = 1; */
1965 	tty_lock(tty);
1966 	tty_kref_put(tty);	/* safe to drop the kref now */
1967 
1968 	retval = tty_reopen(tty);
1969 	if (retval < 0) {
1970 		tty_unlock(tty);
1971 		tty = ERR_PTR(retval);
1972 	}
1973 	return tty;
1974 }
1975 
1976 /**
1977  *	tty_lookup_driver - lookup a tty driver for a given device file
1978  *	@device: device number
1979  *	@filp: file pointer to tty
1980  *	@index: index for the device in the @return driver
1981  *	@return: driver for this inode (with increased refcount)
1982  *
1983  * 	If @return is not erroneous, the caller is responsible to decrement the
1984  * 	refcount by tty_driver_kref_put.
1985  *
1986  *	Locking: tty_mutex protects get_tty_driver
1987  */
tty_lookup_driver(dev_t device,struct file * filp,int * index)1988 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1989 		int *index)
1990 {
1991 	struct tty_driver *driver;
1992 
1993 	switch (device) {
1994 #ifdef CONFIG_VT
1995 	case MKDEV(TTY_MAJOR, 0): {
1996 		extern struct tty_driver *console_driver;
1997 		driver = tty_driver_kref_get(console_driver);
1998 		*index = fg_console;
1999 		break;
2000 	}
2001 #endif
2002 	case MKDEV(TTYAUX_MAJOR, 1): {
2003 		struct tty_driver *console_driver = console_device(index);
2004 		if (console_driver) {
2005 			driver = tty_driver_kref_get(console_driver);
2006 			if (driver) {
2007 				/* Don't let /dev/console block */
2008 				filp->f_flags |= O_NONBLOCK;
2009 				break;
2010 			}
2011 		}
2012 		return ERR_PTR(-ENODEV);
2013 	}
2014 	default:
2015 		driver = get_tty_driver(device, index);
2016 		if (!driver)
2017 			return ERR_PTR(-ENODEV);
2018 		break;
2019 	}
2020 	return driver;
2021 }
2022 
2023 /**
2024  *	tty_open_by_driver	-	open a tty device
2025  *	@device: dev_t of device to open
2026  *	@inode: inode of device file
2027  *	@filp: file pointer to tty
2028  *
2029  *	Performs the driver lookup, checks for a reopen, or otherwise
2030  *	performs the first-time tty initialization.
2031  *
2032  *	Returns the locked initialized or re-opened &tty_struct
2033  *
2034  *	Claims the global tty_mutex to serialize:
2035  *	  - concurrent first-time tty initialization
2036  *	  - concurrent tty driver removal w/ lookup
2037  *	  - concurrent tty removal from driver table
2038  */
tty_open_by_driver(dev_t device,struct inode * inode,struct file * filp)2039 static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
2040 					     struct file *filp)
2041 {
2042 	struct tty_struct *tty;
2043 	struct tty_driver *driver = NULL;
2044 	int index = -1;
2045 	int retval;
2046 
2047 	mutex_lock(&tty_mutex);
2048 	driver = tty_lookup_driver(device, filp, &index);
2049 	if (IS_ERR(driver)) {
2050 		mutex_unlock(&tty_mutex);
2051 		return ERR_CAST(driver);
2052 	}
2053 
2054 	/* check whether we're reopening an existing tty */
2055 	tty = tty_driver_lookup_tty(driver, filp, index);
2056 	if (IS_ERR(tty)) {
2057 		mutex_unlock(&tty_mutex);
2058 		goto out;
2059 	}
2060 
2061 	if (tty) {
2062 		mutex_unlock(&tty_mutex);
2063 		retval = tty_lock_interruptible(tty);
2064 		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2065 		if (retval) {
2066 			if (retval == -EINTR)
2067 				retval = -ERESTARTSYS;
2068 			tty = ERR_PTR(retval);
2069 			goto out;
2070 		}
2071 		retval = tty_reopen(tty);
2072 		if (retval < 0) {
2073 			tty_unlock(tty);
2074 			tty = ERR_PTR(retval);
2075 		}
2076 	} else { /* Returns with the tty_lock held for now */
2077 		tty = tty_init_dev(driver, index);
2078 		mutex_unlock(&tty_mutex);
2079 	}
2080 out:
2081 	tty_driver_kref_put(driver);
2082 	return tty;
2083 }
2084 
2085 /**
2086  *	tty_open		-	open a tty device
2087  *	@inode: inode of device file
2088  *	@filp: file pointer to tty
2089  *
2090  *	tty_open and tty_release keep up the tty count that contains the
2091  *	number of opens done on a tty. We cannot use the inode-count, as
2092  *	different inodes might point to the same tty.
2093  *
2094  *	Open-counting is needed for pty masters, as well as for keeping
2095  *	track of serial lines: DTR is dropped when the last close happens.
2096  *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2097  *
2098  *	The termios state of a pty is reset on first open so that
2099  *	settings don't persist across reuse.
2100  *
2101  *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2102  *		 tty->count should protect the rest.
2103  *		 ->siglock protects ->signal/->sighand
2104  *
2105  *	Note: the tty_unlock/lock cases without a ref are only safe due to
2106  *	tty_mutex
2107  */
2108 
tty_open(struct inode * inode,struct file * filp)2109 static int tty_open(struct inode *inode, struct file *filp)
2110 {
2111 	struct tty_struct *tty;
2112 	int noctty, retval;
2113 	dev_t device = inode->i_rdev;
2114 	unsigned saved_flags = filp->f_flags;
2115 
2116 	nonseekable_open(inode, filp);
2117 
2118 retry_open:
2119 	retval = tty_alloc_file(filp);
2120 	if (retval)
2121 		return -ENOMEM;
2122 
2123 	tty = tty_open_current_tty(device, filp);
2124 	if (!tty)
2125 		tty = tty_open_by_driver(device, inode, filp);
2126 
2127 	if (IS_ERR(tty)) {
2128 		tty_free_file(filp);
2129 		retval = PTR_ERR(tty);
2130 		if (retval != -EAGAIN || signal_pending(current))
2131 			return retval;
2132 		schedule();
2133 		goto retry_open;
2134 	}
2135 
2136 	tty_add_file(tty, filp);
2137 
2138 	check_tty_count(tty, __func__);
2139 	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2140 
2141 	if (tty->ops->open)
2142 		retval = tty->ops->open(tty, filp);
2143 	else
2144 		retval = -ENODEV;
2145 	filp->f_flags = saved_flags;
2146 
2147 	if (retval) {
2148 		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2149 
2150 		tty_unlock(tty); /* need to call tty_release without BTM */
2151 		tty_release(inode, filp);
2152 		if (retval != -ERESTARTSYS)
2153 			return retval;
2154 
2155 		if (signal_pending(current))
2156 			return retval;
2157 
2158 		schedule();
2159 		/*
2160 		 * Need to reset f_op in case a hangup happened.
2161 		 */
2162 		if (tty_hung_up_p(filp))
2163 			filp->f_op = &tty_fops;
2164 		goto retry_open;
2165 	}
2166 	clear_bit(TTY_HUPPED, &tty->flags);
2167 
2168 
2169 	read_lock(&tasklist_lock);
2170 	spin_lock_irq(&current->sighand->siglock);
2171 	noctty = (filp->f_flags & O_NOCTTY) ||
2172 			(IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2173 			device == MKDEV(TTYAUX_MAJOR, 1) ||
2174 			(tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2175 			 tty->driver->subtype == PTY_TYPE_MASTER);
2176 
2177 	if (!noctty &&
2178 	    current->signal->leader &&
2179 	    !current->signal->tty &&
2180 	    tty->session == NULL) {
2181 		/*
2182 		 * Don't let a process that only has write access to the tty
2183 		 * obtain the privileges associated with having a tty as
2184 		 * controlling terminal (being able to reopen it with full
2185 		 * access through /dev/tty, being able to perform pushback).
2186 		 * Many distributions set the group of all ttys to "tty" and
2187 		 * grant write-only access to all terminals for setgid tty
2188 		 * binaries, which should not imply full privileges on all ttys.
2189 		 *
2190 		 * This could theoretically break old code that performs open()
2191 		 * on a write-only file descriptor. In that case, it might be
2192 		 * necessary to also permit this if
2193 		 * inode_permission(inode, MAY_READ) == 0.
2194 		 */
2195 		if (filp->f_mode & FMODE_READ)
2196 			__proc_set_tty(tty);
2197 	}
2198 	spin_unlock_irq(&current->sighand->siglock);
2199 	read_unlock(&tasklist_lock);
2200 	tty_unlock(tty);
2201 	return 0;
2202 }
2203 
2204 
2205 
2206 /**
2207  *	tty_poll	-	check tty status
2208  *	@filp: file being polled
2209  *	@wait: poll wait structures to update
2210  *
2211  *	Call the line discipline polling method to obtain the poll
2212  *	status of the device.
2213  *
2214  *	Locking: locks called line discipline but ldisc poll method
2215  *	may be re-entered freely by other callers.
2216  */
2217 
tty_poll(struct file * filp,poll_table * wait)2218 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2219 {
2220 	struct tty_struct *tty = file_tty(filp);
2221 	struct tty_ldisc *ld;
2222 	int ret = 0;
2223 
2224 	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2225 		return 0;
2226 
2227 	ld = tty_ldisc_ref_wait(tty);
2228 	if (!ld)
2229 		return hung_up_tty_poll(filp, wait);
2230 	if (ld->ops->poll)
2231 		ret = ld->ops->poll(tty, filp, wait);
2232 	tty_ldisc_deref(ld);
2233 	return ret;
2234 }
2235 
__tty_fasync(int fd,struct file * filp,int on)2236 static int __tty_fasync(int fd, struct file *filp, int on)
2237 {
2238 	struct tty_struct *tty = file_tty(filp);
2239 	unsigned long flags;
2240 	int retval = 0;
2241 
2242 	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2243 		goto out;
2244 
2245 	retval = fasync_helper(fd, filp, on, &tty->fasync);
2246 	if (retval <= 0)
2247 		goto out;
2248 
2249 	if (on) {
2250 		enum pid_type type;
2251 		struct pid *pid;
2252 
2253 		spin_lock_irqsave(&tty->ctrl_lock, flags);
2254 		if (tty->pgrp) {
2255 			pid = tty->pgrp;
2256 			type = PIDTYPE_PGID;
2257 		} else {
2258 			pid = task_pid(current);
2259 			type = PIDTYPE_PID;
2260 		}
2261 		get_pid(pid);
2262 		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2263 		__f_setown(filp, pid, type, 0);
2264 		put_pid(pid);
2265 		retval = 0;
2266 	}
2267 out:
2268 	return retval;
2269 }
2270 
tty_fasync(int fd,struct file * filp,int on)2271 static int tty_fasync(int fd, struct file *filp, int on)
2272 {
2273 	struct tty_struct *tty = file_tty(filp);
2274 	int retval = -ENOTTY;
2275 
2276 	tty_lock(tty);
2277 	if (!tty_hung_up_p(filp))
2278 		retval = __tty_fasync(fd, filp, on);
2279 	tty_unlock(tty);
2280 
2281 	return retval;
2282 }
2283 
2284 /**
2285  *	tiocsti			-	fake input character
2286  *	@tty: tty to fake input into
2287  *	@p: pointer to character
2288  *
2289  *	Fake input to a tty device. Does the necessary locking and
2290  *	input management.
2291  *
2292  *	FIXME: does not honour flow control ??
2293  *
2294  *	Locking:
2295  *		Called functions take tty_ldiscs_lock
2296  *		current->signal->tty check is safe without locks
2297  *
2298  *	FIXME: may race normal receive processing
2299  */
2300 
tiocsti(struct tty_struct * tty,char __user * p)2301 static int tiocsti(struct tty_struct *tty, char __user *p)
2302 {
2303 	char ch, mbz = 0;
2304 	struct tty_ldisc *ld;
2305 
2306 	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2307 		return -EPERM;
2308 	if (get_user(ch, p))
2309 		return -EFAULT;
2310 	tty_audit_tiocsti(tty, ch);
2311 	ld = tty_ldisc_ref_wait(tty);
2312 	if (!ld)
2313 		return -EIO;
2314 	ld->ops->receive_buf(tty, &ch, &mbz, 1);
2315 	tty_ldisc_deref(ld);
2316 	return 0;
2317 }
2318 
2319 /**
2320  *	tiocgwinsz		-	implement window query ioctl
2321  *	@tty; tty
2322  *	@arg: user buffer for result
2323  *
2324  *	Copies the kernel idea of the window size into the user buffer.
2325  *
2326  *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2327  *		is consistent.
2328  */
2329 
tiocgwinsz(struct tty_struct * tty,struct winsize __user * arg)2330 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2331 {
2332 	int err;
2333 
2334 	mutex_lock(&tty->winsize_mutex);
2335 	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2336 	mutex_unlock(&tty->winsize_mutex);
2337 
2338 	return err ? -EFAULT: 0;
2339 }
2340 
2341 /**
2342  *	tty_do_resize		-	resize event
2343  *	@tty: tty being resized
2344  *	@rows: rows (character)
2345  *	@cols: cols (character)
2346  *
2347  *	Update the termios variables and send the necessary signals to
2348  *	peform a terminal resize correctly
2349  */
2350 
tty_do_resize(struct tty_struct * tty,struct winsize * ws)2351 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2352 {
2353 	struct pid *pgrp;
2354 
2355 	/* Lock the tty */
2356 	mutex_lock(&tty->winsize_mutex);
2357 	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2358 		goto done;
2359 
2360 	/* Signal the foreground process group */
2361 	pgrp = tty_get_pgrp(tty);
2362 	if (pgrp)
2363 		kill_pgrp(pgrp, SIGWINCH, 1);
2364 	put_pid(pgrp);
2365 
2366 	tty->winsize = *ws;
2367 done:
2368 	mutex_unlock(&tty->winsize_mutex);
2369 	return 0;
2370 }
2371 EXPORT_SYMBOL(tty_do_resize);
2372 
2373 /**
2374  *	tiocswinsz		-	implement window size set ioctl
2375  *	@tty; tty side of tty
2376  *	@arg: user buffer for result
2377  *
2378  *	Copies the user idea of the window size to the kernel. Traditionally
2379  *	this is just advisory information but for the Linux console it
2380  *	actually has driver level meaning and triggers a VC resize.
2381  *
2382  *	Locking:
2383  *		Driver dependent. The default do_resize method takes the
2384  *	tty termios mutex and ctrl_lock. The console takes its own lock
2385  *	then calls into the default method.
2386  */
2387 
tiocswinsz(struct tty_struct * tty,struct winsize __user * arg)2388 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2389 {
2390 	struct winsize tmp_ws;
2391 	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2392 		return -EFAULT;
2393 
2394 	if (tty->ops->resize)
2395 		return tty->ops->resize(tty, &tmp_ws);
2396 	else
2397 		return tty_do_resize(tty, &tmp_ws);
2398 }
2399 
2400 /**
2401  *	tioccons	-	allow admin to move logical console
2402  *	@file: the file to become console
2403  *
2404  *	Allow the administrator to move the redirected console device
2405  *
2406  *	Locking: uses redirect_lock to guard the redirect information
2407  */
2408 
tioccons(struct file * file)2409 static int tioccons(struct file *file)
2410 {
2411 	if (!capable(CAP_SYS_ADMIN))
2412 		return -EPERM;
2413 	if (file->f_op->write == redirected_tty_write) {
2414 		struct file *f;
2415 		spin_lock(&redirect_lock);
2416 		f = redirect;
2417 		redirect = NULL;
2418 		spin_unlock(&redirect_lock);
2419 		if (f)
2420 			fput(f);
2421 		return 0;
2422 	}
2423 	spin_lock(&redirect_lock);
2424 	if (redirect) {
2425 		spin_unlock(&redirect_lock);
2426 		return -EBUSY;
2427 	}
2428 	redirect = get_file(file);
2429 	spin_unlock(&redirect_lock);
2430 	return 0;
2431 }
2432 
2433 /**
2434  *	fionbio		-	non blocking ioctl
2435  *	@file: file to set blocking value
2436  *	@p: user parameter
2437  *
2438  *	Historical tty interfaces had a blocking control ioctl before
2439  *	the generic functionality existed. This piece of history is preserved
2440  *	in the expected tty API of posix OS's.
2441  *
2442  *	Locking: none, the open file handle ensures it won't go away.
2443  */
2444 
fionbio(struct file * file,int __user * p)2445 static int fionbio(struct file *file, int __user *p)
2446 {
2447 	int nonblock;
2448 
2449 	if (get_user(nonblock, p))
2450 		return -EFAULT;
2451 
2452 	spin_lock(&file->f_lock);
2453 	if (nonblock)
2454 		file->f_flags |= O_NONBLOCK;
2455 	else
2456 		file->f_flags &= ~O_NONBLOCK;
2457 	spin_unlock(&file->f_lock);
2458 	return 0;
2459 }
2460 
2461 /**
2462  *	tiocsctty	-	set controlling tty
2463  *	@tty: tty structure
2464  *	@arg: user argument
2465  *
2466  *	This ioctl is used to manage job control. It permits a session
2467  *	leader to set this tty as the controlling tty for the session.
2468  *
2469  *	Locking:
2470  *		Takes tty_lock() to serialize proc_set_tty() for this tty
2471  *		Takes tasklist_lock internally to walk sessions
2472  *		Takes ->siglock() when updating signal->tty
2473  */
2474 
tiocsctty(struct tty_struct * tty,struct file * file,int arg)2475 static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2476 {
2477 	int ret = 0;
2478 
2479 	tty_lock(tty);
2480 	read_lock(&tasklist_lock);
2481 
2482 	if (current->signal->leader && (task_session(current) == tty->session))
2483 		goto unlock;
2484 
2485 	/*
2486 	 * The process must be a session leader and
2487 	 * not have a controlling tty already.
2488 	 */
2489 	if (!current->signal->leader || current->signal->tty) {
2490 		ret = -EPERM;
2491 		goto unlock;
2492 	}
2493 
2494 	if (tty->session) {
2495 		/*
2496 		 * This tty is already the controlling
2497 		 * tty for another session group!
2498 		 */
2499 		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2500 			/*
2501 			 * Steal it away
2502 			 */
2503 			session_clear_tty(tty->session);
2504 		} else {
2505 			ret = -EPERM;
2506 			goto unlock;
2507 		}
2508 	}
2509 
2510 	/* See the comment in tty_open(). */
2511 	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2512 		ret = -EPERM;
2513 		goto unlock;
2514 	}
2515 
2516 	proc_set_tty(tty);
2517 unlock:
2518 	read_unlock(&tasklist_lock);
2519 	tty_unlock(tty);
2520 	return ret;
2521 }
2522 
2523 /**
2524  *	tty_get_pgrp	-	return a ref counted pgrp pid
2525  *	@tty: tty to read
2526  *
2527  *	Returns a refcounted instance of the pid struct for the process
2528  *	group controlling the tty.
2529  */
2530 
tty_get_pgrp(struct tty_struct * tty)2531 struct pid *tty_get_pgrp(struct tty_struct *tty)
2532 {
2533 	unsigned long flags;
2534 	struct pid *pgrp;
2535 
2536 	spin_lock_irqsave(&tty->ctrl_lock, flags);
2537 	pgrp = get_pid(tty->pgrp);
2538 	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2539 
2540 	return pgrp;
2541 }
2542 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2543 
2544 /*
2545  * This checks not only the pgrp, but falls back on the pid if no
2546  * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2547  * without this...
2548  *
2549  * The caller must hold rcu lock or the tasklist lock.
2550  */
session_of_pgrp(struct pid * pgrp)2551 static struct pid *session_of_pgrp(struct pid *pgrp)
2552 {
2553 	struct task_struct *p;
2554 	struct pid *sid = NULL;
2555 
2556 	p = pid_task(pgrp, PIDTYPE_PGID);
2557 	if (p == NULL)
2558 		p = pid_task(pgrp, PIDTYPE_PID);
2559 	if (p != NULL)
2560 		sid = task_session(p);
2561 
2562 	return sid;
2563 }
2564 
2565 /**
2566  *	tiocgpgrp		-	get process group
2567  *	@tty: tty passed by user
2568  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2569  *	@p: returned pid
2570  *
2571  *	Obtain the process group of the tty. If there is no process group
2572  *	return an error.
2573  *
2574  *	Locking: none. Reference to current->signal->tty is safe.
2575  */
2576 
tiocgpgrp(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2577 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2578 {
2579 	struct pid *pid;
2580 	int ret;
2581 	/*
2582 	 * (tty == real_tty) is a cheap way of
2583 	 * testing if the tty is NOT a master pty.
2584 	 */
2585 	if (tty == real_tty && current->signal->tty != real_tty)
2586 		return -ENOTTY;
2587 	pid = tty_get_pgrp(real_tty);
2588 	ret =  put_user(pid_vnr(pid), p);
2589 	put_pid(pid);
2590 	return ret;
2591 }
2592 
2593 /**
2594  *	tiocspgrp		-	attempt to set process group
2595  *	@tty: tty passed by user
2596  *	@real_tty: tty side device matching tty passed by user
2597  *	@p: pid pointer
2598  *
2599  *	Set the process group of the tty to the session passed. Only
2600  *	permitted where the tty session is our session.
2601  *
2602  *	Locking: RCU, ctrl lock
2603  */
2604 
tiocspgrp(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2605 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2606 {
2607 	struct pid *pgrp;
2608 	pid_t pgrp_nr;
2609 	int retval = tty_check_change(real_tty);
2610 
2611 	if (retval == -EIO)
2612 		return -ENOTTY;
2613 	if (retval)
2614 		return retval;
2615 	if (!current->signal->tty ||
2616 	    (current->signal->tty != real_tty) ||
2617 	    (real_tty->session != task_session(current)))
2618 		return -ENOTTY;
2619 	if (get_user(pgrp_nr, p))
2620 		return -EFAULT;
2621 	if (pgrp_nr < 0)
2622 		return -EINVAL;
2623 	rcu_read_lock();
2624 	pgrp = find_vpid(pgrp_nr);
2625 	retval = -ESRCH;
2626 	if (!pgrp)
2627 		goto out_unlock;
2628 	retval = -EPERM;
2629 	if (session_of_pgrp(pgrp) != task_session(current))
2630 		goto out_unlock;
2631 	retval = 0;
2632 	spin_lock_irq(&tty->ctrl_lock);
2633 	put_pid(real_tty->pgrp);
2634 	real_tty->pgrp = get_pid(pgrp);
2635 	spin_unlock_irq(&tty->ctrl_lock);
2636 out_unlock:
2637 	rcu_read_unlock();
2638 	return retval;
2639 }
2640 
2641 /**
2642  *	tiocgsid		-	get session id
2643  *	@tty: tty passed by user
2644  *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2645  *	@p: pointer to returned session id
2646  *
2647  *	Obtain the session id of the tty. If there is no session
2648  *	return an error.
2649  *
2650  *	Locking: none. Reference to current->signal->tty is safe.
2651  */
2652 
tiocgsid(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2653 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2654 {
2655 	/*
2656 	 * (tty == real_tty) is a cheap way of
2657 	 * testing if the tty is NOT a master pty.
2658 	*/
2659 	if (tty == real_tty && current->signal->tty != real_tty)
2660 		return -ENOTTY;
2661 	if (!real_tty->session)
2662 		return -ENOTTY;
2663 	return put_user(pid_vnr(real_tty->session), p);
2664 }
2665 
2666 /**
2667  *	tiocsetd	-	set line discipline
2668  *	@tty: tty device
2669  *	@p: pointer to user data
2670  *
2671  *	Set the line discipline according to user request.
2672  *
2673  *	Locking: see tty_set_ldisc, this function is just a helper
2674  */
2675 
tiocsetd(struct tty_struct * tty,int __user * p)2676 static int tiocsetd(struct tty_struct *tty, int __user *p)
2677 {
2678 	int disc;
2679 	int ret;
2680 
2681 	if (get_user(disc, p))
2682 		return -EFAULT;
2683 
2684 	ret = tty_set_ldisc(tty, disc);
2685 
2686 	return ret;
2687 }
2688 
2689 /**
2690  *	tiocgetd	-	get line discipline
2691  *	@tty: tty device
2692  *	@p: pointer to user data
2693  *
2694  *	Retrieves the line discipline id directly from the ldisc.
2695  *
2696  *	Locking: waits for ldisc reference (in case the line discipline
2697  *		is changing or the tty is being hungup)
2698  */
2699 
tiocgetd(struct tty_struct * tty,int __user * p)2700 static int tiocgetd(struct tty_struct *tty, int __user *p)
2701 {
2702 	struct tty_ldisc *ld;
2703 	int ret;
2704 
2705 	ld = tty_ldisc_ref_wait(tty);
2706 	if (!ld)
2707 		return -EIO;
2708 	ret = put_user(ld->ops->num, p);
2709 	tty_ldisc_deref(ld);
2710 	return ret;
2711 }
2712 
2713 /**
2714  *	send_break	-	performed time break
2715  *	@tty: device to break on
2716  *	@duration: timeout in mS
2717  *
2718  *	Perform a timed break on hardware that lacks its own driver level
2719  *	timed break functionality.
2720  *
2721  *	Locking:
2722  *		atomic_write_lock serializes
2723  *
2724  */
2725 
send_break(struct tty_struct * tty,unsigned int duration)2726 static int send_break(struct tty_struct *tty, unsigned int duration)
2727 {
2728 	int retval;
2729 
2730 	if (tty->ops->break_ctl == NULL)
2731 		return 0;
2732 
2733 	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2734 		retval = tty->ops->break_ctl(tty, duration);
2735 	else {
2736 		/* Do the work ourselves */
2737 		if (tty_write_lock(tty, 0) < 0)
2738 			return -EINTR;
2739 		retval = tty->ops->break_ctl(tty, -1);
2740 		if (retval)
2741 			goto out;
2742 		if (!signal_pending(current))
2743 			msleep_interruptible(duration);
2744 		retval = tty->ops->break_ctl(tty, 0);
2745 out:
2746 		tty_write_unlock(tty);
2747 		if (signal_pending(current))
2748 			retval = -EINTR;
2749 	}
2750 	return retval;
2751 }
2752 
2753 /**
2754  *	tty_tiocmget		-	get modem status
2755  *	@tty: tty device
2756  *	@file: user file pointer
2757  *	@p: pointer to result
2758  *
2759  *	Obtain the modem status bits from the tty driver if the feature
2760  *	is supported. Return -EINVAL if it is not available.
2761  *
2762  *	Locking: none (up to the driver)
2763  */
2764 
tty_tiocmget(struct tty_struct * tty,int __user * p)2765 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2766 {
2767 	int retval = -EINVAL;
2768 
2769 	if (tty->ops->tiocmget) {
2770 		retval = tty->ops->tiocmget(tty);
2771 
2772 		if (retval >= 0)
2773 			retval = put_user(retval, p);
2774 	}
2775 	return retval;
2776 }
2777 
2778 /**
2779  *	tty_tiocmset		-	set modem status
2780  *	@tty: tty device
2781  *	@cmd: command - clear bits, set bits or set all
2782  *	@p: pointer to desired bits
2783  *
2784  *	Set the modem status bits from the tty driver if the feature
2785  *	is supported. Return -EINVAL if it is not available.
2786  *
2787  *	Locking: none (up to the driver)
2788  */
2789 
tty_tiocmset(struct tty_struct * tty,unsigned int cmd,unsigned __user * p)2790 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2791 	     unsigned __user *p)
2792 {
2793 	int retval;
2794 	unsigned int set, clear, val;
2795 
2796 	if (tty->ops->tiocmset == NULL)
2797 		return -EINVAL;
2798 
2799 	retval = get_user(val, p);
2800 	if (retval)
2801 		return retval;
2802 	set = clear = 0;
2803 	switch (cmd) {
2804 	case TIOCMBIS:
2805 		set = val;
2806 		break;
2807 	case TIOCMBIC:
2808 		clear = val;
2809 		break;
2810 	case TIOCMSET:
2811 		set = val;
2812 		clear = ~val;
2813 		break;
2814 	}
2815 	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2816 	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2817 	return tty->ops->tiocmset(tty, set, clear);
2818 }
2819 
tty_tiocgicount(struct tty_struct * tty,void __user * arg)2820 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2821 {
2822 	int retval = -EINVAL;
2823 	struct serial_icounter_struct icount;
2824 	memset(&icount, 0, sizeof(icount));
2825 	if (tty->ops->get_icount)
2826 		retval = tty->ops->get_icount(tty, &icount);
2827 	if (retval != 0)
2828 		return retval;
2829 	if (copy_to_user(arg, &icount, sizeof(icount)))
2830 		return -EFAULT;
2831 	return 0;
2832 }
2833 
tty_warn_deprecated_flags(struct serial_struct __user * ss)2834 static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2835 {
2836 	static DEFINE_RATELIMIT_STATE(depr_flags,
2837 			DEFAULT_RATELIMIT_INTERVAL,
2838 			DEFAULT_RATELIMIT_BURST);
2839 	char comm[TASK_COMM_LEN];
2840 	int flags;
2841 
2842 	if (get_user(flags, &ss->flags))
2843 		return;
2844 
2845 	flags &= ASYNC_DEPRECATED;
2846 
2847 	if (flags && __ratelimit(&depr_flags))
2848 		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2849 				__func__, get_task_comm(comm, current), flags);
2850 }
2851 
2852 /*
2853  * if pty, return the slave side (real_tty)
2854  * otherwise, return self
2855  */
tty_pair_get_tty(struct tty_struct * tty)2856 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2857 {
2858 	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2859 	    tty->driver->subtype == PTY_TYPE_MASTER)
2860 		tty = tty->link;
2861 	return tty;
2862 }
2863 
2864 /*
2865  * Split this up, as gcc can choke on it otherwise..
2866  */
tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2867 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2868 {
2869 	struct tty_struct *tty = file_tty(file);
2870 	struct tty_struct *real_tty;
2871 	void __user *p = (void __user *)arg;
2872 	int retval;
2873 	struct tty_ldisc *ld;
2874 
2875 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2876 		return -EINVAL;
2877 
2878 	real_tty = tty_pair_get_tty(tty);
2879 
2880 	/*
2881 	 * Factor out some common prep work
2882 	 */
2883 	switch (cmd) {
2884 	case TIOCSETD:
2885 	case TIOCSBRK:
2886 	case TIOCCBRK:
2887 	case TCSBRK:
2888 	case TCSBRKP:
2889 		retval = tty_check_change(tty);
2890 		if (retval)
2891 			return retval;
2892 		if (cmd != TIOCCBRK) {
2893 			tty_wait_until_sent(tty, 0);
2894 			if (signal_pending(current))
2895 				return -EINTR;
2896 		}
2897 		break;
2898 	}
2899 
2900 	/*
2901 	 *	Now do the stuff.
2902 	 */
2903 	switch (cmd) {
2904 	case TIOCSTI:
2905 		return tiocsti(tty, p);
2906 	case TIOCGWINSZ:
2907 		return tiocgwinsz(real_tty, p);
2908 	case TIOCSWINSZ:
2909 		return tiocswinsz(real_tty, p);
2910 	case TIOCCONS:
2911 		return real_tty != tty ? -EINVAL : tioccons(file);
2912 	case FIONBIO:
2913 		return fionbio(file, p);
2914 	case TIOCEXCL:
2915 		set_bit(TTY_EXCLUSIVE, &tty->flags);
2916 		return 0;
2917 	case TIOCNXCL:
2918 		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2919 		return 0;
2920 	case TIOCGEXCL:
2921 	{
2922 		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2923 		return put_user(excl, (int __user *)p);
2924 	}
2925 	case TIOCNOTTY:
2926 		if (current->signal->tty != tty)
2927 			return -ENOTTY;
2928 		no_tty();
2929 		return 0;
2930 	case TIOCSCTTY:
2931 		return tiocsctty(real_tty, file, arg);
2932 	case TIOCGPGRP:
2933 		return tiocgpgrp(tty, real_tty, p);
2934 	case TIOCSPGRP:
2935 		return tiocspgrp(tty, real_tty, p);
2936 	case TIOCGSID:
2937 		return tiocgsid(tty, real_tty, p);
2938 	case TIOCGETD:
2939 		return tiocgetd(tty, p);
2940 	case TIOCSETD:
2941 		return tiocsetd(tty, p);
2942 	case TIOCVHANGUP:
2943 		if (!capable(CAP_SYS_ADMIN))
2944 			return -EPERM;
2945 		tty_vhangup(tty);
2946 		return 0;
2947 	case TIOCGDEV:
2948 	{
2949 		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2950 		return put_user(ret, (unsigned int __user *)p);
2951 	}
2952 	/*
2953 	 * Break handling
2954 	 */
2955 	case TIOCSBRK:	/* Turn break on, unconditionally */
2956 		if (tty->ops->break_ctl)
2957 			return tty->ops->break_ctl(tty, -1);
2958 		return 0;
2959 	case TIOCCBRK:	/* Turn break off, unconditionally */
2960 		if (tty->ops->break_ctl)
2961 			return tty->ops->break_ctl(tty, 0);
2962 		return 0;
2963 	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2964 		/* non-zero arg means wait for all output data
2965 		 * to be sent (performed above) but don't send break.
2966 		 * This is used by the tcdrain() termios function.
2967 		 */
2968 		if (!arg)
2969 			return send_break(tty, 250);
2970 		return 0;
2971 	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2972 		return send_break(tty, arg ? arg*100 : 250);
2973 
2974 	case TIOCMGET:
2975 		return tty_tiocmget(tty, p);
2976 	case TIOCMSET:
2977 	case TIOCMBIC:
2978 	case TIOCMBIS:
2979 		return tty_tiocmset(tty, cmd, p);
2980 	case TIOCGICOUNT:
2981 		retval = tty_tiocgicount(tty, p);
2982 		/* For the moment allow fall through to the old method */
2983         	if (retval != -EINVAL)
2984 			return retval;
2985 		break;
2986 	case TCFLSH:
2987 		switch (arg) {
2988 		case TCIFLUSH:
2989 		case TCIOFLUSH:
2990 		/* flush tty buffer and allow ldisc to process ioctl */
2991 			tty_buffer_flush(tty, NULL);
2992 			break;
2993 		}
2994 		break;
2995 	case TIOCSSERIAL:
2996 		tty_warn_deprecated_flags(p);
2997 		break;
2998 	}
2999 	if (tty->ops->ioctl) {
3000 		retval = tty->ops->ioctl(tty, cmd, arg);
3001 		if (retval != -ENOIOCTLCMD)
3002 			return retval;
3003 	}
3004 	ld = tty_ldisc_ref_wait(tty);
3005 	if (!ld)
3006 		return hung_up_tty_ioctl(file, cmd, arg);
3007 	retval = -EINVAL;
3008 	if (ld->ops->ioctl) {
3009 		retval = ld->ops->ioctl(tty, file, cmd, arg);
3010 		if (retval == -ENOIOCTLCMD)
3011 			retval = -ENOTTY;
3012 	}
3013 	tty_ldisc_deref(ld);
3014 	return retval;
3015 }
3016 
3017 #ifdef CONFIG_COMPAT
tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3018 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3019 				unsigned long arg)
3020 {
3021 	struct tty_struct *tty = file_tty(file);
3022 	struct tty_ldisc *ld;
3023 	int retval = -ENOIOCTLCMD;
3024 
3025 	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
3026 		return -EINVAL;
3027 
3028 	if (tty->ops->compat_ioctl) {
3029 		retval = tty->ops->compat_ioctl(tty, cmd, arg);
3030 		if (retval != -ENOIOCTLCMD)
3031 			return retval;
3032 	}
3033 
3034 	ld = tty_ldisc_ref_wait(tty);
3035 	if (!ld)
3036 		return hung_up_tty_compat_ioctl(file, cmd, arg);
3037 	if (ld->ops->compat_ioctl)
3038 		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3039 	else
3040 		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
3041 	tty_ldisc_deref(ld);
3042 
3043 	return retval;
3044 }
3045 #endif
3046 
this_tty(const void * t,struct file * file,unsigned fd)3047 static int this_tty(const void *t, struct file *file, unsigned fd)
3048 {
3049 	if (likely(file->f_op->read != tty_read))
3050 		return 0;
3051 	return file_tty(file) != t ? 0 : fd + 1;
3052 }
3053 
3054 /*
3055  * This implements the "Secure Attention Key" ---  the idea is to
3056  * prevent trojan horses by killing all processes associated with this
3057  * tty when the user hits the "Secure Attention Key".  Required for
3058  * super-paranoid applications --- see the Orange Book for more details.
3059  *
3060  * This code could be nicer; ideally it should send a HUP, wait a few
3061  * seconds, then send a INT, and then a KILL signal.  But you then
3062  * have to coordinate with the init process, since all processes associated
3063  * with the current tty must be dead before the new getty is allowed
3064  * to spawn.
3065  *
3066  * Now, if it would be correct ;-/ The current code has a nasty hole -
3067  * it doesn't catch files in flight. We may send the descriptor to ourselves
3068  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3069  *
3070  * Nasty bug: do_SAK is being called in interrupt context.  This can
3071  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3072  */
__do_SAK(struct tty_struct * tty)3073 void __do_SAK(struct tty_struct *tty)
3074 {
3075 #ifdef TTY_SOFT_SAK
3076 	tty_hangup(tty);
3077 #else
3078 	struct task_struct *g, *p;
3079 	struct pid *session;
3080 	int		i;
3081 
3082 	if (!tty)
3083 		return;
3084 	session = tty->session;
3085 
3086 	tty_ldisc_flush(tty);
3087 
3088 	tty_driver_flush_buffer(tty);
3089 
3090 	read_lock(&tasklist_lock);
3091 	/* Kill the entire session */
3092 	do_each_pid_task(session, PIDTYPE_SID, p) {
3093 		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3094 			   task_pid_nr(p), p->comm);
3095 		send_sig(SIGKILL, p, 1);
3096 	} while_each_pid_task(session, PIDTYPE_SID, p);
3097 
3098 	/* Now kill any processes that happen to have the tty open */
3099 	do_each_thread(g, p) {
3100 		if (p->signal->tty == tty) {
3101 			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3102 				   task_pid_nr(p), p->comm);
3103 			send_sig(SIGKILL, p, 1);
3104 			continue;
3105 		}
3106 		task_lock(p);
3107 		i = iterate_fd(p->files, 0, this_tty, tty);
3108 		if (i != 0) {
3109 			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3110 				   task_pid_nr(p), p->comm, i - 1);
3111 			force_sig(SIGKILL, p);
3112 		}
3113 		task_unlock(p);
3114 	} while_each_thread(g, p);
3115 	read_unlock(&tasklist_lock);
3116 #endif
3117 }
3118 
do_SAK_work(struct work_struct * work)3119 static void do_SAK_work(struct work_struct *work)
3120 {
3121 	struct tty_struct *tty =
3122 		container_of(work, struct tty_struct, SAK_work);
3123 	__do_SAK(tty);
3124 }
3125 
3126 /*
3127  * The tq handling here is a little racy - tty->SAK_work may already be queued.
3128  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3129  * the values which we write to it will be identical to the values which it
3130  * already has. --akpm
3131  */
do_SAK(struct tty_struct * tty)3132 void do_SAK(struct tty_struct *tty)
3133 {
3134 	if (!tty)
3135 		return;
3136 	schedule_work(&tty->SAK_work);
3137 }
3138 
3139 EXPORT_SYMBOL(do_SAK);
3140 
dev_match_devt(struct device * dev,const void * data)3141 static int dev_match_devt(struct device *dev, const void *data)
3142 {
3143 	const dev_t *devt = data;
3144 	return dev->devt == *devt;
3145 }
3146 
3147 /* Must put_device() after it's unused! */
tty_get_device(struct tty_struct * tty)3148 static struct device *tty_get_device(struct tty_struct *tty)
3149 {
3150 	dev_t devt = tty_devnum(tty);
3151 	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3152 }
3153 
3154 
3155 /**
3156  *	alloc_tty_struct
3157  *
3158  *	This subroutine allocates and initializes a tty structure.
3159  *
3160  *	Locking: none - tty in question is not exposed at this point
3161  */
3162 
alloc_tty_struct(struct tty_driver * driver,int idx)3163 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3164 {
3165 	struct tty_struct *tty;
3166 
3167 	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3168 	if (!tty)
3169 		return NULL;
3170 
3171 	kref_init(&tty->kref);
3172 	tty->magic = TTY_MAGIC;
3173 	tty_ldisc_init(tty);
3174 	tty->session = NULL;
3175 	tty->pgrp = NULL;
3176 	mutex_init(&tty->legacy_mutex);
3177 	mutex_init(&tty->throttle_mutex);
3178 	init_rwsem(&tty->termios_rwsem);
3179 	mutex_init(&tty->winsize_mutex);
3180 	init_ldsem(&tty->ldisc_sem);
3181 	init_waitqueue_head(&tty->write_wait);
3182 	init_waitqueue_head(&tty->read_wait);
3183 	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3184 	mutex_init(&tty->atomic_write_lock);
3185 	spin_lock_init(&tty->ctrl_lock);
3186 	spin_lock_init(&tty->flow_lock);
3187 	spin_lock_init(&tty->files_lock);
3188 	INIT_LIST_HEAD(&tty->tty_files);
3189 	INIT_WORK(&tty->SAK_work, do_SAK_work);
3190 
3191 	tty->driver = driver;
3192 	tty->ops = driver->ops;
3193 	tty->index = idx;
3194 	tty_line_name(driver, idx, tty->name);
3195 	tty->dev = tty_get_device(tty);
3196 
3197 	return tty;
3198 }
3199 
3200 /**
3201  *	tty_put_char	-	write one character to a tty
3202  *	@tty: tty
3203  *	@ch: character
3204  *
3205  *	Write one byte to the tty using the provided put_char method
3206  *	if present. Returns the number of characters successfully output.
3207  *
3208  *	Note: the specific put_char operation in the driver layer may go
3209  *	away soon. Don't call it directly, use this method
3210  */
3211 
tty_put_char(struct tty_struct * tty,unsigned char ch)3212 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3213 {
3214 	if (tty->ops->put_char)
3215 		return tty->ops->put_char(tty, ch);
3216 	return tty->ops->write(tty, &ch, 1);
3217 }
3218 EXPORT_SYMBOL_GPL(tty_put_char);
3219 
3220 struct class *tty_class;
3221 
tty_cdev_add(struct tty_driver * driver,dev_t dev,unsigned int index,unsigned int count)3222 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3223 		unsigned int index, unsigned int count)
3224 {
3225 	int err;
3226 
3227 	/* init here, since reused cdevs cause crashes */
3228 	driver->cdevs[index] = cdev_alloc();
3229 	if (!driver->cdevs[index])
3230 		return -ENOMEM;
3231 	driver->cdevs[index]->ops = &tty_fops;
3232 	driver->cdevs[index]->owner = driver->owner;
3233 	err = cdev_add(driver->cdevs[index], dev, count);
3234 	if (err)
3235 		kobject_put(&driver->cdevs[index]->kobj);
3236 	return err;
3237 }
3238 
3239 /**
3240  *	tty_register_device - register a tty device
3241  *	@driver: the tty driver that describes the tty device
3242  *	@index: the index in the tty driver for this tty device
3243  *	@device: a struct device that is associated with this tty device.
3244  *		This field is optional, if there is no known struct device
3245  *		for this tty device it can be set to NULL safely.
3246  *
3247  *	Returns a pointer to the struct device for this tty device
3248  *	(or ERR_PTR(-EFOO) on error).
3249  *
3250  *	This call is required to be made to register an individual tty device
3251  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3252  *	that bit is not set, this function should not be called by a tty
3253  *	driver.
3254  *
3255  *	Locking: ??
3256  */
3257 
tty_register_device(struct tty_driver * driver,unsigned index,struct device * device)3258 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3259 				   struct device *device)
3260 {
3261 	return tty_register_device_attr(driver, index, device, NULL, NULL);
3262 }
3263 EXPORT_SYMBOL(tty_register_device);
3264 
tty_device_create_release(struct device * dev)3265 static void tty_device_create_release(struct device *dev)
3266 {
3267 	dev_dbg(dev, "releasing...\n");
3268 	kfree(dev);
3269 }
3270 
3271 /**
3272  *	tty_register_device_attr - register a tty device
3273  *	@driver: the tty driver that describes the tty device
3274  *	@index: the index in the tty driver for this tty device
3275  *	@device: a struct device that is associated with this tty device.
3276  *		This field is optional, if there is no known struct device
3277  *		for this tty device it can be set to NULL safely.
3278  *	@drvdata: Driver data to be set to device.
3279  *	@attr_grp: Attribute group to be set on device.
3280  *
3281  *	Returns a pointer to the struct device for this tty device
3282  *	(or ERR_PTR(-EFOO) on error).
3283  *
3284  *	This call is required to be made to register an individual tty device
3285  *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3286  *	that bit is not set, this function should not be called by a tty
3287  *	driver.
3288  *
3289  *	Locking: ??
3290  */
tty_register_device_attr(struct tty_driver * driver,unsigned index,struct device * device,void * drvdata,const struct attribute_group ** attr_grp)3291 struct device *tty_register_device_attr(struct tty_driver *driver,
3292 				   unsigned index, struct device *device,
3293 				   void *drvdata,
3294 				   const struct attribute_group **attr_grp)
3295 {
3296 	char name[64];
3297 	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3298 	struct device *dev = NULL;
3299 	int retval = -ENODEV;
3300 	bool cdev = false;
3301 
3302 	if (index >= driver->num) {
3303 		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3304 		       driver->name, index);
3305 		return ERR_PTR(-EINVAL);
3306 	}
3307 
3308 	if (driver->type == TTY_DRIVER_TYPE_PTY)
3309 		pty_line_name(driver, index, name);
3310 	else
3311 		tty_line_name(driver, index, name);
3312 
3313 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3314 		retval = tty_cdev_add(driver, devt, index, 1);
3315 		if (retval)
3316 			goto error;
3317 		cdev = true;
3318 	}
3319 
3320 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3321 	if (!dev) {
3322 		retval = -ENOMEM;
3323 		goto error;
3324 	}
3325 
3326 	dev->devt = devt;
3327 	dev->class = tty_class;
3328 	dev->parent = device;
3329 	dev->release = tty_device_create_release;
3330 	dev_set_name(dev, "%s", name);
3331 	dev->groups = attr_grp;
3332 	dev_set_drvdata(dev, drvdata);
3333 
3334 	retval = device_register(dev);
3335 	if (retval)
3336 		goto error;
3337 
3338 	return dev;
3339 
3340 error:
3341 	put_device(dev);
3342 	if (cdev) {
3343 		cdev_del(driver->cdevs[index]);
3344 		driver->cdevs[index] = NULL;
3345 	}
3346 	return ERR_PTR(retval);
3347 }
3348 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3349 
3350 /**
3351  * 	tty_unregister_device - unregister a tty device
3352  * 	@driver: the tty driver that describes the tty device
3353  * 	@index: the index in the tty driver for this tty device
3354  *
3355  * 	If a tty device is registered with a call to tty_register_device() then
3356  *	this function must be called when the tty device is gone.
3357  *
3358  *	Locking: ??
3359  */
3360 
tty_unregister_device(struct tty_driver * driver,unsigned index)3361 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3362 {
3363 	device_destroy(tty_class,
3364 		MKDEV(driver->major, driver->minor_start) + index);
3365 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3366 		cdev_del(driver->cdevs[index]);
3367 		driver->cdevs[index] = NULL;
3368 	}
3369 }
3370 EXPORT_SYMBOL(tty_unregister_device);
3371 
3372 /**
3373  * __tty_alloc_driver -- allocate tty driver
3374  * @lines: count of lines this driver can handle at most
3375  * @owner: module which is repsonsible for this driver
3376  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3377  *
3378  * This should not be called directly, some of the provided macros should be
3379  * used instead. Use IS_ERR and friends on @retval.
3380  */
__tty_alloc_driver(unsigned int lines,struct module * owner,unsigned long flags)3381 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3382 		unsigned long flags)
3383 {
3384 	struct tty_driver *driver;
3385 	unsigned int cdevs = 1;
3386 	int err;
3387 
3388 	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3389 		return ERR_PTR(-EINVAL);
3390 
3391 	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3392 	if (!driver)
3393 		return ERR_PTR(-ENOMEM);
3394 
3395 	kref_init(&driver->kref);
3396 	driver->magic = TTY_DRIVER_MAGIC;
3397 	driver->num = lines;
3398 	driver->owner = owner;
3399 	driver->flags = flags;
3400 
3401 	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3402 		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3403 				GFP_KERNEL);
3404 		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3405 				GFP_KERNEL);
3406 		if (!driver->ttys || !driver->termios) {
3407 			err = -ENOMEM;
3408 			goto err_free_all;
3409 		}
3410 	}
3411 
3412 	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3413 		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3414 				GFP_KERNEL);
3415 		if (!driver->ports) {
3416 			err = -ENOMEM;
3417 			goto err_free_all;
3418 		}
3419 		cdevs = lines;
3420 	}
3421 
3422 	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3423 	if (!driver->cdevs) {
3424 		err = -ENOMEM;
3425 		goto err_free_all;
3426 	}
3427 
3428 	return driver;
3429 err_free_all:
3430 	kfree(driver->ports);
3431 	kfree(driver->ttys);
3432 	kfree(driver->termios);
3433 	kfree(driver->cdevs);
3434 	kfree(driver);
3435 	return ERR_PTR(err);
3436 }
3437 EXPORT_SYMBOL(__tty_alloc_driver);
3438 
destruct_tty_driver(struct kref * kref)3439 static void destruct_tty_driver(struct kref *kref)
3440 {
3441 	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3442 	int i;
3443 	struct ktermios *tp;
3444 
3445 	if (driver->flags & TTY_DRIVER_INSTALLED) {
3446 		/*
3447 		 * Free the termios and termios_locked structures because
3448 		 * we don't want to get memory leaks when modular tty
3449 		 * drivers are removed from the kernel.
3450 		 */
3451 		for (i = 0; i < driver->num; i++) {
3452 			tp = driver->termios[i];
3453 			if (tp) {
3454 				driver->termios[i] = NULL;
3455 				kfree(tp);
3456 			}
3457 			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3458 				tty_unregister_device(driver, i);
3459 		}
3460 		proc_tty_unregister_driver(driver);
3461 		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3462 			cdev_del(driver->cdevs[0]);
3463 	}
3464 	kfree(driver->cdevs);
3465 	kfree(driver->ports);
3466 	kfree(driver->termios);
3467 	kfree(driver->ttys);
3468 	kfree(driver);
3469 }
3470 
tty_driver_kref_put(struct tty_driver * driver)3471 void tty_driver_kref_put(struct tty_driver *driver)
3472 {
3473 	kref_put(&driver->kref, destruct_tty_driver);
3474 }
3475 EXPORT_SYMBOL(tty_driver_kref_put);
3476 
tty_set_operations(struct tty_driver * driver,const struct tty_operations * op)3477 void tty_set_operations(struct tty_driver *driver,
3478 			const struct tty_operations *op)
3479 {
3480 	driver->ops = op;
3481 };
3482 EXPORT_SYMBOL(tty_set_operations);
3483 
put_tty_driver(struct tty_driver * d)3484 void put_tty_driver(struct tty_driver *d)
3485 {
3486 	tty_driver_kref_put(d);
3487 }
3488 EXPORT_SYMBOL(put_tty_driver);
3489 
3490 /*
3491  * Called by a tty driver to register itself.
3492  */
tty_register_driver(struct tty_driver * driver)3493 int tty_register_driver(struct tty_driver *driver)
3494 {
3495 	int error;
3496 	int i;
3497 	dev_t dev;
3498 	struct device *d;
3499 
3500 	if (!driver->major) {
3501 		error = alloc_chrdev_region(&dev, driver->minor_start,
3502 						driver->num, driver->name);
3503 		if (!error) {
3504 			driver->major = MAJOR(dev);
3505 			driver->minor_start = MINOR(dev);
3506 		}
3507 	} else {
3508 		dev = MKDEV(driver->major, driver->minor_start);
3509 		error = register_chrdev_region(dev, driver->num, driver->name);
3510 	}
3511 	if (error < 0)
3512 		goto err;
3513 
3514 	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3515 		error = tty_cdev_add(driver, dev, 0, driver->num);
3516 		if (error)
3517 			goto err_unreg_char;
3518 	}
3519 
3520 	mutex_lock(&tty_mutex);
3521 	list_add(&driver->tty_drivers, &tty_drivers);
3522 	mutex_unlock(&tty_mutex);
3523 
3524 	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3525 		for (i = 0; i < driver->num; i++) {
3526 			d = tty_register_device(driver, i, NULL);
3527 			if (IS_ERR(d)) {
3528 				error = PTR_ERR(d);
3529 				goto err_unreg_devs;
3530 			}
3531 		}
3532 	}
3533 	proc_tty_register_driver(driver);
3534 	driver->flags |= TTY_DRIVER_INSTALLED;
3535 	return 0;
3536 
3537 err_unreg_devs:
3538 	for (i--; i >= 0; i--)
3539 		tty_unregister_device(driver, i);
3540 
3541 	mutex_lock(&tty_mutex);
3542 	list_del(&driver->tty_drivers);
3543 	mutex_unlock(&tty_mutex);
3544 
3545 err_unreg_char:
3546 	unregister_chrdev_region(dev, driver->num);
3547 err:
3548 	return error;
3549 }
3550 EXPORT_SYMBOL(tty_register_driver);
3551 
3552 /*
3553  * Called by a tty driver to unregister itself.
3554  */
tty_unregister_driver(struct tty_driver * driver)3555 int tty_unregister_driver(struct tty_driver *driver)
3556 {
3557 #if 0
3558 	/* FIXME */
3559 	if (driver->refcount)
3560 		return -EBUSY;
3561 #endif
3562 	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3563 				driver->num);
3564 	mutex_lock(&tty_mutex);
3565 	list_del(&driver->tty_drivers);
3566 	mutex_unlock(&tty_mutex);
3567 	return 0;
3568 }
3569 
3570 EXPORT_SYMBOL(tty_unregister_driver);
3571 
tty_devnum(struct tty_struct * tty)3572 dev_t tty_devnum(struct tty_struct *tty)
3573 {
3574 	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3575 }
3576 EXPORT_SYMBOL(tty_devnum);
3577 
tty_default_fops(struct file_operations * fops)3578 void tty_default_fops(struct file_operations *fops)
3579 {
3580 	*fops = tty_fops;
3581 }
3582 
3583 /*
3584  * Initialize the console device. This is called *early*, so
3585  * we can't necessarily depend on lots of kernel help here.
3586  * Just do some early initializations, and do the complex setup
3587  * later.
3588  */
console_init(void)3589 void __init console_init(void)
3590 {
3591 	initcall_t *call;
3592 
3593 	/* Setup the default TTY line discipline. */
3594 	n_tty_init();
3595 
3596 	/*
3597 	 * set up the console device so that later boot sequences can
3598 	 * inform about problems etc..
3599 	 */
3600 	call = __con_initcall_start;
3601 	while (call < __con_initcall_end) {
3602 		(*call)();
3603 		call++;
3604 	}
3605 }
3606 
tty_devnode(struct device * dev,umode_t * mode)3607 static char *tty_devnode(struct device *dev, umode_t *mode)
3608 {
3609 	if (!mode)
3610 		return NULL;
3611 	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3612 	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3613 		*mode = 0666;
3614 	return NULL;
3615 }
3616 
tty_class_init(void)3617 static int __init tty_class_init(void)
3618 {
3619 	tty_class = class_create(THIS_MODULE, "tty");
3620 	if (IS_ERR(tty_class))
3621 		return PTR_ERR(tty_class);
3622 	tty_class->devnode = tty_devnode;
3623 	return 0;
3624 }
3625 
3626 postcore_initcall(tty_class_init);
3627 
3628 /* 3/2004 jmc: why do these devices exist? */
3629 static struct cdev tty_cdev, console_cdev;
3630 
show_cons_active(struct device * dev,struct device_attribute * attr,char * buf)3631 static ssize_t show_cons_active(struct device *dev,
3632 				struct device_attribute *attr, char *buf)
3633 {
3634 	struct console *cs[16];
3635 	int i = 0;
3636 	struct console *c;
3637 	ssize_t count = 0;
3638 
3639 	console_lock();
3640 	for_each_console(c) {
3641 		if (!c->device)
3642 			continue;
3643 		if (!c->write)
3644 			continue;
3645 		if ((c->flags & CON_ENABLED) == 0)
3646 			continue;
3647 		cs[i++] = c;
3648 		if (i >= ARRAY_SIZE(cs))
3649 			break;
3650 	}
3651 	while (i--) {
3652 		int index = cs[i]->index;
3653 		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3654 
3655 		/* don't resolve tty0 as some programs depend on it */
3656 		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3657 			count += tty_line_name(drv, index, buf + count);
3658 		else
3659 			count += sprintf(buf + count, "%s%d",
3660 					 cs[i]->name, cs[i]->index);
3661 
3662 		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3663 	}
3664 	console_unlock();
3665 
3666 	return count;
3667 }
3668 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3669 
3670 static struct attribute *cons_dev_attrs[] = {
3671 	&dev_attr_active.attr,
3672 	NULL
3673 };
3674 
3675 ATTRIBUTE_GROUPS(cons_dev);
3676 
3677 static struct device *consdev;
3678 
console_sysfs_notify(void)3679 void console_sysfs_notify(void)
3680 {
3681 	if (consdev)
3682 		sysfs_notify(&consdev->kobj, NULL, "active");
3683 }
3684 
3685 /*
3686  * Ok, now we can initialize the rest of the tty devices and can count
3687  * on memory allocations, interrupts etc..
3688  */
tty_init(void)3689 int __init tty_init(void)
3690 {
3691 	cdev_init(&tty_cdev, &tty_fops);
3692 	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3693 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3694 		panic("Couldn't register /dev/tty driver\n");
3695 	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3696 
3697 	cdev_init(&console_cdev, &console_fops);
3698 	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3699 	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3700 		panic("Couldn't register /dev/console driver\n");
3701 	consdev = device_create_with_groups(tty_class, NULL,
3702 					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3703 					    cons_dev_groups, "console");
3704 	if (IS_ERR(consdev))
3705 		consdev = NULL;
3706 
3707 #ifdef CONFIG_VT
3708 	vty_init(&console_fops);
3709 #endif
3710 	return 0;
3711 }
3712 
3713