• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * drivers/usb/core/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>  /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/usb.h>
35 #include <linux/usb/hcd.h>
36 #include <linux/mutex.h>
37 #include <linux/workqueue.h>
38 #include <linux/debugfs.h>
39 #include <linux/usb/of.h>
40 
41 #include <asm/io.h>
42 #include <linux/scatterlist.h>
43 #include <linux/mm.h>
44 #include <linux/dma-mapping.h>
45 
46 #include "usb.h"
47 
48 
49 const char *usbcore_name = "usbcore";
50 
51 static bool nousb;	/* Disable USB when built into kernel image */
52 
53 module_param(nousb, bool, 0444);
54 
55 /*
56  * for external read access to <nousb>
57  */
usb_disabled(void)58 int usb_disabled(void)
59 {
60 	return nousb;
61 }
62 EXPORT_SYMBOL_GPL(usb_disabled);
63 
64 #ifdef	CONFIG_PM
65 static int usb_autosuspend_delay = 2;		/* Default delay value,
66 						 * in seconds */
67 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
68 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
69 
70 #else
71 #define usb_autosuspend_delay		0
72 #endif
73 
74 
75 /**
76  * usb_find_alt_setting() - Given a configuration, find the alternate setting
77  * for the given interface.
78  * @config: the configuration to search (not necessarily the current config).
79  * @iface_num: interface number to search in
80  * @alt_num: alternate interface setting number to search for.
81  *
82  * Search the configuration's interface cache for the given alt setting.
83  *
84  * Return: The alternate setting, if found. %NULL otherwise.
85  */
usb_find_alt_setting(struct usb_host_config * config,unsigned int iface_num,unsigned int alt_num)86 struct usb_host_interface *usb_find_alt_setting(
87 		struct usb_host_config *config,
88 		unsigned int iface_num,
89 		unsigned int alt_num)
90 {
91 	struct usb_interface_cache *intf_cache = NULL;
92 	int i;
93 
94 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
95 		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
96 				== iface_num) {
97 			intf_cache = config->intf_cache[i];
98 			break;
99 		}
100 	}
101 	if (!intf_cache)
102 		return NULL;
103 	for (i = 0; i < intf_cache->num_altsetting; i++)
104 		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
105 			return &intf_cache->altsetting[i];
106 
107 	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
108 			"config %u\n", alt_num, iface_num,
109 			config->desc.bConfigurationValue);
110 	return NULL;
111 }
112 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
113 
114 /**
115  * usb_ifnum_to_if - get the interface object with a given interface number
116  * @dev: the device whose current configuration is considered
117  * @ifnum: the desired interface
118  *
119  * This walks the device descriptor for the currently active configuration
120  * to find the interface object with the particular interface number.
121  *
122  * Note that configuration descriptors are not required to assign interface
123  * numbers sequentially, so that it would be incorrect to assume that
124  * the first interface in that descriptor corresponds to interface zero.
125  * This routine helps device drivers avoid such mistakes.
126  * However, you should make sure that you do the right thing with any
127  * alternate settings available for this interfaces.
128  *
129  * Don't call this function unless you are bound to one of the interfaces
130  * on this device or you have locked the device!
131  *
132  * Return: A pointer to the interface that has @ifnum as interface number,
133  * if found. %NULL otherwise.
134  */
usb_ifnum_to_if(const struct usb_device * dev,unsigned ifnum)135 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
136 				      unsigned ifnum)
137 {
138 	struct usb_host_config *config = dev->actconfig;
139 	int i;
140 
141 	if (!config)
142 		return NULL;
143 	for (i = 0; i < config->desc.bNumInterfaces; i++)
144 		if (config->interface[i]->altsetting[0]
145 				.desc.bInterfaceNumber == ifnum)
146 			return config->interface[i];
147 
148 	return NULL;
149 }
150 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
151 
152 /**
153  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
154  * @intf: the interface containing the altsetting in question
155  * @altnum: the desired alternate setting number
156  *
157  * This searches the altsetting array of the specified interface for
158  * an entry with the correct bAlternateSetting value.
159  *
160  * Note that altsettings need not be stored sequentially by number, so
161  * it would be incorrect to assume that the first altsetting entry in
162  * the array corresponds to altsetting zero.  This routine helps device
163  * drivers avoid such mistakes.
164  *
165  * Don't call this function unless you are bound to the intf interface
166  * or you have locked the device!
167  *
168  * Return: A pointer to the entry of the altsetting array of @intf that
169  * has @altnum as the alternate setting number. %NULL if not found.
170  */
usb_altnum_to_altsetting(const struct usb_interface * intf,unsigned int altnum)171 struct usb_host_interface *usb_altnum_to_altsetting(
172 					const struct usb_interface *intf,
173 					unsigned int altnum)
174 {
175 	int i;
176 
177 	for (i = 0; i < intf->num_altsetting; i++) {
178 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
179 			return &intf->altsetting[i];
180 	}
181 	return NULL;
182 }
183 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
184 
185 struct find_interface_arg {
186 	int minor;
187 	struct device_driver *drv;
188 };
189 
__find_interface(struct device * dev,void * data)190 static int __find_interface(struct device *dev, void *data)
191 {
192 	struct find_interface_arg *arg = data;
193 	struct usb_interface *intf;
194 
195 	if (!is_usb_interface(dev))
196 		return 0;
197 
198 	if (dev->driver != arg->drv)
199 		return 0;
200 	intf = to_usb_interface(dev);
201 	return intf->minor == arg->minor;
202 }
203 
204 /**
205  * usb_find_interface - find usb_interface pointer for driver and device
206  * @drv: the driver whose current configuration is considered
207  * @minor: the minor number of the desired device
208  *
209  * This walks the bus device list and returns a pointer to the interface
210  * with the matching minor and driver.  Note, this only works for devices
211  * that share the USB major number.
212  *
213  * Return: A pointer to the interface with the matching major and @minor.
214  */
usb_find_interface(struct usb_driver * drv,int minor)215 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
216 {
217 	struct find_interface_arg argb;
218 	struct device *dev;
219 
220 	argb.minor = minor;
221 	argb.drv = &drv->drvwrap.driver;
222 
223 	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
224 
225 	/* Drop reference count from bus_find_device */
226 	put_device(dev);
227 
228 	return dev ? to_usb_interface(dev) : NULL;
229 }
230 EXPORT_SYMBOL_GPL(usb_find_interface);
231 
232 struct each_dev_arg {
233 	void *data;
234 	int (*fn)(struct usb_device *, void *);
235 };
236 
__each_dev(struct device * dev,void * data)237 static int __each_dev(struct device *dev, void *data)
238 {
239 	struct each_dev_arg *arg = (struct each_dev_arg *)data;
240 
241 	/* There are struct usb_interface on the same bus, filter them out */
242 	if (!is_usb_device(dev))
243 		return 0;
244 
245 	return arg->fn(to_usb_device(dev), arg->data);
246 }
247 
248 /**
249  * usb_for_each_dev - iterate over all USB devices in the system
250  * @data: data pointer that will be handed to the callback function
251  * @fn: callback function to be called for each USB device
252  *
253  * Iterate over all USB devices and call @fn for each, passing it @data. If it
254  * returns anything other than 0, we break the iteration prematurely and return
255  * that value.
256  */
usb_for_each_dev(void * data,int (* fn)(struct usb_device *,void *))257 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
258 {
259 	struct each_dev_arg arg = {data, fn};
260 
261 	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
262 }
263 EXPORT_SYMBOL_GPL(usb_for_each_dev);
264 
265 /**
266  * usb_release_dev - free a usb device structure when all users of it are finished.
267  * @dev: device that's been disconnected
268  *
269  * Will be called only by the device core when all users of this usb device are
270  * done.
271  */
usb_release_dev(struct device * dev)272 static void usb_release_dev(struct device *dev)
273 {
274 	struct usb_device *udev;
275 	struct usb_hcd *hcd;
276 
277 	udev = to_usb_device(dev);
278 	hcd = bus_to_hcd(udev->bus);
279 
280 	usb_destroy_configuration(udev);
281 	usb_release_bos_descriptor(udev);
282 	if (udev->parent)
283 		of_node_put(dev->of_node);
284 	usb_put_hcd(hcd);
285 	kfree(udev->product);
286 	kfree(udev->manufacturer);
287 	kfree(udev->serial);
288 	kfree(udev);
289 }
290 
usb_dev_uevent(struct device * dev,struct kobj_uevent_env * env)291 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
292 {
293 	struct usb_device *usb_dev;
294 
295 	usb_dev = to_usb_device(dev);
296 
297 	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
298 		return -ENOMEM;
299 
300 	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
301 		return -ENOMEM;
302 
303 	return 0;
304 }
305 
306 #ifdef	CONFIG_PM
307 
308 /* USB device Power-Management thunks.
309  * There's no need to distinguish here between quiescing a USB device
310  * and powering it down; the generic_suspend() routine takes care of
311  * it by skipping the usb_port_suspend() call for a quiesce.  And for
312  * USB interfaces there's no difference at all.
313  */
314 
usb_dev_prepare(struct device * dev)315 static int usb_dev_prepare(struct device *dev)
316 {
317 	return 0;		/* Implement eventually? */
318 }
319 
usb_dev_complete(struct device * dev)320 static void usb_dev_complete(struct device *dev)
321 {
322 	/* Currently used only for rebinding interfaces */
323 	usb_resume_complete(dev);
324 }
325 
usb_dev_suspend(struct device * dev)326 static int usb_dev_suspend(struct device *dev)
327 {
328 	return usb_suspend(dev, PMSG_SUSPEND);
329 }
330 
usb_dev_resume(struct device * dev)331 static int usb_dev_resume(struct device *dev)
332 {
333 	return usb_resume(dev, PMSG_RESUME);
334 }
335 
usb_dev_freeze(struct device * dev)336 static int usb_dev_freeze(struct device *dev)
337 {
338 	return usb_suspend(dev, PMSG_FREEZE);
339 }
340 
usb_dev_thaw(struct device * dev)341 static int usb_dev_thaw(struct device *dev)
342 {
343 	return usb_resume(dev, PMSG_THAW);
344 }
345 
usb_dev_poweroff(struct device * dev)346 static int usb_dev_poweroff(struct device *dev)
347 {
348 	return usb_suspend(dev, PMSG_HIBERNATE);
349 }
350 
usb_dev_restore(struct device * dev)351 static int usb_dev_restore(struct device *dev)
352 {
353 	return usb_resume(dev, PMSG_RESTORE);
354 }
355 
356 static const struct dev_pm_ops usb_device_pm_ops = {
357 	.prepare =	usb_dev_prepare,
358 	.complete =	usb_dev_complete,
359 	.suspend =	usb_dev_suspend,
360 	.resume =	usb_dev_resume,
361 	.freeze =	usb_dev_freeze,
362 	.thaw =		usb_dev_thaw,
363 	.poweroff =	usb_dev_poweroff,
364 	.restore =	usb_dev_restore,
365 	.runtime_suspend =	usb_runtime_suspend,
366 	.runtime_resume =	usb_runtime_resume,
367 	.runtime_idle =		usb_runtime_idle,
368 };
369 
370 #endif	/* CONFIG_PM */
371 
372 
usb_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid)373 static char *usb_devnode(struct device *dev,
374 			 umode_t *mode, kuid_t *uid, kgid_t *gid)
375 {
376 	struct usb_device *usb_dev;
377 
378 	usb_dev = to_usb_device(dev);
379 	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
380 			 usb_dev->bus->busnum, usb_dev->devnum);
381 }
382 
383 struct device_type usb_device_type = {
384 	.name =		"usb_device",
385 	.release =	usb_release_dev,
386 	.uevent =	usb_dev_uevent,
387 	.devnode = 	usb_devnode,
388 #ifdef CONFIG_PM
389 	.pm =		&usb_device_pm_ops,
390 #endif
391 };
392 
393 
394 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
usb_bus_is_wusb(struct usb_bus * bus)395 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
396 {
397 	struct usb_hcd *hcd = bus_to_hcd(bus);
398 	return hcd->wireless;
399 }
400 
401 
402 /**
403  * usb_alloc_dev - usb device constructor (usbcore-internal)
404  * @parent: hub to which device is connected; null to allocate a root hub
405  * @bus: bus used to access the device
406  * @port1: one-based index of port; ignored for root hubs
407  * Context: !in_interrupt()
408  *
409  * Only hub drivers (including virtual root hub drivers for host
410  * controllers) should ever call this.
411  *
412  * This call may not be used in a non-sleeping context.
413  *
414  * Return: On success, a pointer to the allocated usb device. %NULL on
415  * failure.
416  */
usb_alloc_dev(struct usb_device * parent,struct usb_bus * bus,unsigned port1)417 struct usb_device *usb_alloc_dev(struct usb_device *parent,
418 				 struct usb_bus *bus, unsigned port1)
419 {
420 	struct usb_device *dev;
421 	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
422 	unsigned root_hub = 0;
423 	unsigned raw_port = port1;
424 
425 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
426 	if (!dev)
427 		return NULL;
428 
429 	if (!usb_get_hcd(usb_hcd)) {
430 		kfree(dev);
431 		return NULL;
432 	}
433 	/* Root hubs aren't true devices, so don't allocate HCD resources */
434 	if (usb_hcd->driver->alloc_dev && parent &&
435 		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
436 		usb_put_hcd(bus_to_hcd(bus));
437 		kfree(dev);
438 		return NULL;
439 	}
440 
441 	device_initialize(&dev->dev);
442 	dev->dev.bus = &usb_bus_type;
443 	dev->dev.type = &usb_device_type;
444 	dev->dev.groups = usb_device_groups;
445 	/*
446 	 * Fake a dma_mask/offset for the USB device:
447 	 * We cannot really use the dma-mapping API (dma_alloc_* and
448 	 * dma_map_*) for USB devices but instead need to use
449 	 * usb_alloc_coherent and pass data in 'urb's, but some subsystems
450 	 * manually look into the mask/offset pair to determine whether
451 	 * they need bounce buffers.
452 	 * Note: calling dma_set_mask() on a USB device would set the
453 	 * mask for the entire HCD, so don't do that.
454 	 */
455 	dev->dev.dma_mask = bus->controller->dma_mask;
456 	dev->dev.dma_pfn_offset = bus->controller->dma_pfn_offset;
457 	set_dev_node(&dev->dev, dev_to_node(bus->controller));
458 	dev->state = USB_STATE_ATTACHED;
459 	dev->lpm_disable_count = 1;
460 	atomic_set(&dev->urbnum, 0);
461 
462 	INIT_LIST_HEAD(&dev->ep0.urb_list);
463 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
464 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
465 	/* ep0 maxpacket comes later, from device descriptor */
466 	usb_enable_endpoint(dev, &dev->ep0, false);
467 	dev->can_submit = 1;
468 
469 	/* Save readable and stable topology id, distinguishing devices
470 	 * by location for diagnostics, tools, driver model, etc.  The
471 	 * string is a path along hub ports, from the root.  Each device's
472 	 * dev->devpath will be stable until USB is re-cabled, and hubs
473 	 * are often labeled with these port numbers.  The name isn't
474 	 * as stable:  bus->busnum changes easily from modprobe order,
475 	 * cardbus or pci hotplugging, and so on.
476 	 */
477 	if (unlikely(!parent)) {
478 		dev->devpath[0] = '0';
479 		dev->route = 0;
480 
481 		dev->dev.parent = bus->controller;
482 		dev_set_name(&dev->dev, "usb%d", bus->busnum);
483 		root_hub = 1;
484 	} else {
485 		/* match any labeling on the hubs; it's one-based */
486 		if (parent->devpath[0] == '0') {
487 			snprintf(dev->devpath, sizeof dev->devpath,
488 				"%d", port1);
489 			/* Root ports are not counted in route string */
490 			dev->route = 0;
491 		} else {
492 			snprintf(dev->devpath, sizeof dev->devpath,
493 				"%s.%d", parent->devpath, port1);
494 			/* Route string assumes hubs have less than 16 ports */
495 			if (port1 < 15)
496 				dev->route = parent->route +
497 					(port1 << ((parent->level - 1)*4));
498 			else
499 				dev->route = parent->route +
500 					(15 << ((parent->level - 1)*4));
501 		}
502 
503 		dev->dev.parent = &parent->dev;
504 		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
505 
506 		if (!parent->parent) {
507 			/* device under root hub's port */
508 			raw_port = usb_hcd_find_raw_port_number(usb_hcd,
509 				port1);
510 		}
511 		dev->dev.of_node = usb_of_get_child_node(parent->dev.of_node,
512 				raw_port);
513 
514 		/* hub driver sets up TT records */
515 	}
516 
517 	dev->portnum = port1;
518 	dev->bus = bus;
519 	dev->parent = parent;
520 	INIT_LIST_HEAD(&dev->filelist);
521 
522 #ifdef	CONFIG_PM
523 	pm_runtime_set_autosuspend_delay(&dev->dev,
524 			usb_autosuspend_delay * 1000);
525 	dev->connect_time = jiffies;
526 	dev->active_duration = -jiffies;
527 #endif
528 	if (root_hub)	/* Root hub always ok [and always wired] */
529 		dev->authorized = 1;
530 	else {
531 		dev->authorized = !!HCD_DEV_AUTHORIZED(usb_hcd);
532 		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
533 	}
534 	return dev;
535 }
536 EXPORT_SYMBOL_GPL(usb_alloc_dev);
537 
538 /**
539  * usb_get_dev - increments the reference count of the usb device structure
540  * @dev: the device being referenced
541  *
542  * Each live reference to a device should be refcounted.
543  *
544  * Drivers for USB interfaces should normally record such references in
545  * their probe() methods, when they bind to an interface, and release
546  * them by calling usb_put_dev(), in their disconnect() methods.
547  *
548  * Return: A pointer to the device with the incremented reference counter.
549  */
usb_get_dev(struct usb_device * dev)550 struct usb_device *usb_get_dev(struct usb_device *dev)
551 {
552 	if (dev)
553 		get_device(&dev->dev);
554 	return dev;
555 }
556 EXPORT_SYMBOL_GPL(usb_get_dev);
557 
558 /**
559  * usb_put_dev - release a use of the usb device structure
560  * @dev: device that's been disconnected
561  *
562  * Must be called when a user of a device is finished with it.  When the last
563  * user of the device calls this function, the memory of the device is freed.
564  */
usb_put_dev(struct usb_device * dev)565 void usb_put_dev(struct usb_device *dev)
566 {
567 	if (dev)
568 		put_device(&dev->dev);
569 }
570 EXPORT_SYMBOL_GPL(usb_put_dev);
571 
572 /**
573  * usb_get_intf - increments the reference count of the usb interface structure
574  * @intf: the interface being referenced
575  *
576  * Each live reference to a interface must be refcounted.
577  *
578  * Drivers for USB interfaces should normally record such references in
579  * their probe() methods, when they bind to an interface, and release
580  * them by calling usb_put_intf(), in their disconnect() methods.
581  *
582  * Return: A pointer to the interface with the incremented reference counter.
583  */
usb_get_intf(struct usb_interface * intf)584 struct usb_interface *usb_get_intf(struct usb_interface *intf)
585 {
586 	if (intf)
587 		get_device(&intf->dev);
588 	return intf;
589 }
590 EXPORT_SYMBOL_GPL(usb_get_intf);
591 
592 /**
593  * usb_put_intf - release a use of the usb interface structure
594  * @intf: interface that's been decremented
595  *
596  * Must be called when a user of an interface is finished with it.  When the
597  * last user of the interface calls this function, the memory of the interface
598  * is freed.
599  */
usb_put_intf(struct usb_interface * intf)600 void usb_put_intf(struct usb_interface *intf)
601 {
602 	if (intf)
603 		put_device(&intf->dev);
604 }
605 EXPORT_SYMBOL_GPL(usb_put_intf);
606 
607 /*			USB device locking
608  *
609  * USB devices and interfaces are locked using the semaphore in their
610  * embedded struct device.  The hub driver guarantees that whenever a
611  * device is connected or disconnected, drivers are called with the
612  * USB device locked as well as their particular interface.
613  *
614  * Complications arise when several devices are to be locked at the same
615  * time.  Only hub-aware drivers that are part of usbcore ever have to
616  * do this; nobody else needs to worry about it.  The rule for locking
617  * is simple:
618  *
619  *	When locking both a device and its parent, always lock the
620  *	the parent first.
621  */
622 
623 /**
624  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
625  * @udev: device that's being locked
626  * @iface: interface bound to the driver making the request (optional)
627  *
628  * Attempts to acquire the device lock, but fails if the device is
629  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
630  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
631  * lock, the routine polls repeatedly.  This is to prevent deadlock with
632  * disconnect; in some drivers (such as usb-storage) the disconnect()
633  * or suspend() method will block waiting for a device reset to complete.
634  *
635  * Return: A negative error code for failure, otherwise 0.
636  */
usb_lock_device_for_reset(struct usb_device * udev,const struct usb_interface * iface)637 int usb_lock_device_for_reset(struct usb_device *udev,
638 			      const struct usb_interface *iface)
639 {
640 	unsigned long jiffies_expire = jiffies + HZ;
641 
642 	if (udev->state == USB_STATE_NOTATTACHED)
643 		return -ENODEV;
644 	if (udev->state == USB_STATE_SUSPENDED)
645 		return -EHOSTUNREACH;
646 	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
647 			iface->condition == USB_INTERFACE_UNBOUND))
648 		return -EINTR;
649 
650 	while (!usb_trylock_device(udev)) {
651 
652 		/* If we can't acquire the lock after waiting one second,
653 		 * we're probably deadlocked */
654 		if (time_after(jiffies, jiffies_expire))
655 			return -EBUSY;
656 
657 		msleep(15);
658 		if (udev->state == USB_STATE_NOTATTACHED)
659 			return -ENODEV;
660 		if (udev->state == USB_STATE_SUSPENDED)
661 			return -EHOSTUNREACH;
662 		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
663 				iface->condition == USB_INTERFACE_UNBOUND))
664 			return -EINTR;
665 	}
666 	return 0;
667 }
668 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
669 
670 /**
671  * usb_get_current_frame_number - return current bus frame number
672  * @dev: the device whose bus is being queried
673  *
674  * Return: The current frame number for the USB host controller used
675  * with the given USB device. This can be used when scheduling
676  * isochronous requests.
677  *
678  * Note: Different kinds of host controller have different "scheduling
679  * horizons". While one type might support scheduling only 32 frames
680  * into the future, others could support scheduling up to 1024 frames
681  * into the future.
682  *
683  */
usb_get_current_frame_number(struct usb_device * dev)684 int usb_get_current_frame_number(struct usb_device *dev)
685 {
686 	return usb_hcd_get_frame_number(dev);
687 }
688 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
689 
690 /*-------------------------------------------------------------------*/
691 /*
692  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
693  * extra field of the interface and endpoint descriptor structs.
694  */
695 
__usb_get_extra_descriptor(char * buffer,unsigned size,unsigned char type,void ** ptr)696 int __usb_get_extra_descriptor(char *buffer, unsigned size,
697 			       unsigned char type, void **ptr)
698 {
699 	struct usb_descriptor_header *header;
700 
701 	while (size >= sizeof(struct usb_descriptor_header)) {
702 		header = (struct usb_descriptor_header *)buffer;
703 
704 		if (header->bLength < 2) {
705 			printk(KERN_ERR
706 				"%s: bogus descriptor, type %d length %d\n",
707 				usbcore_name,
708 				header->bDescriptorType,
709 				header->bLength);
710 			return -1;
711 		}
712 
713 		if (header->bDescriptorType == type) {
714 			*ptr = header;
715 			return 0;
716 		}
717 
718 		buffer += header->bLength;
719 		size -= header->bLength;
720 	}
721 	return -1;
722 }
723 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
724 
725 /**
726  * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
727  * @dev: device the buffer will be used with
728  * @size: requested buffer size
729  * @mem_flags: affect whether allocation may block
730  * @dma: used to return DMA address of buffer
731  *
732  * Return: Either null (indicating no buffer could be allocated), or the
733  * cpu-space pointer to a buffer that may be used to perform DMA to the
734  * specified device.  Such cpu-space buffers are returned along with the DMA
735  * address (through the pointer provided).
736  *
737  * Note:
738  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
739  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
740  * hardware during URB completion/resubmit.  The implementation varies between
741  * platforms, depending on details of how DMA will work to this device.
742  * Using these buffers also eliminates cacheline sharing problems on
743  * architectures where CPU caches are not DMA-coherent.  On systems without
744  * bus-snooping caches, these buffers are uncached.
745  *
746  * When the buffer is no longer used, free it with usb_free_coherent().
747  */
usb_alloc_coherent(struct usb_device * dev,size_t size,gfp_t mem_flags,dma_addr_t * dma)748 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
749 			 dma_addr_t *dma)
750 {
751 	if (!dev || !dev->bus)
752 		return NULL;
753 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
754 }
755 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
756 
757 /**
758  * usb_free_coherent - free memory allocated with usb_alloc_coherent()
759  * @dev: device the buffer was used with
760  * @size: requested buffer size
761  * @addr: CPU address of buffer
762  * @dma: DMA address of buffer
763  *
764  * This reclaims an I/O buffer, letting it be reused.  The memory must have
765  * been allocated using usb_alloc_coherent(), and the parameters must match
766  * those provided in that allocation request.
767  */
usb_free_coherent(struct usb_device * dev,size_t size,void * addr,dma_addr_t dma)768 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
769 		       dma_addr_t dma)
770 {
771 	if (!dev || !dev->bus)
772 		return;
773 	if (!addr)
774 		return;
775 	hcd_buffer_free(dev->bus, size, addr, dma);
776 }
777 EXPORT_SYMBOL_GPL(usb_free_coherent);
778 
779 /**
780  * usb_buffer_map - create DMA mapping(s) for an urb
781  * @urb: urb whose transfer_buffer/setup_packet will be mapped
782  *
783  * URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation
784  * succeeds. If the device is connected to this system through a non-DMA
785  * controller, this operation always succeeds.
786  *
787  * This call would normally be used for an urb which is reused, perhaps
788  * as the target of a large periodic transfer, with usb_buffer_dmasync()
789  * calls to synchronize memory and dma state.
790  *
791  * Reverse the effect of this call with usb_buffer_unmap().
792  *
793  * Return: Either %NULL (indicating no buffer could be mapped), or @urb.
794  *
795  */
796 #if 0
797 struct urb *usb_buffer_map(struct urb *urb)
798 {
799 	struct usb_bus		*bus;
800 	struct device		*controller;
801 
802 	if (!urb
803 			|| !urb->dev
804 			|| !(bus = urb->dev->bus)
805 			|| !(controller = bus->controller))
806 		return NULL;
807 
808 	if (controller->dma_mask) {
809 		urb->transfer_dma = dma_map_single(controller,
810 			urb->transfer_buffer, urb->transfer_buffer_length,
811 			usb_pipein(urb->pipe)
812 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
813 	/* FIXME generic api broken like pci, can't report errors */
814 	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
815 	} else
816 		urb->transfer_dma = ~0;
817 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
818 	return urb;
819 }
820 EXPORT_SYMBOL_GPL(usb_buffer_map);
821 #endif  /*  0  */
822 
823 /* XXX DISABLED, no users currently.  If you wish to re-enable this
824  * XXX please determine whether the sync is to transfer ownership of
825  * XXX the buffer from device to cpu or vice verse, and thusly use the
826  * XXX appropriate _for_{cpu,device}() method.  -DaveM
827  */
828 #if 0
829 
830 /**
831  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
832  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
833  */
834 void usb_buffer_dmasync(struct urb *urb)
835 {
836 	struct usb_bus		*bus;
837 	struct device		*controller;
838 
839 	if (!urb
840 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
841 			|| !urb->dev
842 			|| !(bus = urb->dev->bus)
843 			|| !(controller = bus->controller))
844 		return;
845 
846 	if (controller->dma_mask) {
847 		dma_sync_single_for_cpu(controller,
848 			urb->transfer_dma, urb->transfer_buffer_length,
849 			usb_pipein(urb->pipe)
850 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
851 		if (usb_pipecontrol(urb->pipe))
852 			dma_sync_single_for_cpu(controller,
853 					urb->setup_dma,
854 					sizeof(struct usb_ctrlrequest),
855 					DMA_TO_DEVICE);
856 	}
857 }
858 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
859 #endif
860 
861 /**
862  * usb_buffer_unmap - free DMA mapping(s) for an urb
863  * @urb: urb whose transfer_buffer will be unmapped
864  *
865  * Reverses the effect of usb_buffer_map().
866  */
867 #if 0
868 void usb_buffer_unmap(struct urb *urb)
869 {
870 	struct usb_bus		*bus;
871 	struct device		*controller;
872 
873 	if (!urb
874 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
875 			|| !urb->dev
876 			|| !(bus = urb->dev->bus)
877 			|| !(controller = bus->controller))
878 		return;
879 
880 	if (controller->dma_mask) {
881 		dma_unmap_single(controller,
882 			urb->transfer_dma, urb->transfer_buffer_length,
883 			usb_pipein(urb->pipe)
884 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
885 	}
886 	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
887 }
888 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
889 #endif  /*  0  */
890 
891 #if 0
892 /**
893  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
894  * @dev: device to which the scatterlist will be mapped
895  * @is_in: mapping transfer direction
896  * @sg: the scatterlist to map
897  * @nents: the number of entries in the scatterlist
898  *
899  * Return: Either < 0 (indicating no buffers could be mapped), or the
900  * number of DMA mapping array entries in the scatterlist.
901  *
902  * Note:
903  * The caller is responsible for placing the resulting DMA addresses from
904  * the scatterlist into URB transfer buffer pointers, and for setting the
905  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
906  *
907  * Top I/O rates come from queuing URBs, instead of waiting for each one
908  * to complete before starting the next I/O.   This is particularly easy
909  * to do with scatterlists.  Just allocate and submit one URB for each DMA
910  * mapping entry returned, stopping on the first error or when all succeed.
911  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
912  *
913  * This call would normally be used when translating scatterlist requests,
914  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
915  * may be able to coalesce mappings for improved I/O efficiency.
916  *
917  * Reverse the effect of this call with usb_buffer_unmap_sg().
918  */
919 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
920 		      struct scatterlist *sg, int nents)
921 {
922 	struct usb_bus		*bus;
923 	struct device		*controller;
924 
925 	if (!dev
926 			|| !(bus = dev->bus)
927 			|| !(controller = bus->controller)
928 			|| !controller->dma_mask)
929 		return -EINVAL;
930 
931 	/* FIXME generic api broken like pci, can't report errors */
932 	return dma_map_sg(controller, sg, nents,
933 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
934 }
935 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
936 #endif
937 
938 /* XXX DISABLED, no users currently.  If you wish to re-enable this
939  * XXX please determine whether the sync is to transfer ownership of
940  * XXX the buffer from device to cpu or vice verse, and thusly use the
941  * XXX appropriate _for_{cpu,device}() method.  -DaveM
942  */
943 #if 0
944 
945 /**
946  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
947  * @dev: device to which the scatterlist will be mapped
948  * @is_in: mapping transfer direction
949  * @sg: the scatterlist to synchronize
950  * @n_hw_ents: the positive return value from usb_buffer_map_sg
951  *
952  * Use this when you are re-using a scatterlist's data buffers for
953  * another USB request.
954  */
955 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
956 			   struct scatterlist *sg, int n_hw_ents)
957 {
958 	struct usb_bus		*bus;
959 	struct device		*controller;
960 
961 	if (!dev
962 			|| !(bus = dev->bus)
963 			|| !(controller = bus->controller)
964 			|| !controller->dma_mask)
965 		return;
966 
967 	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
968 			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
969 }
970 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
971 #endif
972 
973 #if 0
974 /**
975  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
976  * @dev: device to which the scatterlist will be mapped
977  * @is_in: mapping transfer direction
978  * @sg: the scatterlist to unmap
979  * @n_hw_ents: the positive return value from usb_buffer_map_sg
980  *
981  * Reverses the effect of usb_buffer_map_sg().
982  */
983 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
984 			 struct scatterlist *sg, int n_hw_ents)
985 {
986 	struct usb_bus		*bus;
987 	struct device		*controller;
988 
989 	if (!dev
990 			|| !(bus = dev->bus)
991 			|| !(controller = bus->controller)
992 			|| !controller->dma_mask)
993 		return;
994 
995 	dma_unmap_sg(controller, sg, n_hw_ents,
996 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
997 }
998 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
999 #endif
1000 
1001 /*
1002  * Notifications of device and interface registration
1003  */
usb_bus_notify(struct notifier_block * nb,unsigned long action,void * data)1004 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1005 		void *data)
1006 {
1007 	struct device *dev = data;
1008 
1009 	switch (action) {
1010 	case BUS_NOTIFY_ADD_DEVICE:
1011 		if (dev->type == &usb_device_type)
1012 			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
1013 		else if (dev->type == &usb_if_device_type)
1014 			usb_create_sysfs_intf_files(to_usb_interface(dev));
1015 		break;
1016 
1017 	case BUS_NOTIFY_DEL_DEVICE:
1018 		if (dev->type == &usb_device_type)
1019 			usb_remove_sysfs_dev_files(to_usb_device(dev));
1020 		else if (dev->type == &usb_if_device_type)
1021 			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1022 		break;
1023 	}
1024 	return 0;
1025 }
1026 
1027 static struct notifier_block usb_bus_nb = {
1028 	.notifier_call = usb_bus_notify,
1029 };
1030 
1031 struct dentry *usb_debug_root;
1032 EXPORT_SYMBOL_GPL(usb_debug_root);
1033 
1034 static struct dentry *usb_debug_devices;
1035 
usb_debugfs_init(void)1036 static int usb_debugfs_init(void)
1037 {
1038 	usb_debug_root = debugfs_create_dir("usb", NULL);
1039 	if (!usb_debug_root)
1040 		return -ENOENT;
1041 
1042 	usb_debug_devices = debugfs_create_file("devices", 0444,
1043 						usb_debug_root, NULL,
1044 						&usbfs_devices_fops);
1045 	if (!usb_debug_devices) {
1046 		debugfs_remove(usb_debug_root);
1047 		usb_debug_root = NULL;
1048 		return -ENOENT;
1049 	}
1050 
1051 	return 0;
1052 }
1053 
usb_debugfs_cleanup(void)1054 static void usb_debugfs_cleanup(void)
1055 {
1056 	debugfs_remove(usb_debug_devices);
1057 	debugfs_remove(usb_debug_root);
1058 }
1059 
1060 /*
1061  * Init
1062  */
usb_init(void)1063 static int __init usb_init(void)
1064 {
1065 	int retval;
1066 	if (usb_disabled()) {
1067 		pr_info("%s: USB support disabled\n", usbcore_name);
1068 		return 0;
1069 	}
1070 	usb_init_pool_max();
1071 
1072 	retval = usb_debugfs_init();
1073 	if (retval)
1074 		goto out;
1075 
1076 	usb_acpi_register();
1077 	retval = bus_register(&usb_bus_type);
1078 	if (retval)
1079 		goto bus_register_failed;
1080 	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1081 	if (retval)
1082 		goto bus_notifier_failed;
1083 	retval = usb_major_init();
1084 	if (retval)
1085 		goto major_init_failed;
1086 	retval = usb_register(&usbfs_driver);
1087 	if (retval)
1088 		goto driver_register_failed;
1089 	retval = usb_devio_init();
1090 	if (retval)
1091 		goto usb_devio_init_failed;
1092 	retval = usb_hub_init();
1093 	if (retval)
1094 		goto hub_init_failed;
1095 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1096 	if (!retval)
1097 		goto out;
1098 
1099 	usb_hub_cleanup();
1100 hub_init_failed:
1101 	usb_devio_cleanup();
1102 usb_devio_init_failed:
1103 	usb_deregister(&usbfs_driver);
1104 driver_register_failed:
1105 	usb_major_cleanup();
1106 major_init_failed:
1107 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1108 bus_notifier_failed:
1109 	bus_unregister(&usb_bus_type);
1110 bus_register_failed:
1111 	usb_acpi_unregister();
1112 	usb_debugfs_cleanup();
1113 out:
1114 	return retval;
1115 }
1116 
1117 /*
1118  * Cleanup
1119  */
usb_exit(void)1120 static void __exit usb_exit(void)
1121 {
1122 	/* This will matter if shutdown/reboot does exitcalls. */
1123 	if (usb_disabled())
1124 		return;
1125 
1126 	usb_deregister_device_driver(&usb_generic_driver);
1127 	usb_major_cleanup();
1128 	usb_deregister(&usbfs_driver);
1129 	usb_devio_cleanup();
1130 	usb_hub_cleanup();
1131 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1132 	bus_unregister(&usb_bus_type);
1133 	usb_acpi_unregister();
1134 	usb_debugfs_cleanup();
1135 	idr_destroy(&usb_bus_idr);
1136 }
1137 
1138 subsys_initcall(usb_init);
1139 module_exit(usb_exit);
1140 MODULE_LICENSE("GPL");
1141