1 /*
2 * message.c - synchronous message handling
3 */
4
5 #include <linux/pci.h> /* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/timer.h>
11 #include <linux/ctype.h>
12 #include <linux/nls.h>
13 #include <linux/device.h>
14 #include <linux/scatterlist.h>
15 #include <linux/usb/cdc.h>
16 #include <linux/usb/quirks.h>
17 #include <linux/usb/hcd.h> /* for usbcore internals */
18 #include <asm/byteorder.h>
19
20 #include "usb.h"
21
22 static void cancel_async_set_config(struct usb_device *udev);
23
24 struct api_context {
25 struct completion done;
26 int status;
27 };
28
usb_api_blocking_completion(struct urb * urb)29 static void usb_api_blocking_completion(struct urb *urb)
30 {
31 struct api_context *ctx = urb->context;
32
33 ctx->status = urb->status;
34 complete(&ctx->done);
35 }
36
37
38 /*
39 * Starts urb and waits for completion or timeout. Note that this call
40 * is NOT interruptible. Many device driver i/o requests should be
41 * interruptible and therefore these drivers should implement their
42 * own interruptible routines.
43 */
usb_start_wait_urb(struct urb * urb,int timeout,int * actual_length)44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45 {
46 struct api_context ctx;
47 unsigned long expire;
48 int retval;
49
50 init_completion(&ctx.done);
51 urb->context = &ctx;
52 urb->actual_length = 0;
53 retval = usb_submit_urb(urb, GFP_NOIO);
54 if (unlikely(retval))
55 goto out;
56
57 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
58 if (!wait_for_completion_timeout(&ctx.done, expire)) {
59 usb_kill_urb(urb);
60 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61
62 dev_dbg(&urb->dev->dev,
63 "%s timed out on ep%d%s len=%u/%u\n",
64 current->comm,
65 usb_endpoint_num(&urb->ep->desc),
66 usb_urb_dir_in(urb) ? "in" : "out",
67 urb->actual_length,
68 urb->transfer_buffer_length);
69 } else
70 retval = ctx.status;
71 out:
72 if (actual_length)
73 *actual_length = urb->actual_length;
74
75 usb_free_urb(urb);
76 return retval;
77 }
78
79 /*-------------------------------------------------------------------*/
80 /* returns status (negative) or length (positive) */
usb_internal_control_msg(struct usb_device * usb_dev,unsigned int pipe,struct usb_ctrlrequest * cmd,void * data,int len,int timeout)81 static int usb_internal_control_msg(struct usb_device *usb_dev,
82 unsigned int pipe,
83 struct usb_ctrlrequest *cmd,
84 void *data, int len, int timeout)
85 {
86 struct urb *urb;
87 int retv;
88 int length;
89
90 urb = usb_alloc_urb(0, GFP_NOIO);
91 if (!urb)
92 return -ENOMEM;
93
94 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
95 len, usb_api_blocking_completion, NULL);
96
97 retv = usb_start_wait_urb(urb, timeout, &length);
98 if (retv < 0)
99 return retv;
100 else
101 return length;
102 }
103
104 /**
105 * usb_control_msg - Builds a control urb, sends it off and waits for completion
106 * @dev: pointer to the usb device to send the message to
107 * @pipe: endpoint "pipe" to send the message to
108 * @request: USB message request value
109 * @requesttype: USB message request type value
110 * @value: USB message value
111 * @index: USB message index value
112 * @data: pointer to the data to send
113 * @size: length in bytes of the data to send
114 * @timeout: time in msecs to wait for the message to complete before timing
115 * out (if 0 the wait is forever)
116 *
117 * Context: !in_interrupt ()
118 *
119 * This function sends a simple control message to a specified endpoint and
120 * waits for the message to complete, or timeout.
121 *
122 * Don't use this function from within an interrupt context, like a bottom half
123 * handler. If you need an asynchronous message, or need to send a message
124 * from within interrupt context, use usb_submit_urb().
125 * If a thread in your driver uses this call, make sure your disconnect()
126 * method can wait for it to complete. Since you don't have a handle on the
127 * URB used, you can't cancel the request.
128 *
129 * Return: If successful, the number of bytes transferred. Otherwise, a negative
130 * error number.
131 */
usb_control_msg(struct usb_device * dev,unsigned int pipe,__u8 request,__u8 requesttype,__u16 value,__u16 index,void * data,__u16 size,int timeout)132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
133 __u8 requesttype, __u16 value, __u16 index, void *data,
134 __u16 size, int timeout)
135 {
136 struct usb_ctrlrequest *dr;
137 int ret;
138
139 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
140 if (!dr)
141 return -ENOMEM;
142
143 dr->bRequestType = requesttype;
144 dr->bRequest = request;
145 dr->wValue = cpu_to_le16(value);
146 dr->wIndex = cpu_to_le16(index);
147 dr->wLength = cpu_to_le16(size);
148
149 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
150
151 /* Linger a bit, prior to the next control message. */
152 if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
153 msleep(200);
154
155 kfree(dr);
156
157 return ret;
158 }
159 EXPORT_SYMBOL_GPL(usb_control_msg);
160
161 /**
162 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
163 * @usb_dev: pointer to the usb device to send the message to
164 * @pipe: endpoint "pipe" to send the message to
165 * @data: pointer to the data to send
166 * @len: length in bytes of the data to send
167 * @actual_length: pointer to a location to put the actual length transferred
168 * in bytes
169 * @timeout: time in msecs to wait for the message to complete before
170 * timing out (if 0 the wait is forever)
171 *
172 * Context: !in_interrupt ()
173 *
174 * This function sends a simple interrupt message to a specified endpoint and
175 * waits for the message to complete, or timeout.
176 *
177 * Don't use this function from within an interrupt context, like a bottom half
178 * handler. If you need an asynchronous message, or need to send a message
179 * from within interrupt context, use usb_submit_urb() If a thread in your
180 * driver uses this call, make sure your disconnect() method can wait for it to
181 * complete. Since you don't have a handle on the URB used, you can't cancel
182 * the request.
183 *
184 * Return:
185 * If successful, 0. Otherwise a negative error number. The number of actual
186 * bytes transferred will be stored in the @actual_length parameter.
187 */
usb_interrupt_msg(struct usb_device * usb_dev,unsigned int pipe,void * data,int len,int * actual_length,int timeout)188 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
189 void *data, int len, int *actual_length, int timeout)
190 {
191 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
192 }
193 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
194
195 /**
196 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
197 * @usb_dev: pointer to the usb device to send the message to
198 * @pipe: endpoint "pipe" to send the message to
199 * @data: pointer to the data to send
200 * @len: length in bytes of the data to send
201 * @actual_length: pointer to a location to put the actual length transferred
202 * in bytes
203 * @timeout: time in msecs to wait for the message to complete before
204 * timing out (if 0 the wait is forever)
205 *
206 * Context: !in_interrupt ()
207 *
208 * This function sends a simple bulk message to a specified endpoint
209 * and waits for the message to complete, or timeout.
210 *
211 * Don't use this function from within an interrupt context, like a bottom half
212 * handler. If you need an asynchronous message, or need to send a message
213 * from within interrupt context, use usb_submit_urb() If a thread in your
214 * driver uses this call, make sure your disconnect() method can wait for it to
215 * complete. Since you don't have a handle on the URB used, you can't cancel
216 * the request.
217 *
218 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
219 * users are forced to abuse this routine by using it to submit URBs for
220 * interrupt endpoints. We will take the liberty of creating an interrupt URB
221 * (with the default interval) if the target is an interrupt endpoint.
222 *
223 * Return:
224 * If successful, 0. Otherwise a negative error number. The number of actual
225 * bytes transferred will be stored in the @actual_length parameter.
226 *
227 */
usb_bulk_msg(struct usb_device * usb_dev,unsigned int pipe,void * data,int len,int * actual_length,int timeout)228 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
229 void *data, int len, int *actual_length, int timeout)
230 {
231 struct urb *urb;
232 struct usb_host_endpoint *ep;
233
234 ep = usb_pipe_endpoint(usb_dev, pipe);
235 if (!ep || len < 0)
236 return -EINVAL;
237
238 urb = usb_alloc_urb(0, GFP_KERNEL);
239 if (!urb)
240 return -ENOMEM;
241
242 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
243 USB_ENDPOINT_XFER_INT) {
244 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
245 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
246 usb_api_blocking_completion, NULL,
247 ep->desc.bInterval);
248 } else
249 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
250 usb_api_blocking_completion, NULL);
251
252 return usb_start_wait_urb(urb, timeout, actual_length);
253 }
254 EXPORT_SYMBOL_GPL(usb_bulk_msg);
255
256 /*-------------------------------------------------------------------*/
257
sg_clean(struct usb_sg_request * io)258 static void sg_clean(struct usb_sg_request *io)
259 {
260 if (io->urbs) {
261 while (io->entries--)
262 usb_free_urb(io->urbs[io->entries]);
263 kfree(io->urbs);
264 io->urbs = NULL;
265 }
266 io->dev = NULL;
267 }
268
sg_complete(struct urb * urb)269 static void sg_complete(struct urb *urb)
270 {
271 struct usb_sg_request *io = urb->context;
272 int status = urb->status;
273
274 spin_lock(&io->lock);
275
276 /* In 2.5 we require hcds' endpoint queues not to progress after fault
277 * reports, until the completion callback (this!) returns. That lets
278 * device driver code (like this routine) unlink queued urbs first,
279 * if it needs to, since the HC won't work on them at all. So it's
280 * not possible for page N+1 to overwrite page N, and so on.
281 *
282 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
283 * complete before the HCD can get requests away from hardware,
284 * though never during cleanup after a hard fault.
285 */
286 if (io->status
287 && (io->status != -ECONNRESET
288 || status != -ECONNRESET)
289 && urb->actual_length) {
290 dev_err(io->dev->bus->controller,
291 "dev %s ep%d%s scatterlist error %d/%d\n",
292 io->dev->devpath,
293 usb_endpoint_num(&urb->ep->desc),
294 usb_urb_dir_in(urb) ? "in" : "out",
295 status, io->status);
296 /* BUG (); */
297 }
298
299 if (io->status == 0 && status && status != -ECONNRESET) {
300 int i, found, retval;
301
302 io->status = status;
303
304 /* the previous urbs, and this one, completed already.
305 * unlink pending urbs so they won't rx/tx bad data.
306 * careful: unlink can sometimes be synchronous...
307 */
308 spin_unlock(&io->lock);
309 for (i = 0, found = 0; i < io->entries; i++) {
310 if (!io->urbs[i])
311 continue;
312 if (found) {
313 usb_block_urb(io->urbs[i]);
314 retval = usb_unlink_urb(io->urbs[i]);
315 if (retval != -EINPROGRESS &&
316 retval != -ENODEV &&
317 retval != -EBUSY &&
318 retval != -EIDRM)
319 dev_err(&io->dev->dev,
320 "%s, unlink --> %d\n",
321 __func__, retval);
322 } else if (urb == io->urbs[i])
323 found = 1;
324 }
325 spin_lock(&io->lock);
326 }
327
328 /* on the last completion, signal usb_sg_wait() */
329 io->bytes += urb->actual_length;
330 io->count--;
331 if (!io->count)
332 complete(&io->complete);
333
334 spin_unlock(&io->lock);
335 }
336
337
338 /**
339 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
340 * @io: request block being initialized. until usb_sg_wait() returns,
341 * treat this as a pointer to an opaque block of memory,
342 * @dev: the usb device that will send or receive the data
343 * @pipe: endpoint "pipe" used to transfer the data
344 * @period: polling rate for interrupt endpoints, in frames or
345 * (for high speed endpoints) microframes; ignored for bulk
346 * @sg: scatterlist entries
347 * @nents: how many entries in the scatterlist
348 * @length: how many bytes to send from the scatterlist, or zero to
349 * send every byte identified in the list.
350 * @mem_flags: SLAB_* flags affecting memory allocations in this call
351 *
352 * This initializes a scatter/gather request, allocating resources such as
353 * I/O mappings and urb memory (except maybe memory used by USB controller
354 * drivers).
355 *
356 * The request must be issued using usb_sg_wait(), which waits for the I/O to
357 * complete (or to be canceled) and then cleans up all resources allocated by
358 * usb_sg_init().
359 *
360 * The request may be canceled with usb_sg_cancel(), either before or after
361 * usb_sg_wait() is called.
362 *
363 * Return: Zero for success, else a negative errno value.
364 */
usb_sg_init(struct usb_sg_request * io,struct usb_device * dev,unsigned pipe,unsigned period,struct scatterlist * sg,int nents,size_t length,gfp_t mem_flags)365 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
366 unsigned pipe, unsigned period, struct scatterlist *sg,
367 int nents, size_t length, gfp_t mem_flags)
368 {
369 int i;
370 int urb_flags;
371 int use_sg;
372
373 if (!io || !dev || !sg
374 || usb_pipecontrol(pipe)
375 || usb_pipeisoc(pipe)
376 || nents <= 0)
377 return -EINVAL;
378
379 spin_lock_init(&io->lock);
380 io->dev = dev;
381 io->pipe = pipe;
382
383 if (dev->bus->sg_tablesize > 0) {
384 use_sg = true;
385 io->entries = 1;
386 } else {
387 use_sg = false;
388 io->entries = nents;
389 }
390
391 /* initialize all the urbs we'll use */
392 io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
393 if (!io->urbs)
394 goto nomem;
395
396 urb_flags = URB_NO_INTERRUPT;
397 if (usb_pipein(pipe))
398 urb_flags |= URB_SHORT_NOT_OK;
399
400 for_each_sg(sg, sg, io->entries, i) {
401 struct urb *urb;
402 unsigned len;
403
404 urb = usb_alloc_urb(0, mem_flags);
405 if (!urb) {
406 io->entries = i;
407 goto nomem;
408 }
409 io->urbs[i] = urb;
410
411 urb->dev = NULL;
412 urb->pipe = pipe;
413 urb->interval = period;
414 urb->transfer_flags = urb_flags;
415 urb->complete = sg_complete;
416 urb->context = io;
417 urb->sg = sg;
418
419 if (use_sg) {
420 /* There is no single transfer buffer */
421 urb->transfer_buffer = NULL;
422 urb->num_sgs = nents;
423
424 /* A length of zero means transfer the whole sg list */
425 len = length;
426 if (len == 0) {
427 struct scatterlist *sg2;
428 int j;
429
430 for_each_sg(sg, sg2, nents, j)
431 len += sg2->length;
432 }
433 } else {
434 /*
435 * Some systems can't use DMA; they use PIO instead.
436 * For their sakes, transfer_buffer is set whenever
437 * possible.
438 */
439 if (!PageHighMem(sg_page(sg)))
440 urb->transfer_buffer = sg_virt(sg);
441 else
442 urb->transfer_buffer = NULL;
443
444 len = sg->length;
445 if (length) {
446 len = min_t(size_t, len, length);
447 length -= len;
448 if (length == 0)
449 io->entries = i + 1;
450 }
451 }
452 urb->transfer_buffer_length = len;
453 }
454 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
455
456 /* transaction state */
457 io->count = io->entries;
458 io->status = 0;
459 io->bytes = 0;
460 init_completion(&io->complete);
461 return 0;
462
463 nomem:
464 sg_clean(io);
465 return -ENOMEM;
466 }
467 EXPORT_SYMBOL_GPL(usb_sg_init);
468
469 /**
470 * usb_sg_wait - synchronously execute scatter/gather request
471 * @io: request block handle, as initialized with usb_sg_init().
472 * some fields become accessible when this call returns.
473 * Context: !in_interrupt ()
474 *
475 * This function blocks until the specified I/O operation completes. It
476 * leverages the grouping of the related I/O requests to get good transfer
477 * rates, by queueing the requests. At higher speeds, such queuing can
478 * significantly improve USB throughput.
479 *
480 * There are three kinds of completion for this function.
481 * (1) success, where io->status is zero. The number of io->bytes
482 * transferred is as requested.
483 * (2) error, where io->status is a negative errno value. The number
484 * of io->bytes transferred before the error is usually less
485 * than requested, and can be nonzero.
486 * (3) cancellation, a type of error with status -ECONNRESET that
487 * is initiated by usb_sg_cancel().
488 *
489 * When this function returns, all memory allocated through usb_sg_init() or
490 * this call will have been freed. The request block parameter may still be
491 * passed to usb_sg_cancel(), or it may be freed. It could also be
492 * reinitialized and then reused.
493 *
494 * Data Transfer Rates:
495 *
496 * Bulk transfers are valid for full or high speed endpoints.
497 * The best full speed data rate is 19 packets of 64 bytes each
498 * per frame, or 1216 bytes per millisecond.
499 * The best high speed data rate is 13 packets of 512 bytes each
500 * per microframe, or 52 KBytes per millisecond.
501 *
502 * The reason to use interrupt transfers through this API would most likely
503 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
504 * could be transferred. That capability is less useful for low or full
505 * speed interrupt endpoints, which allow at most one packet per millisecond,
506 * of at most 8 or 64 bytes (respectively).
507 *
508 * It is not necessary to call this function to reserve bandwidth for devices
509 * under an xHCI host controller, as the bandwidth is reserved when the
510 * configuration or interface alt setting is selected.
511 */
usb_sg_wait(struct usb_sg_request * io)512 void usb_sg_wait(struct usb_sg_request *io)
513 {
514 int i;
515 int entries = io->entries;
516
517 /* queue the urbs. */
518 spin_lock_irq(&io->lock);
519 i = 0;
520 while (i < entries && !io->status) {
521 int retval;
522
523 io->urbs[i]->dev = io->dev;
524 spin_unlock_irq(&io->lock);
525
526 retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
527
528 switch (retval) {
529 /* maybe we retrying will recover */
530 case -ENXIO: /* hc didn't queue this one */
531 case -EAGAIN:
532 case -ENOMEM:
533 retval = 0;
534 yield();
535 break;
536
537 /* no error? continue immediately.
538 *
539 * NOTE: to work better with UHCI (4K I/O buffer may
540 * need 3K of TDs) it may be good to limit how many
541 * URBs are queued at once; N milliseconds?
542 */
543 case 0:
544 ++i;
545 cpu_relax();
546 break;
547
548 /* fail any uncompleted urbs */
549 default:
550 io->urbs[i]->status = retval;
551 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
552 __func__, retval);
553 usb_sg_cancel(io);
554 }
555 spin_lock_irq(&io->lock);
556 if (retval && (io->status == 0 || io->status == -ECONNRESET))
557 io->status = retval;
558 }
559 io->count -= entries - i;
560 if (io->count == 0)
561 complete(&io->complete);
562 spin_unlock_irq(&io->lock);
563
564 /* OK, yes, this could be packaged as non-blocking.
565 * So could the submit loop above ... but it's easier to
566 * solve neither problem than to solve both!
567 */
568 wait_for_completion(&io->complete);
569
570 sg_clean(io);
571 }
572 EXPORT_SYMBOL_GPL(usb_sg_wait);
573
574 /**
575 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
576 * @io: request block, initialized with usb_sg_init()
577 *
578 * This stops a request after it has been started by usb_sg_wait().
579 * It can also prevents one initialized by usb_sg_init() from starting,
580 * so that call just frees resources allocated to the request.
581 */
usb_sg_cancel(struct usb_sg_request * io)582 void usb_sg_cancel(struct usb_sg_request *io)
583 {
584 unsigned long flags;
585 int i, retval;
586
587 spin_lock_irqsave(&io->lock, flags);
588 if (io->status) {
589 spin_unlock_irqrestore(&io->lock, flags);
590 return;
591 }
592 /* shut everything down */
593 io->status = -ECONNRESET;
594 spin_unlock_irqrestore(&io->lock, flags);
595
596 for (i = io->entries - 1; i >= 0; --i) {
597 usb_block_urb(io->urbs[i]);
598
599 retval = usb_unlink_urb(io->urbs[i]);
600 if (retval != -EINPROGRESS
601 && retval != -ENODEV
602 && retval != -EBUSY
603 && retval != -EIDRM)
604 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
605 __func__, retval);
606 }
607 }
608 EXPORT_SYMBOL_GPL(usb_sg_cancel);
609
610 /*-------------------------------------------------------------------*/
611
612 /**
613 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
614 * @dev: the device whose descriptor is being retrieved
615 * @type: the descriptor type (USB_DT_*)
616 * @index: the number of the descriptor
617 * @buf: where to put the descriptor
618 * @size: how big is "buf"?
619 * Context: !in_interrupt ()
620 *
621 * Gets a USB descriptor. Convenience functions exist to simplify
622 * getting some types of descriptors. Use
623 * usb_get_string() or usb_string() for USB_DT_STRING.
624 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
625 * are part of the device structure.
626 * In addition to a number of USB-standard descriptors, some
627 * devices also use class-specific or vendor-specific descriptors.
628 *
629 * This call is synchronous, and may not be used in an interrupt context.
630 *
631 * Return: The number of bytes received on success, or else the status code
632 * returned by the underlying usb_control_msg() call.
633 */
usb_get_descriptor(struct usb_device * dev,unsigned char type,unsigned char index,void * buf,int size)634 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
635 unsigned char index, void *buf, int size)
636 {
637 int i;
638 int result;
639
640 memset(buf, 0, size); /* Make sure we parse really received data */
641
642 for (i = 0; i < 3; ++i) {
643 /* retry on length 0 or error; some devices are flakey */
644 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
645 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
646 (type << 8) + index, 0, buf, size,
647 USB_CTRL_GET_TIMEOUT);
648 if (result <= 0 && result != -ETIMEDOUT)
649 continue;
650 if (result > 1 && ((u8 *)buf)[1] != type) {
651 result = -ENODATA;
652 continue;
653 }
654 break;
655 }
656 return result;
657 }
658 EXPORT_SYMBOL_GPL(usb_get_descriptor);
659
660 /**
661 * usb_get_string - gets a string descriptor
662 * @dev: the device whose string descriptor is being retrieved
663 * @langid: code for language chosen (from string descriptor zero)
664 * @index: the number of the descriptor
665 * @buf: where to put the string
666 * @size: how big is "buf"?
667 * Context: !in_interrupt ()
668 *
669 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
670 * in little-endian byte order).
671 * The usb_string() function will often be a convenient way to turn
672 * these strings into kernel-printable form.
673 *
674 * Strings may be referenced in device, configuration, interface, or other
675 * descriptors, and could also be used in vendor-specific ways.
676 *
677 * This call is synchronous, and may not be used in an interrupt context.
678 *
679 * Return: The number of bytes received on success, or else the status code
680 * returned by the underlying usb_control_msg() call.
681 */
usb_get_string(struct usb_device * dev,unsigned short langid,unsigned char index,void * buf,int size)682 static int usb_get_string(struct usb_device *dev, unsigned short langid,
683 unsigned char index, void *buf, int size)
684 {
685 int i;
686 int result;
687
688 for (i = 0; i < 3; ++i) {
689 /* retry on length 0 or stall; some devices are flakey */
690 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
691 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
692 (USB_DT_STRING << 8) + index, langid, buf, size,
693 USB_CTRL_GET_TIMEOUT);
694 if (result == 0 || result == -EPIPE)
695 continue;
696 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
697 result = -ENODATA;
698 continue;
699 }
700 break;
701 }
702 return result;
703 }
704
usb_try_string_workarounds(unsigned char * buf,int * length)705 static void usb_try_string_workarounds(unsigned char *buf, int *length)
706 {
707 int newlength, oldlength = *length;
708
709 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
710 if (!isprint(buf[newlength]) || buf[newlength + 1])
711 break;
712
713 if (newlength > 2) {
714 buf[0] = newlength;
715 *length = newlength;
716 }
717 }
718
usb_string_sub(struct usb_device * dev,unsigned int langid,unsigned int index,unsigned char * buf)719 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
720 unsigned int index, unsigned char *buf)
721 {
722 int rc;
723
724 /* Try to read the string descriptor by asking for the maximum
725 * possible number of bytes */
726 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
727 rc = -EIO;
728 else
729 rc = usb_get_string(dev, langid, index, buf, 255);
730
731 /* If that failed try to read the descriptor length, then
732 * ask for just that many bytes */
733 if (rc < 2) {
734 rc = usb_get_string(dev, langid, index, buf, 2);
735 if (rc == 2)
736 rc = usb_get_string(dev, langid, index, buf, buf[0]);
737 }
738
739 if (rc >= 2) {
740 if (!buf[0] && !buf[1])
741 usb_try_string_workarounds(buf, &rc);
742
743 /* There might be extra junk at the end of the descriptor */
744 if (buf[0] < rc)
745 rc = buf[0];
746
747 rc = rc - (rc & 1); /* force a multiple of two */
748 }
749
750 if (rc < 2)
751 rc = (rc < 0 ? rc : -EINVAL);
752
753 return rc;
754 }
755
usb_get_langid(struct usb_device * dev,unsigned char * tbuf)756 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
757 {
758 int err;
759
760 if (dev->have_langid)
761 return 0;
762
763 if (dev->string_langid < 0)
764 return -EPIPE;
765
766 err = usb_string_sub(dev, 0, 0, tbuf);
767
768 /* If the string was reported but is malformed, default to english
769 * (0x0409) */
770 if (err == -ENODATA || (err > 0 && err < 4)) {
771 dev->string_langid = 0x0409;
772 dev->have_langid = 1;
773 dev_err(&dev->dev,
774 "language id specifier not provided by device, defaulting to English\n");
775 return 0;
776 }
777
778 /* In case of all other errors, we assume the device is not able to
779 * deal with strings at all. Set string_langid to -1 in order to
780 * prevent any string to be retrieved from the device */
781 if (err < 0) {
782 dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
783 err);
784 dev->string_langid = -1;
785 return -EPIPE;
786 }
787
788 /* always use the first langid listed */
789 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
790 dev->have_langid = 1;
791 dev_dbg(&dev->dev, "default language 0x%04x\n",
792 dev->string_langid);
793 return 0;
794 }
795
796 /**
797 * usb_string - returns UTF-8 version of a string descriptor
798 * @dev: the device whose string descriptor is being retrieved
799 * @index: the number of the descriptor
800 * @buf: where to put the string
801 * @size: how big is "buf"?
802 * Context: !in_interrupt ()
803 *
804 * This converts the UTF-16LE encoded strings returned by devices, from
805 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
806 * that are more usable in most kernel contexts. Note that this function
807 * chooses strings in the first language supported by the device.
808 *
809 * This call is synchronous, and may not be used in an interrupt context.
810 *
811 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
812 */
usb_string(struct usb_device * dev,int index,char * buf,size_t size)813 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
814 {
815 unsigned char *tbuf;
816 int err;
817
818 if (dev->state == USB_STATE_SUSPENDED)
819 return -EHOSTUNREACH;
820 if (size <= 0 || !buf || !index)
821 return -EINVAL;
822 buf[0] = 0;
823 tbuf = kmalloc(256, GFP_NOIO);
824 if (!tbuf)
825 return -ENOMEM;
826
827 err = usb_get_langid(dev, tbuf);
828 if (err < 0)
829 goto errout;
830
831 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
832 if (err < 0)
833 goto errout;
834
835 size--; /* leave room for trailing NULL char in output buffer */
836 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
837 UTF16_LITTLE_ENDIAN, buf, size);
838 buf[err] = 0;
839
840 if (tbuf[1] != USB_DT_STRING)
841 dev_dbg(&dev->dev,
842 "wrong descriptor type %02x for string %d (\"%s\")\n",
843 tbuf[1], index, buf);
844
845 errout:
846 kfree(tbuf);
847 return err;
848 }
849 EXPORT_SYMBOL_GPL(usb_string);
850
851 /* one UTF-8-encoded 16-bit character has at most three bytes */
852 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
853
854 /**
855 * usb_cache_string - read a string descriptor and cache it for later use
856 * @udev: the device whose string descriptor is being read
857 * @index: the descriptor index
858 *
859 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
860 * or %NULL if the index is 0 or the string could not be read.
861 */
usb_cache_string(struct usb_device * udev,int index)862 char *usb_cache_string(struct usb_device *udev, int index)
863 {
864 char *buf;
865 char *smallbuf = NULL;
866 int len;
867
868 if (index <= 0)
869 return NULL;
870
871 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
872 if (buf) {
873 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
874 if (len > 0) {
875 smallbuf = kmalloc(++len, GFP_NOIO);
876 if (!smallbuf)
877 return buf;
878 memcpy(smallbuf, buf, len);
879 }
880 kfree(buf);
881 }
882 return smallbuf;
883 }
884
885 /*
886 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
887 * @dev: the device whose device descriptor is being updated
888 * @size: how much of the descriptor to read
889 * Context: !in_interrupt ()
890 *
891 * Updates the copy of the device descriptor stored in the device structure,
892 * which dedicates space for this purpose.
893 *
894 * Not exported, only for use by the core. If drivers really want to read
895 * the device descriptor directly, they can call usb_get_descriptor() with
896 * type = USB_DT_DEVICE and index = 0.
897 *
898 * This call is synchronous, and may not be used in an interrupt context.
899 *
900 * Return: The number of bytes received on success, or else the status code
901 * returned by the underlying usb_control_msg() call.
902 */
usb_get_device_descriptor(struct usb_device * dev,unsigned int size)903 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
904 {
905 struct usb_device_descriptor *desc;
906 int ret;
907
908 if (size > sizeof(*desc))
909 return -EINVAL;
910 desc = kmalloc(sizeof(*desc), GFP_NOIO);
911 if (!desc)
912 return -ENOMEM;
913
914 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
915 if (ret >= 0)
916 memcpy(&dev->descriptor, desc, size);
917 kfree(desc);
918 return ret;
919 }
920
921 /**
922 * usb_get_status - issues a GET_STATUS call
923 * @dev: the device whose status is being checked
924 * @type: USB_RECIP_*; for device, interface, or endpoint
925 * @target: zero (for device), else interface or endpoint number
926 * @data: pointer to two bytes of bitmap data
927 * Context: !in_interrupt ()
928 *
929 * Returns device, interface, or endpoint status. Normally only of
930 * interest to see if the device is self powered, or has enabled the
931 * remote wakeup facility; or whether a bulk or interrupt endpoint
932 * is halted ("stalled").
933 *
934 * Bits in these status bitmaps are set using the SET_FEATURE request,
935 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
936 * function should be used to clear halt ("stall") status.
937 *
938 * This call is synchronous, and may not be used in an interrupt context.
939 *
940 * Returns 0 and the status value in *@data (in host byte order) on success,
941 * or else the status code from the underlying usb_control_msg() call.
942 */
usb_get_status(struct usb_device * dev,int type,int target,void * data)943 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
944 {
945 int ret;
946 __le16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
947
948 if (!status)
949 return -ENOMEM;
950
951 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
952 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
953 sizeof(*status), USB_CTRL_GET_TIMEOUT);
954
955 if (ret == 2) {
956 *(u16 *) data = le16_to_cpu(*status);
957 ret = 0;
958 } else if (ret >= 0) {
959 ret = -EIO;
960 }
961 kfree(status);
962 return ret;
963 }
964 EXPORT_SYMBOL_GPL(usb_get_status);
965
966 /**
967 * usb_clear_halt - tells device to clear endpoint halt/stall condition
968 * @dev: device whose endpoint is halted
969 * @pipe: endpoint "pipe" being cleared
970 * Context: !in_interrupt ()
971 *
972 * This is used to clear halt conditions for bulk and interrupt endpoints,
973 * as reported by URB completion status. Endpoints that are halted are
974 * sometimes referred to as being "stalled". Such endpoints are unable
975 * to transmit or receive data until the halt status is cleared. Any URBs
976 * queued for such an endpoint should normally be unlinked by the driver
977 * before clearing the halt condition, as described in sections 5.7.5
978 * and 5.8.5 of the USB 2.0 spec.
979 *
980 * Note that control and isochronous endpoints don't halt, although control
981 * endpoints report "protocol stall" (for unsupported requests) using the
982 * same status code used to report a true stall.
983 *
984 * This call is synchronous, and may not be used in an interrupt context.
985 *
986 * Return: Zero on success, or else the status code returned by the
987 * underlying usb_control_msg() call.
988 */
usb_clear_halt(struct usb_device * dev,int pipe)989 int usb_clear_halt(struct usb_device *dev, int pipe)
990 {
991 int result;
992 int endp = usb_pipeendpoint(pipe);
993
994 if (usb_pipein(pipe))
995 endp |= USB_DIR_IN;
996
997 /* we don't care if it wasn't halted first. in fact some devices
998 * (like some ibmcam model 1 units) seem to expect hosts to make
999 * this request for iso endpoints, which can't halt!
1000 */
1001 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1002 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1003 USB_ENDPOINT_HALT, endp, NULL, 0,
1004 USB_CTRL_SET_TIMEOUT);
1005
1006 /* don't un-halt or force to DATA0 except on success */
1007 if (result < 0)
1008 return result;
1009
1010 /* NOTE: seems like Microsoft and Apple don't bother verifying
1011 * the clear "took", so some devices could lock up if you check...
1012 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1013 *
1014 * NOTE: make sure the logic here doesn't diverge much from
1015 * the copy in usb-storage, for as long as we need two copies.
1016 */
1017
1018 usb_reset_endpoint(dev, endp);
1019
1020 return 0;
1021 }
1022 EXPORT_SYMBOL_GPL(usb_clear_halt);
1023
create_intf_ep_devs(struct usb_interface * intf)1024 static int create_intf_ep_devs(struct usb_interface *intf)
1025 {
1026 struct usb_device *udev = interface_to_usbdev(intf);
1027 struct usb_host_interface *alt = intf->cur_altsetting;
1028 int i;
1029
1030 if (intf->ep_devs_created || intf->unregistering)
1031 return 0;
1032
1033 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1034 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1035 intf->ep_devs_created = 1;
1036 return 0;
1037 }
1038
remove_intf_ep_devs(struct usb_interface * intf)1039 static void remove_intf_ep_devs(struct usb_interface *intf)
1040 {
1041 struct usb_host_interface *alt = intf->cur_altsetting;
1042 int i;
1043
1044 if (!intf->ep_devs_created)
1045 return;
1046
1047 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1048 usb_remove_ep_devs(&alt->endpoint[i]);
1049 intf->ep_devs_created = 0;
1050 }
1051
1052 /**
1053 * usb_disable_endpoint -- Disable an endpoint by address
1054 * @dev: the device whose endpoint is being disabled
1055 * @epaddr: the endpoint's address. Endpoint number for output,
1056 * endpoint number + USB_DIR_IN for input
1057 * @reset_hardware: flag to erase any endpoint state stored in the
1058 * controller hardware
1059 *
1060 * Disables the endpoint for URB submission and nukes all pending URBs.
1061 * If @reset_hardware is set then also deallocates hcd/hardware state
1062 * for the endpoint.
1063 */
usb_disable_endpoint(struct usb_device * dev,unsigned int epaddr,bool reset_hardware)1064 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1065 bool reset_hardware)
1066 {
1067 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1068 struct usb_host_endpoint *ep;
1069
1070 if (!dev)
1071 return;
1072
1073 if (usb_endpoint_out(epaddr)) {
1074 ep = dev->ep_out[epnum];
1075 if (reset_hardware)
1076 dev->ep_out[epnum] = NULL;
1077 } else {
1078 ep = dev->ep_in[epnum];
1079 if (reset_hardware)
1080 dev->ep_in[epnum] = NULL;
1081 }
1082 if (ep) {
1083 ep->enabled = 0;
1084 usb_hcd_flush_endpoint(dev, ep);
1085 if (reset_hardware)
1086 usb_hcd_disable_endpoint(dev, ep);
1087 }
1088 }
1089
1090 /**
1091 * usb_reset_endpoint - Reset an endpoint's state.
1092 * @dev: the device whose endpoint is to be reset
1093 * @epaddr: the endpoint's address. Endpoint number for output,
1094 * endpoint number + USB_DIR_IN for input
1095 *
1096 * Resets any host-side endpoint state such as the toggle bit,
1097 * sequence number or current window.
1098 */
usb_reset_endpoint(struct usb_device * dev,unsigned int epaddr)1099 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1100 {
1101 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1102 struct usb_host_endpoint *ep;
1103
1104 if (usb_endpoint_out(epaddr))
1105 ep = dev->ep_out[epnum];
1106 else
1107 ep = dev->ep_in[epnum];
1108 if (ep)
1109 usb_hcd_reset_endpoint(dev, ep);
1110 }
1111 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1112
1113
1114 /**
1115 * usb_disable_interface -- Disable all endpoints for an interface
1116 * @dev: the device whose interface is being disabled
1117 * @intf: pointer to the interface descriptor
1118 * @reset_hardware: flag to erase any endpoint state stored in the
1119 * controller hardware
1120 *
1121 * Disables all the endpoints for the interface's current altsetting.
1122 */
usb_disable_interface(struct usb_device * dev,struct usb_interface * intf,bool reset_hardware)1123 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1124 bool reset_hardware)
1125 {
1126 struct usb_host_interface *alt = intf->cur_altsetting;
1127 int i;
1128
1129 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1130 usb_disable_endpoint(dev,
1131 alt->endpoint[i].desc.bEndpointAddress,
1132 reset_hardware);
1133 }
1134 }
1135
1136 /**
1137 * usb_disable_device - Disable all the endpoints for a USB device
1138 * @dev: the device whose endpoints are being disabled
1139 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1140 *
1141 * Disables all the device's endpoints, potentially including endpoint 0.
1142 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1143 * pending urbs) and usbcore state for the interfaces, so that usbcore
1144 * must usb_set_configuration() before any interfaces could be used.
1145 */
usb_disable_device(struct usb_device * dev,int skip_ep0)1146 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1147 {
1148 int i;
1149 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1150
1151 /* getting rid of interfaces will disconnect
1152 * any drivers bound to them (a key side effect)
1153 */
1154 if (dev->actconfig) {
1155 /*
1156 * FIXME: In order to avoid self-deadlock involving the
1157 * bandwidth_mutex, we have to mark all the interfaces
1158 * before unregistering any of them.
1159 */
1160 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1161 dev->actconfig->interface[i]->unregistering = 1;
1162
1163 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1164 struct usb_interface *interface;
1165
1166 /* remove this interface if it has been registered */
1167 interface = dev->actconfig->interface[i];
1168 if (!device_is_registered(&interface->dev))
1169 continue;
1170 dev_dbg(&dev->dev, "unregistering interface %s\n",
1171 dev_name(&interface->dev));
1172 remove_intf_ep_devs(interface);
1173 device_del(&interface->dev);
1174 }
1175
1176 /* Now that the interfaces are unbound, nobody should
1177 * try to access them.
1178 */
1179 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1180 put_device(&dev->actconfig->interface[i]->dev);
1181 dev->actconfig->interface[i] = NULL;
1182 }
1183
1184 if (dev->usb2_hw_lpm_enabled == 1)
1185 usb_set_usb2_hardware_lpm(dev, 0);
1186 usb_unlocked_disable_lpm(dev);
1187 usb_disable_ltm(dev);
1188
1189 dev->actconfig = NULL;
1190 if (dev->state == USB_STATE_CONFIGURED)
1191 usb_set_device_state(dev, USB_STATE_ADDRESS);
1192 }
1193
1194 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1195 skip_ep0 ? "non-ep0" : "all");
1196 if (hcd->driver->check_bandwidth) {
1197 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1198 for (i = skip_ep0; i < 16; ++i) {
1199 usb_disable_endpoint(dev, i, false);
1200 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1201 }
1202 /* Remove endpoints from the host controller internal state */
1203 mutex_lock(hcd->bandwidth_mutex);
1204 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1205 mutex_unlock(hcd->bandwidth_mutex);
1206 /* Second pass: remove endpoint pointers */
1207 }
1208 for (i = skip_ep0; i < 16; ++i) {
1209 usb_disable_endpoint(dev, i, true);
1210 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1211 }
1212 }
1213
1214 /**
1215 * usb_enable_endpoint - Enable an endpoint for USB communications
1216 * @dev: the device whose interface is being enabled
1217 * @ep: the endpoint
1218 * @reset_ep: flag to reset the endpoint state
1219 *
1220 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1221 * For control endpoints, both the input and output sides are handled.
1222 */
usb_enable_endpoint(struct usb_device * dev,struct usb_host_endpoint * ep,bool reset_ep)1223 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1224 bool reset_ep)
1225 {
1226 int epnum = usb_endpoint_num(&ep->desc);
1227 int is_out = usb_endpoint_dir_out(&ep->desc);
1228 int is_control = usb_endpoint_xfer_control(&ep->desc);
1229
1230 if (reset_ep)
1231 usb_hcd_reset_endpoint(dev, ep);
1232 if (is_out || is_control)
1233 dev->ep_out[epnum] = ep;
1234 if (!is_out || is_control)
1235 dev->ep_in[epnum] = ep;
1236 ep->enabled = 1;
1237 }
1238
1239 /**
1240 * usb_enable_interface - Enable all the endpoints for an interface
1241 * @dev: the device whose interface is being enabled
1242 * @intf: pointer to the interface descriptor
1243 * @reset_eps: flag to reset the endpoints' state
1244 *
1245 * Enables all the endpoints for the interface's current altsetting.
1246 */
usb_enable_interface(struct usb_device * dev,struct usb_interface * intf,bool reset_eps)1247 void usb_enable_interface(struct usb_device *dev,
1248 struct usb_interface *intf, bool reset_eps)
1249 {
1250 struct usb_host_interface *alt = intf->cur_altsetting;
1251 int i;
1252
1253 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1254 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1255 }
1256
1257 /**
1258 * usb_set_interface - Makes a particular alternate setting be current
1259 * @dev: the device whose interface is being updated
1260 * @interface: the interface being updated
1261 * @alternate: the setting being chosen.
1262 * Context: !in_interrupt ()
1263 *
1264 * This is used to enable data transfers on interfaces that may not
1265 * be enabled by default. Not all devices support such configurability.
1266 * Only the driver bound to an interface may change its setting.
1267 *
1268 * Within any given configuration, each interface may have several
1269 * alternative settings. These are often used to control levels of
1270 * bandwidth consumption. For example, the default setting for a high
1271 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1272 * while interrupt transfers of up to 3KBytes per microframe are legal.
1273 * Also, isochronous endpoints may never be part of an
1274 * interface's default setting. To access such bandwidth, alternate
1275 * interface settings must be made current.
1276 *
1277 * Note that in the Linux USB subsystem, bandwidth associated with
1278 * an endpoint in a given alternate setting is not reserved until an URB
1279 * is submitted that needs that bandwidth. Some other operating systems
1280 * allocate bandwidth early, when a configuration is chosen.
1281 *
1282 * This call is synchronous, and may not be used in an interrupt context.
1283 * Also, drivers must not change altsettings while urbs are scheduled for
1284 * endpoints in that interface; all such urbs must first be completed
1285 * (perhaps forced by unlinking).
1286 *
1287 * Return: Zero on success, or else the status code returned by the
1288 * underlying usb_control_msg() call.
1289 */
usb_set_interface(struct usb_device * dev,int interface,int alternate)1290 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1291 {
1292 struct usb_interface *iface;
1293 struct usb_host_interface *alt;
1294 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1295 int i, ret, manual = 0;
1296 unsigned int epaddr;
1297 unsigned int pipe;
1298
1299 if (dev->state == USB_STATE_SUSPENDED)
1300 return -EHOSTUNREACH;
1301
1302 iface = usb_ifnum_to_if(dev, interface);
1303 if (!iface) {
1304 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1305 interface);
1306 return -EINVAL;
1307 }
1308 if (iface->unregistering)
1309 return -ENODEV;
1310
1311 alt = usb_altnum_to_altsetting(iface, alternate);
1312 if (!alt) {
1313 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1314 alternate);
1315 return -EINVAL;
1316 }
1317
1318 /* Make sure we have enough bandwidth for this alternate interface.
1319 * Remove the current alt setting and add the new alt setting.
1320 */
1321 mutex_lock(hcd->bandwidth_mutex);
1322 /* Disable LPM, and re-enable it once the new alt setting is installed,
1323 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1324 */
1325 if (usb_disable_lpm(dev)) {
1326 dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1327 mutex_unlock(hcd->bandwidth_mutex);
1328 return -ENOMEM;
1329 }
1330 /* Changing alt-setting also frees any allocated streams */
1331 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1332 iface->cur_altsetting->endpoint[i].streams = 0;
1333
1334 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1335 if (ret < 0) {
1336 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1337 alternate);
1338 usb_enable_lpm(dev);
1339 mutex_unlock(hcd->bandwidth_mutex);
1340 return ret;
1341 }
1342
1343 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1344 ret = -EPIPE;
1345 else
1346 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1347 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1348 alternate, interface, NULL, 0, 5000);
1349
1350 /* 9.4.10 says devices don't need this and are free to STALL the
1351 * request if the interface only has one alternate setting.
1352 */
1353 if (ret == -EPIPE && iface->num_altsetting == 1) {
1354 dev_dbg(&dev->dev,
1355 "manual set_interface for iface %d, alt %d\n",
1356 interface, alternate);
1357 manual = 1;
1358 } else if (ret < 0) {
1359 /* Re-instate the old alt setting */
1360 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1361 usb_enable_lpm(dev);
1362 mutex_unlock(hcd->bandwidth_mutex);
1363 return ret;
1364 }
1365 mutex_unlock(hcd->bandwidth_mutex);
1366
1367 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1368 * when they implement async or easily-killable versions of this or
1369 * other "should-be-internal" functions (like clear_halt).
1370 * should hcd+usbcore postprocess control requests?
1371 */
1372
1373 /* prevent submissions using previous endpoint settings */
1374 if (iface->cur_altsetting != alt) {
1375 remove_intf_ep_devs(iface);
1376 usb_remove_sysfs_intf_files(iface);
1377 }
1378 usb_disable_interface(dev, iface, true);
1379
1380 iface->cur_altsetting = alt;
1381
1382 /* Now that the interface is installed, re-enable LPM. */
1383 usb_unlocked_enable_lpm(dev);
1384
1385 /* If the interface only has one altsetting and the device didn't
1386 * accept the request, we attempt to carry out the equivalent action
1387 * by manually clearing the HALT feature for each endpoint in the
1388 * new altsetting.
1389 */
1390 if (manual) {
1391 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1392 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1393 pipe = __create_pipe(dev,
1394 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1395 (usb_endpoint_out(epaddr) ?
1396 USB_DIR_OUT : USB_DIR_IN);
1397
1398 usb_clear_halt(dev, pipe);
1399 }
1400 }
1401
1402 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1403 *
1404 * Note:
1405 * Despite EP0 is always present in all interfaces/AS, the list of
1406 * endpoints from the descriptor does not contain EP0. Due to its
1407 * omnipresence one might expect EP0 being considered "affected" by
1408 * any SetInterface request and hence assume toggles need to be reset.
1409 * However, EP0 toggles are re-synced for every individual transfer
1410 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1411 * (Likewise, EP0 never "halts" on well designed devices.)
1412 */
1413 usb_enable_interface(dev, iface, true);
1414 if (device_is_registered(&iface->dev)) {
1415 usb_create_sysfs_intf_files(iface);
1416 create_intf_ep_devs(iface);
1417 }
1418 return 0;
1419 }
1420 EXPORT_SYMBOL_GPL(usb_set_interface);
1421
1422 /**
1423 * usb_reset_configuration - lightweight device reset
1424 * @dev: the device whose configuration is being reset
1425 *
1426 * This issues a standard SET_CONFIGURATION request to the device using
1427 * the current configuration. The effect is to reset most USB-related
1428 * state in the device, including interface altsettings (reset to zero),
1429 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1430 * endpoints). Other usbcore state is unchanged, including bindings of
1431 * usb device drivers to interfaces.
1432 *
1433 * Because this affects multiple interfaces, avoid using this with composite
1434 * (multi-interface) devices. Instead, the driver for each interface may
1435 * use usb_set_interface() on the interfaces it claims. Be careful though;
1436 * some devices don't support the SET_INTERFACE request, and others won't
1437 * reset all the interface state (notably endpoint state). Resetting the whole
1438 * configuration would affect other drivers' interfaces.
1439 *
1440 * The caller must own the device lock.
1441 *
1442 * Return: Zero on success, else a negative error code.
1443 */
usb_reset_configuration(struct usb_device * dev)1444 int usb_reset_configuration(struct usb_device *dev)
1445 {
1446 int i, retval;
1447 struct usb_host_config *config;
1448 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1449
1450 if (dev->state == USB_STATE_SUSPENDED)
1451 return -EHOSTUNREACH;
1452
1453 /* caller must have locked the device and must own
1454 * the usb bus readlock (so driver bindings are stable);
1455 * calls during probe() are fine
1456 */
1457
1458 for (i = 1; i < 16; ++i) {
1459 usb_disable_endpoint(dev, i, true);
1460 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1461 }
1462
1463 config = dev->actconfig;
1464 retval = 0;
1465 mutex_lock(hcd->bandwidth_mutex);
1466 /* Disable LPM, and re-enable it once the configuration is reset, so
1467 * that the xHCI driver can recalculate the U1/U2 timeouts.
1468 */
1469 if (usb_disable_lpm(dev)) {
1470 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1471 mutex_unlock(hcd->bandwidth_mutex);
1472 return -ENOMEM;
1473 }
1474 /* Make sure we have enough bandwidth for each alternate setting 0 */
1475 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1476 struct usb_interface *intf = config->interface[i];
1477 struct usb_host_interface *alt;
1478
1479 alt = usb_altnum_to_altsetting(intf, 0);
1480 if (!alt)
1481 alt = &intf->altsetting[0];
1482 if (alt != intf->cur_altsetting)
1483 retval = usb_hcd_alloc_bandwidth(dev, NULL,
1484 intf->cur_altsetting, alt);
1485 if (retval < 0)
1486 break;
1487 }
1488 /* If not, reinstate the old alternate settings */
1489 if (retval < 0) {
1490 reset_old_alts:
1491 for (i--; i >= 0; i--) {
1492 struct usb_interface *intf = config->interface[i];
1493 struct usb_host_interface *alt;
1494
1495 alt = usb_altnum_to_altsetting(intf, 0);
1496 if (!alt)
1497 alt = &intf->altsetting[0];
1498 if (alt != intf->cur_altsetting)
1499 usb_hcd_alloc_bandwidth(dev, NULL,
1500 alt, intf->cur_altsetting);
1501 }
1502 usb_enable_lpm(dev);
1503 mutex_unlock(hcd->bandwidth_mutex);
1504 return retval;
1505 }
1506 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1507 USB_REQ_SET_CONFIGURATION, 0,
1508 config->desc.bConfigurationValue, 0,
1509 NULL, 0, USB_CTRL_SET_TIMEOUT);
1510 if (retval < 0)
1511 goto reset_old_alts;
1512 mutex_unlock(hcd->bandwidth_mutex);
1513
1514 /* re-init hc/hcd interface/endpoint state */
1515 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1516 struct usb_interface *intf = config->interface[i];
1517 struct usb_host_interface *alt;
1518
1519 alt = usb_altnum_to_altsetting(intf, 0);
1520
1521 /* No altsetting 0? We'll assume the first altsetting.
1522 * We could use a GetInterface call, but if a device is
1523 * so non-compliant that it doesn't have altsetting 0
1524 * then I wouldn't trust its reply anyway.
1525 */
1526 if (!alt)
1527 alt = &intf->altsetting[0];
1528
1529 if (alt != intf->cur_altsetting) {
1530 remove_intf_ep_devs(intf);
1531 usb_remove_sysfs_intf_files(intf);
1532 }
1533 intf->cur_altsetting = alt;
1534 usb_enable_interface(dev, intf, true);
1535 if (device_is_registered(&intf->dev)) {
1536 usb_create_sysfs_intf_files(intf);
1537 create_intf_ep_devs(intf);
1538 }
1539 }
1540 /* Now that the interfaces are installed, re-enable LPM. */
1541 usb_unlocked_enable_lpm(dev);
1542 return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1545
usb_release_interface(struct device * dev)1546 static void usb_release_interface(struct device *dev)
1547 {
1548 struct usb_interface *intf = to_usb_interface(dev);
1549 struct usb_interface_cache *intfc =
1550 altsetting_to_usb_interface_cache(intf->altsetting);
1551
1552 kref_put(&intfc->ref, usb_release_interface_cache);
1553 usb_put_dev(interface_to_usbdev(intf));
1554 kfree(intf);
1555 }
1556
1557 /*
1558 * usb_deauthorize_interface - deauthorize an USB interface
1559 *
1560 * @intf: USB interface structure
1561 */
usb_deauthorize_interface(struct usb_interface * intf)1562 void usb_deauthorize_interface(struct usb_interface *intf)
1563 {
1564 struct device *dev = &intf->dev;
1565
1566 device_lock(dev->parent);
1567
1568 if (intf->authorized) {
1569 device_lock(dev);
1570 intf->authorized = 0;
1571 device_unlock(dev);
1572
1573 usb_forced_unbind_intf(intf);
1574 }
1575
1576 device_unlock(dev->parent);
1577 }
1578
1579 /*
1580 * usb_authorize_interface - authorize an USB interface
1581 *
1582 * @intf: USB interface structure
1583 */
usb_authorize_interface(struct usb_interface * intf)1584 void usb_authorize_interface(struct usb_interface *intf)
1585 {
1586 struct device *dev = &intf->dev;
1587
1588 if (!intf->authorized) {
1589 device_lock(dev);
1590 intf->authorized = 1; /* authorize interface */
1591 device_unlock(dev);
1592 }
1593 }
1594
usb_if_uevent(struct device * dev,struct kobj_uevent_env * env)1595 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1596 {
1597 struct usb_device *usb_dev;
1598 struct usb_interface *intf;
1599 struct usb_host_interface *alt;
1600
1601 intf = to_usb_interface(dev);
1602 usb_dev = interface_to_usbdev(intf);
1603 alt = intf->cur_altsetting;
1604
1605 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1606 alt->desc.bInterfaceClass,
1607 alt->desc.bInterfaceSubClass,
1608 alt->desc.bInterfaceProtocol))
1609 return -ENOMEM;
1610
1611 if (add_uevent_var(env,
1612 "MODALIAS=usb:"
1613 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1614 le16_to_cpu(usb_dev->descriptor.idVendor),
1615 le16_to_cpu(usb_dev->descriptor.idProduct),
1616 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1617 usb_dev->descriptor.bDeviceClass,
1618 usb_dev->descriptor.bDeviceSubClass,
1619 usb_dev->descriptor.bDeviceProtocol,
1620 alt->desc.bInterfaceClass,
1621 alt->desc.bInterfaceSubClass,
1622 alt->desc.bInterfaceProtocol,
1623 alt->desc.bInterfaceNumber))
1624 return -ENOMEM;
1625
1626 return 0;
1627 }
1628
1629 struct device_type usb_if_device_type = {
1630 .name = "usb_interface",
1631 .release = usb_release_interface,
1632 .uevent = usb_if_uevent,
1633 };
1634
find_iad(struct usb_device * dev,struct usb_host_config * config,u8 inum)1635 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1636 struct usb_host_config *config,
1637 u8 inum)
1638 {
1639 struct usb_interface_assoc_descriptor *retval = NULL;
1640 struct usb_interface_assoc_descriptor *intf_assoc;
1641 int first_intf;
1642 int last_intf;
1643 int i;
1644
1645 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1646 intf_assoc = config->intf_assoc[i];
1647 if (intf_assoc->bInterfaceCount == 0)
1648 continue;
1649
1650 first_intf = intf_assoc->bFirstInterface;
1651 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1652 if (inum >= first_intf && inum <= last_intf) {
1653 if (!retval)
1654 retval = intf_assoc;
1655 else
1656 dev_err(&dev->dev, "Interface #%d referenced"
1657 " by multiple IADs\n", inum);
1658 }
1659 }
1660
1661 return retval;
1662 }
1663
1664
1665 /*
1666 * Internal function to queue a device reset
1667 * See usb_queue_reset_device() for more details
1668 */
__usb_queue_reset_device(struct work_struct * ws)1669 static void __usb_queue_reset_device(struct work_struct *ws)
1670 {
1671 int rc;
1672 struct usb_interface *iface =
1673 container_of(ws, struct usb_interface, reset_ws);
1674 struct usb_device *udev = interface_to_usbdev(iface);
1675
1676 rc = usb_lock_device_for_reset(udev, iface);
1677 if (rc >= 0) {
1678 usb_reset_device(udev);
1679 usb_unlock_device(udev);
1680 }
1681 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */
1682 }
1683
1684
1685 /*
1686 * usb_set_configuration - Makes a particular device setting be current
1687 * @dev: the device whose configuration is being updated
1688 * @configuration: the configuration being chosen.
1689 * Context: !in_interrupt(), caller owns the device lock
1690 *
1691 * This is used to enable non-default device modes. Not all devices
1692 * use this kind of configurability; many devices only have one
1693 * configuration.
1694 *
1695 * @configuration is the value of the configuration to be installed.
1696 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1697 * must be non-zero; a value of zero indicates that the device in
1698 * unconfigured. However some devices erroneously use 0 as one of their
1699 * configuration values. To help manage such devices, this routine will
1700 * accept @configuration = -1 as indicating the device should be put in
1701 * an unconfigured state.
1702 *
1703 * USB device configurations may affect Linux interoperability,
1704 * power consumption and the functionality available. For example,
1705 * the default configuration is limited to using 100mA of bus power,
1706 * so that when certain device functionality requires more power,
1707 * and the device is bus powered, that functionality should be in some
1708 * non-default device configuration. Other device modes may also be
1709 * reflected as configuration options, such as whether two ISDN
1710 * channels are available independently; and choosing between open
1711 * standard device protocols (like CDC) or proprietary ones.
1712 *
1713 * Note that a non-authorized device (dev->authorized == 0) will only
1714 * be put in unconfigured mode.
1715 *
1716 * Note that USB has an additional level of device configurability,
1717 * associated with interfaces. That configurability is accessed using
1718 * usb_set_interface().
1719 *
1720 * This call is synchronous. The calling context must be able to sleep,
1721 * must own the device lock, and must not hold the driver model's USB
1722 * bus mutex; usb interface driver probe() methods cannot use this routine.
1723 *
1724 * Returns zero on success, or else the status code returned by the
1725 * underlying call that failed. On successful completion, each interface
1726 * in the original device configuration has been destroyed, and each one
1727 * in the new configuration has been probed by all relevant usb device
1728 * drivers currently known to the kernel.
1729 */
usb_set_configuration(struct usb_device * dev,int configuration)1730 int usb_set_configuration(struct usb_device *dev, int configuration)
1731 {
1732 int i, ret;
1733 struct usb_host_config *cp = NULL;
1734 struct usb_interface **new_interfaces = NULL;
1735 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1736 int n, nintf;
1737
1738 if (dev->authorized == 0 || configuration == -1)
1739 configuration = 0;
1740 else {
1741 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1742 if (dev->config[i].desc.bConfigurationValue ==
1743 configuration) {
1744 cp = &dev->config[i];
1745 break;
1746 }
1747 }
1748 }
1749 if ((!cp && configuration != 0))
1750 return -EINVAL;
1751
1752 /* The USB spec says configuration 0 means unconfigured.
1753 * But if a device includes a configuration numbered 0,
1754 * we will accept it as a correctly configured state.
1755 * Use -1 if you really want to unconfigure the device.
1756 */
1757 if (cp && configuration == 0)
1758 dev_warn(&dev->dev, "config 0 descriptor??\n");
1759
1760 /* Allocate memory for new interfaces before doing anything else,
1761 * so that if we run out then nothing will have changed. */
1762 n = nintf = 0;
1763 if (cp) {
1764 nintf = cp->desc.bNumInterfaces;
1765 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1766 GFP_NOIO);
1767 if (!new_interfaces)
1768 return -ENOMEM;
1769
1770 for (; n < nintf; ++n) {
1771 new_interfaces[n] = kzalloc(
1772 sizeof(struct usb_interface),
1773 GFP_NOIO);
1774 if (!new_interfaces[n]) {
1775 ret = -ENOMEM;
1776 free_interfaces:
1777 while (--n >= 0)
1778 kfree(new_interfaces[n]);
1779 kfree(new_interfaces);
1780 return ret;
1781 }
1782 }
1783
1784 i = dev->bus_mA - usb_get_max_power(dev, cp);
1785 if (i < 0)
1786 dev_warn(&dev->dev, "new config #%d exceeds power "
1787 "limit by %dmA\n",
1788 configuration, -i);
1789 }
1790
1791 /* Wake up the device so we can send it the Set-Config request */
1792 ret = usb_autoresume_device(dev);
1793 if (ret)
1794 goto free_interfaces;
1795
1796 /* if it's already configured, clear out old state first.
1797 * getting rid of old interfaces means unbinding their drivers.
1798 */
1799 if (dev->state != USB_STATE_ADDRESS)
1800 usb_disable_device(dev, 1); /* Skip ep0 */
1801
1802 /* Get rid of pending async Set-Config requests for this device */
1803 cancel_async_set_config(dev);
1804
1805 /* Make sure we have bandwidth (and available HCD resources) for this
1806 * configuration. Remove endpoints from the schedule if we're dropping
1807 * this configuration to set configuration 0. After this point, the
1808 * host controller will not allow submissions to dropped endpoints. If
1809 * this call fails, the device state is unchanged.
1810 */
1811 mutex_lock(hcd->bandwidth_mutex);
1812 /* Disable LPM, and re-enable it once the new configuration is
1813 * installed, so that the xHCI driver can recalculate the U1/U2
1814 * timeouts.
1815 */
1816 if (dev->actconfig && usb_disable_lpm(dev)) {
1817 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1818 mutex_unlock(hcd->bandwidth_mutex);
1819 ret = -ENOMEM;
1820 goto free_interfaces;
1821 }
1822 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1823 if (ret < 0) {
1824 if (dev->actconfig)
1825 usb_enable_lpm(dev);
1826 mutex_unlock(hcd->bandwidth_mutex);
1827 usb_autosuspend_device(dev);
1828 goto free_interfaces;
1829 }
1830
1831 /*
1832 * Initialize the new interface structures and the
1833 * hc/hcd/usbcore interface/endpoint state.
1834 */
1835 for (i = 0; i < nintf; ++i) {
1836 struct usb_interface_cache *intfc;
1837 struct usb_interface *intf;
1838 struct usb_host_interface *alt;
1839
1840 cp->interface[i] = intf = new_interfaces[i];
1841 intfc = cp->intf_cache[i];
1842 intf->altsetting = intfc->altsetting;
1843 intf->num_altsetting = intfc->num_altsetting;
1844 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1845 kref_get(&intfc->ref);
1846
1847 alt = usb_altnum_to_altsetting(intf, 0);
1848
1849 /* No altsetting 0? We'll assume the first altsetting.
1850 * We could use a GetInterface call, but if a device is
1851 * so non-compliant that it doesn't have altsetting 0
1852 * then I wouldn't trust its reply anyway.
1853 */
1854 if (!alt)
1855 alt = &intf->altsetting[0];
1856
1857 intf->intf_assoc =
1858 find_iad(dev, cp, alt->desc.bInterfaceNumber);
1859 intf->cur_altsetting = alt;
1860 usb_enable_interface(dev, intf, true);
1861 intf->dev.parent = &dev->dev;
1862 intf->dev.driver = NULL;
1863 intf->dev.bus = &usb_bus_type;
1864 intf->dev.type = &usb_if_device_type;
1865 intf->dev.groups = usb_interface_groups;
1866 /*
1867 * Please refer to usb_alloc_dev() to see why we set
1868 * dma_mask and dma_pfn_offset.
1869 */
1870 intf->dev.dma_mask = dev->dev.dma_mask;
1871 intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1872 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1873 intf->minor = -1;
1874 device_initialize(&intf->dev);
1875 pm_runtime_no_callbacks(&intf->dev);
1876 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1877 dev->bus->busnum, dev->devpath,
1878 configuration, alt->desc.bInterfaceNumber);
1879 usb_get_dev(dev);
1880 }
1881 kfree(new_interfaces);
1882
1883 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1884 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1885 NULL, 0, USB_CTRL_SET_TIMEOUT);
1886 if (ret < 0 && cp) {
1887 /*
1888 * All the old state is gone, so what else can we do?
1889 * The device is probably useless now anyway.
1890 */
1891 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1892 for (i = 0; i < nintf; ++i) {
1893 usb_disable_interface(dev, cp->interface[i], true);
1894 put_device(&cp->interface[i]->dev);
1895 cp->interface[i] = NULL;
1896 }
1897 cp = NULL;
1898 }
1899
1900 dev->actconfig = cp;
1901 mutex_unlock(hcd->bandwidth_mutex);
1902
1903 if (!cp) {
1904 usb_set_device_state(dev, USB_STATE_ADDRESS);
1905
1906 /* Leave LPM disabled while the device is unconfigured. */
1907 usb_autosuspend_device(dev);
1908 return ret;
1909 }
1910 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1911
1912 if (cp->string == NULL &&
1913 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1914 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1915
1916 /* Now that the interfaces are installed, re-enable LPM. */
1917 usb_unlocked_enable_lpm(dev);
1918 /* Enable LTM if it was turned off by usb_disable_device. */
1919 usb_enable_ltm(dev);
1920
1921 /* Now that all the interfaces are set up, register them
1922 * to trigger binding of drivers to interfaces. probe()
1923 * routines may install different altsettings and may
1924 * claim() any interfaces not yet bound. Many class drivers
1925 * need that: CDC, audio, video, etc.
1926 */
1927 for (i = 0; i < nintf; ++i) {
1928 struct usb_interface *intf = cp->interface[i];
1929
1930 dev_dbg(&dev->dev,
1931 "adding %s (config #%d, interface %d)\n",
1932 dev_name(&intf->dev), configuration,
1933 intf->cur_altsetting->desc.bInterfaceNumber);
1934 device_enable_async_suspend(&intf->dev);
1935 ret = device_add(&intf->dev);
1936 if (ret != 0) {
1937 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1938 dev_name(&intf->dev), ret);
1939 continue;
1940 }
1941 create_intf_ep_devs(intf);
1942 }
1943
1944 usb_autosuspend_device(dev);
1945 return 0;
1946 }
1947 EXPORT_SYMBOL_GPL(usb_set_configuration);
1948
1949 static LIST_HEAD(set_config_list);
1950 static DEFINE_SPINLOCK(set_config_lock);
1951
1952 struct set_config_request {
1953 struct usb_device *udev;
1954 int config;
1955 struct work_struct work;
1956 struct list_head node;
1957 };
1958
1959 /* Worker routine for usb_driver_set_configuration() */
driver_set_config_work(struct work_struct * work)1960 static void driver_set_config_work(struct work_struct *work)
1961 {
1962 struct set_config_request *req =
1963 container_of(work, struct set_config_request, work);
1964 struct usb_device *udev = req->udev;
1965
1966 usb_lock_device(udev);
1967 spin_lock(&set_config_lock);
1968 list_del(&req->node);
1969 spin_unlock(&set_config_lock);
1970
1971 if (req->config >= -1) /* Is req still valid? */
1972 usb_set_configuration(udev, req->config);
1973 usb_unlock_device(udev);
1974 usb_put_dev(udev);
1975 kfree(req);
1976 }
1977
1978 /* Cancel pending Set-Config requests for a device whose configuration
1979 * was just changed
1980 */
cancel_async_set_config(struct usb_device * udev)1981 static void cancel_async_set_config(struct usb_device *udev)
1982 {
1983 struct set_config_request *req;
1984
1985 spin_lock(&set_config_lock);
1986 list_for_each_entry(req, &set_config_list, node) {
1987 if (req->udev == udev)
1988 req->config = -999; /* Mark as cancelled */
1989 }
1990 spin_unlock(&set_config_lock);
1991 }
1992
1993 /**
1994 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1995 * @udev: the device whose configuration is being updated
1996 * @config: the configuration being chosen.
1997 * Context: In process context, must be able to sleep
1998 *
1999 * Device interface drivers are not allowed to change device configurations.
2000 * This is because changing configurations will destroy the interface the
2001 * driver is bound to and create new ones; it would be like a floppy-disk
2002 * driver telling the computer to replace the floppy-disk drive with a
2003 * tape drive!
2004 *
2005 * Still, in certain specialized circumstances the need may arise. This
2006 * routine gets around the normal restrictions by using a work thread to
2007 * submit the change-config request.
2008 *
2009 * Return: 0 if the request was successfully queued, error code otherwise.
2010 * The caller has no way to know whether the queued request will eventually
2011 * succeed.
2012 */
usb_driver_set_configuration(struct usb_device * udev,int config)2013 int usb_driver_set_configuration(struct usb_device *udev, int config)
2014 {
2015 struct set_config_request *req;
2016
2017 req = kmalloc(sizeof(*req), GFP_KERNEL);
2018 if (!req)
2019 return -ENOMEM;
2020 req->udev = udev;
2021 req->config = config;
2022 INIT_WORK(&req->work, driver_set_config_work);
2023
2024 spin_lock(&set_config_lock);
2025 list_add(&req->node, &set_config_list);
2026 spin_unlock(&set_config_lock);
2027
2028 usb_get_dev(udev);
2029 schedule_work(&req->work);
2030 return 0;
2031 }
2032 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2033
2034 /**
2035 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2036 * @hdr: the place to put the results of the parsing
2037 * @intf: the interface for which parsing is requested
2038 * @buffer: pointer to the extra headers to be parsed
2039 * @buflen: length of the extra headers
2040 *
2041 * This evaluates the extra headers present in CDC devices which
2042 * bind the interfaces for data and control and provide details
2043 * about the capabilities of the device.
2044 *
2045 * Return: number of descriptors parsed or -EINVAL
2046 * if the header is contradictory beyond salvage
2047 */
2048
cdc_parse_cdc_header(struct usb_cdc_parsed_header * hdr,struct usb_interface * intf,u8 * buffer,int buflen)2049 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2050 struct usb_interface *intf,
2051 u8 *buffer,
2052 int buflen)
2053 {
2054 /* duplicates are ignored */
2055 struct usb_cdc_union_desc *union_header = NULL;
2056
2057 /* duplicates are not tolerated */
2058 struct usb_cdc_header_desc *header = NULL;
2059 struct usb_cdc_ether_desc *ether = NULL;
2060 struct usb_cdc_mdlm_detail_desc *detail = NULL;
2061 struct usb_cdc_mdlm_desc *desc = NULL;
2062
2063 unsigned int elength;
2064 int cnt = 0;
2065
2066 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2067 hdr->phonet_magic_present = false;
2068 while (buflen > 0) {
2069 elength = buffer[0];
2070 if (!elength) {
2071 dev_err(&intf->dev, "skipping garbage byte\n");
2072 elength = 1;
2073 goto next_desc;
2074 }
2075 if ((buflen < elength) || (elength < 3)) {
2076 dev_err(&intf->dev, "invalid descriptor buffer length\n");
2077 break;
2078 }
2079 if (buffer[1] != USB_DT_CS_INTERFACE) {
2080 dev_err(&intf->dev, "skipping garbage\n");
2081 goto next_desc;
2082 }
2083
2084 switch (buffer[2]) {
2085 case USB_CDC_UNION_TYPE: /* we've found it */
2086 if (elength < sizeof(struct usb_cdc_union_desc))
2087 goto next_desc;
2088 if (union_header) {
2089 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2090 goto next_desc;
2091 }
2092 union_header = (struct usb_cdc_union_desc *)buffer;
2093 break;
2094 case USB_CDC_COUNTRY_TYPE:
2095 if (elength < sizeof(struct usb_cdc_country_functional_desc))
2096 goto next_desc;
2097 hdr->usb_cdc_country_functional_desc =
2098 (struct usb_cdc_country_functional_desc *)buffer;
2099 break;
2100 case USB_CDC_HEADER_TYPE:
2101 if (elength != sizeof(struct usb_cdc_header_desc))
2102 goto next_desc;
2103 if (header)
2104 return -EINVAL;
2105 header = (struct usb_cdc_header_desc *)buffer;
2106 break;
2107 case USB_CDC_ACM_TYPE:
2108 if (elength < sizeof(struct usb_cdc_acm_descriptor))
2109 goto next_desc;
2110 hdr->usb_cdc_acm_descriptor =
2111 (struct usb_cdc_acm_descriptor *)buffer;
2112 break;
2113 case USB_CDC_ETHERNET_TYPE:
2114 if (elength != sizeof(struct usb_cdc_ether_desc))
2115 goto next_desc;
2116 if (ether)
2117 return -EINVAL;
2118 ether = (struct usb_cdc_ether_desc *)buffer;
2119 break;
2120 case USB_CDC_CALL_MANAGEMENT_TYPE:
2121 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2122 goto next_desc;
2123 hdr->usb_cdc_call_mgmt_descriptor =
2124 (struct usb_cdc_call_mgmt_descriptor *)buffer;
2125 break;
2126 case USB_CDC_DMM_TYPE:
2127 if (elength < sizeof(struct usb_cdc_dmm_desc))
2128 goto next_desc;
2129 hdr->usb_cdc_dmm_desc =
2130 (struct usb_cdc_dmm_desc *)buffer;
2131 break;
2132 case USB_CDC_MDLM_TYPE:
2133 if (elength < sizeof(struct usb_cdc_mdlm_desc *))
2134 goto next_desc;
2135 if (desc)
2136 return -EINVAL;
2137 desc = (struct usb_cdc_mdlm_desc *)buffer;
2138 break;
2139 case USB_CDC_MDLM_DETAIL_TYPE:
2140 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc *))
2141 goto next_desc;
2142 if (detail)
2143 return -EINVAL;
2144 detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2145 break;
2146 case USB_CDC_NCM_TYPE:
2147 if (elength < sizeof(struct usb_cdc_ncm_desc))
2148 goto next_desc;
2149 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2150 break;
2151 case USB_CDC_MBIM_TYPE:
2152 if (elength < sizeof(struct usb_cdc_mbim_desc))
2153 goto next_desc;
2154
2155 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2156 break;
2157 case USB_CDC_MBIM_EXTENDED_TYPE:
2158 if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2159 break;
2160 hdr->usb_cdc_mbim_extended_desc =
2161 (struct usb_cdc_mbim_extended_desc *)buffer;
2162 break;
2163 case CDC_PHONET_MAGIC_NUMBER:
2164 hdr->phonet_magic_present = true;
2165 break;
2166 default:
2167 /*
2168 * there are LOTS more CDC descriptors that
2169 * could legitimately be found here.
2170 */
2171 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2172 buffer[2], elength);
2173 goto next_desc;
2174 }
2175 cnt++;
2176 next_desc:
2177 buflen -= elength;
2178 buffer += elength;
2179 }
2180 hdr->usb_cdc_union_desc = union_header;
2181 hdr->usb_cdc_header_desc = header;
2182 hdr->usb_cdc_mdlm_detail_desc = detail;
2183 hdr->usb_cdc_mdlm_desc = desc;
2184 hdr->usb_cdc_ether_desc = ether;
2185 return cnt;
2186 }
2187
2188 EXPORT_SYMBOL(cdc_parse_cdc_header);
2189