• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/pci.h>	/* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/timer.h>
11 #include <linux/ctype.h>
12 #include <linux/nls.h>
13 #include <linux/device.h>
14 #include <linux/scatterlist.h>
15 #include <linux/usb/cdc.h>
16 #include <linux/usb/quirks.h>
17 #include <linux/usb/hcd.h>	/* for usbcore internals */
18 #include <asm/byteorder.h>
19 
20 #include "usb.h"
21 
22 static void cancel_async_set_config(struct usb_device *udev);
23 
24 struct api_context {
25 	struct completion	done;
26 	int			status;
27 };
28 
usb_api_blocking_completion(struct urb * urb)29 static void usb_api_blocking_completion(struct urb *urb)
30 {
31 	struct api_context *ctx = urb->context;
32 
33 	ctx->status = urb->status;
34 	complete(&ctx->done);
35 }
36 
37 
38 /*
39  * Starts urb and waits for completion or timeout. Note that this call
40  * is NOT interruptible. Many device driver i/o requests should be
41  * interruptible and therefore these drivers should implement their
42  * own interruptible routines.
43  */
usb_start_wait_urb(struct urb * urb,int timeout,int * actual_length)44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45 {
46 	struct api_context ctx;
47 	unsigned long expire;
48 	int retval;
49 
50 	init_completion(&ctx.done);
51 	urb->context = &ctx;
52 	urb->actual_length = 0;
53 	retval = usb_submit_urb(urb, GFP_NOIO);
54 	if (unlikely(retval))
55 		goto out;
56 
57 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
58 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
59 		usb_kill_urb(urb);
60 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61 
62 		dev_dbg(&urb->dev->dev,
63 			"%s timed out on ep%d%s len=%u/%u\n",
64 			current->comm,
65 			usb_endpoint_num(&urb->ep->desc),
66 			usb_urb_dir_in(urb) ? "in" : "out",
67 			urb->actual_length,
68 			urb->transfer_buffer_length);
69 	} else
70 		retval = ctx.status;
71 out:
72 	if (actual_length)
73 		*actual_length = urb->actual_length;
74 
75 	usb_free_urb(urb);
76 	return retval;
77 }
78 
79 /*-------------------------------------------------------------------*/
80 /* returns status (negative) or length (positive) */
usb_internal_control_msg(struct usb_device * usb_dev,unsigned int pipe,struct usb_ctrlrequest * cmd,void * data,int len,int timeout)81 static int usb_internal_control_msg(struct usb_device *usb_dev,
82 				    unsigned int pipe,
83 				    struct usb_ctrlrequest *cmd,
84 				    void *data, int len, int timeout)
85 {
86 	struct urb *urb;
87 	int retv;
88 	int length;
89 
90 	urb = usb_alloc_urb(0, GFP_NOIO);
91 	if (!urb)
92 		return -ENOMEM;
93 
94 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
95 			     len, usb_api_blocking_completion, NULL);
96 
97 	retv = usb_start_wait_urb(urb, timeout, &length);
98 	if (retv < 0)
99 		return retv;
100 	else
101 		return length;
102 }
103 
104 /**
105  * usb_control_msg - Builds a control urb, sends it off and waits for completion
106  * @dev: pointer to the usb device to send the message to
107  * @pipe: endpoint "pipe" to send the message to
108  * @request: USB message request value
109  * @requesttype: USB message request type value
110  * @value: USB message value
111  * @index: USB message index value
112  * @data: pointer to the data to send
113  * @size: length in bytes of the data to send
114  * @timeout: time in msecs to wait for the message to complete before timing
115  *	out (if 0 the wait is forever)
116  *
117  * Context: !in_interrupt ()
118  *
119  * This function sends a simple control message to a specified endpoint and
120  * waits for the message to complete, or timeout.
121  *
122  * Don't use this function from within an interrupt context, like a bottom half
123  * handler.  If you need an asynchronous message, or need to send a message
124  * from within interrupt context, use usb_submit_urb().
125  * If a thread in your driver uses this call, make sure your disconnect()
126  * method can wait for it to complete.  Since you don't have a handle on the
127  * URB used, you can't cancel the request.
128  *
129  * Return: If successful, the number of bytes transferred. Otherwise, a negative
130  * error number.
131  */
usb_control_msg(struct usb_device * dev,unsigned int pipe,__u8 request,__u8 requesttype,__u16 value,__u16 index,void * data,__u16 size,int timeout)132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
133 		    __u8 requesttype, __u16 value, __u16 index, void *data,
134 		    __u16 size, int timeout)
135 {
136 	struct usb_ctrlrequest *dr;
137 	int ret;
138 
139 	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
140 	if (!dr)
141 		return -ENOMEM;
142 
143 	dr->bRequestType = requesttype;
144 	dr->bRequest = request;
145 	dr->wValue = cpu_to_le16(value);
146 	dr->wIndex = cpu_to_le16(index);
147 	dr->wLength = cpu_to_le16(size);
148 
149 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
150 
151 	/* Linger a bit, prior to the next control message. */
152 	if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
153 		msleep(200);
154 
155 	kfree(dr);
156 
157 	return ret;
158 }
159 EXPORT_SYMBOL_GPL(usb_control_msg);
160 
161 /**
162  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
163  * @usb_dev: pointer to the usb device to send the message to
164  * @pipe: endpoint "pipe" to send the message to
165  * @data: pointer to the data to send
166  * @len: length in bytes of the data to send
167  * @actual_length: pointer to a location to put the actual length transferred
168  *	in bytes
169  * @timeout: time in msecs to wait for the message to complete before
170  *	timing out (if 0 the wait is forever)
171  *
172  * Context: !in_interrupt ()
173  *
174  * This function sends a simple interrupt message to a specified endpoint and
175  * waits for the message to complete, or timeout.
176  *
177  * Don't use this function from within an interrupt context, like a bottom half
178  * handler.  If you need an asynchronous message, or need to send a message
179  * from within interrupt context, use usb_submit_urb() If a thread in your
180  * driver uses this call, make sure your disconnect() method can wait for it to
181  * complete.  Since you don't have a handle on the URB used, you can't cancel
182  * the request.
183  *
184  * Return:
185  * If successful, 0. Otherwise a negative error number. The number of actual
186  * bytes transferred will be stored in the @actual_length parameter.
187  */
usb_interrupt_msg(struct usb_device * usb_dev,unsigned int pipe,void * data,int len,int * actual_length,int timeout)188 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
189 		      void *data, int len, int *actual_length, int timeout)
190 {
191 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
192 }
193 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
194 
195 /**
196  * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
197  * @usb_dev: pointer to the usb device to send the message to
198  * @pipe: endpoint "pipe" to send the message to
199  * @data: pointer to the data to send
200  * @len: length in bytes of the data to send
201  * @actual_length: pointer to a location to put the actual length transferred
202  *	in bytes
203  * @timeout: time in msecs to wait for the message to complete before
204  *	timing out (if 0 the wait is forever)
205  *
206  * Context: !in_interrupt ()
207  *
208  * This function sends a simple bulk message to a specified endpoint
209  * and waits for the message to complete, or timeout.
210  *
211  * Don't use this function from within an interrupt context, like a bottom half
212  * handler.  If you need an asynchronous message, or need to send a message
213  * from within interrupt context, use usb_submit_urb() If a thread in your
214  * driver uses this call, make sure your disconnect() method can wait for it to
215  * complete.  Since you don't have a handle on the URB used, you can't cancel
216  * the request.
217  *
218  * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
219  * users are forced to abuse this routine by using it to submit URBs for
220  * interrupt endpoints.  We will take the liberty of creating an interrupt URB
221  * (with the default interval) if the target is an interrupt endpoint.
222  *
223  * Return:
224  * If successful, 0. Otherwise a negative error number. The number of actual
225  * bytes transferred will be stored in the @actual_length parameter.
226  *
227  */
usb_bulk_msg(struct usb_device * usb_dev,unsigned int pipe,void * data,int len,int * actual_length,int timeout)228 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
229 		 void *data, int len, int *actual_length, int timeout)
230 {
231 	struct urb *urb;
232 	struct usb_host_endpoint *ep;
233 
234 	ep = usb_pipe_endpoint(usb_dev, pipe);
235 	if (!ep || len < 0)
236 		return -EINVAL;
237 
238 	urb = usb_alloc_urb(0, GFP_KERNEL);
239 	if (!urb)
240 		return -ENOMEM;
241 
242 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
243 			USB_ENDPOINT_XFER_INT) {
244 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
245 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
246 				usb_api_blocking_completion, NULL,
247 				ep->desc.bInterval);
248 	} else
249 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
250 				usb_api_blocking_completion, NULL);
251 
252 	return usb_start_wait_urb(urb, timeout, actual_length);
253 }
254 EXPORT_SYMBOL_GPL(usb_bulk_msg);
255 
256 /*-------------------------------------------------------------------*/
257 
sg_clean(struct usb_sg_request * io)258 static void sg_clean(struct usb_sg_request *io)
259 {
260 	if (io->urbs) {
261 		while (io->entries--)
262 			usb_free_urb(io->urbs[io->entries]);
263 		kfree(io->urbs);
264 		io->urbs = NULL;
265 	}
266 	io->dev = NULL;
267 }
268 
sg_complete(struct urb * urb)269 static void sg_complete(struct urb *urb)
270 {
271 	struct usb_sg_request *io = urb->context;
272 	int status = urb->status;
273 
274 	spin_lock(&io->lock);
275 
276 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
277 	 * reports, until the completion callback (this!) returns.  That lets
278 	 * device driver code (like this routine) unlink queued urbs first,
279 	 * if it needs to, since the HC won't work on them at all.  So it's
280 	 * not possible for page N+1 to overwrite page N, and so on.
281 	 *
282 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
283 	 * complete before the HCD can get requests away from hardware,
284 	 * though never during cleanup after a hard fault.
285 	 */
286 	if (io->status
287 			&& (io->status != -ECONNRESET
288 				|| status != -ECONNRESET)
289 			&& urb->actual_length) {
290 		dev_err(io->dev->bus->controller,
291 			"dev %s ep%d%s scatterlist error %d/%d\n",
292 			io->dev->devpath,
293 			usb_endpoint_num(&urb->ep->desc),
294 			usb_urb_dir_in(urb) ? "in" : "out",
295 			status, io->status);
296 		/* BUG (); */
297 	}
298 
299 	if (io->status == 0 && status && status != -ECONNRESET) {
300 		int i, found, retval;
301 
302 		io->status = status;
303 
304 		/* the previous urbs, and this one, completed already.
305 		 * unlink pending urbs so they won't rx/tx bad data.
306 		 * careful: unlink can sometimes be synchronous...
307 		 */
308 		spin_unlock(&io->lock);
309 		for (i = 0, found = 0; i < io->entries; i++) {
310 			if (!io->urbs[i])
311 				continue;
312 			if (found) {
313 				usb_block_urb(io->urbs[i]);
314 				retval = usb_unlink_urb(io->urbs[i]);
315 				if (retval != -EINPROGRESS &&
316 				    retval != -ENODEV &&
317 				    retval != -EBUSY &&
318 				    retval != -EIDRM)
319 					dev_err(&io->dev->dev,
320 						"%s, unlink --> %d\n",
321 						__func__, retval);
322 			} else if (urb == io->urbs[i])
323 				found = 1;
324 		}
325 		spin_lock(&io->lock);
326 	}
327 
328 	/* on the last completion, signal usb_sg_wait() */
329 	io->bytes += urb->actual_length;
330 	io->count--;
331 	if (!io->count)
332 		complete(&io->complete);
333 
334 	spin_unlock(&io->lock);
335 }
336 
337 
338 /**
339  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
340  * @io: request block being initialized.  until usb_sg_wait() returns,
341  *	treat this as a pointer to an opaque block of memory,
342  * @dev: the usb device that will send or receive the data
343  * @pipe: endpoint "pipe" used to transfer the data
344  * @period: polling rate for interrupt endpoints, in frames or
345  * 	(for high speed endpoints) microframes; ignored for bulk
346  * @sg: scatterlist entries
347  * @nents: how many entries in the scatterlist
348  * @length: how many bytes to send from the scatterlist, or zero to
349  * 	send every byte identified in the list.
350  * @mem_flags: SLAB_* flags affecting memory allocations in this call
351  *
352  * This initializes a scatter/gather request, allocating resources such as
353  * I/O mappings and urb memory (except maybe memory used by USB controller
354  * drivers).
355  *
356  * The request must be issued using usb_sg_wait(), which waits for the I/O to
357  * complete (or to be canceled) and then cleans up all resources allocated by
358  * usb_sg_init().
359  *
360  * The request may be canceled with usb_sg_cancel(), either before or after
361  * usb_sg_wait() is called.
362  *
363  * Return: Zero for success, else a negative errno value.
364  */
usb_sg_init(struct usb_sg_request * io,struct usb_device * dev,unsigned pipe,unsigned period,struct scatterlist * sg,int nents,size_t length,gfp_t mem_flags)365 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
366 		unsigned pipe, unsigned	period, struct scatterlist *sg,
367 		int nents, size_t length, gfp_t mem_flags)
368 {
369 	int i;
370 	int urb_flags;
371 	int use_sg;
372 
373 	if (!io || !dev || !sg
374 			|| usb_pipecontrol(pipe)
375 			|| usb_pipeisoc(pipe)
376 			|| nents <= 0)
377 		return -EINVAL;
378 
379 	spin_lock_init(&io->lock);
380 	io->dev = dev;
381 	io->pipe = pipe;
382 
383 	if (dev->bus->sg_tablesize > 0) {
384 		use_sg = true;
385 		io->entries = 1;
386 	} else {
387 		use_sg = false;
388 		io->entries = nents;
389 	}
390 
391 	/* initialize all the urbs we'll use */
392 	io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
393 	if (!io->urbs)
394 		goto nomem;
395 
396 	urb_flags = URB_NO_INTERRUPT;
397 	if (usb_pipein(pipe))
398 		urb_flags |= URB_SHORT_NOT_OK;
399 
400 	for_each_sg(sg, sg, io->entries, i) {
401 		struct urb *urb;
402 		unsigned len;
403 
404 		urb = usb_alloc_urb(0, mem_flags);
405 		if (!urb) {
406 			io->entries = i;
407 			goto nomem;
408 		}
409 		io->urbs[i] = urb;
410 
411 		urb->dev = NULL;
412 		urb->pipe = pipe;
413 		urb->interval = period;
414 		urb->transfer_flags = urb_flags;
415 		urb->complete = sg_complete;
416 		urb->context = io;
417 		urb->sg = sg;
418 
419 		if (use_sg) {
420 			/* There is no single transfer buffer */
421 			urb->transfer_buffer = NULL;
422 			urb->num_sgs = nents;
423 
424 			/* A length of zero means transfer the whole sg list */
425 			len = length;
426 			if (len == 0) {
427 				struct scatterlist	*sg2;
428 				int			j;
429 
430 				for_each_sg(sg, sg2, nents, j)
431 					len += sg2->length;
432 			}
433 		} else {
434 			/*
435 			 * Some systems can't use DMA; they use PIO instead.
436 			 * For their sakes, transfer_buffer is set whenever
437 			 * possible.
438 			 */
439 			if (!PageHighMem(sg_page(sg)))
440 				urb->transfer_buffer = sg_virt(sg);
441 			else
442 				urb->transfer_buffer = NULL;
443 
444 			len = sg->length;
445 			if (length) {
446 				len = min_t(size_t, len, length);
447 				length -= len;
448 				if (length == 0)
449 					io->entries = i + 1;
450 			}
451 		}
452 		urb->transfer_buffer_length = len;
453 	}
454 	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
455 
456 	/* transaction state */
457 	io->count = io->entries;
458 	io->status = 0;
459 	io->bytes = 0;
460 	init_completion(&io->complete);
461 	return 0;
462 
463 nomem:
464 	sg_clean(io);
465 	return -ENOMEM;
466 }
467 EXPORT_SYMBOL_GPL(usb_sg_init);
468 
469 /**
470  * usb_sg_wait - synchronously execute scatter/gather request
471  * @io: request block handle, as initialized with usb_sg_init().
472  * 	some fields become accessible when this call returns.
473  * Context: !in_interrupt ()
474  *
475  * This function blocks until the specified I/O operation completes.  It
476  * leverages the grouping of the related I/O requests to get good transfer
477  * rates, by queueing the requests.  At higher speeds, such queuing can
478  * significantly improve USB throughput.
479  *
480  * There are three kinds of completion for this function.
481  * (1) success, where io->status is zero.  The number of io->bytes
482  *     transferred is as requested.
483  * (2) error, where io->status is a negative errno value.  The number
484  *     of io->bytes transferred before the error is usually less
485  *     than requested, and can be nonzero.
486  * (3) cancellation, a type of error with status -ECONNRESET that
487  *     is initiated by usb_sg_cancel().
488  *
489  * When this function returns, all memory allocated through usb_sg_init() or
490  * this call will have been freed.  The request block parameter may still be
491  * passed to usb_sg_cancel(), or it may be freed.  It could also be
492  * reinitialized and then reused.
493  *
494  * Data Transfer Rates:
495  *
496  * Bulk transfers are valid for full or high speed endpoints.
497  * The best full speed data rate is 19 packets of 64 bytes each
498  * per frame, or 1216 bytes per millisecond.
499  * The best high speed data rate is 13 packets of 512 bytes each
500  * per microframe, or 52 KBytes per millisecond.
501  *
502  * The reason to use interrupt transfers through this API would most likely
503  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
504  * could be transferred.  That capability is less useful for low or full
505  * speed interrupt endpoints, which allow at most one packet per millisecond,
506  * of at most 8 or 64 bytes (respectively).
507  *
508  * It is not necessary to call this function to reserve bandwidth for devices
509  * under an xHCI host controller, as the bandwidth is reserved when the
510  * configuration or interface alt setting is selected.
511  */
usb_sg_wait(struct usb_sg_request * io)512 void usb_sg_wait(struct usb_sg_request *io)
513 {
514 	int i;
515 	int entries = io->entries;
516 
517 	/* queue the urbs.  */
518 	spin_lock_irq(&io->lock);
519 	i = 0;
520 	while (i < entries && !io->status) {
521 		int retval;
522 
523 		io->urbs[i]->dev = io->dev;
524 		spin_unlock_irq(&io->lock);
525 
526 		retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
527 
528 		switch (retval) {
529 			/* maybe we retrying will recover */
530 		case -ENXIO:	/* hc didn't queue this one */
531 		case -EAGAIN:
532 		case -ENOMEM:
533 			retval = 0;
534 			yield();
535 			break;
536 
537 			/* no error? continue immediately.
538 			 *
539 			 * NOTE: to work better with UHCI (4K I/O buffer may
540 			 * need 3K of TDs) it may be good to limit how many
541 			 * URBs are queued at once; N milliseconds?
542 			 */
543 		case 0:
544 			++i;
545 			cpu_relax();
546 			break;
547 
548 			/* fail any uncompleted urbs */
549 		default:
550 			io->urbs[i]->status = retval;
551 			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
552 				__func__, retval);
553 			usb_sg_cancel(io);
554 		}
555 		spin_lock_irq(&io->lock);
556 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
557 			io->status = retval;
558 	}
559 	io->count -= entries - i;
560 	if (io->count == 0)
561 		complete(&io->complete);
562 	spin_unlock_irq(&io->lock);
563 
564 	/* OK, yes, this could be packaged as non-blocking.
565 	 * So could the submit loop above ... but it's easier to
566 	 * solve neither problem than to solve both!
567 	 */
568 	wait_for_completion(&io->complete);
569 
570 	sg_clean(io);
571 }
572 EXPORT_SYMBOL_GPL(usb_sg_wait);
573 
574 /**
575  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
576  * @io: request block, initialized with usb_sg_init()
577  *
578  * This stops a request after it has been started by usb_sg_wait().
579  * It can also prevents one initialized by usb_sg_init() from starting,
580  * so that call just frees resources allocated to the request.
581  */
usb_sg_cancel(struct usb_sg_request * io)582 void usb_sg_cancel(struct usb_sg_request *io)
583 {
584 	unsigned long flags;
585 	int i, retval;
586 
587 	spin_lock_irqsave(&io->lock, flags);
588 	if (io->status) {
589 		spin_unlock_irqrestore(&io->lock, flags);
590 		return;
591 	}
592 	/* shut everything down */
593 	io->status = -ECONNRESET;
594 	spin_unlock_irqrestore(&io->lock, flags);
595 
596 	for (i = io->entries - 1; i >= 0; --i) {
597 		usb_block_urb(io->urbs[i]);
598 
599 		retval = usb_unlink_urb(io->urbs[i]);
600 		if (retval != -EINPROGRESS
601 		    && retval != -ENODEV
602 		    && retval != -EBUSY
603 		    && retval != -EIDRM)
604 			dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
605 				 __func__, retval);
606 	}
607 }
608 EXPORT_SYMBOL_GPL(usb_sg_cancel);
609 
610 /*-------------------------------------------------------------------*/
611 
612 /**
613  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
614  * @dev: the device whose descriptor is being retrieved
615  * @type: the descriptor type (USB_DT_*)
616  * @index: the number of the descriptor
617  * @buf: where to put the descriptor
618  * @size: how big is "buf"?
619  * Context: !in_interrupt ()
620  *
621  * Gets a USB descriptor.  Convenience functions exist to simplify
622  * getting some types of descriptors.  Use
623  * usb_get_string() or usb_string() for USB_DT_STRING.
624  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
625  * are part of the device structure.
626  * In addition to a number of USB-standard descriptors, some
627  * devices also use class-specific or vendor-specific descriptors.
628  *
629  * This call is synchronous, and may not be used in an interrupt context.
630  *
631  * Return: The number of bytes received on success, or else the status code
632  * returned by the underlying usb_control_msg() call.
633  */
usb_get_descriptor(struct usb_device * dev,unsigned char type,unsigned char index,void * buf,int size)634 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
635 		       unsigned char index, void *buf, int size)
636 {
637 	int i;
638 	int result;
639 
640 	memset(buf, 0, size);	/* Make sure we parse really received data */
641 
642 	for (i = 0; i < 3; ++i) {
643 		/* retry on length 0 or error; some devices are flakey */
644 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
645 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
646 				(type << 8) + index, 0, buf, size,
647 				USB_CTRL_GET_TIMEOUT);
648 		if (result <= 0 && result != -ETIMEDOUT)
649 			continue;
650 		if (result > 1 && ((u8 *)buf)[1] != type) {
651 			result = -ENODATA;
652 			continue;
653 		}
654 		break;
655 	}
656 	return result;
657 }
658 EXPORT_SYMBOL_GPL(usb_get_descriptor);
659 
660 /**
661  * usb_get_string - gets a string descriptor
662  * @dev: the device whose string descriptor is being retrieved
663  * @langid: code for language chosen (from string descriptor zero)
664  * @index: the number of the descriptor
665  * @buf: where to put the string
666  * @size: how big is "buf"?
667  * Context: !in_interrupt ()
668  *
669  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
670  * in little-endian byte order).
671  * The usb_string() function will often be a convenient way to turn
672  * these strings into kernel-printable form.
673  *
674  * Strings may be referenced in device, configuration, interface, or other
675  * descriptors, and could also be used in vendor-specific ways.
676  *
677  * This call is synchronous, and may not be used in an interrupt context.
678  *
679  * Return: The number of bytes received on success, or else the status code
680  * returned by the underlying usb_control_msg() call.
681  */
usb_get_string(struct usb_device * dev,unsigned short langid,unsigned char index,void * buf,int size)682 static int usb_get_string(struct usb_device *dev, unsigned short langid,
683 			  unsigned char index, void *buf, int size)
684 {
685 	int i;
686 	int result;
687 
688 	for (i = 0; i < 3; ++i) {
689 		/* retry on length 0 or stall; some devices are flakey */
690 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
691 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
692 			(USB_DT_STRING << 8) + index, langid, buf, size,
693 			USB_CTRL_GET_TIMEOUT);
694 		if (result == 0 || result == -EPIPE)
695 			continue;
696 		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
697 			result = -ENODATA;
698 			continue;
699 		}
700 		break;
701 	}
702 	return result;
703 }
704 
usb_try_string_workarounds(unsigned char * buf,int * length)705 static void usb_try_string_workarounds(unsigned char *buf, int *length)
706 {
707 	int newlength, oldlength = *length;
708 
709 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
710 		if (!isprint(buf[newlength]) || buf[newlength + 1])
711 			break;
712 
713 	if (newlength > 2) {
714 		buf[0] = newlength;
715 		*length = newlength;
716 	}
717 }
718 
usb_string_sub(struct usb_device * dev,unsigned int langid,unsigned int index,unsigned char * buf)719 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
720 			  unsigned int index, unsigned char *buf)
721 {
722 	int rc;
723 
724 	/* Try to read the string descriptor by asking for the maximum
725 	 * possible number of bytes */
726 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
727 		rc = -EIO;
728 	else
729 		rc = usb_get_string(dev, langid, index, buf, 255);
730 
731 	/* If that failed try to read the descriptor length, then
732 	 * ask for just that many bytes */
733 	if (rc < 2) {
734 		rc = usb_get_string(dev, langid, index, buf, 2);
735 		if (rc == 2)
736 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
737 	}
738 
739 	if (rc >= 2) {
740 		if (!buf[0] && !buf[1])
741 			usb_try_string_workarounds(buf, &rc);
742 
743 		/* There might be extra junk at the end of the descriptor */
744 		if (buf[0] < rc)
745 			rc = buf[0];
746 
747 		rc = rc - (rc & 1); /* force a multiple of two */
748 	}
749 
750 	if (rc < 2)
751 		rc = (rc < 0 ? rc : -EINVAL);
752 
753 	return rc;
754 }
755 
usb_get_langid(struct usb_device * dev,unsigned char * tbuf)756 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
757 {
758 	int err;
759 
760 	if (dev->have_langid)
761 		return 0;
762 
763 	if (dev->string_langid < 0)
764 		return -EPIPE;
765 
766 	err = usb_string_sub(dev, 0, 0, tbuf);
767 
768 	/* If the string was reported but is malformed, default to english
769 	 * (0x0409) */
770 	if (err == -ENODATA || (err > 0 && err < 4)) {
771 		dev->string_langid = 0x0409;
772 		dev->have_langid = 1;
773 		dev_err(&dev->dev,
774 			"language id specifier not provided by device, defaulting to English\n");
775 		return 0;
776 	}
777 
778 	/* In case of all other errors, we assume the device is not able to
779 	 * deal with strings at all. Set string_langid to -1 in order to
780 	 * prevent any string to be retrieved from the device */
781 	if (err < 0) {
782 		dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
783 					err);
784 		dev->string_langid = -1;
785 		return -EPIPE;
786 	}
787 
788 	/* always use the first langid listed */
789 	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
790 	dev->have_langid = 1;
791 	dev_dbg(&dev->dev, "default language 0x%04x\n",
792 				dev->string_langid);
793 	return 0;
794 }
795 
796 /**
797  * usb_string - returns UTF-8 version of a string descriptor
798  * @dev: the device whose string descriptor is being retrieved
799  * @index: the number of the descriptor
800  * @buf: where to put the string
801  * @size: how big is "buf"?
802  * Context: !in_interrupt ()
803  *
804  * This converts the UTF-16LE encoded strings returned by devices, from
805  * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
806  * that are more usable in most kernel contexts.  Note that this function
807  * chooses strings in the first language supported by the device.
808  *
809  * This call is synchronous, and may not be used in an interrupt context.
810  *
811  * Return: length of the string (>= 0) or usb_control_msg status (< 0).
812  */
usb_string(struct usb_device * dev,int index,char * buf,size_t size)813 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
814 {
815 	unsigned char *tbuf;
816 	int err;
817 
818 	if (dev->state == USB_STATE_SUSPENDED)
819 		return -EHOSTUNREACH;
820 	if (size <= 0 || !buf || !index)
821 		return -EINVAL;
822 	buf[0] = 0;
823 	tbuf = kmalloc(256, GFP_NOIO);
824 	if (!tbuf)
825 		return -ENOMEM;
826 
827 	err = usb_get_langid(dev, tbuf);
828 	if (err < 0)
829 		goto errout;
830 
831 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
832 	if (err < 0)
833 		goto errout;
834 
835 	size--;		/* leave room for trailing NULL char in output buffer */
836 	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
837 			UTF16_LITTLE_ENDIAN, buf, size);
838 	buf[err] = 0;
839 
840 	if (tbuf[1] != USB_DT_STRING)
841 		dev_dbg(&dev->dev,
842 			"wrong descriptor type %02x for string %d (\"%s\")\n",
843 			tbuf[1], index, buf);
844 
845  errout:
846 	kfree(tbuf);
847 	return err;
848 }
849 EXPORT_SYMBOL_GPL(usb_string);
850 
851 /* one UTF-8-encoded 16-bit character has at most three bytes */
852 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
853 
854 /**
855  * usb_cache_string - read a string descriptor and cache it for later use
856  * @udev: the device whose string descriptor is being read
857  * @index: the descriptor index
858  *
859  * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
860  * or %NULL if the index is 0 or the string could not be read.
861  */
usb_cache_string(struct usb_device * udev,int index)862 char *usb_cache_string(struct usb_device *udev, int index)
863 {
864 	char *buf;
865 	char *smallbuf = NULL;
866 	int len;
867 
868 	if (index <= 0)
869 		return NULL;
870 
871 	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
872 	if (buf) {
873 		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
874 		if (len > 0) {
875 			smallbuf = kmalloc(++len, GFP_NOIO);
876 			if (!smallbuf)
877 				return buf;
878 			memcpy(smallbuf, buf, len);
879 		}
880 		kfree(buf);
881 	}
882 	return smallbuf;
883 }
884 
885 /*
886  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
887  * @dev: the device whose device descriptor is being updated
888  * @size: how much of the descriptor to read
889  * Context: !in_interrupt ()
890  *
891  * Updates the copy of the device descriptor stored in the device structure,
892  * which dedicates space for this purpose.
893  *
894  * Not exported, only for use by the core.  If drivers really want to read
895  * the device descriptor directly, they can call usb_get_descriptor() with
896  * type = USB_DT_DEVICE and index = 0.
897  *
898  * This call is synchronous, and may not be used in an interrupt context.
899  *
900  * Return: The number of bytes received on success, or else the status code
901  * returned by the underlying usb_control_msg() call.
902  */
usb_get_device_descriptor(struct usb_device * dev,unsigned int size)903 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
904 {
905 	struct usb_device_descriptor *desc;
906 	int ret;
907 
908 	if (size > sizeof(*desc))
909 		return -EINVAL;
910 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
911 	if (!desc)
912 		return -ENOMEM;
913 
914 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
915 	if (ret >= 0)
916 		memcpy(&dev->descriptor, desc, size);
917 	kfree(desc);
918 	return ret;
919 }
920 
921 /**
922  * usb_get_status - issues a GET_STATUS call
923  * @dev: the device whose status is being checked
924  * @type: USB_RECIP_*; for device, interface, or endpoint
925  * @target: zero (for device), else interface or endpoint number
926  * @data: pointer to two bytes of bitmap data
927  * Context: !in_interrupt ()
928  *
929  * Returns device, interface, or endpoint status.  Normally only of
930  * interest to see if the device is self powered, or has enabled the
931  * remote wakeup facility; or whether a bulk or interrupt endpoint
932  * is halted ("stalled").
933  *
934  * Bits in these status bitmaps are set using the SET_FEATURE request,
935  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
936  * function should be used to clear halt ("stall") status.
937  *
938  * This call is synchronous, and may not be used in an interrupt context.
939  *
940  * Returns 0 and the status value in *@data (in host byte order) on success,
941  * or else the status code from the underlying usb_control_msg() call.
942  */
usb_get_status(struct usb_device * dev,int type,int target,void * data)943 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
944 {
945 	int ret;
946 	__le16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
947 
948 	if (!status)
949 		return -ENOMEM;
950 
951 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
952 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
953 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
954 
955 	if (ret == 2) {
956 		*(u16 *) data = le16_to_cpu(*status);
957 		ret = 0;
958 	} else if (ret >= 0) {
959 		ret = -EIO;
960 	}
961 	kfree(status);
962 	return ret;
963 }
964 EXPORT_SYMBOL_GPL(usb_get_status);
965 
966 /**
967  * usb_clear_halt - tells device to clear endpoint halt/stall condition
968  * @dev: device whose endpoint is halted
969  * @pipe: endpoint "pipe" being cleared
970  * Context: !in_interrupt ()
971  *
972  * This is used to clear halt conditions for bulk and interrupt endpoints,
973  * as reported by URB completion status.  Endpoints that are halted are
974  * sometimes referred to as being "stalled".  Such endpoints are unable
975  * to transmit or receive data until the halt status is cleared.  Any URBs
976  * queued for such an endpoint should normally be unlinked by the driver
977  * before clearing the halt condition, as described in sections 5.7.5
978  * and 5.8.5 of the USB 2.0 spec.
979  *
980  * Note that control and isochronous endpoints don't halt, although control
981  * endpoints report "protocol stall" (for unsupported requests) using the
982  * same status code used to report a true stall.
983  *
984  * This call is synchronous, and may not be used in an interrupt context.
985  *
986  * Return: Zero on success, or else the status code returned by the
987  * underlying usb_control_msg() call.
988  */
usb_clear_halt(struct usb_device * dev,int pipe)989 int usb_clear_halt(struct usb_device *dev, int pipe)
990 {
991 	int result;
992 	int endp = usb_pipeendpoint(pipe);
993 
994 	if (usb_pipein(pipe))
995 		endp |= USB_DIR_IN;
996 
997 	/* we don't care if it wasn't halted first. in fact some devices
998 	 * (like some ibmcam model 1 units) seem to expect hosts to make
999 	 * this request for iso endpoints, which can't halt!
1000 	 */
1001 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1002 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1003 		USB_ENDPOINT_HALT, endp, NULL, 0,
1004 		USB_CTRL_SET_TIMEOUT);
1005 
1006 	/* don't un-halt or force to DATA0 except on success */
1007 	if (result < 0)
1008 		return result;
1009 
1010 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1011 	 * the clear "took", so some devices could lock up if you check...
1012 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1013 	 *
1014 	 * NOTE:  make sure the logic here doesn't diverge much from
1015 	 * the copy in usb-storage, for as long as we need two copies.
1016 	 */
1017 
1018 	usb_reset_endpoint(dev, endp);
1019 
1020 	return 0;
1021 }
1022 EXPORT_SYMBOL_GPL(usb_clear_halt);
1023 
create_intf_ep_devs(struct usb_interface * intf)1024 static int create_intf_ep_devs(struct usb_interface *intf)
1025 {
1026 	struct usb_device *udev = interface_to_usbdev(intf);
1027 	struct usb_host_interface *alt = intf->cur_altsetting;
1028 	int i;
1029 
1030 	if (intf->ep_devs_created || intf->unregistering)
1031 		return 0;
1032 
1033 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1034 		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1035 	intf->ep_devs_created = 1;
1036 	return 0;
1037 }
1038 
remove_intf_ep_devs(struct usb_interface * intf)1039 static void remove_intf_ep_devs(struct usb_interface *intf)
1040 {
1041 	struct usb_host_interface *alt = intf->cur_altsetting;
1042 	int i;
1043 
1044 	if (!intf->ep_devs_created)
1045 		return;
1046 
1047 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1048 		usb_remove_ep_devs(&alt->endpoint[i]);
1049 	intf->ep_devs_created = 0;
1050 }
1051 
1052 /**
1053  * usb_disable_endpoint -- Disable an endpoint by address
1054  * @dev: the device whose endpoint is being disabled
1055  * @epaddr: the endpoint's address.  Endpoint number for output,
1056  *	endpoint number + USB_DIR_IN for input
1057  * @reset_hardware: flag to erase any endpoint state stored in the
1058  *	controller hardware
1059  *
1060  * Disables the endpoint for URB submission and nukes all pending URBs.
1061  * If @reset_hardware is set then also deallocates hcd/hardware state
1062  * for the endpoint.
1063  */
usb_disable_endpoint(struct usb_device * dev,unsigned int epaddr,bool reset_hardware)1064 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1065 		bool reset_hardware)
1066 {
1067 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1068 	struct usb_host_endpoint *ep;
1069 
1070 	if (!dev)
1071 		return;
1072 
1073 	if (usb_endpoint_out(epaddr)) {
1074 		ep = dev->ep_out[epnum];
1075 		if (reset_hardware)
1076 			dev->ep_out[epnum] = NULL;
1077 	} else {
1078 		ep = dev->ep_in[epnum];
1079 		if (reset_hardware)
1080 			dev->ep_in[epnum] = NULL;
1081 	}
1082 	if (ep) {
1083 		ep->enabled = 0;
1084 		usb_hcd_flush_endpoint(dev, ep);
1085 		if (reset_hardware)
1086 			usb_hcd_disable_endpoint(dev, ep);
1087 	}
1088 }
1089 
1090 /**
1091  * usb_reset_endpoint - Reset an endpoint's state.
1092  * @dev: the device whose endpoint is to be reset
1093  * @epaddr: the endpoint's address.  Endpoint number for output,
1094  *	endpoint number + USB_DIR_IN for input
1095  *
1096  * Resets any host-side endpoint state such as the toggle bit,
1097  * sequence number or current window.
1098  */
usb_reset_endpoint(struct usb_device * dev,unsigned int epaddr)1099 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1100 {
1101 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1102 	struct usb_host_endpoint *ep;
1103 
1104 	if (usb_endpoint_out(epaddr))
1105 		ep = dev->ep_out[epnum];
1106 	else
1107 		ep = dev->ep_in[epnum];
1108 	if (ep)
1109 		usb_hcd_reset_endpoint(dev, ep);
1110 }
1111 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1112 
1113 
1114 /**
1115  * usb_disable_interface -- Disable all endpoints for an interface
1116  * @dev: the device whose interface is being disabled
1117  * @intf: pointer to the interface descriptor
1118  * @reset_hardware: flag to erase any endpoint state stored in the
1119  *	controller hardware
1120  *
1121  * Disables all the endpoints for the interface's current altsetting.
1122  */
usb_disable_interface(struct usb_device * dev,struct usb_interface * intf,bool reset_hardware)1123 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1124 		bool reset_hardware)
1125 {
1126 	struct usb_host_interface *alt = intf->cur_altsetting;
1127 	int i;
1128 
1129 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1130 		usb_disable_endpoint(dev,
1131 				alt->endpoint[i].desc.bEndpointAddress,
1132 				reset_hardware);
1133 	}
1134 }
1135 
1136 /**
1137  * usb_disable_device - Disable all the endpoints for a USB device
1138  * @dev: the device whose endpoints are being disabled
1139  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1140  *
1141  * Disables all the device's endpoints, potentially including endpoint 0.
1142  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1143  * pending urbs) and usbcore state for the interfaces, so that usbcore
1144  * must usb_set_configuration() before any interfaces could be used.
1145  */
usb_disable_device(struct usb_device * dev,int skip_ep0)1146 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1147 {
1148 	int i;
1149 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1150 
1151 	/* getting rid of interfaces will disconnect
1152 	 * any drivers bound to them (a key side effect)
1153 	 */
1154 	if (dev->actconfig) {
1155 		/*
1156 		 * FIXME: In order to avoid self-deadlock involving the
1157 		 * bandwidth_mutex, we have to mark all the interfaces
1158 		 * before unregistering any of them.
1159 		 */
1160 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1161 			dev->actconfig->interface[i]->unregistering = 1;
1162 
1163 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1164 			struct usb_interface	*interface;
1165 
1166 			/* remove this interface if it has been registered */
1167 			interface = dev->actconfig->interface[i];
1168 			if (!device_is_registered(&interface->dev))
1169 				continue;
1170 			dev_dbg(&dev->dev, "unregistering interface %s\n",
1171 				dev_name(&interface->dev));
1172 			remove_intf_ep_devs(interface);
1173 			device_del(&interface->dev);
1174 		}
1175 
1176 		/* Now that the interfaces are unbound, nobody should
1177 		 * try to access them.
1178 		 */
1179 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1180 			put_device(&dev->actconfig->interface[i]->dev);
1181 			dev->actconfig->interface[i] = NULL;
1182 		}
1183 
1184 		if (dev->usb2_hw_lpm_enabled == 1)
1185 			usb_set_usb2_hardware_lpm(dev, 0);
1186 		usb_unlocked_disable_lpm(dev);
1187 		usb_disable_ltm(dev);
1188 
1189 		dev->actconfig = NULL;
1190 		if (dev->state == USB_STATE_CONFIGURED)
1191 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1192 	}
1193 
1194 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1195 		skip_ep0 ? "non-ep0" : "all");
1196 	if (hcd->driver->check_bandwidth) {
1197 		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1198 		for (i = skip_ep0; i < 16; ++i) {
1199 			usb_disable_endpoint(dev, i, false);
1200 			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1201 		}
1202 		/* Remove endpoints from the host controller internal state */
1203 		mutex_lock(hcd->bandwidth_mutex);
1204 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1205 		mutex_unlock(hcd->bandwidth_mutex);
1206 		/* Second pass: remove endpoint pointers */
1207 	}
1208 	for (i = skip_ep0; i < 16; ++i) {
1209 		usb_disable_endpoint(dev, i, true);
1210 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1211 	}
1212 }
1213 
1214 /**
1215  * usb_enable_endpoint - Enable an endpoint for USB communications
1216  * @dev: the device whose interface is being enabled
1217  * @ep: the endpoint
1218  * @reset_ep: flag to reset the endpoint state
1219  *
1220  * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1221  * For control endpoints, both the input and output sides are handled.
1222  */
usb_enable_endpoint(struct usb_device * dev,struct usb_host_endpoint * ep,bool reset_ep)1223 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1224 		bool reset_ep)
1225 {
1226 	int epnum = usb_endpoint_num(&ep->desc);
1227 	int is_out = usb_endpoint_dir_out(&ep->desc);
1228 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1229 
1230 	if (reset_ep)
1231 		usb_hcd_reset_endpoint(dev, ep);
1232 	if (is_out || is_control)
1233 		dev->ep_out[epnum] = ep;
1234 	if (!is_out || is_control)
1235 		dev->ep_in[epnum] = ep;
1236 	ep->enabled = 1;
1237 }
1238 
1239 /**
1240  * usb_enable_interface - Enable all the endpoints for an interface
1241  * @dev: the device whose interface is being enabled
1242  * @intf: pointer to the interface descriptor
1243  * @reset_eps: flag to reset the endpoints' state
1244  *
1245  * Enables all the endpoints for the interface's current altsetting.
1246  */
usb_enable_interface(struct usb_device * dev,struct usb_interface * intf,bool reset_eps)1247 void usb_enable_interface(struct usb_device *dev,
1248 		struct usb_interface *intf, bool reset_eps)
1249 {
1250 	struct usb_host_interface *alt = intf->cur_altsetting;
1251 	int i;
1252 
1253 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1254 		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1255 }
1256 
1257 /**
1258  * usb_set_interface - Makes a particular alternate setting be current
1259  * @dev: the device whose interface is being updated
1260  * @interface: the interface being updated
1261  * @alternate: the setting being chosen.
1262  * Context: !in_interrupt ()
1263  *
1264  * This is used to enable data transfers on interfaces that may not
1265  * be enabled by default.  Not all devices support such configurability.
1266  * Only the driver bound to an interface may change its setting.
1267  *
1268  * Within any given configuration, each interface may have several
1269  * alternative settings.  These are often used to control levels of
1270  * bandwidth consumption.  For example, the default setting for a high
1271  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1272  * while interrupt transfers of up to 3KBytes per microframe are legal.
1273  * Also, isochronous endpoints may never be part of an
1274  * interface's default setting.  To access such bandwidth, alternate
1275  * interface settings must be made current.
1276  *
1277  * Note that in the Linux USB subsystem, bandwidth associated with
1278  * an endpoint in a given alternate setting is not reserved until an URB
1279  * is submitted that needs that bandwidth.  Some other operating systems
1280  * allocate bandwidth early, when a configuration is chosen.
1281  *
1282  * This call is synchronous, and may not be used in an interrupt context.
1283  * Also, drivers must not change altsettings while urbs are scheduled for
1284  * endpoints in that interface; all such urbs must first be completed
1285  * (perhaps forced by unlinking).
1286  *
1287  * Return: Zero on success, or else the status code returned by the
1288  * underlying usb_control_msg() call.
1289  */
usb_set_interface(struct usb_device * dev,int interface,int alternate)1290 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1291 {
1292 	struct usb_interface *iface;
1293 	struct usb_host_interface *alt;
1294 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1295 	int i, ret, manual = 0;
1296 	unsigned int epaddr;
1297 	unsigned int pipe;
1298 
1299 	if (dev->state == USB_STATE_SUSPENDED)
1300 		return -EHOSTUNREACH;
1301 
1302 	iface = usb_ifnum_to_if(dev, interface);
1303 	if (!iface) {
1304 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1305 			interface);
1306 		return -EINVAL;
1307 	}
1308 	if (iface->unregistering)
1309 		return -ENODEV;
1310 
1311 	alt = usb_altnum_to_altsetting(iface, alternate);
1312 	if (!alt) {
1313 		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1314 			 alternate);
1315 		return -EINVAL;
1316 	}
1317 
1318 	/* Make sure we have enough bandwidth for this alternate interface.
1319 	 * Remove the current alt setting and add the new alt setting.
1320 	 */
1321 	mutex_lock(hcd->bandwidth_mutex);
1322 	/* Disable LPM, and re-enable it once the new alt setting is installed,
1323 	 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1324 	 */
1325 	if (usb_disable_lpm(dev)) {
1326 		dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1327 		mutex_unlock(hcd->bandwidth_mutex);
1328 		return -ENOMEM;
1329 	}
1330 	/* Changing alt-setting also frees any allocated streams */
1331 	for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1332 		iface->cur_altsetting->endpoint[i].streams = 0;
1333 
1334 	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1335 	if (ret < 0) {
1336 		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1337 				alternate);
1338 		usb_enable_lpm(dev);
1339 		mutex_unlock(hcd->bandwidth_mutex);
1340 		return ret;
1341 	}
1342 
1343 	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1344 		ret = -EPIPE;
1345 	else
1346 		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1347 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1348 				   alternate, interface, NULL, 0, 5000);
1349 
1350 	/* 9.4.10 says devices don't need this and are free to STALL the
1351 	 * request if the interface only has one alternate setting.
1352 	 */
1353 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1354 		dev_dbg(&dev->dev,
1355 			"manual set_interface for iface %d, alt %d\n",
1356 			interface, alternate);
1357 		manual = 1;
1358 	} else if (ret < 0) {
1359 		/* Re-instate the old alt setting */
1360 		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1361 		usb_enable_lpm(dev);
1362 		mutex_unlock(hcd->bandwidth_mutex);
1363 		return ret;
1364 	}
1365 	mutex_unlock(hcd->bandwidth_mutex);
1366 
1367 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1368 	 * when they implement async or easily-killable versions of this or
1369 	 * other "should-be-internal" functions (like clear_halt).
1370 	 * should hcd+usbcore postprocess control requests?
1371 	 */
1372 
1373 	/* prevent submissions using previous endpoint settings */
1374 	if (iface->cur_altsetting != alt) {
1375 		remove_intf_ep_devs(iface);
1376 		usb_remove_sysfs_intf_files(iface);
1377 	}
1378 	usb_disable_interface(dev, iface, true);
1379 
1380 	iface->cur_altsetting = alt;
1381 
1382 	/* Now that the interface is installed, re-enable LPM. */
1383 	usb_unlocked_enable_lpm(dev);
1384 
1385 	/* If the interface only has one altsetting and the device didn't
1386 	 * accept the request, we attempt to carry out the equivalent action
1387 	 * by manually clearing the HALT feature for each endpoint in the
1388 	 * new altsetting.
1389 	 */
1390 	if (manual) {
1391 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1392 			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1393 			pipe = __create_pipe(dev,
1394 					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1395 					(usb_endpoint_out(epaddr) ?
1396 					USB_DIR_OUT : USB_DIR_IN);
1397 
1398 			usb_clear_halt(dev, pipe);
1399 		}
1400 	}
1401 
1402 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1403 	 *
1404 	 * Note:
1405 	 * Despite EP0 is always present in all interfaces/AS, the list of
1406 	 * endpoints from the descriptor does not contain EP0. Due to its
1407 	 * omnipresence one might expect EP0 being considered "affected" by
1408 	 * any SetInterface request and hence assume toggles need to be reset.
1409 	 * However, EP0 toggles are re-synced for every individual transfer
1410 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1411 	 * (Likewise, EP0 never "halts" on well designed devices.)
1412 	 */
1413 	usb_enable_interface(dev, iface, true);
1414 	if (device_is_registered(&iface->dev)) {
1415 		usb_create_sysfs_intf_files(iface);
1416 		create_intf_ep_devs(iface);
1417 	}
1418 	return 0;
1419 }
1420 EXPORT_SYMBOL_GPL(usb_set_interface);
1421 
1422 /**
1423  * usb_reset_configuration - lightweight device reset
1424  * @dev: the device whose configuration is being reset
1425  *
1426  * This issues a standard SET_CONFIGURATION request to the device using
1427  * the current configuration.  The effect is to reset most USB-related
1428  * state in the device, including interface altsettings (reset to zero),
1429  * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1430  * endpoints).  Other usbcore state is unchanged, including bindings of
1431  * usb device drivers to interfaces.
1432  *
1433  * Because this affects multiple interfaces, avoid using this with composite
1434  * (multi-interface) devices.  Instead, the driver for each interface may
1435  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1436  * some devices don't support the SET_INTERFACE request, and others won't
1437  * reset all the interface state (notably endpoint state).  Resetting the whole
1438  * configuration would affect other drivers' interfaces.
1439  *
1440  * The caller must own the device lock.
1441  *
1442  * Return: Zero on success, else a negative error code.
1443  */
usb_reset_configuration(struct usb_device * dev)1444 int usb_reset_configuration(struct usb_device *dev)
1445 {
1446 	int			i, retval;
1447 	struct usb_host_config	*config;
1448 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1449 
1450 	if (dev->state == USB_STATE_SUSPENDED)
1451 		return -EHOSTUNREACH;
1452 
1453 	/* caller must have locked the device and must own
1454 	 * the usb bus readlock (so driver bindings are stable);
1455 	 * calls during probe() are fine
1456 	 */
1457 
1458 	for (i = 1; i < 16; ++i) {
1459 		usb_disable_endpoint(dev, i, true);
1460 		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1461 	}
1462 
1463 	config = dev->actconfig;
1464 	retval = 0;
1465 	mutex_lock(hcd->bandwidth_mutex);
1466 	/* Disable LPM, and re-enable it once the configuration is reset, so
1467 	 * that the xHCI driver can recalculate the U1/U2 timeouts.
1468 	 */
1469 	if (usb_disable_lpm(dev)) {
1470 		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1471 		mutex_unlock(hcd->bandwidth_mutex);
1472 		return -ENOMEM;
1473 	}
1474 	/* Make sure we have enough bandwidth for each alternate setting 0 */
1475 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1476 		struct usb_interface *intf = config->interface[i];
1477 		struct usb_host_interface *alt;
1478 
1479 		alt = usb_altnum_to_altsetting(intf, 0);
1480 		if (!alt)
1481 			alt = &intf->altsetting[0];
1482 		if (alt != intf->cur_altsetting)
1483 			retval = usb_hcd_alloc_bandwidth(dev, NULL,
1484 					intf->cur_altsetting, alt);
1485 		if (retval < 0)
1486 			break;
1487 	}
1488 	/* If not, reinstate the old alternate settings */
1489 	if (retval < 0) {
1490 reset_old_alts:
1491 		for (i--; i >= 0; i--) {
1492 			struct usb_interface *intf = config->interface[i];
1493 			struct usb_host_interface *alt;
1494 
1495 			alt = usb_altnum_to_altsetting(intf, 0);
1496 			if (!alt)
1497 				alt = &intf->altsetting[0];
1498 			if (alt != intf->cur_altsetting)
1499 				usb_hcd_alloc_bandwidth(dev, NULL,
1500 						alt, intf->cur_altsetting);
1501 		}
1502 		usb_enable_lpm(dev);
1503 		mutex_unlock(hcd->bandwidth_mutex);
1504 		return retval;
1505 	}
1506 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1507 			USB_REQ_SET_CONFIGURATION, 0,
1508 			config->desc.bConfigurationValue, 0,
1509 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1510 	if (retval < 0)
1511 		goto reset_old_alts;
1512 	mutex_unlock(hcd->bandwidth_mutex);
1513 
1514 	/* re-init hc/hcd interface/endpoint state */
1515 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1516 		struct usb_interface *intf = config->interface[i];
1517 		struct usb_host_interface *alt;
1518 
1519 		alt = usb_altnum_to_altsetting(intf, 0);
1520 
1521 		/* No altsetting 0?  We'll assume the first altsetting.
1522 		 * We could use a GetInterface call, but if a device is
1523 		 * so non-compliant that it doesn't have altsetting 0
1524 		 * then I wouldn't trust its reply anyway.
1525 		 */
1526 		if (!alt)
1527 			alt = &intf->altsetting[0];
1528 
1529 		if (alt != intf->cur_altsetting) {
1530 			remove_intf_ep_devs(intf);
1531 			usb_remove_sysfs_intf_files(intf);
1532 		}
1533 		intf->cur_altsetting = alt;
1534 		usb_enable_interface(dev, intf, true);
1535 		if (device_is_registered(&intf->dev)) {
1536 			usb_create_sysfs_intf_files(intf);
1537 			create_intf_ep_devs(intf);
1538 		}
1539 	}
1540 	/* Now that the interfaces are installed, re-enable LPM. */
1541 	usb_unlocked_enable_lpm(dev);
1542 	return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1545 
usb_release_interface(struct device * dev)1546 static void usb_release_interface(struct device *dev)
1547 {
1548 	struct usb_interface *intf = to_usb_interface(dev);
1549 	struct usb_interface_cache *intfc =
1550 			altsetting_to_usb_interface_cache(intf->altsetting);
1551 
1552 	kref_put(&intfc->ref, usb_release_interface_cache);
1553 	usb_put_dev(interface_to_usbdev(intf));
1554 	kfree(intf);
1555 }
1556 
1557 /*
1558  * usb_deauthorize_interface - deauthorize an USB interface
1559  *
1560  * @intf: USB interface structure
1561  */
usb_deauthorize_interface(struct usb_interface * intf)1562 void usb_deauthorize_interface(struct usb_interface *intf)
1563 {
1564 	struct device *dev = &intf->dev;
1565 
1566 	device_lock(dev->parent);
1567 
1568 	if (intf->authorized) {
1569 		device_lock(dev);
1570 		intf->authorized = 0;
1571 		device_unlock(dev);
1572 
1573 		usb_forced_unbind_intf(intf);
1574 	}
1575 
1576 	device_unlock(dev->parent);
1577 }
1578 
1579 /*
1580  * usb_authorize_interface - authorize an USB interface
1581  *
1582  * @intf: USB interface structure
1583  */
usb_authorize_interface(struct usb_interface * intf)1584 void usb_authorize_interface(struct usb_interface *intf)
1585 {
1586 	struct device *dev = &intf->dev;
1587 
1588 	if (!intf->authorized) {
1589 		device_lock(dev);
1590 		intf->authorized = 1; /* authorize interface */
1591 		device_unlock(dev);
1592 	}
1593 }
1594 
usb_if_uevent(struct device * dev,struct kobj_uevent_env * env)1595 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1596 {
1597 	struct usb_device *usb_dev;
1598 	struct usb_interface *intf;
1599 	struct usb_host_interface *alt;
1600 
1601 	intf = to_usb_interface(dev);
1602 	usb_dev = interface_to_usbdev(intf);
1603 	alt = intf->cur_altsetting;
1604 
1605 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1606 		   alt->desc.bInterfaceClass,
1607 		   alt->desc.bInterfaceSubClass,
1608 		   alt->desc.bInterfaceProtocol))
1609 		return -ENOMEM;
1610 
1611 	if (add_uevent_var(env,
1612 		   "MODALIAS=usb:"
1613 		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1614 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1615 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1616 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1617 		   usb_dev->descriptor.bDeviceClass,
1618 		   usb_dev->descriptor.bDeviceSubClass,
1619 		   usb_dev->descriptor.bDeviceProtocol,
1620 		   alt->desc.bInterfaceClass,
1621 		   alt->desc.bInterfaceSubClass,
1622 		   alt->desc.bInterfaceProtocol,
1623 		   alt->desc.bInterfaceNumber))
1624 		return -ENOMEM;
1625 
1626 	return 0;
1627 }
1628 
1629 struct device_type usb_if_device_type = {
1630 	.name =		"usb_interface",
1631 	.release =	usb_release_interface,
1632 	.uevent =	usb_if_uevent,
1633 };
1634 
find_iad(struct usb_device * dev,struct usb_host_config * config,u8 inum)1635 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1636 						struct usb_host_config *config,
1637 						u8 inum)
1638 {
1639 	struct usb_interface_assoc_descriptor *retval = NULL;
1640 	struct usb_interface_assoc_descriptor *intf_assoc;
1641 	int first_intf;
1642 	int last_intf;
1643 	int i;
1644 
1645 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1646 		intf_assoc = config->intf_assoc[i];
1647 		if (intf_assoc->bInterfaceCount == 0)
1648 			continue;
1649 
1650 		first_intf = intf_assoc->bFirstInterface;
1651 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1652 		if (inum >= first_intf && inum <= last_intf) {
1653 			if (!retval)
1654 				retval = intf_assoc;
1655 			else
1656 				dev_err(&dev->dev, "Interface #%d referenced"
1657 					" by multiple IADs\n", inum);
1658 		}
1659 	}
1660 
1661 	return retval;
1662 }
1663 
1664 
1665 /*
1666  * Internal function to queue a device reset
1667  * See usb_queue_reset_device() for more details
1668  */
__usb_queue_reset_device(struct work_struct * ws)1669 static void __usb_queue_reset_device(struct work_struct *ws)
1670 {
1671 	int rc;
1672 	struct usb_interface *iface =
1673 		container_of(ws, struct usb_interface, reset_ws);
1674 	struct usb_device *udev = interface_to_usbdev(iface);
1675 
1676 	rc = usb_lock_device_for_reset(udev, iface);
1677 	if (rc >= 0) {
1678 		usb_reset_device(udev);
1679 		usb_unlock_device(udev);
1680 	}
1681 	usb_put_intf(iface);	/* Undo _get_ in usb_queue_reset_device() */
1682 }
1683 
1684 
1685 /*
1686  * usb_set_configuration - Makes a particular device setting be current
1687  * @dev: the device whose configuration is being updated
1688  * @configuration: the configuration being chosen.
1689  * Context: !in_interrupt(), caller owns the device lock
1690  *
1691  * This is used to enable non-default device modes.  Not all devices
1692  * use this kind of configurability; many devices only have one
1693  * configuration.
1694  *
1695  * @configuration is the value of the configuration to be installed.
1696  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1697  * must be non-zero; a value of zero indicates that the device in
1698  * unconfigured.  However some devices erroneously use 0 as one of their
1699  * configuration values.  To help manage such devices, this routine will
1700  * accept @configuration = -1 as indicating the device should be put in
1701  * an unconfigured state.
1702  *
1703  * USB device configurations may affect Linux interoperability,
1704  * power consumption and the functionality available.  For example,
1705  * the default configuration is limited to using 100mA of bus power,
1706  * so that when certain device functionality requires more power,
1707  * and the device is bus powered, that functionality should be in some
1708  * non-default device configuration.  Other device modes may also be
1709  * reflected as configuration options, such as whether two ISDN
1710  * channels are available independently; and choosing between open
1711  * standard device protocols (like CDC) or proprietary ones.
1712  *
1713  * Note that a non-authorized device (dev->authorized == 0) will only
1714  * be put in unconfigured mode.
1715  *
1716  * Note that USB has an additional level of device configurability,
1717  * associated with interfaces.  That configurability is accessed using
1718  * usb_set_interface().
1719  *
1720  * This call is synchronous. The calling context must be able to sleep,
1721  * must own the device lock, and must not hold the driver model's USB
1722  * bus mutex; usb interface driver probe() methods cannot use this routine.
1723  *
1724  * Returns zero on success, or else the status code returned by the
1725  * underlying call that failed.  On successful completion, each interface
1726  * in the original device configuration has been destroyed, and each one
1727  * in the new configuration has been probed by all relevant usb device
1728  * drivers currently known to the kernel.
1729  */
usb_set_configuration(struct usb_device * dev,int configuration)1730 int usb_set_configuration(struct usb_device *dev, int configuration)
1731 {
1732 	int i, ret;
1733 	struct usb_host_config *cp = NULL;
1734 	struct usb_interface **new_interfaces = NULL;
1735 	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1736 	int n, nintf;
1737 
1738 	if (dev->authorized == 0 || configuration == -1)
1739 		configuration = 0;
1740 	else {
1741 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1742 			if (dev->config[i].desc.bConfigurationValue ==
1743 					configuration) {
1744 				cp = &dev->config[i];
1745 				break;
1746 			}
1747 		}
1748 	}
1749 	if ((!cp && configuration != 0))
1750 		return -EINVAL;
1751 
1752 	/* The USB spec says configuration 0 means unconfigured.
1753 	 * But if a device includes a configuration numbered 0,
1754 	 * we will accept it as a correctly configured state.
1755 	 * Use -1 if you really want to unconfigure the device.
1756 	 */
1757 	if (cp && configuration == 0)
1758 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1759 
1760 	/* Allocate memory for new interfaces before doing anything else,
1761 	 * so that if we run out then nothing will have changed. */
1762 	n = nintf = 0;
1763 	if (cp) {
1764 		nintf = cp->desc.bNumInterfaces;
1765 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1766 				GFP_NOIO);
1767 		if (!new_interfaces)
1768 			return -ENOMEM;
1769 
1770 		for (; n < nintf; ++n) {
1771 			new_interfaces[n] = kzalloc(
1772 					sizeof(struct usb_interface),
1773 					GFP_NOIO);
1774 			if (!new_interfaces[n]) {
1775 				ret = -ENOMEM;
1776 free_interfaces:
1777 				while (--n >= 0)
1778 					kfree(new_interfaces[n]);
1779 				kfree(new_interfaces);
1780 				return ret;
1781 			}
1782 		}
1783 
1784 		i = dev->bus_mA - usb_get_max_power(dev, cp);
1785 		if (i < 0)
1786 			dev_warn(&dev->dev, "new config #%d exceeds power "
1787 					"limit by %dmA\n",
1788 					configuration, -i);
1789 	}
1790 
1791 	/* Wake up the device so we can send it the Set-Config request */
1792 	ret = usb_autoresume_device(dev);
1793 	if (ret)
1794 		goto free_interfaces;
1795 
1796 	/* if it's already configured, clear out old state first.
1797 	 * getting rid of old interfaces means unbinding their drivers.
1798 	 */
1799 	if (dev->state != USB_STATE_ADDRESS)
1800 		usb_disable_device(dev, 1);	/* Skip ep0 */
1801 
1802 	/* Get rid of pending async Set-Config requests for this device */
1803 	cancel_async_set_config(dev);
1804 
1805 	/* Make sure we have bandwidth (and available HCD resources) for this
1806 	 * configuration.  Remove endpoints from the schedule if we're dropping
1807 	 * this configuration to set configuration 0.  After this point, the
1808 	 * host controller will not allow submissions to dropped endpoints.  If
1809 	 * this call fails, the device state is unchanged.
1810 	 */
1811 	mutex_lock(hcd->bandwidth_mutex);
1812 	/* Disable LPM, and re-enable it once the new configuration is
1813 	 * installed, so that the xHCI driver can recalculate the U1/U2
1814 	 * timeouts.
1815 	 */
1816 	if (dev->actconfig && usb_disable_lpm(dev)) {
1817 		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1818 		mutex_unlock(hcd->bandwidth_mutex);
1819 		ret = -ENOMEM;
1820 		goto free_interfaces;
1821 	}
1822 	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1823 	if (ret < 0) {
1824 		if (dev->actconfig)
1825 			usb_enable_lpm(dev);
1826 		mutex_unlock(hcd->bandwidth_mutex);
1827 		usb_autosuspend_device(dev);
1828 		goto free_interfaces;
1829 	}
1830 
1831 	/*
1832 	 * Initialize the new interface structures and the
1833 	 * hc/hcd/usbcore interface/endpoint state.
1834 	 */
1835 	for (i = 0; i < nintf; ++i) {
1836 		struct usb_interface_cache *intfc;
1837 		struct usb_interface *intf;
1838 		struct usb_host_interface *alt;
1839 
1840 		cp->interface[i] = intf = new_interfaces[i];
1841 		intfc = cp->intf_cache[i];
1842 		intf->altsetting = intfc->altsetting;
1843 		intf->num_altsetting = intfc->num_altsetting;
1844 		intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1845 		kref_get(&intfc->ref);
1846 
1847 		alt = usb_altnum_to_altsetting(intf, 0);
1848 
1849 		/* No altsetting 0?  We'll assume the first altsetting.
1850 		 * We could use a GetInterface call, but if a device is
1851 		 * so non-compliant that it doesn't have altsetting 0
1852 		 * then I wouldn't trust its reply anyway.
1853 		 */
1854 		if (!alt)
1855 			alt = &intf->altsetting[0];
1856 
1857 		intf->intf_assoc =
1858 			find_iad(dev, cp, alt->desc.bInterfaceNumber);
1859 		intf->cur_altsetting = alt;
1860 		usb_enable_interface(dev, intf, true);
1861 		intf->dev.parent = &dev->dev;
1862 		intf->dev.driver = NULL;
1863 		intf->dev.bus = &usb_bus_type;
1864 		intf->dev.type = &usb_if_device_type;
1865 		intf->dev.groups = usb_interface_groups;
1866 		/*
1867 		 * Please refer to usb_alloc_dev() to see why we set
1868 		 * dma_mask and dma_pfn_offset.
1869 		 */
1870 		intf->dev.dma_mask = dev->dev.dma_mask;
1871 		intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1872 		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1873 		intf->minor = -1;
1874 		device_initialize(&intf->dev);
1875 		pm_runtime_no_callbacks(&intf->dev);
1876 		dev_set_name(&intf->dev, "%d-%s:%d.%d",
1877 			dev->bus->busnum, dev->devpath,
1878 			configuration, alt->desc.bInterfaceNumber);
1879 		usb_get_dev(dev);
1880 	}
1881 	kfree(new_interfaces);
1882 
1883 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1884 			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1885 			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1886 	if (ret < 0 && cp) {
1887 		/*
1888 		 * All the old state is gone, so what else can we do?
1889 		 * The device is probably useless now anyway.
1890 		 */
1891 		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1892 		for (i = 0; i < nintf; ++i) {
1893 			usb_disable_interface(dev, cp->interface[i], true);
1894 			put_device(&cp->interface[i]->dev);
1895 			cp->interface[i] = NULL;
1896 		}
1897 		cp = NULL;
1898 	}
1899 
1900 	dev->actconfig = cp;
1901 	mutex_unlock(hcd->bandwidth_mutex);
1902 
1903 	if (!cp) {
1904 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1905 
1906 		/* Leave LPM disabled while the device is unconfigured. */
1907 		usb_autosuspend_device(dev);
1908 		return ret;
1909 	}
1910 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1911 
1912 	if (cp->string == NULL &&
1913 			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1914 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1915 
1916 	/* Now that the interfaces are installed, re-enable LPM. */
1917 	usb_unlocked_enable_lpm(dev);
1918 	/* Enable LTM if it was turned off by usb_disable_device. */
1919 	usb_enable_ltm(dev);
1920 
1921 	/* Now that all the interfaces are set up, register them
1922 	 * to trigger binding of drivers to interfaces.  probe()
1923 	 * routines may install different altsettings and may
1924 	 * claim() any interfaces not yet bound.  Many class drivers
1925 	 * need that: CDC, audio, video, etc.
1926 	 */
1927 	for (i = 0; i < nintf; ++i) {
1928 		struct usb_interface *intf = cp->interface[i];
1929 
1930 		dev_dbg(&dev->dev,
1931 			"adding %s (config #%d, interface %d)\n",
1932 			dev_name(&intf->dev), configuration,
1933 			intf->cur_altsetting->desc.bInterfaceNumber);
1934 		device_enable_async_suspend(&intf->dev);
1935 		ret = device_add(&intf->dev);
1936 		if (ret != 0) {
1937 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1938 				dev_name(&intf->dev), ret);
1939 			continue;
1940 		}
1941 		create_intf_ep_devs(intf);
1942 	}
1943 
1944 	usb_autosuspend_device(dev);
1945 	return 0;
1946 }
1947 EXPORT_SYMBOL_GPL(usb_set_configuration);
1948 
1949 static LIST_HEAD(set_config_list);
1950 static DEFINE_SPINLOCK(set_config_lock);
1951 
1952 struct set_config_request {
1953 	struct usb_device	*udev;
1954 	int			config;
1955 	struct work_struct	work;
1956 	struct list_head	node;
1957 };
1958 
1959 /* Worker routine for usb_driver_set_configuration() */
driver_set_config_work(struct work_struct * work)1960 static void driver_set_config_work(struct work_struct *work)
1961 {
1962 	struct set_config_request *req =
1963 		container_of(work, struct set_config_request, work);
1964 	struct usb_device *udev = req->udev;
1965 
1966 	usb_lock_device(udev);
1967 	spin_lock(&set_config_lock);
1968 	list_del(&req->node);
1969 	spin_unlock(&set_config_lock);
1970 
1971 	if (req->config >= -1)		/* Is req still valid? */
1972 		usb_set_configuration(udev, req->config);
1973 	usb_unlock_device(udev);
1974 	usb_put_dev(udev);
1975 	kfree(req);
1976 }
1977 
1978 /* Cancel pending Set-Config requests for a device whose configuration
1979  * was just changed
1980  */
cancel_async_set_config(struct usb_device * udev)1981 static void cancel_async_set_config(struct usb_device *udev)
1982 {
1983 	struct set_config_request *req;
1984 
1985 	spin_lock(&set_config_lock);
1986 	list_for_each_entry(req, &set_config_list, node) {
1987 		if (req->udev == udev)
1988 			req->config = -999;	/* Mark as cancelled */
1989 	}
1990 	spin_unlock(&set_config_lock);
1991 }
1992 
1993 /**
1994  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1995  * @udev: the device whose configuration is being updated
1996  * @config: the configuration being chosen.
1997  * Context: In process context, must be able to sleep
1998  *
1999  * Device interface drivers are not allowed to change device configurations.
2000  * This is because changing configurations will destroy the interface the
2001  * driver is bound to and create new ones; it would be like a floppy-disk
2002  * driver telling the computer to replace the floppy-disk drive with a
2003  * tape drive!
2004  *
2005  * Still, in certain specialized circumstances the need may arise.  This
2006  * routine gets around the normal restrictions by using a work thread to
2007  * submit the change-config request.
2008  *
2009  * Return: 0 if the request was successfully queued, error code otherwise.
2010  * The caller has no way to know whether the queued request will eventually
2011  * succeed.
2012  */
usb_driver_set_configuration(struct usb_device * udev,int config)2013 int usb_driver_set_configuration(struct usb_device *udev, int config)
2014 {
2015 	struct set_config_request *req;
2016 
2017 	req = kmalloc(sizeof(*req), GFP_KERNEL);
2018 	if (!req)
2019 		return -ENOMEM;
2020 	req->udev = udev;
2021 	req->config = config;
2022 	INIT_WORK(&req->work, driver_set_config_work);
2023 
2024 	spin_lock(&set_config_lock);
2025 	list_add(&req->node, &set_config_list);
2026 	spin_unlock(&set_config_lock);
2027 
2028 	usb_get_dev(udev);
2029 	schedule_work(&req->work);
2030 	return 0;
2031 }
2032 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2033 
2034 /**
2035  * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2036  * @hdr: the place to put the results of the parsing
2037  * @intf: the interface for which parsing is requested
2038  * @buffer: pointer to the extra headers to be parsed
2039  * @buflen: length of the extra headers
2040  *
2041  * This evaluates the extra headers present in CDC devices which
2042  * bind the interfaces for data and control and provide details
2043  * about the capabilities of the device.
2044  *
2045  * Return: number of descriptors parsed or -EINVAL
2046  * if the header is contradictory beyond salvage
2047  */
2048 
cdc_parse_cdc_header(struct usb_cdc_parsed_header * hdr,struct usb_interface * intf,u8 * buffer,int buflen)2049 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2050 				struct usb_interface *intf,
2051 				u8 *buffer,
2052 				int buflen)
2053 {
2054 	/* duplicates are ignored */
2055 	struct usb_cdc_union_desc *union_header = NULL;
2056 
2057 	/* duplicates are not tolerated */
2058 	struct usb_cdc_header_desc *header = NULL;
2059 	struct usb_cdc_ether_desc *ether = NULL;
2060 	struct usb_cdc_mdlm_detail_desc *detail = NULL;
2061 	struct usb_cdc_mdlm_desc *desc = NULL;
2062 
2063 	unsigned int elength;
2064 	int cnt = 0;
2065 
2066 	memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2067 	hdr->phonet_magic_present = false;
2068 	while (buflen > 0) {
2069 		elength = buffer[0];
2070 		if (!elength) {
2071 			dev_err(&intf->dev, "skipping garbage byte\n");
2072 			elength = 1;
2073 			goto next_desc;
2074 		}
2075 		if ((buflen < elength) || (elength < 3)) {
2076 			dev_err(&intf->dev, "invalid descriptor buffer length\n");
2077 			break;
2078 		}
2079 		if (buffer[1] != USB_DT_CS_INTERFACE) {
2080 			dev_err(&intf->dev, "skipping garbage\n");
2081 			goto next_desc;
2082 		}
2083 
2084 		switch (buffer[2]) {
2085 		case USB_CDC_UNION_TYPE: /* we've found it */
2086 			if (elength < sizeof(struct usb_cdc_union_desc))
2087 				goto next_desc;
2088 			if (union_header) {
2089 				dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2090 				goto next_desc;
2091 			}
2092 			union_header = (struct usb_cdc_union_desc *)buffer;
2093 			break;
2094 		case USB_CDC_COUNTRY_TYPE:
2095 			if (elength < sizeof(struct usb_cdc_country_functional_desc))
2096 				goto next_desc;
2097 			hdr->usb_cdc_country_functional_desc =
2098 				(struct usb_cdc_country_functional_desc *)buffer;
2099 			break;
2100 		case USB_CDC_HEADER_TYPE:
2101 			if (elength != sizeof(struct usb_cdc_header_desc))
2102 				goto next_desc;
2103 			if (header)
2104 				return -EINVAL;
2105 			header = (struct usb_cdc_header_desc *)buffer;
2106 			break;
2107 		case USB_CDC_ACM_TYPE:
2108 			if (elength < sizeof(struct usb_cdc_acm_descriptor))
2109 				goto next_desc;
2110 			hdr->usb_cdc_acm_descriptor =
2111 				(struct usb_cdc_acm_descriptor *)buffer;
2112 			break;
2113 		case USB_CDC_ETHERNET_TYPE:
2114 			if (elength != sizeof(struct usb_cdc_ether_desc))
2115 				goto next_desc;
2116 			if (ether)
2117 				return -EINVAL;
2118 			ether = (struct usb_cdc_ether_desc *)buffer;
2119 			break;
2120 		case USB_CDC_CALL_MANAGEMENT_TYPE:
2121 			if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2122 				goto next_desc;
2123 			hdr->usb_cdc_call_mgmt_descriptor =
2124 				(struct usb_cdc_call_mgmt_descriptor *)buffer;
2125 			break;
2126 		case USB_CDC_DMM_TYPE:
2127 			if (elength < sizeof(struct usb_cdc_dmm_desc))
2128 				goto next_desc;
2129 			hdr->usb_cdc_dmm_desc =
2130 				(struct usb_cdc_dmm_desc *)buffer;
2131 			break;
2132 		case USB_CDC_MDLM_TYPE:
2133 			if (elength < sizeof(struct usb_cdc_mdlm_desc *))
2134 				goto next_desc;
2135 			if (desc)
2136 				return -EINVAL;
2137 			desc = (struct usb_cdc_mdlm_desc *)buffer;
2138 			break;
2139 		case USB_CDC_MDLM_DETAIL_TYPE:
2140 			if (elength < sizeof(struct usb_cdc_mdlm_detail_desc *))
2141 				goto next_desc;
2142 			if (detail)
2143 				return -EINVAL;
2144 			detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2145 			break;
2146 		case USB_CDC_NCM_TYPE:
2147 			if (elength < sizeof(struct usb_cdc_ncm_desc))
2148 				goto next_desc;
2149 			hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2150 			break;
2151 		case USB_CDC_MBIM_TYPE:
2152 			if (elength < sizeof(struct usb_cdc_mbim_desc))
2153 				goto next_desc;
2154 
2155 			hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2156 			break;
2157 		case USB_CDC_MBIM_EXTENDED_TYPE:
2158 			if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2159 				break;
2160 			hdr->usb_cdc_mbim_extended_desc =
2161 				(struct usb_cdc_mbim_extended_desc *)buffer;
2162 			break;
2163 		case CDC_PHONET_MAGIC_NUMBER:
2164 			hdr->phonet_magic_present = true;
2165 			break;
2166 		default:
2167 			/*
2168 			 * there are LOTS more CDC descriptors that
2169 			 * could legitimately be found here.
2170 			 */
2171 			dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2172 					buffer[2], elength);
2173 			goto next_desc;
2174 		}
2175 		cnt++;
2176 next_desc:
2177 		buflen -= elength;
2178 		buffer += elength;
2179 	}
2180 	hdr->usb_cdc_union_desc = union_header;
2181 	hdr->usb_cdc_header_desc = header;
2182 	hdr->usb_cdc_mdlm_detail_desc = detail;
2183 	hdr->usb_cdc_mdlm_desc = desc;
2184 	hdr->usb_cdc_ether_desc = ether;
2185 	return cnt;
2186 }
2187 
2188 EXPORT_SYMBOL(cdc_parse_cdc_header);
2189