1 /*
2 * Copyright (C) 2015 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 /**
10 * DOC: VC4 plane module
11 *
12 * Each DRM plane is a layer of pixels being scanned out by the HVS.
13 *
14 * At atomic modeset check time, we compute the HVS display element
15 * state that would be necessary for displaying the plane (giving us a
16 * chance to figure out if a plane configuration is invalid), then at
17 * atomic flush time the CRTC will ask us to write our element state
18 * into the region of the HVS that it has allocated for us.
19 */
20
21 #include "vc4_drv.h"
22 #include "vc4_regs.h"
23 #include "drm_atomic_helper.h"
24 #include "drm_fb_cma_helper.h"
25 #include "drm_plane_helper.h"
26
27 enum vc4_scaling_mode {
28 VC4_SCALING_NONE,
29 VC4_SCALING_TPZ,
30 VC4_SCALING_PPF,
31 };
32
33 struct vc4_plane_state {
34 struct drm_plane_state base;
35 /* System memory copy of the display list for this element, computed
36 * at atomic_check time.
37 */
38 u32 *dlist;
39 u32 dlist_size; /* Number of dwords allocated for the display list */
40 u32 dlist_count; /* Number of used dwords in the display list. */
41
42 /* Offset in the dlist to various words, for pageflip or
43 * cursor updates.
44 */
45 u32 pos0_offset;
46 u32 pos2_offset;
47 u32 ptr0_offset;
48
49 /* Offset where the plane's dlist was last stored in the
50 * hardware at vc4_crtc_atomic_flush() time.
51 */
52 u32 __iomem *hw_dlist;
53
54 /* Clipped coordinates of the plane on the display. */
55 int crtc_x, crtc_y, crtc_w, crtc_h;
56 /* Clipped area being scanned from in the FB. */
57 u32 src_x, src_y;
58
59 u32 src_w[2], src_h[2];
60
61 /* Scaling selection for the RGB/Y plane and the Cb/Cr planes. */
62 enum vc4_scaling_mode x_scaling[2], y_scaling[2];
63 bool is_unity;
64 bool is_yuv;
65
66 /* Offset to start scanning out from the start of the plane's
67 * BO.
68 */
69 u32 offsets[3];
70
71 /* Our allocation in LBM for temporary storage during scaling. */
72 struct drm_mm_node lbm;
73 };
74
75 static inline struct vc4_plane_state *
to_vc4_plane_state(struct drm_plane_state * state)76 to_vc4_plane_state(struct drm_plane_state *state)
77 {
78 return (struct vc4_plane_state *)state;
79 }
80
81 static const struct hvs_format {
82 u32 drm; /* DRM_FORMAT_* */
83 u32 hvs; /* HVS_FORMAT_* */
84 u32 pixel_order;
85 bool has_alpha;
86 bool flip_cbcr;
87 } hvs_formats[] = {
88 {
89 .drm = DRM_FORMAT_XRGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
90 .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = false,
91 },
92 {
93 .drm = DRM_FORMAT_ARGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
94 .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = true,
95 },
96 {
97 .drm = DRM_FORMAT_ABGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
98 .pixel_order = HVS_PIXEL_ORDER_ARGB, .has_alpha = true,
99 },
100 {
101 .drm = DRM_FORMAT_XBGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888,
102 .pixel_order = HVS_PIXEL_ORDER_ARGB, .has_alpha = false,
103 },
104 {
105 .drm = DRM_FORMAT_RGB565, .hvs = HVS_PIXEL_FORMAT_RGB565,
106 .pixel_order = HVS_PIXEL_ORDER_XRGB, .has_alpha = false,
107 },
108 {
109 .drm = DRM_FORMAT_BGR565, .hvs = HVS_PIXEL_FORMAT_RGB565,
110 .pixel_order = HVS_PIXEL_ORDER_XBGR, .has_alpha = false,
111 },
112 {
113 .drm = DRM_FORMAT_ARGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
114 .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = true,
115 },
116 {
117 .drm = DRM_FORMAT_XRGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551,
118 .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = false,
119 },
120 {
121 .drm = DRM_FORMAT_YUV422,
122 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
123 },
124 {
125 .drm = DRM_FORMAT_YVU422,
126 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
127 .flip_cbcr = true,
128 },
129 {
130 .drm = DRM_FORMAT_YUV420,
131 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
132 },
133 {
134 .drm = DRM_FORMAT_YVU420,
135 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
136 .flip_cbcr = true,
137 },
138 {
139 .drm = DRM_FORMAT_NV12,
140 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
141 },
142 {
143 .drm = DRM_FORMAT_NV16,
144 .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
145 },
146 };
147
vc4_get_hvs_format(u32 drm_format)148 static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
149 {
150 unsigned i;
151
152 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
153 if (hvs_formats[i].drm == drm_format)
154 return &hvs_formats[i];
155 }
156
157 return NULL;
158 }
159
vc4_get_scaling_mode(u32 src,u32 dst)160 static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
161 {
162 if (dst > src)
163 return VC4_SCALING_PPF;
164 else if (dst < src)
165 return VC4_SCALING_TPZ;
166 else
167 return VC4_SCALING_NONE;
168 }
169
plane_enabled(struct drm_plane_state * state)170 static bool plane_enabled(struct drm_plane_state *state)
171 {
172 return state->fb && state->crtc;
173 }
174
vc4_plane_duplicate_state(struct drm_plane * plane)175 static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
176 {
177 struct vc4_plane_state *vc4_state;
178
179 if (WARN_ON(!plane->state))
180 return NULL;
181
182 vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
183 if (!vc4_state)
184 return NULL;
185
186 memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
187
188 __drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
189
190 if (vc4_state->dlist) {
191 vc4_state->dlist = kmemdup(vc4_state->dlist,
192 vc4_state->dlist_count * 4,
193 GFP_KERNEL);
194 if (!vc4_state->dlist) {
195 kfree(vc4_state);
196 return NULL;
197 }
198 vc4_state->dlist_size = vc4_state->dlist_count;
199 }
200
201 return &vc4_state->base;
202 }
203
vc4_plane_destroy_state(struct drm_plane * plane,struct drm_plane_state * state)204 static void vc4_plane_destroy_state(struct drm_plane *plane,
205 struct drm_plane_state *state)
206 {
207 struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
208 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
209
210 if (vc4_state->lbm.allocated) {
211 unsigned long irqflags;
212
213 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
214 drm_mm_remove_node(&vc4_state->lbm);
215 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
216 }
217
218 kfree(vc4_state->dlist);
219 __drm_atomic_helper_plane_destroy_state(&vc4_state->base);
220 kfree(state);
221 }
222
223 /* Called during init to allocate the plane's atomic state. */
vc4_plane_reset(struct drm_plane * plane)224 static void vc4_plane_reset(struct drm_plane *plane)
225 {
226 struct vc4_plane_state *vc4_state;
227
228 WARN_ON(plane->state);
229
230 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
231 if (!vc4_state)
232 return;
233
234 plane->state = &vc4_state->base;
235 vc4_state->base.plane = plane;
236 }
237
vc4_dlist_write(struct vc4_plane_state * vc4_state,u32 val)238 static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
239 {
240 if (vc4_state->dlist_count == vc4_state->dlist_size) {
241 u32 new_size = max(4u, vc4_state->dlist_count * 2);
242 u32 *new_dlist = kmalloc(new_size * 4, GFP_KERNEL);
243
244 if (!new_dlist)
245 return;
246 memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);
247
248 kfree(vc4_state->dlist);
249 vc4_state->dlist = new_dlist;
250 vc4_state->dlist_size = new_size;
251 }
252
253 vc4_state->dlist[vc4_state->dlist_count++] = val;
254 }
255
256 /* Returns the scl0/scl1 field based on whether the dimensions need to
257 * be up/down/non-scaled.
258 *
259 * This is a replication of a table from the spec.
260 */
vc4_get_scl_field(struct drm_plane_state * state,int plane)261 static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
262 {
263 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
264
265 switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
266 case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
267 return SCALER_CTL0_SCL_H_PPF_V_PPF;
268 case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
269 return SCALER_CTL0_SCL_H_TPZ_V_PPF;
270 case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
271 return SCALER_CTL0_SCL_H_PPF_V_TPZ;
272 case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
273 return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
274 case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
275 return SCALER_CTL0_SCL_H_PPF_V_NONE;
276 case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
277 return SCALER_CTL0_SCL_H_NONE_V_PPF;
278 case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
279 return SCALER_CTL0_SCL_H_NONE_V_TPZ;
280 case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
281 return SCALER_CTL0_SCL_H_TPZ_V_NONE;
282 default:
283 case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
284 /* The unity case is independently handled by
285 * SCALER_CTL0_UNITY.
286 */
287 return 0;
288 }
289 }
290
vc4_plane_setup_clipping_and_scaling(struct drm_plane_state * state)291 static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
292 {
293 struct drm_plane *plane = state->plane;
294 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
295 struct drm_framebuffer *fb = state->fb;
296 struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
297 u32 subpixel_src_mask = (1 << 16) - 1;
298 u32 format = fb->pixel_format;
299 int num_planes = drm_format_num_planes(format);
300 u32 h_subsample = 1;
301 u32 v_subsample = 1;
302 int i;
303
304 for (i = 0; i < num_planes; i++)
305 vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
306
307 /* We don't support subpixel source positioning for scaling. */
308 if ((state->src_x & subpixel_src_mask) ||
309 (state->src_y & subpixel_src_mask) ||
310 (state->src_w & subpixel_src_mask) ||
311 (state->src_h & subpixel_src_mask)) {
312 return -EINVAL;
313 }
314
315 vc4_state->src_x = state->src_x >> 16;
316 vc4_state->src_y = state->src_y >> 16;
317 vc4_state->src_w[0] = state->src_w >> 16;
318 vc4_state->src_h[0] = state->src_h >> 16;
319
320 vc4_state->crtc_x = state->crtc_x;
321 vc4_state->crtc_y = state->crtc_y;
322 vc4_state->crtc_w = state->crtc_w;
323 vc4_state->crtc_h = state->crtc_h;
324
325 vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
326 vc4_state->crtc_w);
327 vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
328 vc4_state->crtc_h);
329
330 if (num_planes > 1) {
331 vc4_state->is_yuv = true;
332
333 h_subsample = drm_format_horz_chroma_subsampling(format);
334 v_subsample = drm_format_vert_chroma_subsampling(format);
335 vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
336 vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
337
338 vc4_state->x_scaling[1] =
339 vc4_get_scaling_mode(vc4_state->src_w[1],
340 vc4_state->crtc_w);
341 vc4_state->y_scaling[1] =
342 vc4_get_scaling_mode(vc4_state->src_h[1],
343 vc4_state->crtc_h);
344
345 /* YUV conversion requires that scaling be enabled,
346 * even on a plane that's otherwise 1:1. Choose TPZ
347 * for simplicity.
348 */
349 if (vc4_state->x_scaling[0] == VC4_SCALING_NONE)
350 vc4_state->x_scaling[0] = VC4_SCALING_TPZ;
351 if (vc4_state->y_scaling[0] == VC4_SCALING_NONE)
352 vc4_state->y_scaling[0] = VC4_SCALING_TPZ;
353 }
354
355 vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
356 vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
357 vc4_state->x_scaling[1] == VC4_SCALING_NONE &&
358 vc4_state->y_scaling[1] == VC4_SCALING_NONE);
359
360 /* No configuring scaling on the cursor plane, since it gets
361 non-vblank-synced updates, and scaling requires requires
362 LBM changes which have to be vblank-synced.
363 */
364 if (plane->type == DRM_PLANE_TYPE_CURSOR && !vc4_state->is_unity)
365 return -EINVAL;
366
367 /* Clamp the on-screen start x/y to 0. The hardware doesn't
368 * support negative y, and negative x wastes bandwidth.
369 */
370 if (vc4_state->crtc_x < 0) {
371 for (i = 0; i < num_planes; i++) {
372 u32 cpp = drm_format_plane_cpp(fb->pixel_format, i);
373 u32 subs = ((i == 0) ? 1 : h_subsample);
374
375 vc4_state->offsets[i] += (cpp *
376 (-vc4_state->crtc_x) / subs);
377 }
378 vc4_state->src_w[0] += vc4_state->crtc_x;
379 vc4_state->src_w[1] += vc4_state->crtc_x / h_subsample;
380 vc4_state->crtc_x = 0;
381 }
382
383 if (vc4_state->crtc_y < 0) {
384 for (i = 0; i < num_planes; i++) {
385 u32 subs = ((i == 0) ? 1 : v_subsample);
386
387 vc4_state->offsets[i] += (fb->pitches[i] *
388 (-vc4_state->crtc_y) / subs);
389 }
390 vc4_state->src_h[0] += vc4_state->crtc_y;
391 vc4_state->src_h[1] += vc4_state->crtc_y / v_subsample;
392 vc4_state->crtc_y = 0;
393 }
394
395 return 0;
396 }
397
vc4_write_tpz(struct vc4_plane_state * vc4_state,u32 src,u32 dst)398 static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
399 {
400 u32 scale, recip;
401
402 scale = (1 << 16) * src / dst;
403
404 /* The specs note that while the reciprocal would be defined
405 * as (1<<32)/scale, ~0 is close enough.
406 */
407 recip = ~0 / scale;
408
409 vc4_dlist_write(vc4_state,
410 VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
411 VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
412 vc4_dlist_write(vc4_state,
413 VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
414 }
415
vc4_write_ppf(struct vc4_plane_state * vc4_state,u32 src,u32 dst)416 static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
417 {
418 u32 scale = (1 << 16) * src / dst;
419
420 vc4_dlist_write(vc4_state,
421 SCALER_PPF_AGC |
422 VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
423 VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
424 }
425
vc4_lbm_size(struct drm_plane_state * state)426 static u32 vc4_lbm_size(struct drm_plane_state *state)
427 {
428 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
429 /* This is the worst case number. One of the two sizes will
430 * be used depending on the scaling configuration.
431 */
432 u32 pix_per_line = max(vc4_state->src_w[0], (u32)vc4_state->crtc_w);
433 u32 lbm;
434
435 if (!vc4_state->is_yuv) {
436 if (vc4_state->is_unity)
437 return 0;
438 else if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
439 lbm = pix_per_line * 8;
440 else {
441 /* In special cases, this multiplier might be 12. */
442 lbm = pix_per_line * 16;
443 }
444 } else {
445 /* There are cases for this going down to a multiplier
446 * of 2, but according to the firmware source, the
447 * table in the docs is somewhat wrong.
448 */
449 lbm = pix_per_line * 16;
450 }
451
452 lbm = roundup(lbm, 32);
453
454 return lbm;
455 }
456
vc4_write_scaling_parameters(struct drm_plane_state * state,int channel)457 static void vc4_write_scaling_parameters(struct drm_plane_state *state,
458 int channel)
459 {
460 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
461
462 /* Ch0 H-PPF Word 0: Scaling Parameters */
463 if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
464 vc4_write_ppf(vc4_state,
465 vc4_state->src_w[channel], vc4_state->crtc_w);
466 }
467
468 /* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
469 if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
470 vc4_write_ppf(vc4_state,
471 vc4_state->src_h[channel], vc4_state->crtc_h);
472 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
473 }
474
475 /* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
476 if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
477 vc4_write_tpz(vc4_state,
478 vc4_state->src_w[channel], vc4_state->crtc_w);
479 }
480
481 /* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
482 if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
483 vc4_write_tpz(vc4_state,
484 vc4_state->src_h[channel], vc4_state->crtc_h);
485 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
486 }
487 }
488
489 /* Writes out a full display list for an active plane to the plane's
490 * private dlist state.
491 */
vc4_plane_mode_set(struct drm_plane * plane,struct drm_plane_state * state)492 static int vc4_plane_mode_set(struct drm_plane *plane,
493 struct drm_plane_state *state)
494 {
495 struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
496 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
497 struct drm_framebuffer *fb = state->fb;
498 u32 ctl0_offset = vc4_state->dlist_count;
499 const struct hvs_format *format = vc4_get_hvs_format(fb->pixel_format);
500 int num_planes = drm_format_num_planes(format->drm);
501 u32 scl0, scl1;
502 u32 lbm_size;
503 unsigned long irqflags;
504 int ret, i;
505
506 ret = vc4_plane_setup_clipping_and_scaling(state);
507 if (ret)
508 return ret;
509
510 /* Allocate the LBM memory that the HVS will use for temporary
511 * storage due to our scaling/format conversion.
512 */
513 lbm_size = vc4_lbm_size(state);
514 if (lbm_size) {
515 if (!vc4_state->lbm.allocated) {
516 spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
517 ret = drm_mm_insert_node(&vc4->hvs->lbm_mm,
518 &vc4_state->lbm,
519 lbm_size, 32, 0);
520 spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
521 } else {
522 WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
523 }
524 }
525
526 if (ret)
527 return ret;
528
529 /* SCL1 is used for Cb/Cr scaling of planar formats. For RGB
530 * and 4:4:4, scl1 should be set to scl0 so both channels of
531 * the scaler do the same thing. For YUV, the Y plane needs
532 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
533 * the scl fields here.
534 */
535 if (num_planes == 1) {
536 scl0 = vc4_get_scl_field(state, 1);
537 scl1 = scl0;
538 } else {
539 scl0 = vc4_get_scl_field(state, 1);
540 scl1 = vc4_get_scl_field(state, 0);
541 }
542
543 /* Control word */
544 vc4_dlist_write(vc4_state,
545 SCALER_CTL0_VALID |
546 (format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
547 (format->hvs << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
548 (vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
549 VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
550 VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
551
552 /* Position Word 0: Image Positions and Alpha Value */
553 vc4_state->pos0_offset = vc4_state->dlist_count;
554 vc4_dlist_write(vc4_state,
555 VC4_SET_FIELD(0xff, SCALER_POS0_FIXED_ALPHA) |
556 VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
557 VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
558
559 /* Position Word 1: Scaled Image Dimensions. */
560 if (!vc4_state->is_unity) {
561 vc4_dlist_write(vc4_state,
562 VC4_SET_FIELD(vc4_state->crtc_w,
563 SCALER_POS1_SCL_WIDTH) |
564 VC4_SET_FIELD(vc4_state->crtc_h,
565 SCALER_POS1_SCL_HEIGHT));
566 }
567
568 /* Position Word 2: Source Image Size, Alpha Mode */
569 vc4_state->pos2_offset = vc4_state->dlist_count;
570 vc4_dlist_write(vc4_state,
571 VC4_SET_FIELD(format->has_alpha ?
572 SCALER_POS2_ALPHA_MODE_PIPELINE :
573 SCALER_POS2_ALPHA_MODE_FIXED,
574 SCALER_POS2_ALPHA_MODE) |
575 VC4_SET_FIELD(vc4_state->src_w[0], SCALER_POS2_WIDTH) |
576 VC4_SET_FIELD(vc4_state->src_h[0], SCALER_POS2_HEIGHT));
577
578 /* Position Word 3: Context. Written by the HVS. */
579 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
580
581
582 /* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
583 *
584 * The pointers may be any byte address.
585 */
586 vc4_state->ptr0_offset = vc4_state->dlist_count;
587 if (!format->flip_cbcr) {
588 for (i = 0; i < num_planes; i++)
589 vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
590 } else {
591 WARN_ON_ONCE(num_planes != 3);
592 vc4_dlist_write(vc4_state, vc4_state->offsets[0]);
593 vc4_dlist_write(vc4_state, vc4_state->offsets[2]);
594 vc4_dlist_write(vc4_state, vc4_state->offsets[1]);
595 }
596
597 /* Pointer Context Word 0/1/2: Written by the HVS */
598 for (i = 0; i < num_planes; i++)
599 vc4_dlist_write(vc4_state, 0xc0c0c0c0);
600
601 /* Pitch word 0/1/2 */
602 for (i = 0; i < num_planes; i++) {
603 vc4_dlist_write(vc4_state,
604 VC4_SET_FIELD(fb->pitches[i], SCALER_SRC_PITCH));
605 }
606
607 /* Colorspace conversion words */
608 if (vc4_state->is_yuv) {
609 vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5);
610 vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5);
611 vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5);
612 }
613
614 if (!vc4_state->is_unity) {
615 /* LBM Base Address. */
616 if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
617 vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
618 vc4_dlist_write(vc4_state, vc4_state->lbm.start);
619 }
620
621 if (num_planes > 1) {
622 /* Emit Cb/Cr as channel 0 and Y as channel
623 * 1. This matches how we set up scl0/scl1
624 * above.
625 */
626 vc4_write_scaling_parameters(state, 1);
627 }
628 vc4_write_scaling_parameters(state, 0);
629
630 /* If any PPF setup was done, then all the kernel
631 * pointers get uploaded.
632 */
633 if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
634 vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
635 vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
636 vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
637 u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
638 SCALER_PPF_KERNEL_OFFSET);
639
640 /* HPPF plane 0 */
641 vc4_dlist_write(vc4_state, kernel);
642 /* VPPF plane 0 */
643 vc4_dlist_write(vc4_state, kernel);
644 /* HPPF plane 1 */
645 vc4_dlist_write(vc4_state, kernel);
646 /* VPPF plane 1 */
647 vc4_dlist_write(vc4_state, kernel);
648 }
649 }
650
651 vc4_state->dlist[ctl0_offset] |=
652 VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
653
654 return 0;
655 }
656
657 /* If a modeset involves changing the setup of a plane, the atomic
658 * infrastructure will call this to validate a proposed plane setup.
659 * However, if a plane isn't getting updated, this (and the
660 * corresponding vc4_plane_atomic_update) won't get called. Thus, we
661 * compute the dlist here and have all active plane dlists get updated
662 * in the CRTC's flush.
663 */
vc4_plane_atomic_check(struct drm_plane * plane,struct drm_plane_state * state)664 static int vc4_plane_atomic_check(struct drm_plane *plane,
665 struct drm_plane_state *state)
666 {
667 struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
668
669 vc4_state->dlist_count = 0;
670
671 if (plane_enabled(state))
672 return vc4_plane_mode_set(plane, state);
673 else
674 return 0;
675 }
676
vc4_plane_atomic_update(struct drm_plane * plane,struct drm_plane_state * old_state)677 static void vc4_plane_atomic_update(struct drm_plane *plane,
678 struct drm_plane_state *old_state)
679 {
680 /* No contents here. Since we don't know where in the CRTC's
681 * dlist we should be stored, our dlist is uploaded to the
682 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
683 * time.
684 */
685 }
686
vc4_plane_write_dlist(struct drm_plane * plane,u32 __iomem * dlist)687 u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
688 {
689 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
690 int i;
691
692 vc4_state->hw_dlist = dlist;
693
694 /* Can't memcpy_toio() because it needs to be 32-bit writes. */
695 for (i = 0; i < vc4_state->dlist_count; i++)
696 writel(vc4_state->dlist[i], &dlist[i]);
697
698 return vc4_state->dlist_count;
699 }
700
vc4_plane_dlist_size(const struct drm_plane_state * state)701 u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
702 {
703 const struct vc4_plane_state *vc4_state =
704 container_of(state, typeof(*vc4_state), base);
705
706 return vc4_state->dlist_count;
707 }
708
709 /* Updates the plane to immediately (well, once the FIFO needs
710 * refilling) scan out from at a new framebuffer.
711 */
vc4_plane_async_set_fb(struct drm_plane * plane,struct drm_framebuffer * fb)712 void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
713 {
714 struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
715 struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0);
716 uint32_t addr;
717
718 /* We're skipping the address adjustment for negative origin,
719 * because this is only called on the primary plane.
720 */
721 WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
722 addr = bo->paddr + fb->offsets[0];
723
724 /* Write the new address into the hardware immediately. The
725 * scanout will start from this address as soon as the FIFO
726 * needs to refill with pixels.
727 */
728 writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
729
730 /* Also update the CPU-side dlist copy, so that any later
731 * atomic updates that don't do a new modeset on our plane
732 * also use our updated address.
733 */
734 vc4_state->dlist[vc4_state->ptr0_offset] = addr;
735 }
736
737 static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
738 .atomic_check = vc4_plane_atomic_check,
739 .atomic_update = vc4_plane_atomic_update,
740 };
741
vc4_plane_destroy(struct drm_plane * plane)742 static void vc4_plane_destroy(struct drm_plane *plane)
743 {
744 drm_plane_helper_disable(plane);
745 drm_plane_cleanup(plane);
746 }
747
748 /* Implements immediate (non-vblank-synced) updates of the cursor
749 * position, or falls back to the atomic helper otherwise.
750 */
751 static int
vc4_update_plane(struct drm_plane * plane,struct drm_crtc * crtc,struct drm_framebuffer * fb,int crtc_x,int crtc_y,unsigned int crtc_w,unsigned int crtc_h,uint32_t src_x,uint32_t src_y,uint32_t src_w,uint32_t src_h)752 vc4_update_plane(struct drm_plane *plane,
753 struct drm_crtc *crtc,
754 struct drm_framebuffer *fb,
755 int crtc_x, int crtc_y,
756 unsigned int crtc_w, unsigned int crtc_h,
757 uint32_t src_x, uint32_t src_y,
758 uint32_t src_w, uint32_t src_h)
759 {
760 struct drm_plane_state *plane_state;
761 struct vc4_plane_state *vc4_state;
762
763 if (plane != crtc->cursor)
764 goto out;
765
766 plane_state = plane->state;
767 vc4_state = to_vc4_plane_state(plane_state);
768
769 if (!plane_state)
770 goto out;
771
772 /* If we're changing the cursor contents, do that in the
773 * normal vblank-synced atomic path.
774 */
775 if (fb != plane_state->fb)
776 goto out;
777
778 /* No configuring new scaling in the fast path. */
779 if (crtc_w != plane_state->crtc_w ||
780 crtc_h != plane_state->crtc_h ||
781 src_w != plane_state->src_w ||
782 src_h != plane_state->src_h) {
783 goto out;
784 }
785
786 /* Set the cursor's position on the screen. This is the
787 * expected change from the drm_mode_cursor_universal()
788 * helper.
789 */
790 plane_state->crtc_x = crtc_x;
791 plane_state->crtc_y = crtc_y;
792
793 /* Allow changing the start position within the cursor BO, if
794 * that matters.
795 */
796 plane_state->src_x = src_x;
797 plane_state->src_y = src_y;
798
799 /* Update the display list based on the new crtc_x/y. */
800 vc4_plane_atomic_check(plane, plane_state);
801
802 /* Note that we can't just call vc4_plane_write_dlist()
803 * because that would smash the context data that the HVS is
804 * currently using.
805 */
806 writel(vc4_state->dlist[vc4_state->pos0_offset],
807 &vc4_state->hw_dlist[vc4_state->pos0_offset]);
808 writel(vc4_state->dlist[vc4_state->pos2_offset],
809 &vc4_state->hw_dlist[vc4_state->pos2_offset]);
810 writel(vc4_state->dlist[vc4_state->ptr0_offset],
811 &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
812
813 return 0;
814
815 out:
816 return drm_atomic_helper_update_plane(plane, crtc, fb,
817 crtc_x, crtc_y,
818 crtc_w, crtc_h,
819 src_x, src_y,
820 src_w, src_h);
821 }
822
823 static const struct drm_plane_funcs vc4_plane_funcs = {
824 .update_plane = vc4_update_plane,
825 .disable_plane = drm_atomic_helper_disable_plane,
826 .destroy = vc4_plane_destroy,
827 .set_property = NULL,
828 .reset = vc4_plane_reset,
829 .atomic_duplicate_state = vc4_plane_duplicate_state,
830 .atomic_destroy_state = vc4_plane_destroy_state,
831 };
832
vc4_plane_init(struct drm_device * dev,enum drm_plane_type type)833 struct drm_plane *vc4_plane_init(struct drm_device *dev,
834 enum drm_plane_type type)
835 {
836 struct drm_plane *plane = NULL;
837 struct vc4_plane *vc4_plane;
838 u32 formats[ARRAY_SIZE(hvs_formats)];
839 u32 num_formats = 0;
840 int ret = 0;
841 unsigned i;
842
843 vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane),
844 GFP_KERNEL);
845 if (!vc4_plane) {
846 ret = -ENOMEM;
847 goto fail;
848 }
849
850 for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
851 /* Don't allow YUV in cursor planes, since that means
852 * tuning on the scaler, which we don't allow for the
853 * cursor.
854 */
855 if (type != DRM_PLANE_TYPE_CURSOR ||
856 hvs_formats[i].hvs < HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE) {
857 formats[num_formats++] = hvs_formats[i].drm;
858 }
859 }
860 plane = &vc4_plane->base;
861 ret = drm_universal_plane_init(dev, plane, 0xff,
862 &vc4_plane_funcs,
863 formats, num_formats,
864 type, NULL);
865
866 drm_plane_helper_add(plane, &vc4_plane_helper_funcs);
867
868 return plane;
869 fail:
870 if (plane)
871 vc4_plane_destroy(plane);
872
873 return ERR_PTR(ret);
874 }
875