1 /* drivers/net/ethernet/micrel/ks8851.c
2 *
3 * Copyright 2009 Simtec Electronics
4 * http://www.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #define DEBUG
15
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/netdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/ethtool.h>
22 #include <linux/cache.h>
23 #include <linux/crc32.h>
24 #include <linux/mii.h>
25 #include <linux/eeprom_93cx6.h>
26 #include <linux/regulator/consumer.h>
27
28 #include <linux/spi/spi.h>
29 #include <linux/gpio.h>
30 #include <linux/of_gpio.h>
31
32 #include "ks8851.h"
33
34 /**
35 * struct ks8851_rxctrl - KS8851 driver rx control
36 * @mchash: Multicast hash-table data.
37 * @rxcr1: KS_RXCR1 register setting
38 * @rxcr2: KS_RXCR2 register setting
39 *
40 * Representation of the settings needs to control the receive filtering
41 * such as the multicast hash-filter and the receive register settings. This
42 * is used to make the job of working out if the receive settings change and
43 * then issuing the new settings to the worker that will send the necessary
44 * commands.
45 */
46 struct ks8851_rxctrl {
47 u16 mchash[4];
48 u16 rxcr1;
49 u16 rxcr2;
50 };
51
52 /**
53 * union ks8851_tx_hdr - tx header data
54 * @txb: The header as bytes
55 * @txw: The header as 16bit, little-endian words
56 *
57 * A dual representation of the tx header data to allow
58 * access to individual bytes, and to allow 16bit accesses
59 * with 16bit alignment.
60 */
61 union ks8851_tx_hdr {
62 u8 txb[6];
63 __le16 txw[3];
64 };
65
66 /**
67 * struct ks8851_net - KS8851 driver private data
68 * @netdev: The network device we're bound to
69 * @spidev: The spi device we're bound to.
70 * @lock: Lock to ensure that the device is not accessed when busy.
71 * @statelock: Lock on this structure for tx list.
72 * @mii: The MII state information for the mii calls.
73 * @rxctrl: RX settings for @rxctrl_work.
74 * @tx_work: Work queue for tx packets
75 * @rxctrl_work: Work queue for updating RX mode and multicast lists
76 * @txq: Queue of packets for transmission.
77 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
78 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
79 * @txh: Space for generating packet TX header in DMA-able data
80 * @rxd: Space for receiving SPI data, in DMA-able space.
81 * @txd: Space for transmitting SPI data, in DMA-able space.
82 * @msg_enable: The message flags controlling driver output (see ethtool).
83 * @fid: Incrementing frame id tag.
84 * @rc_ier: Cached copy of KS_IER.
85 * @rc_ccr: Cached copy of KS_CCR.
86 * @rc_rxqcr: Cached copy of KS_RXQCR.
87 * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
88 * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
89 * @vdd_reg: Optional regulator supplying the chip
90 * @vdd_io: Optional digital power supply for IO
91 * @gpio: Optional reset_n gpio
92 *
93 * The @lock ensures that the chip is protected when certain operations are
94 * in progress. When the read or write packet transfer is in progress, most
95 * of the chip registers are not ccessible until the transfer is finished and
96 * the DMA has been de-asserted.
97 *
98 * The @statelock is used to protect information in the structure which may
99 * need to be accessed via several sources, such as the network driver layer
100 * or one of the work queues.
101 *
102 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
103 * wants to DMA map them, it will not have any problems with data the driver
104 * modifies.
105 */
106 struct ks8851_net {
107 struct net_device *netdev;
108 struct spi_device *spidev;
109 struct mutex lock;
110 spinlock_t statelock;
111
112 union ks8851_tx_hdr txh ____cacheline_aligned;
113 u8 rxd[8];
114 u8 txd[8];
115
116 u32 msg_enable ____cacheline_aligned;
117 u16 tx_space;
118 u8 fid;
119
120 u16 rc_ier;
121 u16 rc_rxqcr;
122 u16 rc_ccr;
123 u16 eeprom_size;
124
125 struct mii_if_info mii;
126 struct ks8851_rxctrl rxctrl;
127
128 struct work_struct tx_work;
129 struct work_struct rxctrl_work;
130
131 struct sk_buff_head txq;
132
133 struct spi_message spi_msg1;
134 struct spi_message spi_msg2;
135 struct spi_transfer spi_xfer1;
136 struct spi_transfer spi_xfer2[2];
137
138 struct eeprom_93cx6 eeprom;
139 struct regulator *vdd_reg;
140 struct regulator *vdd_io;
141 int gpio;
142 };
143
144 static int msg_enable;
145
146 /* shift for byte-enable data */
147 #define BYTE_EN(_x) ((_x) << 2)
148
149 /* turn register number and byte-enable mask into data for start of packet */
150 #define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg) << (8+2) | (_reg) >> 6)
151
152 /* SPI register read/write calls.
153 *
154 * All these calls issue SPI transactions to access the chip's registers. They
155 * all require that the necessary lock is held to prevent accesses when the
156 * chip is busy transferring packet data (RX/TX FIFO accesses).
157 */
158
159 /**
160 * ks8851_wrreg16 - write 16bit register value to chip
161 * @ks: The chip state
162 * @reg: The register address
163 * @val: The value to write
164 *
165 * Issue a write to put the value @val into the register specified in @reg.
166 */
ks8851_wrreg16(struct ks8851_net * ks,unsigned reg,unsigned val)167 static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
168 {
169 struct spi_transfer *xfer = &ks->spi_xfer1;
170 struct spi_message *msg = &ks->spi_msg1;
171 __le16 txb[2];
172 int ret;
173
174 txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
175 txb[1] = cpu_to_le16(val);
176
177 xfer->tx_buf = txb;
178 xfer->rx_buf = NULL;
179 xfer->len = 4;
180
181 ret = spi_sync(ks->spidev, msg);
182 if (ret < 0)
183 netdev_err(ks->netdev, "spi_sync() failed\n");
184 }
185
186 /**
187 * ks8851_wrreg8 - write 8bit register value to chip
188 * @ks: The chip state
189 * @reg: The register address
190 * @val: The value to write
191 *
192 * Issue a write to put the value @val into the register specified in @reg.
193 */
ks8851_wrreg8(struct ks8851_net * ks,unsigned reg,unsigned val)194 static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
195 {
196 struct spi_transfer *xfer = &ks->spi_xfer1;
197 struct spi_message *msg = &ks->spi_msg1;
198 __le16 txb[2];
199 int ret;
200 int bit;
201
202 bit = 1 << (reg & 3);
203
204 txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
205 txb[1] = val;
206
207 xfer->tx_buf = txb;
208 xfer->rx_buf = NULL;
209 xfer->len = 3;
210
211 ret = spi_sync(ks->spidev, msg);
212 if (ret < 0)
213 netdev_err(ks->netdev, "spi_sync() failed\n");
214 }
215
216 /**
217 * ks8851_rx_1msg - select whether to use one or two messages for spi read
218 * @ks: The device structure
219 *
220 * Return whether to generate a single message with a tx and rx buffer
221 * supplied to spi_sync(), or alternatively send the tx and rx buffers
222 * as separate messages.
223 *
224 * Depending on the hardware in use, a single message may be more efficient
225 * on interrupts or work done by the driver.
226 *
227 * This currently always returns true until we add some per-device data passed
228 * from the platform code to specify which mode is better.
229 */
ks8851_rx_1msg(struct ks8851_net * ks)230 static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
231 {
232 return true;
233 }
234
235 /**
236 * ks8851_rdreg - issue read register command and return the data
237 * @ks: The device state
238 * @op: The register address and byte enables in message format.
239 * @rxb: The RX buffer to return the result into
240 * @rxl: The length of data expected.
241 *
242 * This is the low level read call that issues the necessary spi message(s)
243 * to read data from the register specified in @op.
244 */
ks8851_rdreg(struct ks8851_net * ks,unsigned op,u8 * rxb,unsigned rxl)245 static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
246 u8 *rxb, unsigned rxl)
247 {
248 struct spi_transfer *xfer;
249 struct spi_message *msg;
250 __le16 *txb = (__le16 *)ks->txd;
251 u8 *trx = ks->rxd;
252 int ret;
253
254 txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
255
256 if (ks8851_rx_1msg(ks)) {
257 msg = &ks->spi_msg1;
258 xfer = &ks->spi_xfer1;
259
260 xfer->tx_buf = txb;
261 xfer->rx_buf = trx;
262 xfer->len = rxl + 2;
263 } else {
264 msg = &ks->spi_msg2;
265 xfer = ks->spi_xfer2;
266
267 xfer->tx_buf = txb;
268 xfer->rx_buf = NULL;
269 xfer->len = 2;
270
271 xfer++;
272 xfer->tx_buf = NULL;
273 xfer->rx_buf = trx;
274 xfer->len = rxl;
275 }
276
277 ret = spi_sync(ks->spidev, msg);
278 if (ret < 0)
279 netdev_err(ks->netdev, "read: spi_sync() failed\n");
280 else if (ks8851_rx_1msg(ks))
281 memcpy(rxb, trx + 2, rxl);
282 else
283 memcpy(rxb, trx, rxl);
284 }
285
286 /**
287 * ks8851_rdreg8 - read 8 bit register from device
288 * @ks: The chip information
289 * @reg: The register address
290 *
291 * Read a 8bit register from the chip, returning the result
292 */
ks8851_rdreg8(struct ks8851_net * ks,unsigned reg)293 static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
294 {
295 u8 rxb[1];
296
297 ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
298 return rxb[0];
299 }
300
301 /**
302 * ks8851_rdreg16 - read 16 bit register from device
303 * @ks: The chip information
304 * @reg: The register address
305 *
306 * Read a 16bit register from the chip, returning the result
307 */
ks8851_rdreg16(struct ks8851_net * ks,unsigned reg)308 static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
309 {
310 __le16 rx = 0;
311
312 ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
313 return le16_to_cpu(rx);
314 }
315
316 /**
317 * ks8851_rdreg32 - read 32 bit register from device
318 * @ks: The chip information
319 * @reg: The register address
320 *
321 * Read a 32bit register from the chip.
322 *
323 * Note, this read requires the address be aligned to 4 bytes.
324 */
ks8851_rdreg32(struct ks8851_net * ks,unsigned reg)325 static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
326 {
327 __le32 rx = 0;
328
329 WARN_ON(reg & 3);
330
331 ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
332 return le32_to_cpu(rx);
333 }
334
335 /**
336 * ks8851_soft_reset - issue one of the soft reset to the device
337 * @ks: The device state.
338 * @op: The bit(s) to set in the GRR
339 *
340 * Issue the relevant soft-reset command to the device's GRR register
341 * specified by @op.
342 *
343 * Note, the delays are in there as a caution to ensure that the reset
344 * has time to take effect and then complete. Since the datasheet does
345 * not currently specify the exact sequence, we have chosen something
346 * that seems to work with our device.
347 */
ks8851_soft_reset(struct ks8851_net * ks,unsigned op)348 static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
349 {
350 ks8851_wrreg16(ks, KS_GRR, op);
351 mdelay(1); /* wait a short time to effect reset */
352 ks8851_wrreg16(ks, KS_GRR, 0);
353 mdelay(1); /* wait for condition to clear */
354 }
355
356 /**
357 * ks8851_set_powermode - set power mode of the device
358 * @ks: The device state
359 * @pwrmode: The power mode value to write to KS_PMECR.
360 *
361 * Change the power mode of the chip.
362 */
ks8851_set_powermode(struct ks8851_net * ks,unsigned pwrmode)363 static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
364 {
365 unsigned pmecr;
366
367 netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
368
369 pmecr = ks8851_rdreg16(ks, KS_PMECR);
370 pmecr &= ~PMECR_PM_MASK;
371 pmecr |= pwrmode;
372
373 ks8851_wrreg16(ks, KS_PMECR, pmecr);
374 }
375
376 /**
377 * ks8851_write_mac_addr - write mac address to device registers
378 * @dev: The network device
379 *
380 * Update the KS8851 MAC address registers from the address in @dev.
381 *
382 * This call assumes that the chip is not running, so there is no need to
383 * shutdown the RXQ process whilst setting this.
384 */
ks8851_write_mac_addr(struct net_device * dev)385 static int ks8851_write_mac_addr(struct net_device *dev)
386 {
387 struct ks8851_net *ks = netdev_priv(dev);
388 int i;
389
390 mutex_lock(&ks->lock);
391
392 /*
393 * Wake up chip in case it was powered off when stopped; otherwise,
394 * the first write to the MAC address does not take effect.
395 */
396 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
397 for (i = 0; i < ETH_ALEN; i++)
398 ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
399 if (!netif_running(dev))
400 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
401
402 mutex_unlock(&ks->lock);
403
404 return 0;
405 }
406
407 /**
408 * ks8851_read_mac_addr - read mac address from device registers
409 * @dev: The network device
410 *
411 * Update our copy of the KS8851 MAC address from the registers of @dev.
412 */
ks8851_read_mac_addr(struct net_device * dev)413 static void ks8851_read_mac_addr(struct net_device *dev)
414 {
415 struct ks8851_net *ks = netdev_priv(dev);
416 int i;
417
418 mutex_lock(&ks->lock);
419
420 for (i = 0; i < ETH_ALEN; i++)
421 dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));
422
423 mutex_unlock(&ks->lock);
424 }
425
426 /**
427 * ks8851_init_mac - initialise the mac address
428 * @ks: The device structure
429 *
430 * Get or create the initial mac address for the device and then set that
431 * into the station address register. If there is an EEPROM present, then
432 * we try that. If no valid mac address is found we use eth_random_addr()
433 * to create a new one.
434 */
ks8851_init_mac(struct ks8851_net * ks)435 static void ks8851_init_mac(struct ks8851_net *ks)
436 {
437 struct net_device *dev = ks->netdev;
438
439 /* first, try reading what we've got already */
440 if (ks->rc_ccr & CCR_EEPROM) {
441 ks8851_read_mac_addr(dev);
442 if (is_valid_ether_addr(dev->dev_addr))
443 return;
444
445 netdev_err(ks->netdev, "invalid mac address read %pM\n",
446 dev->dev_addr);
447 }
448
449 eth_hw_addr_random(dev);
450 ks8851_write_mac_addr(dev);
451 }
452
453 /**
454 * ks8851_rdfifo - read data from the receive fifo
455 * @ks: The device state.
456 * @buff: The buffer address
457 * @len: The length of the data to read
458 *
459 * Issue an RXQ FIFO read command and read the @len amount of data from
460 * the FIFO into the buffer specified by @buff.
461 */
ks8851_rdfifo(struct ks8851_net * ks,u8 * buff,unsigned len)462 static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
463 {
464 struct spi_transfer *xfer = ks->spi_xfer2;
465 struct spi_message *msg = &ks->spi_msg2;
466 u8 txb[1];
467 int ret;
468
469 netif_dbg(ks, rx_status, ks->netdev,
470 "%s: %d@%p\n", __func__, len, buff);
471
472 /* set the operation we're issuing */
473 txb[0] = KS_SPIOP_RXFIFO;
474
475 xfer->tx_buf = txb;
476 xfer->rx_buf = NULL;
477 xfer->len = 1;
478
479 xfer++;
480 xfer->rx_buf = buff;
481 xfer->tx_buf = NULL;
482 xfer->len = len;
483
484 ret = spi_sync(ks->spidev, msg);
485 if (ret < 0)
486 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
487 }
488
489 /**
490 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
491 * @ks: The device state
492 * @rxpkt: The data for the received packet
493 *
494 * Dump the initial data from the packet to dev_dbg().
495 */
ks8851_dbg_dumpkkt(struct ks8851_net * ks,u8 * rxpkt)496 static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
497 {
498 netdev_dbg(ks->netdev,
499 "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
500 rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
501 rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
502 rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
503 }
504
505 /**
506 * ks8851_rx_pkts - receive packets from the host
507 * @ks: The device information.
508 *
509 * This is called from the IRQ work queue when the system detects that there
510 * are packets in the receive queue. Find out how many packets there are and
511 * read them from the FIFO.
512 */
ks8851_rx_pkts(struct ks8851_net * ks)513 static void ks8851_rx_pkts(struct ks8851_net *ks)
514 {
515 struct sk_buff *skb;
516 unsigned rxfc;
517 unsigned rxlen;
518 unsigned rxstat;
519 u32 rxh;
520 u8 *rxpkt;
521
522 rxfc = ks8851_rdreg8(ks, KS_RXFC);
523
524 netif_dbg(ks, rx_status, ks->netdev,
525 "%s: %d packets\n", __func__, rxfc);
526
527 /* Currently we're issuing a read per packet, but we could possibly
528 * improve the code by issuing a single read, getting the receive
529 * header, allocating the packet and then reading the packet data
530 * out in one go.
531 *
532 * This form of operation would require us to hold the SPI bus'
533 * chipselect low during the entie transaction to avoid any
534 * reset to the data stream coming from the chip.
535 */
536
537 for (; rxfc != 0; rxfc--) {
538 rxh = ks8851_rdreg32(ks, KS_RXFHSR);
539 rxstat = rxh & 0xffff;
540 rxlen = (rxh >> 16) & 0xfff;
541
542 netif_dbg(ks, rx_status, ks->netdev,
543 "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
544
545 /* the length of the packet includes the 32bit CRC */
546
547 /* set dma read address */
548 ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
549
550 /* start the packet dma process, and set auto-dequeue rx */
551 ks8851_wrreg16(ks, KS_RXQCR,
552 ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
553
554 if (rxlen > 4) {
555 unsigned int rxalign;
556
557 rxlen -= 4;
558 rxalign = ALIGN(rxlen, 4);
559 skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
560 if (skb) {
561
562 /* 4 bytes of status header + 4 bytes of
563 * garbage: we put them before ethernet
564 * header, so that they are copied,
565 * but ignored.
566 */
567
568 rxpkt = skb_put(skb, rxlen) - 8;
569
570 ks8851_rdfifo(ks, rxpkt, rxalign + 8);
571
572 if (netif_msg_pktdata(ks))
573 ks8851_dbg_dumpkkt(ks, rxpkt);
574
575 skb->protocol = eth_type_trans(skb, ks->netdev);
576 netif_rx_ni(skb);
577
578 ks->netdev->stats.rx_packets++;
579 ks->netdev->stats.rx_bytes += rxlen;
580 }
581 }
582
583 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
584 }
585 }
586
587 /**
588 * ks8851_irq - IRQ handler for dealing with interrupt requests
589 * @irq: IRQ number
590 * @_ks: cookie
591 *
592 * This handler is invoked when the IRQ line asserts to find out what happened.
593 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
594 * in thread context.
595 *
596 * Read the interrupt status, work out what needs to be done and then clear
597 * any of the interrupts that are not needed.
598 */
ks8851_irq(int irq,void * _ks)599 static irqreturn_t ks8851_irq(int irq, void *_ks)
600 {
601 struct ks8851_net *ks = _ks;
602 unsigned status;
603 unsigned handled = 0;
604
605 mutex_lock(&ks->lock);
606
607 status = ks8851_rdreg16(ks, KS_ISR);
608
609 netif_dbg(ks, intr, ks->netdev,
610 "%s: status 0x%04x\n", __func__, status);
611
612 if (status & IRQ_LCI)
613 handled |= IRQ_LCI;
614
615 if (status & IRQ_LDI) {
616 u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
617 pmecr &= ~PMECR_WKEVT_MASK;
618 ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
619
620 handled |= IRQ_LDI;
621 }
622
623 if (status & IRQ_RXPSI)
624 handled |= IRQ_RXPSI;
625
626 if (status & IRQ_TXI) {
627 handled |= IRQ_TXI;
628
629 /* no lock here, tx queue should have been stopped */
630
631 /* update our idea of how much tx space is available to the
632 * system */
633 ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
634
635 netif_dbg(ks, intr, ks->netdev,
636 "%s: txspace %d\n", __func__, ks->tx_space);
637 }
638
639 if (status & IRQ_RXI)
640 handled |= IRQ_RXI;
641
642 if (status & IRQ_SPIBEI) {
643 dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
644 handled |= IRQ_SPIBEI;
645 }
646
647 ks8851_wrreg16(ks, KS_ISR, handled);
648
649 if (status & IRQ_RXI) {
650 /* the datasheet says to disable the rx interrupt during
651 * packet read-out, however we're masking the interrupt
652 * from the device so do not bother masking just the RX
653 * from the device. */
654
655 ks8851_rx_pkts(ks);
656 }
657
658 /* if something stopped the rx process, probably due to wanting
659 * to change the rx settings, then do something about restarting
660 * it. */
661 if (status & IRQ_RXPSI) {
662 struct ks8851_rxctrl *rxc = &ks->rxctrl;
663
664 /* update the multicast hash table */
665 ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
666 ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
667 ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
668 ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
669
670 ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
671 ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
672 }
673
674 mutex_unlock(&ks->lock);
675
676 if (status & IRQ_LCI)
677 mii_check_link(&ks->mii);
678
679 if (status & IRQ_TXI)
680 netif_wake_queue(ks->netdev);
681
682 return IRQ_HANDLED;
683 }
684
685 /**
686 * calc_txlen - calculate size of message to send packet
687 * @len: Length of data
688 *
689 * Returns the size of the TXFIFO message needed to send
690 * this packet.
691 */
calc_txlen(unsigned len)692 static inline unsigned calc_txlen(unsigned len)
693 {
694 return ALIGN(len + 4, 4);
695 }
696
697 /**
698 * ks8851_wrpkt - write packet to TX FIFO
699 * @ks: The device state.
700 * @txp: The sk_buff to transmit.
701 * @irq: IRQ on completion of the packet.
702 *
703 * Send the @txp to the chip. This means creating the relevant packet header
704 * specifying the length of the packet and the other information the chip
705 * needs, such as IRQ on completion. Send the header and the packet data to
706 * the device.
707 */
ks8851_wrpkt(struct ks8851_net * ks,struct sk_buff * txp,bool irq)708 static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
709 {
710 struct spi_transfer *xfer = ks->spi_xfer2;
711 struct spi_message *msg = &ks->spi_msg2;
712 unsigned fid = 0;
713 int ret;
714
715 netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
716 __func__, txp, txp->len, txp->data, irq);
717
718 fid = ks->fid++;
719 fid &= TXFR_TXFID_MASK;
720
721 if (irq)
722 fid |= TXFR_TXIC; /* irq on completion */
723
724 /* start header at txb[1] to align txw entries */
725 ks->txh.txb[1] = KS_SPIOP_TXFIFO;
726 ks->txh.txw[1] = cpu_to_le16(fid);
727 ks->txh.txw[2] = cpu_to_le16(txp->len);
728
729 xfer->tx_buf = &ks->txh.txb[1];
730 xfer->rx_buf = NULL;
731 xfer->len = 5;
732
733 xfer++;
734 xfer->tx_buf = txp->data;
735 xfer->rx_buf = NULL;
736 xfer->len = ALIGN(txp->len, 4);
737
738 ret = spi_sync(ks->spidev, msg);
739 if (ret < 0)
740 netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
741 }
742
743 /**
744 * ks8851_done_tx - update and then free skbuff after transmitting
745 * @ks: The device state
746 * @txb: The buffer transmitted
747 */
ks8851_done_tx(struct ks8851_net * ks,struct sk_buff * txb)748 static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
749 {
750 struct net_device *dev = ks->netdev;
751
752 dev->stats.tx_bytes += txb->len;
753 dev->stats.tx_packets++;
754
755 dev_kfree_skb(txb);
756 }
757
758 /**
759 * ks8851_tx_work - process tx packet(s)
760 * @work: The work strucutre what was scheduled.
761 *
762 * This is called when a number of packets have been scheduled for
763 * transmission and need to be sent to the device.
764 */
ks8851_tx_work(struct work_struct * work)765 static void ks8851_tx_work(struct work_struct *work)
766 {
767 struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
768 struct sk_buff *txb;
769 bool last = skb_queue_empty(&ks->txq);
770
771 mutex_lock(&ks->lock);
772
773 while (!last) {
774 txb = skb_dequeue(&ks->txq);
775 last = skb_queue_empty(&ks->txq);
776
777 if (txb != NULL) {
778 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
779 ks8851_wrpkt(ks, txb, last);
780 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
781 ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
782
783 ks8851_done_tx(ks, txb);
784 }
785 }
786
787 mutex_unlock(&ks->lock);
788 }
789
790 /**
791 * ks8851_net_open - open network device
792 * @dev: The network device being opened.
793 *
794 * Called when the network device is marked active, such as a user executing
795 * 'ifconfig up' on the device.
796 */
ks8851_net_open(struct net_device * dev)797 static int ks8851_net_open(struct net_device *dev)
798 {
799 struct ks8851_net *ks = netdev_priv(dev);
800
801 /* lock the card, even if we may not actually be doing anything
802 * else at the moment */
803 mutex_lock(&ks->lock);
804
805 netif_dbg(ks, ifup, ks->netdev, "opening\n");
806
807 /* bring chip out of any power saving mode it was in */
808 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
809
810 /* issue a soft reset to the RX/TX QMU to put it into a known
811 * state. */
812 ks8851_soft_reset(ks, GRR_QMU);
813
814 /* setup transmission parameters */
815
816 ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
817 TXCR_TXPE | /* pad to min length */
818 TXCR_TXCRC | /* add CRC */
819 TXCR_TXFCE)); /* enable flow control */
820
821 /* auto-increment tx data, reset tx pointer */
822 ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
823
824 /* setup receiver control */
825
826 ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */
827 RXCR1_RXFCE | /* enable flow control */
828 RXCR1_RXBE | /* broadcast enable */
829 RXCR1_RXUE | /* unicast enable */
830 RXCR1_RXE)); /* enable rx block */
831
832 /* transfer entire frames out in one go */
833 ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
834
835 /* set receive counter timeouts */
836 ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
837 ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
838 ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */
839
840 ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */
841 RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
842 RXQCR_RXDTTE); /* IRQ on time exceeded */
843
844 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
845
846 /* clear then enable interrupts */
847
848 #define STD_IRQ (IRQ_LCI | /* Link Change */ \
849 IRQ_TXI | /* TX done */ \
850 IRQ_RXI | /* RX done */ \
851 IRQ_SPIBEI | /* SPI bus error */ \
852 IRQ_TXPSI | /* TX process stop */ \
853 IRQ_RXPSI) /* RX process stop */
854
855 ks->rc_ier = STD_IRQ;
856 ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
857 ks8851_wrreg16(ks, KS_IER, STD_IRQ);
858
859 netif_start_queue(ks->netdev);
860
861 netif_dbg(ks, ifup, ks->netdev, "network device up\n");
862
863 mutex_unlock(&ks->lock);
864 return 0;
865 }
866
867 /**
868 * ks8851_net_stop - close network device
869 * @dev: The device being closed.
870 *
871 * Called to close down a network device which has been active. Cancell any
872 * work, shutdown the RX and TX process and then place the chip into a low
873 * power state whilst it is not being used.
874 */
ks8851_net_stop(struct net_device * dev)875 static int ks8851_net_stop(struct net_device *dev)
876 {
877 struct ks8851_net *ks = netdev_priv(dev);
878
879 netif_info(ks, ifdown, dev, "shutting down\n");
880
881 netif_stop_queue(dev);
882
883 mutex_lock(&ks->lock);
884 /* turn off the IRQs and ack any outstanding */
885 ks8851_wrreg16(ks, KS_IER, 0x0000);
886 ks8851_wrreg16(ks, KS_ISR, 0xffff);
887 mutex_unlock(&ks->lock);
888
889 /* stop any outstanding work */
890 flush_work(&ks->tx_work);
891 flush_work(&ks->rxctrl_work);
892
893 mutex_lock(&ks->lock);
894 /* shutdown RX process */
895 ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
896
897 /* shutdown TX process */
898 ks8851_wrreg16(ks, KS_TXCR, 0x0000);
899
900 /* set powermode to soft power down to save power */
901 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
902 mutex_unlock(&ks->lock);
903
904 /* ensure any queued tx buffers are dumped */
905 while (!skb_queue_empty(&ks->txq)) {
906 struct sk_buff *txb = skb_dequeue(&ks->txq);
907
908 netif_dbg(ks, ifdown, ks->netdev,
909 "%s: freeing txb %p\n", __func__, txb);
910
911 dev_kfree_skb(txb);
912 }
913
914 return 0;
915 }
916
917 /**
918 * ks8851_start_xmit - transmit packet
919 * @skb: The buffer to transmit
920 * @dev: The device used to transmit the packet.
921 *
922 * Called by the network layer to transmit the @skb. Queue the packet for
923 * the device and schedule the necessary work to transmit the packet when
924 * it is free.
925 *
926 * We do this to firstly avoid sleeping with the network device locked,
927 * and secondly so we can round up more than one packet to transmit which
928 * means we can try and avoid generating too many transmit done interrupts.
929 */
ks8851_start_xmit(struct sk_buff * skb,struct net_device * dev)930 static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
931 struct net_device *dev)
932 {
933 struct ks8851_net *ks = netdev_priv(dev);
934 unsigned needed = calc_txlen(skb->len);
935 netdev_tx_t ret = NETDEV_TX_OK;
936
937 netif_dbg(ks, tx_queued, ks->netdev,
938 "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
939
940 spin_lock(&ks->statelock);
941
942 if (needed > ks->tx_space) {
943 netif_stop_queue(dev);
944 ret = NETDEV_TX_BUSY;
945 } else {
946 ks->tx_space -= needed;
947 skb_queue_tail(&ks->txq, skb);
948 }
949
950 spin_unlock(&ks->statelock);
951 schedule_work(&ks->tx_work);
952
953 return ret;
954 }
955
956 /**
957 * ks8851_rxctrl_work - work handler to change rx mode
958 * @work: The work structure this belongs to.
959 *
960 * Lock the device and issue the necessary changes to the receive mode from
961 * the network device layer. This is done so that we can do this without
962 * having to sleep whilst holding the network device lock.
963 *
964 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
965 * receive parameters are programmed, we issue a write to disable the RXQ and
966 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
967 * complete. The interrupt handler then writes the new values into the chip.
968 */
ks8851_rxctrl_work(struct work_struct * work)969 static void ks8851_rxctrl_work(struct work_struct *work)
970 {
971 struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
972
973 mutex_lock(&ks->lock);
974
975 /* need to shutdown RXQ before modifying filter parameters */
976 ks8851_wrreg16(ks, KS_RXCR1, 0x00);
977
978 mutex_unlock(&ks->lock);
979 }
980
ks8851_set_rx_mode(struct net_device * dev)981 static void ks8851_set_rx_mode(struct net_device *dev)
982 {
983 struct ks8851_net *ks = netdev_priv(dev);
984 struct ks8851_rxctrl rxctrl;
985
986 memset(&rxctrl, 0, sizeof(rxctrl));
987
988 if (dev->flags & IFF_PROMISC) {
989 /* interface to receive everything */
990
991 rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
992 } else if (dev->flags & IFF_ALLMULTI) {
993 /* accept all multicast packets */
994
995 rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
996 RXCR1_RXPAFMA | RXCR1_RXMAFMA);
997 } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
998 struct netdev_hw_addr *ha;
999 u32 crc;
1000
1001 /* accept some multicast */
1002
1003 netdev_for_each_mc_addr(ha, dev) {
1004 crc = ether_crc(ETH_ALEN, ha->addr);
1005 crc >>= (32 - 6); /* get top six bits */
1006
1007 rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
1008 }
1009
1010 rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
1011 } else {
1012 /* just accept broadcast / unicast */
1013 rxctrl.rxcr1 = RXCR1_RXPAFMA;
1014 }
1015
1016 rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
1017 RXCR1_RXBE | /* broadcast enable */
1018 RXCR1_RXE | /* RX process enable */
1019 RXCR1_RXFCE); /* enable flow control */
1020
1021 rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
1022
1023 /* schedule work to do the actual set of the data if needed */
1024
1025 spin_lock(&ks->statelock);
1026
1027 if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1028 memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1029 schedule_work(&ks->rxctrl_work);
1030 }
1031
1032 spin_unlock(&ks->statelock);
1033 }
1034
ks8851_set_mac_address(struct net_device * dev,void * addr)1035 static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1036 {
1037 struct sockaddr *sa = addr;
1038
1039 if (netif_running(dev))
1040 return -EBUSY;
1041
1042 if (!is_valid_ether_addr(sa->sa_data))
1043 return -EADDRNOTAVAIL;
1044
1045 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1046 return ks8851_write_mac_addr(dev);
1047 }
1048
ks8851_net_ioctl(struct net_device * dev,struct ifreq * req,int cmd)1049 static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1050 {
1051 struct ks8851_net *ks = netdev_priv(dev);
1052
1053 if (!netif_running(dev))
1054 return -EINVAL;
1055
1056 return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1057 }
1058
1059 static const struct net_device_ops ks8851_netdev_ops = {
1060 .ndo_open = ks8851_net_open,
1061 .ndo_stop = ks8851_net_stop,
1062 .ndo_do_ioctl = ks8851_net_ioctl,
1063 .ndo_start_xmit = ks8851_start_xmit,
1064 .ndo_set_mac_address = ks8851_set_mac_address,
1065 .ndo_set_rx_mode = ks8851_set_rx_mode,
1066 .ndo_change_mtu = eth_change_mtu,
1067 .ndo_validate_addr = eth_validate_addr,
1068 };
1069
1070 /* ethtool support */
1071
ks8851_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * di)1072 static void ks8851_get_drvinfo(struct net_device *dev,
1073 struct ethtool_drvinfo *di)
1074 {
1075 strlcpy(di->driver, "KS8851", sizeof(di->driver));
1076 strlcpy(di->version, "1.00", sizeof(di->version));
1077 strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1078 }
1079
ks8851_get_msglevel(struct net_device * dev)1080 static u32 ks8851_get_msglevel(struct net_device *dev)
1081 {
1082 struct ks8851_net *ks = netdev_priv(dev);
1083 return ks->msg_enable;
1084 }
1085
ks8851_set_msglevel(struct net_device * dev,u32 to)1086 static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1087 {
1088 struct ks8851_net *ks = netdev_priv(dev);
1089 ks->msg_enable = to;
1090 }
1091
ks8851_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1092 static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1093 {
1094 struct ks8851_net *ks = netdev_priv(dev);
1095 return mii_ethtool_gset(&ks->mii, cmd);
1096 }
1097
ks8851_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1098 static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1099 {
1100 struct ks8851_net *ks = netdev_priv(dev);
1101 return mii_ethtool_sset(&ks->mii, cmd);
1102 }
1103
ks8851_get_link(struct net_device * dev)1104 static u32 ks8851_get_link(struct net_device *dev)
1105 {
1106 struct ks8851_net *ks = netdev_priv(dev);
1107 return mii_link_ok(&ks->mii);
1108 }
1109
ks8851_nway_reset(struct net_device * dev)1110 static int ks8851_nway_reset(struct net_device *dev)
1111 {
1112 struct ks8851_net *ks = netdev_priv(dev);
1113 return mii_nway_restart(&ks->mii);
1114 }
1115
1116 /* EEPROM support */
1117
ks8851_eeprom_regread(struct eeprom_93cx6 * ee)1118 static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
1119 {
1120 struct ks8851_net *ks = ee->data;
1121 unsigned val;
1122
1123 val = ks8851_rdreg16(ks, KS_EEPCR);
1124
1125 ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
1126 ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
1127 ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
1128 }
1129
ks8851_eeprom_regwrite(struct eeprom_93cx6 * ee)1130 static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
1131 {
1132 struct ks8851_net *ks = ee->data;
1133 unsigned val = EEPCR_EESA; /* default - eeprom access on */
1134
1135 if (ee->drive_data)
1136 val |= EEPCR_EESRWA;
1137 if (ee->reg_data_in)
1138 val |= EEPCR_EEDO;
1139 if (ee->reg_data_clock)
1140 val |= EEPCR_EESCK;
1141 if (ee->reg_chip_select)
1142 val |= EEPCR_EECS;
1143
1144 ks8851_wrreg16(ks, KS_EEPCR, val);
1145 }
1146
1147 /**
1148 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
1149 * @ks: The network device state.
1150 *
1151 * Check for the presence of an EEPROM, and then activate software access
1152 * to the device.
1153 */
ks8851_eeprom_claim(struct ks8851_net * ks)1154 static int ks8851_eeprom_claim(struct ks8851_net *ks)
1155 {
1156 if (!(ks->rc_ccr & CCR_EEPROM))
1157 return -ENOENT;
1158
1159 mutex_lock(&ks->lock);
1160
1161 /* start with clock low, cs high */
1162 ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
1163 return 0;
1164 }
1165
1166 /**
1167 * ks8851_eeprom_release - release the EEPROM interface
1168 * @ks: The device state
1169 *
1170 * Release the software access to the device EEPROM
1171 */
ks8851_eeprom_release(struct ks8851_net * ks)1172 static void ks8851_eeprom_release(struct ks8851_net *ks)
1173 {
1174 unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
1175
1176 ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
1177 mutex_unlock(&ks->lock);
1178 }
1179
1180 #define KS_EEPROM_MAGIC (0x00008851)
1181
ks8851_set_eeprom(struct net_device * dev,struct ethtool_eeprom * ee,u8 * data)1182 static int ks8851_set_eeprom(struct net_device *dev,
1183 struct ethtool_eeprom *ee, u8 *data)
1184 {
1185 struct ks8851_net *ks = netdev_priv(dev);
1186 int offset = ee->offset;
1187 int len = ee->len;
1188 u16 tmp;
1189
1190 /* currently only support byte writing */
1191 if (len != 1)
1192 return -EINVAL;
1193
1194 if (ee->magic != KS_EEPROM_MAGIC)
1195 return -EINVAL;
1196
1197 if (ks8851_eeprom_claim(ks))
1198 return -ENOENT;
1199
1200 eeprom_93cx6_wren(&ks->eeprom, true);
1201
1202 /* ethtool currently only supports writing bytes, which means
1203 * we have to read/modify/write our 16bit EEPROMs */
1204
1205 eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
1206
1207 if (offset & 1) {
1208 tmp &= 0xff;
1209 tmp |= *data << 8;
1210 } else {
1211 tmp &= 0xff00;
1212 tmp |= *data;
1213 }
1214
1215 eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
1216 eeprom_93cx6_wren(&ks->eeprom, false);
1217
1218 ks8851_eeprom_release(ks);
1219
1220 return 0;
1221 }
1222
ks8851_get_eeprom(struct net_device * dev,struct ethtool_eeprom * ee,u8 * data)1223 static int ks8851_get_eeprom(struct net_device *dev,
1224 struct ethtool_eeprom *ee, u8 *data)
1225 {
1226 struct ks8851_net *ks = netdev_priv(dev);
1227 int offset = ee->offset;
1228 int len = ee->len;
1229
1230 /* must be 2 byte aligned */
1231 if (len & 1 || offset & 1)
1232 return -EINVAL;
1233
1234 if (ks8851_eeprom_claim(ks))
1235 return -ENOENT;
1236
1237 ee->magic = KS_EEPROM_MAGIC;
1238
1239 eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
1240 ks8851_eeprom_release(ks);
1241
1242 return 0;
1243 }
1244
ks8851_get_eeprom_len(struct net_device * dev)1245 static int ks8851_get_eeprom_len(struct net_device *dev)
1246 {
1247 struct ks8851_net *ks = netdev_priv(dev);
1248
1249 /* currently, we assume it is an 93C46 attached, so return 128 */
1250 return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
1251 }
1252
1253 static const struct ethtool_ops ks8851_ethtool_ops = {
1254 .get_drvinfo = ks8851_get_drvinfo,
1255 .get_msglevel = ks8851_get_msglevel,
1256 .set_msglevel = ks8851_set_msglevel,
1257 .get_settings = ks8851_get_settings,
1258 .set_settings = ks8851_set_settings,
1259 .get_link = ks8851_get_link,
1260 .nway_reset = ks8851_nway_reset,
1261 .get_eeprom_len = ks8851_get_eeprom_len,
1262 .get_eeprom = ks8851_get_eeprom,
1263 .set_eeprom = ks8851_set_eeprom,
1264 };
1265
1266 /* MII interface controls */
1267
1268 /**
1269 * ks8851_phy_reg - convert MII register into a KS8851 register
1270 * @reg: MII register number.
1271 *
1272 * Return the KS8851 register number for the corresponding MII PHY register
1273 * if possible. Return zero if the MII register has no direct mapping to the
1274 * KS8851 register set.
1275 */
ks8851_phy_reg(int reg)1276 static int ks8851_phy_reg(int reg)
1277 {
1278 switch (reg) {
1279 case MII_BMCR:
1280 return KS_P1MBCR;
1281 case MII_BMSR:
1282 return KS_P1MBSR;
1283 case MII_PHYSID1:
1284 return KS_PHY1ILR;
1285 case MII_PHYSID2:
1286 return KS_PHY1IHR;
1287 case MII_ADVERTISE:
1288 return KS_P1ANAR;
1289 case MII_LPA:
1290 return KS_P1ANLPR;
1291 }
1292
1293 return 0x0;
1294 }
1295
1296 /**
1297 * ks8851_phy_read - MII interface PHY register read.
1298 * @dev: The network device the PHY is on.
1299 * @phy_addr: Address of PHY (ignored as we only have one)
1300 * @reg: The register to read.
1301 *
1302 * This call reads data from the PHY register specified in @reg. Since the
1303 * device does not support all the MII registers, the non-existent values
1304 * are always returned as zero.
1305 *
1306 * We return zero for unsupported registers as the MII code does not check
1307 * the value returned for any error status, and simply returns it to the
1308 * caller. The mii-tool that the driver was tested with takes any -ve error
1309 * as real PHY capabilities, thus displaying incorrect data to the user.
1310 */
ks8851_phy_read(struct net_device * dev,int phy_addr,int reg)1311 static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1312 {
1313 struct ks8851_net *ks = netdev_priv(dev);
1314 int ksreg;
1315 int result;
1316
1317 ksreg = ks8851_phy_reg(reg);
1318 if (!ksreg)
1319 return 0x0; /* no error return allowed, so use zero */
1320
1321 mutex_lock(&ks->lock);
1322 result = ks8851_rdreg16(ks, ksreg);
1323 mutex_unlock(&ks->lock);
1324
1325 return result;
1326 }
1327
ks8851_phy_write(struct net_device * dev,int phy,int reg,int value)1328 static void ks8851_phy_write(struct net_device *dev,
1329 int phy, int reg, int value)
1330 {
1331 struct ks8851_net *ks = netdev_priv(dev);
1332 int ksreg;
1333
1334 ksreg = ks8851_phy_reg(reg);
1335 if (ksreg) {
1336 mutex_lock(&ks->lock);
1337 ks8851_wrreg16(ks, ksreg, value);
1338 mutex_unlock(&ks->lock);
1339 }
1340 }
1341
1342 /**
1343 * ks8851_read_selftest - read the selftest memory info.
1344 * @ks: The device state
1345 *
1346 * Read and check the TX/RX memory selftest information.
1347 */
ks8851_read_selftest(struct ks8851_net * ks)1348 static int ks8851_read_selftest(struct ks8851_net *ks)
1349 {
1350 unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1351 int ret = 0;
1352 unsigned rd;
1353
1354 rd = ks8851_rdreg16(ks, KS_MBIR);
1355
1356 if ((rd & both_done) != both_done) {
1357 netdev_warn(ks->netdev, "Memory selftest not finished\n");
1358 return 0;
1359 }
1360
1361 if (rd & MBIR_TXMBFA) {
1362 netdev_err(ks->netdev, "TX memory selftest fail\n");
1363 ret |= 1;
1364 }
1365
1366 if (rd & MBIR_RXMBFA) {
1367 netdev_err(ks->netdev, "RX memory selftest fail\n");
1368 ret |= 2;
1369 }
1370
1371 return 0;
1372 }
1373
1374 /* driver bus management functions */
1375
1376 #ifdef CONFIG_PM_SLEEP
1377
ks8851_suspend(struct device * dev)1378 static int ks8851_suspend(struct device *dev)
1379 {
1380 struct ks8851_net *ks = dev_get_drvdata(dev);
1381 struct net_device *netdev = ks->netdev;
1382
1383 if (netif_running(netdev)) {
1384 netif_device_detach(netdev);
1385 ks8851_net_stop(netdev);
1386 }
1387
1388 return 0;
1389 }
1390
ks8851_resume(struct device * dev)1391 static int ks8851_resume(struct device *dev)
1392 {
1393 struct ks8851_net *ks = dev_get_drvdata(dev);
1394 struct net_device *netdev = ks->netdev;
1395
1396 if (netif_running(netdev)) {
1397 ks8851_net_open(netdev);
1398 netif_device_attach(netdev);
1399 }
1400
1401 return 0;
1402 }
1403 #endif
1404
1405 static SIMPLE_DEV_PM_OPS(ks8851_pm_ops, ks8851_suspend, ks8851_resume);
1406
ks8851_probe(struct spi_device * spi)1407 static int ks8851_probe(struct spi_device *spi)
1408 {
1409 struct net_device *ndev;
1410 struct ks8851_net *ks;
1411 int ret;
1412 unsigned cider;
1413 int gpio;
1414
1415 ndev = alloc_etherdev(sizeof(struct ks8851_net));
1416 if (!ndev)
1417 return -ENOMEM;
1418
1419 spi->bits_per_word = 8;
1420
1421 ks = netdev_priv(ndev);
1422
1423 ks->netdev = ndev;
1424 ks->spidev = spi;
1425 ks->tx_space = 6144;
1426
1427 gpio = of_get_named_gpio_flags(spi->dev.of_node, "reset-gpios",
1428 0, NULL);
1429 if (gpio == -EPROBE_DEFER) {
1430 ret = gpio;
1431 goto err_gpio;
1432 }
1433
1434 ks->gpio = gpio;
1435 if (gpio_is_valid(gpio)) {
1436 ret = devm_gpio_request_one(&spi->dev, gpio,
1437 GPIOF_OUT_INIT_LOW, "ks8851_rst_n");
1438 if (ret) {
1439 dev_err(&spi->dev, "reset gpio request failed\n");
1440 goto err_gpio;
1441 }
1442 }
1443
1444 ks->vdd_io = devm_regulator_get(&spi->dev, "vdd-io");
1445 if (IS_ERR(ks->vdd_io)) {
1446 ret = PTR_ERR(ks->vdd_io);
1447 goto err_reg_io;
1448 }
1449
1450 ret = regulator_enable(ks->vdd_io);
1451 if (ret) {
1452 dev_err(&spi->dev, "regulator vdd_io enable fail: %d\n",
1453 ret);
1454 goto err_reg_io;
1455 }
1456
1457 ks->vdd_reg = devm_regulator_get(&spi->dev, "vdd");
1458 if (IS_ERR(ks->vdd_reg)) {
1459 ret = PTR_ERR(ks->vdd_reg);
1460 goto err_reg;
1461 }
1462
1463 ret = regulator_enable(ks->vdd_reg);
1464 if (ret) {
1465 dev_err(&spi->dev, "regulator vdd enable fail: %d\n",
1466 ret);
1467 goto err_reg;
1468 }
1469
1470 if (gpio_is_valid(gpio)) {
1471 usleep_range(10000, 11000);
1472 gpio_set_value(gpio, 1);
1473 }
1474
1475 mutex_init(&ks->lock);
1476 spin_lock_init(&ks->statelock);
1477
1478 INIT_WORK(&ks->tx_work, ks8851_tx_work);
1479 INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1480
1481 /* initialise pre-made spi transfer messages */
1482
1483 spi_message_init(&ks->spi_msg1);
1484 spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1485
1486 spi_message_init(&ks->spi_msg2);
1487 spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1488 spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1489
1490 /* setup EEPROM state */
1491
1492 ks->eeprom.data = ks;
1493 ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1494 ks->eeprom.register_read = ks8851_eeprom_regread;
1495 ks->eeprom.register_write = ks8851_eeprom_regwrite;
1496
1497 /* setup mii state */
1498 ks->mii.dev = ndev;
1499 ks->mii.phy_id = 1,
1500 ks->mii.phy_id_mask = 1;
1501 ks->mii.reg_num_mask = 0xf;
1502 ks->mii.mdio_read = ks8851_phy_read;
1503 ks->mii.mdio_write = ks8851_phy_write;
1504
1505 dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1506
1507 /* set the default message enable */
1508 ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1509 NETIF_MSG_PROBE |
1510 NETIF_MSG_LINK));
1511
1512 skb_queue_head_init(&ks->txq);
1513
1514 ndev->ethtool_ops = &ks8851_ethtool_ops;
1515 SET_NETDEV_DEV(ndev, &spi->dev);
1516
1517 spi_set_drvdata(spi, ks);
1518
1519 ndev->if_port = IF_PORT_100BASET;
1520 ndev->netdev_ops = &ks8851_netdev_ops;
1521 ndev->irq = spi->irq;
1522
1523 /* issue a global soft reset to reset the device. */
1524 ks8851_soft_reset(ks, GRR_GSR);
1525
1526 /* simple check for a valid chip being connected to the bus */
1527 cider = ks8851_rdreg16(ks, KS_CIDER);
1528 if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1529 dev_err(&spi->dev, "failed to read device ID\n");
1530 ret = -ENODEV;
1531 goto err_id;
1532 }
1533
1534 /* cache the contents of the CCR register for EEPROM, etc. */
1535 ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1536
1537 if (ks->rc_ccr & CCR_EEPROM)
1538 ks->eeprom_size = 128;
1539 else
1540 ks->eeprom_size = 0;
1541
1542 ks8851_read_selftest(ks);
1543 ks8851_init_mac(ks);
1544
1545 ret = request_threaded_irq(spi->irq, NULL, ks8851_irq,
1546 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1547 ndev->name, ks);
1548 if (ret < 0) {
1549 dev_err(&spi->dev, "failed to get irq\n");
1550 goto err_irq;
1551 }
1552
1553 ret = register_netdev(ndev);
1554 if (ret) {
1555 dev_err(&spi->dev, "failed to register network device\n");
1556 goto err_netdev;
1557 }
1558
1559 netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1560 CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq,
1561 ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1562
1563 return 0;
1564
1565
1566 err_netdev:
1567 free_irq(ndev->irq, ks);
1568
1569 err_irq:
1570 if (gpio_is_valid(gpio))
1571 gpio_set_value(gpio, 0);
1572 err_id:
1573 regulator_disable(ks->vdd_reg);
1574 err_reg:
1575 regulator_disable(ks->vdd_io);
1576 err_reg_io:
1577 err_gpio:
1578 free_netdev(ndev);
1579 return ret;
1580 }
1581
ks8851_remove(struct spi_device * spi)1582 static int ks8851_remove(struct spi_device *spi)
1583 {
1584 struct ks8851_net *priv = spi_get_drvdata(spi);
1585
1586 if (netif_msg_drv(priv))
1587 dev_info(&spi->dev, "remove\n");
1588
1589 unregister_netdev(priv->netdev);
1590 free_irq(spi->irq, priv);
1591 if (gpio_is_valid(priv->gpio))
1592 gpio_set_value(priv->gpio, 0);
1593 regulator_disable(priv->vdd_reg);
1594 regulator_disable(priv->vdd_io);
1595 free_netdev(priv->netdev);
1596
1597 return 0;
1598 }
1599
1600 static const struct of_device_id ks8851_match_table[] = {
1601 { .compatible = "micrel,ks8851" },
1602 { }
1603 };
1604 MODULE_DEVICE_TABLE(of, ks8851_match_table);
1605
1606 static struct spi_driver ks8851_driver = {
1607 .driver = {
1608 .name = "ks8851",
1609 .of_match_table = ks8851_match_table,
1610 .pm = &ks8851_pm_ops,
1611 },
1612 .probe = ks8851_probe,
1613 .remove = ks8851_remove,
1614 };
1615 module_spi_driver(ks8851_driver);
1616
1617 MODULE_DESCRIPTION("KS8851 Network driver");
1618 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1619 MODULE_LICENSE("GPL");
1620
1621 module_param_named(message, msg_enable, int, 0);
1622 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1623 MODULE_ALIAS("spi:ks8851");
1624