• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* drivers/net/ethernet/micrel/ks8851.c
2  *
3  * Copyright 2009 Simtec Electronics
4  *	http://www.simtec.co.uk/
5  *	Ben Dooks <ben@simtec.co.uk>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #define DEBUG
15 
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/netdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/ethtool.h>
22 #include <linux/cache.h>
23 #include <linux/crc32.h>
24 #include <linux/mii.h>
25 #include <linux/eeprom_93cx6.h>
26 #include <linux/regulator/consumer.h>
27 
28 #include <linux/spi/spi.h>
29 #include <linux/gpio.h>
30 #include <linux/of_gpio.h>
31 
32 #include "ks8851.h"
33 
34 /**
35  * struct ks8851_rxctrl - KS8851 driver rx control
36  * @mchash: Multicast hash-table data.
37  * @rxcr1: KS_RXCR1 register setting
38  * @rxcr2: KS_RXCR2 register setting
39  *
40  * Representation of the settings needs to control the receive filtering
41  * such as the multicast hash-filter and the receive register settings. This
42  * is used to make the job of working out if the receive settings change and
43  * then issuing the new settings to the worker that will send the necessary
44  * commands.
45  */
46 struct ks8851_rxctrl {
47 	u16	mchash[4];
48 	u16	rxcr1;
49 	u16	rxcr2;
50 };
51 
52 /**
53  * union ks8851_tx_hdr - tx header data
54  * @txb: The header as bytes
55  * @txw: The header as 16bit, little-endian words
56  *
57  * A dual representation of the tx header data to allow
58  * access to individual bytes, and to allow 16bit accesses
59  * with 16bit alignment.
60  */
61 union ks8851_tx_hdr {
62 	u8	txb[6];
63 	__le16	txw[3];
64 };
65 
66 /**
67  * struct ks8851_net - KS8851 driver private data
68  * @netdev: The network device we're bound to
69  * @spidev: The spi device we're bound to.
70  * @lock: Lock to ensure that the device is not accessed when busy.
71  * @statelock: Lock on this structure for tx list.
72  * @mii: The MII state information for the mii calls.
73  * @rxctrl: RX settings for @rxctrl_work.
74  * @tx_work: Work queue for tx packets
75  * @rxctrl_work: Work queue for updating RX mode and multicast lists
76  * @txq: Queue of packets for transmission.
77  * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
78  * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
79  * @txh: Space for generating packet TX header in DMA-able data
80  * @rxd: Space for receiving SPI data, in DMA-able space.
81  * @txd: Space for transmitting SPI data, in DMA-able space.
82  * @msg_enable: The message flags controlling driver output (see ethtool).
83  * @fid: Incrementing frame id tag.
84  * @rc_ier: Cached copy of KS_IER.
85  * @rc_ccr: Cached copy of KS_CCR.
86  * @rc_rxqcr: Cached copy of KS_RXQCR.
87  * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
88  * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
89  * @vdd_reg:	Optional regulator supplying the chip
90  * @vdd_io: Optional digital power supply for IO
91  * @gpio: Optional reset_n gpio
92  *
93  * The @lock ensures that the chip is protected when certain operations are
94  * in progress. When the read or write packet transfer is in progress, most
95  * of the chip registers are not ccessible until the transfer is finished and
96  * the DMA has been de-asserted.
97  *
98  * The @statelock is used to protect information in the structure which may
99  * need to be accessed via several sources, such as the network driver layer
100  * or one of the work queues.
101  *
102  * We align the buffers we may use for rx/tx to ensure that if the SPI driver
103  * wants to DMA map them, it will not have any problems with data the driver
104  * modifies.
105  */
106 struct ks8851_net {
107 	struct net_device	*netdev;
108 	struct spi_device	*spidev;
109 	struct mutex		lock;
110 	spinlock_t		statelock;
111 
112 	union ks8851_tx_hdr	txh ____cacheline_aligned;
113 	u8			rxd[8];
114 	u8			txd[8];
115 
116 	u32			msg_enable ____cacheline_aligned;
117 	u16			tx_space;
118 	u8			fid;
119 
120 	u16			rc_ier;
121 	u16			rc_rxqcr;
122 	u16			rc_ccr;
123 	u16			eeprom_size;
124 
125 	struct mii_if_info	mii;
126 	struct ks8851_rxctrl	rxctrl;
127 
128 	struct work_struct	tx_work;
129 	struct work_struct	rxctrl_work;
130 
131 	struct sk_buff_head	txq;
132 
133 	struct spi_message	spi_msg1;
134 	struct spi_message	spi_msg2;
135 	struct spi_transfer	spi_xfer1;
136 	struct spi_transfer	spi_xfer2[2];
137 
138 	struct eeprom_93cx6	eeprom;
139 	struct regulator	*vdd_reg;
140 	struct regulator	*vdd_io;
141 	int			gpio;
142 };
143 
144 static int msg_enable;
145 
146 /* shift for byte-enable data */
147 #define BYTE_EN(_x)	((_x) << 2)
148 
149 /* turn register number and byte-enable mask into data for start of packet */
150 #define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6)
151 
152 /* SPI register read/write calls.
153  *
154  * All these calls issue SPI transactions to access the chip's registers. They
155  * all require that the necessary lock is held to prevent accesses when the
156  * chip is busy transferring packet data (RX/TX FIFO accesses).
157  */
158 
159 /**
160  * ks8851_wrreg16 - write 16bit register value to chip
161  * @ks: The chip state
162  * @reg: The register address
163  * @val: The value to write
164  *
165  * Issue a write to put the value @val into the register specified in @reg.
166  */
ks8851_wrreg16(struct ks8851_net * ks,unsigned reg,unsigned val)167 static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
168 {
169 	struct spi_transfer *xfer = &ks->spi_xfer1;
170 	struct spi_message *msg = &ks->spi_msg1;
171 	__le16 txb[2];
172 	int ret;
173 
174 	txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
175 	txb[1] = cpu_to_le16(val);
176 
177 	xfer->tx_buf = txb;
178 	xfer->rx_buf = NULL;
179 	xfer->len = 4;
180 
181 	ret = spi_sync(ks->spidev, msg);
182 	if (ret < 0)
183 		netdev_err(ks->netdev, "spi_sync() failed\n");
184 }
185 
186 /**
187  * ks8851_wrreg8 - write 8bit register value to chip
188  * @ks: The chip state
189  * @reg: The register address
190  * @val: The value to write
191  *
192  * Issue a write to put the value @val into the register specified in @reg.
193  */
ks8851_wrreg8(struct ks8851_net * ks,unsigned reg,unsigned val)194 static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
195 {
196 	struct spi_transfer *xfer = &ks->spi_xfer1;
197 	struct spi_message *msg = &ks->spi_msg1;
198 	__le16 txb[2];
199 	int ret;
200 	int bit;
201 
202 	bit = 1 << (reg & 3);
203 
204 	txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
205 	txb[1] = val;
206 
207 	xfer->tx_buf = txb;
208 	xfer->rx_buf = NULL;
209 	xfer->len = 3;
210 
211 	ret = spi_sync(ks->spidev, msg);
212 	if (ret < 0)
213 		netdev_err(ks->netdev, "spi_sync() failed\n");
214 }
215 
216 /**
217  * ks8851_rx_1msg - select whether to use one or two messages for spi read
218  * @ks: The device structure
219  *
220  * Return whether to generate a single message with a tx and rx buffer
221  * supplied to spi_sync(), or alternatively send the tx and rx buffers
222  * as separate messages.
223  *
224  * Depending on the hardware in use, a single message may be more efficient
225  * on interrupts or work done by the driver.
226  *
227  * This currently always returns true until we add some per-device data passed
228  * from the platform code to specify which mode is better.
229  */
ks8851_rx_1msg(struct ks8851_net * ks)230 static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
231 {
232 	return true;
233 }
234 
235 /**
236  * ks8851_rdreg - issue read register command and return the data
237  * @ks: The device state
238  * @op: The register address and byte enables in message format.
239  * @rxb: The RX buffer to return the result into
240  * @rxl: The length of data expected.
241  *
242  * This is the low level read call that issues the necessary spi message(s)
243  * to read data from the register specified in @op.
244  */
ks8851_rdreg(struct ks8851_net * ks,unsigned op,u8 * rxb,unsigned rxl)245 static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
246 			 u8 *rxb, unsigned rxl)
247 {
248 	struct spi_transfer *xfer;
249 	struct spi_message *msg;
250 	__le16 *txb = (__le16 *)ks->txd;
251 	u8 *trx = ks->rxd;
252 	int ret;
253 
254 	txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
255 
256 	if (ks8851_rx_1msg(ks)) {
257 		msg = &ks->spi_msg1;
258 		xfer = &ks->spi_xfer1;
259 
260 		xfer->tx_buf = txb;
261 		xfer->rx_buf = trx;
262 		xfer->len = rxl + 2;
263 	} else {
264 		msg = &ks->spi_msg2;
265 		xfer = ks->spi_xfer2;
266 
267 		xfer->tx_buf = txb;
268 		xfer->rx_buf = NULL;
269 		xfer->len = 2;
270 
271 		xfer++;
272 		xfer->tx_buf = NULL;
273 		xfer->rx_buf = trx;
274 		xfer->len = rxl;
275 	}
276 
277 	ret = spi_sync(ks->spidev, msg);
278 	if (ret < 0)
279 		netdev_err(ks->netdev, "read: spi_sync() failed\n");
280 	else if (ks8851_rx_1msg(ks))
281 		memcpy(rxb, trx + 2, rxl);
282 	else
283 		memcpy(rxb, trx, rxl);
284 }
285 
286 /**
287  * ks8851_rdreg8 - read 8 bit register from device
288  * @ks: The chip information
289  * @reg: The register address
290  *
291  * Read a 8bit register from the chip, returning the result
292 */
ks8851_rdreg8(struct ks8851_net * ks,unsigned reg)293 static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
294 {
295 	u8 rxb[1];
296 
297 	ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
298 	return rxb[0];
299 }
300 
301 /**
302  * ks8851_rdreg16 - read 16 bit register from device
303  * @ks: The chip information
304  * @reg: The register address
305  *
306  * Read a 16bit register from the chip, returning the result
307 */
ks8851_rdreg16(struct ks8851_net * ks,unsigned reg)308 static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
309 {
310 	__le16 rx = 0;
311 
312 	ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
313 	return le16_to_cpu(rx);
314 }
315 
316 /**
317  * ks8851_rdreg32 - read 32 bit register from device
318  * @ks: The chip information
319  * @reg: The register address
320  *
321  * Read a 32bit register from the chip.
322  *
323  * Note, this read requires the address be aligned to 4 bytes.
324 */
ks8851_rdreg32(struct ks8851_net * ks,unsigned reg)325 static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
326 {
327 	__le32 rx = 0;
328 
329 	WARN_ON(reg & 3);
330 
331 	ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
332 	return le32_to_cpu(rx);
333 }
334 
335 /**
336  * ks8851_soft_reset - issue one of the soft reset to the device
337  * @ks: The device state.
338  * @op: The bit(s) to set in the GRR
339  *
340  * Issue the relevant soft-reset command to the device's GRR register
341  * specified by @op.
342  *
343  * Note, the delays are in there as a caution to ensure that the reset
344  * has time to take effect and then complete. Since the datasheet does
345  * not currently specify the exact sequence, we have chosen something
346  * that seems to work with our device.
347  */
ks8851_soft_reset(struct ks8851_net * ks,unsigned op)348 static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
349 {
350 	ks8851_wrreg16(ks, KS_GRR, op);
351 	mdelay(1);	/* wait a short time to effect reset */
352 	ks8851_wrreg16(ks, KS_GRR, 0);
353 	mdelay(1);	/* wait for condition to clear */
354 }
355 
356 /**
357  * ks8851_set_powermode - set power mode of the device
358  * @ks: The device state
359  * @pwrmode: The power mode value to write to KS_PMECR.
360  *
361  * Change the power mode of the chip.
362  */
ks8851_set_powermode(struct ks8851_net * ks,unsigned pwrmode)363 static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
364 {
365 	unsigned pmecr;
366 
367 	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
368 
369 	pmecr = ks8851_rdreg16(ks, KS_PMECR);
370 	pmecr &= ~PMECR_PM_MASK;
371 	pmecr |= pwrmode;
372 
373 	ks8851_wrreg16(ks, KS_PMECR, pmecr);
374 }
375 
376 /**
377  * ks8851_write_mac_addr - write mac address to device registers
378  * @dev: The network device
379  *
380  * Update the KS8851 MAC address registers from the address in @dev.
381  *
382  * This call assumes that the chip is not running, so there is no need to
383  * shutdown the RXQ process whilst setting this.
384 */
ks8851_write_mac_addr(struct net_device * dev)385 static int ks8851_write_mac_addr(struct net_device *dev)
386 {
387 	struct ks8851_net *ks = netdev_priv(dev);
388 	int i;
389 
390 	mutex_lock(&ks->lock);
391 
392 	/*
393 	 * Wake up chip in case it was powered off when stopped; otherwise,
394 	 * the first write to the MAC address does not take effect.
395 	 */
396 	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
397 	for (i = 0; i < ETH_ALEN; i++)
398 		ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
399 	if (!netif_running(dev))
400 		ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
401 
402 	mutex_unlock(&ks->lock);
403 
404 	return 0;
405 }
406 
407 /**
408  * ks8851_read_mac_addr - read mac address from device registers
409  * @dev: The network device
410  *
411  * Update our copy of the KS8851 MAC address from the registers of @dev.
412 */
ks8851_read_mac_addr(struct net_device * dev)413 static void ks8851_read_mac_addr(struct net_device *dev)
414 {
415 	struct ks8851_net *ks = netdev_priv(dev);
416 	int i;
417 
418 	mutex_lock(&ks->lock);
419 
420 	for (i = 0; i < ETH_ALEN; i++)
421 		dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));
422 
423 	mutex_unlock(&ks->lock);
424 }
425 
426 /**
427  * ks8851_init_mac - initialise the mac address
428  * @ks: The device structure
429  *
430  * Get or create the initial mac address for the device and then set that
431  * into the station address register. If there is an EEPROM present, then
432  * we try that. If no valid mac address is found we use eth_random_addr()
433  * to create a new one.
434  */
ks8851_init_mac(struct ks8851_net * ks)435 static void ks8851_init_mac(struct ks8851_net *ks)
436 {
437 	struct net_device *dev = ks->netdev;
438 
439 	/* first, try reading what we've got already */
440 	if (ks->rc_ccr & CCR_EEPROM) {
441 		ks8851_read_mac_addr(dev);
442 		if (is_valid_ether_addr(dev->dev_addr))
443 			return;
444 
445 		netdev_err(ks->netdev, "invalid mac address read %pM\n",
446 				dev->dev_addr);
447 	}
448 
449 	eth_hw_addr_random(dev);
450 	ks8851_write_mac_addr(dev);
451 }
452 
453 /**
454  * ks8851_rdfifo - read data from the receive fifo
455  * @ks: The device state.
456  * @buff: The buffer address
457  * @len: The length of the data to read
458  *
459  * Issue an RXQ FIFO read command and read the @len amount of data from
460  * the FIFO into the buffer specified by @buff.
461  */
ks8851_rdfifo(struct ks8851_net * ks,u8 * buff,unsigned len)462 static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
463 {
464 	struct spi_transfer *xfer = ks->spi_xfer2;
465 	struct spi_message *msg = &ks->spi_msg2;
466 	u8 txb[1];
467 	int ret;
468 
469 	netif_dbg(ks, rx_status, ks->netdev,
470 		  "%s: %d@%p\n", __func__, len, buff);
471 
472 	/* set the operation we're issuing */
473 	txb[0] = KS_SPIOP_RXFIFO;
474 
475 	xfer->tx_buf = txb;
476 	xfer->rx_buf = NULL;
477 	xfer->len = 1;
478 
479 	xfer++;
480 	xfer->rx_buf = buff;
481 	xfer->tx_buf = NULL;
482 	xfer->len = len;
483 
484 	ret = spi_sync(ks->spidev, msg);
485 	if (ret < 0)
486 		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
487 }
488 
489 /**
490  * ks8851_dbg_dumpkkt - dump initial packet contents to debug
491  * @ks: The device state
492  * @rxpkt: The data for the received packet
493  *
494  * Dump the initial data from the packet to dev_dbg().
495 */
ks8851_dbg_dumpkkt(struct ks8851_net * ks,u8 * rxpkt)496 static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
497 {
498 	netdev_dbg(ks->netdev,
499 		   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
500 		   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
501 		   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
502 		   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
503 }
504 
505 /**
506  * ks8851_rx_pkts - receive packets from the host
507  * @ks: The device information.
508  *
509  * This is called from the IRQ work queue when the system detects that there
510  * are packets in the receive queue. Find out how many packets there are and
511  * read them from the FIFO.
512  */
ks8851_rx_pkts(struct ks8851_net * ks)513 static void ks8851_rx_pkts(struct ks8851_net *ks)
514 {
515 	struct sk_buff *skb;
516 	unsigned rxfc;
517 	unsigned rxlen;
518 	unsigned rxstat;
519 	u32 rxh;
520 	u8 *rxpkt;
521 
522 	rxfc = ks8851_rdreg8(ks, KS_RXFC);
523 
524 	netif_dbg(ks, rx_status, ks->netdev,
525 		  "%s: %d packets\n", __func__, rxfc);
526 
527 	/* Currently we're issuing a read per packet, but we could possibly
528 	 * improve the code by issuing a single read, getting the receive
529 	 * header, allocating the packet and then reading the packet data
530 	 * out in one go.
531 	 *
532 	 * This form of operation would require us to hold the SPI bus'
533 	 * chipselect low during the entie transaction to avoid any
534 	 * reset to the data stream coming from the chip.
535 	 */
536 
537 	for (; rxfc != 0; rxfc--) {
538 		rxh = ks8851_rdreg32(ks, KS_RXFHSR);
539 		rxstat = rxh & 0xffff;
540 		rxlen = (rxh >> 16) & 0xfff;
541 
542 		netif_dbg(ks, rx_status, ks->netdev,
543 			  "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
544 
545 		/* the length of the packet includes the 32bit CRC */
546 
547 		/* set dma read address */
548 		ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
549 
550 		/* start the packet dma process, and set auto-dequeue rx */
551 		ks8851_wrreg16(ks, KS_RXQCR,
552 			       ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
553 
554 		if (rxlen > 4) {
555 			unsigned int rxalign;
556 
557 			rxlen -= 4;
558 			rxalign = ALIGN(rxlen, 4);
559 			skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
560 			if (skb) {
561 
562 				/* 4 bytes of status header + 4 bytes of
563 				 * garbage: we put them before ethernet
564 				 * header, so that they are copied,
565 				 * but ignored.
566 				 */
567 
568 				rxpkt = skb_put(skb, rxlen) - 8;
569 
570 				ks8851_rdfifo(ks, rxpkt, rxalign + 8);
571 
572 				if (netif_msg_pktdata(ks))
573 					ks8851_dbg_dumpkkt(ks, rxpkt);
574 
575 				skb->protocol = eth_type_trans(skb, ks->netdev);
576 				netif_rx_ni(skb);
577 
578 				ks->netdev->stats.rx_packets++;
579 				ks->netdev->stats.rx_bytes += rxlen;
580 			}
581 		}
582 
583 		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
584 	}
585 }
586 
587 /**
588  * ks8851_irq - IRQ handler for dealing with interrupt requests
589  * @irq: IRQ number
590  * @_ks: cookie
591  *
592  * This handler is invoked when the IRQ line asserts to find out what happened.
593  * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
594  * in thread context.
595  *
596  * Read the interrupt status, work out what needs to be done and then clear
597  * any of the interrupts that are not needed.
598  */
ks8851_irq(int irq,void * _ks)599 static irqreturn_t ks8851_irq(int irq, void *_ks)
600 {
601 	struct ks8851_net *ks = _ks;
602 	unsigned status;
603 	unsigned handled = 0;
604 
605 	mutex_lock(&ks->lock);
606 
607 	status = ks8851_rdreg16(ks, KS_ISR);
608 
609 	netif_dbg(ks, intr, ks->netdev,
610 		  "%s: status 0x%04x\n", __func__, status);
611 
612 	if (status & IRQ_LCI)
613 		handled |= IRQ_LCI;
614 
615 	if (status & IRQ_LDI) {
616 		u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
617 		pmecr &= ~PMECR_WKEVT_MASK;
618 		ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
619 
620 		handled |= IRQ_LDI;
621 	}
622 
623 	if (status & IRQ_RXPSI)
624 		handled |= IRQ_RXPSI;
625 
626 	if (status & IRQ_TXI) {
627 		handled |= IRQ_TXI;
628 
629 		/* no lock here, tx queue should have been stopped */
630 
631 		/* update our idea of how much tx space is available to the
632 		 * system */
633 		ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
634 
635 		netif_dbg(ks, intr, ks->netdev,
636 			  "%s: txspace %d\n", __func__, ks->tx_space);
637 	}
638 
639 	if (status & IRQ_RXI)
640 		handled |= IRQ_RXI;
641 
642 	if (status & IRQ_SPIBEI) {
643 		dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
644 		handled |= IRQ_SPIBEI;
645 	}
646 
647 	ks8851_wrreg16(ks, KS_ISR, handled);
648 
649 	if (status & IRQ_RXI) {
650 		/* the datasheet says to disable the rx interrupt during
651 		 * packet read-out, however we're masking the interrupt
652 		 * from the device so do not bother masking just the RX
653 		 * from the device. */
654 
655 		ks8851_rx_pkts(ks);
656 	}
657 
658 	/* if something stopped the rx process, probably due to wanting
659 	 * to change the rx settings, then do something about restarting
660 	 * it. */
661 	if (status & IRQ_RXPSI) {
662 		struct ks8851_rxctrl *rxc = &ks->rxctrl;
663 
664 		/* update the multicast hash table */
665 		ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
666 		ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
667 		ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
668 		ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
669 
670 		ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
671 		ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
672 	}
673 
674 	mutex_unlock(&ks->lock);
675 
676 	if (status & IRQ_LCI)
677 		mii_check_link(&ks->mii);
678 
679 	if (status & IRQ_TXI)
680 		netif_wake_queue(ks->netdev);
681 
682 	return IRQ_HANDLED;
683 }
684 
685 /**
686  * calc_txlen - calculate size of message to send packet
687  * @len: Length of data
688  *
689  * Returns the size of the TXFIFO message needed to send
690  * this packet.
691  */
calc_txlen(unsigned len)692 static inline unsigned calc_txlen(unsigned len)
693 {
694 	return ALIGN(len + 4, 4);
695 }
696 
697 /**
698  * ks8851_wrpkt - write packet to TX FIFO
699  * @ks: The device state.
700  * @txp: The sk_buff to transmit.
701  * @irq: IRQ on completion of the packet.
702  *
703  * Send the @txp to the chip. This means creating the relevant packet header
704  * specifying the length of the packet and the other information the chip
705  * needs, such as IRQ on completion. Send the header and the packet data to
706  * the device.
707  */
ks8851_wrpkt(struct ks8851_net * ks,struct sk_buff * txp,bool irq)708 static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
709 {
710 	struct spi_transfer *xfer = ks->spi_xfer2;
711 	struct spi_message *msg = &ks->spi_msg2;
712 	unsigned fid = 0;
713 	int ret;
714 
715 	netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
716 		  __func__, txp, txp->len, txp->data, irq);
717 
718 	fid = ks->fid++;
719 	fid &= TXFR_TXFID_MASK;
720 
721 	if (irq)
722 		fid |= TXFR_TXIC;	/* irq on completion */
723 
724 	/* start header at txb[1] to align txw entries */
725 	ks->txh.txb[1] = KS_SPIOP_TXFIFO;
726 	ks->txh.txw[1] = cpu_to_le16(fid);
727 	ks->txh.txw[2] = cpu_to_le16(txp->len);
728 
729 	xfer->tx_buf = &ks->txh.txb[1];
730 	xfer->rx_buf = NULL;
731 	xfer->len = 5;
732 
733 	xfer++;
734 	xfer->tx_buf = txp->data;
735 	xfer->rx_buf = NULL;
736 	xfer->len = ALIGN(txp->len, 4);
737 
738 	ret = spi_sync(ks->spidev, msg);
739 	if (ret < 0)
740 		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
741 }
742 
743 /**
744  * ks8851_done_tx - update and then free skbuff after transmitting
745  * @ks: The device state
746  * @txb: The buffer transmitted
747  */
ks8851_done_tx(struct ks8851_net * ks,struct sk_buff * txb)748 static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
749 {
750 	struct net_device *dev = ks->netdev;
751 
752 	dev->stats.tx_bytes += txb->len;
753 	dev->stats.tx_packets++;
754 
755 	dev_kfree_skb(txb);
756 }
757 
758 /**
759  * ks8851_tx_work - process tx packet(s)
760  * @work: The work strucutre what was scheduled.
761  *
762  * This is called when a number of packets have been scheduled for
763  * transmission and need to be sent to the device.
764  */
ks8851_tx_work(struct work_struct * work)765 static void ks8851_tx_work(struct work_struct *work)
766 {
767 	struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
768 	struct sk_buff *txb;
769 	bool last = skb_queue_empty(&ks->txq);
770 
771 	mutex_lock(&ks->lock);
772 
773 	while (!last) {
774 		txb = skb_dequeue(&ks->txq);
775 		last = skb_queue_empty(&ks->txq);
776 
777 		if (txb != NULL) {
778 			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
779 			ks8851_wrpkt(ks, txb, last);
780 			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
781 			ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
782 
783 			ks8851_done_tx(ks, txb);
784 		}
785 	}
786 
787 	mutex_unlock(&ks->lock);
788 }
789 
790 /**
791  * ks8851_net_open - open network device
792  * @dev: The network device being opened.
793  *
794  * Called when the network device is marked active, such as a user executing
795  * 'ifconfig up' on the device.
796  */
ks8851_net_open(struct net_device * dev)797 static int ks8851_net_open(struct net_device *dev)
798 {
799 	struct ks8851_net *ks = netdev_priv(dev);
800 
801 	/* lock the card, even if we may not actually be doing anything
802 	 * else at the moment */
803 	mutex_lock(&ks->lock);
804 
805 	netif_dbg(ks, ifup, ks->netdev, "opening\n");
806 
807 	/* bring chip out of any power saving mode it was in */
808 	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
809 
810 	/* issue a soft reset to the RX/TX QMU to put it into a known
811 	 * state. */
812 	ks8851_soft_reset(ks, GRR_QMU);
813 
814 	/* setup transmission parameters */
815 
816 	ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
817 				     TXCR_TXPE | /* pad to min length */
818 				     TXCR_TXCRC | /* add CRC */
819 				     TXCR_TXFCE)); /* enable flow control */
820 
821 	/* auto-increment tx data, reset tx pointer */
822 	ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
823 
824 	/* setup receiver control */
825 
826 	ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
827 				      RXCR1_RXFCE | /* enable flow control */
828 				      RXCR1_RXBE | /* broadcast enable */
829 				      RXCR1_RXUE | /* unicast enable */
830 				      RXCR1_RXE)); /* enable rx block */
831 
832 	/* transfer entire frames out in one go */
833 	ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
834 
835 	/* set receive counter timeouts */
836 	ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
837 	ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
838 	ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
839 
840 	ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
841 			RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
842 			RXQCR_RXDTTE);  /* IRQ on time exceeded */
843 
844 	ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
845 
846 	/* clear then enable interrupts */
847 
848 #define STD_IRQ (IRQ_LCI |	/* Link Change */	\
849 		 IRQ_TXI |	/* TX done */		\
850 		 IRQ_RXI |	/* RX done */		\
851 		 IRQ_SPIBEI |	/* SPI bus error */	\
852 		 IRQ_TXPSI |	/* TX process stop */	\
853 		 IRQ_RXPSI)	/* RX process stop */
854 
855 	ks->rc_ier = STD_IRQ;
856 	ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
857 	ks8851_wrreg16(ks, KS_IER, STD_IRQ);
858 
859 	netif_start_queue(ks->netdev);
860 
861 	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
862 
863 	mutex_unlock(&ks->lock);
864 	return 0;
865 }
866 
867 /**
868  * ks8851_net_stop - close network device
869  * @dev: The device being closed.
870  *
871  * Called to close down a network device which has been active. Cancell any
872  * work, shutdown the RX and TX process and then place the chip into a low
873  * power state whilst it is not being used.
874  */
ks8851_net_stop(struct net_device * dev)875 static int ks8851_net_stop(struct net_device *dev)
876 {
877 	struct ks8851_net *ks = netdev_priv(dev);
878 
879 	netif_info(ks, ifdown, dev, "shutting down\n");
880 
881 	netif_stop_queue(dev);
882 
883 	mutex_lock(&ks->lock);
884 	/* turn off the IRQs and ack any outstanding */
885 	ks8851_wrreg16(ks, KS_IER, 0x0000);
886 	ks8851_wrreg16(ks, KS_ISR, 0xffff);
887 	mutex_unlock(&ks->lock);
888 
889 	/* stop any outstanding work */
890 	flush_work(&ks->tx_work);
891 	flush_work(&ks->rxctrl_work);
892 
893 	mutex_lock(&ks->lock);
894 	/* shutdown RX process */
895 	ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
896 
897 	/* shutdown TX process */
898 	ks8851_wrreg16(ks, KS_TXCR, 0x0000);
899 
900 	/* set powermode to soft power down to save power */
901 	ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
902 	mutex_unlock(&ks->lock);
903 
904 	/* ensure any queued tx buffers are dumped */
905 	while (!skb_queue_empty(&ks->txq)) {
906 		struct sk_buff *txb = skb_dequeue(&ks->txq);
907 
908 		netif_dbg(ks, ifdown, ks->netdev,
909 			  "%s: freeing txb %p\n", __func__, txb);
910 
911 		dev_kfree_skb(txb);
912 	}
913 
914 	return 0;
915 }
916 
917 /**
918  * ks8851_start_xmit - transmit packet
919  * @skb: The buffer to transmit
920  * @dev: The device used to transmit the packet.
921  *
922  * Called by the network layer to transmit the @skb. Queue the packet for
923  * the device and schedule the necessary work to transmit the packet when
924  * it is free.
925  *
926  * We do this to firstly avoid sleeping with the network device locked,
927  * and secondly so we can round up more than one packet to transmit which
928  * means we can try and avoid generating too many transmit done interrupts.
929  */
ks8851_start_xmit(struct sk_buff * skb,struct net_device * dev)930 static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
931 				     struct net_device *dev)
932 {
933 	struct ks8851_net *ks = netdev_priv(dev);
934 	unsigned needed = calc_txlen(skb->len);
935 	netdev_tx_t ret = NETDEV_TX_OK;
936 
937 	netif_dbg(ks, tx_queued, ks->netdev,
938 		  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
939 
940 	spin_lock(&ks->statelock);
941 
942 	if (needed > ks->tx_space) {
943 		netif_stop_queue(dev);
944 		ret = NETDEV_TX_BUSY;
945 	} else {
946 		ks->tx_space -= needed;
947 		skb_queue_tail(&ks->txq, skb);
948 	}
949 
950 	spin_unlock(&ks->statelock);
951 	schedule_work(&ks->tx_work);
952 
953 	return ret;
954 }
955 
956 /**
957  * ks8851_rxctrl_work - work handler to change rx mode
958  * @work: The work structure this belongs to.
959  *
960  * Lock the device and issue the necessary changes to the receive mode from
961  * the network device layer. This is done so that we can do this without
962  * having to sleep whilst holding the network device lock.
963  *
964  * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
965  * receive parameters are programmed, we issue a write to disable the RXQ and
966  * then wait for the interrupt handler to be triggered once the RXQ shutdown is
967  * complete. The interrupt handler then writes the new values into the chip.
968  */
ks8851_rxctrl_work(struct work_struct * work)969 static void ks8851_rxctrl_work(struct work_struct *work)
970 {
971 	struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
972 
973 	mutex_lock(&ks->lock);
974 
975 	/* need to shutdown RXQ before modifying filter parameters */
976 	ks8851_wrreg16(ks, KS_RXCR1, 0x00);
977 
978 	mutex_unlock(&ks->lock);
979 }
980 
ks8851_set_rx_mode(struct net_device * dev)981 static void ks8851_set_rx_mode(struct net_device *dev)
982 {
983 	struct ks8851_net *ks = netdev_priv(dev);
984 	struct ks8851_rxctrl rxctrl;
985 
986 	memset(&rxctrl, 0, sizeof(rxctrl));
987 
988 	if (dev->flags & IFF_PROMISC) {
989 		/* interface to receive everything */
990 
991 		rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
992 	} else if (dev->flags & IFF_ALLMULTI) {
993 		/* accept all multicast packets */
994 
995 		rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
996 				RXCR1_RXPAFMA | RXCR1_RXMAFMA);
997 	} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
998 		struct netdev_hw_addr *ha;
999 		u32 crc;
1000 
1001 		/* accept some multicast */
1002 
1003 		netdev_for_each_mc_addr(ha, dev) {
1004 			crc = ether_crc(ETH_ALEN, ha->addr);
1005 			crc >>= (32 - 6);  /* get top six bits */
1006 
1007 			rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
1008 		}
1009 
1010 		rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
1011 	} else {
1012 		/* just accept broadcast / unicast */
1013 		rxctrl.rxcr1 = RXCR1_RXPAFMA;
1014 	}
1015 
1016 	rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
1017 			 RXCR1_RXBE | /* broadcast enable */
1018 			 RXCR1_RXE | /* RX process enable */
1019 			 RXCR1_RXFCE); /* enable flow control */
1020 
1021 	rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
1022 
1023 	/* schedule work to do the actual set of the data if needed */
1024 
1025 	spin_lock(&ks->statelock);
1026 
1027 	if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1028 		memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1029 		schedule_work(&ks->rxctrl_work);
1030 	}
1031 
1032 	spin_unlock(&ks->statelock);
1033 }
1034 
ks8851_set_mac_address(struct net_device * dev,void * addr)1035 static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1036 {
1037 	struct sockaddr *sa = addr;
1038 
1039 	if (netif_running(dev))
1040 		return -EBUSY;
1041 
1042 	if (!is_valid_ether_addr(sa->sa_data))
1043 		return -EADDRNOTAVAIL;
1044 
1045 	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1046 	return ks8851_write_mac_addr(dev);
1047 }
1048 
ks8851_net_ioctl(struct net_device * dev,struct ifreq * req,int cmd)1049 static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1050 {
1051 	struct ks8851_net *ks = netdev_priv(dev);
1052 
1053 	if (!netif_running(dev))
1054 		return -EINVAL;
1055 
1056 	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1057 }
1058 
1059 static const struct net_device_ops ks8851_netdev_ops = {
1060 	.ndo_open		= ks8851_net_open,
1061 	.ndo_stop		= ks8851_net_stop,
1062 	.ndo_do_ioctl		= ks8851_net_ioctl,
1063 	.ndo_start_xmit		= ks8851_start_xmit,
1064 	.ndo_set_mac_address	= ks8851_set_mac_address,
1065 	.ndo_set_rx_mode	= ks8851_set_rx_mode,
1066 	.ndo_change_mtu		= eth_change_mtu,
1067 	.ndo_validate_addr	= eth_validate_addr,
1068 };
1069 
1070 /* ethtool support */
1071 
ks8851_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * di)1072 static void ks8851_get_drvinfo(struct net_device *dev,
1073 			       struct ethtool_drvinfo *di)
1074 {
1075 	strlcpy(di->driver, "KS8851", sizeof(di->driver));
1076 	strlcpy(di->version, "1.00", sizeof(di->version));
1077 	strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1078 }
1079 
ks8851_get_msglevel(struct net_device * dev)1080 static u32 ks8851_get_msglevel(struct net_device *dev)
1081 {
1082 	struct ks8851_net *ks = netdev_priv(dev);
1083 	return ks->msg_enable;
1084 }
1085 
ks8851_set_msglevel(struct net_device * dev,u32 to)1086 static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1087 {
1088 	struct ks8851_net *ks = netdev_priv(dev);
1089 	ks->msg_enable = to;
1090 }
1091 
ks8851_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1092 static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1093 {
1094 	struct ks8851_net *ks = netdev_priv(dev);
1095 	return mii_ethtool_gset(&ks->mii, cmd);
1096 }
1097 
ks8851_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1098 static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1099 {
1100 	struct ks8851_net *ks = netdev_priv(dev);
1101 	return mii_ethtool_sset(&ks->mii, cmd);
1102 }
1103 
ks8851_get_link(struct net_device * dev)1104 static u32 ks8851_get_link(struct net_device *dev)
1105 {
1106 	struct ks8851_net *ks = netdev_priv(dev);
1107 	return mii_link_ok(&ks->mii);
1108 }
1109 
ks8851_nway_reset(struct net_device * dev)1110 static int ks8851_nway_reset(struct net_device *dev)
1111 {
1112 	struct ks8851_net *ks = netdev_priv(dev);
1113 	return mii_nway_restart(&ks->mii);
1114 }
1115 
1116 /* EEPROM support */
1117 
ks8851_eeprom_regread(struct eeprom_93cx6 * ee)1118 static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
1119 {
1120 	struct ks8851_net *ks = ee->data;
1121 	unsigned val;
1122 
1123 	val = ks8851_rdreg16(ks, KS_EEPCR);
1124 
1125 	ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
1126 	ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
1127 	ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
1128 }
1129 
ks8851_eeprom_regwrite(struct eeprom_93cx6 * ee)1130 static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
1131 {
1132 	struct ks8851_net *ks = ee->data;
1133 	unsigned val = EEPCR_EESA;	/* default - eeprom access on */
1134 
1135 	if (ee->drive_data)
1136 		val |= EEPCR_EESRWA;
1137 	if (ee->reg_data_in)
1138 		val |= EEPCR_EEDO;
1139 	if (ee->reg_data_clock)
1140 		val |= EEPCR_EESCK;
1141 	if (ee->reg_chip_select)
1142 		val |= EEPCR_EECS;
1143 
1144 	ks8851_wrreg16(ks, KS_EEPCR, val);
1145 }
1146 
1147 /**
1148  * ks8851_eeprom_claim - claim device EEPROM and activate the interface
1149  * @ks: The network device state.
1150  *
1151  * Check for the presence of an EEPROM, and then activate software access
1152  * to the device.
1153  */
ks8851_eeprom_claim(struct ks8851_net * ks)1154 static int ks8851_eeprom_claim(struct ks8851_net *ks)
1155 {
1156 	if (!(ks->rc_ccr & CCR_EEPROM))
1157 		return -ENOENT;
1158 
1159 	mutex_lock(&ks->lock);
1160 
1161 	/* start with clock low, cs high */
1162 	ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
1163 	return 0;
1164 }
1165 
1166 /**
1167  * ks8851_eeprom_release - release the EEPROM interface
1168  * @ks: The device state
1169  *
1170  * Release the software access to the device EEPROM
1171  */
ks8851_eeprom_release(struct ks8851_net * ks)1172 static void ks8851_eeprom_release(struct ks8851_net *ks)
1173 {
1174 	unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
1175 
1176 	ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
1177 	mutex_unlock(&ks->lock);
1178 }
1179 
1180 #define KS_EEPROM_MAGIC (0x00008851)
1181 
ks8851_set_eeprom(struct net_device * dev,struct ethtool_eeprom * ee,u8 * data)1182 static int ks8851_set_eeprom(struct net_device *dev,
1183 			     struct ethtool_eeprom *ee, u8 *data)
1184 {
1185 	struct ks8851_net *ks = netdev_priv(dev);
1186 	int offset = ee->offset;
1187 	int len = ee->len;
1188 	u16 tmp;
1189 
1190 	/* currently only support byte writing */
1191 	if (len != 1)
1192 		return -EINVAL;
1193 
1194 	if (ee->magic != KS_EEPROM_MAGIC)
1195 		return -EINVAL;
1196 
1197 	if (ks8851_eeprom_claim(ks))
1198 		return -ENOENT;
1199 
1200 	eeprom_93cx6_wren(&ks->eeprom, true);
1201 
1202 	/* ethtool currently only supports writing bytes, which means
1203 	 * we have to read/modify/write our 16bit EEPROMs */
1204 
1205 	eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
1206 
1207 	if (offset & 1) {
1208 		tmp &= 0xff;
1209 		tmp |= *data << 8;
1210 	} else {
1211 		tmp &= 0xff00;
1212 		tmp |= *data;
1213 	}
1214 
1215 	eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
1216 	eeprom_93cx6_wren(&ks->eeprom, false);
1217 
1218 	ks8851_eeprom_release(ks);
1219 
1220 	return 0;
1221 }
1222 
ks8851_get_eeprom(struct net_device * dev,struct ethtool_eeprom * ee,u8 * data)1223 static int ks8851_get_eeprom(struct net_device *dev,
1224 			     struct ethtool_eeprom *ee, u8 *data)
1225 {
1226 	struct ks8851_net *ks = netdev_priv(dev);
1227 	int offset = ee->offset;
1228 	int len = ee->len;
1229 
1230 	/* must be 2 byte aligned */
1231 	if (len & 1 || offset & 1)
1232 		return -EINVAL;
1233 
1234 	if (ks8851_eeprom_claim(ks))
1235 		return -ENOENT;
1236 
1237 	ee->magic = KS_EEPROM_MAGIC;
1238 
1239 	eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
1240 	ks8851_eeprom_release(ks);
1241 
1242 	return 0;
1243 }
1244 
ks8851_get_eeprom_len(struct net_device * dev)1245 static int ks8851_get_eeprom_len(struct net_device *dev)
1246 {
1247 	struct ks8851_net *ks = netdev_priv(dev);
1248 
1249 	/* currently, we assume it is an 93C46 attached, so return 128 */
1250 	return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
1251 }
1252 
1253 static const struct ethtool_ops ks8851_ethtool_ops = {
1254 	.get_drvinfo	= ks8851_get_drvinfo,
1255 	.get_msglevel	= ks8851_get_msglevel,
1256 	.set_msglevel	= ks8851_set_msglevel,
1257 	.get_settings	= ks8851_get_settings,
1258 	.set_settings	= ks8851_set_settings,
1259 	.get_link	= ks8851_get_link,
1260 	.nway_reset	= ks8851_nway_reset,
1261 	.get_eeprom_len	= ks8851_get_eeprom_len,
1262 	.get_eeprom	= ks8851_get_eeprom,
1263 	.set_eeprom	= ks8851_set_eeprom,
1264 };
1265 
1266 /* MII interface controls */
1267 
1268 /**
1269  * ks8851_phy_reg - convert MII register into a KS8851 register
1270  * @reg: MII register number.
1271  *
1272  * Return the KS8851 register number for the corresponding MII PHY register
1273  * if possible. Return zero if the MII register has no direct mapping to the
1274  * KS8851 register set.
1275  */
ks8851_phy_reg(int reg)1276 static int ks8851_phy_reg(int reg)
1277 {
1278 	switch (reg) {
1279 	case MII_BMCR:
1280 		return KS_P1MBCR;
1281 	case MII_BMSR:
1282 		return KS_P1MBSR;
1283 	case MII_PHYSID1:
1284 		return KS_PHY1ILR;
1285 	case MII_PHYSID2:
1286 		return KS_PHY1IHR;
1287 	case MII_ADVERTISE:
1288 		return KS_P1ANAR;
1289 	case MII_LPA:
1290 		return KS_P1ANLPR;
1291 	}
1292 
1293 	return 0x0;
1294 }
1295 
1296 /**
1297  * ks8851_phy_read - MII interface PHY register read.
1298  * @dev: The network device the PHY is on.
1299  * @phy_addr: Address of PHY (ignored as we only have one)
1300  * @reg: The register to read.
1301  *
1302  * This call reads data from the PHY register specified in @reg. Since the
1303  * device does not support all the MII registers, the non-existent values
1304  * are always returned as zero.
1305  *
1306  * We return zero for unsupported registers as the MII code does not check
1307  * the value returned for any error status, and simply returns it to the
1308  * caller. The mii-tool that the driver was tested with takes any -ve error
1309  * as real PHY capabilities, thus displaying incorrect data to the user.
1310  */
ks8851_phy_read(struct net_device * dev,int phy_addr,int reg)1311 static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1312 {
1313 	struct ks8851_net *ks = netdev_priv(dev);
1314 	int ksreg;
1315 	int result;
1316 
1317 	ksreg = ks8851_phy_reg(reg);
1318 	if (!ksreg)
1319 		return 0x0;	/* no error return allowed, so use zero */
1320 
1321 	mutex_lock(&ks->lock);
1322 	result = ks8851_rdreg16(ks, ksreg);
1323 	mutex_unlock(&ks->lock);
1324 
1325 	return result;
1326 }
1327 
ks8851_phy_write(struct net_device * dev,int phy,int reg,int value)1328 static void ks8851_phy_write(struct net_device *dev,
1329 			     int phy, int reg, int value)
1330 {
1331 	struct ks8851_net *ks = netdev_priv(dev);
1332 	int ksreg;
1333 
1334 	ksreg = ks8851_phy_reg(reg);
1335 	if (ksreg) {
1336 		mutex_lock(&ks->lock);
1337 		ks8851_wrreg16(ks, ksreg, value);
1338 		mutex_unlock(&ks->lock);
1339 	}
1340 }
1341 
1342 /**
1343  * ks8851_read_selftest - read the selftest memory info.
1344  * @ks: The device state
1345  *
1346  * Read and check the TX/RX memory selftest information.
1347  */
ks8851_read_selftest(struct ks8851_net * ks)1348 static int ks8851_read_selftest(struct ks8851_net *ks)
1349 {
1350 	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1351 	int ret = 0;
1352 	unsigned rd;
1353 
1354 	rd = ks8851_rdreg16(ks, KS_MBIR);
1355 
1356 	if ((rd & both_done) != both_done) {
1357 		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1358 		return 0;
1359 	}
1360 
1361 	if (rd & MBIR_TXMBFA) {
1362 		netdev_err(ks->netdev, "TX memory selftest fail\n");
1363 		ret |= 1;
1364 	}
1365 
1366 	if (rd & MBIR_RXMBFA) {
1367 		netdev_err(ks->netdev, "RX memory selftest fail\n");
1368 		ret |= 2;
1369 	}
1370 
1371 	return 0;
1372 }
1373 
1374 /* driver bus management functions */
1375 
1376 #ifdef CONFIG_PM_SLEEP
1377 
ks8851_suspend(struct device * dev)1378 static int ks8851_suspend(struct device *dev)
1379 {
1380 	struct ks8851_net *ks = dev_get_drvdata(dev);
1381 	struct net_device *netdev = ks->netdev;
1382 
1383 	if (netif_running(netdev)) {
1384 		netif_device_detach(netdev);
1385 		ks8851_net_stop(netdev);
1386 	}
1387 
1388 	return 0;
1389 }
1390 
ks8851_resume(struct device * dev)1391 static int ks8851_resume(struct device *dev)
1392 {
1393 	struct ks8851_net *ks = dev_get_drvdata(dev);
1394 	struct net_device *netdev = ks->netdev;
1395 
1396 	if (netif_running(netdev)) {
1397 		ks8851_net_open(netdev);
1398 		netif_device_attach(netdev);
1399 	}
1400 
1401 	return 0;
1402 }
1403 #endif
1404 
1405 static SIMPLE_DEV_PM_OPS(ks8851_pm_ops, ks8851_suspend, ks8851_resume);
1406 
ks8851_probe(struct spi_device * spi)1407 static int ks8851_probe(struct spi_device *spi)
1408 {
1409 	struct net_device *ndev;
1410 	struct ks8851_net *ks;
1411 	int ret;
1412 	unsigned cider;
1413 	int gpio;
1414 
1415 	ndev = alloc_etherdev(sizeof(struct ks8851_net));
1416 	if (!ndev)
1417 		return -ENOMEM;
1418 
1419 	spi->bits_per_word = 8;
1420 
1421 	ks = netdev_priv(ndev);
1422 
1423 	ks->netdev = ndev;
1424 	ks->spidev = spi;
1425 	ks->tx_space = 6144;
1426 
1427 	gpio = of_get_named_gpio_flags(spi->dev.of_node, "reset-gpios",
1428 				       0, NULL);
1429 	if (gpio == -EPROBE_DEFER) {
1430 		ret = gpio;
1431 		goto err_gpio;
1432 	}
1433 
1434 	ks->gpio = gpio;
1435 	if (gpio_is_valid(gpio)) {
1436 		ret = devm_gpio_request_one(&spi->dev, gpio,
1437 					    GPIOF_OUT_INIT_LOW, "ks8851_rst_n");
1438 		if (ret) {
1439 			dev_err(&spi->dev, "reset gpio request failed\n");
1440 			goto err_gpio;
1441 		}
1442 	}
1443 
1444 	ks->vdd_io = devm_regulator_get(&spi->dev, "vdd-io");
1445 	if (IS_ERR(ks->vdd_io)) {
1446 		ret = PTR_ERR(ks->vdd_io);
1447 		goto err_reg_io;
1448 	}
1449 
1450 	ret = regulator_enable(ks->vdd_io);
1451 	if (ret) {
1452 		dev_err(&spi->dev, "regulator vdd_io enable fail: %d\n",
1453 			ret);
1454 		goto err_reg_io;
1455 	}
1456 
1457 	ks->vdd_reg = devm_regulator_get(&spi->dev, "vdd");
1458 	if (IS_ERR(ks->vdd_reg)) {
1459 		ret = PTR_ERR(ks->vdd_reg);
1460 		goto err_reg;
1461 	}
1462 
1463 	ret = regulator_enable(ks->vdd_reg);
1464 	if (ret) {
1465 		dev_err(&spi->dev, "regulator vdd enable fail: %d\n",
1466 			ret);
1467 		goto err_reg;
1468 	}
1469 
1470 	if (gpio_is_valid(gpio)) {
1471 		usleep_range(10000, 11000);
1472 		gpio_set_value(gpio, 1);
1473 	}
1474 
1475 	mutex_init(&ks->lock);
1476 	spin_lock_init(&ks->statelock);
1477 
1478 	INIT_WORK(&ks->tx_work, ks8851_tx_work);
1479 	INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1480 
1481 	/* initialise pre-made spi transfer messages */
1482 
1483 	spi_message_init(&ks->spi_msg1);
1484 	spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1485 
1486 	spi_message_init(&ks->spi_msg2);
1487 	spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1488 	spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1489 
1490 	/* setup EEPROM state */
1491 
1492 	ks->eeprom.data = ks;
1493 	ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1494 	ks->eeprom.register_read = ks8851_eeprom_regread;
1495 	ks->eeprom.register_write = ks8851_eeprom_regwrite;
1496 
1497 	/* setup mii state */
1498 	ks->mii.dev		= ndev;
1499 	ks->mii.phy_id		= 1,
1500 	ks->mii.phy_id_mask	= 1;
1501 	ks->mii.reg_num_mask	= 0xf;
1502 	ks->mii.mdio_read	= ks8851_phy_read;
1503 	ks->mii.mdio_write	= ks8851_phy_write;
1504 
1505 	dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1506 
1507 	/* set the default message enable */
1508 	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1509 						     NETIF_MSG_PROBE |
1510 						     NETIF_MSG_LINK));
1511 
1512 	skb_queue_head_init(&ks->txq);
1513 
1514 	ndev->ethtool_ops = &ks8851_ethtool_ops;
1515 	SET_NETDEV_DEV(ndev, &spi->dev);
1516 
1517 	spi_set_drvdata(spi, ks);
1518 
1519 	ndev->if_port = IF_PORT_100BASET;
1520 	ndev->netdev_ops = &ks8851_netdev_ops;
1521 	ndev->irq = spi->irq;
1522 
1523 	/* issue a global soft reset to reset the device. */
1524 	ks8851_soft_reset(ks, GRR_GSR);
1525 
1526 	/* simple check for a valid chip being connected to the bus */
1527 	cider = ks8851_rdreg16(ks, KS_CIDER);
1528 	if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1529 		dev_err(&spi->dev, "failed to read device ID\n");
1530 		ret = -ENODEV;
1531 		goto err_id;
1532 	}
1533 
1534 	/* cache the contents of the CCR register for EEPROM, etc. */
1535 	ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1536 
1537 	if (ks->rc_ccr & CCR_EEPROM)
1538 		ks->eeprom_size = 128;
1539 	else
1540 		ks->eeprom_size = 0;
1541 
1542 	ks8851_read_selftest(ks);
1543 	ks8851_init_mac(ks);
1544 
1545 	ret = request_threaded_irq(spi->irq, NULL, ks8851_irq,
1546 				   IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1547 				   ndev->name, ks);
1548 	if (ret < 0) {
1549 		dev_err(&spi->dev, "failed to get irq\n");
1550 		goto err_irq;
1551 	}
1552 
1553 	ret = register_netdev(ndev);
1554 	if (ret) {
1555 		dev_err(&spi->dev, "failed to register network device\n");
1556 		goto err_netdev;
1557 	}
1558 
1559 	netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1560 		    CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq,
1561 		    ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1562 
1563 	return 0;
1564 
1565 
1566 err_netdev:
1567 	free_irq(ndev->irq, ks);
1568 
1569 err_irq:
1570 	if (gpio_is_valid(gpio))
1571 		gpio_set_value(gpio, 0);
1572 err_id:
1573 	regulator_disable(ks->vdd_reg);
1574 err_reg:
1575 	regulator_disable(ks->vdd_io);
1576 err_reg_io:
1577 err_gpio:
1578 	free_netdev(ndev);
1579 	return ret;
1580 }
1581 
ks8851_remove(struct spi_device * spi)1582 static int ks8851_remove(struct spi_device *spi)
1583 {
1584 	struct ks8851_net *priv = spi_get_drvdata(spi);
1585 
1586 	if (netif_msg_drv(priv))
1587 		dev_info(&spi->dev, "remove\n");
1588 
1589 	unregister_netdev(priv->netdev);
1590 	free_irq(spi->irq, priv);
1591 	if (gpio_is_valid(priv->gpio))
1592 		gpio_set_value(priv->gpio, 0);
1593 	regulator_disable(priv->vdd_reg);
1594 	regulator_disable(priv->vdd_io);
1595 	free_netdev(priv->netdev);
1596 
1597 	return 0;
1598 }
1599 
1600 static const struct of_device_id ks8851_match_table[] = {
1601 	{ .compatible = "micrel,ks8851" },
1602 	{ }
1603 };
1604 MODULE_DEVICE_TABLE(of, ks8851_match_table);
1605 
1606 static struct spi_driver ks8851_driver = {
1607 	.driver = {
1608 		.name = "ks8851",
1609 		.of_match_table = ks8851_match_table,
1610 		.pm = &ks8851_pm_ops,
1611 	},
1612 	.probe = ks8851_probe,
1613 	.remove = ks8851_remove,
1614 };
1615 module_spi_driver(ks8851_driver);
1616 
1617 MODULE_DESCRIPTION("KS8851 Network driver");
1618 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1619 MODULE_LICENSE("GPL");
1620 
1621 module_param_named(message, msg_enable, int, 0);
1622 MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1623 MODULE_ALIAS("spi:ks8851");
1624