• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * VFIO PCI config space virtualization
3  *
4  * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
5  *     Author: Alex Williamson <alex.williamson@redhat.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * Derived from original vfio:
12  * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
13  * Author: Tom Lyon, pugs@cisco.com
14  */
15 
16 /*
17  * This code handles reading and writing of PCI configuration registers.
18  * This is hairy because we want to allow a lot of flexibility to the
19  * user driver, but cannot trust it with all of the config fields.
20  * Tables determine which fields can be read and written, as well as
21  * which fields are 'virtualized' - special actions and translations to
22  * make it appear to the user that he has control, when in fact things
23  * must be negotiated with the underlying OS.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/pci.h>
28 #include <linux/uaccess.h>
29 #include <linux/vfio.h>
30 #include <linux/slab.h>
31 
32 #include "vfio_pci_private.h"
33 
34 #define PCI_CFG_SPACE_SIZE	256
35 
36 /* Fake capability ID for standard config space */
37 #define PCI_CAP_ID_BASIC	0
38 
39 #define is_bar(offset)	\
40 	((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
41 	 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
42 
43 /*
44  * Lengths of PCI Config Capabilities
45  *   0: Removed from the user visible capability list
46  *   FF: Variable length
47  */
48 static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
49 	[PCI_CAP_ID_BASIC]	= PCI_STD_HEADER_SIZEOF, /* pci config header */
50 	[PCI_CAP_ID_PM]		= PCI_PM_SIZEOF,
51 	[PCI_CAP_ID_AGP]	= PCI_AGP_SIZEOF,
52 	[PCI_CAP_ID_VPD]	= PCI_CAP_VPD_SIZEOF,
53 	[PCI_CAP_ID_SLOTID]	= 0,		/* bridge - don't care */
54 	[PCI_CAP_ID_MSI]	= 0xFF,		/* 10, 14, 20, or 24 */
55 	[PCI_CAP_ID_CHSWP]	= 0,		/* cpci - not yet */
56 	[PCI_CAP_ID_PCIX]	= 0xFF,		/* 8 or 24 */
57 	[PCI_CAP_ID_HT]		= 0xFF,		/* hypertransport */
58 	[PCI_CAP_ID_VNDR]	= 0xFF,		/* variable */
59 	[PCI_CAP_ID_DBG]	= 0,		/* debug - don't care */
60 	[PCI_CAP_ID_CCRC]	= 0,		/* cpci - not yet */
61 	[PCI_CAP_ID_SHPC]	= 0,		/* hotswap - not yet */
62 	[PCI_CAP_ID_SSVID]	= 0,		/* bridge - don't care */
63 	[PCI_CAP_ID_AGP3]	= 0,		/* AGP8x - not yet */
64 	[PCI_CAP_ID_SECDEV]	= 0,		/* secure device not yet */
65 	[PCI_CAP_ID_EXP]	= 0xFF,		/* 20 or 44 */
66 	[PCI_CAP_ID_MSIX]	= PCI_CAP_MSIX_SIZEOF,
67 	[PCI_CAP_ID_SATA]	= 0xFF,
68 	[PCI_CAP_ID_AF]		= PCI_CAP_AF_SIZEOF,
69 };
70 
71 /*
72  * Lengths of PCIe/PCI-X Extended Config Capabilities
73  *   0: Removed or masked from the user visible capability list
74  *   FF: Variable length
75  */
76 static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
77 	[PCI_EXT_CAP_ID_ERR]	=	PCI_ERR_ROOT_COMMAND,
78 	[PCI_EXT_CAP_ID_VC]	=	0xFF,
79 	[PCI_EXT_CAP_ID_DSN]	=	PCI_EXT_CAP_DSN_SIZEOF,
80 	[PCI_EXT_CAP_ID_PWR]	=	PCI_EXT_CAP_PWR_SIZEOF,
81 	[PCI_EXT_CAP_ID_RCLD]	=	0,	/* root only - don't care */
82 	[PCI_EXT_CAP_ID_RCILC]	=	0,	/* root only - don't care */
83 	[PCI_EXT_CAP_ID_RCEC]	=	0,	/* root only - don't care */
84 	[PCI_EXT_CAP_ID_MFVC]	=	0xFF,
85 	[PCI_EXT_CAP_ID_VC9]	=	0xFF,	/* same as CAP_ID_VC */
86 	[PCI_EXT_CAP_ID_RCRB]	=	0,	/* root only - don't care */
87 	[PCI_EXT_CAP_ID_VNDR]	=	0xFF,
88 	[PCI_EXT_CAP_ID_CAC]	=	0,	/* obsolete */
89 	[PCI_EXT_CAP_ID_ACS]	=	0xFF,
90 	[PCI_EXT_CAP_ID_ARI]	=	PCI_EXT_CAP_ARI_SIZEOF,
91 	[PCI_EXT_CAP_ID_ATS]	=	PCI_EXT_CAP_ATS_SIZEOF,
92 	[PCI_EXT_CAP_ID_SRIOV]	=	PCI_EXT_CAP_SRIOV_SIZEOF,
93 	[PCI_EXT_CAP_ID_MRIOV]	=	0,	/* not yet */
94 	[PCI_EXT_CAP_ID_MCAST]	=	PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
95 	[PCI_EXT_CAP_ID_PRI]	=	PCI_EXT_CAP_PRI_SIZEOF,
96 	[PCI_EXT_CAP_ID_AMD_XXX] =	0,	/* not yet */
97 	[PCI_EXT_CAP_ID_REBAR]	=	0xFF,
98 	[PCI_EXT_CAP_ID_DPA]	=	0xFF,
99 	[PCI_EXT_CAP_ID_TPH]	=	0xFF,
100 	[PCI_EXT_CAP_ID_LTR]	=	PCI_EXT_CAP_LTR_SIZEOF,
101 	[PCI_EXT_CAP_ID_SECPCI]	=	0,	/* not yet */
102 	[PCI_EXT_CAP_ID_PMUX]	=	0,	/* not yet */
103 	[PCI_EXT_CAP_ID_PASID]	=	0,	/* not yet */
104 };
105 
106 /*
107  * Read/Write Permission Bits - one bit for each bit in capability
108  * Any field can be read if it exists, but what is read depends on
109  * whether the field is 'virtualized', or just pass thru to the
110  * hardware.  Any virtualized field is also virtualized for writes.
111  * Writes are only permitted if they have a 1 bit here.
112  */
113 struct perm_bits {
114 	u8	*virt;		/* read/write virtual data, not hw */
115 	u8	*write;		/* writeable bits */
116 	int	(*readfn)(struct vfio_pci_device *vdev, int pos, int count,
117 			  struct perm_bits *perm, int offset, __le32 *val);
118 	int	(*writefn)(struct vfio_pci_device *vdev, int pos, int count,
119 			   struct perm_bits *perm, int offset, __le32 val);
120 };
121 
122 #define	NO_VIRT		0
123 #define	ALL_VIRT	0xFFFFFFFFU
124 #define	NO_WRITE	0
125 #define	ALL_WRITE	0xFFFFFFFFU
126 
vfio_user_config_read(struct pci_dev * pdev,int offset,__le32 * val,int count)127 static int vfio_user_config_read(struct pci_dev *pdev, int offset,
128 				 __le32 *val, int count)
129 {
130 	int ret = -EINVAL;
131 	u32 tmp_val = 0;
132 
133 	switch (count) {
134 	case 1:
135 	{
136 		u8 tmp;
137 		ret = pci_user_read_config_byte(pdev, offset, &tmp);
138 		tmp_val = tmp;
139 		break;
140 	}
141 	case 2:
142 	{
143 		u16 tmp;
144 		ret = pci_user_read_config_word(pdev, offset, &tmp);
145 		tmp_val = tmp;
146 		break;
147 	}
148 	case 4:
149 		ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
150 		break;
151 	}
152 
153 	*val = cpu_to_le32(tmp_val);
154 
155 	return pcibios_err_to_errno(ret);
156 }
157 
vfio_user_config_write(struct pci_dev * pdev,int offset,__le32 val,int count)158 static int vfio_user_config_write(struct pci_dev *pdev, int offset,
159 				  __le32 val, int count)
160 {
161 	int ret = -EINVAL;
162 	u32 tmp_val = le32_to_cpu(val);
163 
164 	switch (count) {
165 	case 1:
166 		ret = pci_user_write_config_byte(pdev, offset, tmp_val);
167 		break;
168 	case 2:
169 		ret = pci_user_write_config_word(pdev, offset, tmp_val);
170 		break;
171 	case 4:
172 		ret = pci_user_write_config_dword(pdev, offset, tmp_val);
173 		break;
174 	}
175 
176 	return pcibios_err_to_errno(ret);
177 }
178 
vfio_default_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)179 static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
180 				    int count, struct perm_bits *perm,
181 				    int offset, __le32 *val)
182 {
183 	__le32 virt = 0;
184 
185 	memcpy(val, vdev->vconfig + pos, count);
186 
187 	memcpy(&virt, perm->virt + offset, count);
188 
189 	/* Any non-virtualized bits? */
190 	if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
191 		struct pci_dev *pdev = vdev->pdev;
192 		__le32 phys_val = 0;
193 		int ret;
194 
195 		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
196 		if (ret)
197 			return ret;
198 
199 		*val = (phys_val & ~virt) | (*val & virt);
200 	}
201 
202 	return count;
203 }
204 
vfio_default_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)205 static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
206 				     int count, struct perm_bits *perm,
207 				     int offset, __le32 val)
208 {
209 	__le32 virt = 0, write = 0;
210 
211 	memcpy(&write, perm->write + offset, count);
212 
213 	if (!write)
214 		return count; /* drop, no writable bits */
215 
216 	memcpy(&virt, perm->virt + offset, count);
217 
218 	/* Virtualized and writable bits go to vconfig */
219 	if (write & virt) {
220 		__le32 virt_val = 0;
221 
222 		memcpy(&virt_val, vdev->vconfig + pos, count);
223 
224 		virt_val &= ~(write & virt);
225 		virt_val |= (val & (write & virt));
226 
227 		memcpy(vdev->vconfig + pos, &virt_val, count);
228 	}
229 
230 	/* Non-virtualzed and writable bits go to hardware */
231 	if (write & ~virt) {
232 		struct pci_dev *pdev = vdev->pdev;
233 		__le32 phys_val = 0;
234 		int ret;
235 
236 		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
237 		if (ret)
238 			return ret;
239 
240 		phys_val &= ~(write & ~virt);
241 		phys_val |= (val & (write & ~virt));
242 
243 		ret = vfio_user_config_write(pdev, pos, phys_val, count);
244 		if (ret)
245 			return ret;
246 	}
247 
248 	return count;
249 }
250 
251 /* Allow direct read from hardware, except for capability next pointer */
vfio_direct_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)252 static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
253 				   int count, struct perm_bits *perm,
254 				   int offset, __le32 *val)
255 {
256 	int ret;
257 
258 	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
259 	if (ret)
260 		return pcibios_err_to_errno(ret);
261 
262 	if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
263 		if (offset < 4)
264 			memcpy(val, vdev->vconfig + pos, count);
265 	} else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
266 		if (offset == PCI_CAP_LIST_ID && count > 1)
267 			memcpy(val, vdev->vconfig + pos,
268 			       min(PCI_CAP_FLAGS, count));
269 		else if (offset == PCI_CAP_LIST_NEXT)
270 			memcpy(val, vdev->vconfig + pos, 1);
271 	}
272 
273 	return count;
274 }
275 
276 /* Raw access skips any kind of virtualization */
vfio_raw_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)277 static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos,
278 				 int count, struct perm_bits *perm,
279 				 int offset, __le32 val)
280 {
281 	int ret;
282 
283 	ret = vfio_user_config_write(vdev->pdev, pos, val, count);
284 	if (ret)
285 		return ret;
286 
287 	return count;
288 }
289 
vfio_raw_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)290 static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos,
291 				int count, struct perm_bits *perm,
292 				int offset, __le32 *val)
293 {
294 	int ret;
295 
296 	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
297 	if (ret)
298 		return pcibios_err_to_errno(ret);
299 
300 	return count;
301 }
302 
303 /* Virt access uses only virtualization */
vfio_virt_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)304 static int vfio_virt_config_write(struct vfio_pci_device *vdev, int pos,
305 				  int count, struct perm_bits *perm,
306 				  int offset, __le32 val)
307 {
308 	memcpy(vdev->vconfig + pos, &val, count);
309 	return count;
310 }
311 
vfio_virt_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)312 static int vfio_virt_config_read(struct vfio_pci_device *vdev, int pos,
313 				 int count, struct perm_bits *perm,
314 				 int offset, __le32 *val)
315 {
316 	memcpy(val, vdev->vconfig + pos, count);
317 	return count;
318 }
319 
320 /* Default capability regions to read-only, no-virtualization */
321 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
322 	[0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
323 };
324 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
325 	[0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
326 };
327 /*
328  * Default unassigned regions to raw read-write access.  Some devices
329  * require this to function as they hide registers between the gaps in
330  * config space (be2net).  Like MMIO and I/O port registers, we have
331  * to trust the hardware isolation.
332  */
333 static struct perm_bits unassigned_perms = {
334 	.readfn = vfio_raw_config_read,
335 	.writefn = vfio_raw_config_write
336 };
337 
338 static struct perm_bits virt_perms = {
339 	.readfn = vfio_virt_config_read,
340 	.writefn = vfio_virt_config_write
341 };
342 
free_perm_bits(struct perm_bits * perm)343 static void free_perm_bits(struct perm_bits *perm)
344 {
345 	kfree(perm->virt);
346 	kfree(perm->write);
347 	perm->virt = NULL;
348 	perm->write = NULL;
349 }
350 
alloc_perm_bits(struct perm_bits * perm,int size)351 static int alloc_perm_bits(struct perm_bits *perm, int size)
352 {
353 	/*
354 	 * Round up all permission bits to the next dword, this lets us
355 	 * ignore whether a read/write exceeds the defined capability
356 	 * structure.  We can do this because:
357 	 *  - Standard config space is already dword aligned
358 	 *  - Capabilities are all dword aligned (bits 0:1 of next reserved)
359 	 *  - Express capabilities defined as dword aligned
360 	 */
361 	size = round_up(size, 4);
362 
363 	/*
364 	 * Zero state is
365 	 * - All Readable, None Writeable, None Virtualized
366 	 */
367 	perm->virt = kzalloc(size, GFP_KERNEL);
368 	perm->write = kzalloc(size, GFP_KERNEL);
369 	if (!perm->virt || !perm->write) {
370 		free_perm_bits(perm);
371 		return -ENOMEM;
372 	}
373 
374 	perm->readfn = vfio_default_config_read;
375 	perm->writefn = vfio_default_config_write;
376 
377 	return 0;
378 }
379 
380 /*
381  * Helper functions for filling in permission tables
382  */
p_setb(struct perm_bits * p,int off,u8 virt,u8 write)383 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
384 {
385 	p->virt[off] = virt;
386 	p->write[off] = write;
387 }
388 
389 /* Handle endian-ness - pci and tables are little-endian */
p_setw(struct perm_bits * p,int off,u16 virt,u16 write)390 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
391 {
392 	*(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
393 	*(__le16 *)(&p->write[off]) = cpu_to_le16(write);
394 }
395 
396 /* Handle endian-ness - pci and tables are little-endian */
p_setd(struct perm_bits * p,int off,u32 virt,u32 write)397 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
398 {
399 	*(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
400 	*(__le32 *)(&p->write[off]) = cpu_to_le32(write);
401 }
402 
403 /*
404  * Restore the *real* BARs after we detect a FLR or backdoor reset.
405  * (backdoor = some device specific technique that we didn't catch)
406  */
vfio_bar_restore(struct vfio_pci_device * vdev)407 static void vfio_bar_restore(struct vfio_pci_device *vdev)
408 {
409 	struct pci_dev *pdev = vdev->pdev;
410 	u32 *rbar = vdev->rbar;
411 	u16 cmd;
412 	int i;
413 
414 	if (pdev->is_virtfn)
415 		return;
416 
417 	pr_info("%s: %s reset recovery - restoring bars\n",
418 		__func__, dev_name(&pdev->dev));
419 
420 	for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
421 		pci_user_write_config_dword(pdev, i, *rbar);
422 
423 	pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
424 
425 	if (vdev->nointx) {
426 		pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
427 		cmd |= PCI_COMMAND_INTX_DISABLE;
428 		pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
429 	}
430 }
431 
vfio_generate_bar_flags(struct pci_dev * pdev,int bar)432 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
433 {
434 	unsigned long flags = pci_resource_flags(pdev, bar);
435 	u32 val;
436 
437 	if (flags & IORESOURCE_IO)
438 		return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
439 
440 	val = PCI_BASE_ADDRESS_SPACE_MEMORY;
441 
442 	if (flags & IORESOURCE_PREFETCH)
443 		val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
444 
445 	if (flags & IORESOURCE_MEM_64)
446 		val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
447 
448 	return cpu_to_le32(val);
449 }
450 
451 /*
452  * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
453  * to reflect the hardware capabilities.  This implements BAR sizing.
454  */
vfio_bar_fixup(struct vfio_pci_device * vdev)455 static void vfio_bar_fixup(struct vfio_pci_device *vdev)
456 {
457 	struct pci_dev *pdev = vdev->pdev;
458 	int i;
459 	__le32 *bar;
460 	u64 mask;
461 
462 	bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
463 
464 	for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
465 		if (!pci_resource_start(pdev, i)) {
466 			*bar = 0; /* Unmapped by host = unimplemented to user */
467 			continue;
468 		}
469 
470 		mask = ~(pci_resource_len(pdev, i) - 1);
471 
472 		*bar &= cpu_to_le32((u32)mask);
473 		*bar |= vfio_generate_bar_flags(pdev, i);
474 
475 		if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
476 			bar++;
477 			*bar &= cpu_to_le32((u32)(mask >> 32));
478 			i++;
479 		}
480 	}
481 
482 	bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
483 
484 	/*
485 	 * NB. REGION_INFO will have reported zero size if we weren't able
486 	 * to read the ROM, but we still return the actual BAR size here if
487 	 * it exists (or the shadow ROM space).
488 	 */
489 	if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
490 		mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
491 		mask |= PCI_ROM_ADDRESS_ENABLE;
492 		*bar &= cpu_to_le32((u32)mask);
493 	} else if (pdev->resource[PCI_ROM_RESOURCE].flags &
494 					IORESOURCE_ROM_SHADOW) {
495 		mask = ~(0x20000 - 1);
496 		mask |= PCI_ROM_ADDRESS_ENABLE;
497 		*bar &= cpu_to_le32((u32)mask);
498 	} else
499 		*bar = 0;
500 
501 	vdev->bardirty = false;
502 }
503 
vfio_basic_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)504 static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
505 				  int count, struct perm_bits *perm,
506 				  int offset, __le32 *val)
507 {
508 	if (is_bar(offset)) /* pos == offset for basic config */
509 		vfio_bar_fixup(vdev);
510 
511 	count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
512 
513 	/* Mask in virtual memory enable for SR-IOV devices */
514 	if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
515 		u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
516 		u32 tmp_val = le32_to_cpu(*val);
517 
518 		tmp_val |= cmd & PCI_COMMAND_MEMORY;
519 		*val = cpu_to_le32(tmp_val);
520 	}
521 
522 	return count;
523 }
524 
525 /* Test whether BARs match the value we think they should contain */
vfio_need_bar_restore(struct vfio_pci_device * vdev)526 static bool vfio_need_bar_restore(struct vfio_pci_device *vdev)
527 {
528 	int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
529 	u32 bar;
530 
531 	for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
532 		if (vdev->rbar[i]) {
533 			ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
534 			if (ret || vdev->rbar[i] != bar)
535 				return true;
536 		}
537 	}
538 
539 	return false;
540 }
541 
vfio_basic_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)542 static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
543 				   int count, struct perm_bits *perm,
544 				   int offset, __le32 val)
545 {
546 	struct pci_dev *pdev = vdev->pdev;
547 	__le16 *virt_cmd;
548 	u16 new_cmd = 0;
549 	int ret;
550 
551 	virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
552 
553 	if (offset == PCI_COMMAND) {
554 		bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
555 		u16 phys_cmd;
556 
557 		ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
558 		if (ret)
559 			return ret;
560 
561 		new_cmd = le32_to_cpu(val);
562 
563 		phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
564 		virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
565 		new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
566 
567 		phys_io = !!(phys_cmd & PCI_COMMAND_IO);
568 		virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
569 		new_io = !!(new_cmd & PCI_COMMAND_IO);
570 
571 		/*
572 		 * If the user is writing mem/io enable (new_mem/io) and we
573 		 * think it's already enabled (virt_mem/io), but the hardware
574 		 * shows it disabled (phys_mem/io, then the device has
575 		 * undergone some kind of backdoor reset and needs to be
576 		 * restored before we allow it to enable the bars.
577 		 * SR-IOV devices will trigger this, but we catch them later
578 		 */
579 		if ((new_mem && virt_mem && !phys_mem) ||
580 		    (new_io && virt_io && !phys_io) ||
581 		    vfio_need_bar_restore(vdev))
582 			vfio_bar_restore(vdev);
583 	}
584 
585 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
586 	if (count < 0)
587 		return count;
588 
589 	/*
590 	 * Save current memory/io enable bits in vconfig to allow for
591 	 * the test above next time.
592 	 */
593 	if (offset == PCI_COMMAND) {
594 		u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
595 
596 		*virt_cmd &= cpu_to_le16(~mask);
597 		*virt_cmd |= cpu_to_le16(new_cmd & mask);
598 	}
599 
600 	/* Emulate INTx disable */
601 	if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
602 		bool virt_intx_disable;
603 
604 		virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
605 				       PCI_COMMAND_INTX_DISABLE);
606 
607 		if (virt_intx_disable && !vdev->virq_disabled) {
608 			vdev->virq_disabled = true;
609 			vfio_pci_intx_mask(vdev);
610 		} else if (!virt_intx_disable && vdev->virq_disabled) {
611 			vdev->virq_disabled = false;
612 			vfio_pci_intx_unmask(vdev);
613 		}
614 	}
615 
616 	if (is_bar(offset))
617 		vdev->bardirty = true;
618 
619 	return count;
620 }
621 
622 /* Permissions for the Basic PCI Header */
init_pci_cap_basic_perm(struct perm_bits * perm)623 static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
624 {
625 	if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
626 		return -ENOMEM;
627 
628 	perm->readfn = vfio_basic_config_read;
629 	perm->writefn = vfio_basic_config_write;
630 
631 	/* Virtualized for SR-IOV functions, which just have FFFF */
632 	p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
633 	p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
634 
635 	/*
636 	 * Virtualize INTx disable, we use it internally for interrupt
637 	 * control and can emulate it for non-PCI 2.3 devices.
638 	 */
639 	p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
640 
641 	/* Virtualize capability list, we might want to skip/disable */
642 	p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
643 
644 	/* No harm to write */
645 	p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
646 	p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
647 	p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
648 
649 	/* Virtualize all bars, can't touch the real ones */
650 	p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
651 	p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
652 	p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
653 	p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
654 	p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
655 	p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
656 	p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
657 
658 	/* Allow us to adjust capability chain */
659 	p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
660 
661 	/* Sometimes used by sw, just virtualize */
662 	p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
663 
664 	/* Virtualize interrupt pin to allow hiding INTx */
665 	p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
666 
667 	return 0;
668 }
669 
vfio_pm_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)670 static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
671 				int count, struct perm_bits *perm,
672 				int offset, __le32 val)
673 {
674 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
675 	if (count < 0)
676 		return count;
677 
678 	if (offset == PCI_PM_CTRL) {
679 		pci_power_t state;
680 
681 		switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
682 		case 0:
683 			state = PCI_D0;
684 			break;
685 		case 1:
686 			state = PCI_D1;
687 			break;
688 		case 2:
689 			state = PCI_D2;
690 			break;
691 		case 3:
692 			state = PCI_D3hot;
693 			break;
694 		}
695 
696 		pci_set_power_state(vdev->pdev, state);
697 	}
698 
699 	return count;
700 }
701 
702 /* Permissions for the Power Management capability */
init_pci_cap_pm_perm(struct perm_bits * perm)703 static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
704 {
705 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
706 		return -ENOMEM;
707 
708 	perm->writefn = vfio_pm_config_write;
709 
710 	/*
711 	 * We always virtualize the next field so we can remove
712 	 * capabilities from the chain if we want to.
713 	 */
714 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
715 
716 	/*
717 	 * Power management is defined *per function*, so we can let
718 	 * the user change power state, but we trap and initiate the
719 	 * change ourselves, so the state bits are read-only.
720 	 */
721 	p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
722 	return 0;
723 }
724 
vfio_vpd_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)725 static int vfio_vpd_config_write(struct vfio_pci_device *vdev, int pos,
726 				 int count, struct perm_bits *perm,
727 				 int offset, __le32 val)
728 {
729 	struct pci_dev *pdev = vdev->pdev;
730 	__le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
731 	__le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
732 	u16 addr;
733 	u32 data;
734 
735 	/*
736 	 * Write through to emulation.  If the write includes the upper byte
737 	 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
738 	 * have work to do.
739 	 */
740 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
741 	if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
742 	    offset + count <= PCI_VPD_ADDR + 1)
743 		return count;
744 
745 	addr = le16_to_cpu(*paddr);
746 
747 	if (addr & PCI_VPD_ADDR_F) {
748 		data = le32_to_cpu(*pdata);
749 		if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
750 			return count;
751 	} else {
752 		data = 0;
753 		if (pci_read_vpd(pdev, addr, 4, &data) < 0)
754 			return count;
755 		*pdata = cpu_to_le32(data);
756 	}
757 
758 	/*
759 	 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
760 	 * signal completion.  If an error occurs above, we assume that not
761 	 * toggling this bit will induce a driver timeout.
762 	 */
763 	addr ^= PCI_VPD_ADDR_F;
764 	*paddr = cpu_to_le16(addr);
765 
766 	return count;
767 }
768 
769 /* Permissions for Vital Product Data capability */
init_pci_cap_vpd_perm(struct perm_bits * perm)770 static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
771 {
772 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
773 		return -ENOMEM;
774 
775 	perm->writefn = vfio_vpd_config_write;
776 
777 	/*
778 	 * We always virtualize the next field so we can remove
779 	 * capabilities from the chain if we want to.
780 	 */
781 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
782 
783 	/*
784 	 * Both the address and data registers are virtualized to
785 	 * enable access through the pci_vpd_read/write functions
786 	 */
787 	p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
788 	p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
789 
790 	return 0;
791 }
792 
793 /* Permissions for PCI-X capability */
init_pci_cap_pcix_perm(struct perm_bits * perm)794 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
795 {
796 	/* Alloc 24, but only 8 are used in v0 */
797 	if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
798 		return -ENOMEM;
799 
800 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
801 
802 	p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
803 	p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
804 	return 0;
805 }
806 
vfio_exp_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)807 static int vfio_exp_config_write(struct vfio_pci_device *vdev, int pos,
808 				 int count, struct perm_bits *perm,
809 				 int offset, __le32 val)
810 {
811 	__le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
812 				  offset + PCI_EXP_DEVCTL);
813 	int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ;
814 
815 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
816 	if (count < 0)
817 		return count;
818 
819 	/*
820 	 * The FLR bit is virtualized, if set and the device supports PCIe
821 	 * FLR, issue a reset_function.  Regardless, clear the bit, the spec
822 	 * requires it to be always read as zero.  NB, reset_function might
823 	 * not use a PCIe FLR, we don't have that level of granularity.
824 	 */
825 	if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
826 		u32 cap;
827 		int ret;
828 
829 		*ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);
830 
831 		ret = pci_user_read_config_dword(vdev->pdev,
832 						 pos - offset + PCI_EXP_DEVCAP,
833 						 &cap);
834 
835 		if (!ret && (cap & PCI_EXP_DEVCAP_FLR))
836 			pci_try_reset_function(vdev->pdev);
837 	}
838 
839 	/*
840 	 * MPS is virtualized to the user, writes do not change the physical
841 	 * register since determining a proper MPS value requires a system wide
842 	 * device view.  The MRRS is largely independent of MPS, but since the
843 	 * user does not have that system-wide view, they might set a safe, but
844 	 * inefficiently low value.  Here we allow writes through to hardware,
845 	 * but we set the floor to the physical device MPS setting, so that
846 	 * we can at least use full TLPs, as defined by the MPS value.
847 	 *
848 	 * NB, if any devices actually depend on an artificially low MRRS
849 	 * setting, this will need to be revisited, perhaps with a quirk
850 	 * though pcie_set_readrq().
851 	 */
852 	if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) {
853 		readrq = 128 <<
854 			((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12);
855 		readrq = max(readrq, pcie_get_mps(vdev->pdev));
856 
857 		pcie_set_readrq(vdev->pdev, readrq);
858 	}
859 
860 	return count;
861 }
862 
863 /* Permissions for PCI Express capability */
init_pci_cap_exp_perm(struct perm_bits * perm)864 static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
865 {
866 	/* Alloc larger of two possible sizes */
867 	if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
868 		return -ENOMEM;
869 
870 	perm->writefn = vfio_exp_config_write;
871 
872 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
873 
874 	/*
875 	 * Allow writes to device control fields, except devctl_phantom,
876 	 * which could confuse IOMMU, MPS, which can break communication
877 	 * with other physical devices, and the ARI bit in devctl2, which
878 	 * is set at probe time.  FLR and MRRS get virtualized via our
879 	 * writefn.
880 	 */
881 	p_setw(perm, PCI_EXP_DEVCTL,
882 	       PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD |
883 	       PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM);
884 	p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
885 	return 0;
886 }
887 
vfio_af_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)888 static int vfio_af_config_write(struct vfio_pci_device *vdev, int pos,
889 				int count, struct perm_bits *perm,
890 				int offset, __le32 val)
891 {
892 	u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;
893 
894 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
895 	if (count < 0)
896 		return count;
897 
898 	/*
899 	 * The FLR bit is virtualized, if set and the device supports AF
900 	 * FLR, issue a reset_function.  Regardless, clear the bit, the spec
901 	 * requires it to be always read as zero.  NB, reset_function might
902 	 * not use an AF FLR, we don't have that level of granularity.
903 	 */
904 	if (*ctrl & PCI_AF_CTRL_FLR) {
905 		u8 cap;
906 		int ret;
907 
908 		*ctrl &= ~PCI_AF_CTRL_FLR;
909 
910 		ret = pci_user_read_config_byte(vdev->pdev,
911 						pos - offset + PCI_AF_CAP,
912 						&cap);
913 
914 		if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP))
915 			pci_try_reset_function(vdev->pdev);
916 	}
917 
918 	return count;
919 }
920 
921 /* Permissions for Advanced Function capability */
init_pci_cap_af_perm(struct perm_bits * perm)922 static int __init init_pci_cap_af_perm(struct perm_bits *perm)
923 {
924 	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
925 		return -ENOMEM;
926 
927 	perm->writefn = vfio_af_config_write;
928 
929 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
930 	p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
931 	return 0;
932 }
933 
934 /* Permissions for Advanced Error Reporting extended capability */
init_pci_ext_cap_err_perm(struct perm_bits * perm)935 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
936 {
937 	u32 mask;
938 
939 	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
940 		return -ENOMEM;
941 
942 	/*
943 	 * Virtualize the first dword of all express capabilities
944 	 * because it includes the next pointer.  This lets us later
945 	 * remove capabilities from the chain if we need to.
946 	 */
947 	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
948 
949 	/* Writable bits mask */
950 	mask =	PCI_ERR_UNC_UND |		/* Undefined */
951 		PCI_ERR_UNC_DLP |		/* Data Link Protocol */
952 		PCI_ERR_UNC_SURPDN |		/* Surprise Down */
953 		PCI_ERR_UNC_POISON_TLP |	/* Poisoned TLP */
954 		PCI_ERR_UNC_FCP |		/* Flow Control Protocol */
955 		PCI_ERR_UNC_COMP_TIME |		/* Completion Timeout */
956 		PCI_ERR_UNC_COMP_ABORT |	/* Completer Abort */
957 		PCI_ERR_UNC_UNX_COMP |		/* Unexpected Completion */
958 		PCI_ERR_UNC_RX_OVER |		/* Receiver Overflow */
959 		PCI_ERR_UNC_MALF_TLP |		/* Malformed TLP */
960 		PCI_ERR_UNC_ECRC |		/* ECRC Error Status */
961 		PCI_ERR_UNC_UNSUP |		/* Unsupported Request */
962 		PCI_ERR_UNC_ACSV |		/* ACS Violation */
963 		PCI_ERR_UNC_INTN |		/* internal error */
964 		PCI_ERR_UNC_MCBTLP |		/* MC blocked TLP */
965 		PCI_ERR_UNC_ATOMEG |		/* Atomic egress blocked */
966 		PCI_ERR_UNC_TLPPRE;		/* TLP prefix blocked */
967 	p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
968 	p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
969 	p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
970 
971 	mask =	PCI_ERR_COR_RCVR |		/* Receiver Error Status */
972 		PCI_ERR_COR_BAD_TLP |		/* Bad TLP Status */
973 		PCI_ERR_COR_BAD_DLLP |		/* Bad DLLP Status */
974 		PCI_ERR_COR_REP_ROLL |		/* REPLAY_NUM Rollover */
975 		PCI_ERR_COR_REP_TIMER |		/* Replay Timer Timeout */
976 		PCI_ERR_COR_ADV_NFAT |		/* Advisory Non-Fatal */
977 		PCI_ERR_COR_INTERNAL |		/* Corrected Internal */
978 		PCI_ERR_COR_LOG_OVER;		/* Header Log Overflow */
979 	p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
980 	p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
981 
982 	mask =	PCI_ERR_CAP_ECRC_GENE |		/* ECRC Generation Enable */
983 		PCI_ERR_CAP_ECRC_CHKE;		/* ECRC Check Enable */
984 	p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
985 	return 0;
986 }
987 
988 /* Permissions for Power Budgeting extended capability */
init_pci_ext_cap_pwr_perm(struct perm_bits * perm)989 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
990 {
991 	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
992 		return -ENOMEM;
993 
994 	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
995 
996 	/* Writing the data selector is OK, the info is still read-only */
997 	p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
998 	return 0;
999 }
1000 
1001 /*
1002  * Initialize the shared permission tables
1003  */
vfio_pci_uninit_perm_bits(void)1004 void vfio_pci_uninit_perm_bits(void)
1005 {
1006 	free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
1007 
1008 	free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
1009 	free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
1010 	free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
1011 	free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
1012 	free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
1013 
1014 	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1015 	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1016 }
1017 
vfio_pci_init_perm_bits(void)1018 int __init vfio_pci_init_perm_bits(void)
1019 {
1020 	int ret;
1021 
1022 	/* Basic config space */
1023 	ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
1024 
1025 	/* Capabilities */
1026 	ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
1027 	ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
1028 	ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
1029 	cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1030 	ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
1031 	ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
1032 
1033 	/* Extended capabilities */
1034 	ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1035 	ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1036 	ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1037 
1038 	if (ret)
1039 		vfio_pci_uninit_perm_bits();
1040 
1041 	return ret;
1042 }
1043 
vfio_find_cap_start(struct vfio_pci_device * vdev,int pos)1044 static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
1045 {
1046 	u8 cap;
1047 	int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
1048 						 PCI_STD_HEADER_SIZEOF;
1049 	cap = vdev->pci_config_map[pos];
1050 
1051 	if (cap == PCI_CAP_ID_BASIC)
1052 		return 0;
1053 
1054 	/* XXX Can we have to abutting capabilities of the same type? */
1055 	while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
1056 		pos--;
1057 
1058 	return pos;
1059 }
1060 
vfio_msi_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)1061 static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
1062 				int count, struct perm_bits *perm,
1063 				int offset, __le32 *val)
1064 {
1065 	/* Update max available queue size from msi_qmax */
1066 	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1067 		__le16 *flags;
1068 		int start;
1069 
1070 		start = vfio_find_cap_start(vdev, pos);
1071 
1072 		flags = (__le16 *)&vdev->vconfig[start];
1073 
1074 		*flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
1075 		*flags |= cpu_to_le16(vdev->msi_qmax << 1);
1076 	}
1077 
1078 	return vfio_default_config_read(vdev, pos, count, perm, offset, val);
1079 }
1080 
vfio_msi_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)1081 static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
1082 				 int count, struct perm_bits *perm,
1083 				 int offset, __le32 val)
1084 {
1085 	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
1086 	if (count < 0)
1087 		return count;
1088 
1089 	/* Fixup and write configured queue size and enable to hardware */
1090 	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1091 		__le16 *pflags;
1092 		u16 flags;
1093 		int start, ret;
1094 
1095 		start = vfio_find_cap_start(vdev, pos);
1096 
1097 		pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
1098 
1099 		flags = le16_to_cpu(*pflags);
1100 
1101 		/* MSI is enabled via ioctl */
1102 		if  (!is_msi(vdev))
1103 			flags &= ~PCI_MSI_FLAGS_ENABLE;
1104 
1105 		/* Check queue size */
1106 		if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
1107 			flags &= ~PCI_MSI_FLAGS_QSIZE;
1108 			flags |= vdev->msi_qmax << 4;
1109 		}
1110 
1111 		/* Write back to virt and to hardware */
1112 		*pflags = cpu_to_le16(flags);
1113 		ret = pci_user_write_config_word(vdev->pdev,
1114 						 start + PCI_MSI_FLAGS,
1115 						 flags);
1116 		if (ret)
1117 			return pcibios_err_to_errno(ret);
1118 	}
1119 
1120 	return count;
1121 }
1122 
1123 /*
1124  * MSI determination is per-device, so this routine gets used beyond
1125  * initialization time. Don't add __init
1126  */
init_pci_cap_msi_perm(struct perm_bits * perm,int len,u16 flags)1127 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
1128 {
1129 	if (alloc_perm_bits(perm, len))
1130 		return -ENOMEM;
1131 
1132 	perm->readfn = vfio_msi_config_read;
1133 	perm->writefn = vfio_msi_config_write;
1134 
1135 	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1136 
1137 	/*
1138 	 * The upper byte of the control register is reserved,
1139 	 * just setup the lower byte.
1140 	 */
1141 	p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
1142 	p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
1143 	if (flags & PCI_MSI_FLAGS_64BIT) {
1144 		p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
1145 		p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
1146 		if (flags & PCI_MSI_FLAGS_MASKBIT) {
1147 			p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
1148 			p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1149 		}
1150 	} else {
1151 		p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1152 		if (flags & PCI_MSI_FLAGS_MASKBIT) {
1153 			p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1154 			p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1155 		}
1156 	}
1157 	return 0;
1158 }
1159 
1160 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
vfio_msi_cap_len(struct vfio_pci_device * vdev,u8 pos)1161 static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
1162 {
1163 	struct pci_dev *pdev = vdev->pdev;
1164 	int len, ret;
1165 	u16 flags;
1166 
1167 	ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1168 	if (ret)
1169 		return pcibios_err_to_errno(ret);
1170 
1171 	len = 10; /* Minimum size */
1172 	if (flags & PCI_MSI_FLAGS_64BIT)
1173 		len += 4;
1174 	if (flags & PCI_MSI_FLAGS_MASKBIT)
1175 		len += 10;
1176 
1177 	if (vdev->msi_perm)
1178 		return len;
1179 
1180 	vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
1181 	if (!vdev->msi_perm)
1182 		return -ENOMEM;
1183 
1184 	ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1185 	if (ret)
1186 		return ret;
1187 
1188 	return len;
1189 }
1190 
1191 /* Determine extended capability length for VC (2 & 9) and MFVC */
vfio_vc_cap_len(struct vfio_pci_device * vdev,u16 pos)1192 static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
1193 {
1194 	struct pci_dev *pdev = vdev->pdev;
1195 	u32 tmp;
1196 	int ret, evcc, phases, vc_arb;
1197 	int len = PCI_CAP_VC_BASE_SIZEOF;
1198 
1199 	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1200 	if (ret)
1201 		return pcibios_err_to_errno(ret);
1202 
1203 	evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1204 	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1205 	if (ret)
1206 		return pcibios_err_to_errno(ret);
1207 
1208 	if (tmp & PCI_VC_CAP2_128_PHASE)
1209 		phases = 128;
1210 	else if (tmp & PCI_VC_CAP2_64_PHASE)
1211 		phases = 64;
1212 	else if (tmp & PCI_VC_CAP2_32_PHASE)
1213 		phases = 32;
1214 	else
1215 		phases = 0;
1216 
1217 	vc_arb = phases * 4;
1218 
1219 	/*
1220 	 * Port arbitration tables are root & switch only;
1221 	 * function arbitration tables are function 0 only.
1222 	 * In either case, we'll never let user write them so
1223 	 * we don't care how big they are
1224 	 */
1225 	len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1226 	if (vc_arb) {
1227 		len = round_up(len, 16);
1228 		len += vc_arb / 8;
1229 	}
1230 	return len;
1231 }
1232 
vfio_cap_len(struct vfio_pci_device * vdev,u8 cap,u8 pos)1233 static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
1234 {
1235 	struct pci_dev *pdev = vdev->pdev;
1236 	u32 dword;
1237 	u16 word;
1238 	u8 byte;
1239 	int ret;
1240 
1241 	switch (cap) {
1242 	case PCI_CAP_ID_MSI:
1243 		return vfio_msi_cap_len(vdev, pos);
1244 	case PCI_CAP_ID_PCIX:
1245 		ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1246 		if (ret)
1247 			return pcibios_err_to_errno(ret);
1248 
1249 		if (PCI_X_CMD_VERSION(word)) {
1250 			if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1251 				/* Test for extended capabilities */
1252 				pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
1253 						      &dword);
1254 				vdev->extended_caps = (dword != 0);
1255 			}
1256 			return PCI_CAP_PCIX_SIZEOF_V2;
1257 		} else
1258 			return PCI_CAP_PCIX_SIZEOF_V0;
1259 	case PCI_CAP_ID_VNDR:
1260 		/* length follows next field */
1261 		ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1262 		if (ret)
1263 			return pcibios_err_to_errno(ret);
1264 
1265 		return byte;
1266 	case PCI_CAP_ID_EXP:
1267 		if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1268 			/* Test for extended capabilities */
1269 			pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1270 			vdev->extended_caps = (dword != 0);
1271 		}
1272 
1273 		/* length based on version */
1274 		if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1)
1275 			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1276 		else
1277 			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1278 	case PCI_CAP_ID_HT:
1279 		ret = pci_read_config_byte(pdev, pos + 3, &byte);
1280 		if (ret)
1281 			return pcibios_err_to_errno(ret);
1282 
1283 		return (byte & HT_3BIT_CAP_MASK) ?
1284 			HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1285 	case PCI_CAP_ID_SATA:
1286 		ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1287 		if (ret)
1288 			return pcibios_err_to_errno(ret);
1289 
1290 		byte &= PCI_SATA_REGS_MASK;
1291 		if (byte == PCI_SATA_REGS_INLINE)
1292 			return PCI_SATA_SIZEOF_LONG;
1293 		else
1294 			return PCI_SATA_SIZEOF_SHORT;
1295 	default:
1296 		pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
1297 			dev_name(&pdev->dev), __func__, cap, pos);
1298 	}
1299 
1300 	return 0;
1301 }
1302 
vfio_ext_cap_len(struct vfio_pci_device * vdev,u16 ecap,u16 epos)1303 static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
1304 {
1305 	struct pci_dev *pdev = vdev->pdev;
1306 	u8 byte;
1307 	u32 dword;
1308 	int ret;
1309 
1310 	switch (ecap) {
1311 	case PCI_EXT_CAP_ID_VNDR:
1312 		ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1313 		if (ret)
1314 			return pcibios_err_to_errno(ret);
1315 
1316 		return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1317 	case PCI_EXT_CAP_ID_VC:
1318 	case PCI_EXT_CAP_ID_VC9:
1319 	case PCI_EXT_CAP_ID_MFVC:
1320 		return vfio_vc_cap_len(vdev, epos);
1321 	case PCI_EXT_CAP_ID_ACS:
1322 		ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1323 		if (ret)
1324 			return pcibios_err_to_errno(ret);
1325 
1326 		if (byte & PCI_ACS_EC) {
1327 			int bits;
1328 
1329 			ret = pci_read_config_byte(pdev,
1330 						   epos + PCI_ACS_EGRESS_BITS,
1331 						   &byte);
1332 			if (ret)
1333 				return pcibios_err_to_errno(ret);
1334 
1335 			bits = byte ? round_up(byte, 32) : 256;
1336 			return 8 + (bits / 8);
1337 		}
1338 		return 8;
1339 
1340 	case PCI_EXT_CAP_ID_REBAR:
1341 		ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1342 		if (ret)
1343 			return pcibios_err_to_errno(ret);
1344 
1345 		byte &= PCI_REBAR_CTRL_NBAR_MASK;
1346 		byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1347 
1348 		return 4 + (byte * 8);
1349 	case PCI_EXT_CAP_ID_DPA:
1350 		ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1351 		if (ret)
1352 			return pcibios_err_to_errno(ret);
1353 
1354 		byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1355 		return PCI_DPA_BASE_SIZEOF + byte + 1;
1356 	case PCI_EXT_CAP_ID_TPH:
1357 		ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1358 		if (ret)
1359 			return pcibios_err_to_errno(ret);
1360 
1361 		if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1362 			int sts;
1363 
1364 			sts = dword & PCI_TPH_CAP_ST_MASK;
1365 			sts >>= PCI_TPH_CAP_ST_SHIFT;
1366 			return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1367 		}
1368 		return PCI_TPH_BASE_SIZEOF;
1369 	default:
1370 		pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
1371 			dev_name(&pdev->dev), __func__, ecap, epos);
1372 	}
1373 
1374 	return 0;
1375 }
1376 
vfio_fill_vconfig_bytes(struct vfio_pci_device * vdev,int offset,int size)1377 static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
1378 				   int offset, int size)
1379 {
1380 	struct pci_dev *pdev = vdev->pdev;
1381 	int ret = 0;
1382 
1383 	/*
1384 	 * We try to read physical config space in the largest chunks
1385 	 * we can, assuming that all of the fields support dword access.
1386 	 * pci_save_state() makes this same assumption and seems to do ok.
1387 	 */
1388 	while (size) {
1389 		int filled;
1390 
1391 		if (size >= 4 && !(offset % 4)) {
1392 			__le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1393 			u32 dword;
1394 
1395 			ret = pci_read_config_dword(pdev, offset, &dword);
1396 			if (ret)
1397 				return ret;
1398 			*dwordp = cpu_to_le32(dword);
1399 			filled = 4;
1400 		} else if (size >= 2 && !(offset % 2)) {
1401 			__le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1402 			u16 word;
1403 
1404 			ret = pci_read_config_word(pdev, offset, &word);
1405 			if (ret)
1406 				return ret;
1407 			*wordp = cpu_to_le16(word);
1408 			filled = 2;
1409 		} else {
1410 			u8 *byte = &vdev->vconfig[offset];
1411 			ret = pci_read_config_byte(pdev, offset, byte);
1412 			if (ret)
1413 				return ret;
1414 			filled = 1;
1415 		}
1416 
1417 		offset += filled;
1418 		size -= filled;
1419 	}
1420 
1421 	return ret;
1422 }
1423 
vfio_cap_init(struct vfio_pci_device * vdev)1424 static int vfio_cap_init(struct vfio_pci_device *vdev)
1425 {
1426 	struct pci_dev *pdev = vdev->pdev;
1427 	u8 *map = vdev->pci_config_map;
1428 	u16 status;
1429 	u8 pos, *prev, cap;
1430 	int loops, ret, caps = 0;
1431 
1432 	/* Any capabilities? */
1433 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1434 	if (ret)
1435 		return ret;
1436 
1437 	if (!(status & PCI_STATUS_CAP_LIST))
1438 		return 0; /* Done */
1439 
1440 	ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1441 	if (ret)
1442 		return ret;
1443 
1444 	/* Mark the previous position in case we want to skip a capability */
1445 	prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1446 
1447 	/* We can bound our loop, capabilities are dword aligned */
1448 	loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1449 	while (pos && loops--) {
1450 		u8 next;
1451 		int i, len = 0;
1452 
1453 		ret = pci_read_config_byte(pdev, pos, &cap);
1454 		if (ret)
1455 			return ret;
1456 
1457 		ret = pci_read_config_byte(pdev,
1458 					   pos + PCI_CAP_LIST_NEXT, &next);
1459 		if (ret)
1460 			return ret;
1461 
1462 		if (cap <= PCI_CAP_ID_MAX) {
1463 			len = pci_cap_length[cap];
1464 			if (len == 0xFF) { /* Variable length */
1465 				len = vfio_cap_len(vdev, cap, pos);
1466 				if (len < 0)
1467 					return len;
1468 			}
1469 		}
1470 
1471 		if (!len) {
1472 			pr_info("%s: %s hiding cap 0x%x\n",
1473 				__func__, dev_name(&pdev->dev), cap);
1474 			*prev = next;
1475 			pos = next;
1476 			continue;
1477 		}
1478 
1479 		/* Sanity check, do we overlap other capabilities? */
1480 		for (i = 0; i < len; i++) {
1481 			if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1482 				continue;
1483 
1484 			pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
1485 				__func__, dev_name(&pdev->dev),
1486 				pos + i, map[pos + i], cap);
1487 		}
1488 
1489 		BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1490 
1491 		memset(map + pos, cap, len);
1492 		ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1493 		if (ret)
1494 			return ret;
1495 
1496 		prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1497 		pos = next;
1498 		caps++;
1499 	}
1500 
1501 	/* If we didn't fill any capabilities, clear the status flag */
1502 	if (!caps) {
1503 		__le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1504 		*vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1505 	}
1506 
1507 	return 0;
1508 }
1509 
vfio_ecap_init(struct vfio_pci_device * vdev)1510 static int vfio_ecap_init(struct vfio_pci_device *vdev)
1511 {
1512 	struct pci_dev *pdev = vdev->pdev;
1513 	u8 *map = vdev->pci_config_map;
1514 	u16 epos;
1515 	__le32 *prev = NULL;
1516 	int loops, ret, ecaps = 0;
1517 
1518 	if (!vdev->extended_caps)
1519 		return 0;
1520 
1521 	epos = PCI_CFG_SPACE_SIZE;
1522 
1523 	loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1524 
1525 	while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1526 		u32 header;
1527 		u16 ecap;
1528 		int i, len = 0;
1529 		bool hidden = false;
1530 
1531 		ret = pci_read_config_dword(pdev, epos, &header);
1532 		if (ret)
1533 			return ret;
1534 
1535 		ecap = PCI_EXT_CAP_ID(header);
1536 
1537 		if (ecap <= PCI_EXT_CAP_ID_MAX) {
1538 			len = pci_ext_cap_length[ecap];
1539 			if (len == 0xFF) {
1540 				len = vfio_ext_cap_len(vdev, ecap, epos);
1541 				if (len < 0)
1542 					return ret;
1543 			}
1544 		}
1545 
1546 		if (!len) {
1547 			pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
1548 				__func__, dev_name(&pdev->dev), ecap, epos);
1549 
1550 			/* If not the first in the chain, we can skip over it */
1551 			if (prev) {
1552 				u32 val = epos = PCI_EXT_CAP_NEXT(header);
1553 				*prev &= cpu_to_le32(~(0xffcU << 20));
1554 				*prev |= cpu_to_le32(val << 20);
1555 				continue;
1556 			}
1557 
1558 			/*
1559 			 * Otherwise, fill in a placeholder, the direct
1560 			 * readfn will virtualize this automatically
1561 			 */
1562 			len = PCI_CAP_SIZEOF;
1563 			hidden = true;
1564 		}
1565 
1566 		for (i = 0; i < len; i++) {
1567 			if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1568 				continue;
1569 
1570 			pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
1571 				__func__, dev_name(&pdev->dev),
1572 				epos + i, map[epos + i], ecap);
1573 		}
1574 
1575 		/*
1576 		 * Even though ecap is 2 bytes, we're currently a long way
1577 		 * from exceeding 1 byte capabilities.  If we ever make it
1578 		 * up to 0xFE we'll need to up this to a two-byte, byte map.
1579 		 */
1580 		BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1581 
1582 		memset(map + epos, ecap, len);
1583 		ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1584 		if (ret)
1585 			return ret;
1586 
1587 		/*
1588 		 * If we're just using this capability to anchor the list,
1589 		 * hide the real ID.  Only count real ecaps.  XXX PCI spec
1590 		 * indicates to use cap id = 0, version = 0, next = 0 if
1591 		 * ecaps are absent, hope users check all the way to next.
1592 		 */
1593 		if (hidden)
1594 			*(__le32 *)&vdev->vconfig[epos] &=
1595 				cpu_to_le32((0xffcU << 20));
1596 		else
1597 			ecaps++;
1598 
1599 		prev = (__le32 *)&vdev->vconfig[epos];
1600 		epos = PCI_EXT_CAP_NEXT(header);
1601 	}
1602 
1603 	if (!ecaps)
1604 		*(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1605 
1606 	return 0;
1607 }
1608 
1609 /*
1610  * For each device we allocate a pci_config_map that indicates the
1611  * capability occupying each dword and thus the struct perm_bits we
1612  * use for read and write.  We also allocate a virtualized config
1613  * space which tracks reads and writes to bits that we emulate for
1614  * the user.  Initial values filled from device.
1615  *
1616  * Using shared struct perm_bits between all vfio-pci devices saves
1617  * us from allocating cfg_size buffers for virt and write for every
1618  * device.  We could remove vconfig and allocate individual buffers
1619  * for each area requiring emulated bits, but the array of pointers
1620  * would be comparable in size (at least for standard config space).
1621  */
vfio_config_init(struct vfio_pci_device * vdev)1622 int vfio_config_init(struct vfio_pci_device *vdev)
1623 {
1624 	struct pci_dev *pdev = vdev->pdev;
1625 	u8 *map, *vconfig;
1626 	int ret;
1627 
1628 	/*
1629 	 * Config space, caps and ecaps are all dword aligned, so we could
1630 	 * use one byte per dword to record the type.  However, there are
1631 	 * no requiremenst on the length of a capability, so the gap between
1632 	 * capabilities needs byte granularity.
1633 	 */
1634 	map = kmalloc(pdev->cfg_size, GFP_KERNEL);
1635 	if (!map)
1636 		return -ENOMEM;
1637 
1638 	vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
1639 	if (!vconfig) {
1640 		kfree(map);
1641 		return -ENOMEM;
1642 	}
1643 
1644 	vdev->pci_config_map = map;
1645 	vdev->vconfig = vconfig;
1646 
1647 	memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1648 	memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1649 	       pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1650 
1651 	ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1652 	if (ret)
1653 		goto out;
1654 
1655 	vdev->bardirty = true;
1656 
1657 	/*
1658 	 * XXX can we just pci_load_saved_state/pci_restore_state?
1659 	 * may need to rebuild vconfig after that
1660 	 */
1661 
1662 	/* For restore after reset */
1663 	vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1664 	vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1665 	vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1666 	vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1667 	vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1668 	vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1669 	vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1670 
1671 	if (pdev->is_virtfn) {
1672 		*(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1673 		*(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1674 	}
1675 
1676 	if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx)
1677 		vconfig[PCI_INTERRUPT_PIN] = 0;
1678 
1679 	ret = vfio_cap_init(vdev);
1680 	if (ret)
1681 		goto out;
1682 
1683 	ret = vfio_ecap_init(vdev);
1684 	if (ret)
1685 		goto out;
1686 
1687 	return 0;
1688 
1689 out:
1690 	kfree(map);
1691 	vdev->pci_config_map = NULL;
1692 	kfree(vconfig);
1693 	vdev->vconfig = NULL;
1694 	return pcibios_err_to_errno(ret);
1695 }
1696 
vfio_config_free(struct vfio_pci_device * vdev)1697 void vfio_config_free(struct vfio_pci_device *vdev)
1698 {
1699 	kfree(vdev->vconfig);
1700 	vdev->vconfig = NULL;
1701 	kfree(vdev->pci_config_map);
1702 	vdev->pci_config_map = NULL;
1703 	kfree(vdev->msi_perm);
1704 	vdev->msi_perm = NULL;
1705 }
1706 
1707 /*
1708  * Find the remaining number of bytes in a dword that match the given
1709  * position.  Stop at either the end of the capability or the dword boundary.
1710  */
vfio_pci_cap_remaining_dword(struct vfio_pci_device * vdev,loff_t pos)1711 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev,
1712 					   loff_t pos)
1713 {
1714 	u8 cap = vdev->pci_config_map[pos];
1715 	size_t i;
1716 
1717 	for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1718 		/* nop */;
1719 
1720 	return i;
1721 }
1722 
vfio_config_do_rw(struct vfio_pci_device * vdev,char __user * buf,size_t count,loff_t * ppos,bool iswrite)1723 static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
1724 				 size_t count, loff_t *ppos, bool iswrite)
1725 {
1726 	struct pci_dev *pdev = vdev->pdev;
1727 	struct perm_bits *perm;
1728 	__le32 val = 0;
1729 	int cap_start = 0, offset;
1730 	u8 cap_id;
1731 	ssize_t ret;
1732 
1733 	if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1734 	    *ppos + count > pdev->cfg_size)
1735 		return -EFAULT;
1736 
1737 	/*
1738 	 * Chop accesses into aligned chunks containing no more than a
1739 	 * single capability.  Caller increments to the next chunk.
1740 	 */
1741 	count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1742 	if (count >= 4 && !(*ppos % 4))
1743 		count = 4;
1744 	else if (count >= 2 && !(*ppos % 2))
1745 		count = 2;
1746 	else
1747 		count = 1;
1748 
1749 	ret = count;
1750 
1751 	cap_id = vdev->pci_config_map[*ppos];
1752 
1753 	if (cap_id == PCI_CAP_ID_INVALID) {
1754 		perm = &unassigned_perms;
1755 		cap_start = *ppos;
1756 	} else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
1757 		perm = &virt_perms;
1758 		cap_start = *ppos;
1759 	} else {
1760 		if (*ppos >= PCI_CFG_SPACE_SIZE) {
1761 			WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1762 
1763 			perm = &ecap_perms[cap_id];
1764 			cap_start = vfio_find_cap_start(vdev, *ppos);
1765 		} else {
1766 			WARN_ON(cap_id > PCI_CAP_ID_MAX);
1767 
1768 			perm = &cap_perms[cap_id];
1769 
1770 			if (cap_id == PCI_CAP_ID_MSI)
1771 				perm = vdev->msi_perm;
1772 
1773 			if (cap_id > PCI_CAP_ID_BASIC)
1774 				cap_start = vfio_find_cap_start(vdev, *ppos);
1775 		}
1776 	}
1777 
1778 	WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1779 	WARN_ON(cap_start > *ppos);
1780 
1781 	offset = *ppos - cap_start;
1782 
1783 	if (iswrite) {
1784 		if (!perm->writefn)
1785 			return ret;
1786 
1787 		if (copy_from_user(&val, buf, count))
1788 			return -EFAULT;
1789 
1790 		ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1791 	} else {
1792 		if (perm->readfn) {
1793 			ret = perm->readfn(vdev, *ppos, count,
1794 					   perm, offset, &val);
1795 			if (ret < 0)
1796 				return ret;
1797 		}
1798 
1799 		if (copy_to_user(buf, &val, count))
1800 			return -EFAULT;
1801 	}
1802 
1803 	return ret;
1804 }
1805 
vfio_pci_config_rw(struct vfio_pci_device * vdev,char __user * buf,size_t count,loff_t * ppos,bool iswrite)1806 ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
1807 			   size_t count, loff_t *ppos, bool iswrite)
1808 {
1809 	size_t done = 0;
1810 	int ret = 0;
1811 	loff_t pos = *ppos;
1812 
1813 	pos &= VFIO_PCI_OFFSET_MASK;
1814 
1815 	while (count) {
1816 		ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1817 		if (ret < 0)
1818 			return ret;
1819 
1820 		count -= ret;
1821 		done += ret;
1822 		buf += ret;
1823 		pos += ret;
1824 	}
1825 
1826 	*ppos += done;
1827 
1828 	return done;
1829 }
1830