• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_WAIT_H
2 #define _LINUX_WAIT_H
3 /*
4  * Linux wait queue related types and methods
5  */
6 #include <linux/list.h>
7 #include <linux/stddef.h>
8 #include <linux/spinlock.h>
9 #include <asm/current.h>
10 #include <uapi/linux/wait.h>
11 
12 typedef struct __wait_queue wait_queue_t;
13 typedef int (*wait_queue_func_t)(wait_queue_t *wait, unsigned mode, int flags, void *key);
14 int default_wake_function(wait_queue_t *wait, unsigned mode, int flags, void *key);
15 
16 /* __wait_queue::flags */
17 #define WQ_FLAG_EXCLUSIVE	0x01
18 #define WQ_FLAG_WOKEN		0x02
19 
20 struct __wait_queue {
21 	unsigned int		flags;
22 	void			*private;
23 	wait_queue_func_t	func;
24 	struct list_head	task_list;
25 };
26 
27 struct wait_bit_key {
28 	void			*flags;
29 	int			bit_nr;
30 #define WAIT_ATOMIC_T_BIT_NR	-1
31 	unsigned long		timeout;
32 };
33 
34 struct wait_bit_queue {
35 	struct wait_bit_key	key;
36 	wait_queue_t		wait;
37 };
38 
39 struct __wait_queue_head {
40 	spinlock_t		lock;
41 	struct list_head	task_list;
42 };
43 typedef struct __wait_queue_head wait_queue_head_t;
44 
45 struct task_struct;
46 
47 /*
48  * Macros for declaration and initialisaton of the datatypes
49  */
50 
51 #define __WAITQUEUE_INITIALIZER(name, tsk) {				\
52 	.private	= tsk,						\
53 	.func		= default_wake_function,			\
54 	.task_list	= { NULL, NULL } }
55 
56 #define DECLARE_WAITQUEUE(name, tsk)					\
57 	wait_queue_t name = __WAITQUEUE_INITIALIZER(name, tsk)
58 
59 #define __WAIT_QUEUE_HEAD_INITIALIZER(name) {				\
60 	.lock		= __SPIN_LOCK_UNLOCKED(name.lock),		\
61 	.task_list	= { &(name).task_list, &(name).task_list } }
62 
63 #define DECLARE_WAIT_QUEUE_HEAD(name) \
64 	wait_queue_head_t name = __WAIT_QUEUE_HEAD_INITIALIZER(name)
65 
66 #define __WAIT_BIT_KEY_INITIALIZER(word, bit)				\
67 	{ .flags = word, .bit_nr = bit, }
68 
69 #define __WAIT_ATOMIC_T_KEY_INITIALIZER(p)				\
70 	{ .flags = p, .bit_nr = WAIT_ATOMIC_T_BIT_NR, }
71 
72 extern void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *);
73 
74 #define init_waitqueue_head(q)				\
75 	do {						\
76 		static struct lock_class_key __key;	\
77 							\
78 		__init_waitqueue_head((q), #q, &__key);	\
79 	} while (0)
80 
81 #ifdef CONFIG_LOCKDEP
82 # define __WAIT_QUEUE_HEAD_INIT_ONSTACK(name) \
83 	({ init_waitqueue_head(&name); name; })
84 # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) \
85 	wait_queue_head_t name = __WAIT_QUEUE_HEAD_INIT_ONSTACK(name)
86 #else
87 # define DECLARE_WAIT_QUEUE_HEAD_ONSTACK(name) DECLARE_WAIT_QUEUE_HEAD(name)
88 #endif
89 
init_waitqueue_entry(wait_queue_t * q,struct task_struct * p)90 static inline void init_waitqueue_entry(wait_queue_t *q, struct task_struct *p)
91 {
92 	q->flags	= 0;
93 	q->private	= p;
94 	q->func		= default_wake_function;
95 }
96 
97 static inline void
init_waitqueue_func_entry(wait_queue_t * q,wait_queue_func_t func)98 init_waitqueue_func_entry(wait_queue_t *q, wait_queue_func_t func)
99 {
100 	q->flags	= 0;
101 	q->private	= NULL;
102 	q->func		= func;
103 }
104 
105 /**
106  * waitqueue_active -- locklessly test for waiters on the queue
107  * @q: the waitqueue to test for waiters
108  *
109  * returns true if the wait list is not empty
110  *
111  * NOTE: this function is lockless and requires care, incorrect usage _will_
112  * lead to sporadic and non-obvious failure.
113  *
114  * Use either while holding wait_queue_head_t::lock or when used for wakeups
115  * with an extra smp_mb() like:
116  *
117  *      CPU0 - waker                    CPU1 - waiter
118  *
119  *                                      for (;;) {
120  *      @cond = true;                     prepare_to_wait(&wq, &wait, state);
121  *      smp_mb();                         // smp_mb() from set_current_state()
122  *      if (waitqueue_active(wq))         if (@cond)
123  *        wake_up(wq);                      break;
124  *                                        schedule();
125  *                                      }
126  *                                      finish_wait(&wq, &wait);
127  *
128  * Because without the explicit smp_mb() it's possible for the
129  * waitqueue_active() load to get hoisted over the @cond store such that we'll
130  * observe an empty wait list while the waiter might not observe @cond.
131  *
132  * Also note that this 'optimization' trades a spin_lock() for an smp_mb(),
133  * which (when the lock is uncontended) are of roughly equal cost.
134  */
waitqueue_active(wait_queue_head_t * q)135 static inline int waitqueue_active(wait_queue_head_t *q)
136 {
137 	return !list_empty(&q->task_list);
138 }
139 
140 /**
141  * wq_has_sleeper - check if there are any waiting processes
142  * @wq: wait queue head
143  *
144  * Returns true if wq has waiting processes
145  *
146  * Please refer to the comment for waitqueue_active.
147  */
wq_has_sleeper(wait_queue_head_t * wq)148 static inline bool wq_has_sleeper(wait_queue_head_t *wq)
149 {
150 	/*
151 	 * We need to be sure we are in sync with the
152 	 * add_wait_queue modifications to the wait queue.
153 	 *
154 	 * This memory barrier should be paired with one on the
155 	 * waiting side.
156 	 */
157 	smp_mb();
158 	return waitqueue_active(wq);
159 }
160 
161 extern void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
162 extern void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait);
163 extern void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait);
164 
__add_wait_queue(wait_queue_head_t * head,wait_queue_t * new)165 static inline void __add_wait_queue(wait_queue_head_t *head, wait_queue_t *new)
166 {
167 	list_add(&new->task_list, &head->task_list);
168 }
169 
170 /*
171  * Used for wake-one threads:
172  */
173 static inline void
__add_wait_queue_exclusive(wait_queue_head_t * q,wait_queue_t * wait)174 __add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
175 {
176 	wait->flags |= WQ_FLAG_EXCLUSIVE;
177 	__add_wait_queue(q, wait);
178 }
179 
__add_wait_queue_tail(wait_queue_head_t * head,wait_queue_t * new)180 static inline void __add_wait_queue_tail(wait_queue_head_t *head,
181 					 wait_queue_t *new)
182 {
183 	list_add_tail(&new->task_list, &head->task_list);
184 }
185 
186 static inline void
__add_wait_queue_tail_exclusive(wait_queue_head_t * q,wait_queue_t * wait)187 __add_wait_queue_tail_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
188 {
189 	wait->flags |= WQ_FLAG_EXCLUSIVE;
190 	__add_wait_queue_tail(q, wait);
191 }
192 
193 static inline void
__remove_wait_queue(wait_queue_head_t * head,wait_queue_t * old)194 __remove_wait_queue(wait_queue_head_t *head, wait_queue_t *old)
195 {
196 	list_del(&old->task_list);
197 }
198 
199 typedef int wait_bit_action_f(struct wait_bit_key *, int mode);
200 void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
201 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key);
202 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, int nr, void *key);
203 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr);
204 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr);
205 void __wake_up_bit(wait_queue_head_t *, void *, int);
206 int __wait_on_bit(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
207 int __wait_on_bit_lock(wait_queue_head_t *, struct wait_bit_queue *, wait_bit_action_f *, unsigned);
208 void wake_up_bit(void *, int);
209 void wake_up_atomic_t(atomic_t *);
210 int out_of_line_wait_on_bit(void *, int, wait_bit_action_f *, unsigned);
211 int out_of_line_wait_on_bit_timeout(void *, int, wait_bit_action_f *, unsigned, unsigned long);
212 int out_of_line_wait_on_bit_lock(void *, int, wait_bit_action_f *, unsigned);
213 int out_of_line_wait_on_atomic_t(atomic_t *, int (*)(atomic_t *), unsigned);
214 wait_queue_head_t *bit_waitqueue(void *, int);
215 
216 #define wake_up(x)			__wake_up(x, TASK_NORMAL, 1, NULL)
217 #define wake_up_nr(x, nr)		__wake_up(x, TASK_NORMAL, nr, NULL)
218 #define wake_up_all(x)			__wake_up(x, TASK_NORMAL, 0, NULL)
219 #define wake_up_locked(x)		__wake_up_locked((x), TASK_NORMAL, 1)
220 #define wake_up_all_locked(x)		__wake_up_locked((x), TASK_NORMAL, 0)
221 
222 #define wake_up_interruptible(x)	__wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
223 #define wake_up_interruptible_nr(x, nr)	__wake_up(x, TASK_INTERRUPTIBLE, nr, NULL)
224 #define wake_up_interruptible_all(x)	__wake_up(x, TASK_INTERRUPTIBLE, 0, NULL)
225 #define wake_up_interruptible_sync(x)	__wake_up_sync((x), TASK_INTERRUPTIBLE, 1)
226 
227 /*
228  * Wakeup macros to be used to report events to the targets.
229  */
230 #define wake_up_poll(x, m)						\
231 	__wake_up(x, TASK_NORMAL, 1, (void *) (m))
232 #define wake_up_locked_poll(x, m)					\
233 	__wake_up_locked_key((x), TASK_NORMAL, (void *) (m))
234 #define wake_up_interruptible_poll(x, m)				\
235 	__wake_up(x, TASK_INTERRUPTIBLE, 1, (void *) (m))
236 #define wake_up_interruptible_sync_poll(x, m)				\
237 	__wake_up_sync_key((x), TASK_INTERRUPTIBLE, 1, (void *) (m))
238 
239 #define ___wait_cond_timeout(condition)					\
240 ({									\
241 	bool __cond = (condition);					\
242 	if (__cond && !__ret)						\
243 		__ret = 1;						\
244 	__cond || !__ret;						\
245 })
246 
247 #define ___wait_is_interruptible(state)					\
248 	(!__builtin_constant_p(state) ||				\
249 		state == TASK_INTERRUPTIBLE || state == TASK_KILLABLE)	\
250 
251 extern void init_wait_entry(wait_queue_t *__wait, int flags);
252 
253 /*
254  * The below macro ___wait_event() has an explicit shadow of the __ret
255  * variable when used from the wait_event_*() macros.
256  *
257  * This is so that both can use the ___wait_cond_timeout() construct
258  * to wrap the condition.
259  *
260  * The type inconsistency of the wait_event_*() __ret variable is also
261  * on purpose; we use long where we can return timeout values and int
262  * otherwise.
263  */
264 
265 #define ___wait_event(wq, condition, state, exclusive, ret, cmd)	\
266 ({									\
267 	__label__ __out;						\
268 	wait_queue_t __wait;						\
269 	long __ret = ret;	/* explicit shadow */			\
270 									\
271 	init_wait_entry(&__wait, exclusive ? WQ_FLAG_EXCLUSIVE : 0);	\
272 	for (;;) {							\
273 		long __int = prepare_to_wait_event(&wq, &__wait, state);\
274 									\
275 		if (condition)						\
276 			break;						\
277 									\
278 		if (___wait_is_interruptible(state) && __int) {		\
279 			__ret = __int;					\
280 			goto __out;					\
281 		}							\
282 									\
283 		cmd;							\
284 	}								\
285 	finish_wait(&wq, &__wait);					\
286 __out:	__ret;								\
287 })
288 
289 #define __wait_event(wq, condition)					\
290 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
291 			    schedule())
292 
293 /**
294  * wait_event - sleep until a condition gets true
295  * @wq: the waitqueue to wait on
296  * @condition: a C expression for the event to wait for
297  *
298  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
299  * @condition evaluates to true. The @condition is checked each time
300  * the waitqueue @wq is woken up.
301  *
302  * wake_up() has to be called after changing any variable that could
303  * change the result of the wait condition.
304  */
305 #define wait_event(wq, condition)					\
306 do {									\
307 	might_sleep();							\
308 	if (condition)							\
309 		break;							\
310 	__wait_event(wq, condition);					\
311 } while (0)
312 
313 #define __io_wait_event(wq, condition)					\
314 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
315 			    io_schedule())
316 
317 /*
318  * io_wait_event() -- like wait_event() but with io_schedule()
319  */
320 #define io_wait_event(wq, condition)					\
321 do {									\
322 	might_sleep();							\
323 	if (condition)							\
324 		break;							\
325 	__io_wait_event(wq, condition);					\
326 } while (0)
327 
328 #define __wait_event_freezable(wq, condition)				\
329 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
330 			    schedule(); try_to_freeze())
331 
332 /**
333  * wait_event_freezable - sleep (or freeze) until a condition gets true
334  * @wq: the waitqueue to wait on
335  * @condition: a C expression for the event to wait for
336  *
337  * The process is put to sleep (TASK_INTERRUPTIBLE -- so as not to contribute
338  * to system load) until the @condition evaluates to true. The
339  * @condition is checked each time the waitqueue @wq is woken up.
340  *
341  * wake_up() has to be called after changing any variable that could
342  * change the result of the wait condition.
343  */
344 #define wait_event_freezable(wq, condition)				\
345 ({									\
346 	int __ret = 0;							\
347 	might_sleep();							\
348 	if (!(condition))						\
349 		__ret = __wait_event_freezable(wq, condition);		\
350 	__ret;								\
351 })
352 
353 #define __wait_event_timeout(wq, condition, timeout)			\
354 	___wait_event(wq, ___wait_cond_timeout(condition),		\
355 		      TASK_UNINTERRUPTIBLE, 0, timeout,			\
356 		      __ret = schedule_timeout(__ret))
357 
358 /**
359  * wait_event_timeout - sleep until a condition gets true or a timeout elapses
360  * @wq: the waitqueue to wait on
361  * @condition: a C expression for the event to wait for
362  * @timeout: timeout, in jiffies
363  *
364  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
365  * @condition evaluates to true. The @condition is checked each time
366  * the waitqueue @wq is woken up.
367  *
368  * wake_up() has to be called after changing any variable that could
369  * change the result of the wait condition.
370  *
371  * Returns:
372  * 0 if the @condition evaluated to %false after the @timeout elapsed,
373  * 1 if the @condition evaluated to %true after the @timeout elapsed,
374  * or the remaining jiffies (at least 1) if the @condition evaluated
375  * to %true before the @timeout elapsed.
376  */
377 #define wait_event_timeout(wq, condition, timeout)			\
378 ({									\
379 	long __ret = timeout;						\
380 	might_sleep();							\
381 	if (!___wait_cond_timeout(condition))				\
382 		__ret = __wait_event_timeout(wq, condition, timeout);	\
383 	__ret;								\
384 })
385 
386 #define __wait_event_freezable_timeout(wq, condition, timeout)		\
387 	___wait_event(wq, ___wait_cond_timeout(condition),		\
388 		      TASK_INTERRUPTIBLE, 0, timeout,			\
389 		      __ret = schedule_timeout(__ret); try_to_freeze())
390 
391 /*
392  * like wait_event_timeout() -- except it uses TASK_INTERRUPTIBLE to avoid
393  * increasing load and is freezable.
394  */
395 #define wait_event_freezable_timeout(wq, condition, timeout)		\
396 ({									\
397 	long __ret = timeout;						\
398 	might_sleep();							\
399 	if (!___wait_cond_timeout(condition))				\
400 		__ret = __wait_event_freezable_timeout(wq, condition, timeout);	\
401 	__ret;								\
402 })
403 
404 #define __wait_event_exclusive_cmd(wq, condition, cmd1, cmd2)		\
405 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 1, 0,	\
406 			    cmd1; schedule(); cmd2)
407 /*
408  * Just like wait_event_cmd(), except it sets exclusive flag
409  */
410 #define wait_event_exclusive_cmd(wq, condition, cmd1, cmd2)		\
411 do {									\
412 	if (condition)							\
413 		break;							\
414 	__wait_event_exclusive_cmd(wq, condition, cmd1, cmd2);		\
415 } while (0)
416 
417 #define __wait_event_cmd(wq, condition, cmd1, cmd2)			\
418 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
419 			    cmd1; schedule(); cmd2)
420 
421 /**
422  * wait_event_cmd - sleep until a condition gets true
423  * @wq: the waitqueue to wait on
424  * @condition: a C expression for the event to wait for
425  * @cmd1: the command will be executed before sleep
426  * @cmd2: the command will be executed after sleep
427  *
428  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
429  * @condition evaluates to true. The @condition is checked each time
430  * the waitqueue @wq is woken up.
431  *
432  * wake_up() has to be called after changing any variable that could
433  * change the result of the wait condition.
434  */
435 #define wait_event_cmd(wq, condition, cmd1, cmd2)			\
436 do {									\
437 	if (condition)							\
438 		break;							\
439 	__wait_event_cmd(wq, condition, cmd1, cmd2);			\
440 } while (0)
441 
442 #define __wait_event_interruptible(wq, condition)			\
443 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
444 		      schedule())
445 
446 /**
447  * wait_event_interruptible - sleep until a condition gets true
448  * @wq: the waitqueue to wait on
449  * @condition: a C expression for the event to wait for
450  *
451  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
452  * @condition evaluates to true or a signal is received.
453  * The @condition is checked each time the waitqueue @wq is woken up.
454  *
455  * wake_up() has to be called after changing any variable that could
456  * change the result of the wait condition.
457  *
458  * The function will return -ERESTARTSYS if it was interrupted by a
459  * signal and 0 if @condition evaluated to true.
460  */
461 #define wait_event_interruptible(wq, condition)				\
462 ({									\
463 	int __ret = 0;							\
464 	might_sleep();							\
465 	if (!(condition))						\
466 		__ret = __wait_event_interruptible(wq, condition);	\
467 	__ret;								\
468 })
469 
470 #define __wait_event_interruptible_timeout(wq, condition, timeout)	\
471 	___wait_event(wq, ___wait_cond_timeout(condition),		\
472 		      TASK_INTERRUPTIBLE, 0, timeout,			\
473 		      __ret = schedule_timeout(__ret))
474 
475 /**
476  * wait_event_interruptible_timeout - sleep until a condition gets true or a timeout elapses
477  * @wq: the waitqueue to wait on
478  * @condition: a C expression for the event to wait for
479  * @timeout: timeout, in jiffies
480  *
481  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
482  * @condition evaluates to true or a signal is received.
483  * The @condition is checked each time the waitqueue @wq is woken up.
484  *
485  * wake_up() has to be called after changing any variable that could
486  * change the result of the wait condition.
487  *
488  * Returns:
489  * 0 if the @condition evaluated to %false after the @timeout elapsed,
490  * 1 if the @condition evaluated to %true after the @timeout elapsed,
491  * the remaining jiffies (at least 1) if the @condition evaluated
492  * to %true before the @timeout elapsed, or -%ERESTARTSYS if it was
493  * interrupted by a signal.
494  */
495 #define wait_event_interruptible_timeout(wq, condition, timeout)	\
496 ({									\
497 	long __ret = timeout;						\
498 	might_sleep();							\
499 	if (!___wait_cond_timeout(condition))				\
500 		__ret = __wait_event_interruptible_timeout(wq,		\
501 						condition, timeout);	\
502 	__ret;								\
503 })
504 
505 #define __wait_event_hrtimeout(wq, condition, timeout, state)		\
506 ({									\
507 	int __ret = 0;							\
508 	struct hrtimer_sleeper __t;					\
509 									\
510 	hrtimer_init_on_stack(&__t.timer, CLOCK_MONOTONIC,		\
511 			      HRTIMER_MODE_REL);			\
512 	hrtimer_init_sleeper(&__t, current);				\
513 	if ((timeout).tv64 != KTIME_MAX)				\
514 		hrtimer_start_range_ns(&__t.timer, timeout,		\
515 				       current->timer_slack_ns,		\
516 				       HRTIMER_MODE_REL);		\
517 									\
518 	__ret = ___wait_event(wq, condition, state, 0, 0,		\
519 		if (!__t.task) {					\
520 			__ret = -ETIME;					\
521 			break;						\
522 		}							\
523 		schedule());						\
524 									\
525 	hrtimer_cancel(&__t.timer);					\
526 	destroy_hrtimer_on_stack(&__t.timer);				\
527 	__ret;								\
528 })
529 
530 /**
531  * wait_event_hrtimeout - sleep until a condition gets true or a timeout elapses
532  * @wq: the waitqueue to wait on
533  * @condition: a C expression for the event to wait for
534  * @timeout: timeout, as a ktime_t
535  *
536  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
537  * @condition evaluates to true or a signal is received.
538  * The @condition is checked each time the waitqueue @wq is woken up.
539  *
540  * wake_up() has to be called after changing any variable that could
541  * change the result of the wait condition.
542  *
543  * The function returns 0 if @condition became true, or -ETIME if the timeout
544  * elapsed.
545  */
546 #define wait_event_hrtimeout(wq, condition, timeout)			\
547 ({									\
548 	int __ret = 0;							\
549 	might_sleep();							\
550 	if (!(condition))						\
551 		__ret = __wait_event_hrtimeout(wq, condition, timeout,	\
552 					       TASK_UNINTERRUPTIBLE);	\
553 	__ret;								\
554 })
555 
556 /**
557  * wait_event_interruptible_hrtimeout - sleep until a condition gets true or a timeout elapses
558  * @wq: the waitqueue to wait on
559  * @condition: a C expression for the event to wait for
560  * @timeout: timeout, as a ktime_t
561  *
562  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
563  * @condition evaluates to true or a signal is received.
564  * The @condition is checked each time the waitqueue @wq is woken up.
565  *
566  * wake_up() has to be called after changing any variable that could
567  * change the result of the wait condition.
568  *
569  * The function returns 0 if @condition became true, -ERESTARTSYS if it was
570  * interrupted by a signal, or -ETIME if the timeout elapsed.
571  */
572 #define wait_event_interruptible_hrtimeout(wq, condition, timeout)	\
573 ({									\
574 	long __ret = 0;							\
575 	might_sleep();							\
576 	if (!(condition))						\
577 		__ret = __wait_event_hrtimeout(wq, condition, timeout,	\
578 					       TASK_INTERRUPTIBLE);	\
579 	__ret;								\
580 })
581 
582 #define __wait_event_interruptible_exclusive(wq, condition)		\
583 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0,		\
584 		      schedule())
585 
586 #define wait_event_interruptible_exclusive(wq, condition)		\
587 ({									\
588 	int __ret = 0;							\
589 	might_sleep();							\
590 	if (!(condition))						\
591 		__ret = __wait_event_interruptible_exclusive(wq, condition);\
592 	__ret;								\
593 })
594 
595 #define __wait_event_killable_exclusive(wq, condition)			\
596 	___wait_event(wq, condition, TASK_KILLABLE, 1, 0,		\
597 		      schedule())
598 
599 #define wait_event_killable_exclusive(wq, condition)			\
600 ({									\
601 	int __ret = 0;							\
602 	might_sleep();							\
603 	if (!(condition))						\
604 		__ret = __wait_event_killable_exclusive(wq, condition);	\
605 	__ret;								\
606 })
607 
608 
609 #define __wait_event_freezable_exclusive(wq, condition)			\
610 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 1, 0,		\
611 			schedule(); try_to_freeze())
612 
613 #define wait_event_freezable_exclusive(wq, condition)			\
614 ({									\
615 	int __ret = 0;							\
616 	might_sleep();							\
617 	if (!(condition))						\
618 		__ret = __wait_event_freezable_exclusive(wq, condition);\
619 	__ret;								\
620 })
621 
622 
623 #define __wait_event_interruptible_locked(wq, condition, exclusive, irq) \
624 ({									\
625 	int __ret = 0;							\
626 	DEFINE_WAIT(__wait);						\
627 	if (exclusive)							\
628 		__wait.flags |= WQ_FLAG_EXCLUSIVE;			\
629 	do {								\
630 		if (likely(list_empty(&__wait.task_list)))		\
631 			__add_wait_queue_tail(&(wq), &__wait);		\
632 		set_current_state(TASK_INTERRUPTIBLE);			\
633 		if (signal_pending(current)) {				\
634 			__ret = -ERESTARTSYS;				\
635 			break;						\
636 		}							\
637 		if (irq)						\
638 			spin_unlock_irq(&(wq).lock);			\
639 		else							\
640 			spin_unlock(&(wq).lock);			\
641 		schedule();						\
642 		if (irq)						\
643 			spin_lock_irq(&(wq).lock);			\
644 		else							\
645 			spin_lock(&(wq).lock);				\
646 	} while (!(condition));						\
647 	__remove_wait_queue(&(wq), &__wait);				\
648 	__set_current_state(TASK_RUNNING);				\
649 	__ret;								\
650 })
651 
652 
653 /**
654  * wait_event_interruptible_locked - sleep until a condition gets true
655  * @wq: the waitqueue to wait on
656  * @condition: a C expression for the event to wait for
657  *
658  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
659  * @condition evaluates to true or a signal is received.
660  * The @condition is checked each time the waitqueue @wq is woken up.
661  *
662  * It must be called with wq.lock being held.  This spinlock is
663  * unlocked while sleeping but @condition testing is done while lock
664  * is held and when this macro exits the lock is held.
665  *
666  * The lock is locked/unlocked using spin_lock()/spin_unlock()
667  * functions which must match the way they are locked/unlocked outside
668  * of this macro.
669  *
670  * wake_up_locked() has to be called after changing any variable that could
671  * change the result of the wait condition.
672  *
673  * The function will return -ERESTARTSYS if it was interrupted by a
674  * signal and 0 if @condition evaluated to true.
675  */
676 #define wait_event_interruptible_locked(wq, condition)			\
677 	((condition)							\
678 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 0))
679 
680 /**
681  * wait_event_interruptible_locked_irq - sleep until a condition gets true
682  * @wq: the waitqueue to wait on
683  * @condition: a C expression for the event to wait for
684  *
685  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
686  * @condition evaluates to true or a signal is received.
687  * The @condition is checked each time the waitqueue @wq is woken up.
688  *
689  * It must be called with wq.lock being held.  This spinlock is
690  * unlocked while sleeping but @condition testing is done while lock
691  * is held and when this macro exits the lock is held.
692  *
693  * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
694  * functions which must match the way they are locked/unlocked outside
695  * of this macro.
696  *
697  * wake_up_locked() has to be called after changing any variable that could
698  * change the result of the wait condition.
699  *
700  * The function will return -ERESTARTSYS if it was interrupted by a
701  * signal and 0 if @condition evaluated to true.
702  */
703 #define wait_event_interruptible_locked_irq(wq, condition)		\
704 	((condition)							\
705 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 0, 1))
706 
707 /**
708  * wait_event_interruptible_exclusive_locked - sleep exclusively until a condition gets true
709  * @wq: the waitqueue to wait on
710  * @condition: a C expression for the event to wait for
711  *
712  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
713  * @condition evaluates to true or a signal is received.
714  * The @condition is checked each time the waitqueue @wq is woken up.
715  *
716  * It must be called with wq.lock being held.  This spinlock is
717  * unlocked while sleeping but @condition testing is done while lock
718  * is held and when this macro exits the lock is held.
719  *
720  * The lock is locked/unlocked using spin_lock()/spin_unlock()
721  * functions which must match the way they are locked/unlocked outside
722  * of this macro.
723  *
724  * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
725  * set thus when other process waits process on the list if this
726  * process is awaken further processes are not considered.
727  *
728  * wake_up_locked() has to be called after changing any variable that could
729  * change the result of the wait condition.
730  *
731  * The function will return -ERESTARTSYS if it was interrupted by a
732  * signal and 0 if @condition evaluated to true.
733  */
734 #define wait_event_interruptible_exclusive_locked(wq, condition)	\
735 	((condition)							\
736 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 0))
737 
738 /**
739  * wait_event_interruptible_exclusive_locked_irq - sleep until a condition gets true
740  * @wq: the waitqueue to wait on
741  * @condition: a C expression for the event to wait for
742  *
743  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
744  * @condition evaluates to true or a signal is received.
745  * The @condition is checked each time the waitqueue @wq is woken up.
746  *
747  * It must be called with wq.lock being held.  This spinlock is
748  * unlocked while sleeping but @condition testing is done while lock
749  * is held and when this macro exits the lock is held.
750  *
751  * The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq()
752  * functions which must match the way they are locked/unlocked outside
753  * of this macro.
754  *
755  * The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag
756  * set thus when other process waits process on the list if this
757  * process is awaken further processes are not considered.
758  *
759  * wake_up_locked() has to be called after changing any variable that could
760  * change the result of the wait condition.
761  *
762  * The function will return -ERESTARTSYS if it was interrupted by a
763  * signal and 0 if @condition evaluated to true.
764  */
765 #define wait_event_interruptible_exclusive_locked_irq(wq, condition)	\
766 	((condition)							\
767 	 ? 0 : __wait_event_interruptible_locked(wq, condition, 1, 1))
768 
769 
770 #define __wait_event_killable(wq, condition)				\
771 	___wait_event(wq, condition, TASK_KILLABLE, 0, 0, schedule())
772 
773 /**
774  * wait_event_killable - sleep until a condition gets true
775  * @wq: the waitqueue to wait on
776  * @condition: a C expression for the event to wait for
777  *
778  * The process is put to sleep (TASK_KILLABLE) until the
779  * @condition evaluates to true or a signal is received.
780  * The @condition is checked each time the waitqueue @wq is woken up.
781  *
782  * wake_up() has to be called after changing any variable that could
783  * change the result of the wait condition.
784  *
785  * The function will return -ERESTARTSYS if it was interrupted by a
786  * signal and 0 if @condition evaluated to true.
787  */
788 #define wait_event_killable(wq, condition)				\
789 ({									\
790 	int __ret = 0;							\
791 	might_sleep();							\
792 	if (!(condition))						\
793 		__ret = __wait_event_killable(wq, condition);		\
794 	__ret;								\
795 })
796 
797 
798 #define __wait_event_lock_irq(wq, condition, lock, cmd)			\
799 	(void)___wait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
800 			    spin_unlock_irq(&lock);			\
801 			    cmd;					\
802 			    schedule();					\
803 			    spin_lock_irq(&lock))
804 
805 /**
806  * wait_event_lock_irq_cmd - sleep until a condition gets true. The
807  *			     condition is checked under the lock. This
808  *			     is expected to be called with the lock
809  *			     taken.
810  * @wq: the waitqueue to wait on
811  * @condition: a C expression for the event to wait for
812  * @lock: a locked spinlock_t, which will be released before cmd
813  *	  and schedule() and reacquired afterwards.
814  * @cmd: a command which is invoked outside the critical section before
815  *	 sleep
816  *
817  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
818  * @condition evaluates to true. The @condition is checked each time
819  * the waitqueue @wq is woken up.
820  *
821  * wake_up() has to be called after changing any variable that could
822  * change the result of the wait condition.
823  *
824  * This is supposed to be called while holding the lock. The lock is
825  * dropped before invoking the cmd and going to sleep and is reacquired
826  * afterwards.
827  */
828 #define wait_event_lock_irq_cmd(wq, condition, lock, cmd)		\
829 do {									\
830 	if (condition)							\
831 		break;							\
832 	__wait_event_lock_irq(wq, condition, lock, cmd);		\
833 } while (0)
834 
835 /**
836  * wait_event_lock_irq - sleep until a condition gets true. The
837  *			 condition is checked under the lock. This
838  *			 is expected to be called with the lock
839  *			 taken.
840  * @wq: the waitqueue to wait on
841  * @condition: a C expression for the event to wait for
842  * @lock: a locked spinlock_t, which will be released before schedule()
843  *	  and reacquired afterwards.
844  *
845  * The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
846  * @condition evaluates to true. The @condition is checked each time
847  * the waitqueue @wq is woken up.
848  *
849  * wake_up() has to be called after changing any variable that could
850  * change the result of the wait condition.
851  *
852  * This is supposed to be called while holding the lock. The lock is
853  * dropped before going to sleep and is reacquired afterwards.
854  */
855 #define wait_event_lock_irq(wq, condition, lock)			\
856 do {									\
857 	if (condition)							\
858 		break;							\
859 	__wait_event_lock_irq(wq, condition, lock, );			\
860 } while (0)
861 
862 
863 #define __wait_event_interruptible_lock_irq(wq, condition, lock, cmd)	\
864 	___wait_event(wq, condition, TASK_INTERRUPTIBLE, 0, 0,		\
865 		      spin_unlock_irq(&lock);				\
866 		      cmd;						\
867 		      schedule();					\
868 		      spin_lock_irq(&lock))
869 
870 /**
871  * wait_event_interruptible_lock_irq_cmd - sleep until a condition gets true.
872  *		The condition is checked under the lock. This is expected to
873  *		be called with the lock taken.
874  * @wq: the waitqueue to wait on
875  * @condition: a C expression for the event to wait for
876  * @lock: a locked spinlock_t, which will be released before cmd and
877  *	  schedule() and reacquired afterwards.
878  * @cmd: a command which is invoked outside the critical section before
879  *	 sleep
880  *
881  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
882  * @condition evaluates to true or a signal is received. The @condition is
883  * checked each time the waitqueue @wq is woken up.
884  *
885  * wake_up() has to be called after changing any variable that could
886  * change the result of the wait condition.
887  *
888  * This is supposed to be called while holding the lock. The lock is
889  * dropped before invoking the cmd and going to sleep and is reacquired
890  * afterwards.
891  *
892  * The macro will return -ERESTARTSYS if it was interrupted by a signal
893  * and 0 if @condition evaluated to true.
894  */
895 #define wait_event_interruptible_lock_irq_cmd(wq, condition, lock, cmd)	\
896 ({									\
897 	int __ret = 0;							\
898 	if (!(condition))						\
899 		__ret = __wait_event_interruptible_lock_irq(wq,		\
900 						condition, lock, cmd);	\
901 	__ret;								\
902 })
903 
904 /**
905  * wait_event_interruptible_lock_irq - sleep until a condition gets true.
906  *		The condition is checked under the lock. This is expected
907  *		to be called with the lock taken.
908  * @wq: the waitqueue to wait on
909  * @condition: a C expression for the event to wait for
910  * @lock: a locked spinlock_t, which will be released before schedule()
911  *	  and reacquired afterwards.
912  *
913  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
914  * @condition evaluates to true or signal is received. The @condition is
915  * checked each time the waitqueue @wq is woken up.
916  *
917  * wake_up() has to be called after changing any variable that could
918  * change the result of the wait condition.
919  *
920  * This is supposed to be called while holding the lock. The lock is
921  * dropped before going to sleep and is reacquired afterwards.
922  *
923  * The macro will return -ERESTARTSYS if it was interrupted by a signal
924  * and 0 if @condition evaluated to true.
925  */
926 #define wait_event_interruptible_lock_irq(wq, condition, lock)		\
927 ({									\
928 	int __ret = 0;							\
929 	if (!(condition))						\
930 		__ret = __wait_event_interruptible_lock_irq(wq,		\
931 						condition, lock,);	\
932 	__ret;								\
933 })
934 
935 #define __wait_event_interruptible_lock_irq_timeout(wq, condition,	\
936 						    lock, timeout)	\
937 	___wait_event(wq, ___wait_cond_timeout(condition),		\
938 		      TASK_INTERRUPTIBLE, 0, timeout,			\
939 		      spin_unlock_irq(&lock);				\
940 		      __ret = schedule_timeout(__ret);			\
941 		      spin_lock_irq(&lock));
942 
943 /**
944  * wait_event_interruptible_lock_irq_timeout - sleep until a condition gets
945  *		true or a timeout elapses. The condition is checked under
946  *		the lock. This is expected to be called with the lock taken.
947  * @wq: the waitqueue to wait on
948  * @condition: a C expression for the event to wait for
949  * @lock: a locked spinlock_t, which will be released before schedule()
950  *	  and reacquired afterwards.
951  * @timeout: timeout, in jiffies
952  *
953  * The process is put to sleep (TASK_INTERRUPTIBLE) until the
954  * @condition evaluates to true or signal is received. The @condition is
955  * checked each time the waitqueue @wq is woken up.
956  *
957  * wake_up() has to be called after changing any variable that could
958  * change the result of the wait condition.
959  *
960  * This is supposed to be called while holding the lock. The lock is
961  * dropped before going to sleep and is reacquired afterwards.
962  *
963  * The function returns 0 if the @timeout elapsed, -ERESTARTSYS if it
964  * was interrupted by a signal, and the remaining jiffies otherwise
965  * if the condition evaluated to true before the timeout elapsed.
966  */
967 #define wait_event_interruptible_lock_irq_timeout(wq, condition, lock,	\
968 						  timeout)		\
969 ({									\
970 	long __ret = timeout;						\
971 	if (!___wait_cond_timeout(condition))				\
972 		__ret = __wait_event_interruptible_lock_irq_timeout(	\
973 					wq, condition, lock, timeout);	\
974 	__ret;								\
975 })
976 
977 /*
978  * Waitqueues which are removed from the waitqueue_head at wakeup time
979  */
980 void prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state);
981 void prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state);
982 long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state);
983 void finish_wait(wait_queue_head_t *q, wait_queue_t *wait);
984 long wait_woken(wait_queue_t *wait, unsigned mode, long timeout);
985 int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
986 int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
987 int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *key);
988 
989 #define DEFINE_WAIT_FUNC(name, function)				\
990 	wait_queue_t name = {						\
991 		.private	= current,				\
992 		.func		= function,				\
993 		.task_list	= LIST_HEAD_INIT((name).task_list),	\
994 	}
995 
996 #define DEFINE_WAIT(name) DEFINE_WAIT_FUNC(name, autoremove_wake_function)
997 
998 #define DEFINE_WAIT_BIT(name, word, bit)				\
999 	struct wait_bit_queue name = {					\
1000 		.key = __WAIT_BIT_KEY_INITIALIZER(word, bit),		\
1001 		.wait	= {						\
1002 			.private	= current,			\
1003 			.func		= wake_bit_function,		\
1004 			.task_list	=				\
1005 				LIST_HEAD_INIT((name).wait.task_list),	\
1006 		},							\
1007 	}
1008 
1009 #define init_wait(wait)							\
1010 	do {								\
1011 		(wait)->private = current;				\
1012 		(wait)->func = autoremove_wake_function;		\
1013 		INIT_LIST_HEAD(&(wait)->task_list);			\
1014 		(wait)->flags = 0;					\
1015 	} while (0)
1016 
1017 
1018 extern int bit_wait(struct wait_bit_key *, int);
1019 extern int bit_wait_io(struct wait_bit_key *, int);
1020 extern int bit_wait_timeout(struct wait_bit_key *, int);
1021 extern int bit_wait_io_timeout(struct wait_bit_key *, int);
1022 
1023 /**
1024  * wait_on_bit - wait for a bit to be cleared
1025  * @word: the word being waited on, a kernel virtual address
1026  * @bit: the bit of the word being waited on
1027  * @mode: the task state to sleep in
1028  *
1029  * There is a standard hashed waitqueue table for generic use. This
1030  * is the part of the hashtable's accessor API that waits on a bit.
1031  * For instance, if one were to have waiters on a bitflag, one would
1032  * call wait_on_bit() in threads waiting for the bit to clear.
1033  * One uses wait_on_bit() where one is waiting for the bit to clear,
1034  * but has no intention of setting it.
1035  * Returned value will be zero if the bit was cleared, or non-zero
1036  * if the process received a signal and the mode permitted wakeup
1037  * on that signal.
1038  */
1039 static inline int
wait_on_bit(unsigned long * word,int bit,unsigned mode)1040 wait_on_bit(unsigned long *word, int bit, unsigned mode)
1041 {
1042 	might_sleep();
1043 	if (!test_bit(bit, word))
1044 		return 0;
1045 	return out_of_line_wait_on_bit(word, bit,
1046 				       bit_wait,
1047 				       mode);
1048 }
1049 
1050 /**
1051  * wait_on_bit_io - wait for a bit to be cleared
1052  * @word: the word being waited on, a kernel virtual address
1053  * @bit: the bit of the word being waited on
1054  * @mode: the task state to sleep in
1055  *
1056  * Use the standard hashed waitqueue table to wait for a bit
1057  * to be cleared.  This is similar to wait_on_bit(), but calls
1058  * io_schedule() instead of schedule() for the actual waiting.
1059  *
1060  * Returned value will be zero if the bit was cleared, or non-zero
1061  * if the process received a signal and the mode permitted wakeup
1062  * on that signal.
1063  */
1064 static inline int
wait_on_bit_io(unsigned long * word,int bit,unsigned mode)1065 wait_on_bit_io(unsigned long *word, int bit, unsigned mode)
1066 {
1067 	might_sleep();
1068 	if (!test_bit(bit, word))
1069 		return 0;
1070 	return out_of_line_wait_on_bit(word, bit,
1071 				       bit_wait_io,
1072 				       mode);
1073 }
1074 
1075 /**
1076  * wait_on_bit_timeout - wait for a bit to be cleared or a timeout elapses
1077  * @word: the word being waited on, a kernel virtual address
1078  * @bit: the bit of the word being waited on
1079  * @mode: the task state to sleep in
1080  * @timeout: timeout, in jiffies
1081  *
1082  * Use the standard hashed waitqueue table to wait for a bit
1083  * to be cleared. This is similar to wait_on_bit(), except also takes a
1084  * timeout parameter.
1085  *
1086  * Returned value will be zero if the bit was cleared before the
1087  * @timeout elapsed, or non-zero if the @timeout elapsed or process
1088  * received a signal and the mode permitted wakeup on that signal.
1089  */
1090 static inline int
wait_on_bit_timeout(unsigned long * word,int bit,unsigned mode,unsigned long timeout)1091 wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode,
1092 		    unsigned long timeout)
1093 {
1094 	might_sleep();
1095 	if (!test_bit(bit, word))
1096 		return 0;
1097 	return out_of_line_wait_on_bit_timeout(word, bit,
1098 					       bit_wait_timeout,
1099 					       mode, timeout);
1100 }
1101 
1102 /**
1103  * wait_on_bit_action - wait for a bit to be cleared
1104  * @word: the word being waited on, a kernel virtual address
1105  * @bit: the bit of the word being waited on
1106  * @action: the function used to sleep, which may take special actions
1107  * @mode: the task state to sleep in
1108  *
1109  * Use the standard hashed waitqueue table to wait for a bit
1110  * to be cleared, and allow the waiting action to be specified.
1111  * This is like wait_on_bit() but allows fine control of how the waiting
1112  * is done.
1113  *
1114  * Returned value will be zero if the bit was cleared, or non-zero
1115  * if the process received a signal and the mode permitted wakeup
1116  * on that signal.
1117  */
1118 static inline int
wait_on_bit_action(unsigned long * word,int bit,wait_bit_action_f * action,unsigned mode)1119 wait_on_bit_action(unsigned long *word, int bit, wait_bit_action_f *action,
1120 		   unsigned mode)
1121 {
1122 	might_sleep();
1123 	if (!test_bit(bit, word))
1124 		return 0;
1125 	return out_of_line_wait_on_bit(word, bit, action, mode);
1126 }
1127 
1128 /**
1129  * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it
1130  * @word: the word being waited on, a kernel virtual address
1131  * @bit: the bit of the word being waited on
1132  * @mode: the task state to sleep in
1133  *
1134  * There is a standard hashed waitqueue table for generic use. This
1135  * is the part of the hashtable's accessor API that waits on a bit
1136  * when one intends to set it, for instance, trying to lock bitflags.
1137  * For instance, if one were to have waiters trying to set bitflag
1138  * and waiting for it to clear before setting it, one would call
1139  * wait_on_bit() in threads waiting to be able to set the bit.
1140  * One uses wait_on_bit_lock() where one is waiting for the bit to
1141  * clear with the intention of setting it, and when done, clearing it.
1142  *
1143  * Returns zero if the bit was (eventually) found to be clear and was
1144  * set.  Returns non-zero if a signal was delivered to the process and
1145  * the @mode allows that signal to wake the process.
1146  */
1147 static inline int
wait_on_bit_lock(unsigned long * word,int bit,unsigned mode)1148 wait_on_bit_lock(unsigned long *word, int bit, unsigned mode)
1149 {
1150 	might_sleep();
1151 	if (!test_and_set_bit(bit, word))
1152 		return 0;
1153 	return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode);
1154 }
1155 
1156 /**
1157  * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it
1158  * @word: the word being waited on, a kernel virtual address
1159  * @bit: the bit of the word being waited on
1160  * @mode: the task state to sleep in
1161  *
1162  * Use the standard hashed waitqueue table to wait for a bit
1163  * to be cleared and then to atomically set it.  This is similar
1164  * to wait_on_bit(), but calls io_schedule() instead of schedule()
1165  * for the actual waiting.
1166  *
1167  * Returns zero if the bit was (eventually) found to be clear and was
1168  * set.  Returns non-zero if a signal was delivered to the process and
1169  * the @mode allows that signal to wake the process.
1170  */
1171 static inline int
wait_on_bit_lock_io(unsigned long * word,int bit,unsigned mode)1172 wait_on_bit_lock_io(unsigned long *word, int bit, unsigned mode)
1173 {
1174 	might_sleep();
1175 	if (!test_and_set_bit(bit, word))
1176 		return 0;
1177 	return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode);
1178 }
1179 
1180 /**
1181  * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it
1182  * @word: the word being waited on, a kernel virtual address
1183  * @bit: the bit of the word being waited on
1184  * @action: the function used to sleep, which may take special actions
1185  * @mode: the task state to sleep in
1186  *
1187  * Use the standard hashed waitqueue table to wait for a bit
1188  * to be cleared and then to set it, and allow the waiting action
1189  * to be specified.
1190  * This is like wait_on_bit() but allows fine control of how the waiting
1191  * is done.
1192  *
1193  * Returns zero if the bit was (eventually) found to be clear and was
1194  * set.  Returns non-zero if a signal was delivered to the process and
1195  * the @mode allows that signal to wake the process.
1196  */
1197 static inline int
wait_on_bit_lock_action(unsigned long * word,int bit,wait_bit_action_f * action,unsigned mode)1198 wait_on_bit_lock_action(unsigned long *word, int bit, wait_bit_action_f *action,
1199 			unsigned mode)
1200 {
1201 	might_sleep();
1202 	if (!test_and_set_bit(bit, word))
1203 		return 0;
1204 	return out_of_line_wait_on_bit_lock(word, bit, action, mode);
1205 }
1206 
1207 /**
1208  * wait_on_atomic_t - Wait for an atomic_t to become 0
1209  * @val: The atomic value being waited on, a kernel virtual address
1210  * @action: the function used to sleep, which may take special actions
1211  * @mode: the task state to sleep in
1212  *
1213  * Wait for an atomic_t to become 0.  We abuse the bit-wait waitqueue table for
1214  * the purpose of getting a waitqueue, but we set the key to a bit number
1215  * outside of the target 'word'.
1216  */
1217 static inline
wait_on_atomic_t(atomic_t * val,int (* action)(atomic_t *),unsigned mode)1218 int wait_on_atomic_t(atomic_t *val, int (*action)(atomic_t *), unsigned mode)
1219 {
1220 	might_sleep();
1221 	if (atomic_read(val) == 0)
1222 		return 0;
1223 	return out_of_line_wait_on_atomic_t(val, action, mode);
1224 }
1225 
1226 #endif /* _LINUX_WAIT_H */
1227