1 #ifndef __LINUX_SEQLOCK_H
2 #define __LINUX_SEQLOCK_H
3 /*
4 * Reader/writer consistent mechanism without starving writers. This type of
5 * lock for data where the reader wants a consistent set of information
6 * and is willing to retry if the information changes. There are two types
7 * of readers:
8 * 1. Sequence readers which never block a writer but they may have to retry
9 * if a writer is in progress by detecting change in sequence number.
10 * Writers do not wait for a sequence reader.
11 * 2. Locking readers which will wait if a writer or another locking reader
12 * is in progress. A locking reader in progress will also block a writer
13 * from going forward. Unlike the regular rwlock, the read lock here is
14 * exclusive so that only one locking reader can get it.
15 *
16 * This is not as cache friendly as brlock. Also, this may not work well
17 * for data that contains pointers, because any writer could
18 * invalidate a pointer that a reader was following.
19 *
20 * Expected non-blocking reader usage:
21 * do {
22 * seq = read_seqbegin(&foo);
23 * ...
24 * } while (read_seqretry(&foo, seq));
25 *
26 *
27 * On non-SMP the spin locks disappear but the writer still needs
28 * to increment the sequence variables because an interrupt routine could
29 * change the state of the data.
30 *
31 * Based on x86_64 vsyscall gettimeofday
32 * by Keith Owens and Andrea Arcangeli
33 */
34
35 #include <linux/spinlock.h>
36 #include <linux/preempt.h>
37 #include <linux/lockdep.h>
38 #include <linux/compiler.h>
39 #include <asm/processor.h>
40
41 /*
42 * Version using sequence counter only.
43 * This can be used when code has its own mutex protecting the
44 * updating starting before the write_seqcountbeqin() and ending
45 * after the write_seqcount_end().
46 */
47 typedef struct seqcount {
48 unsigned sequence;
49 #ifdef CONFIG_DEBUG_LOCK_ALLOC
50 struct lockdep_map dep_map;
51 #endif
52 } seqcount_t;
53
__seqcount_init(seqcount_t * s,const char * name,struct lock_class_key * key)54 static inline void __seqcount_init(seqcount_t *s, const char *name,
55 struct lock_class_key *key)
56 {
57 /*
58 * Make sure we are not reinitializing a held lock:
59 */
60 lockdep_init_map(&s->dep_map, name, key, 0);
61 s->sequence = 0;
62 }
63
64 #ifdef CONFIG_DEBUG_LOCK_ALLOC
65 # define SEQCOUNT_DEP_MAP_INIT(lockname) \
66 .dep_map = { .name = #lockname } \
67
68 # define seqcount_init(s) \
69 do { \
70 static struct lock_class_key __key; \
71 __seqcount_init((s), #s, &__key); \
72 } while (0)
73
seqcount_lockdep_reader_access(const seqcount_t * s)74 static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
75 {
76 seqcount_t *l = (seqcount_t *)s;
77 unsigned long flags;
78
79 local_irq_save(flags);
80 seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
81 seqcount_release(&l->dep_map, 1, _RET_IP_);
82 local_irq_restore(flags);
83 }
84
85 #else
86 # define SEQCOUNT_DEP_MAP_INIT(lockname)
87 # define seqcount_init(s) __seqcount_init(s, NULL, NULL)
88 # define seqcount_lockdep_reader_access(x)
89 #endif
90
91 #define SEQCNT_ZERO(lockname) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(lockname)}
92
93
94 /**
95 * __read_seqcount_begin - begin a seq-read critical section (without barrier)
96 * @s: pointer to seqcount_t
97 * Returns: count to be passed to read_seqcount_retry
98 *
99 * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
100 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
101 * provided before actually loading any of the variables that are to be
102 * protected in this critical section.
103 *
104 * Use carefully, only in critical code, and comment how the barrier is
105 * provided.
106 */
__read_seqcount_begin(const seqcount_t * s)107 static inline unsigned __read_seqcount_begin(const seqcount_t *s)
108 {
109 unsigned ret;
110
111 repeat:
112 ret = READ_ONCE(s->sequence);
113 if (unlikely(ret & 1)) {
114 cpu_relax();
115 goto repeat;
116 }
117 return ret;
118 }
119
120 /**
121 * raw_read_seqcount - Read the raw seqcount
122 * @s: pointer to seqcount_t
123 * Returns: count to be passed to read_seqcount_retry
124 *
125 * raw_read_seqcount opens a read critical section of the given
126 * seqcount without any lockdep checking and without checking or
127 * masking the LSB. Calling code is responsible for handling that.
128 */
raw_read_seqcount(const seqcount_t * s)129 static inline unsigned raw_read_seqcount(const seqcount_t *s)
130 {
131 unsigned ret = READ_ONCE(s->sequence);
132 smp_rmb();
133 return ret;
134 }
135
136 /**
137 * raw_read_seqcount_begin - start seq-read critical section w/o lockdep
138 * @s: pointer to seqcount_t
139 * Returns: count to be passed to read_seqcount_retry
140 *
141 * raw_read_seqcount_begin opens a read critical section of the given
142 * seqcount, but without any lockdep checking. Validity of the critical
143 * section is tested by checking read_seqcount_retry function.
144 */
raw_read_seqcount_begin(const seqcount_t * s)145 static inline unsigned raw_read_seqcount_begin(const seqcount_t *s)
146 {
147 unsigned ret = __read_seqcount_begin(s);
148 smp_rmb();
149 return ret;
150 }
151
152 /**
153 * read_seqcount_begin - begin a seq-read critical section
154 * @s: pointer to seqcount_t
155 * Returns: count to be passed to read_seqcount_retry
156 *
157 * read_seqcount_begin opens a read critical section of the given seqcount.
158 * Validity of the critical section is tested by checking read_seqcount_retry
159 * function.
160 */
read_seqcount_begin(const seqcount_t * s)161 static inline unsigned read_seqcount_begin(const seqcount_t *s)
162 {
163 seqcount_lockdep_reader_access(s);
164 return raw_read_seqcount_begin(s);
165 }
166
167 /**
168 * raw_seqcount_begin - begin a seq-read critical section
169 * @s: pointer to seqcount_t
170 * Returns: count to be passed to read_seqcount_retry
171 *
172 * raw_seqcount_begin opens a read critical section of the given seqcount.
173 * Validity of the critical section is tested by checking read_seqcount_retry
174 * function.
175 *
176 * Unlike read_seqcount_begin(), this function will not wait for the count
177 * to stabilize. If a writer is active when we begin, we will fail the
178 * read_seqcount_retry() instead of stabilizing at the beginning of the
179 * critical section.
180 */
raw_seqcount_begin(const seqcount_t * s)181 static inline unsigned raw_seqcount_begin(const seqcount_t *s)
182 {
183 unsigned ret = READ_ONCE(s->sequence);
184 smp_rmb();
185 return ret & ~1;
186 }
187
188 /**
189 * __read_seqcount_retry - end a seq-read critical section (without barrier)
190 * @s: pointer to seqcount_t
191 * @start: count, from read_seqcount_begin
192 * Returns: 1 if retry is required, else 0
193 *
194 * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
195 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
196 * provided before actually loading any of the variables that are to be
197 * protected in this critical section.
198 *
199 * Use carefully, only in critical code, and comment how the barrier is
200 * provided.
201 */
__read_seqcount_retry(const seqcount_t * s,unsigned start)202 static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start)
203 {
204 return unlikely(s->sequence != start);
205 }
206
207 /**
208 * read_seqcount_retry - end a seq-read critical section
209 * @s: pointer to seqcount_t
210 * @start: count, from read_seqcount_begin
211 * Returns: 1 if retry is required, else 0
212 *
213 * read_seqcount_retry closes a read critical section of the given seqcount.
214 * If the critical section was invalid, it must be ignored (and typically
215 * retried).
216 */
read_seqcount_retry(const seqcount_t * s,unsigned start)217 static inline int read_seqcount_retry(const seqcount_t *s, unsigned start)
218 {
219 smp_rmb();
220 return __read_seqcount_retry(s, start);
221 }
222
223
224
raw_write_seqcount_begin(seqcount_t * s)225 static inline void raw_write_seqcount_begin(seqcount_t *s)
226 {
227 s->sequence++;
228 smp_wmb();
229 }
230
raw_write_seqcount_end(seqcount_t * s)231 static inline void raw_write_seqcount_end(seqcount_t *s)
232 {
233 smp_wmb();
234 s->sequence++;
235 }
236
237 /**
238 * raw_write_seqcount_barrier - do a seq write barrier
239 * @s: pointer to seqcount_t
240 *
241 * This can be used to provide an ordering guarantee instead of the
242 * usual consistency guarantee. It is one wmb cheaper, because we can
243 * collapse the two back-to-back wmb()s.
244 *
245 * seqcount_t seq;
246 * bool X = true, Y = false;
247 *
248 * void read(void)
249 * {
250 * bool x, y;
251 *
252 * do {
253 * int s = read_seqcount_begin(&seq);
254 *
255 * x = X; y = Y;
256 *
257 * } while (read_seqcount_retry(&seq, s));
258 *
259 * BUG_ON(!x && !y);
260 * }
261 *
262 * void write(void)
263 * {
264 * Y = true;
265 *
266 * raw_write_seqcount_barrier(seq);
267 *
268 * X = false;
269 * }
270 */
raw_write_seqcount_barrier(seqcount_t * s)271 static inline void raw_write_seqcount_barrier(seqcount_t *s)
272 {
273 s->sequence++;
274 smp_wmb();
275 s->sequence++;
276 }
277
raw_read_seqcount_latch(seqcount_t * s)278 static inline int raw_read_seqcount_latch(seqcount_t *s)
279 {
280 int seq = READ_ONCE(s->sequence);
281 /* Pairs with the first smp_wmb() in raw_write_seqcount_latch() */
282 smp_read_barrier_depends();
283 return seq;
284 }
285
286 /**
287 * raw_write_seqcount_latch - redirect readers to even/odd copy
288 * @s: pointer to seqcount_t
289 *
290 * The latch technique is a multiversion concurrency control method that allows
291 * queries during non-atomic modifications. If you can guarantee queries never
292 * interrupt the modification -- e.g. the concurrency is strictly between CPUs
293 * -- you most likely do not need this.
294 *
295 * Where the traditional RCU/lockless data structures rely on atomic
296 * modifications to ensure queries observe either the old or the new state the
297 * latch allows the same for non-atomic updates. The trade-off is doubling the
298 * cost of storage; we have to maintain two copies of the entire data
299 * structure.
300 *
301 * Very simply put: we first modify one copy and then the other. This ensures
302 * there is always one copy in a stable state, ready to give us an answer.
303 *
304 * The basic form is a data structure like:
305 *
306 * struct latch_struct {
307 * seqcount_t seq;
308 * struct data_struct data[2];
309 * };
310 *
311 * Where a modification, which is assumed to be externally serialized, does the
312 * following:
313 *
314 * void latch_modify(struct latch_struct *latch, ...)
315 * {
316 * smp_wmb(); <- Ensure that the last data[1] update is visible
317 * latch->seq++;
318 * smp_wmb(); <- Ensure that the seqcount update is visible
319 *
320 * modify(latch->data[0], ...);
321 *
322 * smp_wmb(); <- Ensure that the data[0] update is visible
323 * latch->seq++;
324 * smp_wmb(); <- Ensure that the seqcount update is visible
325 *
326 * modify(latch->data[1], ...);
327 * }
328 *
329 * The query will have a form like:
330 *
331 * struct entry *latch_query(struct latch_struct *latch, ...)
332 * {
333 * struct entry *entry;
334 * unsigned seq, idx;
335 *
336 * do {
337 * seq = raw_read_seqcount_latch(&latch->seq);
338 *
339 * idx = seq & 0x01;
340 * entry = data_query(latch->data[idx], ...);
341 *
342 * smp_rmb();
343 * } while (seq != latch->seq);
344 *
345 * return entry;
346 * }
347 *
348 * So during the modification, queries are first redirected to data[1]. Then we
349 * modify data[0]. When that is complete, we redirect queries back to data[0]
350 * and we can modify data[1].
351 *
352 * NOTE: The non-requirement for atomic modifications does _NOT_ include
353 * the publishing of new entries in the case where data is a dynamic
354 * data structure.
355 *
356 * An iteration might start in data[0] and get suspended long enough
357 * to miss an entire modification sequence, once it resumes it might
358 * observe the new entry.
359 *
360 * NOTE: When data is a dynamic data structure; one should use regular RCU
361 * patterns to manage the lifetimes of the objects within.
362 */
raw_write_seqcount_latch(seqcount_t * s)363 static inline void raw_write_seqcount_latch(seqcount_t *s)
364 {
365 smp_wmb(); /* prior stores before incrementing "sequence" */
366 s->sequence++;
367 smp_wmb(); /* increment "sequence" before following stores */
368 }
369
370 /*
371 * Sequence counter only version assumes that callers are using their
372 * own mutexing.
373 */
write_seqcount_begin_nested(seqcount_t * s,int subclass)374 static inline void write_seqcount_begin_nested(seqcount_t *s, int subclass)
375 {
376 raw_write_seqcount_begin(s);
377 seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
378 }
379
write_seqcount_begin(seqcount_t * s)380 static inline void write_seqcount_begin(seqcount_t *s)
381 {
382 write_seqcount_begin_nested(s, 0);
383 }
384
write_seqcount_end(seqcount_t * s)385 static inline void write_seqcount_end(seqcount_t *s)
386 {
387 seqcount_release(&s->dep_map, 1, _RET_IP_);
388 raw_write_seqcount_end(s);
389 }
390
391 /**
392 * write_seqcount_invalidate - invalidate in-progress read-side seq operations
393 * @s: pointer to seqcount_t
394 *
395 * After write_seqcount_invalidate, no read-side seq operations will complete
396 * successfully and see data older than this.
397 */
write_seqcount_invalidate(seqcount_t * s)398 static inline void write_seqcount_invalidate(seqcount_t *s)
399 {
400 smp_wmb();
401 s->sequence+=2;
402 }
403
404 typedef struct {
405 struct seqcount seqcount;
406 spinlock_t lock;
407 } seqlock_t;
408
409 /*
410 * These macros triggered gcc-3.x compile-time problems. We think these are
411 * OK now. Be cautious.
412 */
413 #define __SEQLOCK_UNLOCKED(lockname) \
414 { \
415 .seqcount = SEQCNT_ZERO(lockname), \
416 .lock = __SPIN_LOCK_UNLOCKED(lockname) \
417 }
418
419 #define seqlock_init(x) \
420 do { \
421 seqcount_init(&(x)->seqcount); \
422 spin_lock_init(&(x)->lock); \
423 } while (0)
424
425 #define DEFINE_SEQLOCK(x) \
426 seqlock_t x = __SEQLOCK_UNLOCKED(x)
427
428 /*
429 * Read side functions for starting and finalizing a read side section.
430 */
read_seqbegin(const seqlock_t * sl)431 static inline unsigned read_seqbegin(const seqlock_t *sl)
432 {
433 return read_seqcount_begin(&sl->seqcount);
434 }
435
read_seqretry(const seqlock_t * sl,unsigned start)436 static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
437 {
438 return read_seqcount_retry(&sl->seqcount, start);
439 }
440
441 /*
442 * Lock out other writers and update the count.
443 * Acts like a normal spin_lock/unlock.
444 * Don't need preempt_disable() because that is in the spin_lock already.
445 */
write_seqlock(seqlock_t * sl)446 static inline void write_seqlock(seqlock_t *sl)
447 {
448 spin_lock(&sl->lock);
449 write_seqcount_begin(&sl->seqcount);
450 }
451
write_sequnlock(seqlock_t * sl)452 static inline void write_sequnlock(seqlock_t *sl)
453 {
454 write_seqcount_end(&sl->seqcount);
455 spin_unlock(&sl->lock);
456 }
457
write_seqlock_bh(seqlock_t * sl)458 static inline void write_seqlock_bh(seqlock_t *sl)
459 {
460 spin_lock_bh(&sl->lock);
461 write_seqcount_begin(&sl->seqcount);
462 }
463
write_sequnlock_bh(seqlock_t * sl)464 static inline void write_sequnlock_bh(seqlock_t *sl)
465 {
466 write_seqcount_end(&sl->seqcount);
467 spin_unlock_bh(&sl->lock);
468 }
469
write_seqlock_irq(seqlock_t * sl)470 static inline void write_seqlock_irq(seqlock_t *sl)
471 {
472 spin_lock_irq(&sl->lock);
473 write_seqcount_begin(&sl->seqcount);
474 }
475
write_sequnlock_irq(seqlock_t * sl)476 static inline void write_sequnlock_irq(seqlock_t *sl)
477 {
478 write_seqcount_end(&sl->seqcount);
479 spin_unlock_irq(&sl->lock);
480 }
481
__write_seqlock_irqsave(seqlock_t * sl)482 static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
483 {
484 unsigned long flags;
485
486 spin_lock_irqsave(&sl->lock, flags);
487 write_seqcount_begin(&sl->seqcount);
488 return flags;
489 }
490
491 #define write_seqlock_irqsave(lock, flags) \
492 do { flags = __write_seqlock_irqsave(lock); } while (0)
493
494 static inline void
write_sequnlock_irqrestore(seqlock_t * sl,unsigned long flags)495 write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
496 {
497 write_seqcount_end(&sl->seqcount);
498 spin_unlock_irqrestore(&sl->lock, flags);
499 }
500
501 /*
502 * A locking reader exclusively locks out other writers and locking readers,
503 * but doesn't update the sequence number. Acts like a normal spin_lock/unlock.
504 * Don't need preempt_disable() because that is in the spin_lock already.
505 */
read_seqlock_excl(seqlock_t * sl)506 static inline void read_seqlock_excl(seqlock_t *sl)
507 {
508 spin_lock(&sl->lock);
509 }
510
read_sequnlock_excl(seqlock_t * sl)511 static inline void read_sequnlock_excl(seqlock_t *sl)
512 {
513 spin_unlock(&sl->lock);
514 }
515
516 /**
517 * read_seqbegin_or_lock - begin a sequence number check or locking block
518 * @lock: sequence lock
519 * @seq : sequence number to be checked
520 *
521 * First try it once optimistically without taking the lock. If that fails,
522 * take the lock. The sequence number is also used as a marker for deciding
523 * whether to be a reader (even) or writer (odd).
524 * N.B. seq must be initialized to an even number to begin with.
525 */
read_seqbegin_or_lock(seqlock_t * lock,int * seq)526 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
527 {
528 if (!(*seq & 1)) /* Even */
529 *seq = read_seqbegin(lock);
530 else /* Odd */
531 read_seqlock_excl(lock);
532 }
533
need_seqretry(seqlock_t * lock,int seq)534 static inline int need_seqretry(seqlock_t *lock, int seq)
535 {
536 return !(seq & 1) && read_seqretry(lock, seq);
537 }
538
done_seqretry(seqlock_t * lock,int seq)539 static inline void done_seqretry(seqlock_t *lock, int seq)
540 {
541 if (seq & 1)
542 read_sequnlock_excl(lock);
543 }
544
read_seqlock_excl_bh(seqlock_t * sl)545 static inline void read_seqlock_excl_bh(seqlock_t *sl)
546 {
547 spin_lock_bh(&sl->lock);
548 }
549
read_sequnlock_excl_bh(seqlock_t * sl)550 static inline void read_sequnlock_excl_bh(seqlock_t *sl)
551 {
552 spin_unlock_bh(&sl->lock);
553 }
554
read_seqlock_excl_irq(seqlock_t * sl)555 static inline void read_seqlock_excl_irq(seqlock_t *sl)
556 {
557 spin_lock_irq(&sl->lock);
558 }
559
read_sequnlock_excl_irq(seqlock_t * sl)560 static inline void read_sequnlock_excl_irq(seqlock_t *sl)
561 {
562 spin_unlock_irq(&sl->lock);
563 }
564
__read_seqlock_excl_irqsave(seqlock_t * sl)565 static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
566 {
567 unsigned long flags;
568
569 spin_lock_irqsave(&sl->lock, flags);
570 return flags;
571 }
572
573 #define read_seqlock_excl_irqsave(lock, flags) \
574 do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
575
576 static inline void
read_sequnlock_excl_irqrestore(seqlock_t * sl,unsigned long flags)577 read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
578 {
579 spin_unlock_irqrestore(&sl->lock, flags);
580 }
581
582 static inline unsigned long
read_seqbegin_or_lock_irqsave(seqlock_t * lock,int * seq)583 read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq)
584 {
585 unsigned long flags = 0;
586
587 if (!(*seq & 1)) /* Even */
588 *seq = read_seqbegin(lock);
589 else /* Odd */
590 read_seqlock_excl_irqsave(lock, flags);
591
592 return flags;
593 }
594
595 static inline void
done_seqretry_irqrestore(seqlock_t * lock,int seq,unsigned long flags)596 done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags)
597 {
598 if (seq & 1)
599 read_sequnlock_excl_irqrestore(lock, flags);
600 }
601 #endif /* __LINUX_SEQLOCK_H */
602