• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Ultra Wide Band
3  * AES-128 CCM Encryption
4  *
5  * Copyright (C) 2007 Intel Corporation
6  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License version
10  * 2 as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20  * 02110-1301, USA.
21  *
22  *
23  * We don't do any encryption here; we use the Linux Kernel's AES-128
24  * crypto modules to construct keys and payload blocks in a way
25  * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
26  * there.
27  *
28  * Thanks a zillion to John Keys for his help and clarifications over
29  * the designed-by-a-committee text.
30  *
31  * So the idea is that there is this basic Pseudo-Random-Function
32  * defined in WUSB1.0[6.5] which is the core of everything. It works
33  * by tweaking some blocks, AES crypting them and then xoring
34  * something else with them (this seems to be called CBC(AES) -- can
35  * you tell I know jack about crypto?). So we just funnel it into the
36  * Linux Crypto API.
37  *
38  * We leave a crypto test module so we can verify that vectors match,
39  * every now and then.
40  *
41  * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
42  *             am learning a lot...
43  *
44  *             Conveniently, some data structures that need to be
45  *             funneled through AES are...16 bytes in size!
46  */
47 
48 #include <crypto/skcipher.h>
49 #include <linux/crypto.h>
50 #include <linux/module.h>
51 #include <linux/err.h>
52 #include <linux/uwb.h>
53 #include <linux/slab.h>
54 #include <linux/usb/wusb.h>
55 #include <linux/scatterlist.h>
56 
57 static int debug_crypto_verify;
58 
59 module_param(debug_crypto_verify, int, 0);
60 MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
61 
wusb_key_dump(const void * buf,size_t len)62 static void wusb_key_dump(const void *buf, size_t len)
63 {
64 	print_hex_dump(KERN_ERR, "  ", DUMP_PREFIX_OFFSET, 16, 1,
65 		       buf, len, 0);
66 }
67 
68 /*
69  * Block of data, as understood by AES-CCM
70  *
71  * The code assumes this structure is nothing but a 16 byte array
72  * (packed in a struct to avoid common mess ups that I usually do with
73  * arrays and enforcing type checking).
74  */
75 struct aes_ccm_block {
76 	u8 data[16];
77 } __attribute__((packed));
78 
79 /*
80  * Counter-mode Blocks (WUSB1.0[6.4])
81  *
82  * According to CCM (or so it seems), for the purpose of calculating
83  * the MIC, the message is broken in N counter-mode blocks, B0, B1,
84  * ... BN.
85  *
86  * B0 contains flags, the CCM nonce and l(m).
87  *
88  * B1 contains l(a), the MAC header, the encryption offset and padding.
89  *
90  * If EO is nonzero, additional blocks are built from payload bytes
91  * until EO is exhausted (FIXME: padding to 16 bytes, I guess). The
92  * padding is not xmitted.
93  */
94 
95 /* WUSB1.0[T6.4] */
96 struct aes_ccm_b0 {
97 	u8 flags;	/* 0x59, per CCM spec */
98 	struct aes_ccm_nonce ccm_nonce;
99 	__be16 lm;
100 } __attribute__((packed));
101 
102 /* WUSB1.0[T6.5] */
103 struct aes_ccm_b1 {
104 	__be16 la;
105 	u8 mac_header[10];
106 	__le16 eo;
107 	u8 security_reserved;	/* This is always zero */
108 	u8 padding;		/* 0 */
109 } __attribute__((packed));
110 
111 /*
112  * Encryption Blocks (WUSB1.0[6.4.4])
113  *
114  * CCM uses Ax blocks to generate a keystream with which the MIC and
115  * the message's payload are encoded. A0 always encrypts/decrypts the
116  * MIC. Ax (x>0) are used for the successive payload blocks.
117  *
118  * The x is the counter, and is increased for each block.
119  */
120 struct aes_ccm_a {
121 	u8 flags;	/* 0x01, per CCM spec */
122 	struct aes_ccm_nonce ccm_nonce;
123 	__be16 counter;	/* Value of x */
124 } __attribute__((packed));
125 
bytewise_xor(void * _bo,const void * _bi1,const void * _bi2,size_t size)126 static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
127 			 size_t size)
128 {
129 	u8 *bo = _bo;
130 	const u8 *bi1 = _bi1, *bi2 = _bi2;
131 	size_t itr;
132 	for (itr = 0; itr < size; itr++)
133 		bo[itr] = bi1[itr] ^ bi2[itr];
134 }
135 
136 /* Scratch space for MAC calculations. */
137 struct wusb_mac_scratch {
138 	struct aes_ccm_b0 b0;
139 	struct aes_ccm_b1 b1;
140 	struct aes_ccm_a ax;
141 };
142 
143 /*
144  * CC-MAC function WUSB1.0[6.5]
145  *
146  * Take a data string and produce the encrypted CBC Counter-mode MIC
147  *
148  * Note the names for most function arguments are made to (more or
149  * less) match those used in the pseudo-function definition given in
150  * WUSB1.0[6.5].
151  *
152  * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
153  *
154  * @tfm_aes: AES cipher handle (initialized)
155  *
156  * @mic: buffer for placing the computed MIC (Message Integrity
157  *       Code). This is exactly 8 bytes, and we expect the buffer to
158  *       be at least eight bytes in length.
159  *
160  * @key: 128 bit symmetric key
161  *
162  * @n: CCM nonce
163  *
164  * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
165  *     we use exactly 14 bytes).
166  *
167  * @b: data stream to be processed; cannot be a global or const local
168  *     (will confuse the scatterlists)
169  *
170  * @blen: size of b...
171  *
172  * Still not very clear how this is done, but looks like this: we
173  * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
174  * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
175  * take the payload and divide it in blocks (16 bytes), xor them with
176  * the previous crypto result (16 bytes) and crypt it, repeat the next
177  * block with the output of the previous one, rinse wash (I guess this
178  * is what AES CBC mode means...but I truly have no idea). So we use
179  * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
180  * Vector) is 16 bytes and is set to zero, so
181  *
182  * See rfc3610. Linux crypto has a CBC implementation, but the
183  * documentation is scarce, to say the least, and the example code is
184  * so intricated that is difficult to understand how things work. Most
185  * of this is guess work -- bite me.
186  *
187  * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
188  *     using the 14 bytes of @a to fill up
189  *     b1.{mac_header,e0,security_reserved,padding}.
190  *
191  * NOTE: The definition of l(a) in WUSB1.0[6.5] vs the definition of
192  *       l(m) is orthogonal, they bear no relationship, so it is not
193  *       in conflict with the parameter's relation that
194  *       WUSB1.0[6.4.2]) defines.
195  *
196  * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
197  *       first errata released on 2005/07.
198  *
199  * NOTE: we need to clean IV to zero at each invocation to make sure
200  *       we start with a fresh empty Initial Vector, so that the CBC
201  *       works ok.
202  *
203  * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
204  *       what sg[4] is for. Maybe there is a smarter way to do this.
205  */
wusb_ccm_mac(struct crypto_skcipher * tfm_cbc,struct crypto_cipher * tfm_aes,struct wusb_mac_scratch * scratch,void * mic,const struct aes_ccm_nonce * n,const struct aes_ccm_label * a,const void * b,size_t blen)206 static int wusb_ccm_mac(struct crypto_skcipher *tfm_cbc,
207 			struct crypto_cipher *tfm_aes,
208 			struct wusb_mac_scratch *scratch,
209 			void *mic,
210 			const struct aes_ccm_nonce *n,
211 			const struct aes_ccm_label *a, const void *b,
212 			size_t blen)
213 {
214 	int result = 0;
215 	SKCIPHER_REQUEST_ON_STACK(req, tfm_cbc);
216 	struct scatterlist sg[4], sg_dst;
217 	void *dst_buf;
218 	size_t dst_size;
219 	u8 iv[crypto_skcipher_ivsize(tfm_cbc)];
220 	size_t zero_padding;
221 
222 	/*
223 	 * These checks should be compile time optimized out
224 	 * ensure @a fills b1's mac_header and following fields
225 	 */
226 	WARN_ON(sizeof(*a) != sizeof(scratch->b1) - sizeof(scratch->b1.la));
227 	WARN_ON(sizeof(scratch->b0) != sizeof(struct aes_ccm_block));
228 	WARN_ON(sizeof(scratch->b1) != sizeof(struct aes_ccm_block));
229 	WARN_ON(sizeof(scratch->ax) != sizeof(struct aes_ccm_block));
230 
231 	result = -ENOMEM;
232 	zero_padding = blen % sizeof(struct aes_ccm_block);
233 	if (zero_padding)
234 		zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
235 	dst_size = blen + sizeof(scratch->b0) + sizeof(scratch->b1) +
236 		zero_padding;
237 	dst_buf = kzalloc(dst_size, GFP_KERNEL);
238 	if (!dst_buf)
239 		goto error_dst_buf;
240 
241 	memset(iv, 0, sizeof(iv));
242 
243 	/* Setup B0 */
244 	scratch->b0.flags = 0x59;	/* Format B0 */
245 	scratch->b0.ccm_nonce = *n;
246 	scratch->b0.lm = cpu_to_be16(0);	/* WUSB1.0[6.5] sez l(m) is 0 */
247 
248 	/* Setup B1
249 	 *
250 	 * The WUSB spec is anything but clear! WUSB1.0[6.5]
251 	 * says that to initialize B1 from A with 'l(a) = blen +
252 	 * 14'--after clarification, it means to use A's contents
253 	 * for MAC Header, EO, sec reserved and padding.
254 	 */
255 	scratch->b1.la = cpu_to_be16(blen + 14);
256 	memcpy(&scratch->b1.mac_header, a, sizeof(*a));
257 
258 	sg_init_table(sg, ARRAY_SIZE(sg));
259 	sg_set_buf(&sg[0], &scratch->b0, sizeof(scratch->b0));
260 	sg_set_buf(&sg[1], &scratch->b1, sizeof(scratch->b1));
261 	sg_set_buf(&sg[2], b, blen);
262 	/* 0 if well behaved :) */
263 	sg_set_page(&sg[3], ZERO_PAGE(0), zero_padding, 0);
264 	sg_init_one(&sg_dst, dst_buf, dst_size);
265 
266 	skcipher_request_set_tfm(req, tfm_cbc);
267 	skcipher_request_set_callback(req, 0, NULL, NULL);
268 	skcipher_request_set_crypt(req, sg, &sg_dst, dst_size, iv);
269 	result = crypto_skcipher_encrypt(req);
270 	skcipher_request_zero(req);
271 	if (result < 0) {
272 		printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
273 		       result);
274 		goto error_cbc_crypt;
275 	}
276 
277 	/* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
278 	 * The procedure is to AES crypt the A0 block and XOR the MIC
279 	 * Tag against it; we only do the first 8 bytes and place it
280 	 * directly in the destination buffer.
281 	 *
282 	 * POS Crypto API: size is assumed to be AES's block size.
283 	 * Thanks for documenting it -- tip taken from airo.c
284 	 */
285 	scratch->ax.flags = 0x01;		/* as per WUSB 1.0 spec */
286 	scratch->ax.ccm_nonce = *n;
287 	scratch->ax.counter = 0;
288 	crypto_cipher_encrypt_one(tfm_aes, (void *)&scratch->ax,
289 				  (void *)&scratch->ax);
290 	bytewise_xor(mic, &scratch->ax, iv, 8);
291 	result = 8;
292 error_cbc_crypt:
293 	kfree(dst_buf);
294 error_dst_buf:
295 	return result;
296 }
297 
298 /*
299  * WUSB Pseudo Random Function (WUSB1.0[6.5])
300  *
301  * @b: buffer to the source data; cannot be a global or const local
302  *     (will confuse the scatterlists)
303  */
wusb_prf(void * out,size_t out_size,const u8 key[16],const struct aes_ccm_nonce * _n,const struct aes_ccm_label * a,const void * b,size_t blen,size_t len)304 ssize_t wusb_prf(void *out, size_t out_size,
305 		 const u8 key[16], const struct aes_ccm_nonce *_n,
306 		 const struct aes_ccm_label *a,
307 		 const void *b, size_t blen, size_t len)
308 {
309 	ssize_t result, bytes = 0, bitr;
310 	struct aes_ccm_nonce n = *_n;
311 	struct crypto_skcipher *tfm_cbc;
312 	struct crypto_cipher *tfm_aes;
313 	struct wusb_mac_scratch *scratch;
314 	u64 sfn = 0;
315 	__le64 sfn_le;
316 
317 	tfm_cbc = crypto_alloc_skcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
318 	if (IS_ERR(tfm_cbc)) {
319 		result = PTR_ERR(tfm_cbc);
320 		printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
321 		goto error_alloc_cbc;
322 	}
323 	result = crypto_skcipher_setkey(tfm_cbc, key, 16);
324 	if (result < 0) {
325 		printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
326 		goto error_setkey_cbc;
327 	}
328 
329 	tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
330 	if (IS_ERR(tfm_aes)) {
331 		result = PTR_ERR(tfm_aes);
332 		printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
333 		goto error_alloc_aes;
334 	}
335 	result = crypto_cipher_setkey(tfm_aes, key, 16);
336 	if (result < 0) {
337 		printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
338 		goto error_setkey_aes;
339 	}
340 	scratch = kmalloc(sizeof(*scratch), GFP_KERNEL);
341 	if (!scratch) {
342 		result = -ENOMEM;
343 		goto error_alloc_scratch;
344 	}
345 
346 	for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
347 		sfn_le = cpu_to_le64(sfn++);
348 		memcpy(&n.sfn, &sfn_le, sizeof(n.sfn));	/* n.sfn++... */
349 		result = wusb_ccm_mac(tfm_cbc, tfm_aes, scratch, out + bytes,
350 				      &n, a, b, blen);
351 		if (result < 0)
352 			goto error_ccm_mac;
353 		bytes += result;
354 	}
355 	result = bytes;
356 
357 	kfree(scratch);
358 error_alloc_scratch:
359 error_ccm_mac:
360 error_setkey_aes:
361 	crypto_free_cipher(tfm_aes);
362 error_alloc_aes:
363 error_setkey_cbc:
364 	crypto_free_skcipher(tfm_cbc);
365 error_alloc_cbc:
366 	return result;
367 }
368 
369 /* WUSB1.0[A.2] test vectors */
370 static const u8 stv_hsmic_key[16] = {
371 	0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
372 	0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
373 };
374 
375 static const struct aes_ccm_nonce stv_hsmic_n = {
376 	.sfn = { 0 },
377 	.tkid = { 0x76, 0x98, 0x01,  },
378 	.dest_addr = { .data = { 0xbe, 0x00 } },
379 		.src_addr = { .data = { 0x76, 0x98 } },
380 };
381 
382 /*
383  * Out-of-band MIC Generation verification code
384  *
385  */
wusb_oob_mic_verify(void)386 static int wusb_oob_mic_verify(void)
387 {
388 	int result;
389 	u8 mic[8];
390 	/* WUSB1.0[A.2] test vectors
391 	 *
392 	 * Need to keep it in the local stack as GCC 4.1.3something
393 	 * messes up and generates noise.
394 	 */
395 	struct usb_handshake stv_hsmic_hs = {
396 		.bMessageNumber = 2,
397 		.bStatus 	= 00,
398 		.tTKID 		= { 0x76, 0x98, 0x01 },
399 		.bReserved 	= 00,
400 		.CDID 		= { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
401 				    0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
402 				    0x3c, 0x3d, 0x3e, 0x3f },
403 		.nonce	 	= { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
404 				    0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
405 				    0x2c, 0x2d, 0x2e, 0x2f },
406 		.MIC	 	= { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
407 				    0x14, 0x7b },
408 	};
409 	size_t hs_size;
410 
411 	result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
412 	if (result < 0)
413 		printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
414 	else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
415 		printk(KERN_ERR "E: OOB MIC test: "
416 		       "mismatch between MIC result and WUSB1.0[A2]\n");
417 		hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
418 		printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
419 		wusb_key_dump(&stv_hsmic_hs, hs_size);
420 		printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
421 		       sizeof(stv_hsmic_n));
422 		wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
423 		printk(KERN_ERR "E: MIC out:\n");
424 		wusb_key_dump(mic, sizeof(mic));
425 		printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
426 		wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
427 		result = -EINVAL;
428 	} else
429 		result = 0;
430 	return result;
431 }
432 
433 /*
434  * Test vectors for Key derivation
435  *
436  * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
437  * (errata corrected in 2005/07).
438  */
439 static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
440 	0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
441 	0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
442 };
443 
444 static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
445 	.sfn = { 0 },
446 	.tkid = { 0x76, 0x98, 0x01,  },
447 	.dest_addr = { .data = { 0xbe, 0x00 } },
448 	.src_addr = { .data = { 0x76, 0x98 } },
449 };
450 
451 static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
452 	.kck = {
453 		0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
454 		0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
455 	},
456 	.ptk = {
457 		0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
458 		0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
459 	}
460 };
461 
462 /*
463  * Performa a test to make sure we match the vectors defined in
464  * WUSB1.0[A.1](Errata2006/12)
465  */
wusb_key_derive_verify(void)466 static int wusb_key_derive_verify(void)
467 {
468 	int result = 0;
469 	struct wusb_keydvt_out keydvt_out;
470 	/* These come from WUSB1.0[A.1] + 2006/12 errata
471 	 * NOTE: can't make this const or global -- somehow it seems
472 	 *       the scatterlists for crypto get confused and we get
473 	 *       bad data. There is no doc on this... */
474 	struct wusb_keydvt_in stv_keydvt_in_a1 = {
475 		.hnonce = {
476 			0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
477 			0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
478 		},
479 		.dnonce = {
480 			0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
481 			0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
482 		}
483 	};
484 
485 	result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
486 				 &stv_keydvt_in_a1);
487 	if (result < 0)
488 		printk(KERN_ERR "E: WUSB key derivation test: "
489 		       "derivation failed: %d\n", result);
490 	if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
491 		printk(KERN_ERR "E: WUSB key derivation test: "
492 		       "mismatch between key derivation result "
493 		       "and WUSB1.0[A1] Errata 2006/12\n");
494 		printk(KERN_ERR "E: keydvt in: key\n");
495 		wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
496 		printk(KERN_ERR "E: keydvt in: nonce\n");
497 		wusb_key_dump(&stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
498 		printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
499 		wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
500 		printk(KERN_ERR "E: keydvt out: KCK\n");
501 		wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
502 		printk(KERN_ERR "E: keydvt out: PTK\n");
503 		wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
504 		result = -EINVAL;
505 	} else
506 		result = 0;
507 	return result;
508 }
509 
510 /*
511  * Initialize crypto system
512  *
513  * FIXME: we do nothing now, other than verifying. Later on we'll
514  * cache the encryption stuff, so that's why we have a separate init.
515  */
wusb_crypto_init(void)516 int wusb_crypto_init(void)
517 {
518 	int result;
519 
520 	if (debug_crypto_verify) {
521 		result = wusb_key_derive_verify();
522 		if (result < 0)
523 			return result;
524 		return wusb_oob_mic_verify();
525 	}
526 	return 0;
527 }
528 
wusb_crypto_exit(void)529 void wusb_crypto_exit(void)
530 {
531 	/* FIXME: free cached crypto transforms */
532 }
533