1 /*
2 * Ultra Wide Band
3 * AES-128 CCM Encryption
4 *
5 * Copyright (C) 2007 Intel Corporation
6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301, USA.
21 *
22 *
23 * We don't do any encryption here; we use the Linux Kernel's AES-128
24 * crypto modules to construct keys and payload blocks in a way
25 * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
26 * there.
27 *
28 * Thanks a zillion to John Keys for his help and clarifications over
29 * the designed-by-a-committee text.
30 *
31 * So the idea is that there is this basic Pseudo-Random-Function
32 * defined in WUSB1.0[6.5] which is the core of everything. It works
33 * by tweaking some blocks, AES crypting them and then xoring
34 * something else with them (this seems to be called CBC(AES) -- can
35 * you tell I know jack about crypto?). So we just funnel it into the
36 * Linux Crypto API.
37 *
38 * We leave a crypto test module so we can verify that vectors match,
39 * every now and then.
40 *
41 * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
42 * am learning a lot...
43 *
44 * Conveniently, some data structures that need to be
45 * funneled through AES are...16 bytes in size!
46 */
47
48 #include <crypto/skcipher.h>
49 #include <linux/crypto.h>
50 #include <linux/module.h>
51 #include <linux/err.h>
52 #include <linux/uwb.h>
53 #include <linux/slab.h>
54 #include <linux/usb/wusb.h>
55 #include <linux/scatterlist.h>
56
57 static int debug_crypto_verify;
58
59 module_param(debug_crypto_verify, int, 0);
60 MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
61
wusb_key_dump(const void * buf,size_t len)62 static void wusb_key_dump(const void *buf, size_t len)
63 {
64 print_hex_dump(KERN_ERR, " ", DUMP_PREFIX_OFFSET, 16, 1,
65 buf, len, 0);
66 }
67
68 /*
69 * Block of data, as understood by AES-CCM
70 *
71 * The code assumes this structure is nothing but a 16 byte array
72 * (packed in a struct to avoid common mess ups that I usually do with
73 * arrays and enforcing type checking).
74 */
75 struct aes_ccm_block {
76 u8 data[16];
77 } __attribute__((packed));
78
79 /*
80 * Counter-mode Blocks (WUSB1.0[6.4])
81 *
82 * According to CCM (or so it seems), for the purpose of calculating
83 * the MIC, the message is broken in N counter-mode blocks, B0, B1,
84 * ... BN.
85 *
86 * B0 contains flags, the CCM nonce and l(m).
87 *
88 * B1 contains l(a), the MAC header, the encryption offset and padding.
89 *
90 * If EO is nonzero, additional blocks are built from payload bytes
91 * until EO is exhausted (FIXME: padding to 16 bytes, I guess). The
92 * padding is not xmitted.
93 */
94
95 /* WUSB1.0[T6.4] */
96 struct aes_ccm_b0 {
97 u8 flags; /* 0x59, per CCM spec */
98 struct aes_ccm_nonce ccm_nonce;
99 __be16 lm;
100 } __attribute__((packed));
101
102 /* WUSB1.0[T6.5] */
103 struct aes_ccm_b1 {
104 __be16 la;
105 u8 mac_header[10];
106 __le16 eo;
107 u8 security_reserved; /* This is always zero */
108 u8 padding; /* 0 */
109 } __attribute__((packed));
110
111 /*
112 * Encryption Blocks (WUSB1.0[6.4.4])
113 *
114 * CCM uses Ax blocks to generate a keystream with which the MIC and
115 * the message's payload are encoded. A0 always encrypts/decrypts the
116 * MIC. Ax (x>0) are used for the successive payload blocks.
117 *
118 * The x is the counter, and is increased for each block.
119 */
120 struct aes_ccm_a {
121 u8 flags; /* 0x01, per CCM spec */
122 struct aes_ccm_nonce ccm_nonce;
123 __be16 counter; /* Value of x */
124 } __attribute__((packed));
125
bytewise_xor(void * _bo,const void * _bi1,const void * _bi2,size_t size)126 static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
127 size_t size)
128 {
129 u8 *bo = _bo;
130 const u8 *bi1 = _bi1, *bi2 = _bi2;
131 size_t itr;
132 for (itr = 0; itr < size; itr++)
133 bo[itr] = bi1[itr] ^ bi2[itr];
134 }
135
136 /* Scratch space for MAC calculations. */
137 struct wusb_mac_scratch {
138 struct aes_ccm_b0 b0;
139 struct aes_ccm_b1 b1;
140 struct aes_ccm_a ax;
141 };
142
143 /*
144 * CC-MAC function WUSB1.0[6.5]
145 *
146 * Take a data string and produce the encrypted CBC Counter-mode MIC
147 *
148 * Note the names for most function arguments are made to (more or
149 * less) match those used in the pseudo-function definition given in
150 * WUSB1.0[6.5].
151 *
152 * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
153 *
154 * @tfm_aes: AES cipher handle (initialized)
155 *
156 * @mic: buffer for placing the computed MIC (Message Integrity
157 * Code). This is exactly 8 bytes, and we expect the buffer to
158 * be at least eight bytes in length.
159 *
160 * @key: 128 bit symmetric key
161 *
162 * @n: CCM nonce
163 *
164 * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
165 * we use exactly 14 bytes).
166 *
167 * @b: data stream to be processed; cannot be a global or const local
168 * (will confuse the scatterlists)
169 *
170 * @blen: size of b...
171 *
172 * Still not very clear how this is done, but looks like this: we
173 * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
174 * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
175 * take the payload and divide it in blocks (16 bytes), xor them with
176 * the previous crypto result (16 bytes) and crypt it, repeat the next
177 * block with the output of the previous one, rinse wash (I guess this
178 * is what AES CBC mode means...but I truly have no idea). So we use
179 * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
180 * Vector) is 16 bytes and is set to zero, so
181 *
182 * See rfc3610. Linux crypto has a CBC implementation, but the
183 * documentation is scarce, to say the least, and the example code is
184 * so intricated that is difficult to understand how things work. Most
185 * of this is guess work -- bite me.
186 *
187 * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
188 * using the 14 bytes of @a to fill up
189 * b1.{mac_header,e0,security_reserved,padding}.
190 *
191 * NOTE: The definition of l(a) in WUSB1.0[6.5] vs the definition of
192 * l(m) is orthogonal, they bear no relationship, so it is not
193 * in conflict with the parameter's relation that
194 * WUSB1.0[6.4.2]) defines.
195 *
196 * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
197 * first errata released on 2005/07.
198 *
199 * NOTE: we need to clean IV to zero at each invocation to make sure
200 * we start with a fresh empty Initial Vector, so that the CBC
201 * works ok.
202 *
203 * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
204 * what sg[4] is for. Maybe there is a smarter way to do this.
205 */
wusb_ccm_mac(struct crypto_skcipher * tfm_cbc,struct crypto_cipher * tfm_aes,struct wusb_mac_scratch * scratch,void * mic,const struct aes_ccm_nonce * n,const struct aes_ccm_label * a,const void * b,size_t blen)206 static int wusb_ccm_mac(struct crypto_skcipher *tfm_cbc,
207 struct crypto_cipher *tfm_aes,
208 struct wusb_mac_scratch *scratch,
209 void *mic,
210 const struct aes_ccm_nonce *n,
211 const struct aes_ccm_label *a, const void *b,
212 size_t blen)
213 {
214 int result = 0;
215 SKCIPHER_REQUEST_ON_STACK(req, tfm_cbc);
216 struct scatterlist sg[4], sg_dst;
217 void *dst_buf;
218 size_t dst_size;
219 u8 iv[crypto_skcipher_ivsize(tfm_cbc)];
220 size_t zero_padding;
221
222 /*
223 * These checks should be compile time optimized out
224 * ensure @a fills b1's mac_header and following fields
225 */
226 WARN_ON(sizeof(*a) != sizeof(scratch->b1) - sizeof(scratch->b1.la));
227 WARN_ON(sizeof(scratch->b0) != sizeof(struct aes_ccm_block));
228 WARN_ON(sizeof(scratch->b1) != sizeof(struct aes_ccm_block));
229 WARN_ON(sizeof(scratch->ax) != sizeof(struct aes_ccm_block));
230
231 result = -ENOMEM;
232 zero_padding = blen % sizeof(struct aes_ccm_block);
233 if (zero_padding)
234 zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
235 dst_size = blen + sizeof(scratch->b0) + sizeof(scratch->b1) +
236 zero_padding;
237 dst_buf = kzalloc(dst_size, GFP_KERNEL);
238 if (!dst_buf)
239 goto error_dst_buf;
240
241 memset(iv, 0, sizeof(iv));
242
243 /* Setup B0 */
244 scratch->b0.flags = 0x59; /* Format B0 */
245 scratch->b0.ccm_nonce = *n;
246 scratch->b0.lm = cpu_to_be16(0); /* WUSB1.0[6.5] sez l(m) is 0 */
247
248 /* Setup B1
249 *
250 * The WUSB spec is anything but clear! WUSB1.0[6.5]
251 * says that to initialize B1 from A with 'l(a) = blen +
252 * 14'--after clarification, it means to use A's contents
253 * for MAC Header, EO, sec reserved and padding.
254 */
255 scratch->b1.la = cpu_to_be16(blen + 14);
256 memcpy(&scratch->b1.mac_header, a, sizeof(*a));
257
258 sg_init_table(sg, ARRAY_SIZE(sg));
259 sg_set_buf(&sg[0], &scratch->b0, sizeof(scratch->b0));
260 sg_set_buf(&sg[1], &scratch->b1, sizeof(scratch->b1));
261 sg_set_buf(&sg[2], b, blen);
262 /* 0 if well behaved :) */
263 sg_set_page(&sg[3], ZERO_PAGE(0), zero_padding, 0);
264 sg_init_one(&sg_dst, dst_buf, dst_size);
265
266 skcipher_request_set_tfm(req, tfm_cbc);
267 skcipher_request_set_callback(req, 0, NULL, NULL);
268 skcipher_request_set_crypt(req, sg, &sg_dst, dst_size, iv);
269 result = crypto_skcipher_encrypt(req);
270 skcipher_request_zero(req);
271 if (result < 0) {
272 printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
273 result);
274 goto error_cbc_crypt;
275 }
276
277 /* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
278 * The procedure is to AES crypt the A0 block and XOR the MIC
279 * Tag against it; we only do the first 8 bytes and place it
280 * directly in the destination buffer.
281 *
282 * POS Crypto API: size is assumed to be AES's block size.
283 * Thanks for documenting it -- tip taken from airo.c
284 */
285 scratch->ax.flags = 0x01; /* as per WUSB 1.0 spec */
286 scratch->ax.ccm_nonce = *n;
287 scratch->ax.counter = 0;
288 crypto_cipher_encrypt_one(tfm_aes, (void *)&scratch->ax,
289 (void *)&scratch->ax);
290 bytewise_xor(mic, &scratch->ax, iv, 8);
291 result = 8;
292 error_cbc_crypt:
293 kfree(dst_buf);
294 error_dst_buf:
295 return result;
296 }
297
298 /*
299 * WUSB Pseudo Random Function (WUSB1.0[6.5])
300 *
301 * @b: buffer to the source data; cannot be a global or const local
302 * (will confuse the scatterlists)
303 */
wusb_prf(void * out,size_t out_size,const u8 key[16],const struct aes_ccm_nonce * _n,const struct aes_ccm_label * a,const void * b,size_t blen,size_t len)304 ssize_t wusb_prf(void *out, size_t out_size,
305 const u8 key[16], const struct aes_ccm_nonce *_n,
306 const struct aes_ccm_label *a,
307 const void *b, size_t blen, size_t len)
308 {
309 ssize_t result, bytes = 0, bitr;
310 struct aes_ccm_nonce n = *_n;
311 struct crypto_skcipher *tfm_cbc;
312 struct crypto_cipher *tfm_aes;
313 struct wusb_mac_scratch *scratch;
314 u64 sfn = 0;
315 __le64 sfn_le;
316
317 tfm_cbc = crypto_alloc_skcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
318 if (IS_ERR(tfm_cbc)) {
319 result = PTR_ERR(tfm_cbc);
320 printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
321 goto error_alloc_cbc;
322 }
323 result = crypto_skcipher_setkey(tfm_cbc, key, 16);
324 if (result < 0) {
325 printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
326 goto error_setkey_cbc;
327 }
328
329 tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
330 if (IS_ERR(tfm_aes)) {
331 result = PTR_ERR(tfm_aes);
332 printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
333 goto error_alloc_aes;
334 }
335 result = crypto_cipher_setkey(tfm_aes, key, 16);
336 if (result < 0) {
337 printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
338 goto error_setkey_aes;
339 }
340 scratch = kmalloc(sizeof(*scratch), GFP_KERNEL);
341 if (!scratch) {
342 result = -ENOMEM;
343 goto error_alloc_scratch;
344 }
345
346 for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
347 sfn_le = cpu_to_le64(sfn++);
348 memcpy(&n.sfn, &sfn_le, sizeof(n.sfn)); /* n.sfn++... */
349 result = wusb_ccm_mac(tfm_cbc, tfm_aes, scratch, out + bytes,
350 &n, a, b, blen);
351 if (result < 0)
352 goto error_ccm_mac;
353 bytes += result;
354 }
355 result = bytes;
356
357 kfree(scratch);
358 error_alloc_scratch:
359 error_ccm_mac:
360 error_setkey_aes:
361 crypto_free_cipher(tfm_aes);
362 error_alloc_aes:
363 error_setkey_cbc:
364 crypto_free_skcipher(tfm_cbc);
365 error_alloc_cbc:
366 return result;
367 }
368
369 /* WUSB1.0[A.2] test vectors */
370 static const u8 stv_hsmic_key[16] = {
371 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
372 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
373 };
374
375 static const struct aes_ccm_nonce stv_hsmic_n = {
376 .sfn = { 0 },
377 .tkid = { 0x76, 0x98, 0x01, },
378 .dest_addr = { .data = { 0xbe, 0x00 } },
379 .src_addr = { .data = { 0x76, 0x98 } },
380 };
381
382 /*
383 * Out-of-band MIC Generation verification code
384 *
385 */
wusb_oob_mic_verify(void)386 static int wusb_oob_mic_verify(void)
387 {
388 int result;
389 u8 mic[8];
390 /* WUSB1.0[A.2] test vectors
391 *
392 * Need to keep it in the local stack as GCC 4.1.3something
393 * messes up and generates noise.
394 */
395 struct usb_handshake stv_hsmic_hs = {
396 .bMessageNumber = 2,
397 .bStatus = 00,
398 .tTKID = { 0x76, 0x98, 0x01 },
399 .bReserved = 00,
400 .CDID = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
401 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
402 0x3c, 0x3d, 0x3e, 0x3f },
403 .nonce = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
404 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
405 0x2c, 0x2d, 0x2e, 0x2f },
406 .MIC = { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
407 0x14, 0x7b },
408 };
409 size_t hs_size;
410
411 result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
412 if (result < 0)
413 printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
414 else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
415 printk(KERN_ERR "E: OOB MIC test: "
416 "mismatch between MIC result and WUSB1.0[A2]\n");
417 hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
418 printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
419 wusb_key_dump(&stv_hsmic_hs, hs_size);
420 printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
421 sizeof(stv_hsmic_n));
422 wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
423 printk(KERN_ERR "E: MIC out:\n");
424 wusb_key_dump(mic, sizeof(mic));
425 printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
426 wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
427 result = -EINVAL;
428 } else
429 result = 0;
430 return result;
431 }
432
433 /*
434 * Test vectors for Key derivation
435 *
436 * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
437 * (errata corrected in 2005/07).
438 */
439 static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
440 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
441 0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
442 };
443
444 static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
445 .sfn = { 0 },
446 .tkid = { 0x76, 0x98, 0x01, },
447 .dest_addr = { .data = { 0xbe, 0x00 } },
448 .src_addr = { .data = { 0x76, 0x98 } },
449 };
450
451 static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
452 .kck = {
453 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
454 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
455 },
456 .ptk = {
457 0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
458 0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
459 }
460 };
461
462 /*
463 * Performa a test to make sure we match the vectors defined in
464 * WUSB1.0[A.1](Errata2006/12)
465 */
wusb_key_derive_verify(void)466 static int wusb_key_derive_verify(void)
467 {
468 int result = 0;
469 struct wusb_keydvt_out keydvt_out;
470 /* These come from WUSB1.0[A.1] + 2006/12 errata
471 * NOTE: can't make this const or global -- somehow it seems
472 * the scatterlists for crypto get confused and we get
473 * bad data. There is no doc on this... */
474 struct wusb_keydvt_in stv_keydvt_in_a1 = {
475 .hnonce = {
476 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
477 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
478 },
479 .dnonce = {
480 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
481 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
482 }
483 };
484
485 result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
486 &stv_keydvt_in_a1);
487 if (result < 0)
488 printk(KERN_ERR "E: WUSB key derivation test: "
489 "derivation failed: %d\n", result);
490 if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
491 printk(KERN_ERR "E: WUSB key derivation test: "
492 "mismatch between key derivation result "
493 "and WUSB1.0[A1] Errata 2006/12\n");
494 printk(KERN_ERR "E: keydvt in: key\n");
495 wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
496 printk(KERN_ERR "E: keydvt in: nonce\n");
497 wusb_key_dump(&stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
498 printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
499 wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
500 printk(KERN_ERR "E: keydvt out: KCK\n");
501 wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
502 printk(KERN_ERR "E: keydvt out: PTK\n");
503 wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
504 result = -EINVAL;
505 } else
506 result = 0;
507 return result;
508 }
509
510 /*
511 * Initialize crypto system
512 *
513 * FIXME: we do nothing now, other than verifying. Later on we'll
514 * cache the encryption stuff, so that's why we have a separate init.
515 */
wusb_crypto_init(void)516 int wusb_crypto_init(void)
517 {
518 int result;
519
520 if (debug_crypto_verify) {
521 result = wusb_key_derive_verify();
522 if (result < 0)
523 return result;
524 return wusb_oob_mic_verify();
525 }
526 return 0;
527 }
528
wusb_crypto_exit(void)529 void wusb_crypto_exit(void)
530 {
531 /* FIXME: free cached crypto transforms */
532 }
533