1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched.h>
24 #include <linux/uaccess.h>
25 #include <linux/slab.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28 #include <linux/device.h>
29
30 #include <asm/apic.h>
31 #include <asm/stacktrace.h>
32 #include <asm/nmi.h>
33 #include <asm/smp.h>
34 #include <asm/alternative.h>
35 #include <asm/mmu_context.h>
36 #include <asm/tlbflush.h>
37 #include <asm/timer.h>
38 #include <asm/desc.h>
39 #include <asm/ldt.h>
40 #include <asm/unwind.h>
41
42 #include "perf_event.h"
43
44 struct x86_pmu x86_pmu __read_mostly;
45
46 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
47 .enabled = 1,
48 };
49
50 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
51
52 u64 __read_mostly hw_cache_event_ids
53 [PERF_COUNT_HW_CACHE_MAX]
54 [PERF_COUNT_HW_CACHE_OP_MAX]
55 [PERF_COUNT_HW_CACHE_RESULT_MAX];
56 u64 __read_mostly hw_cache_extra_regs
57 [PERF_COUNT_HW_CACHE_MAX]
58 [PERF_COUNT_HW_CACHE_OP_MAX]
59 [PERF_COUNT_HW_CACHE_RESULT_MAX];
60
61 /*
62 * Propagate event elapsed time into the generic event.
63 * Can only be executed on the CPU where the event is active.
64 * Returns the delta events processed.
65 */
x86_perf_event_update(struct perf_event * event)66 u64 x86_perf_event_update(struct perf_event *event)
67 {
68 struct hw_perf_event *hwc = &event->hw;
69 int shift = 64 - x86_pmu.cntval_bits;
70 u64 prev_raw_count, new_raw_count;
71 int idx = hwc->idx;
72 u64 delta;
73
74 if (idx == INTEL_PMC_IDX_FIXED_BTS)
75 return 0;
76
77 /*
78 * Careful: an NMI might modify the previous event value.
79 *
80 * Our tactic to handle this is to first atomically read and
81 * exchange a new raw count - then add that new-prev delta
82 * count to the generic event atomically:
83 */
84 again:
85 prev_raw_count = local64_read(&hwc->prev_count);
86 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
87
88 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
89 new_raw_count) != prev_raw_count)
90 goto again;
91
92 /*
93 * Now we have the new raw value and have updated the prev
94 * timestamp already. We can now calculate the elapsed delta
95 * (event-)time and add that to the generic event.
96 *
97 * Careful, not all hw sign-extends above the physical width
98 * of the count.
99 */
100 delta = (new_raw_count << shift) - (prev_raw_count << shift);
101 delta >>= shift;
102
103 local64_add(delta, &event->count);
104 local64_sub(delta, &hwc->period_left);
105
106 return new_raw_count;
107 }
108
109 /*
110 * Find and validate any extra registers to set up.
111 */
x86_pmu_extra_regs(u64 config,struct perf_event * event)112 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
113 {
114 struct hw_perf_event_extra *reg;
115 struct extra_reg *er;
116
117 reg = &event->hw.extra_reg;
118
119 if (!x86_pmu.extra_regs)
120 return 0;
121
122 for (er = x86_pmu.extra_regs; er->msr; er++) {
123 if (er->event != (config & er->config_mask))
124 continue;
125 if (event->attr.config1 & ~er->valid_mask)
126 return -EINVAL;
127 /* Check if the extra msrs can be safely accessed*/
128 if (!er->extra_msr_access)
129 return -ENXIO;
130
131 reg->idx = er->idx;
132 reg->config = event->attr.config1;
133 reg->reg = er->msr;
134 break;
135 }
136 return 0;
137 }
138
139 static atomic_t active_events;
140 static atomic_t pmc_refcount;
141 static DEFINE_MUTEX(pmc_reserve_mutex);
142
143 #ifdef CONFIG_X86_LOCAL_APIC
144
reserve_pmc_hardware(void)145 static bool reserve_pmc_hardware(void)
146 {
147 int i;
148
149 for (i = 0; i < x86_pmu.num_counters; i++) {
150 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
151 goto perfctr_fail;
152 }
153
154 for (i = 0; i < x86_pmu.num_counters; i++) {
155 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
156 goto eventsel_fail;
157 }
158
159 return true;
160
161 eventsel_fail:
162 for (i--; i >= 0; i--)
163 release_evntsel_nmi(x86_pmu_config_addr(i));
164
165 i = x86_pmu.num_counters;
166
167 perfctr_fail:
168 for (i--; i >= 0; i--)
169 release_perfctr_nmi(x86_pmu_event_addr(i));
170
171 return false;
172 }
173
release_pmc_hardware(void)174 static void release_pmc_hardware(void)
175 {
176 int i;
177
178 for (i = 0; i < x86_pmu.num_counters; i++) {
179 release_perfctr_nmi(x86_pmu_event_addr(i));
180 release_evntsel_nmi(x86_pmu_config_addr(i));
181 }
182 }
183
184 #else
185
reserve_pmc_hardware(void)186 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)187 static void release_pmc_hardware(void) {}
188
189 #endif
190
check_hw_exists(void)191 static bool check_hw_exists(void)
192 {
193 u64 val, val_fail = -1, val_new= ~0;
194 int i, reg, reg_fail = -1, ret = 0;
195 int bios_fail = 0;
196 int reg_safe = -1;
197
198 /*
199 * Check to see if the BIOS enabled any of the counters, if so
200 * complain and bail.
201 */
202 for (i = 0; i < x86_pmu.num_counters; i++) {
203 reg = x86_pmu_config_addr(i);
204 ret = rdmsrl_safe(reg, &val);
205 if (ret)
206 goto msr_fail;
207 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
208 bios_fail = 1;
209 val_fail = val;
210 reg_fail = reg;
211 } else {
212 reg_safe = i;
213 }
214 }
215
216 if (x86_pmu.num_counters_fixed) {
217 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
218 ret = rdmsrl_safe(reg, &val);
219 if (ret)
220 goto msr_fail;
221 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
222 if (val & (0x03 << i*4)) {
223 bios_fail = 1;
224 val_fail = val;
225 reg_fail = reg;
226 }
227 }
228 }
229
230 /*
231 * If all the counters are enabled, the below test will always
232 * fail. The tools will also become useless in this scenario.
233 * Just fail and disable the hardware counters.
234 */
235
236 if (reg_safe == -1) {
237 reg = reg_safe;
238 goto msr_fail;
239 }
240
241 /*
242 * Read the current value, change it and read it back to see if it
243 * matches, this is needed to detect certain hardware emulators
244 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
245 */
246 reg = x86_pmu_event_addr(reg_safe);
247 if (rdmsrl_safe(reg, &val))
248 goto msr_fail;
249 val ^= 0xffffUL;
250 ret = wrmsrl_safe(reg, val);
251 ret |= rdmsrl_safe(reg, &val_new);
252 if (ret || val != val_new)
253 goto msr_fail;
254
255 /*
256 * We still allow the PMU driver to operate:
257 */
258 if (bios_fail) {
259 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
260 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
261 reg_fail, val_fail);
262 }
263
264 return true;
265
266 msr_fail:
267 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
268 pr_cont("PMU not available due to virtualization, using software events only.\n");
269 } else {
270 pr_cont("Broken PMU hardware detected, using software events only.\n");
271 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
272 reg, val_new);
273 }
274
275 return false;
276 }
277
hw_perf_event_destroy(struct perf_event * event)278 static void hw_perf_event_destroy(struct perf_event *event)
279 {
280 x86_release_hardware();
281 atomic_dec(&active_events);
282 }
283
hw_perf_lbr_event_destroy(struct perf_event * event)284 void hw_perf_lbr_event_destroy(struct perf_event *event)
285 {
286 hw_perf_event_destroy(event);
287
288 /* undo the lbr/bts event accounting */
289 x86_del_exclusive(x86_lbr_exclusive_lbr);
290 }
291
x86_pmu_initialized(void)292 static inline int x86_pmu_initialized(void)
293 {
294 return x86_pmu.handle_irq != NULL;
295 }
296
297 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)298 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
299 {
300 struct perf_event_attr *attr = &event->attr;
301 unsigned int cache_type, cache_op, cache_result;
302 u64 config, val;
303
304 config = attr->config;
305
306 cache_type = (config >> 0) & 0xff;
307 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
308 return -EINVAL;
309
310 cache_op = (config >> 8) & 0xff;
311 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
312 return -EINVAL;
313
314 cache_result = (config >> 16) & 0xff;
315 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
316 return -EINVAL;
317
318 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
319
320 if (val == 0)
321 return -ENOENT;
322
323 if (val == -1)
324 return -EINVAL;
325
326 hwc->config |= val;
327 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
328 return x86_pmu_extra_regs(val, event);
329 }
330
x86_reserve_hardware(void)331 int x86_reserve_hardware(void)
332 {
333 int err = 0;
334
335 if (!atomic_inc_not_zero(&pmc_refcount)) {
336 mutex_lock(&pmc_reserve_mutex);
337 if (atomic_read(&pmc_refcount) == 0) {
338 if (!reserve_pmc_hardware())
339 err = -EBUSY;
340 else
341 reserve_ds_buffers();
342 }
343 if (!err)
344 atomic_inc(&pmc_refcount);
345 mutex_unlock(&pmc_reserve_mutex);
346 }
347
348 return err;
349 }
350
x86_release_hardware(void)351 void x86_release_hardware(void)
352 {
353 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
354 release_pmc_hardware();
355 release_ds_buffers();
356 mutex_unlock(&pmc_reserve_mutex);
357 }
358 }
359
360 /*
361 * Check if we can create event of a certain type (that no conflicting events
362 * are present).
363 */
x86_add_exclusive(unsigned int what)364 int x86_add_exclusive(unsigned int what)
365 {
366 int i;
367
368 /*
369 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
370 * LBR and BTS are still mutually exclusive.
371 */
372 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
373 return 0;
374
375 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
376 mutex_lock(&pmc_reserve_mutex);
377 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
378 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
379 goto fail_unlock;
380 }
381 atomic_inc(&x86_pmu.lbr_exclusive[what]);
382 mutex_unlock(&pmc_reserve_mutex);
383 }
384
385 atomic_inc(&active_events);
386 return 0;
387
388 fail_unlock:
389 mutex_unlock(&pmc_reserve_mutex);
390 return -EBUSY;
391 }
392
x86_del_exclusive(unsigned int what)393 void x86_del_exclusive(unsigned int what)
394 {
395 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
396 return;
397
398 atomic_dec(&x86_pmu.lbr_exclusive[what]);
399 atomic_dec(&active_events);
400 }
401
x86_setup_perfctr(struct perf_event * event)402 int x86_setup_perfctr(struct perf_event *event)
403 {
404 struct perf_event_attr *attr = &event->attr;
405 struct hw_perf_event *hwc = &event->hw;
406 u64 config;
407
408 if (!is_sampling_event(event)) {
409 hwc->sample_period = x86_pmu.max_period;
410 hwc->last_period = hwc->sample_period;
411 local64_set(&hwc->period_left, hwc->sample_period);
412 }
413
414 if (attr->type == PERF_TYPE_RAW)
415 return x86_pmu_extra_regs(event->attr.config, event);
416
417 if (attr->type == PERF_TYPE_HW_CACHE)
418 return set_ext_hw_attr(hwc, event);
419
420 if (attr->config >= x86_pmu.max_events)
421 return -EINVAL;
422
423 /*
424 * The generic map:
425 */
426 config = x86_pmu.event_map(attr->config);
427
428 if (config == 0)
429 return -ENOENT;
430
431 if (config == -1LL)
432 return -EINVAL;
433
434 /*
435 * Branch tracing:
436 */
437 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
438 !attr->freq && hwc->sample_period == 1) {
439 /* BTS is not supported by this architecture. */
440 if (!x86_pmu.bts_active)
441 return -EOPNOTSUPP;
442
443 /* BTS is currently only allowed for user-mode. */
444 if (!attr->exclude_kernel)
445 return -EOPNOTSUPP;
446
447 /* disallow bts if conflicting events are present */
448 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
449 return -EBUSY;
450
451 event->destroy = hw_perf_lbr_event_destroy;
452 }
453
454 hwc->config |= config;
455
456 return 0;
457 }
458
459 /*
460 * check that branch_sample_type is compatible with
461 * settings needed for precise_ip > 1 which implies
462 * using the LBR to capture ALL taken branches at the
463 * priv levels of the measurement
464 */
precise_br_compat(struct perf_event * event)465 static inline int precise_br_compat(struct perf_event *event)
466 {
467 u64 m = event->attr.branch_sample_type;
468 u64 b = 0;
469
470 /* must capture all branches */
471 if (!(m & PERF_SAMPLE_BRANCH_ANY))
472 return 0;
473
474 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
475
476 if (!event->attr.exclude_user)
477 b |= PERF_SAMPLE_BRANCH_USER;
478
479 if (!event->attr.exclude_kernel)
480 b |= PERF_SAMPLE_BRANCH_KERNEL;
481
482 /*
483 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
484 */
485
486 return m == b;
487 }
488
x86_pmu_hw_config(struct perf_event * event)489 int x86_pmu_hw_config(struct perf_event *event)
490 {
491 if (event->attr.precise_ip) {
492 int precise = 0;
493
494 /* Support for constant skid */
495 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
496 precise++;
497
498 /* Support for IP fixup */
499 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
500 precise++;
501
502 if (x86_pmu.pebs_prec_dist)
503 precise++;
504 }
505
506 if (event->attr.precise_ip > precise)
507 return -EOPNOTSUPP;
508
509 /* There's no sense in having PEBS for non sampling events: */
510 if (!is_sampling_event(event))
511 return -EINVAL;
512 }
513 /*
514 * check that PEBS LBR correction does not conflict with
515 * whatever the user is asking with attr->branch_sample_type
516 */
517 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
518 u64 *br_type = &event->attr.branch_sample_type;
519
520 if (has_branch_stack(event)) {
521 if (!precise_br_compat(event))
522 return -EOPNOTSUPP;
523
524 /* branch_sample_type is compatible */
525
526 } else {
527 /*
528 * user did not specify branch_sample_type
529 *
530 * For PEBS fixups, we capture all
531 * the branches at the priv level of the
532 * event.
533 */
534 *br_type = PERF_SAMPLE_BRANCH_ANY;
535
536 if (!event->attr.exclude_user)
537 *br_type |= PERF_SAMPLE_BRANCH_USER;
538
539 if (!event->attr.exclude_kernel)
540 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
541 }
542 }
543
544 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
545 event->attach_state |= PERF_ATTACH_TASK_DATA;
546
547 /*
548 * Generate PMC IRQs:
549 * (keep 'enabled' bit clear for now)
550 */
551 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
552
553 /*
554 * Count user and OS events unless requested not to
555 */
556 if (!event->attr.exclude_user)
557 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
558 if (!event->attr.exclude_kernel)
559 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
560
561 if (event->attr.type == PERF_TYPE_RAW)
562 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
563
564 if (event->attr.sample_period && x86_pmu.limit_period) {
565 if (x86_pmu.limit_period(event, event->attr.sample_period) >
566 event->attr.sample_period)
567 return -EINVAL;
568 }
569
570 return x86_setup_perfctr(event);
571 }
572
573 /*
574 * Setup the hardware configuration for a given attr_type
575 */
__x86_pmu_event_init(struct perf_event * event)576 static int __x86_pmu_event_init(struct perf_event *event)
577 {
578 int err;
579
580 if (!x86_pmu_initialized())
581 return -ENODEV;
582
583 err = x86_reserve_hardware();
584 if (err)
585 return err;
586
587 atomic_inc(&active_events);
588 event->destroy = hw_perf_event_destroy;
589
590 event->hw.idx = -1;
591 event->hw.last_cpu = -1;
592 event->hw.last_tag = ~0ULL;
593
594 /* mark unused */
595 event->hw.extra_reg.idx = EXTRA_REG_NONE;
596 event->hw.branch_reg.idx = EXTRA_REG_NONE;
597
598 return x86_pmu.hw_config(event);
599 }
600
x86_pmu_disable_all(void)601 void x86_pmu_disable_all(void)
602 {
603 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
604 int idx;
605
606 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
607 u64 val;
608
609 if (!test_bit(idx, cpuc->active_mask))
610 continue;
611 rdmsrl(x86_pmu_config_addr(idx), val);
612 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
613 continue;
614 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
615 wrmsrl(x86_pmu_config_addr(idx), val);
616 }
617 }
618
619 /*
620 * There may be PMI landing after enabled=0. The PMI hitting could be before or
621 * after disable_all.
622 *
623 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
624 * It will not be re-enabled in the NMI handler again, because enabled=0. After
625 * handling the NMI, disable_all will be called, which will not change the
626 * state either. If PMI hits after disable_all, the PMU is already disabled
627 * before entering NMI handler. The NMI handler will not change the state
628 * either.
629 *
630 * So either situation is harmless.
631 */
x86_pmu_disable(struct pmu * pmu)632 static void x86_pmu_disable(struct pmu *pmu)
633 {
634 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
635
636 if (!x86_pmu_initialized())
637 return;
638
639 if (!cpuc->enabled)
640 return;
641
642 cpuc->n_added = 0;
643 cpuc->enabled = 0;
644 barrier();
645
646 x86_pmu.disable_all();
647 }
648
x86_pmu_enable_all(int added)649 void x86_pmu_enable_all(int added)
650 {
651 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
652 int idx;
653
654 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
655 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
656
657 if (!test_bit(idx, cpuc->active_mask))
658 continue;
659
660 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
661 }
662 }
663
664 static struct pmu pmu;
665
is_x86_event(struct perf_event * event)666 static inline int is_x86_event(struct perf_event *event)
667 {
668 return event->pmu == &pmu;
669 }
670
671 /*
672 * Event scheduler state:
673 *
674 * Assign events iterating over all events and counters, beginning
675 * with events with least weights first. Keep the current iterator
676 * state in struct sched_state.
677 */
678 struct sched_state {
679 int weight;
680 int event; /* event index */
681 int counter; /* counter index */
682 int unassigned; /* number of events to be assigned left */
683 int nr_gp; /* number of GP counters used */
684 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
685 };
686
687 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
688 #define SCHED_STATES_MAX 2
689
690 struct perf_sched {
691 int max_weight;
692 int max_events;
693 int max_gp;
694 int saved_states;
695 struct event_constraint **constraints;
696 struct sched_state state;
697 struct sched_state saved[SCHED_STATES_MAX];
698 };
699
700 /*
701 * Initialize interator that runs through all events and counters.
702 */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** constraints,int num,int wmin,int wmax,int gpmax)703 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
704 int num, int wmin, int wmax, int gpmax)
705 {
706 int idx;
707
708 memset(sched, 0, sizeof(*sched));
709 sched->max_events = num;
710 sched->max_weight = wmax;
711 sched->max_gp = gpmax;
712 sched->constraints = constraints;
713
714 for (idx = 0; idx < num; idx++) {
715 if (constraints[idx]->weight == wmin)
716 break;
717 }
718
719 sched->state.event = idx; /* start with min weight */
720 sched->state.weight = wmin;
721 sched->state.unassigned = num;
722 }
723
perf_sched_save_state(struct perf_sched * sched)724 static void perf_sched_save_state(struct perf_sched *sched)
725 {
726 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
727 return;
728
729 sched->saved[sched->saved_states] = sched->state;
730 sched->saved_states++;
731 }
732
perf_sched_restore_state(struct perf_sched * sched)733 static bool perf_sched_restore_state(struct perf_sched *sched)
734 {
735 if (!sched->saved_states)
736 return false;
737
738 sched->saved_states--;
739 sched->state = sched->saved[sched->saved_states];
740
741 /* continue with next counter: */
742 clear_bit(sched->state.counter++, sched->state.used);
743
744 return true;
745 }
746
747 /*
748 * Select a counter for the current event to schedule. Return true on
749 * success.
750 */
__perf_sched_find_counter(struct perf_sched * sched)751 static bool __perf_sched_find_counter(struct perf_sched *sched)
752 {
753 struct event_constraint *c;
754 int idx;
755
756 if (!sched->state.unassigned)
757 return false;
758
759 if (sched->state.event >= sched->max_events)
760 return false;
761
762 c = sched->constraints[sched->state.event];
763 /* Prefer fixed purpose counters */
764 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
765 idx = INTEL_PMC_IDX_FIXED;
766 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
767 if (!__test_and_set_bit(idx, sched->state.used))
768 goto done;
769 }
770 }
771
772 /* Grab the first unused counter starting with idx */
773 idx = sched->state.counter;
774 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
775 if (!__test_and_set_bit(idx, sched->state.used)) {
776 if (sched->state.nr_gp++ >= sched->max_gp)
777 return false;
778
779 goto done;
780 }
781 }
782
783 return false;
784
785 done:
786 sched->state.counter = idx;
787
788 if (c->overlap)
789 perf_sched_save_state(sched);
790
791 return true;
792 }
793
perf_sched_find_counter(struct perf_sched * sched)794 static bool perf_sched_find_counter(struct perf_sched *sched)
795 {
796 while (!__perf_sched_find_counter(sched)) {
797 if (!perf_sched_restore_state(sched))
798 return false;
799 }
800
801 return true;
802 }
803
804 /*
805 * Go through all unassigned events and find the next one to schedule.
806 * Take events with the least weight first. Return true on success.
807 */
perf_sched_next_event(struct perf_sched * sched)808 static bool perf_sched_next_event(struct perf_sched *sched)
809 {
810 struct event_constraint *c;
811
812 if (!sched->state.unassigned || !--sched->state.unassigned)
813 return false;
814
815 do {
816 /* next event */
817 sched->state.event++;
818 if (sched->state.event >= sched->max_events) {
819 /* next weight */
820 sched->state.event = 0;
821 sched->state.weight++;
822 if (sched->state.weight > sched->max_weight)
823 return false;
824 }
825 c = sched->constraints[sched->state.event];
826 } while (c->weight != sched->state.weight);
827
828 sched->state.counter = 0; /* start with first counter */
829
830 return true;
831 }
832
833 /*
834 * Assign a counter for each event.
835 */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int gpmax,int * assign)836 int perf_assign_events(struct event_constraint **constraints, int n,
837 int wmin, int wmax, int gpmax, int *assign)
838 {
839 struct perf_sched sched;
840
841 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
842
843 do {
844 if (!perf_sched_find_counter(&sched))
845 break; /* failed */
846 if (assign)
847 assign[sched.state.event] = sched.state.counter;
848 } while (perf_sched_next_event(&sched));
849
850 return sched.state.unassigned;
851 }
852 EXPORT_SYMBOL_GPL(perf_assign_events);
853
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)854 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
855 {
856 struct event_constraint *c;
857 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
858 struct perf_event *e;
859 int i, wmin, wmax, unsched = 0;
860 struct hw_perf_event *hwc;
861
862 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
863
864 if (x86_pmu.start_scheduling)
865 x86_pmu.start_scheduling(cpuc);
866
867 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
868 cpuc->event_constraint[i] = NULL;
869 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
870 cpuc->event_constraint[i] = c;
871
872 wmin = min(wmin, c->weight);
873 wmax = max(wmax, c->weight);
874 }
875
876 /*
877 * fastpath, try to reuse previous register
878 */
879 for (i = 0; i < n; i++) {
880 hwc = &cpuc->event_list[i]->hw;
881 c = cpuc->event_constraint[i];
882
883 /* never assigned */
884 if (hwc->idx == -1)
885 break;
886
887 /* constraint still honored */
888 if (!test_bit(hwc->idx, c->idxmsk))
889 break;
890
891 /* not already used */
892 if (test_bit(hwc->idx, used_mask))
893 break;
894
895 __set_bit(hwc->idx, used_mask);
896 if (assign)
897 assign[i] = hwc->idx;
898 }
899
900 /* slow path */
901 if (i != n) {
902 int gpmax = x86_pmu.num_counters;
903
904 /*
905 * Do not allow scheduling of more than half the available
906 * generic counters.
907 *
908 * This helps avoid counter starvation of sibling thread by
909 * ensuring at most half the counters cannot be in exclusive
910 * mode. There is no designated counters for the limits. Any
911 * N/2 counters can be used. This helps with events with
912 * specific counter constraints.
913 */
914 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
915 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
916 gpmax /= 2;
917
918 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
919 wmax, gpmax, assign);
920 }
921
922 /*
923 * In case of success (unsched = 0), mark events as committed,
924 * so we do not put_constraint() in case new events are added
925 * and fail to be scheduled
926 *
927 * We invoke the lower level commit callback to lock the resource
928 *
929 * We do not need to do all of this in case we are called to
930 * validate an event group (assign == NULL)
931 */
932 if (!unsched && assign) {
933 for (i = 0; i < n; i++) {
934 e = cpuc->event_list[i];
935 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
936 if (x86_pmu.commit_scheduling)
937 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
938 }
939 } else {
940 for (i = 0; i < n; i++) {
941 e = cpuc->event_list[i];
942 /*
943 * do not put_constraint() on comitted events,
944 * because they are good to go
945 */
946 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
947 continue;
948
949 /*
950 * release events that failed scheduling
951 */
952 if (x86_pmu.put_event_constraints)
953 x86_pmu.put_event_constraints(cpuc, e);
954 }
955 }
956
957 if (x86_pmu.stop_scheduling)
958 x86_pmu.stop_scheduling(cpuc);
959
960 return unsched ? -EINVAL : 0;
961 }
962
963 /*
964 * dogrp: true if must collect siblings events (group)
965 * returns total number of events and error code
966 */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)967 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
968 {
969 struct perf_event *event;
970 int n, max_count;
971
972 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
973
974 /* current number of events already accepted */
975 n = cpuc->n_events;
976
977 if (is_x86_event(leader)) {
978 if (n >= max_count)
979 return -EINVAL;
980 cpuc->event_list[n] = leader;
981 n++;
982 }
983 if (!dogrp)
984 return n;
985
986 list_for_each_entry(event, &leader->sibling_list, group_entry) {
987 if (!is_x86_event(event) ||
988 event->state <= PERF_EVENT_STATE_OFF)
989 continue;
990
991 if (n >= max_count)
992 return -EINVAL;
993
994 cpuc->event_list[n] = event;
995 n++;
996 }
997 return n;
998 }
999
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)1000 static inline void x86_assign_hw_event(struct perf_event *event,
1001 struct cpu_hw_events *cpuc, int i)
1002 {
1003 struct hw_perf_event *hwc = &event->hw;
1004
1005 hwc->idx = cpuc->assign[i];
1006 hwc->last_cpu = smp_processor_id();
1007 hwc->last_tag = ++cpuc->tags[i];
1008
1009 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1010 hwc->config_base = 0;
1011 hwc->event_base = 0;
1012 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1013 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1014 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1015 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1016 } else {
1017 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1018 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1019 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1020 }
1021 }
1022
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)1023 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1024 struct cpu_hw_events *cpuc,
1025 int i)
1026 {
1027 return hwc->idx == cpuc->assign[i] &&
1028 hwc->last_cpu == smp_processor_id() &&
1029 hwc->last_tag == cpuc->tags[i];
1030 }
1031
1032 static void x86_pmu_start(struct perf_event *event, int flags);
1033
x86_pmu_enable(struct pmu * pmu)1034 static void x86_pmu_enable(struct pmu *pmu)
1035 {
1036 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1037 struct perf_event *event;
1038 struct hw_perf_event *hwc;
1039 int i, added = cpuc->n_added;
1040
1041 if (!x86_pmu_initialized())
1042 return;
1043
1044 if (cpuc->enabled)
1045 return;
1046
1047 if (cpuc->n_added) {
1048 int n_running = cpuc->n_events - cpuc->n_added;
1049 /*
1050 * apply assignment obtained either from
1051 * hw_perf_group_sched_in() or x86_pmu_enable()
1052 *
1053 * step1: save events moving to new counters
1054 */
1055 for (i = 0; i < n_running; i++) {
1056 event = cpuc->event_list[i];
1057 hwc = &event->hw;
1058
1059 /*
1060 * we can avoid reprogramming counter if:
1061 * - assigned same counter as last time
1062 * - running on same CPU as last time
1063 * - no other event has used the counter since
1064 */
1065 if (hwc->idx == -1 ||
1066 match_prev_assignment(hwc, cpuc, i))
1067 continue;
1068
1069 /*
1070 * Ensure we don't accidentally enable a stopped
1071 * counter simply because we rescheduled.
1072 */
1073 if (hwc->state & PERF_HES_STOPPED)
1074 hwc->state |= PERF_HES_ARCH;
1075
1076 x86_pmu_stop(event, PERF_EF_UPDATE);
1077 }
1078
1079 /*
1080 * step2: reprogram moved events into new counters
1081 */
1082 for (i = 0; i < cpuc->n_events; i++) {
1083 event = cpuc->event_list[i];
1084 hwc = &event->hw;
1085
1086 if (!match_prev_assignment(hwc, cpuc, i))
1087 x86_assign_hw_event(event, cpuc, i);
1088 else if (i < n_running)
1089 continue;
1090
1091 if (hwc->state & PERF_HES_ARCH)
1092 continue;
1093
1094 x86_pmu_start(event, PERF_EF_RELOAD);
1095 }
1096 cpuc->n_added = 0;
1097 perf_events_lapic_init();
1098 }
1099
1100 cpuc->enabled = 1;
1101 barrier();
1102
1103 x86_pmu.enable_all(added);
1104 }
1105
1106 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1107
1108 /*
1109 * Set the next IRQ period, based on the hwc->period_left value.
1110 * To be called with the event disabled in hw:
1111 */
x86_perf_event_set_period(struct perf_event * event)1112 int x86_perf_event_set_period(struct perf_event *event)
1113 {
1114 struct hw_perf_event *hwc = &event->hw;
1115 s64 left = local64_read(&hwc->period_left);
1116 s64 period = hwc->sample_period;
1117 int ret = 0, idx = hwc->idx;
1118
1119 if (idx == INTEL_PMC_IDX_FIXED_BTS)
1120 return 0;
1121
1122 /*
1123 * If we are way outside a reasonable range then just skip forward:
1124 */
1125 if (unlikely(left <= -period)) {
1126 left = period;
1127 local64_set(&hwc->period_left, left);
1128 hwc->last_period = period;
1129 ret = 1;
1130 }
1131
1132 if (unlikely(left <= 0)) {
1133 left += period;
1134 local64_set(&hwc->period_left, left);
1135 hwc->last_period = period;
1136 ret = 1;
1137 }
1138 /*
1139 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1140 */
1141 if (unlikely(left < 2))
1142 left = 2;
1143
1144 if (left > x86_pmu.max_period)
1145 left = x86_pmu.max_period;
1146
1147 if (x86_pmu.limit_period)
1148 left = x86_pmu.limit_period(event, left);
1149
1150 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1151
1152 if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1153 local64_read(&hwc->prev_count) != (u64)-left) {
1154 /*
1155 * The hw event starts counting from this event offset,
1156 * mark it to be able to extra future deltas:
1157 */
1158 local64_set(&hwc->prev_count, (u64)-left);
1159
1160 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1161 }
1162
1163 /*
1164 * Due to erratum on certan cpu we need
1165 * a second write to be sure the register
1166 * is updated properly
1167 */
1168 if (x86_pmu.perfctr_second_write) {
1169 wrmsrl(hwc->event_base,
1170 (u64)(-left) & x86_pmu.cntval_mask);
1171 }
1172
1173 perf_event_update_userpage(event);
1174
1175 return ret;
1176 }
1177
x86_pmu_enable_event(struct perf_event * event)1178 void x86_pmu_enable_event(struct perf_event *event)
1179 {
1180 if (__this_cpu_read(cpu_hw_events.enabled))
1181 __x86_pmu_enable_event(&event->hw,
1182 ARCH_PERFMON_EVENTSEL_ENABLE);
1183 }
1184
1185 /*
1186 * Add a single event to the PMU.
1187 *
1188 * The event is added to the group of enabled events
1189 * but only if it can be scehduled with existing events.
1190 */
x86_pmu_add(struct perf_event * event,int flags)1191 static int x86_pmu_add(struct perf_event *event, int flags)
1192 {
1193 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1194 struct hw_perf_event *hwc;
1195 int assign[X86_PMC_IDX_MAX];
1196 int n, n0, ret;
1197
1198 hwc = &event->hw;
1199
1200 n0 = cpuc->n_events;
1201 ret = n = collect_events(cpuc, event, false);
1202 if (ret < 0)
1203 goto out;
1204
1205 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1206 if (!(flags & PERF_EF_START))
1207 hwc->state |= PERF_HES_ARCH;
1208
1209 /*
1210 * If group events scheduling transaction was started,
1211 * skip the schedulability test here, it will be performed
1212 * at commit time (->commit_txn) as a whole.
1213 *
1214 * If commit fails, we'll call ->del() on all events
1215 * for which ->add() was called.
1216 */
1217 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1218 goto done_collect;
1219
1220 ret = x86_pmu.schedule_events(cpuc, n, assign);
1221 if (ret)
1222 goto out;
1223 /*
1224 * copy new assignment, now we know it is possible
1225 * will be used by hw_perf_enable()
1226 */
1227 memcpy(cpuc->assign, assign, n*sizeof(int));
1228
1229 done_collect:
1230 /*
1231 * Commit the collect_events() state. See x86_pmu_del() and
1232 * x86_pmu_*_txn().
1233 */
1234 cpuc->n_events = n;
1235 cpuc->n_added += n - n0;
1236 cpuc->n_txn += n - n0;
1237
1238 if (x86_pmu.add) {
1239 /*
1240 * This is before x86_pmu_enable() will call x86_pmu_start(),
1241 * so we enable LBRs before an event needs them etc..
1242 */
1243 x86_pmu.add(event);
1244 }
1245
1246 ret = 0;
1247 out:
1248 return ret;
1249 }
1250
x86_pmu_start(struct perf_event * event,int flags)1251 static void x86_pmu_start(struct perf_event *event, int flags)
1252 {
1253 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1254 int idx = event->hw.idx;
1255
1256 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1257 return;
1258
1259 if (WARN_ON_ONCE(idx == -1))
1260 return;
1261
1262 if (flags & PERF_EF_RELOAD) {
1263 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1264 x86_perf_event_set_period(event);
1265 }
1266
1267 event->hw.state = 0;
1268
1269 cpuc->events[idx] = event;
1270 __set_bit(idx, cpuc->active_mask);
1271 __set_bit(idx, cpuc->running);
1272 x86_pmu.enable(event);
1273 perf_event_update_userpage(event);
1274 }
1275
perf_event_print_debug(void)1276 void perf_event_print_debug(void)
1277 {
1278 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1279 u64 pebs, debugctl;
1280 struct cpu_hw_events *cpuc;
1281 unsigned long flags;
1282 int cpu, idx;
1283
1284 if (!x86_pmu.num_counters)
1285 return;
1286
1287 local_irq_save(flags);
1288
1289 cpu = smp_processor_id();
1290 cpuc = &per_cpu(cpu_hw_events, cpu);
1291
1292 if (x86_pmu.version >= 2) {
1293 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1294 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1295 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1296 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1297
1298 pr_info("\n");
1299 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1300 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1301 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1302 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1303 if (x86_pmu.pebs_constraints) {
1304 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1305 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1306 }
1307 if (x86_pmu.lbr_nr) {
1308 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1309 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1310 }
1311 }
1312 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1313
1314 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1315 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1316 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1317
1318 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1319
1320 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1321 cpu, idx, pmc_ctrl);
1322 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1323 cpu, idx, pmc_count);
1324 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1325 cpu, idx, prev_left);
1326 }
1327 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1328 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1329
1330 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1331 cpu, idx, pmc_count);
1332 }
1333 local_irq_restore(flags);
1334 }
1335
x86_pmu_stop(struct perf_event * event,int flags)1336 void x86_pmu_stop(struct perf_event *event, int flags)
1337 {
1338 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1339 struct hw_perf_event *hwc = &event->hw;
1340
1341 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1342 x86_pmu.disable(event);
1343 cpuc->events[hwc->idx] = NULL;
1344 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1345 hwc->state |= PERF_HES_STOPPED;
1346 }
1347
1348 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1349 /*
1350 * Drain the remaining delta count out of a event
1351 * that we are disabling:
1352 */
1353 x86_perf_event_update(event);
1354 hwc->state |= PERF_HES_UPTODATE;
1355 }
1356 }
1357
x86_pmu_del(struct perf_event * event,int flags)1358 static void x86_pmu_del(struct perf_event *event, int flags)
1359 {
1360 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1361 int i;
1362
1363 /*
1364 * event is descheduled
1365 */
1366 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1367
1368 /*
1369 * If we're called during a txn, we only need to undo x86_pmu.add.
1370 * The events never got scheduled and ->cancel_txn will truncate
1371 * the event_list.
1372 *
1373 * XXX assumes any ->del() called during a TXN will only be on
1374 * an event added during that same TXN.
1375 */
1376 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1377 goto do_del;
1378
1379 /*
1380 * Not a TXN, therefore cleanup properly.
1381 */
1382 x86_pmu_stop(event, PERF_EF_UPDATE);
1383
1384 for (i = 0; i < cpuc->n_events; i++) {
1385 if (event == cpuc->event_list[i])
1386 break;
1387 }
1388
1389 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1390 return;
1391
1392 /* If we have a newly added event; make sure to decrease n_added. */
1393 if (i >= cpuc->n_events - cpuc->n_added)
1394 --cpuc->n_added;
1395
1396 if (x86_pmu.put_event_constraints)
1397 x86_pmu.put_event_constraints(cpuc, event);
1398
1399 /* Delete the array entry. */
1400 while (++i < cpuc->n_events) {
1401 cpuc->event_list[i-1] = cpuc->event_list[i];
1402 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1403 }
1404 --cpuc->n_events;
1405
1406 perf_event_update_userpage(event);
1407
1408 do_del:
1409 if (x86_pmu.del) {
1410 /*
1411 * This is after x86_pmu_stop(); so we disable LBRs after any
1412 * event can need them etc..
1413 */
1414 x86_pmu.del(event);
1415 }
1416 }
1417
x86_pmu_handle_irq(struct pt_regs * regs)1418 int x86_pmu_handle_irq(struct pt_regs *regs)
1419 {
1420 struct perf_sample_data data;
1421 struct cpu_hw_events *cpuc;
1422 struct perf_event *event;
1423 int idx, handled = 0;
1424 u64 val;
1425
1426 cpuc = this_cpu_ptr(&cpu_hw_events);
1427
1428 /*
1429 * Some chipsets need to unmask the LVTPC in a particular spot
1430 * inside the nmi handler. As a result, the unmasking was pushed
1431 * into all the nmi handlers.
1432 *
1433 * This generic handler doesn't seem to have any issues where the
1434 * unmasking occurs so it was left at the top.
1435 */
1436 apic_write(APIC_LVTPC, APIC_DM_NMI);
1437
1438 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1439 if (!test_bit(idx, cpuc->active_mask)) {
1440 /*
1441 * Though we deactivated the counter some cpus
1442 * might still deliver spurious interrupts still
1443 * in flight. Catch them:
1444 */
1445 if (__test_and_clear_bit(idx, cpuc->running))
1446 handled++;
1447 continue;
1448 }
1449
1450 event = cpuc->events[idx];
1451
1452 val = x86_perf_event_update(event);
1453 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1454 continue;
1455
1456 /*
1457 * event overflow
1458 */
1459 handled++;
1460 perf_sample_data_init(&data, 0, event->hw.last_period);
1461
1462 if (!x86_perf_event_set_period(event))
1463 continue;
1464
1465 if (perf_event_overflow(event, &data, regs))
1466 x86_pmu_stop(event, 0);
1467 }
1468
1469 if (handled)
1470 inc_irq_stat(apic_perf_irqs);
1471
1472 return handled;
1473 }
1474
perf_events_lapic_init(void)1475 void perf_events_lapic_init(void)
1476 {
1477 if (!x86_pmu.apic || !x86_pmu_initialized())
1478 return;
1479
1480 /*
1481 * Always use NMI for PMU
1482 */
1483 apic_write(APIC_LVTPC, APIC_DM_NMI);
1484 }
1485
1486 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1487 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1488 {
1489 u64 start_clock;
1490 u64 finish_clock;
1491 int ret;
1492
1493 /*
1494 * All PMUs/events that share this PMI handler should make sure to
1495 * increment active_events for their events.
1496 */
1497 if (!atomic_read(&active_events))
1498 return NMI_DONE;
1499
1500 start_clock = sched_clock();
1501 ret = x86_pmu.handle_irq(regs);
1502 finish_clock = sched_clock();
1503
1504 perf_sample_event_took(finish_clock - start_clock);
1505
1506 return ret;
1507 }
1508 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1509
1510 struct event_constraint emptyconstraint;
1511 struct event_constraint unconstrained;
1512
x86_pmu_prepare_cpu(unsigned int cpu)1513 static int x86_pmu_prepare_cpu(unsigned int cpu)
1514 {
1515 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1516 int i;
1517
1518 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1519 cpuc->kfree_on_online[i] = NULL;
1520 if (x86_pmu.cpu_prepare)
1521 return x86_pmu.cpu_prepare(cpu);
1522 return 0;
1523 }
1524
x86_pmu_dead_cpu(unsigned int cpu)1525 static int x86_pmu_dead_cpu(unsigned int cpu)
1526 {
1527 if (x86_pmu.cpu_dead)
1528 x86_pmu.cpu_dead(cpu);
1529 return 0;
1530 }
1531
x86_pmu_online_cpu(unsigned int cpu)1532 static int x86_pmu_online_cpu(unsigned int cpu)
1533 {
1534 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1535 int i;
1536
1537 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1538 kfree(cpuc->kfree_on_online[i]);
1539 cpuc->kfree_on_online[i] = NULL;
1540 }
1541 return 0;
1542 }
1543
x86_pmu_starting_cpu(unsigned int cpu)1544 static int x86_pmu_starting_cpu(unsigned int cpu)
1545 {
1546 if (x86_pmu.cpu_starting)
1547 x86_pmu.cpu_starting(cpu);
1548 return 0;
1549 }
1550
x86_pmu_dying_cpu(unsigned int cpu)1551 static int x86_pmu_dying_cpu(unsigned int cpu)
1552 {
1553 if (x86_pmu.cpu_dying)
1554 x86_pmu.cpu_dying(cpu);
1555 return 0;
1556 }
1557
pmu_check_apic(void)1558 static void __init pmu_check_apic(void)
1559 {
1560 if (boot_cpu_has(X86_FEATURE_APIC))
1561 return;
1562
1563 x86_pmu.apic = 0;
1564 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1565 pr_info("no hardware sampling interrupt available.\n");
1566
1567 /*
1568 * If we have a PMU initialized but no APIC
1569 * interrupts, we cannot sample hardware
1570 * events (user-space has to fall back and
1571 * sample via a hrtimer based software event):
1572 */
1573 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1574
1575 }
1576
1577 static struct attribute_group x86_pmu_format_group = {
1578 .name = "format",
1579 .attrs = NULL,
1580 };
1581
1582 /*
1583 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1584 * out of events_attr attributes.
1585 */
filter_events(struct attribute ** attrs)1586 static void __init filter_events(struct attribute **attrs)
1587 {
1588 struct device_attribute *d;
1589 struct perf_pmu_events_attr *pmu_attr;
1590 int offset = 0;
1591 int i, j;
1592
1593 for (i = 0; attrs[i]; i++) {
1594 d = (struct device_attribute *)attrs[i];
1595 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1596 /* str trumps id */
1597 if (pmu_attr->event_str)
1598 continue;
1599 if (x86_pmu.event_map(i + offset))
1600 continue;
1601
1602 for (j = i; attrs[j]; j++)
1603 attrs[j] = attrs[j + 1];
1604
1605 /* Check the shifted attr. */
1606 i--;
1607
1608 /*
1609 * event_map() is index based, the attrs array is organized
1610 * by increasing event index. If we shift the events, then
1611 * we need to compensate for the event_map(), otherwise
1612 * we are looking up the wrong event in the map
1613 */
1614 offset++;
1615 }
1616 }
1617
1618 /* Merge two pointer arrays */
merge_attr(struct attribute ** a,struct attribute ** b)1619 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1620 {
1621 struct attribute **new;
1622 int j, i;
1623
1624 for (j = 0; a[j]; j++)
1625 ;
1626 for (i = 0; b[i]; i++)
1627 j++;
1628 j++;
1629
1630 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1631 if (!new)
1632 return NULL;
1633
1634 j = 0;
1635 for (i = 0; a[i]; i++)
1636 new[j++] = a[i];
1637 for (i = 0; b[i]; i++)
1638 new[j++] = b[i];
1639 new[j] = NULL;
1640
1641 return new;
1642 }
1643
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1644 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1645 {
1646 struct perf_pmu_events_attr *pmu_attr = \
1647 container_of(attr, struct perf_pmu_events_attr, attr);
1648 u64 config = x86_pmu.event_map(pmu_attr->id);
1649
1650 /* string trumps id */
1651 if (pmu_attr->event_str)
1652 return sprintf(page, "%s", pmu_attr->event_str);
1653
1654 return x86_pmu.events_sysfs_show(page, config);
1655 }
1656 EXPORT_SYMBOL_GPL(events_sysfs_show);
1657
events_ht_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1658 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1659 char *page)
1660 {
1661 struct perf_pmu_events_ht_attr *pmu_attr =
1662 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1663
1664 /*
1665 * Report conditional events depending on Hyper-Threading.
1666 *
1667 * This is overly conservative as usually the HT special
1668 * handling is not needed if the other CPU thread is idle.
1669 *
1670 * Note this does not (and cannot) handle the case when thread
1671 * siblings are invisible, for example with virtualization
1672 * if they are owned by some other guest. The user tool
1673 * has to re-read when a thread sibling gets onlined later.
1674 */
1675 return sprintf(page, "%s",
1676 topology_max_smt_threads() > 1 ?
1677 pmu_attr->event_str_ht :
1678 pmu_attr->event_str_noht);
1679 }
1680
1681 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1682 EVENT_ATTR(instructions, INSTRUCTIONS );
1683 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1684 EVENT_ATTR(cache-misses, CACHE_MISSES );
1685 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1686 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1687 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1688 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1689 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1690 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1691
1692 static struct attribute *empty_attrs;
1693
1694 static struct attribute *events_attr[] = {
1695 EVENT_PTR(CPU_CYCLES),
1696 EVENT_PTR(INSTRUCTIONS),
1697 EVENT_PTR(CACHE_REFERENCES),
1698 EVENT_PTR(CACHE_MISSES),
1699 EVENT_PTR(BRANCH_INSTRUCTIONS),
1700 EVENT_PTR(BRANCH_MISSES),
1701 EVENT_PTR(BUS_CYCLES),
1702 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1703 EVENT_PTR(STALLED_CYCLES_BACKEND),
1704 EVENT_PTR(REF_CPU_CYCLES),
1705 NULL,
1706 };
1707
1708 static struct attribute_group x86_pmu_events_group = {
1709 .name = "events",
1710 .attrs = events_attr,
1711 };
1712
x86_event_sysfs_show(char * page,u64 config,u64 event)1713 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1714 {
1715 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1716 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1717 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1718 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1719 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1720 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1721 ssize_t ret;
1722
1723 /*
1724 * We have whole page size to spend and just little data
1725 * to write, so we can safely use sprintf.
1726 */
1727 ret = sprintf(page, "event=0x%02llx", event);
1728
1729 if (umask)
1730 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1731
1732 if (edge)
1733 ret += sprintf(page + ret, ",edge");
1734
1735 if (pc)
1736 ret += sprintf(page + ret, ",pc");
1737
1738 if (any)
1739 ret += sprintf(page + ret, ",any");
1740
1741 if (inv)
1742 ret += sprintf(page + ret, ",inv");
1743
1744 if (cmask)
1745 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1746
1747 ret += sprintf(page + ret, "\n");
1748
1749 return ret;
1750 }
1751
init_hw_perf_events(void)1752 static int __init init_hw_perf_events(void)
1753 {
1754 struct x86_pmu_quirk *quirk;
1755 int err;
1756
1757 pr_info("Performance Events: ");
1758
1759 switch (boot_cpu_data.x86_vendor) {
1760 case X86_VENDOR_INTEL:
1761 err = intel_pmu_init();
1762 break;
1763 case X86_VENDOR_AMD:
1764 err = amd_pmu_init();
1765 break;
1766 default:
1767 err = -ENOTSUPP;
1768 }
1769 if (err != 0) {
1770 pr_cont("no PMU driver, software events only.\n");
1771 return 0;
1772 }
1773
1774 pmu_check_apic();
1775
1776 /* sanity check that the hardware exists or is emulated */
1777 if (!check_hw_exists())
1778 return 0;
1779
1780 pr_cont("%s PMU driver.\n", x86_pmu.name);
1781
1782 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1783
1784 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1785 quirk->func();
1786
1787 if (!x86_pmu.intel_ctrl)
1788 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1789
1790 perf_events_lapic_init();
1791 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1792
1793 unconstrained = (struct event_constraint)
1794 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1795 0, x86_pmu.num_counters, 0, 0);
1796
1797 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1798
1799 if (x86_pmu.event_attrs)
1800 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1801
1802 if (!x86_pmu.events_sysfs_show)
1803 x86_pmu_events_group.attrs = &empty_attrs;
1804 else
1805 filter_events(x86_pmu_events_group.attrs);
1806
1807 if (x86_pmu.cpu_events) {
1808 struct attribute **tmp;
1809
1810 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1811 if (!WARN_ON(!tmp))
1812 x86_pmu_events_group.attrs = tmp;
1813 }
1814
1815 pr_info("... version: %d\n", x86_pmu.version);
1816 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1817 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1818 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1819 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1820 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1821 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1822
1823 /*
1824 * Install callbacks. Core will call them for each online
1825 * cpu.
1826 */
1827 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "PERF_X86_PREPARE",
1828 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1829 if (err)
1830 return err;
1831
1832 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1833 "AP_PERF_X86_STARTING", x86_pmu_starting_cpu,
1834 x86_pmu_dying_cpu);
1835 if (err)
1836 goto out;
1837
1838 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "AP_PERF_X86_ONLINE",
1839 x86_pmu_online_cpu, NULL);
1840 if (err)
1841 goto out1;
1842
1843 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1844 if (err)
1845 goto out2;
1846
1847 return 0;
1848
1849 out2:
1850 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1851 out1:
1852 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1853 out:
1854 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1855 return err;
1856 }
1857 early_initcall(init_hw_perf_events);
1858
x86_pmu_read(struct perf_event * event)1859 static inline void x86_pmu_read(struct perf_event *event)
1860 {
1861 x86_perf_event_update(event);
1862 }
1863
1864 /*
1865 * Start group events scheduling transaction
1866 * Set the flag to make pmu::enable() not perform the
1867 * schedulability test, it will be performed at commit time
1868 *
1869 * We only support PERF_PMU_TXN_ADD transactions. Save the
1870 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1871 * transactions.
1872 */
x86_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1873 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1874 {
1875 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1876
1877 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1878
1879 cpuc->txn_flags = txn_flags;
1880 if (txn_flags & ~PERF_PMU_TXN_ADD)
1881 return;
1882
1883 perf_pmu_disable(pmu);
1884 __this_cpu_write(cpu_hw_events.n_txn, 0);
1885 }
1886
1887 /*
1888 * Stop group events scheduling transaction
1889 * Clear the flag and pmu::enable() will perform the
1890 * schedulability test.
1891 */
x86_pmu_cancel_txn(struct pmu * pmu)1892 static void x86_pmu_cancel_txn(struct pmu *pmu)
1893 {
1894 unsigned int txn_flags;
1895 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1896
1897 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1898
1899 txn_flags = cpuc->txn_flags;
1900 cpuc->txn_flags = 0;
1901 if (txn_flags & ~PERF_PMU_TXN_ADD)
1902 return;
1903
1904 /*
1905 * Truncate collected array by the number of events added in this
1906 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1907 */
1908 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1909 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1910 perf_pmu_enable(pmu);
1911 }
1912
1913 /*
1914 * Commit group events scheduling transaction
1915 * Perform the group schedulability test as a whole
1916 * Return 0 if success
1917 *
1918 * Does not cancel the transaction on failure; expects the caller to do this.
1919 */
x86_pmu_commit_txn(struct pmu * pmu)1920 static int x86_pmu_commit_txn(struct pmu *pmu)
1921 {
1922 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1923 int assign[X86_PMC_IDX_MAX];
1924 int n, ret;
1925
1926 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1927
1928 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1929 cpuc->txn_flags = 0;
1930 return 0;
1931 }
1932
1933 n = cpuc->n_events;
1934
1935 if (!x86_pmu_initialized())
1936 return -EAGAIN;
1937
1938 ret = x86_pmu.schedule_events(cpuc, n, assign);
1939 if (ret)
1940 return ret;
1941
1942 /*
1943 * copy new assignment, now we know it is possible
1944 * will be used by hw_perf_enable()
1945 */
1946 memcpy(cpuc->assign, assign, n*sizeof(int));
1947
1948 cpuc->txn_flags = 0;
1949 perf_pmu_enable(pmu);
1950 return 0;
1951 }
1952 /*
1953 * a fake_cpuc is used to validate event groups. Due to
1954 * the extra reg logic, we need to also allocate a fake
1955 * per_core and per_cpu structure. Otherwise, group events
1956 * using extra reg may conflict without the kernel being
1957 * able to catch this when the last event gets added to
1958 * the group.
1959 */
free_fake_cpuc(struct cpu_hw_events * cpuc)1960 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1961 {
1962 kfree(cpuc->shared_regs);
1963 kfree(cpuc);
1964 }
1965
allocate_fake_cpuc(void)1966 static struct cpu_hw_events *allocate_fake_cpuc(void)
1967 {
1968 struct cpu_hw_events *cpuc;
1969 int cpu = raw_smp_processor_id();
1970
1971 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1972 if (!cpuc)
1973 return ERR_PTR(-ENOMEM);
1974
1975 /* only needed, if we have extra_regs */
1976 if (x86_pmu.extra_regs) {
1977 cpuc->shared_regs = allocate_shared_regs(cpu);
1978 if (!cpuc->shared_regs)
1979 goto error;
1980 }
1981 cpuc->is_fake = 1;
1982 return cpuc;
1983 error:
1984 free_fake_cpuc(cpuc);
1985 return ERR_PTR(-ENOMEM);
1986 }
1987
1988 /*
1989 * validate that we can schedule this event
1990 */
validate_event(struct perf_event * event)1991 static int validate_event(struct perf_event *event)
1992 {
1993 struct cpu_hw_events *fake_cpuc;
1994 struct event_constraint *c;
1995 int ret = 0;
1996
1997 fake_cpuc = allocate_fake_cpuc();
1998 if (IS_ERR(fake_cpuc))
1999 return PTR_ERR(fake_cpuc);
2000
2001 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
2002
2003 if (!c || !c->weight)
2004 ret = -EINVAL;
2005
2006 if (x86_pmu.put_event_constraints)
2007 x86_pmu.put_event_constraints(fake_cpuc, event);
2008
2009 free_fake_cpuc(fake_cpuc);
2010
2011 return ret;
2012 }
2013
2014 /*
2015 * validate a single event group
2016 *
2017 * validation include:
2018 * - check events are compatible which each other
2019 * - events do not compete for the same counter
2020 * - number of events <= number of counters
2021 *
2022 * validation ensures the group can be loaded onto the
2023 * PMU if it was the only group available.
2024 */
validate_group(struct perf_event * event)2025 static int validate_group(struct perf_event *event)
2026 {
2027 struct perf_event *leader = event->group_leader;
2028 struct cpu_hw_events *fake_cpuc;
2029 int ret = -EINVAL, n;
2030
2031 fake_cpuc = allocate_fake_cpuc();
2032 if (IS_ERR(fake_cpuc))
2033 return PTR_ERR(fake_cpuc);
2034 /*
2035 * the event is not yet connected with its
2036 * siblings therefore we must first collect
2037 * existing siblings, then add the new event
2038 * before we can simulate the scheduling
2039 */
2040 n = collect_events(fake_cpuc, leader, true);
2041 if (n < 0)
2042 goto out;
2043
2044 fake_cpuc->n_events = n;
2045 n = collect_events(fake_cpuc, event, false);
2046 if (n < 0)
2047 goto out;
2048
2049 fake_cpuc->n_events = n;
2050
2051 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2052
2053 out:
2054 free_fake_cpuc(fake_cpuc);
2055 return ret;
2056 }
2057
x86_pmu_event_init(struct perf_event * event)2058 static int x86_pmu_event_init(struct perf_event *event)
2059 {
2060 struct pmu *tmp;
2061 int err;
2062
2063 switch (event->attr.type) {
2064 case PERF_TYPE_RAW:
2065 case PERF_TYPE_HARDWARE:
2066 case PERF_TYPE_HW_CACHE:
2067 break;
2068
2069 default:
2070 return -ENOENT;
2071 }
2072
2073 err = __x86_pmu_event_init(event);
2074 if (!err) {
2075 /*
2076 * we temporarily connect event to its pmu
2077 * such that validate_group() can classify
2078 * it as an x86 event using is_x86_event()
2079 */
2080 tmp = event->pmu;
2081 event->pmu = &pmu;
2082
2083 if (event->group_leader != event)
2084 err = validate_group(event);
2085 else
2086 err = validate_event(event);
2087
2088 event->pmu = tmp;
2089 }
2090 if (err) {
2091 if (event->destroy)
2092 event->destroy(event);
2093 }
2094
2095 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2096 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2097
2098 return err;
2099 }
2100
refresh_pce(void * ignored)2101 static void refresh_pce(void *ignored)
2102 {
2103 if (current->active_mm)
2104 load_mm_cr4(current->active_mm);
2105 }
2106
x86_pmu_event_mapped(struct perf_event * event)2107 static void x86_pmu_event_mapped(struct perf_event *event)
2108 {
2109 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2110 return;
2111
2112 if (atomic_inc_return(¤t->mm->context.perf_rdpmc_allowed) == 1)
2113 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2114 }
2115
x86_pmu_event_unmapped(struct perf_event * event)2116 static void x86_pmu_event_unmapped(struct perf_event *event)
2117 {
2118 if (!current->mm)
2119 return;
2120
2121 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2122 return;
2123
2124 if (atomic_dec_and_test(¤t->mm->context.perf_rdpmc_allowed))
2125 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2126 }
2127
x86_pmu_event_idx(struct perf_event * event)2128 static int x86_pmu_event_idx(struct perf_event *event)
2129 {
2130 int idx = event->hw.idx;
2131
2132 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2133 return 0;
2134
2135 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2136 idx -= INTEL_PMC_IDX_FIXED;
2137 idx |= 1 << 30;
2138 }
2139
2140 return idx + 1;
2141 }
2142
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)2143 static ssize_t get_attr_rdpmc(struct device *cdev,
2144 struct device_attribute *attr,
2145 char *buf)
2146 {
2147 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2148 }
2149
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)2150 static ssize_t set_attr_rdpmc(struct device *cdev,
2151 struct device_attribute *attr,
2152 const char *buf, size_t count)
2153 {
2154 unsigned long val;
2155 ssize_t ret;
2156
2157 ret = kstrtoul(buf, 0, &val);
2158 if (ret)
2159 return ret;
2160
2161 if (val > 2)
2162 return -EINVAL;
2163
2164 if (x86_pmu.attr_rdpmc_broken)
2165 return -ENOTSUPP;
2166
2167 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2168 /*
2169 * Changing into or out of always available, aka
2170 * perf-event-bypassing mode. This path is extremely slow,
2171 * but only root can trigger it, so it's okay.
2172 */
2173 if (val == 2)
2174 static_key_slow_inc(&rdpmc_always_available);
2175 else
2176 static_key_slow_dec(&rdpmc_always_available);
2177 on_each_cpu(refresh_pce, NULL, 1);
2178 }
2179
2180 x86_pmu.attr_rdpmc = val;
2181
2182 return count;
2183 }
2184
2185 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2186
2187 static struct attribute *x86_pmu_attrs[] = {
2188 &dev_attr_rdpmc.attr,
2189 NULL,
2190 };
2191
2192 static struct attribute_group x86_pmu_attr_group = {
2193 .attrs = x86_pmu_attrs,
2194 };
2195
2196 static const struct attribute_group *x86_pmu_attr_groups[] = {
2197 &x86_pmu_attr_group,
2198 &x86_pmu_format_group,
2199 &x86_pmu_events_group,
2200 NULL,
2201 };
2202
x86_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)2203 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2204 {
2205 if (x86_pmu.sched_task)
2206 x86_pmu.sched_task(ctx, sched_in);
2207 }
2208
perf_check_microcode(void)2209 void perf_check_microcode(void)
2210 {
2211 if (x86_pmu.check_microcode)
2212 x86_pmu.check_microcode();
2213 }
2214 EXPORT_SYMBOL_GPL(perf_check_microcode);
2215
2216 static struct pmu pmu = {
2217 .pmu_enable = x86_pmu_enable,
2218 .pmu_disable = x86_pmu_disable,
2219
2220 .attr_groups = x86_pmu_attr_groups,
2221
2222 .event_init = x86_pmu_event_init,
2223
2224 .event_mapped = x86_pmu_event_mapped,
2225 .event_unmapped = x86_pmu_event_unmapped,
2226
2227 .add = x86_pmu_add,
2228 .del = x86_pmu_del,
2229 .start = x86_pmu_start,
2230 .stop = x86_pmu_stop,
2231 .read = x86_pmu_read,
2232
2233 .start_txn = x86_pmu_start_txn,
2234 .cancel_txn = x86_pmu_cancel_txn,
2235 .commit_txn = x86_pmu_commit_txn,
2236
2237 .event_idx = x86_pmu_event_idx,
2238 .sched_task = x86_pmu_sched_task,
2239 .task_ctx_size = sizeof(struct x86_perf_task_context),
2240 };
2241
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)2242 void arch_perf_update_userpage(struct perf_event *event,
2243 struct perf_event_mmap_page *userpg, u64 now)
2244 {
2245 struct cyc2ns_data *data;
2246
2247 userpg->cap_user_time = 0;
2248 userpg->cap_user_time_zero = 0;
2249 userpg->cap_user_rdpmc =
2250 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2251 userpg->pmc_width = x86_pmu.cntval_bits;
2252
2253 if (!sched_clock_stable())
2254 return;
2255
2256 data = cyc2ns_read_begin();
2257
2258 /*
2259 * Internal timekeeping for enabled/running/stopped times
2260 * is always in the local_clock domain.
2261 */
2262 userpg->cap_user_time = 1;
2263 userpg->time_mult = data->cyc2ns_mul;
2264 userpg->time_shift = data->cyc2ns_shift;
2265 userpg->time_offset = data->cyc2ns_offset - now;
2266
2267 /*
2268 * cap_user_time_zero doesn't make sense when we're using a different
2269 * time base for the records.
2270 */
2271 if (!event->attr.use_clockid) {
2272 userpg->cap_user_time_zero = 1;
2273 userpg->time_zero = data->cyc2ns_offset;
2274 }
2275
2276 cyc2ns_read_end(data);
2277 }
2278
2279 void
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2280 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2281 {
2282 struct unwind_state state;
2283 unsigned long addr;
2284
2285 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2286 /* TODO: We don't support guest os callchain now */
2287 return;
2288 }
2289
2290 if (perf_callchain_store(entry, regs->ip))
2291 return;
2292
2293 for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2294 unwind_next_frame(&state)) {
2295 addr = unwind_get_return_address(&state);
2296 if (!addr || perf_callchain_store(entry, addr))
2297 return;
2298 }
2299 }
2300
2301 static inline int
valid_user_frame(const void __user * fp,unsigned long size)2302 valid_user_frame(const void __user *fp, unsigned long size)
2303 {
2304 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2305 }
2306
get_segment_base(unsigned int segment)2307 static unsigned long get_segment_base(unsigned int segment)
2308 {
2309 struct desc_struct *desc;
2310 int idx = segment >> 3;
2311
2312 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2313 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2314 struct ldt_struct *ldt;
2315
2316 if (idx > LDT_ENTRIES)
2317 return 0;
2318
2319 /* IRQs are off, so this synchronizes with smp_store_release */
2320 ldt = lockless_dereference(current->active_mm->context.ldt);
2321 if (!ldt || idx > ldt->size)
2322 return 0;
2323
2324 desc = &ldt->entries[idx];
2325 #else
2326 return 0;
2327 #endif
2328 } else {
2329 if (idx > GDT_ENTRIES)
2330 return 0;
2331
2332 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2333 }
2334
2335 return get_desc_base(desc);
2336 }
2337
2338 #ifdef CONFIG_IA32_EMULATION
2339
2340 #include <asm/compat.h>
2341
2342 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2343 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2344 {
2345 /* 32-bit process in 64-bit kernel. */
2346 unsigned long ss_base, cs_base;
2347 struct stack_frame_ia32 frame;
2348 const void __user *fp;
2349
2350 if (!test_thread_flag(TIF_IA32))
2351 return 0;
2352
2353 cs_base = get_segment_base(regs->cs);
2354 ss_base = get_segment_base(regs->ss);
2355
2356 fp = compat_ptr(ss_base + regs->bp);
2357 pagefault_disable();
2358 while (entry->nr < entry->max_stack) {
2359 unsigned long bytes;
2360 frame.next_frame = 0;
2361 frame.return_address = 0;
2362
2363 if (!valid_user_frame(fp, sizeof(frame)))
2364 break;
2365
2366 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2367 if (bytes != 0)
2368 break;
2369 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2370 if (bytes != 0)
2371 break;
2372
2373 perf_callchain_store(entry, cs_base + frame.return_address);
2374 fp = compat_ptr(ss_base + frame.next_frame);
2375 }
2376 pagefault_enable();
2377 return 1;
2378 }
2379 #else
2380 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2381 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2382 {
2383 return 0;
2384 }
2385 #endif
2386
2387 void
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2388 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2389 {
2390 struct stack_frame frame;
2391 const unsigned long __user *fp;
2392
2393 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2394 /* TODO: We don't support guest os callchain now */
2395 return;
2396 }
2397
2398 /*
2399 * We don't know what to do with VM86 stacks.. ignore them for now.
2400 */
2401 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2402 return;
2403
2404 fp = (unsigned long __user *)regs->bp;
2405
2406 perf_callchain_store(entry, regs->ip);
2407
2408 if (!current->mm)
2409 return;
2410
2411 if (perf_callchain_user32(regs, entry))
2412 return;
2413
2414 pagefault_disable();
2415 while (entry->nr < entry->max_stack) {
2416 unsigned long bytes;
2417
2418 frame.next_frame = NULL;
2419 frame.return_address = 0;
2420
2421 if (!valid_user_frame(fp, sizeof(frame)))
2422 break;
2423
2424 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2425 if (bytes != 0)
2426 break;
2427 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2428 if (bytes != 0)
2429 break;
2430
2431 perf_callchain_store(entry, frame.return_address);
2432 fp = (void __user *)frame.next_frame;
2433 }
2434 pagefault_enable();
2435 }
2436
2437 /*
2438 * Deal with code segment offsets for the various execution modes:
2439 *
2440 * VM86 - the good olde 16 bit days, where the linear address is
2441 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2442 *
2443 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2444 * to figure out what the 32bit base address is.
2445 *
2446 * X32 - has TIF_X32 set, but is running in x86_64
2447 *
2448 * X86_64 - CS,DS,SS,ES are all zero based.
2449 */
code_segment_base(struct pt_regs * regs)2450 static unsigned long code_segment_base(struct pt_regs *regs)
2451 {
2452 /*
2453 * For IA32 we look at the GDT/LDT segment base to convert the
2454 * effective IP to a linear address.
2455 */
2456
2457 #ifdef CONFIG_X86_32
2458 /*
2459 * If we are in VM86 mode, add the segment offset to convert to a
2460 * linear address.
2461 */
2462 if (regs->flags & X86_VM_MASK)
2463 return 0x10 * regs->cs;
2464
2465 if (user_mode(regs) && regs->cs != __USER_CS)
2466 return get_segment_base(regs->cs);
2467 #else
2468 if (user_mode(regs) && !user_64bit_mode(regs) &&
2469 regs->cs != __USER32_CS)
2470 return get_segment_base(regs->cs);
2471 #endif
2472 return 0;
2473 }
2474
perf_instruction_pointer(struct pt_regs * regs)2475 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2476 {
2477 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2478 return perf_guest_cbs->get_guest_ip();
2479
2480 return regs->ip + code_segment_base(regs);
2481 }
2482
perf_misc_flags(struct pt_regs * regs)2483 unsigned long perf_misc_flags(struct pt_regs *regs)
2484 {
2485 int misc = 0;
2486
2487 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2488 if (perf_guest_cbs->is_user_mode())
2489 misc |= PERF_RECORD_MISC_GUEST_USER;
2490 else
2491 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2492 } else {
2493 if (user_mode(regs))
2494 misc |= PERF_RECORD_MISC_USER;
2495 else
2496 misc |= PERF_RECORD_MISC_KERNEL;
2497 }
2498
2499 if (regs->flags & PERF_EFLAGS_EXACT)
2500 misc |= PERF_RECORD_MISC_EXACT_IP;
2501
2502 return misc;
2503 }
2504
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)2505 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2506 {
2507 cap->version = x86_pmu.version;
2508 cap->num_counters_gp = x86_pmu.num_counters;
2509 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2510 cap->bit_width_gp = x86_pmu.cntval_bits;
2511 cap->bit_width_fixed = x86_pmu.cntval_bits;
2512 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2513 cap->events_mask_len = x86_pmu.events_mask_len;
2514 }
2515 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2516