• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched.h>
24 #include <linux/uaccess.h>
25 #include <linux/slab.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28 #include <linux/device.h>
29 
30 #include <asm/apic.h>
31 #include <asm/stacktrace.h>
32 #include <asm/nmi.h>
33 #include <asm/smp.h>
34 #include <asm/alternative.h>
35 #include <asm/mmu_context.h>
36 #include <asm/tlbflush.h>
37 #include <asm/timer.h>
38 #include <asm/desc.h>
39 #include <asm/ldt.h>
40 #include <asm/unwind.h>
41 
42 #include "perf_event.h"
43 
44 struct x86_pmu x86_pmu __read_mostly;
45 
46 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
47 	.enabled = 1,
48 };
49 
50 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
51 
52 u64 __read_mostly hw_cache_event_ids
53 				[PERF_COUNT_HW_CACHE_MAX]
54 				[PERF_COUNT_HW_CACHE_OP_MAX]
55 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
56 u64 __read_mostly hw_cache_extra_regs
57 				[PERF_COUNT_HW_CACHE_MAX]
58 				[PERF_COUNT_HW_CACHE_OP_MAX]
59 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
60 
61 /*
62  * Propagate event elapsed time into the generic event.
63  * Can only be executed on the CPU where the event is active.
64  * Returns the delta events processed.
65  */
x86_perf_event_update(struct perf_event * event)66 u64 x86_perf_event_update(struct perf_event *event)
67 {
68 	struct hw_perf_event *hwc = &event->hw;
69 	int shift = 64 - x86_pmu.cntval_bits;
70 	u64 prev_raw_count, new_raw_count;
71 	int idx = hwc->idx;
72 	u64 delta;
73 
74 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
75 		return 0;
76 
77 	/*
78 	 * Careful: an NMI might modify the previous event value.
79 	 *
80 	 * Our tactic to handle this is to first atomically read and
81 	 * exchange a new raw count - then add that new-prev delta
82 	 * count to the generic event atomically:
83 	 */
84 again:
85 	prev_raw_count = local64_read(&hwc->prev_count);
86 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
87 
88 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
89 					new_raw_count) != prev_raw_count)
90 		goto again;
91 
92 	/*
93 	 * Now we have the new raw value and have updated the prev
94 	 * timestamp already. We can now calculate the elapsed delta
95 	 * (event-)time and add that to the generic event.
96 	 *
97 	 * Careful, not all hw sign-extends above the physical width
98 	 * of the count.
99 	 */
100 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
101 	delta >>= shift;
102 
103 	local64_add(delta, &event->count);
104 	local64_sub(delta, &hwc->period_left);
105 
106 	return new_raw_count;
107 }
108 
109 /*
110  * Find and validate any extra registers to set up.
111  */
x86_pmu_extra_regs(u64 config,struct perf_event * event)112 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
113 {
114 	struct hw_perf_event_extra *reg;
115 	struct extra_reg *er;
116 
117 	reg = &event->hw.extra_reg;
118 
119 	if (!x86_pmu.extra_regs)
120 		return 0;
121 
122 	for (er = x86_pmu.extra_regs; er->msr; er++) {
123 		if (er->event != (config & er->config_mask))
124 			continue;
125 		if (event->attr.config1 & ~er->valid_mask)
126 			return -EINVAL;
127 		/* Check if the extra msrs can be safely accessed*/
128 		if (!er->extra_msr_access)
129 			return -ENXIO;
130 
131 		reg->idx = er->idx;
132 		reg->config = event->attr.config1;
133 		reg->reg = er->msr;
134 		break;
135 	}
136 	return 0;
137 }
138 
139 static atomic_t active_events;
140 static atomic_t pmc_refcount;
141 static DEFINE_MUTEX(pmc_reserve_mutex);
142 
143 #ifdef CONFIG_X86_LOCAL_APIC
144 
reserve_pmc_hardware(void)145 static bool reserve_pmc_hardware(void)
146 {
147 	int i;
148 
149 	for (i = 0; i < x86_pmu.num_counters; i++) {
150 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
151 			goto perfctr_fail;
152 	}
153 
154 	for (i = 0; i < x86_pmu.num_counters; i++) {
155 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
156 			goto eventsel_fail;
157 	}
158 
159 	return true;
160 
161 eventsel_fail:
162 	for (i--; i >= 0; i--)
163 		release_evntsel_nmi(x86_pmu_config_addr(i));
164 
165 	i = x86_pmu.num_counters;
166 
167 perfctr_fail:
168 	for (i--; i >= 0; i--)
169 		release_perfctr_nmi(x86_pmu_event_addr(i));
170 
171 	return false;
172 }
173 
release_pmc_hardware(void)174 static void release_pmc_hardware(void)
175 {
176 	int i;
177 
178 	for (i = 0; i < x86_pmu.num_counters; i++) {
179 		release_perfctr_nmi(x86_pmu_event_addr(i));
180 		release_evntsel_nmi(x86_pmu_config_addr(i));
181 	}
182 }
183 
184 #else
185 
reserve_pmc_hardware(void)186 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)187 static void release_pmc_hardware(void) {}
188 
189 #endif
190 
check_hw_exists(void)191 static bool check_hw_exists(void)
192 {
193 	u64 val, val_fail = -1, val_new= ~0;
194 	int i, reg, reg_fail = -1, ret = 0;
195 	int bios_fail = 0;
196 	int reg_safe = -1;
197 
198 	/*
199 	 * Check to see if the BIOS enabled any of the counters, if so
200 	 * complain and bail.
201 	 */
202 	for (i = 0; i < x86_pmu.num_counters; i++) {
203 		reg = x86_pmu_config_addr(i);
204 		ret = rdmsrl_safe(reg, &val);
205 		if (ret)
206 			goto msr_fail;
207 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
208 			bios_fail = 1;
209 			val_fail = val;
210 			reg_fail = reg;
211 		} else {
212 			reg_safe = i;
213 		}
214 	}
215 
216 	if (x86_pmu.num_counters_fixed) {
217 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
218 		ret = rdmsrl_safe(reg, &val);
219 		if (ret)
220 			goto msr_fail;
221 		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
222 			if (val & (0x03 << i*4)) {
223 				bios_fail = 1;
224 				val_fail = val;
225 				reg_fail = reg;
226 			}
227 		}
228 	}
229 
230 	/*
231 	 * If all the counters are enabled, the below test will always
232 	 * fail.  The tools will also become useless in this scenario.
233 	 * Just fail and disable the hardware counters.
234 	 */
235 
236 	if (reg_safe == -1) {
237 		reg = reg_safe;
238 		goto msr_fail;
239 	}
240 
241 	/*
242 	 * Read the current value, change it and read it back to see if it
243 	 * matches, this is needed to detect certain hardware emulators
244 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
245 	 */
246 	reg = x86_pmu_event_addr(reg_safe);
247 	if (rdmsrl_safe(reg, &val))
248 		goto msr_fail;
249 	val ^= 0xffffUL;
250 	ret = wrmsrl_safe(reg, val);
251 	ret |= rdmsrl_safe(reg, &val_new);
252 	if (ret || val != val_new)
253 		goto msr_fail;
254 
255 	/*
256 	 * We still allow the PMU driver to operate:
257 	 */
258 	if (bios_fail) {
259 		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
260 		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
261 			      reg_fail, val_fail);
262 	}
263 
264 	return true;
265 
266 msr_fail:
267 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
268 		pr_cont("PMU not available due to virtualization, using software events only.\n");
269 	} else {
270 		pr_cont("Broken PMU hardware detected, using software events only.\n");
271 		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
272 		       reg, val_new);
273 	}
274 
275 	return false;
276 }
277 
hw_perf_event_destroy(struct perf_event * event)278 static void hw_perf_event_destroy(struct perf_event *event)
279 {
280 	x86_release_hardware();
281 	atomic_dec(&active_events);
282 }
283 
hw_perf_lbr_event_destroy(struct perf_event * event)284 void hw_perf_lbr_event_destroy(struct perf_event *event)
285 {
286 	hw_perf_event_destroy(event);
287 
288 	/* undo the lbr/bts event accounting */
289 	x86_del_exclusive(x86_lbr_exclusive_lbr);
290 }
291 
x86_pmu_initialized(void)292 static inline int x86_pmu_initialized(void)
293 {
294 	return x86_pmu.handle_irq != NULL;
295 }
296 
297 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)298 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
299 {
300 	struct perf_event_attr *attr = &event->attr;
301 	unsigned int cache_type, cache_op, cache_result;
302 	u64 config, val;
303 
304 	config = attr->config;
305 
306 	cache_type = (config >>  0) & 0xff;
307 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
308 		return -EINVAL;
309 
310 	cache_op = (config >>  8) & 0xff;
311 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
312 		return -EINVAL;
313 
314 	cache_result = (config >> 16) & 0xff;
315 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
316 		return -EINVAL;
317 
318 	val = hw_cache_event_ids[cache_type][cache_op][cache_result];
319 
320 	if (val == 0)
321 		return -ENOENT;
322 
323 	if (val == -1)
324 		return -EINVAL;
325 
326 	hwc->config |= val;
327 	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
328 	return x86_pmu_extra_regs(val, event);
329 }
330 
x86_reserve_hardware(void)331 int x86_reserve_hardware(void)
332 {
333 	int err = 0;
334 
335 	if (!atomic_inc_not_zero(&pmc_refcount)) {
336 		mutex_lock(&pmc_reserve_mutex);
337 		if (atomic_read(&pmc_refcount) == 0) {
338 			if (!reserve_pmc_hardware())
339 				err = -EBUSY;
340 			else
341 				reserve_ds_buffers();
342 		}
343 		if (!err)
344 			atomic_inc(&pmc_refcount);
345 		mutex_unlock(&pmc_reserve_mutex);
346 	}
347 
348 	return err;
349 }
350 
x86_release_hardware(void)351 void x86_release_hardware(void)
352 {
353 	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
354 		release_pmc_hardware();
355 		release_ds_buffers();
356 		mutex_unlock(&pmc_reserve_mutex);
357 	}
358 }
359 
360 /*
361  * Check if we can create event of a certain type (that no conflicting events
362  * are present).
363  */
x86_add_exclusive(unsigned int what)364 int x86_add_exclusive(unsigned int what)
365 {
366 	int i;
367 
368 	/*
369 	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
370 	 * LBR and BTS are still mutually exclusive.
371 	 */
372 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
373 		return 0;
374 
375 	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
376 		mutex_lock(&pmc_reserve_mutex);
377 		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
378 			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
379 				goto fail_unlock;
380 		}
381 		atomic_inc(&x86_pmu.lbr_exclusive[what]);
382 		mutex_unlock(&pmc_reserve_mutex);
383 	}
384 
385 	atomic_inc(&active_events);
386 	return 0;
387 
388 fail_unlock:
389 	mutex_unlock(&pmc_reserve_mutex);
390 	return -EBUSY;
391 }
392 
x86_del_exclusive(unsigned int what)393 void x86_del_exclusive(unsigned int what)
394 {
395 	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
396 		return;
397 
398 	atomic_dec(&x86_pmu.lbr_exclusive[what]);
399 	atomic_dec(&active_events);
400 }
401 
x86_setup_perfctr(struct perf_event * event)402 int x86_setup_perfctr(struct perf_event *event)
403 {
404 	struct perf_event_attr *attr = &event->attr;
405 	struct hw_perf_event *hwc = &event->hw;
406 	u64 config;
407 
408 	if (!is_sampling_event(event)) {
409 		hwc->sample_period = x86_pmu.max_period;
410 		hwc->last_period = hwc->sample_period;
411 		local64_set(&hwc->period_left, hwc->sample_period);
412 	}
413 
414 	if (attr->type == PERF_TYPE_RAW)
415 		return x86_pmu_extra_regs(event->attr.config, event);
416 
417 	if (attr->type == PERF_TYPE_HW_CACHE)
418 		return set_ext_hw_attr(hwc, event);
419 
420 	if (attr->config >= x86_pmu.max_events)
421 		return -EINVAL;
422 
423 	/*
424 	 * The generic map:
425 	 */
426 	config = x86_pmu.event_map(attr->config);
427 
428 	if (config == 0)
429 		return -ENOENT;
430 
431 	if (config == -1LL)
432 		return -EINVAL;
433 
434 	/*
435 	 * Branch tracing:
436 	 */
437 	if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
438 	    !attr->freq && hwc->sample_period == 1) {
439 		/* BTS is not supported by this architecture. */
440 		if (!x86_pmu.bts_active)
441 			return -EOPNOTSUPP;
442 
443 		/* BTS is currently only allowed for user-mode. */
444 		if (!attr->exclude_kernel)
445 			return -EOPNOTSUPP;
446 
447 		/* disallow bts if conflicting events are present */
448 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
449 			return -EBUSY;
450 
451 		event->destroy = hw_perf_lbr_event_destroy;
452 	}
453 
454 	hwc->config |= config;
455 
456 	return 0;
457 }
458 
459 /*
460  * check that branch_sample_type is compatible with
461  * settings needed for precise_ip > 1 which implies
462  * using the LBR to capture ALL taken branches at the
463  * priv levels of the measurement
464  */
precise_br_compat(struct perf_event * event)465 static inline int precise_br_compat(struct perf_event *event)
466 {
467 	u64 m = event->attr.branch_sample_type;
468 	u64 b = 0;
469 
470 	/* must capture all branches */
471 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
472 		return 0;
473 
474 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
475 
476 	if (!event->attr.exclude_user)
477 		b |= PERF_SAMPLE_BRANCH_USER;
478 
479 	if (!event->attr.exclude_kernel)
480 		b |= PERF_SAMPLE_BRANCH_KERNEL;
481 
482 	/*
483 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
484 	 */
485 
486 	return m == b;
487 }
488 
x86_pmu_hw_config(struct perf_event * event)489 int x86_pmu_hw_config(struct perf_event *event)
490 {
491 	if (event->attr.precise_ip) {
492 		int precise = 0;
493 
494 		/* Support for constant skid */
495 		if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
496 			precise++;
497 
498 			/* Support for IP fixup */
499 			if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
500 				precise++;
501 
502 			if (x86_pmu.pebs_prec_dist)
503 				precise++;
504 		}
505 
506 		if (event->attr.precise_ip > precise)
507 			return -EOPNOTSUPP;
508 
509 		/* There's no sense in having PEBS for non sampling events: */
510 		if (!is_sampling_event(event))
511 			return -EINVAL;
512 	}
513 	/*
514 	 * check that PEBS LBR correction does not conflict with
515 	 * whatever the user is asking with attr->branch_sample_type
516 	 */
517 	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
518 		u64 *br_type = &event->attr.branch_sample_type;
519 
520 		if (has_branch_stack(event)) {
521 			if (!precise_br_compat(event))
522 				return -EOPNOTSUPP;
523 
524 			/* branch_sample_type is compatible */
525 
526 		} else {
527 			/*
528 			 * user did not specify  branch_sample_type
529 			 *
530 			 * For PEBS fixups, we capture all
531 			 * the branches at the priv level of the
532 			 * event.
533 			 */
534 			*br_type = PERF_SAMPLE_BRANCH_ANY;
535 
536 			if (!event->attr.exclude_user)
537 				*br_type |= PERF_SAMPLE_BRANCH_USER;
538 
539 			if (!event->attr.exclude_kernel)
540 				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
541 		}
542 	}
543 
544 	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
545 		event->attach_state |= PERF_ATTACH_TASK_DATA;
546 
547 	/*
548 	 * Generate PMC IRQs:
549 	 * (keep 'enabled' bit clear for now)
550 	 */
551 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
552 
553 	/*
554 	 * Count user and OS events unless requested not to
555 	 */
556 	if (!event->attr.exclude_user)
557 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
558 	if (!event->attr.exclude_kernel)
559 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
560 
561 	if (event->attr.type == PERF_TYPE_RAW)
562 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
563 
564 	if (event->attr.sample_period && x86_pmu.limit_period) {
565 		if (x86_pmu.limit_period(event, event->attr.sample_period) >
566 				event->attr.sample_period)
567 			return -EINVAL;
568 	}
569 
570 	return x86_setup_perfctr(event);
571 }
572 
573 /*
574  * Setup the hardware configuration for a given attr_type
575  */
__x86_pmu_event_init(struct perf_event * event)576 static int __x86_pmu_event_init(struct perf_event *event)
577 {
578 	int err;
579 
580 	if (!x86_pmu_initialized())
581 		return -ENODEV;
582 
583 	err = x86_reserve_hardware();
584 	if (err)
585 		return err;
586 
587 	atomic_inc(&active_events);
588 	event->destroy = hw_perf_event_destroy;
589 
590 	event->hw.idx = -1;
591 	event->hw.last_cpu = -1;
592 	event->hw.last_tag = ~0ULL;
593 
594 	/* mark unused */
595 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
596 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
597 
598 	return x86_pmu.hw_config(event);
599 }
600 
x86_pmu_disable_all(void)601 void x86_pmu_disable_all(void)
602 {
603 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
604 	int idx;
605 
606 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
607 		u64 val;
608 
609 		if (!test_bit(idx, cpuc->active_mask))
610 			continue;
611 		rdmsrl(x86_pmu_config_addr(idx), val);
612 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
613 			continue;
614 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
615 		wrmsrl(x86_pmu_config_addr(idx), val);
616 	}
617 }
618 
619 /*
620  * There may be PMI landing after enabled=0. The PMI hitting could be before or
621  * after disable_all.
622  *
623  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
624  * It will not be re-enabled in the NMI handler again, because enabled=0. After
625  * handling the NMI, disable_all will be called, which will not change the
626  * state either. If PMI hits after disable_all, the PMU is already disabled
627  * before entering NMI handler. The NMI handler will not change the state
628  * either.
629  *
630  * So either situation is harmless.
631  */
x86_pmu_disable(struct pmu * pmu)632 static void x86_pmu_disable(struct pmu *pmu)
633 {
634 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
635 
636 	if (!x86_pmu_initialized())
637 		return;
638 
639 	if (!cpuc->enabled)
640 		return;
641 
642 	cpuc->n_added = 0;
643 	cpuc->enabled = 0;
644 	barrier();
645 
646 	x86_pmu.disable_all();
647 }
648 
x86_pmu_enable_all(int added)649 void x86_pmu_enable_all(int added)
650 {
651 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
652 	int idx;
653 
654 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
655 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
656 
657 		if (!test_bit(idx, cpuc->active_mask))
658 			continue;
659 
660 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
661 	}
662 }
663 
664 static struct pmu pmu;
665 
is_x86_event(struct perf_event * event)666 static inline int is_x86_event(struct perf_event *event)
667 {
668 	return event->pmu == &pmu;
669 }
670 
671 /*
672  * Event scheduler state:
673  *
674  * Assign events iterating over all events and counters, beginning
675  * with events with least weights first. Keep the current iterator
676  * state in struct sched_state.
677  */
678 struct sched_state {
679 	int	weight;
680 	int	event;		/* event index */
681 	int	counter;	/* counter index */
682 	int	unassigned;	/* number of events to be assigned left */
683 	int	nr_gp;		/* number of GP counters used */
684 	unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
685 };
686 
687 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
688 #define	SCHED_STATES_MAX	2
689 
690 struct perf_sched {
691 	int			max_weight;
692 	int			max_events;
693 	int			max_gp;
694 	int			saved_states;
695 	struct event_constraint	**constraints;
696 	struct sched_state	state;
697 	struct sched_state	saved[SCHED_STATES_MAX];
698 };
699 
700 /*
701  * Initialize interator that runs through all events and counters.
702  */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** constraints,int num,int wmin,int wmax,int gpmax)703 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
704 			    int num, int wmin, int wmax, int gpmax)
705 {
706 	int idx;
707 
708 	memset(sched, 0, sizeof(*sched));
709 	sched->max_events	= num;
710 	sched->max_weight	= wmax;
711 	sched->max_gp		= gpmax;
712 	sched->constraints	= constraints;
713 
714 	for (idx = 0; idx < num; idx++) {
715 		if (constraints[idx]->weight == wmin)
716 			break;
717 	}
718 
719 	sched->state.event	= idx;		/* start with min weight */
720 	sched->state.weight	= wmin;
721 	sched->state.unassigned	= num;
722 }
723 
perf_sched_save_state(struct perf_sched * sched)724 static void perf_sched_save_state(struct perf_sched *sched)
725 {
726 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
727 		return;
728 
729 	sched->saved[sched->saved_states] = sched->state;
730 	sched->saved_states++;
731 }
732 
perf_sched_restore_state(struct perf_sched * sched)733 static bool perf_sched_restore_state(struct perf_sched *sched)
734 {
735 	if (!sched->saved_states)
736 		return false;
737 
738 	sched->saved_states--;
739 	sched->state = sched->saved[sched->saved_states];
740 
741 	/* continue with next counter: */
742 	clear_bit(sched->state.counter++, sched->state.used);
743 
744 	return true;
745 }
746 
747 /*
748  * Select a counter for the current event to schedule. Return true on
749  * success.
750  */
__perf_sched_find_counter(struct perf_sched * sched)751 static bool __perf_sched_find_counter(struct perf_sched *sched)
752 {
753 	struct event_constraint *c;
754 	int idx;
755 
756 	if (!sched->state.unassigned)
757 		return false;
758 
759 	if (sched->state.event >= sched->max_events)
760 		return false;
761 
762 	c = sched->constraints[sched->state.event];
763 	/* Prefer fixed purpose counters */
764 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
765 		idx = INTEL_PMC_IDX_FIXED;
766 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
767 			if (!__test_and_set_bit(idx, sched->state.used))
768 				goto done;
769 		}
770 	}
771 
772 	/* Grab the first unused counter starting with idx */
773 	idx = sched->state.counter;
774 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
775 		if (!__test_and_set_bit(idx, sched->state.used)) {
776 			if (sched->state.nr_gp++ >= sched->max_gp)
777 				return false;
778 
779 			goto done;
780 		}
781 	}
782 
783 	return false;
784 
785 done:
786 	sched->state.counter = idx;
787 
788 	if (c->overlap)
789 		perf_sched_save_state(sched);
790 
791 	return true;
792 }
793 
perf_sched_find_counter(struct perf_sched * sched)794 static bool perf_sched_find_counter(struct perf_sched *sched)
795 {
796 	while (!__perf_sched_find_counter(sched)) {
797 		if (!perf_sched_restore_state(sched))
798 			return false;
799 	}
800 
801 	return true;
802 }
803 
804 /*
805  * Go through all unassigned events and find the next one to schedule.
806  * Take events with the least weight first. Return true on success.
807  */
perf_sched_next_event(struct perf_sched * sched)808 static bool perf_sched_next_event(struct perf_sched *sched)
809 {
810 	struct event_constraint *c;
811 
812 	if (!sched->state.unassigned || !--sched->state.unassigned)
813 		return false;
814 
815 	do {
816 		/* next event */
817 		sched->state.event++;
818 		if (sched->state.event >= sched->max_events) {
819 			/* next weight */
820 			sched->state.event = 0;
821 			sched->state.weight++;
822 			if (sched->state.weight > sched->max_weight)
823 				return false;
824 		}
825 		c = sched->constraints[sched->state.event];
826 	} while (c->weight != sched->state.weight);
827 
828 	sched->state.counter = 0;	/* start with first counter */
829 
830 	return true;
831 }
832 
833 /*
834  * Assign a counter for each event.
835  */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int gpmax,int * assign)836 int perf_assign_events(struct event_constraint **constraints, int n,
837 			int wmin, int wmax, int gpmax, int *assign)
838 {
839 	struct perf_sched sched;
840 
841 	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
842 
843 	do {
844 		if (!perf_sched_find_counter(&sched))
845 			break;	/* failed */
846 		if (assign)
847 			assign[sched.state.event] = sched.state.counter;
848 	} while (perf_sched_next_event(&sched));
849 
850 	return sched.state.unassigned;
851 }
852 EXPORT_SYMBOL_GPL(perf_assign_events);
853 
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)854 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
855 {
856 	struct event_constraint *c;
857 	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
858 	struct perf_event *e;
859 	int i, wmin, wmax, unsched = 0;
860 	struct hw_perf_event *hwc;
861 
862 	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
863 
864 	if (x86_pmu.start_scheduling)
865 		x86_pmu.start_scheduling(cpuc);
866 
867 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
868 		cpuc->event_constraint[i] = NULL;
869 		c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
870 		cpuc->event_constraint[i] = c;
871 
872 		wmin = min(wmin, c->weight);
873 		wmax = max(wmax, c->weight);
874 	}
875 
876 	/*
877 	 * fastpath, try to reuse previous register
878 	 */
879 	for (i = 0; i < n; i++) {
880 		hwc = &cpuc->event_list[i]->hw;
881 		c = cpuc->event_constraint[i];
882 
883 		/* never assigned */
884 		if (hwc->idx == -1)
885 			break;
886 
887 		/* constraint still honored */
888 		if (!test_bit(hwc->idx, c->idxmsk))
889 			break;
890 
891 		/* not already used */
892 		if (test_bit(hwc->idx, used_mask))
893 			break;
894 
895 		__set_bit(hwc->idx, used_mask);
896 		if (assign)
897 			assign[i] = hwc->idx;
898 	}
899 
900 	/* slow path */
901 	if (i != n) {
902 		int gpmax = x86_pmu.num_counters;
903 
904 		/*
905 		 * Do not allow scheduling of more than half the available
906 		 * generic counters.
907 		 *
908 		 * This helps avoid counter starvation of sibling thread by
909 		 * ensuring at most half the counters cannot be in exclusive
910 		 * mode. There is no designated counters for the limits. Any
911 		 * N/2 counters can be used. This helps with events with
912 		 * specific counter constraints.
913 		 */
914 		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
915 		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
916 			gpmax /= 2;
917 
918 		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
919 					     wmax, gpmax, assign);
920 	}
921 
922 	/*
923 	 * In case of success (unsched = 0), mark events as committed,
924 	 * so we do not put_constraint() in case new events are added
925 	 * and fail to be scheduled
926 	 *
927 	 * We invoke the lower level commit callback to lock the resource
928 	 *
929 	 * We do not need to do all of this in case we are called to
930 	 * validate an event group (assign == NULL)
931 	 */
932 	if (!unsched && assign) {
933 		for (i = 0; i < n; i++) {
934 			e = cpuc->event_list[i];
935 			e->hw.flags |= PERF_X86_EVENT_COMMITTED;
936 			if (x86_pmu.commit_scheduling)
937 				x86_pmu.commit_scheduling(cpuc, i, assign[i]);
938 		}
939 	} else {
940 		for (i = 0; i < n; i++) {
941 			e = cpuc->event_list[i];
942 			/*
943 			 * do not put_constraint() on comitted events,
944 			 * because they are good to go
945 			 */
946 			if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
947 				continue;
948 
949 			/*
950 			 * release events that failed scheduling
951 			 */
952 			if (x86_pmu.put_event_constraints)
953 				x86_pmu.put_event_constraints(cpuc, e);
954 		}
955 	}
956 
957 	if (x86_pmu.stop_scheduling)
958 		x86_pmu.stop_scheduling(cpuc);
959 
960 	return unsched ? -EINVAL : 0;
961 }
962 
963 /*
964  * dogrp: true if must collect siblings events (group)
965  * returns total number of events and error code
966  */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)967 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
968 {
969 	struct perf_event *event;
970 	int n, max_count;
971 
972 	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
973 
974 	/* current number of events already accepted */
975 	n = cpuc->n_events;
976 
977 	if (is_x86_event(leader)) {
978 		if (n >= max_count)
979 			return -EINVAL;
980 		cpuc->event_list[n] = leader;
981 		n++;
982 	}
983 	if (!dogrp)
984 		return n;
985 
986 	list_for_each_entry(event, &leader->sibling_list, group_entry) {
987 		if (!is_x86_event(event) ||
988 		    event->state <= PERF_EVENT_STATE_OFF)
989 			continue;
990 
991 		if (n >= max_count)
992 			return -EINVAL;
993 
994 		cpuc->event_list[n] = event;
995 		n++;
996 	}
997 	return n;
998 }
999 
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)1000 static inline void x86_assign_hw_event(struct perf_event *event,
1001 				struct cpu_hw_events *cpuc, int i)
1002 {
1003 	struct hw_perf_event *hwc = &event->hw;
1004 
1005 	hwc->idx = cpuc->assign[i];
1006 	hwc->last_cpu = smp_processor_id();
1007 	hwc->last_tag = ++cpuc->tags[i];
1008 
1009 	if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1010 		hwc->config_base = 0;
1011 		hwc->event_base	= 0;
1012 	} else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1013 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1014 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1015 		hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1016 	} else {
1017 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1018 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1019 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1020 	}
1021 }
1022 
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)1023 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1024 					struct cpu_hw_events *cpuc,
1025 					int i)
1026 {
1027 	return hwc->idx == cpuc->assign[i] &&
1028 		hwc->last_cpu == smp_processor_id() &&
1029 		hwc->last_tag == cpuc->tags[i];
1030 }
1031 
1032 static void x86_pmu_start(struct perf_event *event, int flags);
1033 
x86_pmu_enable(struct pmu * pmu)1034 static void x86_pmu_enable(struct pmu *pmu)
1035 {
1036 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1037 	struct perf_event *event;
1038 	struct hw_perf_event *hwc;
1039 	int i, added = cpuc->n_added;
1040 
1041 	if (!x86_pmu_initialized())
1042 		return;
1043 
1044 	if (cpuc->enabled)
1045 		return;
1046 
1047 	if (cpuc->n_added) {
1048 		int n_running = cpuc->n_events - cpuc->n_added;
1049 		/*
1050 		 * apply assignment obtained either from
1051 		 * hw_perf_group_sched_in() or x86_pmu_enable()
1052 		 *
1053 		 * step1: save events moving to new counters
1054 		 */
1055 		for (i = 0; i < n_running; i++) {
1056 			event = cpuc->event_list[i];
1057 			hwc = &event->hw;
1058 
1059 			/*
1060 			 * we can avoid reprogramming counter if:
1061 			 * - assigned same counter as last time
1062 			 * - running on same CPU as last time
1063 			 * - no other event has used the counter since
1064 			 */
1065 			if (hwc->idx == -1 ||
1066 			    match_prev_assignment(hwc, cpuc, i))
1067 				continue;
1068 
1069 			/*
1070 			 * Ensure we don't accidentally enable a stopped
1071 			 * counter simply because we rescheduled.
1072 			 */
1073 			if (hwc->state & PERF_HES_STOPPED)
1074 				hwc->state |= PERF_HES_ARCH;
1075 
1076 			x86_pmu_stop(event, PERF_EF_UPDATE);
1077 		}
1078 
1079 		/*
1080 		 * step2: reprogram moved events into new counters
1081 		 */
1082 		for (i = 0; i < cpuc->n_events; i++) {
1083 			event = cpuc->event_list[i];
1084 			hwc = &event->hw;
1085 
1086 			if (!match_prev_assignment(hwc, cpuc, i))
1087 				x86_assign_hw_event(event, cpuc, i);
1088 			else if (i < n_running)
1089 				continue;
1090 
1091 			if (hwc->state & PERF_HES_ARCH)
1092 				continue;
1093 
1094 			x86_pmu_start(event, PERF_EF_RELOAD);
1095 		}
1096 		cpuc->n_added = 0;
1097 		perf_events_lapic_init();
1098 	}
1099 
1100 	cpuc->enabled = 1;
1101 	barrier();
1102 
1103 	x86_pmu.enable_all(added);
1104 }
1105 
1106 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1107 
1108 /*
1109  * Set the next IRQ period, based on the hwc->period_left value.
1110  * To be called with the event disabled in hw:
1111  */
x86_perf_event_set_period(struct perf_event * event)1112 int x86_perf_event_set_period(struct perf_event *event)
1113 {
1114 	struct hw_perf_event *hwc = &event->hw;
1115 	s64 left = local64_read(&hwc->period_left);
1116 	s64 period = hwc->sample_period;
1117 	int ret = 0, idx = hwc->idx;
1118 
1119 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
1120 		return 0;
1121 
1122 	/*
1123 	 * If we are way outside a reasonable range then just skip forward:
1124 	 */
1125 	if (unlikely(left <= -period)) {
1126 		left = period;
1127 		local64_set(&hwc->period_left, left);
1128 		hwc->last_period = period;
1129 		ret = 1;
1130 	}
1131 
1132 	if (unlikely(left <= 0)) {
1133 		left += period;
1134 		local64_set(&hwc->period_left, left);
1135 		hwc->last_period = period;
1136 		ret = 1;
1137 	}
1138 	/*
1139 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1140 	 */
1141 	if (unlikely(left < 2))
1142 		left = 2;
1143 
1144 	if (left > x86_pmu.max_period)
1145 		left = x86_pmu.max_period;
1146 
1147 	if (x86_pmu.limit_period)
1148 		left = x86_pmu.limit_period(event, left);
1149 
1150 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1151 
1152 	if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1153 	    local64_read(&hwc->prev_count) != (u64)-left) {
1154 		/*
1155 		 * The hw event starts counting from this event offset,
1156 		 * mark it to be able to extra future deltas:
1157 		 */
1158 		local64_set(&hwc->prev_count, (u64)-left);
1159 
1160 		wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1161 	}
1162 
1163 	/*
1164 	 * Due to erratum on certan cpu we need
1165 	 * a second write to be sure the register
1166 	 * is updated properly
1167 	 */
1168 	if (x86_pmu.perfctr_second_write) {
1169 		wrmsrl(hwc->event_base,
1170 			(u64)(-left) & x86_pmu.cntval_mask);
1171 	}
1172 
1173 	perf_event_update_userpage(event);
1174 
1175 	return ret;
1176 }
1177 
x86_pmu_enable_event(struct perf_event * event)1178 void x86_pmu_enable_event(struct perf_event *event)
1179 {
1180 	if (__this_cpu_read(cpu_hw_events.enabled))
1181 		__x86_pmu_enable_event(&event->hw,
1182 				       ARCH_PERFMON_EVENTSEL_ENABLE);
1183 }
1184 
1185 /*
1186  * Add a single event to the PMU.
1187  *
1188  * The event is added to the group of enabled events
1189  * but only if it can be scehduled with existing events.
1190  */
x86_pmu_add(struct perf_event * event,int flags)1191 static int x86_pmu_add(struct perf_event *event, int flags)
1192 {
1193 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1194 	struct hw_perf_event *hwc;
1195 	int assign[X86_PMC_IDX_MAX];
1196 	int n, n0, ret;
1197 
1198 	hwc = &event->hw;
1199 
1200 	n0 = cpuc->n_events;
1201 	ret = n = collect_events(cpuc, event, false);
1202 	if (ret < 0)
1203 		goto out;
1204 
1205 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1206 	if (!(flags & PERF_EF_START))
1207 		hwc->state |= PERF_HES_ARCH;
1208 
1209 	/*
1210 	 * If group events scheduling transaction was started,
1211 	 * skip the schedulability test here, it will be performed
1212 	 * at commit time (->commit_txn) as a whole.
1213 	 *
1214 	 * If commit fails, we'll call ->del() on all events
1215 	 * for which ->add() was called.
1216 	 */
1217 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1218 		goto done_collect;
1219 
1220 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1221 	if (ret)
1222 		goto out;
1223 	/*
1224 	 * copy new assignment, now we know it is possible
1225 	 * will be used by hw_perf_enable()
1226 	 */
1227 	memcpy(cpuc->assign, assign, n*sizeof(int));
1228 
1229 done_collect:
1230 	/*
1231 	 * Commit the collect_events() state. See x86_pmu_del() and
1232 	 * x86_pmu_*_txn().
1233 	 */
1234 	cpuc->n_events = n;
1235 	cpuc->n_added += n - n0;
1236 	cpuc->n_txn += n - n0;
1237 
1238 	if (x86_pmu.add) {
1239 		/*
1240 		 * This is before x86_pmu_enable() will call x86_pmu_start(),
1241 		 * so we enable LBRs before an event needs them etc..
1242 		 */
1243 		x86_pmu.add(event);
1244 	}
1245 
1246 	ret = 0;
1247 out:
1248 	return ret;
1249 }
1250 
x86_pmu_start(struct perf_event * event,int flags)1251 static void x86_pmu_start(struct perf_event *event, int flags)
1252 {
1253 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1254 	int idx = event->hw.idx;
1255 
1256 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1257 		return;
1258 
1259 	if (WARN_ON_ONCE(idx == -1))
1260 		return;
1261 
1262 	if (flags & PERF_EF_RELOAD) {
1263 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1264 		x86_perf_event_set_period(event);
1265 	}
1266 
1267 	event->hw.state = 0;
1268 
1269 	cpuc->events[idx] = event;
1270 	__set_bit(idx, cpuc->active_mask);
1271 	__set_bit(idx, cpuc->running);
1272 	x86_pmu.enable(event);
1273 	perf_event_update_userpage(event);
1274 }
1275 
perf_event_print_debug(void)1276 void perf_event_print_debug(void)
1277 {
1278 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1279 	u64 pebs, debugctl;
1280 	struct cpu_hw_events *cpuc;
1281 	unsigned long flags;
1282 	int cpu, idx;
1283 
1284 	if (!x86_pmu.num_counters)
1285 		return;
1286 
1287 	local_irq_save(flags);
1288 
1289 	cpu = smp_processor_id();
1290 	cpuc = &per_cpu(cpu_hw_events, cpu);
1291 
1292 	if (x86_pmu.version >= 2) {
1293 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1294 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1295 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1296 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1297 
1298 		pr_info("\n");
1299 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1300 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1301 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1302 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1303 		if (x86_pmu.pebs_constraints) {
1304 			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1305 			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1306 		}
1307 		if (x86_pmu.lbr_nr) {
1308 			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1309 			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1310 		}
1311 	}
1312 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1313 
1314 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1315 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1316 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1317 
1318 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1319 
1320 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1321 			cpu, idx, pmc_ctrl);
1322 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1323 			cpu, idx, pmc_count);
1324 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1325 			cpu, idx, prev_left);
1326 	}
1327 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1328 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1329 
1330 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1331 			cpu, idx, pmc_count);
1332 	}
1333 	local_irq_restore(flags);
1334 }
1335 
x86_pmu_stop(struct perf_event * event,int flags)1336 void x86_pmu_stop(struct perf_event *event, int flags)
1337 {
1338 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1339 	struct hw_perf_event *hwc = &event->hw;
1340 
1341 	if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1342 		x86_pmu.disable(event);
1343 		cpuc->events[hwc->idx] = NULL;
1344 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1345 		hwc->state |= PERF_HES_STOPPED;
1346 	}
1347 
1348 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1349 		/*
1350 		 * Drain the remaining delta count out of a event
1351 		 * that we are disabling:
1352 		 */
1353 		x86_perf_event_update(event);
1354 		hwc->state |= PERF_HES_UPTODATE;
1355 	}
1356 }
1357 
x86_pmu_del(struct perf_event * event,int flags)1358 static void x86_pmu_del(struct perf_event *event, int flags)
1359 {
1360 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1361 	int i;
1362 
1363 	/*
1364 	 * event is descheduled
1365 	 */
1366 	event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1367 
1368 	/*
1369 	 * If we're called during a txn, we only need to undo x86_pmu.add.
1370 	 * The events never got scheduled and ->cancel_txn will truncate
1371 	 * the event_list.
1372 	 *
1373 	 * XXX assumes any ->del() called during a TXN will only be on
1374 	 * an event added during that same TXN.
1375 	 */
1376 	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1377 		goto do_del;
1378 
1379 	/*
1380 	 * Not a TXN, therefore cleanup properly.
1381 	 */
1382 	x86_pmu_stop(event, PERF_EF_UPDATE);
1383 
1384 	for (i = 0; i < cpuc->n_events; i++) {
1385 		if (event == cpuc->event_list[i])
1386 			break;
1387 	}
1388 
1389 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1390 		return;
1391 
1392 	/* If we have a newly added event; make sure to decrease n_added. */
1393 	if (i >= cpuc->n_events - cpuc->n_added)
1394 		--cpuc->n_added;
1395 
1396 	if (x86_pmu.put_event_constraints)
1397 		x86_pmu.put_event_constraints(cpuc, event);
1398 
1399 	/* Delete the array entry. */
1400 	while (++i < cpuc->n_events) {
1401 		cpuc->event_list[i-1] = cpuc->event_list[i];
1402 		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1403 	}
1404 	--cpuc->n_events;
1405 
1406 	perf_event_update_userpage(event);
1407 
1408 do_del:
1409 	if (x86_pmu.del) {
1410 		/*
1411 		 * This is after x86_pmu_stop(); so we disable LBRs after any
1412 		 * event can need them etc..
1413 		 */
1414 		x86_pmu.del(event);
1415 	}
1416 }
1417 
x86_pmu_handle_irq(struct pt_regs * regs)1418 int x86_pmu_handle_irq(struct pt_regs *regs)
1419 {
1420 	struct perf_sample_data data;
1421 	struct cpu_hw_events *cpuc;
1422 	struct perf_event *event;
1423 	int idx, handled = 0;
1424 	u64 val;
1425 
1426 	cpuc = this_cpu_ptr(&cpu_hw_events);
1427 
1428 	/*
1429 	 * Some chipsets need to unmask the LVTPC in a particular spot
1430 	 * inside the nmi handler.  As a result, the unmasking was pushed
1431 	 * into all the nmi handlers.
1432 	 *
1433 	 * This generic handler doesn't seem to have any issues where the
1434 	 * unmasking occurs so it was left at the top.
1435 	 */
1436 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1437 
1438 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1439 		if (!test_bit(idx, cpuc->active_mask)) {
1440 			/*
1441 			 * Though we deactivated the counter some cpus
1442 			 * might still deliver spurious interrupts still
1443 			 * in flight. Catch them:
1444 			 */
1445 			if (__test_and_clear_bit(idx, cpuc->running))
1446 				handled++;
1447 			continue;
1448 		}
1449 
1450 		event = cpuc->events[idx];
1451 
1452 		val = x86_perf_event_update(event);
1453 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1454 			continue;
1455 
1456 		/*
1457 		 * event overflow
1458 		 */
1459 		handled++;
1460 		perf_sample_data_init(&data, 0, event->hw.last_period);
1461 
1462 		if (!x86_perf_event_set_period(event))
1463 			continue;
1464 
1465 		if (perf_event_overflow(event, &data, regs))
1466 			x86_pmu_stop(event, 0);
1467 	}
1468 
1469 	if (handled)
1470 		inc_irq_stat(apic_perf_irqs);
1471 
1472 	return handled;
1473 }
1474 
perf_events_lapic_init(void)1475 void perf_events_lapic_init(void)
1476 {
1477 	if (!x86_pmu.apic || !x86_pmu_initialized())
1478 		return;
1479 
1480 	/*
1481 	 * Always use NMI for PMU
1482 	 */
1483 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1484 }
1485 
1486 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1487 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1488 {
1489 	u64 start_clock;
1490 	u64 finish_clock;
1491 	int ret;
1492 
1493 	/*
1494 	 * All PMUs/events that share this PMI handler should make sure to
1495 	 * increment active_events for their events.
1496 	 */
1497 	if (!atomic_read(&active_events))
1498 		return NMI_DONE;
1499 
1500 	start_clock = sched_clock();
1501 	ret = x86_pmu.handle_irq(regs);
1502 	finish_clock = sched_clock();
1503 
1504 	perf_sample_event_took(finish_clock - start_clock);
1505 
1506 	return ret;
1507 }
1508 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1509 
1510 struct event_constraint emptyconstraint;
1511 struct event_constraint unconstrained;
1512 
x86_pmu_prepare_cpu(unsigned int cpu)1513 static int x86_pmu_prepare_cpu(unsigned int cpu)
1514 {
1515 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1516 	int i;
1517 
1518 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1519 		cpuc->kfree_on_online[i] = NULL;
1520 	if (x86_pmu.cpu_prepare)
1521 		return x86_pmu.cpu_prepare(cpu);
1522 	return 0;
1523 }
1524 
x86_pmu_dead_cpu(unsigned int cpu)1525 static int x86_pmu_dead_cpu(unsigned int cpu)
1526 {
1527 	if (x86_pmu.cpu_dead)
1528 		x86_pmu.cpu_dead(cpu);
1529 	return 0;
1530 }
1531 
x86_pmu_online_cpu(unsigned int cpu)1532 static int x86_pmu_online_cpu(unsigned int cpu)
1533 {
1534 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1535 	int i;
1536 
1537 	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1538 		kfree(cpuc->kfree_on_online[i]);
1539 		cpuc->kfree_on_online[i] = NULL;
1540 	}
1541 	return 0;
1542 }
1543 
x86_pmu_starting_cpu(unsigned int cpu)1544 static int x86_pmu_starting_cpu(unsigned int cpu)
1545 {
1546 	if (x86_pmu.cpu_starting)
1547 		x86_pmu.cpu_starting(cpu);
1548 	return 0;
1549 }
1550 
x86_pmu_dying_cpu(unsigned int cpu)1551 static int x86_pmu_dying_cpu(unsigned int cpu)
1552 {
1553 	if (x86_pmu.cpu_dying)
1554 		x86_pmu.cpu_dying(cpu);
1555 	return 0;
1556 }
1557 
pmu_check_apic(void)1558 static void __init pmu_check_apic(void)
1559 {
1560 	if (boot_cpu_has(X86_FEATURE_APIC))
1561 		return;
1562 
1563 	x86_pmu.apic = 0;
1564 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1565 	pr_info("no hardware sampling interrupt available.\n");
1566 
1567 	/*
1568 	 * If we have a PMU initialized but no APIC
1569 	 * interrupts, we cannot sample hardware
1570 	 * events (user-space has to fall back and
1571 	 * sample via a hrtimer based software event):
1572 	 */
1573 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1574 
1575 }
1576 
1577 static struct attribute_group x86_pmu_format_group = {
1578 	.name = "format",
1579 	.attrs = NULL,
1580 };
1581 
1582 /*
1583  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1584  * out of events_attr attributes.
1585  */
filter_events(struct attribute ** attrs)1586 static void __init filter_events(struct attribute **attrs)
1587 {
1588 	struct device_attribute *d;
1589 	struct perf_pmu_events_attr *pmu_attr;
1590 	int offset = 0;
1591 	int i, j;
1592 
1593 	for (i = 0; attrs[i]; i++) {
1594 		d = (struct device_attribute *)attrs[i];
1595 		pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1596 		/* str trumps id */
1597 		if (pmu_attr->event_str)
1598 			continue;
1599 		if (x86_pmu.event_map(i + offset))
1600 			continue;
1601 
1602 		for (j = i; attrs[j]; j++)
1603 			attrs[j] = attrs[j + 1];
1604 
1605 		/* Check the shifted attr. */
1606 		i--;
1607 
1608 		/*
1609 		 * event_map() is index based, the attrs array is organized
1610 		 * by increasing event index. If we shift the events, then
1611 		 * we need to compensate for the event_map(), otherwise
1612 		 * we are looking up the wrong event in the map
1613 		 */
1614 		offset++;
1615 	}
1616 }
1617 
1618 /* Merge two pointer arrays */
merge_attr(struct attribute ** a,struct attribute ** b)1619 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1620 {
1621 	struct attribute **new;
1622 	int j, i;
1623 
1624 	for (j = 0; a[j]; j++)
1625 		;
1626 	for (i = 0; b[i]; i++)
1627 		j++;
1628 	j++;
1629 
1630 	new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1631 	if (!new)
1632 		return NULL;
1633 
1634 	j = 0;
1635 	for (i = 0; a[i]; i++)
1636 		new[j++] = a[i];
1637 	for (i = 0; b[i]; i++)
1638 		new[j++] = b[i];
1639 	new[j] = NULL;
1640 
1641 	return new;
1642 }
1643 
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1644 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1645 {
1646 	struct perf_pmu_events_attr *pmu_attr = \
1647 		container_of(attr, struct perf_pmu_events_attr, attr);
1648 	u64 config = x86_pmu.event_map(pmu_attr->id);
1649 
1650 	/* string trumps id */
1651 	if (pmu_attr->event_str)
1652 		return sprintf(page, "%s", pmu_attr->event_str);
1653 
1654 	return x86_pmu.events_sysfs_show(page, config);
1655 }
1656 EXPORT_SYMBOL_GPL(events_sysfs_show);
1657 
events_ht_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1658 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1659 			  char *page)
1660 {
1661 	struct perf_pmu_events_ht_attr *pmu_attr =
1662 		container_of(attr, struct perf_pmu_events_ht_attr, attr);
1663 
1664 	/*
1665 	 * Report conditional events depending on Hyper-Threading.
1666 	 *
1667 	 * This is overly conservative as usually the HT special
1668 	 * handling is not needed if the other CPU thread is idle.
1669 	 *
1670 	 * Note this does not (and cannot) handle the case when thread
1671 	 * siblings are invisible, for example with virtualization
1672 	 * if they are owned by some other guest.  The user tool
1673 	 * has to re-read when a thread sibling gets onlined later.
1674 	 */
1675 	return sprintf(page, "%s",
1676 			topology_max_smt_threads() > 1 ?
1677 			pmu_attr->event_str_ht :
1678 			pmu_attr->event_str_noht);
1679 }
1680 
1681 EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1682 EVENT_ATTR(instructions,		INSTRUCTIONS		);
1683 EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1684 EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1685 EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1686 EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1687 EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1688 EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1689 EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1690 EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1691 
1692 static struct attribute *empty_attrs;
1693 
1694 static struct attribute *events_attr[] = {
1695 	EVENT_PTR(CPU_CYCLES),
1696 	EVENT_PTR(INSTRUCTIONS),
1697 	EVENT_PTR(CACHE_REFERENCES),
1698 	EVENT_PTR(CACHE_MISSES),
1699 	EVENT_PTR(BRANCH_INSTRUCTIONS),
1700 	EVENT_PTR(BRANCH_MISSES),
1701 	EVENT_PTR(BUS_CYCLES),
1702 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1703 	EVENT_PTR(STALLED_CYCLES_BACKEND),
1704 	EVENT_PTR(REF_CPU_CYCLES),
1705 	NULL,
1706 };
1707 
1708 static struct attribute_group x86_pmu_events_group = {
1709 	.name = "events",
1710 	.attrs = events_attr,
1711 };
1712 
x86_event_sysfs_show(char * page,u64 config,u64 event)1713 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1714 {
1715 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1716 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1717 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1718 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1719 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1720 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1721 	ssize_t ret;
1722 
1723 	/*
1724 	* We have whole page size to spend and just little data
1725 	* to write, so we can safely use sprintf.
1726 	*/
1727 	ret = sprintf(page, "event=0x%02llx", event);
1728 
1729 	if (umask)
1730 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1731 
1732 	if (edge)
1733 		ret += sprintf(page + ret, ",edge");
1734 
1735 	if (pc)
1736 		ret += sprintf(page + ret, ",pc");
1737 
1738 	if (any)
1739 		ret += sprintf(page + ret, ",any");
1740 
1741 	if (inv)
1742 		ret += sprintf(page + ret, ",inv");
1743 
1744 	if (cmask)
1745 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1746 
1747 	ret += sprintf(page + ret, "\n");
1748 
1749 	return ret;
1750 }
1751 
init_hw_perf_events(void)1752 static int __init init_hw_perf_events(void)
1753 {
1754 	struct x86_pmu_quirk *quirk;
1755 	int err;
1756 
1757 	pr_info("Performance Events: ");
1758 
1759 	switch (boot_cpu_data.x86_vendor) {
1760 	case X86_VENDOR_INTEL:
1761 		err = intel_pmu_init();
1762 		break;
1763 	case X86_VENDOR_AMD:
1764 		err = amd_pmu_init();
1765 		break;
1766 	default:
1767 		err = -ENOTSUPP;
1768 	}
1769 	if (err != 0) {
1770 		pr_cont("no PMU driver, software events only.\n");
1771 		return 0;
1772 	}
1773 
1774 	pmu_check_apic();
1775 
1776 	/* sanity check that the hardware exists or is emulated */
1777 	if (!check_hw_exists())
1778 		return 0;
1779 
1780 	pr_cont("%s PMU driver.\n", x86_pmu.name);
1781 
1782 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1783 
1784 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1785 		quirk->func();
1786 
1787 	if (!x86_pmu.intel_ctrl)
1788 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1789 
1790 	perf_events_lapic_init();
1791 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1792 
1793 	unconstrained = (struct event_constraint)
1794 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1795 				   0, x86_pmu.num_counters, 0, 0);
1796 
1797 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1798 
1799 	if (x86_pmu.event_attrs)
1800 		x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1801 
1802 	if (!x86_pmu.events_sysfs_show)
1803 		x86_pmu_events_group.attrs = &empty_attrs;
1804 	else
1805 		filter_events(x86_pmu_events_group.attrs);
1806 
1807 	if (x86_pmu.cpu_events) {
1808 		struct attribute **tmp;
1809 
1810 		tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1811 		if (!WARN_ON(!tmp))
1812 			x86_pmu_events_group.attrs = tmp;
1813 	}
1814 
1815 	pr_info("... version:                %d\n",     x86_pmu.version);
1816 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1817 	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1818 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1819 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1820 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1821 	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1822 
1823 	/*
1824 	 * Install callbacks. Core will call them for each online
1825 	 * cpu.
1826 	 */
1827 	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "PERF_X86_PREPARE",
1828 				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1829 	if (err)
1830 		return err;
1831 
1832 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1833 				"AP_PERF_X86_STARTING", x86_pmu_starting_cpu,
1834 				x86_pmu_dying_cpu);
1835 	if (err)
1836 		goto out;
1837 
1838 	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "AP_PERF_X86_ONLINE",
1839 				x86_pmu_online_cpu, NULL);
1840 	if (err)
1841 		goto out1;
1842 
1843 	err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1844 	if (err)
1845 		goto out2;
1846 
1847 	return 0;
1848 
1849 out2:
1850 	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1851 out1:
1852 	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1853 out:
1854 	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1855 	return err;
1856 }
1857 early_initcall(init_hw_perf_events);
1858 
x86_pmu_read(struct perf_event * event)1859 static inline void x86_pmu_read(struct perf_event *event)
1860 {
1861 	x86_perf_event_update(event);
1862 }
1863 
1864 /*
1865  * Start group events scheduling transaction
1866  * Set the flag to make pmu::enable() not perform the
1867  * schedulability test, it will be performed at commit time
1868  *
1869  * We only support PERF_PMU_TXN_ADD transactions. Save the
1870  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1871  * transactions.
1872  */
x86_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1873 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1874 {
1875 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1876 
1877 	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
1878 
1879 	cpuc->txn_flags = txn_flags;
1880 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1881 		return;
1882 
1883 	perf_pmu_disable(pmu);
1884 	__this_cpu_write(cpu_hw_events.n_txn, 0);
1885 }
1886 
1887 /*
1888  * Stop group events scheduling transaction
1889  * Clear the flag and pmu::enable() will perform the
1890  * schedulability test.
1891  */
x86_pmu_cancel_txn(struct pmu * pmu)1892 static void x86_pmu_cancel_txn(struct pmu *pmu)
1893 {
1894 	unsigned int txn_flags;
1895 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1896 
1897 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1898 
1899 	txn_flags = cpuc->txn_flags;
1900 	cpuc->txn_flags = 0;
1901 	if (txn_flags & ~PERF_PMU_TXN_ADD)
1902 		return;
1903 
1904 	/*
1905 	 * Truncate collected array by the number of events added in this
1906 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1907 	 */
1908 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1909 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1910 	perf_pmu_enable(pmu);
1911 }
1912 
1913 /*
1914  * Commit group events scheduling transaction
1915  * Perform the group schedulability test as a whole
1916  * Return 0 if success
1917  *
1918  * Does not cancel the transaction on failure; expects the caller to do this.
1919  */
x86_pmu_commit_txn(struct pmu * pmu)1920 static int x86_pmu_commit_txn(struct pmu *pmu)
1921 {
1922 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1923 	int assign[X86_PMC_IDX_MAX];
1924 	int n, ret;
1925 
1926 	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
1927 
1928 	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1929 		cpuc->txn_flags = 0;
1930 		return 0;
1931 	}
1932 
1933 	n = cpuc->n_events;
1934 
1935 	if (!x86_pmu_initialized())
1936 		return -EAGAIN;
1937 
1938 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1939 	if (ret)
1940 		return ret;
1941 
1942 	/*
1943 	 * copy new assignment, now we know it is possible
1944 	 * will be used by hw_perf_enable()
1945 	 */
1946 	memcpy(cpuc->assign, assign, n*sizeof(int));
1947 
1948 	cpuc->txn_flags = 0;
1949 	perf_pmu_enable(pmu);
1950 	return 0;
1951 }
1952 /*
1953  * a fake_cpuc is used to validate event groups. Due to
1954  * the extra reg logic, we need to also allocate a fake
1955  * per_core and per_cpu structure. Otherwise, group events
1956  * using extra reg may conflict without the kernel being
1957  * able to catch this when the last event gets added to
1958  * the group.
1959  */
free_fake_cpuc(struct cpu_hw_events * cpuc)1960 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1961 {
1962 	kfree(cpuc->shared_regs);
1963 	kfree(cpuc);
1964 }
1965 
allocate_fake_cpuc(void)1966 static struct cpu_hw_events *allocate_fake_cpuc(void)
1967 {
1968 	struct cpu_hw_events *cpuc;
1969 	int cpu = raw_smp_processor_id();
1970 
1971 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1972 	if (!cpuc)
1973 		return ERR_PTR(-ENOMEM);
1974 
1975 	/* only needed, if we have extra_regs */
1976 	if (x86_pmu.extra_regs) {
1977 		cpuc->shared_regs = allocate_shared_regs(cpu);
1978 		if (!cpuc->shared_regs)
1979 			goto error;
1980 	}
1981 	cpuc->is_fake = 1;
1982 	return cpuc;
1983 error:
1984 	free_fake_cpuc(cpuc);
1985 	return ERR_PTR(-ENOMEM);
1986 }
1987 
1988 /*
1989  * validate that we can schedule this event
1990  */
validate_event(struct perf_event * event)1991 static int validate_event(struct perf_event *event)
1992 {
1993 	struct cpu_hw_events *fake_cpuc;
1994 	struct event_constraint *c;
1995 	int ret = 0;
1996 
1997 	fake_cpuc = allocate_fake_cpuc();
1998 	if (IS_ERR(fake_cpuc))
1999 		return PTR_ERR(fake_cpuc);
2000 
2001 	c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
2002 
2003 	if (!c || !c->weight)
2004 		ret = -EINVAL;
2005 
2006 	if (x86_pmu.put_event_constraints)
2007 		x86_pmu.put_event_constraints(fake_cpuc, event);
2008 
2009 	free_fake_cpuc(fake_cpuc);
2010 
2011 	return ret;
2012 }
2013 
2014 /*
2015  * validate a single event group
2016  *
2017  * validation include:
2018  *	- check events are compatible which each other
2019  *	- events do not compete for the same counter
2020  *	- number of events <= number of counters
2021  *
2022  * validation ensures the group can be loaded onto the
2023  * PMU if it was the only group available.
2024  */
validate_group(struct perf_event * event)2025 static int validate_group(struct perf_event *event)
2026 {
2027 	struct perf_event *leader = event->group_leader;
2028 	struct cpu_hw_events *fake_cpuc;
2029 	int ret = -EINVAL, n;
2030 
2031 	fake_cpuc = allocate_fake_cpuc();
2032 	if (IS_ERR(fake_cpuc))
2033 		return PTR_ERR(fake_cpuc);
2034 	/*
2035 	 * the event is not yet connected with its
2036 	 * siblings therefore we must first collect
2037 	 * existing siblings, then add the new event
2038 	 * before we can simulate the scheduling
2039 	 */
2040 	n = collect_events(fake_cpuc, leader, true);
2041 	if (n < 0)
2042 		goto out;
2043 
2044 	fake_cpuc->n_events = n;
2045 	n = collect_events(fake_cpuc, event, false);
2046 	if (n < 0)
2047 		goto out;
2048 
2049 	fake_cpuc->n_events = n;
2050 
2051 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2052 
2053 out:
2054 	free_fake_cpuc(fake_cpuc);
2055 	return ret;
2056 }
2057 
x86_pmu_event_init(struct perf_event * event)2058 static int x86_pmu_event_init(struct perf_event *event)
2059 {
2060 	struct pmu *tmp;
2061 	int err;
2062 
2063 	switch (event->attr.type) {
2064 	case PERF_TYPE_RAW:
2065 	case PERF_TYPE_HARDWARE:
2066 	case PERF_TYPE_HW_CACHE:
2067 		break;
2068 
2069 	default:
2070 		return -ENOENT;
2071 	}
2072 
2073 	err = __x86_pmu_event_init(event);
2074 	if (!err) {
2075 		/*
2076 		 * we temporarily connect event to its pmu
2077 		 * such that validate_group() can classify
2078 		 * it as an x86 event using is_x86_event()
2079 		 */
2080 		tmp = event->pmu;
2081 		event->pmu = &pmu;
2082 
2083 		if (event->group_leader != event)
2084 			err = validate_group(event);
2085 		else
2086 			err = validate_event(event);
2087 
2088 		event->pmu = tmp;
2089 	}
2090 	if (err) {
2091 		if (event->destroy)
2092 			event->destroy(event);
2093 	}
2094 
2095 	if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2096 		event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2097 
2098 	return err;
2099 }
2100 
refresh_pce(void * ignored)2101 static void refresh_pce(void *ignored)
2102 {
2103 	if (current->active_mm)
2104 		load_mm_cr4(current->active_mm);
2105 }
2106 
x86_pmu_event_mapped(struct perf_event * event)2107 static void x86_pmu_event_mapped(struct perf_event *event)
2108 {
2109 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2110 		return;
2111 
2112 	if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2113 		on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2114 }
2115 
x86_pmu_event_unmapped(struct perf_event * event)2116 static void x86_pmu_event_unmapped(struct perf_event *event)
2117 {
2118 	if (!current->mm)
2119 		return;
2120 
2121 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2122 		return;
2123 
2124 	if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2125 		on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2126 }
2127 
x86_pmu_event_idx(struct perf_event * event)2128 static int x86_pmu_event_idx(struct perf_event *event)
2129 {
2130 	int idx = event->hw.idx;
2131 
2132 	if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2133 		return 0;
2134 
2135 	if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2136 		idx -= INTEL_PMC_IDX_FIXED;
2137 		idx |= 1 << 30;
2138 	}
2139 
2140 	return idx + 1;
2141 }
2142 
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)2143 static ssize_t get_attr_rdpmc(struct device *cdev,
2144 			      struct device_attribute *attr,
2145 			      char *buf)
2146 {
2147 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2148 }
2149 
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)2150 static ssize_t set_attr_rdpmc(struct device *cdev,
2151 			      struct device_attribute *attr,
2152 			      const char *buf, size_t count)
2153 {
2154 	unsigned long val;
2155 	ssize_t ret;
2156 
2157 	ret = kstrtoul(buf, 0, &val);
2158 	if (ret)
2159 		return ret;
2160 
2161 	if (val > 2)
2162 		return -EINVAL;
2163 
2164 	if (x86_pmu.attr_rdpmc_broken)
2165 		return -ENOTSUPP;
2166 
2167 	if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2168 		/*
2169 		 * Changing into or out of always available, aka
2170 		 * perf-event-bypassing mode.  This path is extremely slow,
2171 		 * but only root can trigger it, so it's okay.
2172 		 */
2173 		if (val == 2)
2174 			static_key_slow_inc(&rdpmc_always_available);
2175 		else
2176 			static_key_slow_dec(&rdpmc_always_available);
2177 		on_each_cpu(refresh_pce, NULL, 1);
2178 	}
2179 
2180 	x86_pmu.attr_rdpmc = val;
2181 
2182 	return count;
2183 }
2184 
2185 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2186 
2187 static struct attribute *x86_pmu_attrs[] = {
2188 	&dev_attr_rdpmc.attr,
2189 	NULL,
2190 };
2191 
2192 static struct attribute_group x86_pmu_attr_group = {
2193 	.attrs = x86_pmu_attrs,
2194 };
2195 
2196 static const struct attribute_group *x86_pmu_attr_groups[] = {
2197 	&x86_pmu_attr_group,
2198 	&x86_pmu_format_group,
2199 	&x86_pmu_events_group,
2200 	NULL,
2201 };
2202 
x86_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)2203 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2204 {
2205 	if (x86_pmu.sched_task)
2206 		x86_pmu.sched_task(ctx, sched_in);
2207 }
2208 
perf_check_microcode(void)2209 void perf_check_microcode(void)
2210 {
2211 	if (x86_pmu.check_microcode)
2212 		x86_pmu.check_microcode();
2213 }
2214 EXPORT_SYMBOL_GPL(perf_check_microcode);
2215 
2216 static struct pmu pmu = {
2217 	.pmu_enable		= x86_pmu_enable,
2218 	.pmu_disable		= x86_pmu_disable,
2219 
2220 	.attr_groups		= x86_pmu_attr_groups,
2221 
2222 	.event_init		= x86_pmu_event_init,
2223 
2224 	.event_mapped		= x86_pmu_event_mapped,
2225 	.event_unmapped		= x86_pmu_event_unmapped,
2226 
2227 	.add			= x86_pmu_add,
2228 	.del			= x86_pmu_del,
2229 	.start			= x86_pmu_start,
2230 	.stop			= x86_pmu_stop,
2231 	.read			= x86_pmu_read,
2232 
2233 	.start_txn		= x86_pmu_start_txn,
2234 	.cancel_txn		= x86_pmu_cancel_txn,
2235 	.commit_txn		= x86_pmu_commit_txn,
2236 
2237 	.event_idx		= x86_pmu_event_idx,
2238 	.sched_task		= x86_pmu_sched_task,
2239 	.task_ctx_size          = sizeof(struct x86_perf_task_context),
2240 };
2241 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)2242 void arch_perf_update_userpage(struct perf_event *event,
2243 			       struct perf_event_mmap_page *userpg, u64 now)
2244 {
2245 	struct cyc2ns_data *data;
2246 
2247 	userpg->cap_user_time = 0;
2248 	userpg->cap_user_time_zero = 0;
2249 	userpg->cap_user_rdpmc =
2250 		!!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2251 	userpg->pmc_width = x86_pmu.cntval_bits;
2252 
2253 	if (!sched_clock_stable())
2254 		return;
2255 
2256 	data = cyc2ns_read_begin();
2257 
2258 	/*
2259 	 * Internal timekeeping for enabled/running/stopped times
2260 	 * is always in the local_clock domain.
2261 	 */
2262 	userpg->cap_user_time = 1;
2263 	userpg->time_mult = data->cyc2ns_mul;
2264 	userpg->time_shift = data->cyc2ns_shift;
2265 	userpg->time_offset = data->cyc2ns_offset - now;
2266 
2267 	/*
2268 	 * cap_user_time_zero doesn't make sense when we're using a different
2269 	 * time base for the records.
2270 	 */
2271 	if (!event->attr.use_clockid) {
2272 		userpg->cap_user_time_zero = 1;
2273 		userpg->time_zero = data->cyc2ns_offset;
2274 	}
2275 
2276 	cyc2ns_read_end(data);
2277 }
2278 
2279 void
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2280 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2281 {
2282 	struct unwind_state state;
2283 	unsigned long addr;
2284 
2285 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2286 		/* TODO: We don't support guest os callchain now */
2287 		return;
2288 	}
2289 
2290 	if (perf_callchain_store(entry, regs->ip))
2291 		return;
2292 
2293 	for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2294 	     unwind_next_frame(&state)) {
2295 		addr = unwind_get_return_address(&state);
2296 		if (!addr || perf_callchain_store(entry, addr))
2297 			return;
2298 	}
2299 }
2300 
2301 static inline int
valid_user_frame(const void __user * fp,unsigned long size)2302 valid_user_frame(const void __user *fp, unsigned long size)
2303 {
2304 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2305 }
2306 
get_segment_base(unsigned int segment)2307 static unsigned long get_segment_base(unsigned int segment)
2308 {
2309 	struct desc_struct *desc;
2310 	int idx = segment >> 3;
2311 
2312 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2313 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2314 		struct ldt_struct *ldt;
2315 
2316 		if (idx > LDT_ENTRIES)
2317 			return 0;
2318 
2319 		/* IRQs are off, so this synchronizes with smp_store_release */
2320 		ldt = lockless_dereference(current->active_mm->context.ldt);
2321 		if (!ldt || idx > ldt->size)
2322 			return 0;
2323 
2324 		desc = &ldt->entries[idx];
2325 #else
2326 		return 0;
2327 #endif
2328 	} else {
2329 		if (idx > GDT_ENTRIES)
2330 			return 0;
2331 
2332 		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2333 	}
2334 
2335 	return get_desc_base(desc);
2336 }
2337 
2338 #ifdef CONFIG_IA32_EMULATION
2339 
2340 #include <asm/compat.h>
2341 
2342 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2343 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2344 {
2345 	/* 32-bit process in 64-bit kernel. */
2346 	unsigned long ss_base, cs_base;
2347 	struct stack_frame_ia32 frame;
2348 	const void __user *fp;
2349 
2350 	if (!test_thread_flag(TIF_IA32))
2351 		return 0;
2352 
2353 	cs_base = get_segment_base(regs->cs);
2354 	ss_base = get_segment_base(regs->ss);
2355 
2356 	fp = compat_ptr(ss_base + regs->bp);
2357 	pagefault_disable();
2358 	while (entry->nr < entry->max_stack) {
2359 		unsigned long bytes;
2360 		frame.next_frame     = 0;
2361 		frame.return_address = 0;
2362 
2363 		if (!valid_user_frame(fp, sizeof(frame)))
2364 			break;
2365 
2366 		bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2367 		if (bytes != 0)
2368 			break;
2369 		bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2370 		if (bytes != 0)
2371 			break;
2372 
2373 		perf_callchain_store(entry, cs_base + frame.return_address);
2374 		fp = compat_ptr(ss_base + frame.next_frame);
2375 	}
2376 	pagefault_enable();
2377 	return 1;
2378 }
2379 #else
2380 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2381 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2382 {
2383     return 0;
2384 }
2385 #endif
2386 
2387 void
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2388 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2389 {
2390 	struct stack_frame frame;
2391 	const unsigned long __user *fp;
2392 
2393 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2394 		/* TODO: We don't support guest os callchain now */
2395 		return;
2396 	}
2397 
2398 	/*
2399 	 * We don't know what to do with VM86 stacks.. ignore them for now.
2400 	 */
2401 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2402 		return;
2403 
2404 	fp = (unsigned long __user *)regs->bp;
2405 
2406 	perf_callchain_store(entry, regs->ip);
2407 
2408 	if (!current->mm)
2409 		return;
2410 
2411 	if (perf_callchain_user32(regs, entry))
2412 		return;
2413 
2414 	pagefault_disable();
2415 	while (entry->nr < entry->max_stack) {
2416 		unsigned long bytes;
2417 
2418 		frame.next_frame	     = NULL;
2419 		frame.return_address = 0;
2420 
2421 		if (!valid_user_frame(fp, sizeof(frame)))
2422 			break;
2423 
2424 		bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2425 		if (bytes != 0)
2426 			break;
2427 		bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2428 		if (bytes != 0)
2429 			break;
2430 
2431 		perf_callchain_store(entry, frame.return_address);
2432 		fp = (void __user *)frame.next_frame;
2433 	}
2434 	pagefault_enable();
2435 }
2436 
2437 /*
2438  * Deal with code segment offsets for the various execution modes:
2439  *
2440  *   VM86 - the good olde 16 bit days, where the linear address is
2441  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2442  *
2443  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2444  *          to figure out what the 32bit base address is.
2445  *
2446  *    X32 - has TIF_X32 set, but is running in x86_64
2447  *
2448  * X86_64 - CS,DS,SS,ES are all zero based.
2449  */
code_segment_base(struct pt_regs * regs)2450 static unsigned long code_segment_base(struct pt_regs *regs)
2451 {
2452 	/*
2453 	 * For IA32 we look at the GDT/LDT segment base to convert the
2454 	 * effective IP to a linear address.
2455 	 */
2456 
2457 #ifdef CONFIG_X86_32
2458 	/*
2459 	 * If we are in VM86 mode, add the segment offset to convert to a
2460 	 * linear address.
2461 	 */
2462 	if (regs->flags & X86_VM_MASK)
2463 		return 0x10 * regs->cs;
2464 
2465 	if (user_mode(regs) && regs->cs != __USER_CS)
2466 		return get_segment_base(regs->cs);
2467 #else
2468 	if (user_mode(regs) && !user_64bit_mode(regs) &&
2469 	    regs->cs != __USER32_CS)
2470 		return get_segment_base(regs->cs);
2471 #endif
2472 	return 0;
2473 }
2474 
perf_instruction_pointer(struct pt_regs * regs)2475 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2476 {
2477 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2478 		return perf_guest_cbs->get_guest_ip();
2479 
2480 	return regs->ip + code_segment_base(regs);
2481 }
2482 
perf_misc_flags(struct pt_regs * regs)2483 unsigned long perf_misc_flags(struct pt_regs *regs)
2484 {
2485 	int misc = 0;
2486 
2487 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2488 		if (perf_guest_cbs->is_user_mode())
2489 			misc |= PERF_RECORD_MISC_GUEST_USER;
2490 		else
2491 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2492 	} else {
2493 		if (user_mode(regs))
2494 			misc |= PERF_RECORD_MISC_USER;
2495 		else
2496 			misc |= PERF_RECORD_MISC_KERNEL;
2497 	}
2498 
2499 	if (regs->flags & PERF_EFLAGS_EXACT)
2500 		misc |= PERF_RECORD_MISC_EXACT_IP;
2501 
2502 	return misc;
2503 }
2504 
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)2505 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2506 {
2507 	cap->version		= x86_pmu.version;
2508 	cap->num_counters_gp	= x86_pmu.num_counters;
2509 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2510 	cap->bit_width_gp	= x86_pmu.cntval_bits;
2511 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2512 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2513 	cap->events_mask_len	= x86_pmu.events_mask_len;
2514 }
2515 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2516