• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2016 Oracle.  All Rights Reserved.
3  *
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it would be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write the Free Software Foundation,
18  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301, USA.
19  */
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_format.h"
23 #include "xfs_log_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_bit.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_trans.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_refcount_item.h"
32 #include "xfs_log.h"
33 #include "xfs_refcount.h"
34 
35 
36 kmem_zone_t	*xfs_cui_zone;
37 kmem_zone_t	*xfs_cud_zone;
38 
CUI_ITEM(struct xfs_log_item * lip)39 static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip)
40 {
41 	return container_of(lip, struct xfs_cui_log_item, cui_item);
42 }
43 
44 void
xfs_cui_item_free(struct xfs_cui_log_item * cuip)45 xfs_cui_item_free(
46 	struct xfs_cui_log_item	*cuip)
47 {
48 	if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS)
49 		kmem_free(cuip);
50 	else
51 		kmem_zone_free(xfs_cui_zone, cuip);
52 }
53 
54 STATIC void
xfs_cui_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)55 xfs_cui_item_size(
56 	struct xfs_log_item	*lip,
57 	int			*nvecs,
58 	int			*nbytes)
59 {
60 	struct xfs_cui_log_item	*cuip = CUI_ITEM(lip);
61 
62 	*nvecs += 1;
63 	*nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents);
64 }
65 
66 /*
67  * This is called to fill in the vector of log iovecs for the
68  * given cui log item. We use only 1 iovec, and we point that
69  * at the cui_log_format structure embedded in the cui item.
70  * It is at this point that we assert that all of the extent
71  * slots in the cui item have been filled.
72  */
73 STATIC void
xfs_cui_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)74 xfs_cui_item_format(
75 	struct xfs_log_item	*lip,
76 	struct xfs_log_vec	*lv)
77 {
78 	struct xfs_cui_log_item	*cuip = CUI_ITEM(lip);
79 	struct xfs_log_iovec	*vecp = NULL;
80 
81 	ASSERT(atomic_read(&cuip->cui_next_extent) ==
82 			cuip->cui_format.cui_nextents);
83 
84 	cuip->cui_format.cui_type = XFS_LI_CUI;
85 	cuip->cui_format.cui_size = 1;
86 
87 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format,
88 			xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents));
89 }
90 
91 /*
92  * Pinning has no meaning for an cui item, so just return.
93  */
94 STATIC void
xfs_cui_item_pin(struct xfs_log_item * lip)95 xfs_cui_item_pin(
96 	struct xfs_log_item	*lip)
97 {
98 }
99 
100 /*
101  * The unpin operation is the last place an CUI is manipulated in the log. It is
102  * either inserted in the AIL or aborted in the event of a log I/O error. In
103  * either case, the CUI transaction has been successfully committed to make it
104  * this far. Therefore, we expect whoever committed the CUI to either construct
105  * and commit the CUD or drop the CUD's reference in the event of error. Simply
106  * drop the log's CUI reference now that the log is done with it.
107  */
108 STATIC void
xfs_cui_item_unpin(struct xfs_log_item * lip,int remove)109 xfs_cui_item_unpin(
110 	struct xfs_log_item	*lip,
111 	int			remove)
112 {
113 	struct xfs_cui_log_item	*cuip = CUI_ITEM(lip);
114 
115 	xfs_cui_release(cuip);
116 }
117 
118 /*
119  * CUI items have no locking or pushing.  However, since CUIs are pulled from
120  * the AIL when their corresponding CUDs are committed to disk, their situation
121  * is very similar to being pinned.  Return XFS_ITEM_PINNED so that the caller
122  * will eventually flush the log.  This should help in getting the CUI out of
123  * the AIL.
124  */
125 STATIC uint
xfs_cui_item_push(struct xfs_log_item * lip,struct list_head * buffer_list)126 xfs_cui_item_push(
127 	struct xfs_log_item	*lip,
128 	struct list_head	*buffer_list)
129 {
130 	return XFS_ITEM_PINNED;
131 }
132 
133 /*
134  * The CUI has been either committed or aborted if the transaction has been
135  * cancelled. If the transaction was cancelled, an CUD isn't going to be
136  * constructed and thus we free the CUI here directly.
137  */
138 STATIC void
xfs_cui_item_unlock(struct xfs_log_item * lip)139 xfs_cui_item_unlock(
140 	struct xfs_log_item	*lip)
141 {
142 	if (lip->li_flags & XFS_LI_ABORTED)
143 		xfs_cui_item_free(CUI_ITEM(lip));
144 }
145 
146 /*
147  * The CUI is logged only once and cannot be moved in the log, so simply return
148  * the lsn at which it's been logged.
149  */
150 STATIC xfs_lsn_t
xfs_cui_item_committed(struct xfs_log_item * lip,xfs_lsn_t lsn)151 xfs_cui_item_committed(
152 	struct xfs_log_item	*lip,
153 	xfs_lsn_t		lsn)
154 {
155 	return lsn;
156 }
157 
158 /*
159  * The CUI dependency tracking op doesn't do squat.  It can't because
160  * it doesn't know where the free extent is coming from.  The dependency
161  * tracking has to be handled by the "enclosing" metadata object.  For
162  * example, for inodes, the inode is locked throughout the extent freeing
163  * so the dependency should be recorded there.
164  */
165 STATIC void
xfs_cui_item_committing(struct xfs_log_item * lip,xfs_lsn_t lsn)166 xfs_cui_item_committing(
167 	struct xfs_log_item	*lip,
168 	xfs_lsn_t		lsn)
169 {
170 }
171 
172 /*
173  * This is the ops vector shared by all cui log items.
174  */
175 static const struct xfs_item_ops xfs_cui_item_ops = {
176 	.iop_size	= xfs_cui_item_size,
177 	.iop_format	= xfs_cui_item_format,
178 	.iop_pin	= xfs_cui_item_pin,
179 	.iop_unpin	= xfs_cui_item_unpin,
180 	.iop_unlock	= xfs_cui_item_unlock,
181 	.iop_committed	= xfs_cui_item_committed,
182 	.iop_push	= xfs_cui_item_push,
183 	.iop_committing = xfs_cui_item_committing,
184 };
185 
186 /*
187  * Allocate and initialize an cui item with the given number of extents.
188  */
189 struct xfs_cui_log_item *
xfs_cui_init(struct xfs_mount * mp,uint nextents)190 xfs_cui_init(
191 	struct xfs_mount		*mp,
192 	uint				nextents)
193 
194 {
195 	struct xfs_cui_log_item		*cuip;
196 
197 	ASSERT(nextents > 0);
198 	if (nextents > XFS_CUI_MAX_FAST_EXTENTS)
199 		cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents),
200 				KM_SLEEP);
201 	else
202 		cuip = kmem_zone_zalloc(xfs_cui_zone, KM_SLEEP);
203 
204 	xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops);
205 	cuip->cui_format.cui_nextents = nextents;
206 	cuip->cui_format.cui_id = (uintptr_t)(void *)cuip;
207 	atomic_set(&cuip->cui_next_extent, 0);
208 	atomic_set(&cuip->cui_refcount, 2);
209 
210 	return cuip;
211 }
212 
213 /*
214  * Freeing the CUI requires that we remove it from the AIL if it has already
215  * been placed there. However, the CUI may not yet have been placed in the AIL
216  * when called by xfs_cui_release() from CUD processing due to the ordering of
217  * committed vs unpin operations in bulk insert operations. Hence the reference
218  * count to ensure only the last caller frees the CUI.
219  */
220 void
xfs_cui_release(struct xfs_cui_log_item * cuip)221 xfs_cui_release(
222 	struct xfs_cui_log_item	*cuip)
223 {
224 	if (atomic_dec_and_test(&cuip->cui_refcount)) {
225 		xfs_trans_ail_remove(&cuip->cui_item, SHUTDOWN_LOG_IO_ERROR);
226 		xfs_cui_item_free(cuip);
227 	}
228 }
229 
CUD_ITEM(struct xfs_log_item * lip)230 static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip)
231 {
232 	return container_of(lip, struct xfs_cud_log_item, cud_item);
233 }
234 
235 STATIC void
xfs_cud_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)236 xfs_cud_item_size(
237 	struct xfs_log_item	*lip,
238 	int			*nvecs,
239 	int			*nbytes)
240 {
241 	*nvecs += 1;
242 	*nbytes += sizeof(struct xfs_cud_log_format);
243 }
244 
245 /*
246  * This is called to fill in the vector of log iovecs for the
247  * given cud log item. We use only 1 iovec, and we point that
248  * at the cud_log_format structure embedded in the cud item.
249  * It is at this point that we assert that all of the extent
250  * slots in the cud item have been filled.
251  */
252 STATIC void
xfs_cud_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)253 xfs_cud_item_format(
254 	struct xfs_log_item	*lip,
255 	struct xfs_log_vec	*lv)
256 {
257 	struct xfs_cud_log_item	*cudp = CUD_ITEM(lip);
258 	struct xfs_log_iovec	*vecp = NULL;
259 
260 	cudp->cud_format.cud_type = XFS_LI_CUD;
261 	cudp->cud_format.cud_size = 1;
262 
263 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format,
264 			sizeof(struct xfs_cud_log_format));
265 }
266 
267 /*
268  * Pinning has no meaning for an cud item, so just return.
269  */
270 STATIC void
xfs_cud_item_pin(struct xfs_log_item * lip)271 xfs_cud_item_pin(
272 	struct xfs_log_item	*lip)
273 {
274 }
275 
276 /*
277  * Since pinning has no meaning for an cud item, unpinning does
278  * not either.
279  */
280 STATIC void
xfs_cud_item_unpin(struct xfs_log_item * lip,int remove)281 xfs_cud_item_unpin(
282 	struct xfs_log_item	*lip,
283 	int			remove)
284 {
285 }
286 
287 /*
288  * There isn't much you can do to push on an cud item.  It is simply stuck
289  * waiting for the log to be flushed to disk.
290  */
291 STATIC uint
xfs_cud_item_push(struct xfs_log_item * lip,struct list_head * buffer_list)292 xfs_cud_item_push(
293 	struct xfs_log_item	*lip,
294 	struct list_head	*buffer_list)
295 {
296 	return XFS_ITEM_PINNED;
297 }
298 
299 /*
300  * The CUD is either committed or aborted if the transaction is cancelled. If
301  * the transaction is cancelled, drop our reference to the CUI and free the
302  * CUD.
303  */
304 STATIC void
xfs_cud_item_unlock(struct xfs_log_item * lip)305 xfs_cud_item_unlock(
306 	struct xfs_log_item	*lip)
307 {
308 	struct xfs_cud_log_item	*cudp = CUD_ITEM(lip);
309 
310 	if (lip->li_flags & XFS_LI_ABORTED) {
311 		xfs_cui_release(cudp->cud_cuip);
312 		kmem_zone_free(xfs_cud_zone, cudp);
313 	}
314 }
315 
316 /*
317  * When the cud item is committed to disk, all we need to do is delete our
318  * reference to our partner cui item and then free ourselves. Since we're
319  * freeing ourselves we must return -1 to keep the transaction code from
320  * further referencing this item.
321  */
322 STATIC xfs_lsn_t
xfs_cud_item_committed(struct xfs_log_item * lip,xfs_lsn_t lsn)323 xfs_cud_item_committed(
324 	struct xfs_log_item	*lip,
325 	xfs_lsn_t		lsn)
326 {
327 	struct xfs_cud_log_item	*cudp = CUD_ITEM(lip);
328 
329 	/*
330 	 * Drop the CUI reference regardless of whether the CUD has been
331 	 * aborted. Once the CUD transaction is constructed, it is the sole
332 	 * responsibility of the CUD to release the CUI (even if the CUI is
333 	 * aborted due to log I/O error).
334 	 */
335 	xfs_cui_release(cudp->cud_cuip);
336 	kmem_zone_free(xfs_cud_zone, cudp);
337 
338 	return (xfs_lsn_t)-1;
339 }
340 
341 /*
342  * The CUD dependency tracking op doesn't do squat.  It can't because
343  * it doesn't know where the free extent is coming from.  The dependency
344  * tracking has to be handled by the "enclosing" metadata object.  For
345  * example, for inodes, the inode is locked throughout the extent freeing
346  * so the dependency should be recorded there.
347  */
348 STATIC void
xfs_cud_item_committing(struct xfs_log_item * lip,xfs_lsn_t lsn)349 xfs_cud_item_committing(
350 	struct xfs_log_item	*lip,
351 	xfs_lsn_t		lsn)
352 {
353 }
354 
355 /*
356  * This is the ops vector shared by all cud log items.
357  */
358 static const struct xfs_item_ops xfs_cud_item_ops = {
359 	.iop_size	= xfs_cud_item_size,
360 	.iop_format	= xfs_cud_item_format,
361 	.iop_pin	= xfs_cud_item_pin,
362 	.iop_unpin	= xfs_cud_item_unpin,
363 	.iop_unlock	= xfs_cud_item_unlock,
364 	.iop_committed	= xfs_cud_item_committed,
365 	.iop_push	= xfs_cud_item_push,
366 	.iop_committing = xfs_cud_item_committing,
367 };
368 
369 /*
370  * Allocate and initialize an cud item with the given number of extents.
371  */
372 struct xfs_cud_log_item *
xfs_cud_init(struct xfs_mount * mp,struct xfs_cui_log_item * cuip)373 xfs_cud_init(
374 	struct xfs_mount		*mp,
375 	struct xfs_cui_log_item		*cuip)
376 
377 {
378 	struct xfs_cud_log_item	*cudp;
379 
380 	cudp = kmem_zone_zalloc(xfs_cud_zone, KM_SLEEP);
381 	xfs_log_item_init(mp, &cudp->cud_item, XFS_LI_CUD, &xfs_cud_item_ops);
382 	cudp->cud_cuip = cuip;
383 	cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id;
384 
385 	return cudp;
386 }
387 
388 /*
389  * Process a refcount update intent item that was recovered from the log.
390  * We need to update the refcountbt.
391  */
392 int
xfs_cui_recover(struct xfs_mount * mp,struct xfs_cui_log_item * cuip)393 xfs_cui_recover(
394 	struct xfs_mount		*mp,
395 	struct xfs_cui_log_item		*cuip)
396 {
397 	int				i;
398 	int				error = 0;
399 	unsigned int			refc_type;
400 	struct xfs_phys_extent		*refc;
401 	xfs_fsblock_t			startblock_fsb;
402 	bool				op_ok;
403 	struct xfs_cud_log_item		*cudp;
404 	struct xfs_trans		*tp;
405 	struct xfs_btree_cur		*rcur = NULL;
406 	enum xfs_refcount_intent_type	type;
407 	xfs_fsblock_t			firstfsb;
408 	xfs_fsblock_t			new_fsb;
409 	xfs_extlen_t			new_len;
410 	struct xfs_bmbt_irec		irec;
411 	struct xfs_defer_ops		dfops;
412 	bool				requeue_only = false;
413 
414 	ASSERT(!test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags));
415 
416 	/*
417 	 * First check the validity of the extents described by the
418 	 * CUI.  If any are bad, then assume that all are bad and
419 	 * just toss the CUI.
420 	 */
421 	for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
422 		refc = &cuip->cui_format.cui_extents[i];
423 		startblock_fsb = XFS_BB_TO_FSB(mp,
424 				   XFS_FSB_TO_DADDR(mp, refc->pe_startblock));
425 		switch (refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) {
426 		case XFS_REFCOUNT_INCREASE:
427 		case XFS_REFCOUNT_DECREASE:
428 		case XFS_REFCOUNT_ALLOC_COW:
429 		case XFS_REFCOUNT_FREE_COW:
430 			op_ok = true;
431 			break;
432 		default:
433 			op_ok = false;
434 			break;
435 		}
436 		if (!op_ok || startblock_fsb == 0 ||
437 		    refc->pe_len == 0 ||
438 		    startblock_fsb >= mp->m_sb.sb_dblocks ||
439 		    refc->pe_len >= mp->m_sb.sb_agblocks ||
440 		    (refc->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS)) {
441 			/*
442 			 * This will pull the CUI from the AIL and
443 			 * free the memory associated with it.
444 			 */
445 			set_bit(XFS_CUI_RECOVERED, &cuip->cui_flags);
446 			xfs_cui_release(cuip);
447 			return -EIO;
448 		}
449 	}
450 
451 	/*
452 	 * Under normal operation, refcount updates are deferred, so we
453 	 * wouldn't be adding them directly to a transaction.  All
454 	 * refcount updates manage reservation usage internally and
455 	 * dynamically by deferring work that won't fit in the
456 	 * transaction.  Normally, any work that needs to be deferred
457 	 * gets attached to the same defer_ops that scheduled the
458 	 * refcount update.  However, we're in log recovery here, so we
459 	 * we create our own defer_ops and use that to finish up any
460 	 * work that doesn't fit.
461 	 */
462 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
463 	if (error)
464 		return error;
465 	cudp = xfs_trans_get_cud(tp, cuip);
466 
467 	xfs_defer_init(&dfops, &firstfsb);
468 	for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
469 		refc = &cuip->cui_format.cui_extents[i];
470 		refc_type = refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK;
471 		switch (refc_type) {
472 		case XFS_REFCOUNT_INCREASE:
473 		case XFS_REFCOUNT_DECREASE:
474 		case XFS_REFCOUNT_ALLOC_COW:
475 		case XFS_REFCOUNT_FREE_COW:
476 			type = refc_type;
477 			break;
478 		default:
479 			error = -EFSCORRUPTED;
480 			goto abort_error;
481 		}
482 		if (requeue_only) {
483 			new_fsb = refc->pe_startblock;
484 			new_len = refc->pe_len;
485 		} else
486 			error = xfs_trans_log_finish_refcount_update(tp, cudp,
487 				&dfops, type, refc->pe_startblock, refc->pe_len,
488 				&new_fsb, &new_len, &rcur);
489 		if (error)
490 			goto abort_error;
491 
492 		/* Requeue what we didn't finish. */
493 		if (new_len > 0) {
494 			irec.br_startblock = new_fsb;
495 			irec.br_blockcount = new_len;
496 			switch (type) {
497 			case XFS_REFCOUNT_INCREASE:
498 				error = xfs_refcount_increase_extent(
499 						tp->t_mountp, &dfops, &irec);
500 				break;
501 			case XFS_REFCOUNT_DECREASE:
502 				error = xfs_refcount_decrease_extent(
503 						tp->t_mountp, &dfops, &irec);
504 				break;
505 			case XFS_REFCOUNT_ALLOC_COW:
506 				error = xfs_refcount_alloc_cow_extent(
507 						tp->t_mountp, &dfops,
508 						irec.br_startblock,
509 						irec.br_blockcount);
510 				break;
511 			case XFS_REFCOUNT_FREE_COW:
512 				error = xfs_refcount_free_cow_extent(
513 						tp->t_mountp, &dfops,
514 						irec.br_startblock,
515 						irec.br_blockcount);
516 				break;
517 			default:
518 				ASSERT(0);
519 			}
520 			if (error)
521 				goto abort_error;
522 			requeue_only = true;
523 		}
524 	}
525 
526 	xfs_refcount_finish_one_cleanup(tp, rcur, error);
527 	error = xfs_defer_finish(&tp, &dfops, NULL);
528 	if (error)
529 		goto abort_defer;
530 	set_bit(XFS_CUI_RECOVERED, &cuip->cui_flags);
531 	error = xfs_trans_commit(tp);
532 	return error;
533 
534 abort_error:
535 	xfs_refcount_finish_one_cleanup(tp, rcur, error);
536 abort_defer:
537 	xfs_defer_cancel(&dfops);
538 	xfs_trans_cancel(tp);
539 	return error;
540 }
541