• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it would be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write the Free Software Foundation,
15  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
16  */
17 
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_shared.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_alloc.h"
27 #include "xfs_extent_busy.h"
28 #include "xfs_discard.h"
29 #include "xfs_trans.h"
30 #include "xfs_trans_priv.h"
31 #include "xfs_log.h"
32 #include "xfs_log_priv.h"
33 
34 /*
35  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
36  * recover, so we don't allow failure here. Also, we allocate in a context that
37  * we don't want to be issuing transactions from, so we need to tell the
38  * allocation code this as well.
39  *
40  * We don't reserve any space for the ticket - we are going to steal whatever
41  * space we require from transactions as they commit. To ensure we reserve all
42  * the space required, we need to set the current reservation of the ticket to
43  * zero so that we know to steal the initial transaction overhead from the
44  * first transaction commit.
45  */
46 static struct xlog_ticket *
xlog_cil_ticket_alloc(struct xlog * log)47 xlog_cil_ticket_alloc(
48 	struct xlog	*log)
49 {
50 	struct xlog_ticket *tic;
51 
52 	tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
53 				KM_SLEEP|KM_NOFS);
54 
55 	/*
56 	 * set the current reservation to zero so we know to steal the basic
57 	 * transaction overhead reservation from the first transaction commit.
58 	 */
59 	tic->t_curr_res = 0;
60 	return tic;
61 }
62 
63 /*
64  * After the first stage of log recovery is done, we know where the head and
65  * tail of the log are. We need this log initialisation done before we can
66  * initialise the first CIL checkpoint context.
67  *
68  * Here we allocate a log ticket to track space usage during a CIL push.  This
69  * ticket is passed to xlog_write() directly so that we don't slowly leak log
70  * space by failing to account for space used by log headers and additional
71  * region headers for split regions.
72  */
73 void
xlog_cil_init_post_recovery(struct xlog * log)74 xlog_cil_init_post_recovery(
75 	struct xlog	*log)
76 {
77 	log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
78 	log->l_cilp->xc_ctx->sequence = 1;
79 }
80 
81 static inline int
xlog_cil_iovec_space(uint niovecs)82 xlog_cil_iovec_space(
83 	uint	niovecs)
84 {
85 	return round_up((sizeof(struct xfs_log_vec) +
86 					niovecs * sizeof(struct xfs_log_iovec)),
87 			sizeof(uint64_t));
88 }
89 
90 /*
91  * Allocate or pin log vector buffers for CIL insertion.
92  *
93  * The CIL currently uses disposable buffers for copying a snapshot of the
94  * modified items into the log during a push. The biggest problem with this is
95  * the requirement to allocate the disposable buffer during the commit if:
96  *	a) does not exist; or
97  *	b) it is too small
98  *
99  * If we do this allocation within xlog_cil_insert_format_items(), it is done
100  * under the xc_ctx_lock, which means that a CIL push cannot occur during
101  * the memory allocation. This means that we have a potential deadlock situation
102  * under low memory conditions when we have lots of dirty metadata pinned in
103  * the CIL and we need a CIL commit to occur to free memory.
104  *
105  * To avoid this, we need to move the memory allocation outside the
106  * xc_ctx_lock, but because the log vector buffers are disposable, that opens
107  * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
108  * vector buffers between the check and the formatting of the item into the
109  * log vector buffer within the xc_ctx_lock.
110  *
111  * Because the log vector buffer needs to be unchanged during the CIL push
112  * process, we cannot share the buffer between the transaction commit (which
113  * modifies the buffer) and the CIL push context that is writing the changes
114  * into the log. This means skipping preallocation of buffer space is
115  * unreliable, but we most definitely do not want to be allocating and freeing
116  * buffers unnecessarily during commits when overwrites can be done safely.
117  *
118  * The simplest solution to this problem is to allocate a shadow buffer when a
119  * log item is committed for the second time, and then to only use this buffer
120  * if necessary. The buffer can remain attached to the log item until such time
121  * it is needed, and this is the buffer that is reallocated to match the size of
122  * the incoming modification. Then during the formatting of the item we can swap
123  * the active buffer with the new one if we can't reuse the existing buffer. We
124  * don't free the old buffer as it may be reused on the next modification if
125  * it's size is right, otherwise we'll free and reallocate it at that point.
126  *
127  * This function builds a vector for the changes in each log item in the
128  * transaction. It then works out the length of the buffer needed for each log
129  * item, allocates them and attaches the vector to the log item in preparation
130  * for the formatting step which occurs under the xc_ctx_lock.
131  *
132  * While this means the memory footprint goes up, it avoids the repeated
133  * alloc/free pattern that repeated modifications of an item would otherwise
134  * cause, and hence minimises the CPU overhead of such behaviour.
135  */
136 static void
xlog_cil_alloc_shadow_bufs(struct xlog * log,struct xfs_trans * tp)137 xlog_cil_alloc_shadow_bufs(
138 	struct xlog		*log,
139 	struct xfs_trans	*tp)
140 {
141 	struct xfs_log_item_desc *lidp;
142 
143 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
144 		struct xfs_log_item *lip = lidp->lid_item;
145 		struct xfs_log_vec *lv;
146 		int	niovecs = 0;
147 		int	nbytes = 0;
148 		int	buf_size;
149 		bool	ordered = false;
150 
151 		/* Skip items which aren't dirty in this transaction. */
152 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
153 			continue;
154 
155 		/* get number of vecs and size of data to be stored */
156 		lip->li_ops->iop_size(lip, &niovecs, &nbytes);
157 
158 		/*
159 		 * Ordered items need to be tracked but we do not wish to write
160 		 * them. We need a logvec to track the object, but we do not
161 		 * need an iovec or buffer to be allocated for copying data.
162 		 */
163 		if (niovecs == XFS_LOG_VEC_ORDERED) {
164 			ordered = true;
165 			niovecs = 0;
166 			nbytes = 0;
167 		}
168 
169 		/*
170 		 * We 64-bit align the length of each iovec so that the start
171 		 * of the next one is naturally aligned.  We'll need to
172 		 * account for that slack space here. Then round nbytes up
173 		 * to 64-bit alignment so that the initial buffer alignment is
174 		 * easy to calculate and verify.
175 		 */
176 		nbytes += niovecs * sizeof(uint64_t);
177 		nbytes = round_up(nbytes, sizeof(uint64_t));
178 
179 		/*
180 		 * The data buffer needs to start 64-bit aligned, so round up
181 		 * that space to ensure we can align it appropriately and not
182 		 * overrun the buffer.
183 		 */
184 		buf_size = nbytes + xlog_cil_iovec_space(niovecs);
185 
186 		/*
187 		 * if we have no shadow buffer, or it is too small, we need to
188 		 * reallocate it.
189 		 */
190 		if (!lip->li_lv_shadow ||
191 		    buf_size > lip->li_lv_shadow->lv_size) {
192 
193 			/*
194 			 * We free and allocate here as a realloc would copy
195 			 * unecessary data. We don't use kmem_zalloc() for the
196 			 * same reason - we don't need to zero the data area in
197 			 * the buffer, only the log vector header and the iovec
198 			 * storage.
199 			 */
200 			kmem_free(lip->li_lv_shadow);
201 
202 			lv = kmem_alloc(buf_size, KM_SLEEP|KM_NOFS);
203 			memset(lv, 0, xlog_cil_iovec_space(niovecs));
204 
205 			lv->lv_item = lip;
206 			lv->lv_size = buf_size;
207 			if (ordered)
208 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
209 			else
210 				lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
211 			lip->li_lv_shadow = lv;
212 		} else {
213 			/* same or smaller, optimise common overwrite case */
214 			lv = lip->li_lv_shadow;
215 			if (ordered)
216 				lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
217 			else
218 				lv->lv_buf_len = 0;
219 			lv->lv_bytes = 0;
220 			lv->lv_next = NULL;
221 		}
222 
223 		/* Ensure the lv is set up according to ->iop_size */
224 		lv->lv_niovecs = niovecs;
225 
226 		/* The allocated data region lies beyond the iovec region */
227 		lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
228 	}
229 
230 }
231 
232 /*
233  * Prepare the log item for insertion into the CIL. Calculate the difference in
234  * log space and vectors it will consume, and if it is a new item pin it as
235  * well.
236  */
237 STATIC void
xfs_cil_prepare_item(struct xlog * log,struct xfs_log_vec * lv,struct xfs_log_vec * old_lv,int * diff_len,int * diff_iovecs)238 xfs_cil_prepare_item(
239 	struct xlog		*log,
240 	struct xfs_log_vec	*lv,
241 	struct xfs_log_vec	*old_lv,
242 	int			*diff_len,
243 	int			*diff_iovecs)
244 {
245 	/* Account for the new LV being passed in */
246 	if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
247 		*diff_len += lv->lv_bytes;
248 		*diff_iovecs += lv->lv_niovecs;
249 	}
250 
251 	/*
252 	 * If there is no old LV, this is the first time we've seen the item in
253 	 * this CIL context and so we need to pin it. If we are replacing the
254 	 * old_lv, then remove the space it accounts for and make it the shadow
255 	 * buffer for later freeing. In both cases we are now switching to the
256 	 * shadow buffer, so update the the pointer to it appropriately.
257 	 */
258 	if (!old_lv) {
259 		lv->lv_item->li_ops->iop_pin(lv->lv_item);
260 		lv->lv_item->li_lv_shadow = NULL;
261 	} else if (old_lv != lv) {
262 		ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
263 
264 		*diff_len -= old_lv->lv_bytes;
265 		*diff_iovecs -= old_lv->lv_niovecs;
266 		lv->lv_item->li_lv_shadow = old_lv;
267 	}
268 
269 	/* attach new log vector to log item */
270 	lv->lv_item->li_lv = lv;
271 
272 	/*
273 	 * If this is the first time the item is being committed to the
274 	 * CIL, store the sequence number on the log item so we can
275 	 * tell in future commits whether this is the first checkpoint
276 	 * the item is being committed into.
277 	 */
278 	if (!lv->lv_item->li_seq)
279 		lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
280 }
281 
282 /*
283  * Format log item into a flat buffers
284  *
285  * For delayed logging, we need to hold a formatted buffer containing all the
286  * changes on the log item. This enables us to relog the item in memory and
287  * write it out asynchronously without needing to relock the object that was
288  * modified at the time it gets written into the iclog.
289  *
290  * This function takes the prepared log vectors attached to each log item, and
291  * formats the changes into the log vector buffer. The buffer it uses is
292  * dependent on the current state of the vector in the CIL - the shadow lv is
293  * guaranteed to be large enough for the current modification, but we will only
294  * use that if we can't reuse the existing lv. If we can't reuse the existing
295  * lv, then simple swap it out for the shadow lv. We don't free it - that is
296  * done lazily either by th enext modification or the freeing of the log item.
297  *
298  * We don't set up region headers during this process; we simply copy the
299  * regions into the flat buffer. We can do this because we still have to do a
300  * formatting step to write the regions into the iclog buffer.  Writing the
301  * ophdrs during the iclog write means that we can support splitting large
302  * regions across iclog boundares without needing a change in the format of the
303  * item/region encapsulation.
304  *
305  * Hence what we need to do now is change the rewrite the vector array to point
306  * to the copied region inside the buffer we just allocated. This allows us to
307  * format the regions into the iclog as though they are being formatted
308  * directly out of the objects themselves.
309  */
310 static void
xlog_cil_insert_format_items(struct xlog * log,struct xfs_trans * tp,int * diff_len,int * diff_iovecs)311 xlog_cil_insert_format_items(
312 	struct xlog		*log,
313 	struct xfs_trans	*tp,
314 	int			*diff_len,
315 	int			*diff_iovecs)
316 {
317 	struct xfs_log_item_desc *lidp;
318 
319 
320 	/* Bail out if we didn't find a log item.  */
321 	if (list_empty(&tp->t_items)) {
322 		ASSERT(0);
323 		return;
324 	}
325 
326 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
327 		struct xfs_log_item *lip = lidp->lid_item;
328 		struct xfs_log_vec *lv;
329 		struct xfs_log_vec *old_lv = NULL;
330 		struct xfs_log_vec *shadow;
331 		bool	ordered = false;
332 
333 		/* Skip items which aren't dirty in this transaction. */
334 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
335 			continue;
336 
337 		/*
338 		 * The formatting size information is already attached to
339 		 * the shadow lv on the log item.
340 		 */
341 		shadow = lip->li_lv_shadow;
342 		if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
343 			ordered = true;
344 
345 		/* Skip items that do not have any vectors for writing */
346 		if (!shadow->lv_niovecs && !ordered)
347 			continue;
348 
349 		/* compare to existing item size */
350 		old_lv = lip->li_lv;
351 		if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
352 			/* same or smaller, optimise common overwrite case */
353 			lv = lip->li_lv;
354 			lv->lv_next = NULL;
355 
356 			if (ordered)
357 				goto insert;
358 
359 			/*
360 			 * set the item up as though it is a new insertion so
361 			 * that the space reservation accounting is correct.
362 			 */
363 			*diff_iovecs -= lv->lv_niovecs;
364 			*diff_len -= lv->lv_bytes;
365 
366 			/* Ensure the lv is set up according to ->iop_size */
367 			lv->lv_niovecs = shadow->lv_niovecs;
368 
369 			/* reset the lv buffer information for new formatting */
370 			lv->lv_buf_len = 0;
371 			lv->lv_bytes = 0;
372 			lv->lv_buf = (char *)lv +
373 					xlog_cil_iovec_space(lv->lv_niovecs);
374 		} else {
375 			/* switch to shadow buffer! */
376 			lv = shadow;
377 			lv->lv_item = lip;
378 			if (ordered) {
379 				/* track as an ordered logvec */
380 				ASSERT(lip->li_lv == NULL);
381 				goto insert;
382 			}
383 		}
384 
385 		ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
386 		lip->li_ops->iop_format(lip, lv);
387 insert:
388 		xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
389 	}
390 }
391 
392 /*
393  * Insert the log items into the CIL and calculate the difference in space
394  * consumed by the item. Add the space to the checkpoint ticket and calculate
395  * if the change requires additional log metadata. If it does, take that space
396  * as well. Remove the amount of space we added to the checkpoint ticket from
397  * the current transaction ticket so that the accounting works out correctly.
398  */
399 static void
xlog_cil_insert_items(struct xlog * log,struct xfs_trans * tp)400 xlog_cil_insert_items(
401 	struct xlog		*log,
402 	struct xfs_trans	*tp)
403 {
404 	struct xfs_cil		*cil = log->l_cilp;
405 	struct xfs_cil_ctx	*ctx = cil->xc_ctx;
406 	struct xfs_log_item_desc *lidp;
407 	int			len = 0;
408 	int			diff_iovecs = 0;
409 	int			iclog_space;
410 
411 	ASSERT(tp);
412 
413 	/*
414 	 * We can do this safely because the context can't checkpoint until we
415 	 * are done so it doesn't matter exactly how we update the CIL.
416 	 */
417 	xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
418 
419 	/*
420 	 * Now (re-)position everything modified at the tail of the CIL.
421 	 * We do this here so we only need to take the CIL lock once during
422 	 * the transaction commit.
423 	 */
424 	spin_lock(&cil->xc_cil_lock);
425 	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
426 		struct xfs_log_item	*lip = lidp->lid_item;
427 
428 		/* Skip items which aren't dirty in this transaction. */
429 		if (!(lidp->lid_flags & XFS_LID_DIRTY))
430 			continue;
431 
432 		/*
433 		 * Only move the item if it isn't already at the tail. This is
434 		 * to prevent a transient list_empty() state when reinserting
435 		 * an item that is already the only item in the CIL.
436 		 */
437 		if (!list_is_last(&lip->li_cil, &cil->xc_cil))
438 			list_move_tail(&lip->li_cil, &cil->xc_cil);
439 	}
440 
441 	/* account for space used by new iovec headers  */
442 	len += diff_iovecs * sizeof(xlog_op_header_t);
443 	ctx->nvecs += diff_iovecs;
444 
445 	/* attach the transaction to the CIL if it has any busy extents */
446 	if (!list_empty(&tp->t_busy))
447 		list_splice_init(&tp->t_busy, &ctx->busy_extents);
448 
449 	/*
450 	 * Now transfer enough transaction reservation to the context ticket
451 	 * for the checkpoint. The context ticket is special - the unit
452 	 * reservation has to grow as well as the current reservation as we
453 	 * steal from tickets so we can correctly determine the space used
454 	 * during the transaction commit.
455 	 */
456 	if (ctx->ticket->t_curr_res == 0) {
457 		ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
458 		tp->t_ticket->t_curr_res -= ctx->ticket->t_unit_res;
459 	}
460 
461 	/* do we need space for more log record headers? */
462 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
463 	if (len > 0 && (ctx->space_used / iclog_space !=
464 				(ctx->space_used + len) / iclog_space)) {
465 		int hdrs;
466 
467 		hdrs = (len + iclog_space - 1) / iclog_space;
468 		/* need to take into account split region headers, too */
469 		hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
470 		ctx->ticket->t_unit_res += hdrs;
471 		ctx->ticket->t_curr_res += hdrs;
472 		tp->t_ticket->t_curr_res -= hdrs;
473 		ASSERT(tp->t_ticket->t_curr_res >= len);
474 	}
475 	tp->t_ticket->t_curr_res -= len;
476 	ctx->space_used += len;
477 
478 	spin_unlock(&cil->xc_cil_lock);
479 }
480 
481 static void
xlog_cil_free_logvec(struct xfs_log_vec * log_vector)482 xlog_cil_free_logvec(
483 	struct xfs_log_vec	*log_vector)
484 {
485 	struct xfs_log_vec	*lv;
486 
487 	for (lv = log_vector; lv; ) {
488 		struct xfs_log_vec *next = lv->lv_next;
489 		kmem_free(lv);
490 		lv = next;
491 	}
492 }
493 
494 /*
495  * Mark all items committed and clear busy extents. We free the log vector
496  * chains in a separate pass so that we unpin the log items as quickly as
497  * possible.
498  */
499 static void
xlog_cil_committed(void * args,int abort)500 xlog_cil_committed(
501 	void	*args,
502 	int	abort)
503 {
504 	struct xfs_cil_ctx	*ctx = args;
505 	struct xfs_mount	*mp = ctx->cil->xc_log->l_mp;
506 
507 	xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
508 					ctx->start_lsn, abort);
509 
510 	xfs_extent_busy_sort(&ctx->busy_extents);
511 	xfs_extent_busy_clear(mp, &ctx->busy_extents,
512 			     (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
513 
514 	/*
515 	 * If we are aborting the commit, wake up anyone waiting on the
516 	 * committing list.  If we don't, then a shutdown we can leave processes
517 	 * waiting in xlog_cil_force_lsn() waiting on a sequence commit that
518 	 * will never happen because we aborted it.
519 	 */
520 	spin_lock(&ctx->cil->xc_push_lock);
521 	if (abort)
522 		wake_up_all(&ctx->cil->xc_commit_wait);
523 	list_del(&ctx->committing);
524 	spin_unlock(&ctx->cil->xc_push_lock);
525 
526 	xlog_cil_free_logvec(ctx->lv_chain);
527 
528 	if (!list_empty(&ctx->busy_extents)) {
529 		ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
530 
531 		xfs_discard_extents(mp, &ctx->busy_extents);
532 		xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
533 	}
534 
535 	kmem_free(ctx);
536 }
537 
538 /*
539  * Push the Committed Item List to the log. If @push_seq flag is zero, then it
540  * is a background flush and so we can chose to ignore it. Otherwise, if the
541  * current sequence is the same as @push_seq we need to do a flush. If
542  * @push_seq is less than the current sequence, then it has already been
543  * flushed and we don't need to do anything - the caller will wait for it to
544  * complete if necessary.
545  *
546  * @push_seq is a value rather than a flag because that allows us to do an
547  * unlocked check of the sequence number for a match. Hence we can allows log
548  * forces to run racily and not issue pushes for the same sequence twice. If we
549  * get a race between multiple pushes for the same sequence they will block on
550  * the first one and then abort, hence avoiding needless pushes.
551  */
552 STATIC int
xlog_cil_push(struct xlog * log)553 xlog_cil_push(
554 	struct xlog		*log)
555 {
556 	struct xfs_cil		*cil = log->l_cilp;
557 	struct xfs_log_vec	*lv;
558 	struct xfs_cil_ctx	*ctx;
559 	struct xfs_cil_ctx	*new_ctx;
560 	struct xlog_in_core	*commit_iclog;
561 	struct xlog_ticket	*tic;
562 	int			num_iovecs;
563 	int			error = 0;
564 	struct xfs_trans_header thdr;
565 	struct xfs_log_iovec	lhdr;
566 	struct xfs_log_vec	lvhdr = { NULL };
567 	xfs_lsn_t		commit_lsn;
568 	xfs_lsn_t		push_seq;
569 
570 	if (!cil)
571 		return 0;
572 
573 	new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
574 	new_ctx->ticket = xlog_cil_ticket_alloc(log);
575 
576 	down_write(&cil->xc_ctx_lock);
577 	ctx = cil->xc_ctx;
578 
579 	spin_lock(&cil->xc_push_lock);
580 	push_seq = cil->xc_push_seq;
581 	ASSERT(push_seq <= ctx->sequence);
582 
583 	/*
584 	 * Check if we've anything to push. If there is nothing, then we don't
585 	 * move on to a new sequence number and so we have to be able to push
586 	 * this sequence again later.
587 	 */
588 	if (list_empty(&cil->xc_cil)) {
589 		cil->xc_push_seq = 0;
590 		spin_unlock(&cil->xc_push_lock);
591 		goto out_skip;
592 	}
593 
594 
595 	/* check for a previously pushed seqeunce */
596 	if (push_seq < cil->xc_ctx->sequence) {
597 		spin_unlock(&cil->xc_push_lock);
598 		goto out_skip;
599 	}
600 
601 	/*
602 	 * We are now going to push this context, so add it to the committing
603 	 * list before we do anything else. This ensures that anyone waiting on
604 	 * this push can easily detect the difference between a "push in
605 	 * progress" and "CIL is empty, nothing to do".
606 	 *
607 	 * IOWs, a wait loop can now check for:
608 	 *	the current sequence not being found on the committing list;
609 	 *	an empty CIL; and
610 	 *	an unchanged sequence number
611 	 * to detect a push that had nothing to do and therefore does not need
612 	 * waiting on. If the CIL is not empty, we get put on the committing
613 	 * list before emptying the CIL and bumping the sequence number. Hence
614 	 * an empty CIL and an unchanged sequence number means we jumped out
615 	 * above after doing nothing.
616 	 *
617 	 * Hence the waiter will either find the commit sequence on the
618 	 * committing list or the sequence number will be unchanged and the CIL
619 	 * still dirty. In that latter case, the push has not yet started, and
620 	 * so the waiter will have to continue trying to check the CIL
621 	 * committing list until it is found. In extreme cases of delay, the
622 	 * sequence may fully commit between the attempts the wait makes to wait
623 	 * on the commit sequence.
624 	 */
625 	list_add(&ctx->committing, &cil->xc_committing);
626 	spin_unlock(&cil->xc_push_lock);
627 
628 	/*
629 	 * pull all the log vectors off the items in the CIL, and
630 	 * remove the items from the CIL. We don't need the CIL lock
631 	 * here because it's only needed on the transaction commit
632 	 * side which is currently locked out by the flush lock.
633 	 */
634 	lv = NULL;
635 	num_iovecs = 0;
636 	while (!list_empty(&cil->xc_cil)) {
637 		struct xfs_log_item	*item;
638 
639 		item = list_first_entry(&cil->xc_cil,
640 					struct xfs_log_item, li_cil);
641 		list_del_init(&item->li_cil);
642 		if (!ctx->lv_chain)
643 			ctx->lv_chain = item->li_lv;
644 		else
645 			lv->lv_next = item->li_lv;
646 		lv = item->li_lv;
647 		item->li_lv = NULL;
648 		num_iovecs += lv->lv_niovecs;
649 	}
650 
651 	/*
652 	 * initialise the new context and attach it to the CIL. Then attach
653 	 * the current context to the CIL committing lsit so it can be found
654 	 * during log forces to extract the commit lsn of the sequence that
655 	 * needs to be forced.
656 	 */
657 	INIT_LIST_HEAD(&new_ctx->committing);
658 	INIT_LIST_HEAD(&new_ctx->busy_extents);
659 	new_ctx->sequence = ctx->sequence + 1;
660 	new_ctx->cil = cil;
661 	cil->xc_ctx = new_ctx;
662 
663 	/*
664 	 * The switch is now done, so we can drop the context lock and move out
665 	 * of a shared context. We can't just go straight to the commit record,
666 	 * though - we need to synchronise with previous and future commits so
667 	 * that the commit records are correctly ordered in the log to ensure
668 	 * that we process items during log IO completion in the correct order.
669 	 *
670 	 * For example, if we get an EFI in one checkpoint and the EFD in the
671 	 * next (e.g. due to log forces), we do not want the checkpoint with
672 	 * the EFD to be committed before the checkpoint with the EFI.  Hence
673 	 * we must strictly order the commit records of the checkpoints so
674 	 * that: a) the checkpoint callbacks are attached to the iclogs in the
675 	 * correct order; and b) the checkpoints are replayed in correct order
676 	 * in log recovery.
677 	 *
678 	 * Hence we need to add this context to the committing context list so
679 	 * that higher sequences will wait for us to write out a commit record
680 	 * before they do.
681 	 *
682 	 * xfs_log_force_lsn requires us to mirror the new sequence into the cil
683 	 * structure atomically with the addition of this sequence to the
684 	 * committing list. This also ensures that we can do unlocked checks
685 	 * against the current sequence in log forces without risking
686 	 * deferencing a freed context pointer.
687 	 */
688 	spin_lock(&cil->xc_push_lock);
689 	cil->xc_current_sequence = new_ctx->sequence;
690 	spin_unlock(&cil->xc_push_lock);
691 	up_write(&cil->xc_ctx_lock);
692 
693 	/*
694 	 * Build a checkpoint transaction header and write it to the log to
695 	 * begin the transaction. We need to account for the space used by the
696 	 * transaction header here as it is not accounted for in xlog_write().
697 	 *
698 	 * The LSN we need to pass to the log items on transaction commit is
699 	 * the LSN reported by the first log vector write. If we use the commit
700 	 * record lsn then we can move the tail beyond the grant write head.
701 	 */
702 	tic = ctx->ticket;
703 	thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
704 	thdr.th_type = XFS_TRANS_CHECKPOINT;
705 	thdr.th_tid = tic->t_tid;
706 	thdr.th_num_items = num_iovecs;
707 	lhdr.i_addr = &thdr;
708 	lhdr.i_len = sizeof(xfs_trans_header_t);
709 	lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
710 	tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
711 
712 	lvhdr.lv_niovecs = 1;
713 	lvhdr.lv_iovecp = &lhdr;
714 	lvhdr.lv_next = ctx->lv_chain;
715 
716 	error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
717 	if (error)
718 		goto out_abort_free_ticket;
719 
720 	/*
721 	 * now that we've written the checkpoint into the log, strictly
722 	 * order the commit records so replay will get them in the right order.
723 	 */
724 restart:
725 	spin_lock(&cil->xc_push_lock);
726 	list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
727 		/*
728 		 * Avoid getting stuck in this loop because we were woken by the
729 		 * shutdown, but then went back to sleep once already in the
730 		 * shutdown state.
731 		 */
732 		if (XLOG_FORCED_SHUTDOWN(log)) {
733 			spin_unlock(&cil->xc_push_lock);
734 			goto out_abort_free_ticket;
735 		}
736 
737 		/*
738 		 * Higher sequences will wait for this one so skip them.
739 		 * Don't wait for our own sequence, either.
740 		 */
741 		if (new_ctx->sequence >= ctx->sequence)
742 			continue;
743 		if (!new_ctx->commit_lsn) {
744 			/*
745 			 * It is still being pushed! Wait for the push to
746 			 * complete, then start again from the beginning.
747 			 */
748 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
749 			goto restart;
750 		}
751 	}
752 	spin_unlock(&cil->xc_push_lock);
753 
754 	/* xfs_log_done always frees the ticket on error. */
755 	commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, false);
756 	if (commit_lsn == -1)
757 		goto out_abort;
758 
759 	/* attach all the transactions w/ busy extents to iclog */
760 	ctx->log_cb.cb_func = xlog_cil_committed;
761 	ctx->log_cb.cb_arg = ctx;
762 	error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
763 	if (error)
764 		goto out_abort;
765 
766 	/*
767 	 * now the checkpoint commit is complete and we've attached the
768 	 * callbacks to the iclog we can assign the commit LSN to the context
769 	 * and wake up anyone who is waiting for the commit to complete.
770 	 */
771 	spin_lock(&cil->xc_push_lock);
772 	ctx->commit_lsn = commit_lsn;
773 	wake_up_all(&cil->xc_commit_wait);
774 	spin_unlock(&cil->xc_push_lock);
775 
776 	/* release the hounds! */
777 	return xfs_log_release_iclog(log->l_mp, commit_iclog);
778 
779 out_skip:
780 	up_write(&cil->xc_ctx_lock);
781 	xfs_log_ticket_put(new_ctx->ticket);
782 	kmem_free(new_ctx);
783 	return 0;
784 
785 out_abort_free_ticket:
786 	xfs_log_ticket_put(tic);
787 out_abort:
788 	xlog_cil_committed(ctx, XFS_LI_ABORTED);
789 	return -EIO;
790 }
791 
792 static void
xlog_cil_push_work(struct work_struct * work)793 xlog_cil_push_work(
794 	struct work_struct	*work)
795 {
796 	struct xfs_cil		*cil = container_of(work, struct xfs_cil,
797 							xc_push_work);
798 	xlog_cil_push(cil->xc_log);
799 }
800 
801 /*
802  * We need to push CIL every so often so we don't cache more than we can fit in
803  * the log. The limit really is that a checkpoint can't be more than half the
804  * log (the current checkpoint is not allowed to overwrite the previous
805  * checkpoint), but commit latency and memory usage limit this to a smaller
806  * size.
807  */
808 static void
xlog_cil_push_background(struct xlog * log)809 xlog_cil_push_background(
810 	struct xlog	*log)
811 {
812 	struct xfs_cil	*cil = log->l_cilp;
813 
814 	/*
815 	 * The cil won't be empty because we are called while holding the
816 	 * context lock so whatever we added to the CIL will still be there
817 	 */
818 	ASSERT(!list_empty(&cil->xc_cil));
819 
820 	/*
821 	 * don't do a background push if we haven't used up all the
822 	 * space available yet.
823 	 */
824 	if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
825 		return;
826 
827 	spin_lock(&cil->xc_push_lock);
828 	if (cil->xc_push_seq < cil->xc_current_sequence) {
829 		cil->xc_push_seq = cil->xc_current_sequence;
830 		queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
831 	}
832 	spin_unlock(&cil->xc_push_lock);
833 
834 }
835 
836 /*
837  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
838  * number that is passed. When it returns, the work will be queued for
839  * @push_seq, but it won't be completed. The caller is expected to do any
840  * waiting for push_seq to complete if it is required.
841  */
842 static void
xlog_cil_push_now(struct xlog * log,xfs_lsn_t push_seq)843 xlog_cil_push_now(
844 	struct xlog	*log,
845 	xfs_lsn_t	push_seq)
846 {
847 	struct xfs_cil	*cil = log->l_cilp;
848 
849 	if (!cil)
850 		return;
851 
852 	ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
853 
854 	/* start on any pending background push to minimise wait time on it */
855 	flush_work(&cil->xc_push_work);
856 
857 	/*
858 	 * If the CIL is empty or we've already pushed the sequence then
859 	 * there's no work we need to do.
860 	 */
861 	spin_lock(&cil->xc_push_lock);
862 	if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
863 		spin_unlock(&cil->xc_push_lock);
864 		return;
865 	}
866 
867 	cil->xc_push_seq = push_seq;
868 	queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
869 	spin_unlock(&cil->xc_push_lock);
870 }
871 
872 bool
xlog_cil_empty(struct xlog * log)873 xlog_cil_empty(
874 	struct xlog	*log)
875 {
876 	struct xfs_cil	*cil = log->l_cilp;
877 	bool		empty = false;
878 
879 	spin_lock(&cil->xc_push_lock);
880 	if (list_empty(&cil->xc_cil))
881 		empty = true;
882 	spin_unlock(&cil->xc_push_lock);
883 	return empty;
884 }
885 
886 /*
887  * Commit a transaction with the given vector to the Committed Item List.
888  *
889  * To do this, we need to format the item, pin it in memory if required and
890  * account for the space used by the transaction. Once we have done that we
891  * need to release the unused reservation for the transaction, attach the
892  * transaction to the checkpoint context so we carry the busy extents through
893  * to checkpoint completion, and then unlock all the items in the transaction.
894  *
895  * Called with the context lock already held in read mode to lock out
896  * background commit, returns without it held once background commits are
897  * allowed again.
898  */
899 void
xfs_log_commit_cil(struct xfs_mount * mp,struct xfs_trans * tp,xfs_lsn_t * commit_lsn,bool regrant)900 xfs_log_commit_cil(
901 	struct xfs_mount	*mp,
902 	struct xfs_trans	*tp,
903 	xfs_lsn_t		*commit_lsn,
904 	bool			regrant)
905 {
906 	struct xlog		*log = mp->m_log;
907 	struct xfs_cil		*cil = log->l_cilp;
908 
909 	/*
910 	 * Do all necessary memory allocation before we lock the CIL.
911 	 * This ensures the allocation does not deadlock with a CIL
912 	 * push in memory reclaim (e.g. from kswapd).
913 	 */
914 	xlog_cil_alloc_shadow_bufs(log, tp);
915 
916 	/* lock out background commit */
917 	down_read(&cil->xc_ctx_lock);
918 
919 	xlog_cil_insert_items(log, tp);
920 
921 	/* check we didn't blow the reservation */
922 	if (tp->t_ticket->t_curr_res < 0)
923 		xlog_print_tic_res(mp, tp->t_ticket);
924 
925 	tp->t_commit_lsn = cil->xc_ctx->sequence;
926 	if (commit_lsn)
927 		*commit_lsn = tp->t_commit_lsn;
928 
929 	xfs_log_done(mp, tp->t_ticket, NULL, regrant);
930 	xfs_trans_unreserve_and_mod_sb(tp);
931 
932 	/*
933 	 * Once all the items of the transaction have been copied to the CIL,
934 	 * the items can be unlocked and freed.
935 	 *
936 	 * This needs to be done before we drop the CIL context lock because we
937 	 * have to update state in the log items and unlock them before they go
938 	 * to disk. If we don't, then the CIL checkpoint can race with us and
939 	 * we can run checkpoint completion before we've updated and unlocked
940 	 * the log items. This affects (at least) processing of stale buffers,
941 	 * inodes and EFIs.
942 	 */
943 	xfs_trans_free_items(tp, tp->t_commit_lsn, false);
944 
945 	xlog_cil_push_background(log);
946 
947 	up_read(&cil->xc_ctx_lock);
948 }
949 
950 /*
951  * Conditionally push the CIL based on the sequence passed in.
952  *
953  * We only need to push if we haven't already pushed the sequence
954  * number given. Hence the only time we will trigger a push here is
955  * if the push sequence is the same as the current context.
956  *
957  * We return the current commit lsn to allow the callers to determine if a
958  * iclog flush is necessary following this call.
959  */
960 xfs_lsn_t
xlog_cil_force_lsn(struct xlog * log,xfs_lsn_t sequence)961 xlog_cil_force_lsn(
962 	struct xlog	*log,
963 	xfs_lsn_t	sequence)
964 {
965 	struct xfs_cil		*cil = log->l_cilp;
966 	struct xfs_cil_ctx	*ctx;
967 	xfs_lsn_t		commit_lsn = NULLCOMMITLSN;
968 
969 	ASSERT(sequence <= cil->xc_current_sequence);
970 
971 	/*
972 	 * check to see if we need to force out the current context.
973 	 * xlog_cil_push() handles racing pushes for the same sequence,
974 	 * so no need to deal with it here.
975 	 */
976 restart:
977 	xlog_cil_push_now(log, sequence);
978 
979 	/*
980 	 * See if we can find a previous sequence still committing.
981 	 * We need to wait for all previous sequence commits to complete
982 	 * before allowing the force of push_seq to go ahead. Hence block
983 	 * on commits for those as well.
984 	 */
985 	spin_lock(&cil->xc_push_lock);
986 	list_for_each_entry(ctx, &cil->xc_committing, committing) {
987 		/*
988 		 * Avoid getting stuck in this loop because we were woken by the
989 		 * shutdown, but then went back to sleep once already in the
990 		 * shutdown state.
991 		 */
992 		if (XLOG_FORCED_SHUTDOWN(log))
993 			goto out_shutdown;
994 		if (ctx->sequence > sequence)
995 			continue;
996 		if (!ctx->commit_lsn) {
997 			/*
998 			 * It is still being pushed! Wait for the push to
999 			 * complete, then start again from the beginning.
1000 			 */
1001 			xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1002 			goto restart;
1003 		}
1004 		if (ctx->sequence != sequence)
1005 			continue;
1006 		/* found it! */
1007 		commit_lsn = ctx->commit_lsn;
1008 	}
1009 
1010 	/*
1011 	 * The call to xlog_cil_push_now() executes the push in the background.
1012 	 * Hence by the time we have got here it our sequence may not have been
1013 	 * pushed yet. This is true if the current sequence still matches the
1014 	 * push sequence after the above wait loop and the CIL still contains
1015 	 * dirty objects. This is guaranteed by the push code first adding the
1016 	 * context to the committing list before emptying the CIL.
1017 	 *
1018 	 * Hence if we don't find the context in the committing list and the
1019 	 * current sequence number is unchanged then the CIL contents are
1020 	 * significant.  If the CIL is empty, if means there was nothing to push
1021 	 * and that means there is nothing to wait for. If the CIL is not empty,
1022 	 * it means we haven't yet started the push, because if it had started
1023 	 * we would have found the context on the committing list.
1024 	 */
1025 	if (sequence == cil->xc_current_sequence &&
1026 	    !list_empty(&cil->xc_cil)) {
1027 		spin_unlock(&cil->xc_push_lock);
1028 		goto restart;
1029 	}
1030 
1031 	spin_unlock(&cil->xc_push_lock);
1032 	return commit_lsn;
1033 
1034 	/*
1035 	 * We detected a shutdown in progress. We need to trigger the log force
1036 	 * to pass through it's iclog state machine error handling, even though
1037 	 * we are already in a shutdown state. Hence we can't return
1038 	 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1039 	 * LSN is already stable), so we return a zero LSN instead.
1040 	 */
1041 out_shutdown:
1042 	spin_unlock(&cil->xc_push_lock);
1043 	return 0;
1044 }
1045 
1046 /*
1047  * Check if the current log item was first committed in this sequence.
1048  * We can't rely on just the log item being in the CIL, we have to check
1049  * the recorded commit sequence number.
1050  *
1051  * Note: for this to be used in a non-racy manner, it has to be called with
1052  * CIL flushing locked out. As a result, it should only be used during the
1053  * transaction commit process when deciding what to format into the item.
1054  */
1055 bool
xfs_log_item_in_current_chkpt(struct xfs_log_item * lip)1056 xfs_log_item_in_current_chkpt(
1057 	struct xfs_log_item *lip)
1058 {
1059 	struct xfs_cil_ctx *ctx;
1060 
1061 	if (list_empty(&lip->li_cil))
1062 		return false;
1063 
1064 	ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
1065 
1066 	/*
1067 	 * li_seq is written on the first commit of a log item to record the
1068 	 * first checkpoint it is written to. Hence if it is different to the
1069 	 * current sequence, we're in a new checkpoint.
1070 	 */
1071 	if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
1072 		return false;
1073 	return true;
1074 }
1075 
1076 /*
1077  * Perform initial CIL structure initialisation.
1078  */
1079 int
xlog_cil_init(struct xlog * log)1080 xlog_cil_init(
1081 	struct xlog	*log)
1082 {
1083 	struct xfs_cil	*cil;
1084 	struct xfs_cil_ctx *ctx;
1085 
1086 	cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
1087 	if (!cil)
1088 		return -ENOMEM;
1089 
1090 	ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
1091 	if (!ctx) {
1092 		kmem_free(cil);
1093 		return -ENOMEM;
1094 	}
1095 
1096 	INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
1097 	INIT_LIST_HEAD(&cil->xc_cil);
1098 	INIT_LIST_HEAD(&cil->xc_committing);
1099 	spin_lock_init(&cil->xc_cil_lock);
1100 	spin_lock_init(&cil->xc_push_lock);
1101 	init_rwsem(&cil->xc_ctx_lock);
1102 	init_waitqueue_head(&cil->xc_commit_wait);
1103 
1104 	INIT_LIST_HEAD(&ctx->committing);
1105 	INIT_LIST_HEAD(&ctx->busy_extents);
1106 	ctx->sequence = 1;
1107 	ctx->cil = cil;
1108 	cil->xc_ctx = ctx;
1109 	cil->xc_current_sequence = ctx->sequence;
1110 
1111 	cil->xc_log = log;
1112 	log->l_cilp = cil;
1113 	return 0;
1114 }
1115 
1116 void
xlog_cil_destroy(struct xlog * log)1117 xlog_cil_destroy(
1118 	struct xlog	*log)
1119 {
1120 	if (log->l_cilp->xc_ctx) {
1121 		if (log->l_cilp->xc_ctx->ticket)
1122 			xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
1123 		kmem_free(log->l_cilp->xc_ctx);
1124 	}
1125 
1126 	ASSERT(list_empty(&log->l_cilp->xc_cil));
1127 	kmem_free(log->l_cilp);
1128 }
1129 
1130