1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
37
38 kmem_zone_t *xfs_log_ticket_zone;
39
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 struct xlog *log,
44 struct xlog_ticket *ticket,
45 struct xlog_in_core **iclog,
46 xfs_lsn_t *commitlsnp);
47
48 STATIC struct xlog *
49 xlog_alloc_log(
50 struct xfs_mount *mp,
51 struct xfs_buftarg *log_target,
52 xfs_daddr_t blk_offset,
53 int num_bblks);
54 STATIC int
55 xlog_space_left(
56 struct xlog *log,
57 atomic64_t *head);
58 STATIC int
59 xlog_sync(
60 struct xlog *log,
61 struct xlog_in_core *iclog);
62 STATIC void
63 xlog_dealloc_log(
64 struct xlog *log);
65
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 struct xlog *log,
71 int aborted,
72 struct xlog_in_core *iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 struct xlog *log,
76 int len,
77 struct xlog_in_core **iclog,
78 struct xlog_ticket *ticket,
79 int *continued_write,
80 int *logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 struct xlog *log,
84 struct xlog_in_core *iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 struct xlog *log,
88 struct xlog_in_core *iclog,
89 int eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 struct xlog *log,
93 struct xlog_in_core *iclog);
94
95 STATIC void
96 xlog_grant_push_ail(
97 struct xlog *log,
98 int need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 struct xlog *log,
102 struct xlog_ticket *ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 struct xlog *log,
106 struct xlog_ticket *ticket);
107
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 struct xlog *log,
112 void *ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 struct xlog *log,
119 struct xlog_in_core *iclog,
120 int count,
121 bool syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 struct xlog *log,
125 struct xlog_in_core *iclog,
126 xfs_lsn_t tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133
134 STATIC int
135 xlog_iclogs_empty(
136 struct xlog *log);
137
138 static void
xlog_grant_sub_space(struct xlog * log,atomic64_t * head,int bytes)139 xlog_grant_sub_space(
140 struct xlog *log,
141 atomic64_t *head,
142 int bytes)
143 {
144 int64_t head_val = atomic64_read(head);
145 int64_t new, old;
146
147 do {
148 int cycle, space;
149
150 xlog_crack_grant_head_val(head_val, &cycle, &space);
151
152 space -= bytes;
153 if (space < 0) {
154 space += log->l_logsize;
155 cycle--;
156 }
157
158 old = head_val;
159 new = xlog_assign_grant_head_val(cycle, space);
160 head_val = atomic64_cmpxchg(head, old, new);
161 } while (head_val != old);
162 }
163
164 static void
xlog_grant_add_space(struct xlog * log,atomic64_t * head,int bytes)165 xlog_grant_add_space(
166 struct xlog *log,
167 atomic64_t *head,
168 int bytes)
169 {
170 int64_t head_val = atomic64_read(head);
171 int64_t new, old;
172
173 do {
174 int tmp;
175 int cycle, space;
176
177 xlog_crack_grant_head_val(head_val, &cycle, &space);
178
179 tmp = log->l_logsize - space;
180 if (tmp > bytes)
181 space += bytes;
182 else {
183 space = bytes - tmp;
184 cycle++;
185 }
186
187 old = head_val;
188 new = xlog_assign_grant_head_val(cycle, space);
189 head_val = atomic64_cmpxchg(head, old, new);
190 } while (head_val != old);
191 }
192
193 STATIC void
xlog_grant_head_init(struct xlog_grant_head * head)194 xlog_grant_head_init(
195 struct xlog_grant_head *head)
196 {
197 xlog_assign_grant_head(&head->grant, 1, 0);
198 INIT_LIST_HEAD(&head->waiters);
199 spin_lock_init(&head->lock);
200 }
201
202 STATIC void
xlog_grant_head_wake_all(struct xlog_grant_head * head)203 xlog_grant_head_wake_all(
204 struct xlog_grant_head *head)
205 {
206 struct xlog_ticket *tic;
207
208 spin_lock(&head->lock);
209 list_for_each_entry(tic, &head->waiters, t_queue)
210 wake_up_process(tic->t_task);
211 spin_unlock(&head->lock);
212 }
213
214 static inline int
xlog_ticket_reservation(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic)215 xlog_ticket_reservation(
216 struct xlog *log,
217 struct xlog_grant_head *head,
218 struct xlog_ticket *tic)
219 {
220 if (head == &log->l_write_head) {
221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 return tic->t_unit_res;
223 } else {
224 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 return tic->t_unit_res * tic->t_cnt;
226 else
227 return tic->t_unit_res;
228 }
229 }
230
231 STATIC bool
xlog_grant_head_wake(struct xlog * log,struct xlog_grant_head * head,int * free_bytes)232 xlog_grant_head_wake(
233 struct xlog *log,
234 struct xlog_grant_head *head,
235 int *free_bytes)
236 {
237 struct xlog_ticket *tic;
238 int need_bytes;
239
240 list_for_each_entry(tic, &head->waiters, t_queue) {
241 need_bytes = xlog_ticket_reservation(log, head, tic);
242 if (*free_bytes < need_bytes)
243 return false;
244
245 *free_bytes -= need_bytes;
246 trace_xfs_log_grant_wake_up(log, tic);
247 wake_up_process(tic->t_task);
248 }
249
250 return true;
251 }
252
253 STATIC int
xlog_grant_head_wait(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int need_bytes)254 xlog_grant_head_wait(
255 struct xlog *log,
256 struct xlog_grant_head *head,
257 struct xlog_ticket *tic,
258 int need_bytes) __releases(&head->lock)
259 __acquires(&head->lock)
260 {
261 list_add_tail(&tic->t_queue, &head->waiters);
262
263 do {
264 if (XLOG_FORCED_SHUTDOWN(log))
265 goto shutdown;
266 xlog_grant_push_ail(log, need_bytes);
267
268 __set_current_state(TASK_UNINTERRUPTIBLE);
269 spin_unlock(&head->lock);
270
271 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
272
273 trace_xfs_log_grant_sleep(log, tic);
274 schedule();
275 trace_xfs_log_grant_wake(log, tic);
276
277 spin_lock(&head->lock);
278 if (XLOG_FORCED_SHUTDOWN(log))
279 goto shutdown;
280 } while (xlog_space_left(log, &head->grant) < need_bytes);
281
282 list_del_init(&tic->t_queue);
283 return 0;
284 shutdown:
285 list_del_init(&tic->t_queue);
286 return -EIO;
287 }
288
289 /*
290 * Atomically get the log space required for a log ticket.
291 *
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
294 *
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
298 * every pass.
299 *
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
305 */
306 STATIC int
xlog_grant_head_check(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int * need_bytes)307 xlog_grant_head_check(
308 struct xlog *log,
309 struct xlog_grant_head *head,
310 struct xlog_ticket *tic,
311 int *need_bytes)
312 {
313 int free_bytes;
314 int error = 0;
315
316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317
318 /*
319 * If there are other waiters on the queue then give them a chance at
320 * logspace before us. Wake up the first waiters, if we do not wake
321 * up all the waiters then go to sleep waiting for more free space,
322 * otherwise try to get some space for this transaction.
323 */
324 *need_bytes = xlog_ticket_reservation(log, head, tic);
325 free_bytes = xlog_space_left(log, &head->grant);
326 if (!list_empty_careful(&head->waiters)) {
327 spin_lock(&head->lock);
328 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 free_bytes < *need_bytes) {
330 error = xlog_grant_head_wait(log, head, tic,
331 *need_bytes);
332 }
333 spin_unlock(&head->lock);
334 } else if (free_bytes < *need_bytes) {
335 spin_lock(&head->lock);
336 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 spin_unlock(&head->lock);
338 }
339
340 return error;
341 }
342
343 static void
xlog_tic_reset_res(xlog_ticket_t * tic)344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346 tic->t_res_num = 0;
347 tic->t_res_arr_sum = 0;
348 tic->t_res_num_ophdrs = 0;
349 }
350
351 static void
xlog_tic_add_region(xlog_ticket_t * tic,uint len,uint type)352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 /* add to overflow and start again */
356 tic->t_res_o_flow += tic->t_res_arr_sum;
357 tic->t_res_num = 0;
358 tic->t_res_arr_sum = 0;
359 }
360
361 tic->t_res_arr[tic->t_res_num].r_len = len;
362 tic->t_res_arr[tic->t_res_num].r_type = type;
363 tic->t_res_arr_sum += len;
364 tic->t_res_num++;
365 }
366
367 /*
368 * Replenish the byte reservation required by moving the grant write head.
369 */
370 int
xfs_log_regrant(struct xfs_mount * mp,struct xlog_ticket * tic)371 xfs_log_regrant(
372 struct xfs_mount *mp,
373 struct xlog_ticket *tic)
374 {
375 struct xlog *log = mp->m_log;
376 int need_bytes;
377 int error = 0;
378
379 if (XLOG_FORCED_SHUTDOWN(log))
380 return -EIO;
381
382 XFS_STATS_INC(mp, xs_try_logspace);
383
384 /*
385 * This is a new transaction on the ticket, so we need to change the
386 * transaction ID so that the next transaction has a different TID in
387 * the log. Just add one to the existing tid so that we can see chains
388 * of rolling transactions in the log easily.
389 */
390 tic->t_tid++;
391
392 xlog_grant_push_ail(log, tic->t_unit_res);
393
394 tic->t_curr_res = tic->t_unit_res;
395 xlog_tic_reset_res(tic);
396
397 if (tic->t_cnt > 0)
398 return 0;
399
400 trace_xfs_log_regrant(log, tic);
401
402 error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 &need_bytes);
404 if (error)
405 goto out_error;
406
407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 trace_xfs_log_regrant_exit(log, tic);
409 xlog_verify_grant_tail(log);
410 return 0;
411
412 out_error:
413 /*
414 * If we are failing, make sure the ticket doesn't have any current
415 * reservations. We don't want to add this back when the ticket/
416 * transaction gets cancelled.
417 */
418 tic->t_curr_res = 0;
419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420 return error;
421 }
422
423 /*
424 * Reserve log space and return a ticket corresponding the reservation.
425 *
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation. By wasting space in each
429 * reservation, we prevent over allocation problems.
430 */
431 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticp,__uint8_t client,bool permanent)432 xfs_log_reserve(
433 struct xfs_mount *mp,
434 int unit_bytes,
435 int cnt,
436 struct xlog_ticket **ticp,
437 __uint8_t client,
438 bool permanent)
439 {
440 struct xlog *log = mp->m_log;
441 struct xlog_ticket *tic;
442 int need_bytes;
443 int error = 0;
444
445 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
446
447 if (XLOG_FORCED_SHUTDOWN(log))
448 return -EIO;
449
450 XFS_STATS_INC(mp, xs_try_logspace);
451
452 ASSERT(*ticp == NULL);
453 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
454 KM_SLEEP | KM_MAYFAIL);
455 if (!tic)
456 return -ENOMEM;
457
458 *ticp = tic;
459
460 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
461 : tic->t_unit_res);
462
463 trace_xfs_log_reserve(log, tic);
464
465 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
466 &need_bytes);
467 if (error)
468 goto out_error;
469
470 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
471 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
472 trace_xfs_log_reserve_exit(log, tic);
473 xlog_verify_grant_tail(log);
474 return 0;
475
476 out_error:
477 /*
478 * If we are failing, make sure the ticket doesn't have any current
479 * reservations. We don't want to add this back when the ticket/
480 * transaction gets cancelled.
481 */
482 tic->t_curr_res = 0;
483 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
484 return error;
485 }
486
487
488 /*
489 * NOTES:
490 *
491 * 1. currblock field gets updated at startup and after in-core logs
492 * marked as with WANT_SYNC.
493 */
494
495 /*
496 * This routine is called when a user of a log manager ticket is done with
497 * the reservation. If the ticket was ever used, then a commit record for
498 * the associated transaction is written out as a log operation header with
499 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
500 * a given ticket. If the ticket was one with a permanent reservation, then
501 * a few operations are done differently. Permanent reservation tickets by
502 * default don't release the reservation. They just commit the current
503 * transaction with the belief that the reservation is still needed. A flag
504 * must be passed in before permanent reservations are actually released.
505 * When these type of tickets are not released, they need to be set into
506 * the inited state again. By doing this, a start record will be written
507 * out when the next write occurs.
508 */
509 xfs_lsn_t
xfs_log_done(struct xfs_mount * mp,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,bool regrant)510 xfs_log_done(
511 struct xfs_mount *mp,
512 struct xlog_ticket *ticket,
513 struct xlog_in_core **iclog,
514 bool regrant)
515 {
516 struct xlog *log = mp->m_log;
517 xfs_lsn_t lsn = 0;
518
519 if (XLOG_FORCED_SHUTDOWN(log) ||
520 /*
521 * If nothing was ever written, don't write out commit record.
522 * If we get an error, just continue and give back the log ticket.
523 */
524 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
525 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
526 lsn = (xfs_lsn_t) -1;
527 regrant = false;
528 }
529
530
531 if (!regrant) {
532 trace_xfs_log_done_nonperm(log, ticket);
533
534 /*
535 * Release ticket if not permanent reservation or a specific
536 * request has been made to release a permanent reservation.
537 */
538 xlog_ungrant_log_space(log, ticket);
539 } else {
540 trace_xfs_log_done_perm(log, ticket);
541
542 xlog_regrant_reserve_log_space(log, ticket);
543 /* If this ticket was a permanent reservation and we aren't
544 * trying to release it, reset the inited flags; so next time
545 * we write, a start record will be written out.
546 */
547 ticket->t_flags |= XLOG_TIC_INITED;
548 }
549
550 xfs_log_ticket_put(ticket);
551 return lsn;
552 }
553
554 /*
555 * Attaches a new iclog I/O completion callback routine during
556 * transaction commit. If the log is in error state, a non-zero
557 * return code is handed back and the caller is responsible for
558 * executing the callback at an appropriate time.
559 */
560 int
xfs_log_notify(struct xfs_mount * mp,struct xlog_in_core * iclog,xfs_log_callback_t * cb)561 xfs_log_notify(
562 struct xfs_mount *mp,
563 struct xlog_in_core *iclog,
564 xfs_log_callback_t *cb)
565 {
566 int abortflg;
567
568 spin_lock(&iclog->ic_callback_lock);
569 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
570 if (!abortflg) {
571 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
572 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
573 cb->cb_next = NULL;
574 *(iclog->ic_callback_tail) = cb;
575 iclog->ic_callback_tail = &(cb->cb_next);
576 }
577 spin_unlock(&iclog->ic_callback_lock);
578 return abortflg;
579 }
580
581 int
xfs_log_release_iclog(struct xfs_mount * mp,struct xlog_in_core * iclog)582 xfs_log_release_iclog(
583 struct xfs_mount *mp,
584 struct xlog_in_core *iclog)
585 {
586 if (xlog_state_release_iclog(mp->m_log, iclog)) {
587 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
588 return -EIO;
589 }
590
591 return 0;
592 }
593
594 /*
595 * Mount a log filesystem
596 *
597 * mp - ubiquitous xfs mount point structure
598 * log_target - buftarg of on-disk log device
599 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
600 * num_bblocks - Number of BBSIZE blocks in on-disk log
601 *
602 * Return error or zero.
603 */
604 int
xfs_log_mount(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)605 xfs_log_mount(
606 xfs_mount_t *mp,
607 xfs_buftarg_t *log_target,
608 xfs_daddr_t blk_offset,
609 int num_bblks)
610 {
611 int error = 0;
612 int min_logfsbs;
613
614 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
615 xfs_notice(mp, "Mounting V%d Filesystem",
616 XFS_SB_VERSION_NUM(&mp->m_sb));
617 } else {
618 xfs_notice(mp,
619 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
620 XFS_SB_VERSION_NUM(&mp->m_sb));
621 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
622 }
623
624 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
625 if (IS_ERR(mp->m_log)) {
626 error = PTR_ERR(mp->m_log);
627 goto out;
628 }
629
630 /*
631 * Validate the given log space and drop a critical message via syslog
632 * if the log size is too small that would lead to some unexpected
633 * situations in transaction log space reservation stage.
634 *
635 * Note: we can't just reject the mount if the validation fails. This
636 * would mean that people would have to downgrade their kernel just to
637 * remedy the situation as there is no way to grow the log (short of
638 * black magic surgery with xfs_db).
639 *
640 * We can, however, reject mounts for CRC format filesystems, as the
641 * mkfs binary being used to make the filesystem should never create a
642 * filesystem with a log that is too small.
643 */
644 min_logfsbs = xfs_log_calc_minimum_size(mp);
645
646 if (mp->m_sb.sb_logblocks < min_logfsbs) {
647 xfs_warn(mp,
648 "Log size %d blocks too small, minimum size is %d blocks",
649 mp->m_sb.sb_logblocks, min_logfsbs);
650 error = -EINVAL;
651 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
652 xfs_warn(mp,
653 "Log size %d blocks too large, maximum size is %lld blocks",
654 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
655 error = -EINVAL;
656 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
657 xfs_warn(mp,
658 "log size %lld bytes too large, maximum size is %lld bytes",
659 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
660 XFS_MAX_LOG_BYTES);
661 error = -EINVAL;
662 }
663 if (error) {
664 if (xfs_sb_version_hascrc(&mp->m_sb)) {
665 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
666 ASSERT(0);
667 goto out_free_log;
668 }
669 xfs_crit(mp, "Log size out of supported range.");
670 xfs_crit(mp,
671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
672 }
673
674 /*
675 * Initialize the AIL now we have a log.
676 */
677 error = xfs_trans_ail_init(mp);
678 if (error) {
679 xfs_warn(mp, "AIL initialisation failed: error %d", error);
680 goto out_free_log;
681 }
682 mp->m_log->l_ailp = mp->m_ail;
683
684 /*
685 * skip log recovery on a norecovery mount. pretend it all
686 * just worked.
687 */
688 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
689 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
690
691 if (readonly)
692 mp->m_flags &= ~XFS_MOUNT_RDONLY;
693
694 error = xlog_recover(mp->m_log);
695
696 if (readonly)
697 mp->m_flags |= XFS_MOUNT_RDONLY;
698 if (error) {
699 xfs_warn(mp, "log mount/recovery failed: error %d",
700 error);
701 xlog_recover_cancel(mp->m_log);
702 goto out_destroy_ail;
703 }
704 }
705
706 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
707 "log");
708 if (error)
709 goto out_destroy_ail;
710
711 /* Normal transactions can now occur */
712 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
713
714 /*
715 * Now the log has been fully initialised and we know were our
716 * space grant counters are, we can initialise the permanent ticket
717 * needed for delayed logging to work.
718 */
719 xlog_cil_init_post_recovery(mp->m_log);
720
721 return 0;
722
723 out_destroy_ail:
724 xfs_trans_ail_destroy(mp);
725 out_free_log:
726 xlog_dealloc_log(mp->m_log);
727 out:
728 return error;
729 }
730
731 /*
732 * Finish the recovery of the file system. This is separate from the
733 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
734 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
735 * here.
736 *
737 * If we finish recovery successfully, start the background log work. If we are
738 * not doing recovery, then we have a RO filesystem and we don't need to start
739 * it.
740 */
741 int
xfs_log_mount_finish(struct xfs_mount * mp)742 xfs_log_mount_finish(
743 struct xfs_mount *mp)
744 {
745 int error = 0;
746 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
747
748 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
749 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
750 return 0;
751 } else if (readonly) {
752 /* Allow unlinked processing to proceed */
753 mp->m_flags &= ~XFS_MOUNT_RDONLY;
754 }
755
756 /*
757 * During the second phase of log recovery, we need iget and
758 * iput to behave like they do for an active filesystem.
759 * xfs_fs_drop_inode needs to be able to prevent the deletion
760 * of inodes before we're done replaying log items on those
761 * inodes. Turn it off immediately after recovery finishes
762 * so that we don't leak the quota inodes if subsequent mount
763 * activities fail.
764 *
765 * We let all inodes involved in redo item processing end up on
766 * the LRU instead of being evicted immediately so that if we do
767 * something to an unlinked inode, the irele won't cause
768 * premature truncation and freeing of the inode, which results
769 * in log recovery failure. We have to evict the unreferenced
770 * lru inodes after clearing MS_ACTIVE because we don't
771 * otherwise clean up the lru if there's a subsequent failure in
772 * xfs_mountfs, which leads to us leaking the inodes if nothing
773 * else (e.g. quotacheck) references the inodes before the
774 * mount failure occurs.
775 */
776 mp->m_super->s_flags |= MS_ACTIVE;
777 error = xlog_recover_finish(mp->m_log);
778 if (!error)
779 xfs_log_work_queue(mp);
780 mp->m_super->s_flags &= ~MS_ACTIVE;
781 evict_inodes(mp->m_super);
782
783 if (readonly)
784 mp->m_flags |= XFS_MOUNT_RDONLY;
785
786 return error;
787 }
788
789 /*
790 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
791 * the log.
792 */
793 int
xfs_log_mount_cancel(struct xfs_mount * mp)794 xfs_log_mount_cancel(
795 struct xfs_mount *mp)
796 {
797 int error;
798
799 error = xlog_recover_cancel(mp->m_log);
800 xfs_log_unmount(mp);
801
802 return error;
803 }
804
805 /*
806 * Final log writes as part of unmount.
807 *
808 * Mark the filesystem clean as unmount happens. Note that during relocation
809 * this routine needs to be executed as part of source-bag while the
810 * deallocation must not be done until source-end.
811 */
812
813 /*
814 * Unmount record used to have a string "Unmount filesystem--" in the
815 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
816 * We just write the magic number now since that particular field isn't
817 * currently architecture converted and "Unmount" is a bit foo.
818 * As far as I know, there weren't any dependencies on the old behaviour.
819 */
820
821 static int
xfs_log_unmount_write(xfs_mount_t * mp)822 xfs_log_unmount_write(xfs_mount_t *mp)
823 {
824 struct xlog *log = mp->m_log;
825 xlog_in_core_t *iclog;
826 #ifdef DEBUG
827 xlog_in_core_t *first_iclog;
828 #endif
829 xlog_ticket_t *tic = NULL;
830 xfs_lsn_t lsn;
831 int error;
832
833 /*
834 * Don't write out unmount record on norecovery mounts or ro devices.
835 * Or, if we are doing a forced umount (typically because of IO errors).
836 */
837 if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
838 xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
839 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
840 return 0;
841 }
842
843 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
844 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
845
846 #ifdef DEBUG
847 first_iclog = iclog = log->l_iclog;
848 do {
849 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
850 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
851 ASSERT(iclog->ic_offset == 0);
852 }
853 iclog = iclog->ic_next;
854 } while (iclog != first_iclog);
855 #endif
856 if (! (XLOG_FORCED_SHUTDOWN(log))) {
857 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
858 if (!error) {
859 /* the data section must be 32 bit size aligned */
860 struct {
861 __uint16_t magic;
862 __uint16_t pad1;
863 __uint32_t pad2; /* may as well make it 64 bits */
864 } magic = {
865 .magic = XLOG_UNMOUNT_TYPE,
866 };
867 struct xfs_log_iovec reg = {
868 .i_addr = &magic,
869 .i_len = sizeof(magic),
870 .i_type = XLOG_REG_TYPE_UNMOUNT,
871 };
872 struct xfs_log_vec vec = {
873 .lv_niovecs = 1,
874 .lv_iovecp = ®,
875 };
876
877 /* remove inited flag, and account for space used */
878 tic->t_flags = 0;
879 tic->t_curr_res -= sizeof(magic);
880 error = xlog_write(log, &vec, tic, &lsn,
881 NULL, XLOG_UNMOUNT_TRANS);
882 /*
883 * At this point, we're umounting anyway,
884 * so there's no point in transitioning log state
885 * to IOERROR. Just continue...
886 */
887 }
888
889 if (error)
890 xfs_alert(mp, "%s: unmount record failed", __func__);
891
892
893 spin_lock(&log->l_icloglock);
894 iclog = log->l_iclog;
895 atomic_inc(&iclog->ic_refcnt);
896 xlog_state_want_sync(log, iclog);
897 spin_unlock(&log->l_icloglock);
898 error = xlog_state_release_iclog(log, iclog);
899
900 spin_lock(&log->l_icloglock);
901 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
902 iclog->ic_state == XLOG_STATE_DIRTY)) {
903 if (!XLOG_FORCED_SHUTDOWN(log)) {
904 xlog_wait(&iclog->ic_force_wait,
905 &log->l_icloglock);
906 } else {
907 spin_unlock(&log->l_icloglock);
908 }
909 } else {
910 spin_unlock(&log->l_icloglock);
911 }
912 if (tic) {
913 trace_xfs_log_umount_write(log, tic);
914 xlog_ungrant_log_space(log, tic);
915 xfs_log_ticket_put(tic);
916 }
917 } else {
918 /*
919 * We're already in forced_shutdown mode, couldn't
920 * even attempt to write out the unmount transaction.
921 *
922 * Go through the motions of sync'ing and releasing
923 * the iclog, even though no I/O will actually happen,
924 * we need to wait for other log I/Os that may already
925 * be in progress. Do this as a separate section of
926 * code so we'll know if we ever get stuck here that
927 * we're in this odd situation of trying to unmount
928 * a file system that went into forced_shutdown as
929 * the result of an unmount..
930 */
931 spin_lock(&log->l_icloglock);
932 iclog = log->l_iclog;
933 atomic_inc(&iclog->ic_refcnt);
934
935 xlog_state_want_sync(log, iclog);
936 spin_unlock(&log->l_icloglock);
937 error = xlog_state_release_iclog(log, iclog);
938
939 spin_lock(&log->l_icloglock);
940
941 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
942 || iclog->ic_state == XLOG_STATE_DIRTY
943 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
944
945 xlog_wait(&iclog->ic_force_wait,
946 &log->l_icloglock);
947 } else {
948 spin_unlock(&log->l_icloglock);
949 }
950 }
951
952 return error;
953 } /* xfs_log_unmount_write */
954
955 /*
956 * Empty the log for unmount/freeze.
957 *
958 * To do this, we first need to shut down the background log work so it is not
959 * trying to cover the log as we clean up. We then need to unpin all objects in
960 * the log so we can then flush them out. Once they have completed their IO and
961 * run the callbacks removing themselves from the AIL, we can write the unmount
962 * record.
963 */
964 void
xfs_log_quiesce(struct xfs_mount * mp)965 xfs_log_quiesce(
966 struct xfs_mount *mp)
967 {
968 cancel_delayed_work_sync(&mp->m_log->l_work);
969 xfs_log_force(mp, XFS_LOG_SYNC);
970
971 /*
972 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
973 * will push it, xfs_wait_buftarg() will not wait for it. Further,
974 * xfs_buf_iowait() cannot be used because it was pushed with the
975 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
976 * the IO to complete.
977 */
978 xfs_ail_push_all_sync(mp->m_ail);
979 xfs_wait_buftarg(mp->m_ddev_targp);
980 xfs_buf_lock(mp->m_sb_bp);
981 xfs_buf_unlock(mp->m_sb_bp);
982
983 xfs_log_unmount_write(mp);
984 }
985
986 /*
987 * Shut down and release the AIL and Log.
988 *
989 * During unmount, we need to ensure we flush all the dirty metadata objects
990 * from the AIL so that the log is empty before we write the unmount record to
991 * the log. Once this is done, we can tear down the AIL and the log.
992 */
993 void
xfs_log_unmount(struct xfs_mount * mp)994 xfs_log_unmount(
995 struct xfs_mount *mp)
996 {
997 xfs_log_quiesce(mp);
998
999 xfs_trans_ail_destroy(mp);
1000
1001 xfs_sysfs_del(&mp->m_log->l_kobj);
1002
1003 xlog_dealloc_log(mp->m_log);
1004 }
1005
1006 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)1007 xfs_log_item_init(
1008 struct xfs_mount *mp,
1009 struct xfs_log_item *item,
1010 int type,
1011 const struct xfs_item_ops *ops)
1012 {
1013 item->li_mountp = mp;
1014 item->li_ailp = mp->m_ail;
1015 item->li_type = type;
1016 item->li_ops = ops;
1017 item->li_lv = NULL;
1018
1019 INIT_LIST_HEAD(&item->li_ail);
1020 INIT_LIST_HEAD(&item->li_cil);
1021 }
1022
1023 /*
1024 * Wake up processes waiting for log space after we have moved the log tail.
1025 */
1026 void
xfs_log_space_wake(struct xfs_mount * mp)1027 xfs_log_space_wake(
1028 struct xfs_mount *mp)
1029 {
1030 struct xlog *log = mp->m_log;
1031 int free_bytes;
1032
1033 if (XLOG_FORCED_SHUTDOWN(log))
1034 return;
1035
1036 if (!list_empty_careful(&log->l_write_head.waiters)) {
1037 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1038
1039 spin_lock(&log->l_write_head.lock);
1040 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1041 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1042 spin_unlock(&log->l_write_head.lock);
1043 }
1044
1045 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1046 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1047
1048 spin_lock(&log->l_reserve_head.lock);
1049 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1050 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1051 spin_unlock(&log->l_reserve_head.lock);
1052 }
1053 }
1054
1055 /*
1056 * Determine if we have a transaction that has gone to disk that needs to be
1057 * covered. To begin the transition to the idle state firstly the log needs to
1058 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1059 * we start attempting to cover the log.
1060 *
1061 * Only if we are then in a state where covering is needed, the caller is
1062 * informed that dummy transactions are required to move the log into the idle
1063 * state.
1064 *
1065 * If there are any items in the AIl or CIL, then we do not want to attempt to
1066 * cover the log as we may be in a situation where there isn't log space
1067 * available to run a dummy transaction and this can lead to deadlocks when the
1068 * tail of the log is pinned by an item that is modified in the CIL. Hence
1069 * there's no point in running a dummy transaction at this point because we
1070 * can't start trying to idle the log until both the CIL and AIL are empty.
1071 */
1072 static int
xfs_log_need_covered(xfs_mount_t * mp)1073 xfs_log_need_covered(xfs_mount_t *mp)
1074 {
1075 struct xlog *log = mp->m_log;
1076 int needed = 0;
1077
1078 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1079 return 0;
1080
1081 if (!xlog_cil_empty(log))
1082 return 0;
1083
1084 spin_lock(&log->l_icloglock);
1085 switch (log->l_covered_state) {
1086 case XLOG_STATE_COVER_DONE:
1087 case XLOG_STATE_COVER_DONE2:
1088 case XLOG_STATE_COVER_IDLE:
1089 break;
1090 case XLOG_STATE_COVER_NEED:
1091 case XLOG_STATE_COVER_NEED2:
1092 if (xfs_ail_min_lsn(log->l_ailp))
1093 break;
1094 if (!xlog_iclogs_empty(log))
1095 break;
1096
1097 needed = 1;
1098 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1099 log->l_covered_state = XLOG_STATE_COVER_DONE;
1100 else
1101 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1102 break;
1103 default:
1104 needed = 1;
1105 break;
1106 }
1107 spin_unlock(&log->l_icloglock);
1108 return needed;
1109 }
1110
1111 /*
1112 * We may be holding the log iclog lock upon entering this routine.
1113 */
1114 xfs_lsn_t
xlog_assign_tail_lsn_locked(struct xfs_mount * mp)1115 xlog_assign_tail_lsn_locked(
1116 struct xfs_mount *mp)
1117 {
1118 struct xlog *log = mp->m_log;
1119 struct xfs_log_item *lip;
1120 xfs_lsn_t tail_lsn;
1121
1122 assert_spin_locked(&mp->m_ail->xa_lock);
1123
1124 /*
1125 * To make sure we always have a valid LSN for the log tail we keep
1126 * track of the last LSN which was committed in log->l_last_sync_lsn,
1127 * and use that when the AIL was empty.
1128 */
1129 lip = xfs_ail_min(mp->m_ail);
1130 if (lip)
1131 tail_lsn = lip->li_lsn;
1132 else
1133 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1134 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1135 atomic64_set(&log->l_tail_lsn, tail_lsn);
1136 return tail_lsn;
1137 }
1138
1139 xfs_lsn_t
xlog_assign_tail_lsn(struct xfs_mount * mp)1140 xlog_assign_tail_lsn(
1141 struct xfs_mount *mp)
1142 {
1143 xfs_lsn_t tail_lsn;
1144
1145 spin_lock(&mp->m_ail->xa_lock);
1146 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1147 spin_unlock(&mp->m_ail->xa_lock);
1148
1149 return tail_lsn;
1150 }
1151
1152 /*
1153 * Return the space in the log between the tail and the head. The head
1154 * is passed in the cycle/bytes formal parms. In the special case where
1155 * the reserve head has wrapped passed the tail, this calculation is no
1156 * longer valid. In this case, just return 0 which means there is no space
1157 * in the log. This works for all places where this function is called
1158 * with the reserve head. Of course, if the write head were to ever
1159 * wrap the tail, we should blow up. Rather than catch this case here,
1160 * we depend on other ASSERTions in other parts of the code. XXXmiken
1161 *
1162 * This code also handles the case where the reservation head is behind
1163 * the tail. The details of this case are described below, but the end
1164 * result is that we return the size of the log as the amount of space left.
1165 */
1166 STATIC int
xlog_space_left(struct xlog * log,atomic64_t * head)1167 xlog_space_left(
1168 struct xlog *log,
1169 atomic64_t *head)
1170 {
1171 int free_bytes;
1172 int tail_bytes;
1173 int tail_cycle;
1174 int head_cycle;
1175 int head_bytes;
1176
1177 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1178 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1179 tail_bytes = BBTOB(tail_bytes);
1180 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1181 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1182 else if (tail_cycle + 1 < head_cycle)
1183 return 0;
1184 else if (tail_cycle < head_cycle) {
1185 ASSERT(tail_cycle == (head_cycle - 1));
1186 free_bytes = tail_bytes - head_bytes;
1187 } else {
1188 /*
1189 * The reservation head is behind the tail.
1190 * In this case we just want to return the size of the
1191 * log as the amount of space left.
1192 */
1193 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1194 xfs_alert(log->l_mp,
1195 " tail_cycle = %d, tail_bytes = %d",
1196 tail_cycle, tail_bytes);
1197 xfs_alert(log->l_mp,
1198 " GH cycle = %d, GH bytes = %d",
1199 head_cycle, head_bytes);
1200 ASSERT(0);
1201 free_bytes = log->l_logsize;
1202 }
1203 return free_bytes;
1204 }
1205
1206
1207 /*
1208 * Log function which is called when an io completes.
1209 *
1210 * The log manager needs its own routine, in order to control what
1211 * happens with the buffer after the write completes.
1212 */
1213 static void
xlog_iodone(xfs_buf_t * bp)1214 xlog_iodone(xfs_buf_t *bp)
1215 {
1216 struct xlog_in_core *iclog = bp->b_fspriv;
1217 struct xlog *l = iclog->ic_log;
1218 int aborted = 0;
1219
1220 /*
1221 * Race to shutdown the filesystem if we see an error or the iclog is in
1222 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1223 * CRC errors into log recovery.
1224 */
1225 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR,
1226 XFS_RANDOM_IODONE_IOERR) ||
1227 iclog->ic_state & XLOG_STATE_IOABORT) {
1228 if (iclog->ic_state & XLOG_STATE_IOABORT)
1229 iclog->ic_state &= ~XLOG_STATE_IOABORT;
1230
1231 xfs_buf_ioerror_alert(bp, __func__);
1232 xfs_buf_stale(bp);
1233 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1234 /*
1235 * This flag will be propagated to the trans-committed
1236 * callback routines to let them know that the log-commit
1237 * didn't succeed.
1238 */
1239 aborted = XFS_LI_ABORTED;
1240 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1241 aborted = XFS_LI_ABORTED;
1242 }
1243
1244 /* log I/O is always issued ASYNC */
1245 ASSERT(bp->b_flags & XBF_ASYNC);
1246 xlog_state_done_syncing(iclog, aborted);
1247
1248 /*
1249 * drop the buffer lock now that we are done. Nothing references
1250 * the buffer after this, so an unmount waiting on this lock can now
1251 * tear it down safely. As such, it is unsafe to reference the buffer
1252 * (bp) after the unlock as we could race with it being freed.
1253 */
1254 xfs_buf_unlock(bp);
1255 }
1256
1257 /*
1258 * Return size of each in-core log record buffer.
1259 *
1260 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1261 *
1262 * If the filesystem blocksize is too large, we may need to choose a
1263 * larger size since the directory code currently logs entire blocks.
1264 */
1265
1266 STATIC void
xlog_get_iclog_buffer_size(struct xfs_mount * mp,struct xlog * log)1267 xlog_get_iclog_buffer_size(
1268 struct xfs_mount *mp,
1269 struct xlog *log)
1270 {
1271 int size;
1272 int xhdrs;
1273
1274 if (mp->m_logbufs <= 0)
1275 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1276 else
1277 log->l_iclog_bufs = mp->m_logbufs;
1278
1279 /*
1280 * Buffer size passed in from mount system call.
1281 */
1282 if (mp->m_logbsize > 0) {
1283 size = log->l_iclog_size = mp->m_logbsize;
1284 log->l_iclog_size_log = 0;
1285 while (size != 1) {
1286 log->l_iclog_size_log++;
1287 size >>= 1;
1288 }
1289
1290 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1291 /* # headers = size / 32k
1292 * one header holds cycles from 32k of data
1293 */
1294
1295 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1296 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1297 xhdrs++;
1298 log->l_iclog_hsize = xhdrs << BBSHIFT;
1299 log->l_iclog_heads = xhdrs;
1300 } else {
1301 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1302 log->l_iclog_hsize = BBSIZE;
1303 log->l_iclog_heads = 1;
1304 }
1305 goto done;
1306 }
1307
1308 /* All machines use 32kB buffers by default. */
1309 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1310 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1311
1312 /* the default log size is 16k or 32k which is one header sector */
1313 log->l_iclog_hsize = BBSIZE;
1314 log->l_iclog_heads = 1;
1315
1316 done:
1317 /* are we being asked to make the sizes selected above visible? */
1318 if (mp->m_logbufs == 0)
1319 mp->m_logbufs = log->l_iclog_bufs;
1320 if (mp->m_logbsize == 0)
1321 mp->m_logbsize = log->l_iclog_size;
1322 } /* xlog_get_iclog_buffer_size */
1323
1324
1325 void
xfs_log_work_queue(struct xfs_mount * mp)1326 xfs_log_work_queue(
1327 struct xfs_mount *mp)
1328 {
1329 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1330 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1331 }
1332
1333 /*
1334 * Every sync period we need to unpin all items in the AIL and push them to
1335 * disk. If there is nothing dirty, then we might need to cover the log to
1336 * indicate that the filesystem is idle.
1337 */
1338 static void
xfs_log_worker(struct work_struct * work)1339 xfs_log_worker(
1340 struct work_struct *work)
1341 {
1342 struct xlog *log = container_of(to_delayed_work(work),
1343 struct xlog, l_work);
1344 struct xfs_mount *mp = log->l_mp;
1345
1346 /* dgc: errors ignored - not fatal and nowhere to report them */
1347 if (xfs_log_need_covered(mp)) {
1348 /*
1349 * Dump a transaction into the log that contains no real change.
1350 * This is needed to stamp the current tail LSN into the log
1351 * during the covering operation.
1352 *
1353 * We cannot use an inode here for this - that will push dirty
1354 * state back up into the VFS and then periodic inode flushing
1355 * will prevent log covering from making progress. Hence we
1356 * synchronously log the superblock instead to ensure the
1357 * superblock is immediately unpinned and can be written back.
1358 */
1359 xfs_sync_sb(mp, true);
1360 } else
1361 xfs_log_force(mp, 0);
1362
1363 /* start pushing all the metadata that is currently dirty */
1364 xfs_ail_push_all(mp->m_ail);
1365
1366 /* queue us up again */
1367 xfs_log_work_queue(mp);
1368 }
1369
1370 /*
1371 * This routine initializes some of the log structure for a given mount point.
1372 * Its primary purpose is to fill in enough, so recovery can occur. However,
1373 * some other stuff may be filled in too.
1374 */
1375 STATIC struct xlog *
xlog_alloc_log(struct xfs_mount * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)1376 xlog_alloc_log(
1377 struct xfs_mount *mp,
1378 struct xfs_buftarg *log_target,
1379 xfs_daddr_t blk_offset,
1380 int num_bblks)
1381 {
1382 struct xlog *log;
1383 xlog_rec_header_t *head;
1384 xlog_in_core_t **iclogp;
1385 xlog_in_core_t *iclog, *prev_iclog=NULL;
1386 xfs_buf_t *bp;
1387 int i;
1388 int error = -ENOMEM;
1389 uint log2_size = 0;
1390
1391 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1392 if (!log) {
1393 xfs_warn(mp, "Log allocation failed: No memory!");
1394 goto out;
1395 }
1396
1397 log->l_mp = mp;
1398 log->l_targ = log_target;
1399 log->l_logsize = BBTOB(num_bblks);
1400 log->l_logBBstart = blk_offset;
1401 log->l_logBBsize = num_bblks;
1402 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1403 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1404 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1405
1406 log->l_prev_block = -1;
1407 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1408 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1409 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1410 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1411
1412 xlog_grant_head_init(&log->l_reserve_head);
1413 xlog_grant_head_init(&log->l_write_head);
1414
1415 error = -EFSCORRUPTED;
1416 if (xfs_sb_version_hassector(&mp->m_sb)) {
1417 log2_size = mp->m_sb.sb_logsectlog;
1418 if (log2_size < BBSHIFT) {
1419 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1420 log2_size, BBSHIFT);
1421 goto out_free_log;
1422 }
1423
1424 log2_size -= BBSHIFT;
1425 if (log2_size > mp->m_sectbb_log) {
1426 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1427 log2_size, mp->m_sectbb_log);
1428 goto out_free_log;
1429 }
1430
1431 /* for larger sector sizes, must have v2 or external log */
1432 if (log2_size && log->l_logBBstart > 0 &&
1433 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1434 xfs_warn(mp,
1435 "log sector size (0x%x) invalid for configuration.",
1436 log2_size);
1437 goto out_free_log;
1438 }
1439 }
1440 log->l_sectBBsize = 1 << log2_size;
1441
1442 xlog_get_iclog_buffer_size(mp, log);
1443
1444 /*
1445 * Use a NULL block for the extra log buffer used during splits so that
1446 * it will trigger errors if we ever try to do IO on it without first
1447 * having set it up properly.
1448 */
1449 error = -ENOMEM;
1450 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1451 BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1452 if (!bp)
1453 goto out_free_log;
1454
1455 /*
1456 * The iclogbuf buffer locks are held over IO but we are not going to do
1457 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1458 * when appropriately.
1459 */
1460 ASSERT(xfs_buf_islocked(bp));
1461 xfs_buf_unlock(bp);
1462
1463 /* use high priority wq for log I/O completion */
1464 bp->b_ioend_wq = mp->m_log_workqueue;
1465 bp->b_iodone = xlog_iodone;
1466 log->l_xbuf = bp;
1467
1468 spin_lock_init(&log->l_icloglock);
1469 init_waitqueue_head(&log->l_flush_wait);
1470
1471 iclogp = &log->l_iclog;
1472 /*
1473 * The amount of memory to allocate for the iclog structure is
1474 * rather funky due to the way the structure is defined. It is
1475 * done this way so that we can use different sizes for machines
1476 * with different amounts of memory. See the definition of
1477 * xlog_in_core_t in xfs_log_priv.h for details.
1478 */
1479 ASSERT(log->l_iclog_size >= 4096);
1480 for (i=0; i < log->l_iclog_bufs; i++) {
1481 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1482 if (!*iclogp)
1483 goto out_free_iclog;
1484
1485 iclog = *iclogp;
1486 iclog->ic_prev = prev_iclog;
1487 prev_iclog = iclog;
1488
1489 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1490 BTOBB(log->l_iclog_size),
1491 XBF_NO_IOACCT);
1492 if (!bp)
1493 goto out_free_iclog;
1494
1495 ASSERT(xfs_buf_islocked(bp));
1496 xfs_buf_unlock(bp);
1497
1498 /* use high priority wq for log I/O completion */
1499 bp->b_ioend_wq = mp->m_log_workqueue;
1500 bp->b_iodone = xlog_iodone;
1501 iclog->ic_bp = bp;
1502 iclog->ic_data = bp->b_addr;
1503 #ifdef DEBUG
1504 log->l_iclog_bak[i] = &iclog->ic_header;
1505 #endif
1506 head = &iclog->ic_header;
1507 memset(head, 0, sizeof(xlog_rec_header_t));
1508 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1509 head->h_version = cpu_to_be32(
1510 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1511 head->h_size = cpu_to_be32(log->l_iclog_size);
1512 /* new fields */
1513 head->h_fmt = cpu_to_be32(XLOG_FMT);
1514 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1515
1516 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1517 iclog->ic_state = XLOG_STATE_ACTIVE;
1518 iclog->ic_log = log;
1519 atomic_set(&iclog->ic_refcnt, 0);
1520 spin_lock_init(&iclog->ic_callback_lock);
1521 iclog->ic_callback_tail = &(iclog->ic_callback);
1522 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1523
1524 init_waitqueue_head(&iclog->ic_force_wait);
1525 init_waitqueue_head(&iclog->ic_write_wait);
1526
1527 iclogp = &iclog->ic_next;
1528 }
1529 *iclogp = log->l_iclog; /* complete ring */
1530 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1531
1532 error = xlog_cil_init(log);
1533 if (error)
1534 goto out_free_iclog;
1535 return log;
1536
1537 out_free_iclog:
1538 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1539 prev_iclog = iclog->ic_next;
1540 if (iclog->ic_bp)
1541 xfs_buf_free(iclog->ic_bp);
1542 kmem_free(iclog);
1543 }
1544 spinlock_destroy(&log->l_icloglock);
1545 xfs_buf_free(log->l_xbuf);
1546 out_free_log:
1547 kmem_free(log);
1548 out:
1549 return ERR_PTR(error);
1550 } /* xlog_alloc_log */
1551
1552
1553 /*
1554 * Write out the commit record of a transaction associated with the given
1555 * ticket. Return the lsn of the commit record.
1556 */
1557 STATIC int
xlog_commit_record(struct xlog * log,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,xfs_lsn_t * commitlsnp)1558 xlog_commit_record(
1559 struct xlog *log,
1560 struct xlog_ticket *ticket,
1561 struct xlog_in_core **iclog,
1562 xfs_lsn_t *commitlsnp)
1563 {
1564 struct xfs_mount *mp = log->l_mp;
1565 int error;
1566 struct xfs_log_iovec reg = {
1567 .i_addr = NULL,
1568 .i_len = 0,
1569 .i_type = XLOG_REG_TYPE_COMMIT,
1570 };
1571 struct xfs_log_vec vec = {
1572 .lv_niovecs = 1,
1573 .lv_iovecp = ®,
1574 };
1575
1576 ASSERT_ALWAYS(iclog);
1577 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1578 XLOG_COMMIT_TRANS);
1579 if (error)
1580 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1581 return error;
1582 }
1583
1584 /*
1585 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1586 * log space. This code pushes on the lsn which would supposedly free up
1587 * the 25% which we want to leave free. We may need to adopt a policy which
1588 * pushes on an lsn which is further along in the log once we reach the high
1589 * water mark. In this manner, we would be creating a low water mark.
1590 */
1591 STATIC void
xlog_grant_push_ail(struct xlog * log,int need_bytes)1592 xlog_grant_push_ail(
1593 struct xlog *log,
1594 int need_bytes)
1595 {
1596 xfs_lsn_t threshold_lsn = 0;
1597 xfs_lsn_t last_sync_lsn;
1598 int free_blocks;
1599 int free_bytes;
1600 int threshold_block;
1601 int threshold_cycle;
1602 int free_threshold;
1603
1604 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1605
1606 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1607 free_blocks = BTOBBT(free_bytes);
1608
1609 /*
1610 * Set the threshold for the minimum number of free blocks in the
1611 * log to the maximum of what the caller needs, one quarter of the
1612 * log, and 256 blocks.
1613 */
1614 free_threshold = BTOBB(need_bytes);
1615 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1616 free_threshold = MAX(free_threshold, 256);
1617 if (free_blocks >= free_threshold)
1618 return;
1619
1620 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1621 &threshold_block);
1622 threshold_block += free_threshold;
1623 if (threshold_block >= log->l_logBBsize) {
1624 threshold_block -= log->l_logBBsize;
1625 threshold_cycle += 1;
1626 }
1627 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1628 threshold_block);
1629 /*
1630 * Don't pass in an lsn greater than the lsn of the last
1631 * log record known to be on disk. Use a snapshot of the last sync lsn
1632 * so that it doesn't change between the compare and the set.
1633 */
1634 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1635 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1636 threshold_lsn = last_sync_lsn;
1637
1638 /*
1639 * Get the transaction layer to kick the dirty buffers out to
1640 * disk asynchronously. No point in trying to do this if
1641 * the filesystem is shutting down.
1642 */
1643 if (!XLOG_FORCED_SHUTDOWN(log))
1644 xfs_ail_push(log->l_ailp, threshold_lsn);
1645 }
1646
1647 /*
1648 * Stamp cycle number in every block
1649 */
1650 STATIC void
xlog_pack_data(struct xlog * log,struct xlog_in_core * iclog,int roundoff)1651 xlog_pack_data(
1652 struct xlog *log,
1653 struct xlog_in_core *iclog,
1654 int roundoff)
1655 {
1656 int i, j, k;
1657 int size = iclog->ic_offset + roundoff;
1658 __be32 cycle_lsn;
1659 char *dp;
1660
1661 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1662
1663 dp = iclog->ic_datap;
1664 for (i = 0; i < BTOBB(size); i++) {
1665 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1666 break;
1667 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1668 *(__be32 *)dp = cycle_lsn;
1669 dp += BBSIZE;
1670 }
1671
1672 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1673 xlog_in_core_2_t *xhdr = iclog->ic_data;
1674
1675 for ( ; i < BTOBB(size); i++) {
1676 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1677 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1678 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1679 *(__be32 *)dp = cycle_lsn;
1680 dp += BBSIZE;
1681 }
1682
1683 for (i = 1; i < log->l_iclog_heads; i++)
1684 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1685 }
1686 }
1687
1688 /*
1689 * Calculate the checksum for a log buffer.
1690 *
1691 * This is a little more complicated than it should be because the various
1692 * headers and the actual data are non-contiguous.
1693 */
1694 __le32
xlog_cksum(struct xlog * log,struct xlog_rec_header * rhead,char * dp,int size)1695 xlog_cksum(
1696 struct xlog *log,
1697 struct xlog_rec_header *rhead,
1698 char *dp,
1699 int size)
1700 {
1701 __uint32_t crc;
1702
1703 /* first generate the crc for the record header ... */
1704 crc = xfs_start_cksum((char *)rhead,
1705 sizeof(struct xlog_rec_header),
1706 offsetof(struct xlog_rec_header, h_crc));
1707
1708 /* ... then for additional cycle data for v2 logs ... */
1709 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1710 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1711 int i;
1712 int xheads;
1713
1714 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1715 if (size % XLOG_HEADER_CYCLE_SIZE)
1716 xheads++;
1717
1718 for (i = 1; i < xheads; i++) {
1719 crc = crc32c(crc, &xhdr[i].hic_xheader,
1720 sizeof(struct xlog_rec_ext_header));
1721 }
1722 }
1723
1724 /* ... and finally for the payload */
1725 crc = crc32c(crc, dp, size);
1726
1727 return xfs_end_cksum(crc);
1728 }
1729
1730 /*
1731 * The bdstrat callback function for log bufs. This gives us a central
1732 * place to trap bufs in case we get hit by a log I/O error and need to
1733 * shutdown. Actually, in practice, even when we didn't get a log error,
1734 * we transition the iclogs to IOERROR state *after* flushing all existing
1735 * iclogs to disk. This is because we don't want anymore new transactions to be
1736 * started or completed afterwards.
1737 *
1738 * We lock the iclogbufs here so that we can serialise against IO completion
1739 * during unmount. We might be processing a shutdown triggered during unmount,
1740 * and that can occur asynchronously to the unmount thread, and hence we need to
1741 * ensure that completes before tearing down the iclogbufs. Hence we need to
1742 * hold the buffer lock across the log IO to acheive that.
1743 */
1744 STATIC int
xlog_bdstrat(struct xfs_buf * bp)1745 xlog_bdstrat(
1746 struct xfs_buf *bp)
1747 {
1748 struct xlog_in_core *iclog = bp->b_fspriv;
1749
1750 xfs_buf_lock(bp);
1751 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1752 xfs_buf_ioerror(bp, -EIO);
1753 xfs_buf_stale(bp);
1754 xfs_buf_ioend(bp);
1755 /*
1756 * It would seem logical to return EIO here, but we rely on
1757 * the log state machine to propagate I/O errors instead of
1758 * doing it here. Similarly, IO completion will unlock the
1759 * buffer, so we don't do it here.
1760 */
1761 return 0;
1762 }
1763
1764 xfs_buf_submit(bp);
1765 return 0;
1766 }
1767
1768 /*
1769 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1770 * fashion. Previously, we should have moved the current iclog
1771 * ptr in the log to point to the next available iclog. This allows further
1772 * write to continue while this code syncs out an iclog ready to go.
1773 * Before an in-core log can be written out, the data section must be scanned
1774 * to save away the 1st word of each BBSIZE block into the header. We replace
1775 * it with the current cycle count. Each BBSIZE block is tagged with the
1776 * cycle count because there in an implicit assumption that drives will
1777 * guarantee that entire 512 byte blocks get written at once. In other words,
1778 * we can't have part of a 512 byte block written and part not written. By
1779 * tagging each block, we will know which blocks are valid when recovering
1780 * after an unclean shutdown.
1781 *
1782 * This routine is single threaded on the iclog. No other thread can be in
1783 * this routine with the same iclog. Changing contents of iclog can there-
1784 * fore be done without grabbing the state machine lock. Updating the global
1785 * log will require grabbing the lock though.
1786 *
1787 * The entire log manager uses a logical block numbering scheme. Only
1788 * log_sync (and then only bwrite()) know about the fact that the log may
1789 * not start with block zero on a given device. The log block start offset
1790 * is added immediately before calling bwrite().
1791 */
1792
1793 STATIC int
xlog_sync(struct xlog * log,struct xlog_in_core * iclog)1794 xlog_sync(
1795 struct xlog *log,
1796 struct xlog_in_core *iclog)
1797 {
1798 xfs_buf_t *bp;
1799 int i;
1800 uint count; /* byte count of bwrite */
1801 uint count_init; /* initial count before roundup */
1802 int roundoff; /* roundoff to BB or stripe */
1803 int split = 0; /* split write into two regions */
1804 int error;
1805 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1806 int size;
1807
1808 XFS_STATS_INC(log->l_mp, xs_log_writes);
1809 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1810
1811 /* Add for LR header */
1812 count_init = log->l_iclog_hsize + iclog->ic_offset;
1813
1814 /* Round out the log write size */
1815 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1816 /* we have a v2 stripe unit to use */
1817 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1818 } else {
1819 count = BBTOB(BTOBB(count_init));
1820 }
1821 roundoff = count - count_init;
1822 ASSERT(roundoff >= 0);
1823 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1824 roundoff < log->l_mp->m_sb.sb_logsunit)
1825 ||
1826 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1827 roundoff < BBTOB(1)));
1828
1829 /* move grant heads by roundoff in sync */
1830 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1831 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1832
1833 /* put cycle number in every block */
1834 xlog_pack_data(log, iclog, roundoff);
1835
1836 /* real byte length */
1837 size = iclog->ic_offset;
1838 if (v2)
1839 size += roundoff;
1840 iclog->ic_header.h_len = cpu_to_be32(size);
1841
1842 bp = iclog->ic_bp;
1843 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1844
1845 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1846
1847 /* Do we need to split this write into 2 parts? */
1848 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1849 char *dptr;
1850
1851 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1852 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1853 iclog->ic_bwritecnt = 2;
1854
1855 /*
1856 * Bump the cycle numbers at the start of each block in the
1857 * part of the iclog that ends up in the buffer that gets
1858 * written to the start of the log.
1859 *
1860 * Watch out for the header magic number case, though.
1861 */
1862 dptr = (char *)&iclog->ic_header + count;
1863 for (i = 0; i < split; i += BBSIZE) {
1864 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1865 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1866 cycle++;
1867 *(__be32 *)dptr = cpu_to_be32(cycle);
1868
1869 dptr += BBSIZE;
1870 }
1871 } else {
1872 iclog->ic_bwritecnt = 1;
1873 }
1874
1875 /* calculcate the checksum */
1876 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1877 iclog->ic_datap, size);
1878 #ifdef DEBUG
1879 /*
1880 * Intentionally corrupt the log record CRC based on the error injection
1881 * frequency, if defined. This facilitates testing log recovery in the
1882 * event of torn writes. Hence, set the IOABORT state to abort the log
1883 * write on I/O completion and shutdown the fs. The subsequent mount
1884 * detects the bad CRC and attempts to recover.
1885 */
1886 if (log->l_badcrc_factor &&
1887 (prandom_u32() % log->l_badcrc_factor == 0)) {
1888 iclog->ic_header.h_crc &= 0xAAAAAAAA;
1889 iclog->ic_state |= XLOG_STATE_IOABORT;
1890 xfs_warn(log->l_mp,
1891 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1892 be64_to_cpu(iclog->ic_header.h_lsn));
1893 }
1894 #endif
1895
1896 bp->b_io_length = BTOBB(count);
1897 bp->b_fspriv = iclog;
1898 bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1899 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
1900
1901 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1902 bp->b_flags |= XBF_FUA;
1903
1904 /*
1905 * Flush the data device before flushing the log to make
1906 * sure all meta data written back from the AIL actually made
1907 * it to disk before stamping the new log tail LSN into the
1908 * log buffer. For an external log we need to issue the
1909 * flush explicitly, and unfortunately synchronously here;
1910 * for an internal log we can simply use the block layer
1911 * state machine for preflushes.
1912 */
1913 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1914 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1915 else
1916 bp->b_flags |= XBF_FLUSH;
1917 }
1918
1919 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1920 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1921
1922 xlog_verify_iclog(log, iclog, count, true);
1923
1924 /* account for log which doesn't start at block #0 */
1925 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1926
1927 /*
1928 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1929 * is shutting down.
1930 */
1931 error = xlog_bdstrat(bp);
1932 if (error) {
1933 xfs_buf_ioerror_alert(bp, "xlog_sync");
1934 return error;
1935 }
1936 if (split) {
1937 bp = iclog->ic_log->l_xbuf;
1938 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1939 xfs_buf_associate_memory(bp,
1940 (char *)&iclog->ic_header + count, split);
1941 bp->b_fspriv = iclog;
1942 bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1943 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
1944 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1945 bp->b_flags |= XBF_FUA;
1946
1947 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1948 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1949
1950 /* account for internal log which doesn't start at block #0 */
1951 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1952 error = xlog_bdstrat(bp);
1953 if (error) {
1954 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1955 return error;
1956 }
1957 }
1958 return 0;
1959 } /* xlog_sync */
1960
1961 /*
1962 * Deallocate a log structure
1963 */
1964 STATIC void
xlog_dealloc_log(struct xlog * log)1965 xlog_dealloc_log(
1966 struct xlog *log)
1967 {
1968 xlog_in_core_t *iclog, *next_iclog;
1969 int i;
1970
1971 xlog_cil_destroy(log);
1972
1973 /*
1974 * Cycle all the iclogbuf locks to make sure all log IO completion
1975 * is done before we tear down these buffers.
1976 */
1977 iclog = log->l_iclog;
1978 for (i = 0; i < log->l_iclog_bufs; i++) {
1979 xfs_buf_lock(iclog->ic_bp);
1980 xfs_buf_unlock(iclog->ic_bp);
1981 iclog = iclog->ic_next;
1982 }
1983
1984 /*
1985 * Always need to ensure that the extra buffer does not point to memory
1986 * owned by another log buffer before we free it. Also, cycle the lock
1987 * first to ensure we've completed IO on it.
1988 */
1989 xfs_buf_lock(log->l_xbuf);
1990 xfs_buf_unlock(log->l_xbuf);
1991 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1992 xfs_buf_free(log->l_xbuf);
1993
1994 iclog = log->l_iclog;
1995 for (i = 0; i < log->l_iclog_bufs; i++) {
1996 xfs_buf_free(iclog->ic_bp);
1997 next_iclog = iclog->ic_next;
1998 kmem_free(iclog);
1999 iclog = next_iclog;
2000 }
2001 spinlock_destroy(&log->l_icloglock);
2002
2003 log->l_mp->m_log = NULL;
2004 kmem_free(log);
2005 } /* xlog_dealloc_log */
2006
2007 /*
2008 * Update counters atomically now that memcpy is done.
2009 */
2010 /* ARGSUSED */
2011 static inline void
xlog_state_finish_copy(struct xlog * log,struct xlog_in_core * iclog,int record_cnt,int copy_bytes)2012 xlog_state_finish_copy(
2013 struct xlog *log,
2014 struct xlog_in_core *iclog,
2015 int record_cnt,
2016 int copy_bytes)
2017 {
2018 spin_lock(&log->l_icloglock);
2019
2020 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2021 iclog->ic_offset += copy_bytes;
2022
2023 spin_unlock(&log->l_icloglock);
2024 } /* xlog_state_finish_copy */
2025
2026
2027
2028
2029 /*
2030 * print out info relating to regions written which consume
2031 * the reservation
2032 */
2033 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)2034 xlog_print_tic_res(
2035 struct xfs_mount *mp,
2036 struct xlog_ticket *ticket)
2037 {
2038 uint i;
2039 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2040
2041 /* match with XLOG_REG_TYPE_* in xfs_log.h */
2042 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2043 static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2044 REG_TYPE_STR(BFORMAT, "bformat"),
2045 REG_TYPE_STR(BCHUNK, "bchunk"),
2046 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2047 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2048 REG_TYPE_STR(IFORMAT, "iformat"),
2049 REG_TYPE_STR(ICORE, "icore"),
2050 REG_TYPE_STR(IEXT, "iext"),
2051 REG_TYPE_STR(IBROOT, "ibroot"),
2052 REG_TYPE_STR(ILOCAL, "ilocal"),
2053 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2054 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2055 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2056 REG_TYPE_STR(QFORMAT, "qformat"),
2057 REG_TYPE_STR(DQUOT, "dquot"),
2058 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2059 REG_TYPE_STR(LRHEADER, "LR header"),
2060 REG_TYPE_STR(UNMOUNT, "unmount"),
2061 REG_TYPE_STR(COMMIT, "commit"),
2062 REG_TYPE_STR(TRANSHDR, "trans header"),
2063 REG_TYPE_STR(ICREATE, "inode create")
2064 };
2065 #undef REG_TYPE_STR
2066
2067 xfs_warn(mp, "xlog_write: reservation summary:");
2068 xfs_warn(mp, " unit res = %d bytes",
2069 ticket->t_unit_res);
2070 xfs_warn(mp, " current res = %d bytes",
2071 ticket->t_curr_res);
2072 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2073 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2074 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2075 ticket->t_res_num_ophdrs, ophdr_spc);
2076 xfs_warn(mp, " ophdr + reg = %u bytes",
2077 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2078 xfs_warn(mp, " num regions = %u",
2079 ticket->t_res_num);
2080
2081 for (i = 0; i < ticket->t_res_num; i++) {
2082 uint r_type = ticket->t_res_arr[i].r_type;
2083 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2084 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2085 "bad-rtype" : res_type_str[r_type]),
2086 ticket->t_res_arr[i].r_len);
2087 }
2088
2089 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2090 "xlog_write: reservation ran out. Need to up reservation");
2091 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2092 }
2093
2094 /*
2095 * Calculate the potential space needed by the log vector. Each region gets
2096 * its own xlog_op_header_t and may need to be double word aligned.
2097 */
2098 static int
xlog_write_calc_vec_length(struct xlog_ticket * ticket,struct xfs_log_vec * log_vector)2099 xlog_write_calc_vec_length(
2100 struct xlog_ticket *ticket,
2101 struct xfs_log_vec *log_vector)
2102 {
2103 struct xfs_log_vec *lv;
2104 int headers = 0;
2105 int len = 0;
2106 int i;
2107
2108 /* acct for start rec of xact */
2109 if (ticket->t_flags & XLOG_TIC_INITED)
2110 headers++;
2111
2112 for (lv = log_vector; lv; lv = lv->lv_next) {
2113 /* we don't write ordered log vectors */
2114 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2115 continue;
2116
2117 headers += lv->lv_niovecs;
2118
2119 for (i = 0; i < lv->lv_niovecs; i++) {
2120 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2121
2122 len += vecp->i_len;
2123 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2124 }
2125 }
2126
2127 ticket->t_res_num_ophdrs += headers;
2128 len += headers * sizeof(struct xlog_op_header);
2129
2130 return len;
2131 }
2132
2133 /*
2134 * If first write for transaction, insert start record We can't be trying to
2135 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2136 */
2137 static int
xlog_write_start_rec(struct xlog_op_header * ophdr,struct xlog_ticket * ticket)2138 xlog_write_start_rec(
2139 struct xlog_op_header *ophdr,
2140 struct xlog_ticket *ticket)
2141 {
2142 if (!(ticket->t_flags & XLOG_TIC_INITED))
2143 return 0;
2144
2145 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2146 ophdr->oh_clientid = ticket->t_clientid;
2147 ophdr->oh_len = 0;
2148 ophdr->oh_flags = XLOG_START_TRANS;
2149 ophdr->oh_res2 = 0;
2150
2151 ticket->t_flags &= ~XLOG_TIC_INITED;
2152
2153 return sizeof(struct xlog_op_header);
2154 }
2155
2156 static xlog_op_header_t *
xlog_write_setup_ophdr(struct xlog * log,struct xlog_op_header * ophdr,struct xlog_ticket * ticket,uint flags)2157 xlog_write_setup_ophdr(
2158 struct xlog *log,
2159 struct xlog_op_header *ophdr,
2160 struct xlog_ticket *ticket,
2161 uint flags)
2162 {
2163 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2164 ophdr->oh_clientid = ticket->t_clientid;
2165 ophdr->oh_res2 = 0;
2166
2167 /* are we copying a commit or unmount record? */
2168 ophdr->oh_flags = flags;
2169
2170 /*
2171 * We've seen logs corrupted with bad transaction client ids. This
2172 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2173 * and shut down the filesystem.
2174 */
2175 switch (ophdr->oh_clientid) {
2176 case XFS_TRANSACTION:
2177 case XFS_VOLUME:
2178 case XFS_LOG:
2179 break;
2180 default:
2181 xfs_warn(log->l_mp,
2182 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2183 ophdr->oh_clientid, ticket);
2184 return NULL;
2185 }
2186
2187 return ophdr;
2188 }
2189
2190 /*
2191 * Set up the parameters of the region copy into the log. This has
2192 * to handle region write split across multiple log buffers - this
2193 * state is kept external to this function so that this code can
2194 * be written in an obvious, self documenting manner.
2195 */
2196 static int
xlog_write_setup_copy(struct xlog_ticket * ticket,struct xlog_op_header * ophdr,int space_available,int space_required,int * copy_off,int * copy_len,int * last_was_partial_copy,int * bytes_consumed)2197 xlog_write_setup_copy(
2198 struct xlog_ticket *ticket,
2199 struct xlog_op_header *ophdr,
2200 int space_available,
2201 int space_required,
2202 int *copy_off,
2203 int *copy_len,
2204 int *last_was_partial_copy,
2205 int *bytes_consumed)
2206 {
2207 int still_to_copy;
2208
2209 still_to_copy = space_required - *bytes_consumed;
2210 *copy_off = *bytes_consumed;
2211
2212 if (still_to_copy <= space_available) {
2213 /* write of region completes here */
2214 *copy_len = still_to_copy;
2215 ophdr->oh_len = cpu_to_be32(*copy_len);
2216 if (*last_was_partial_copy)
2217 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2218 *last_was_partial_copy = 0;
2219 *bytes_consumed = 0;
2220 return 0;
2221 }
2222
2223 /* partial write of region, needs extra log op header reservation */
2224 *copy_len = space_available;
2225 ophdr->oh_len = cpu_to_be32(*copy_len);
2226 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2227 if (*last_was_partial_copy)
2228 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2229 *bytes_consumed += *copy_len;
2230 (*last_was_partial_copy)++;
2231
2232 /* account for new log op header */
2233 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2234 ticket->t_res_num_ophdrs++;
2235
2236 return sizeof(struct xlog_op_header);
2237 }
2238
2239 static int
xlog_write_copy_finish(struct xlog * log,struct xlog_in_core * iclog,uint flags,int * record_cnt,int * data_cnt,int * partial_copy,int * partial_copy_len,int log_offset,struct xlog_in_core ** commit_iclog)2240 xlog_write_copy_finish(
2241 struct xlog *log,
2242 struct xlog_in_core *iclog,
2243 uint flags,
2244 int *record_cnt,
2245 int *data_cnt,
2246 int *partial_copy,
2247 int *partial_copy_len,
2248 int log_offset,
2249 struct xlog_in_core **commit_iclog)
2250 {
2251 if (*partial_copy) {
2252 /*
2253 * This iclog has already been marked WANT_SYNC by
2254 * xlog_state_get_iclog_space.
2255 */
2256 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2257 *record_cnt = 0;
2258 *data_cnt = 0;
2259 return xlog_state_release_iclog(log, iclog);
2260 }
2261
2262 *partial_copy = 0;
2263 *partial_copy_len = 0;
2264
2265 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2266 /* no more space in this iclog - push it. */
2267 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2268 *record_cnt = 0;
2269 *data_cnt = 0;
2270
2271 spin_lock(&log->l_icloglock);
2272 xlog_state_want_sync(log, iclog);
2273 spin_unlock(&log->l_icloglock);
2274
2275 if (!commit_iclog)
2276 return xlog_state_release_iclog(log, iclog);
2277 ASSERT(flags & XLOG_COMMIT_TRANS);
2278 *commit_iclog = iclog;
2279 }
2280
2281 return 0;
2282 }
2283
2284 /*
2285 * Write some region out to in-core log
2286 *
2287 * This will be called when writing externally provided regions or when
2288 * writing out a commit record for a given transaction.
2289 *
2290 * General algorithm:
2291 * 1. Find total length of this write. This may include adding to the
2292 * lengths passed in.
2293 * 2. Check whether we violate the tickets reservation.
2294 * 3. While writing to this iclog
2295 * A. Reserve as much space in this iclog as can get
2296 * B. If this is first write, save away start lsn
2297 * C. While writing this region:
2298 * 1. If first write of transaction, write start record
2299 * 2. Write log operation header (header per region)
2300 * 3. Find out if we can fit entire region into this iclog
2301 * 4. Potentially, verify destination memcpy ptr
2302 * 5. Memcpy (partial) region
2303 * 6. If partial copy, release iclog; otherwise, continue
2304 * copying more regions into current iclog
2305 * 4. Mark want sync bit (in simulation mode)
2306 * 5. Release iclog for potential flush to on-disk log.
2307 *
2308 * ERRORS:
2309 * 1. Panic if reservation is overrun. This should never happen since
2310 * reservation amounts are generated internal to the filesystem.
2311 * NOTES:
2312 * 1. Tickets are single threaded data structures.
2313 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2314 * syncing routine. When a single log_write region needs to span
2315 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2316 * on all log operation writes which don't contain the end of the
2317 * region. The XLOG_END_TRANS bit is used for the in-core log
2318 * operation which contains the end of the continued log_write region.
2319 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2320 * we don't really know exactly how much space will be used. As a result,
2321 * we don't update ic_offset until the end when we know exactly how many
2322 * bytes have been written out.
2323 */
2324 int
xlog_write(struct xlog * log,struct xfs_log_vec * log_vector,struct xlog_ticket * ticket,xfs_lsn_t * start_lsn,struct xlog_in_core ** commit_iclog,uint flags)2325 xlog_write(
2326 struct xlog *log,
2327 struct xfs_log_vec *log_vector,
2328 struct xlog_ticket *ticket,
2329 xfs_lsn_t *start_lsn,
2330 struct xlog_in_core **commit_iclog,
2331 uint flags)
2332 {
2333 struct xlog_in_core *iclog = NULL;
2334 struct xfs_log_iovec *vecp;
2335 struct xfs_log_vec *lv;
2336 int len;
2337 int index;
2338 int partial_copy = 0;
2339 int partial_copy_len = 0;
2340 int contwr = 0;
2341 int record_cnt = 0;
2342 int data_cnt = 0;
2343 int error;
2344
2345 *start_lsn = 0;
2346
2347 len = xlog_write_calc_vec_length(ticket, log_vector);
2348
2349 /*
2350 * Region headers and bytes are already accounted for.
2351 * We only need to take into account start records and
2352 * split regions in this function.
2353 */
2354 if (ticket->t_flags & XLOG_TIC_INITED)
2355 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2356
2357 /*
2358 * Commit record headers need to be accounted for. These
2359 * come in as separate writes so are easy to detect.
2360 */
2361 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2362 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2363
2364 if (ticket->t_curr_res < 0)
2365 xlog_print_tic_res(log->l_mp, ticket);
2366
2367 index = 0;
2368 lv = log_vector;
2369 vecp = lv->lv_iovecp;
2370 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2371 void *ptr;
2372 int log_offset;
2373
2374 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2375 &contwr, &log_offset);
2376 if (error)
2377 return error;
2378
2379 ASSERT(log_offset <= iclog->ic_size - 1);
2380 ptr = iclog->ic_datap + log_offset;
2381
2382 /* start_lsn is the first lsn written to. That's all we need. */
2383 if (!*start_lsn)
2384 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2385
2386 /*
2387 * This loop writes out as many regions as can fit in the amount
2388 * of space which was allocated by xlog_state_get_iclog_space().
2389 */
2390 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2391 struct xfs_log_iovec *reg;
2392 struct xlog_op_header *ophdr;
2393 int start_rec_copy;
2394 int copy_len;
2395 int copy_off;
2396 bool ordered = false;
2397
2398 /* ordered log vectors have no regions to write */
2399 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2400 ASSERT(lv->lv_niovecs == 0);
2401 ordered = true;
2402 goto next_lv;
2403 }
2404
2405 reg = &vecp[index];
2406 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2407 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2408
2409 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2410 if (start_rec_copy) {
2411 record_cnt++;
2412 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2413 start_rec_copy);
2414 }
2415
2416 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2417 if (!ophdr)
2418 return -EIO;
2419
2420 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2421 sizeof(struct xlog_op_header));
2422
2423 len += xlog_write_setup_copy(ticket, ophdr,
2424 iclog->ic_size-log_offset,
2425 reg->i_len,
2426 ©_off, ©_len,
2427 &partial_copy,
2428 &partial_copy_len);
2429 xlog_verify_dest_ptr(log, ptr);
2430
2431 /*
2432 * Copy region.
2433 *
2434 * Unmount records just log an opheader, so can have
2435 * empty payloads with no data region to copy. Hence we
2436 * only copy the payload if the vector says it has data
2437 * to copy.
2438 */
2439 ASSERT(copy_len >= 0);
2440 if (copy_len > 0) {
2441 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2442 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2443 copy_len);
2444 }
2445 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2446 record_cnt++;
2447 data_cnt += contwr ? copy_len : 0;
2448
2449 error = xlog_write_copy_finish(log, iclog, flags,
2450 &record_cnt, &data_cnt,
2451 &partial_copy,
2452 &partial_copy_len,
2453 log_offset,
2454 commit_iclog);
2455 if (error)
2456 return error;
2457
2458 /*
2459 * if we had a partial copy, we need to get more iclog
2460 * space but we don't want to increment the region
2461 * index because there is still more is this region to
2462 * write.
2463 *
2464 * If we completed writing this region, and we flushed
2465 * the iclog (indicated by resetting of the record
2466 * count), then we also need to get more log space. If
2467 * this was the last record, though, we are done and
2468 * can just return.
2469 */
2470 if (partial_copy)
2471 break;
2472
2473 if (++index == lv->lv_niovecs) {
2474 next_lv:
2475 lv = lv->lv_next;
2476 index = 0;
2477 if (lv)
2478 vecp = lv->lv_iovecp;
2479 }
2480 if (record_cnt == 0 && ordered == false) {
2481 if (!lv)
2482 return 0;
2483 break;
2484 }
2485 }
2486 }
2487
2488 ASSERT(len == 0);
2489
2490 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2491 if (!commit_iclog)
2492 return xlog_state_release_iclog(log, iclog);
2493
2494 ASSERT(flags & XLOG_COMMIT_TRANS);
2495 *commit_iclog = iclog;
2496 return 0;
2497 }
2498
2499
2500 /*****************************************************************************
2501 *
2502 * State Machine functions
2503 *
2504 *****************************************************************************
2505 */
2506
2507 /* Clean iclogs starting from the head. This ordering must be
2508 * maintained, so an iclog doesn't become ACTIVE beyond one that
2509 * is SYNCING. This is also required to maintain the notion that we use
2510 * a ordered wait queue to hold off would be writers to the log when every
2511 * iclog is trying to sync to disk.
2512 *
2513 * State Change: DIRTY -> ACTIVE
2514 */
2515 STATIC void
xlog_state_clean_log(struct xlog * log)2516 xlog_state_clean_log(
2517 struct xlog *log)
2518 {
2519 xlog_in_core_t *iclog;
2520 int changed = 0;
2521
2522 iclog = log->l_iclog;
2523 do {
2524 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2525 iclog->ic_state = XLOG_STATE_ACTIVE;
2526 iclog->ic_offset = 0;
2527 ASSERT(iclog->ic_callback == NULL);
2528 /*
2529 * If the number of ops in this iclog indicate it just
2530 * contains the dummy transaction, we can
2531 * change state into IDLE (the second time around).
2532 * Otherwise we should change the state into
2533 * NEED a dummy.
2534 * We don't need to cover the dummy.
2535 */
2536 if (!changed &&
2537 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2538 XLOG_COVER_OPS)) {
2539 changed = 1;
2540 } else {
2541 /*
2542 * We have two dirty iclogs so start over
2543 * This could also be num of ops indicates
2544 * this is not the dummy going out.
2545 */
2546 changed = 2;
2547 }
2548 iclog->ic_header.h_num_logops = 0;
2549 memset(iclog->ic_header.h_cycle_data, 0,
2550 sizeof(iclog->ic_header.h_cycle_data));
2551 iclog->ic_header.h_lsn = 0;
2552 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2553 /* do nothing */;
2554 else
2555 break; /* stop cleaning */
2556 iclog = iclog->ic_next;
2557 } while (iclog != log->l_iclog);
2558
2559 /* log is locked when we are called */
2560 /*
2561 * Change state for the dummy log recording.
2562 * We usually go to NEED. But we go to NEED2 if the changed indicates
2563 * we are done writing the dummy record.
2564 * If we are done with the second dummy recored (DONE2), then
2565 * we go to IDLE.
2566 */
2567 if (changed) {
2568 switch (log->l_covered_state) {
2569 case XLOG_STATE_COVER_IDLE:
2570 case XLOG_STATE_COVER_NEED:
2571 case XLOG_STATE_COVER_NEED2:
2572 log->l_covered_state = XLOG_STATE_COVER_NEED;
2573 break;
2574
2575 case XLOG_STATE_COVER_DONE:
2576 if (changed == 1)
2577 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2578 else
2579 log->l_covered_state = XLOG_STATE_COVER_NEED;
2580 break;
2581
2582 case XLOG_STATE_COVER_DONE2:
2583 if (changed == 1)
2584 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2585 else
2586 log->l_covered_state = XLOG_STATE_COVER_NEED;
2587 break;
2588
2589 default:
2590 ASSERT(0);
2591 }
2592 }
2593 } /* xlog_state_clean_log */
2594
2595 STATIC xfs_lsn_t
xlog_get_lowest_lsn(struct xlog * log)2596 xlog_get_lowest_lsn(
2597 struct xlog *log)
2598 {
2599 xlog_in_core_t *lsn_log;
2600 xfs_lsn_t lowest_lsn, lsn;
2601
2602 lsn_log = log->l_iclog;
2603 lowest_lsn = 0;
2604 do {
2605 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2606 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2607 if ((lsn && !lowest_lsn) ||
2608 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2609 lowest_lsn = lsn;
2610 }
2611 }
2612 lsn_log = lsn_log->ic_next;
2613 } while (lsn_log != log->l_iclog);
2614 return lowest_lsn;
2615 }
2616
2617
2618 STATIC void
xlog_state_do_callback(struct xlog * log,int aborted,struct xlog_in_core * ciclog)2619 xlog_state_do_callback(
2620 struct xlog *log,
2621 int aborted,
2622 struct xlog_in_core *ciclog)
2623 {
2624 xlog_in_core_t *iclog;
2625 xlog_in_core_t *first_iclog; /* used to know when we've
2626 * processed all iclogs once */
2627 xfs_log_callback_t *cb, *cb_next;
2628 int flushcnt = 0;
2629 xfs_lsn_t lowest_lsn;
2630 int ioerrors; /* counter: iclogs with errors */
2631 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2632 int funcdidcallbacks; /* flag: function did callbacks */
2633 int repeats; /* for issuing console warnings if
2634 * looping too many times */
2635 int wake = 0;
2636
2637 spin_lock(&log->l_icloglock);
2638 first_iclog = iclog = log->l_iclog;
2639 ioerrors = 0;
2640 funcdidcallbacks = 0;
2641 repeats = 0;
2642
2643 do {
2644 /*
2645 * Scan all iclogs starting with the one pointed to by the
2646 * log. Reset this starting point each time the log is
2647 * unlocked (during callbacks).
2648 *
2649 * Keep looping through iclogs until one full pass is made
2650 * without running any callbacks.
2651 */
2652 first_iclog = log->l_iclog;
2653 iclog = log->l_iclog;
2654 loopdidcallbacks = 0;
2655 repeats++;
2656
2657 do {
2658
2659 /* skip all iclogs in the ACTIVE & DIRTY states */
2660 if (iclog->ic_state &
2661 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2662 iclog = iclog->ic_next;
2663 continue;
2664 }
2665
2666 /*
2667 * Between marking a filesystem SHUTDOWN and stopping
2668 * the log, we do flush all iclogs to disk (if there
2669 * wasn't a log I/O error). So, we do want things to
2670 * go smoothly in case of just a SHUTDOWN w/o a
2671 * LOG_IO_ERROR.
2672 */
2673 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2674 /*
2675 * Can only perform callbacks in order. Since
2676 * this iclog is not in the DONE_SYNC/
2677 * DO_CALLBACK state, we skip the rest and
2678 * just try to clean up. If we set our iclog
2679 * to DO_CALLBACK, we will not process it when
2680 * we retry since a previous iclog is in the
2681 * CALLBACK and the state cannot change since
2682 * we are holding the l_icloglock.
2683 */
2684 if (!(iclog->ic_state &
2685 (XLOG_STATE_DONE_SYNC |
2686 XLOG_STATE_DO_CALLBACK))) {
2687 if (ciclog && (ciclog->ic_state ==
2688 XLOG_STATE_DONE_SYNC)) {
2689 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2690 }
2691 break;
2692 }
2693 /*
2694 * We now have an iclog that is in either the
2695 * DO_CALLBACK or DONE_SYNC states. The other
2696 * states (WANT_SYNC, SYNCING, or CALLBACK were
2697 * caught by the above if and are going to
2698 * clean (i.e. we aren't doing their callbacks)
2699 * see the above if.
2700 */
2701
2702 /*
2703 * We will do one more check here to see if we
2704 * have chased our tail around.
2705 */
2706
2707 lowest_lsn = xlog_get_lowest_lsn(log);
2708 if (lowest_lsn &&
2709 XFS_LSN_CMP(lowest_lsn,
2710 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2711 iclog = iclog->ic_next;
2712 continue; /* Leave this iclog for
2713 * another thread */
2714 }
2715
2716 iclog->ic_state = XLOG_STATE_CALLBACK;
2717
2718
2719 /*
2720 * Completion of a iclog IO does not imply that
2721 * a transaction has completed, as transactions
2722 * can be large enough to span many iclogs. We
2723 * cannot change the tail of the log half way
2724 * through a transaction as this may be the only
2725 * transaction in the log and moving th etail to
2726 * point to the middle of it will prevent
2727 * recovery from finding the start of the
2728 * transaction. Hence we should only update the
2729 * last_sync_lsn if this iclog contains
2730 * transaction completion callbacks on it.
2731 *
2732 * We have to do this before we drop the
2733 * icloglock to ensure we are the only one that
2734 * can update it.
2735 */
2736 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2737 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2738 if (iclog->ic_callback)
2739 atomic64_set(&log->l_last_sync_lsn,
2740 be64_to_cpu(iclog->ic_header.h_lsn));
2741
2742 } else
2743 ioerrors++;
2744
2745 spin_unlock(&log->l_icloglock);
2746
2747 /*
2748 * Keep processing entries in the callback list until
2749 * we come around and it is empty. We need to
2750 * atomically see that the list is empty and change the
2751 * state to DIRTY so that we don't miss any more
2752 * callbacks being added.
2753 */
2754 spin_lock(&iclog->ic_callback_lock);
2755 cb = iclog->ic_callback;
2756 while (cb) {
2757 iclog->ic_callback_tail = &(iclog->ic_callback);
2758 iclog->ic_callback = NULL;
2759 spin_unlock(&iclog->ic_callback_lock);
2760
2761 /* perform callbacks in the order given */
2762 for (; cb; cb = cb_next) {
2763 cb_next = cb->cb_next;
2764 cb->cb_func(cb->cb_arg, aborted);
2765 }
2766 spin_lock(&iclog->ic_callback_lock);
2767 cb = iclog->ic_callback;
2768 }
2769
2770 loopdidcallbacks++;
2771 funcdidcallbacks++;
2772
2773 spin_lock(&log->l_icloglock);
2774 ASSERT(iclog->ic_callback == NULL);
2775 spin_unlock(&iclog->ic_callback_lock);
2776 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2777 iclog->ic_state = XLOG_STATE_DIRTY;
2778
2779 /*
2780 * Transition from DIRTY to ACTIVE if applicable.
2781 * NOP if STATE_IOERROR.
2782 */
2783 xlog_state_clean_log(log);
2784
2785 /* wake up threads waiting in xfs_log_force() */
2786 wake_up_all(&iclog->ic_force_wait);
2787
2788 iclog = iclog->ic_next;
2789 } while (first_iclog != iclog);
2790
2791 if (repeats > 5000) {
2792 flushcnt += repeats;
2793 repeats = 0;
2794 xfs_warn(log->l_mp,
2795 "%s: possible infinite loop (%d iterations)",
2796 __func__, flushcnt);
2797 }
2798 } while (!ioerrors && loopdidcallbacks);
2799
2800 #ifdef DEBUG
2801 /*
2802 * Make one last gasp attempt to see if iclogs are being left in limbo.
2803 * If the above loop finds an iclog earlier than the current iclog and
2804 * in one of the syncing states, the current iclog is put into
2805 * DO_CALLBACK and the callbacks are deferred to the completion of the
2806 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2807 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2808 * states.
2809 *
2810 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2811 * for ic_state == SYNCING.
2812 */
2813 if (funcdidcallbacks) {
2814 first_iclog = iclog = log->l_iclog;
2815 do {
2816 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2817 /*
2818 * Terminate the loop if iclogs are found in states
2819 * which will cause other threads to clean up iclogs.
2820 *
2821 * SYNCING - i/o completion will go through logs
2822 * DONE_SYNC - interrupt thread should be waiting for
2823 * l_icloglock
2824 * IOERROR - give up hope all ye who enter here
2825 */
2826 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2827 iclog->ic_state & XLOG_STATE_SYNCING ||
2828 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2829 iclog->ic_state == XLOG_STATE_IOERROR )
2830 break;
2831 iclog = iclog->ic_next;
2832 } while (first_iclog != iclog);
2833 }
2834 #endif
2835
2836 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2837 wake = 1;
2838 spin_unlock(&log->l_icloglock);
2839
2840 if (wake)
2841 wake_up_all(&log->l_flush_wait);
2842 }
2843
2844
2845 /*
2846 * Finish transitioning this iclog to the dirty state.
2847 *
2848 * Make sure that we completely execute this routine only when this is
2849 * the last call to the iclog. There is a good chance that iclog flushes,
2850 * when we reach the end of the physical log, get turned into 2 separate
2851 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2852 * routine. By using the reference count bwritecnt, we guarantee that only
2853 * the second completion goes through.
2854 *
2855 * Callbacks could take time, so they are done outside the scope of the
2856 * global state machine log lock.
2857 */
2858 STATIC void
xlog_state_done_syncing(xlog_in_core_t * iclog,int aborted)2859 xlog_state_done_syncing(
2860 xlog_in_core_t *iclog,
2861 int aborted)
2862 {
2863 struct xlog *log = iclog->ic_log;
2864
2865 spin_lock(&log->l_icloglock);
2866
2867 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2868 iclog->ic_state == XLOG_STATE_IOERROR);
2869 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2870 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2871
2872
2873 /*
2874 * If we got an error, either on the first buffer, or in the case of
2875 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2876 * and none should ever be attempted to be written to disk
2877 * again.
2878 */
2879 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2880 if (--iclog->ic_bwritecnt == 1) {
2881 spin_unlock(&log->l_icloglock);
2882 return;
2883 }
2884 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2885 }
2886
2887 /*
2888 * Someone could be sleeping prior to writing out the next
2889 * iclog buffer, we wake them all, one will get to do the
2890 * I/O, the others get to wait for the result.
2891 */
2892 wake_up_all(&iclog->ic_write_wait);
2893 spin_unlock(&log->l_icloglock);
2894 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2895 } /* xlog_state_done_syncing */
2896
2897
2898 /*
2899 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2900 * sleep. We wait on the flush queue on the head iclog as that should be
2901 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2902 * we will wait here and all new writes will sleep until a sync completes.
2903 *
2904 * The in-core logs are used in a circular fashion. They are not used
2905 * out-of-order even when an iclog past the head is free.
2906 *
2907 * return:
2908 * * log_offset where xlog_write() can start writing into the in-core
2909 * log's data space.
2910 * * in-core log pointer to which xlog_write() should write.
2911 * * boolean indicating this is a continued write to an in-core log.
2912 * If this is the last write, then the in-core log's offset field
2913 * needs to be incremented, depending on the amount of data which
2914 * is copied.
2915 */
2916 STATIC int
xlog_state_get_iclog_space(struct xlog * log,int len,struct xlog_in_core ** iclogp,struct xlog_ticket * ticket,int * continued_write,int * logoffsetp)2917 xlog_state_get_iclog_space(
2918 struct xlog *log,
2919 int len,
2920 struct xlog_in_core **iclogp,
2921 struct xlog_ticket *ticket,
2922 int *continued_write,
2923 int *logoffsetp)
2924 {
2925 int log_offset;
2926 xlog_rec_header_t *head;
2927 xlog_in_core_t *iclog;
2928 int error;
2929
2930 restart:
2931 spin_lock(&log->l_icloglock);
2932 if (XLOG_FORCED_SHUTDOWN(log)) {
2933 spin_unlock(&log->l_icloglock);
2934 return -EIO;
2935 }
2936
2937 iclog = log->l_iclog;
2938 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2939 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2940
2941 /* Wait for log writes to have flushed */
2942 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2943 goto restart;
2944 }
2945
2946 head = &iclog->ic_header;
2947
2948 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2949 log_offset = iclog->ic_offset;
2950
2951 /* On the 1st write to an iclog, figure out lsn. This works
2952 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2953 * committing to. If the offset is set, that's how many blocks
2954 * must be written.
2955 */
2956 if (log_offset == 0) {
2957 ticket->t_curr_res -= log->l_iclog_hsize;
2958 xlog_tic_add_region(ticket,
2959 log->l_iclog_hsize,
2960 XLOG_REG_TYPE_LRHEADER);
2961 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2962 head->h_lsn = cpu_to_be64(
2963 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2964 ASSERT(log->l_curr_block >= 0);
2965 }
2966
2967 /* If there is enough room to write everything, then do it. Otherwise,
2968 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2969 * bit is on, so this will get flushed out. Don't update ic_offset
2970 * until you know exactly how many bytes get copied. Therefore, wait
2971 * until later to update ic_offset.
2972 *
2973 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2974 * can fit into remaining data section.
2975 */
2976 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2977 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2978
2979 /*
2980 * If I'm the only one writing to this iclog, sync it to disk.
2981 * We need to do an atomic compare and decrement here to avoid
2982 * racing with concurrent atomic_dec_and_lock() calls in
2983 * xlog_state_release_iclog() when there is more than one
2984 * reference to the iclog.
2985 */
2986 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2987 /* we are the only one */
2988 spin_unlock(&log->l_icloglock);
2989 error = xlog_state_release_iclog(log, iclog);
2990 if (error)
2991 return error;
2992 } else {
2993 spin_unlock(&log->l_icloglock);
2994 }
2995 goto restart;
2996 }
2997
2998 /* Do we have enough room to write the full amount in the remainder
2999 * of this iclog? Or must we continue a write on the next iclog and
3000 * mark this iclog as completely taken? In the case where we switch
3001 * iclogs (to mark it taken), this particular iclog will release/sync
3002 * to disk in xlog_write().
3003 */
3004 if (len <= iclog->ic_size - iclog->ic_offset) {
3005 *continued_write = 0;
3006 iclog->ic_offset += len;
3007 } else {
3008 *continued_write = 1;
3009 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3010 }
3011 *iclogp = iclog;
3012
3013 ASSERT(iclog->ic_offset <= iclog->ic_size);
3014 spin_unlock(&log->l_icloglock);
3015
3016 *logoffsetp = log_offset;
3017 return 0;
3018 } /* xlog_state_get_iclog_space */
3019
3020 /* The first cnt-1 times through here we don't need to
3021 * move the grant write head because the permanent
3022 * reservation has reserved cnt times the unit amount.
3023 * Release part of current permanent unit reservation and
3024 * reset current reservation to be one units worth. Also
3025 * move grant reservation head forward.
3026 */
3027 STATIC void
xlog_regrant_reserve_log_space(struct xlog * log,struct xlog_ticket * ticket)3028 xlog_regrant_reserve_log_space(
3029 struct xlog *log,
3030 struct xlog_ticket *ticket)
3031 {
3032 trace_xfs_log_regrant_reserve_enter(log, ticket);
3033
3034 if (ticket->t_cnt > 0)
3035 ticket->t_cnt--;
3036
3037 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3038 ticket->t_curr_res);
3039 xlog_grant_sub_space(log, &log->l_write_head.grant,
3040 ticket->t_curr_res);
3041 ticket->t_curr_res = ticket->t_unit_res;
3042 xlog_tic_reset_res(ticket);
3043
3044 trace_xfs_log_regrant_reserve_sub(log, ticket);
3045
3046 /* just return if we still have some of the pre-reserved space */
3047 if (ticket->t_cnt > 0)
3048 return;
3049
3050 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3051 ticket->t_unit_res);
3052
3053 trace_xfs_log_regrant_reserve_exit(log, ticket);
3054
3055 ticket->t_curr_res = ticket->t_unit_res;
3056 xlog_tic_reset_res(ticket);
3057 } /* xlog_regrant_reserve_log_space */
3058
3059
3060 /*
3061 * Give back the space left from a reservation.
3062 *
3063 * All the information we need to make a correct determination of space left
3064 * is present. For non-permanent reservations, things are quite easy. The
3065 * count should have been decremented to zero. We only need to deal with the
3066 * space remaining in the current reservation part of the ticket. If the
3067 * ticket contains a permanent reservation, there may be left over space which
3068 * needs to be released. A count of N means that N-1 refills of the current
3069 * reservation can be done before we need to ask for more space. The first
3070 * one goes to fill up the first current reservation. Once we run out of
3071 * space, the count will stay at zero and the only space remaining will be
3072 * in the current reservation field.
3073 */
3074 STATIC void
xlog_ungrant_log_space(struct xlog * log,struct xlog_ticket * ticket)3075 xlog_ungrant_log_space(
3076 struct xlog *log,
3077 struct xlog_ticket *ticket)
3078 {
3079 int bytes;
3080
3081 if (ticket->t_cnt > 0)
3082 ticket->t_cnt--;
3083
3084 trace_xfs_log_ungrant_enter(log, ticket);
3085 trace_xfs_log_ungrant_sub(log, ticket);
3086
3087 /*
3088 * If this is a permanent reservation ticket, we may be able to free
3089 * up more space based on the remaining count.
3090 */
3091 bytes = ticket->t_curr_res;
3092 if (ticket->t_cnt > 0) {
3093 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3094 bytes += ticket->t_unit_res*ticket->t_cnt;
3095 }
3096
3097 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3098 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3099
3100 trace_xfs_log_ungrant_exit(log, ticket);
3101
3102 xfs_log_space_wake(log->l_mp);
3103 }
3104
3105 /*
3106 * Flush iclog to disk if this is the last reference to the given iclog and
3107 * the WANT_SYNC bit is set.
3108 *
3109 * When this function is entered, the iclog is not necessarily in the
3110 * WANT_SYNC state. It may be sitting around waiting to get filled.
3111 *
3112 *
3113 */
3114 STATIC int
xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog)3115 xlog_state_release_iclog(
3116 struct xlog *log,
3117 struct xlog_in_core *iclog)
3118 {
3119 int sync = 0; /* do we sync? */
3120
3121 if (iclog->ic_state & XLOG_STATE_IOERROR)
3122 return -EIO;
3123
3124 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3125 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3126 return 0;
3127
3128 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3129 spin_unlock(&log->l_icloglock);
3130 return -EIO;
3131 }
3132 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3133 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3134
3135 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3136 /* update tail before writing to iclog */
3137 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3138 sync++;
3139 iclog->ic_state = XLOG_STATE_SYNCING;
3140 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3141 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3142 /* cycle incremented when incrementing curr_block */
3143 }
3144 spin_unlock(&log->l_icloglock);
3145
3146 /*
3147 * We let the log lock go, so it's possible that we hit a log I/O
3148 * error or some other SHUTDOWN condition that marks the iclog
3149 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3150 * this iclog has consistent data, so we ignore IOERROR
3151 * flags after this point.
3152 */
3153 if (sync)
3154 return xlog_sync(log, iclog);
3155 return 0;
3156 } /* xlog_state_release_iclog */
3157
3158
3159 /*
3160 * This routine will mark the current iclog in the ring as WANT_SYNC
3161 * and move the current iclog pointer to the next iclog in the ring.
3162 * When this routine is called from xlog_state_get_iclog_space(), the
3163 * exact size of the iclog has not yet been determined. All we know is
3164 * that every data block. We have run out of space in this log record.
3165 */
3166 STATIC void
xlog_state_switch_iclogs(struct xlog * log,struct xlog_in_core * iclog,int eventual_size)3167 xlog_state_switch_iclogs(
3168 struct xlog *log,
3169 struct xlog_in_core *iclog,
3170 int eventual_size)
3171 {
3172 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3173 if (!eventual_size)
3174 eventual_size = iclog->ic_offset;
3175 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3176 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3177 log->l_prev_block = log->l_curr_block;
3178 log->l_prev_cycle = log->l_curr_cycle;
3179
3180 /* roll log?: ic_offset changed later */
3181 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3182
3183 /* Round up to next log-sunit */
3184 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3185 log->l_mp->m_sb.sb_logsunit > 1) {
3186 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3187 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3188 }
3189
3190 if (log->l_curr_block >= log->l_logBBsize) {
3191 /*
3192 * Rewind the current block before the cycle is bumped to make
3193 * sure that the combined LSN never transiently moves forward
3194 * when the log wraps to the next cycle. This is to support the
3195 * unlocked sample of these fields from xlog_valid_lsn(). Most
3196 * other cases should acquire l_icloglock.
3197 */
3198 log->l_curr_block -= log->l_logBBsize;
3199 ASSERT(log->l_curr_block >= 0);
3200 smp_wmb();
3201 log->l_curr_cycle++;
3202 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3203 log->l_curr_cycle++;
3204 }
3205 ASSERT(iclog == log->l_iclog);
3206 log->l_iclog = iclog->ic_next;
3207 } /* xlog_state_switch_iclogs */
3208
3209 /*
3210 * Write out all data in the in-core log as of this exact moment in time.
3211 *
3212 * Data may be written to the in-core log during this call. However,
3213 * we don't guarantee this data will be written out. A change from past
3214 * implementation means this routine will *not* write out zero length LRs.
3215 *
3216 * Basically, we try and perform an intelligent scan of the in-core logs.
3217 * If we determine there is no flushable data, we just return. There is no
3218 * flushable data if:
3219 *
3220 * 1. the current iclog is active and has no data; the previous iclog
3221 * is in the active or dirty state.
3222 * 2. the current iclog is drity, and the previous iclog is in the
3223 * active or dirty state.
3224 *
3225 * We may sleep if:
3226 *
3227 * 1. the current iclog is not in the active nor dirty state.
3228 * 2. the current iclog dirty, and the previous iclog is not in the
3229 * active nor dirty state.
3230 * 3. the current iclog is active, and there is another thread writing
3231 * to this particular iclog.
3232 * 4. a) the current iclog is active and has no other writers
3233 * b) when we return from flushing out this iclog, it is still
3234 * not in the active nor dirty state.
3235 */
3236 int
_xfs_log_force(struct xfs_mount * mp,uint flags,int * log_flushed)3237 _xfs_log_force(
3238 struct xfs_mount *mp,
3239 uint flags,
3240 int *log_flushed)
3241 {
3242 struct xlog *log = mp->m_log;
3243 struct xlog_in_core *iclog;
3244 xfs_lsn_t lsn;
3245
3246 XFS_STATS_INC(mp, xs_log_force);
3247
3248 xlog_cil_force(log);
3249
3250 spin_lock(&log->l_icloglock);
3251
3252 iclog = log->l_iclog;
3253 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3254 spin_unlock(&log->l_icloglock);
3255 return -EIO;
3256 }
3257
3258 /* If the head iclog is not active nor dirty, we just attach
3259 * ourselves to the head and go to sleep.
3260 */
3261 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3262 iclog->ic_state == XLOG_STATE_DIRTY) {
3263 /*
3264 * If the head is dirty or (active and empty), then
3265 * we need to look at the previous iclog. If the previous
3266 * iclog is active or dirty we are done. There is nothing
3267 * to sync out. Otherwise, we attach ourselves to the
3268 * previous iclog and go to sleep.
3269 */
3270 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3271 (atomic_read(&iclog->ic_refcnt) == 0
3272 && iclog->ic_offset == 0)) {
3273 iclog = iclog->ic_prev;
3274 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3275 iclog->ic_state == XLOG_STATE_DIRTY)
3276 goto no_sleep;
3277 else
3278 goto maybe_sleep;
3279 } else {
3280 if (atomic_read(&iclog->ic_refcnt) == 0) {
3281 /* We are the only one with access to this
3282 * iclog. Flush it out now. There should
3283 * be a roundoff of zero to show that someone
3284 * has already taken care of the roundoff from
3285 * the previous sync.
3286 */
3287 atomic_inc(&iclog->ic_refcnt);
3288 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3289 xlog_state_switch_iclogs(log, iclog, 0);
3290 spin_unlock(&log->l_icloglock);
3291
3292 if (xlog_state_release_iclog(log, iclog))
3293 return -EIO;
3294
3295 if (log_flushed)
3296 *log_flushed = 1;
3297 spin_lock(&log->l_icloglock);
3298 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3299 iclog->ic_state != XLOG_STATE_DIRTY)
3300 goto maybe_sleep;
3301 else
3302 goto no_sleep;
3303 } else {
3304 /* Someone else is writing to this iclog.
3305 * Use its call to flush out the data. However,
3306 * the other thread may not force out this LR,
3307 * so we mark it WANT_SYNC.
3308 */
3309 xlog_state_switch_iclogs(log, iclog, 0);
3310 goto maybe_sleep;
3311 }
3312 }
3313 }
3314
3315 /* By the time we come around again, the iclog could've been filled
3316 * which would give it another lsn. If we have a new lsn, just
3317 * return because the relevant data has been flushed.
3318 */
3319 maybe_sleep:
3320 if (flags & XFS_LOG_SYNC) {
3321 /*
3322 * We must check if we're shutting down here, before
3323 * we wait, while we're holding the l_icloglock.
3324 * Then we check again after waking up, in case our
3325 * sleep was disturbed by a bad news.
3326 */
3327 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3328 spin_unlock(&log->l_icloglock);
3329 return -EIO;
3330 }
3331 XFS_STATS_INC(mp, xs_log_force_sleep);
3332 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3333 /*
3334 * No need to grab the log lock here since we're
3335 * only deciding whether or not to return EIO
3336 * and the memory read should be atomic.
3337 */
3338 if (iclog->ic_state & XLOG_STATE_IOERROR)
3339 return -EIO;
3340 } else {
3341
3342 no_sleep:
3343 spin_unlock(&log->l_icloglock);
3344 }
3345 return 0;
3346 }
3347
3348 /*
3349 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3350 * about errors or whether the log was flushed or not. This is the normal
3351 * interface to use when trying to unpin items or move the log forward.
3352 */
3353 void
xfs_log_force(xfs_mount_t * mp,uint flags)3354 xfs_log_force(
3355 xfs_mount_t *mp,
3356 uint flags)
3357 {
3358 trace_xfs_log_force(mp, 0, _RET_IP_);
3359 _xfs_log_force(mp, flags, NULL);
3360 }
3361
3362 /*
3363 * Force the in-core log to disk for a specific LSN.
3364 *
3365 * Find in-core log with lsn.
3366 * If it is in the DIRTY state, just return.
3367 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3368 * state and go to sleep or return.
3369 * If it is in any other state, go to sleep or return.
3370 *
3371 * Synchronous forces are implemented with a signal variable. All callers
3372 * to force a given lsn to disk will wait on a the sv attached to the
3373 * specific in-core log. When given in-core log finally completes its
3374 * write to disk, that thread will wake up all threads waiting on the
3375 * sv.
3376 */
3377 int
_xfs_log_force_lsn(struct xfs_mount * mp,xfs_lsn_t lsn,uint flags,int * log_flushed)3378 _xfs_log_force_lsn(
3379 struct xfs_mount *mp,
3380 xfs_lsn_t lsn,
3381 uint flags,
3382 int *log_flushed)
3383 {
3384 struct xlog *log = mp->m_log;
3385 struct xlog_in_core *iclog;
3386 int already_slept = 0;
3387
3388 ASSERT(lsn != 0);
3389
3390 XFS_STATS_INC(mp, xs_log_force);
3391
3392 lsn = xlog_cil_force_lsn(log, lsn);
3393 if (lsn == NULLCOMMITLSN)
3394 return 0;
3395
3396 try_again:
3397 spin_lock(&log->l_icloglock);
3398 iclog = log->l_iclog;
3399 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3400 spin_unlock(&log->l_icloglock);
3401 return -EIO;
3402 }
3403
3404 do {
3405 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3406 iclog = iclog->ic_next;
3407 continue;
3408 }
3409
3410 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3411 spin_unlock(&log->l_icloglock);
3412 return 0;
3413 }
3414
3415 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3416 /*
3417 * We sleep here if we haven't already slept (e.g.
3418 * this is the first time we've looked at the correct
3419 * iclog buf) and the buffer before us is going to
3420 * be sync'ed. The reason for this is that if we
3421 * are doing sync transactions here, by waiting for
3422 * the previous I/O to complete, we can allow a few
3423 * more transactions into this iclog before we close
3424 * it down.
3425 *
3426 * Otherwise, we mark the buffer WANT_SYNC, and bump
3427 * up the refcnt so we can release the log (which
3428 * drops the ref count). The state switch keeps new
3429 * transaction commits from using this buffer. When
3430 * the current commits finish writing into the buffer,
3431 * the refcount will drop to zero and the buffer will
3432 * go out then.
3433 */
3434 if (!already_slept &&
3435 (iclog->ic_prev->ic_state &
3436 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3437 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3438
3439 XFS_STATS_INC(mp, xs_log_force_sleep);
3440
3441 xlog_wait(&iclog->ic_prev->ic_write_wait,
3442 &log->l_icloglock);
3443 already_slept = 1;
3444 goto try_again;
3445 }
3446 atomic_inc(&iclog->ic_refcnt);
3447 xlog_state_switch_iclogs(log, iclog, 0);
3448 spin_unlock(&log->l_icloglock);
3449 if (xlog_state_release_iclog(log, iclog))
3450 return -EIO;
3451 if (log_flushed)
3452 *log_flushed = 1;
3453 spin_lock(&log->l_icloglock);
3454 }
3455
3456 if ((flags & XFS_LOG_SYNC) && /* sleep */
3457 !(iclog->ic_state &
3458 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3459 /*
3460 * Don't wait on completion if we know that we've
3461 * gotten a log write error.
3462 */
3463 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3464 spin_unlock(&log->l_icloglock);
3465 return -EIO;
3466 }
3467 XFS_STATS_INC(mp, xs_log_force_sleep);
3468 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3469 /*
3470 * No need to grab the log lock here since we're
3471 * only deciding whether or not to return EIO
3472 * and the memory read should be atomic.
3473 */
3474 if (iclog->ic_state & XLOG_STATE_IOERROR)
3475 return -EIO;
3476 } else { /* just return */
3477 spin_unlock(&log->l_icloglock);
3478 }
3479
3480 return 0;
3481 } while (iclog != log->l_iclog);
3482
3483 spin_unlock(&log->l_icloglock);
3484 return 0;
3485 }
3486
3487 /*
3488 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3489 * about errors or whether the log was flushed or not. This is the normal
3490 * interface to use when trying to unpin items or move the log forward.
3491 */
3492 void
xfs_log_force_lsn(xfs_mount_t * mp,xfs_lsn_t lsn,uint flags)3493 xfs_log_force_lsn(
3494 xfs_mount_t *mp,
3495 xfs_lsn_t lsn,
3496 uint flags)
3497 {
3498 trace_xfs_log_force(mp, lsn, _RET_IP_);
3499 _xfs_log_force_lsn(mp, lsn, flags, NULL);
3500 }
3501
3502 /*
3503 * Called when we want to mark the current iclog as being ready to sync to
3504 * disk.
3505 */
3506 STATIC void
xlog_state_want_sync(struct xlog * log,struct xlog_in_core * iclog)3507 xlog_state_want_sync(
3508 struct xlog *log,
3509 struct xlog_in_core *iclog)
3510 {
3511 assert_spin_locked(&log->l_icloglock);
3512
3513 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3514 xlog_state_switch_iclogs(log, iclog, 0);
3515 } else {
3516 ASSERT(iclog->ic_state &
3517 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3518 }
3519 }
3520
3521
3522 /*****************************************************************************
3523 *
3524 * TICKET functions
3525 *
3526 *****************************************************************************
3527 */
3528
3529 /*
3530 * Free a used ticket when its refcount falls to zero.
3531 */
3532 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3533 xfs_log_ticket_put(
3534 xlog_ticket_t *ticket)
3535 {
3536 ASSERT(atomic_read(&ticket->t_ref) > 0);
3537 if (atomic_dec_and_test(&ticket->t_ref))
3538 kmem_zone_free(xfs_log_ticket_zone, ticket);
3539 }
3540
3541 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3542 xfs_log_ticket_get(
3543 xlog_ticket_t *ticket)
3544 {
3545 ASSERT(atomic_read(&ticket->t_ref) > 0);
3546 atomic_inc(&ticket->t_ref);
3547 return ticket;
3548 }
3549
3550 /*
3551 * Figure out the total log space unit (in bytes) that would be
3552 * required for a log ticket.
3553 */
3554 int
xfs_log_calc_unit_res(struct xfs_mount * mp,int unit_bytes)3555 xfs_log_calc_unit_res(
3556 struct xfs_mount *mp,
3557 int unit_bytes)
3558 {
3559 struct xlog *log = mp->m_log;
3560 int iclog_space;
3561 uint num_headers;
3562
3563 /*
3564 * Permanent reservations have up to 'cnt'-1 active log operations
3565 * in the log. A unit in this case is the amount of space for one
3566 * of these log operations. Normal reservations have a cnt of 1
3567 * and their unit amount is the total amount of space required.
3568 *
3569 * The following lines of code account for non-transaction data
3570 * which occupy space in the on-disk log.
3571 *
3572 * Normal form of a transaction is:
3573 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3574 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3575 *
3576 * We need to account for all the leadup data and trailer data
3577 * around the transaction data.
3578 * And then we need to account for the worst case in terms of using
3579 * more space.
3580 * The worst case will happen if:
3581 * - the placement of the transaction happens to be such that the
3582 * roundoff is at its maximum
3583 * - the transaction data is synced before the commit record is synced
3584 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3585 * Therefore the commit record is in its own Log Record.
3586 * This can happen as the commit record is called with its
3587 * own region to xlog_write().
3588 * This then means that in the worst case, roundoff can happen for
3589 * the commit-rec as well.
3590 * The commit-rec is smaller than padding in this scenario and so it is
3591 * not added separately.
3592 */
3593
3594 /* for trans header */
3595 unit_bytes += sizeof(xlog_op_header_t);
3596 unit_bytes += sizeof(xfs_trans_header_t);
3597
3598 /* for start-rec */
3599 unit_bytes += sizeof(xlog_op_header_t);
3600
3601 /*
3602 * for LR headers - the space for data in an iclog is the size minus
3603 * the space used for the headers. If we use the iclog size, then we
3604 * undercalculate the number of headers required.
3605 *
3606 * Furthermore - the addition of op headers for split-recs might
3607 * increase the space required enough to require more log and op
3608 * headers, so take that into account too.
3609 *
3610 * IMPORTANT: This reservation makes the assumption that if this
3611 * transaction is the first in an iclog and hence has the LR headers
3612 * accounted to it, then the remaining space in the iclog is
3613 * exclusively for this transaction. i.e. if the transaction is larger
3614 * than the iclog, it will be the only thing in that iclog.
3615 * Fundamentally, this means we must pass the entire log vector to
3616 * xlog_write to guarantee this.
3617 */
3618 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3619 num_headers = howmany(unit_bytes, iclog_space);
3620
3621 /* for split-recs - ophdrs added when data split over LRs */
3622 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3623
3624 /* add extra header reservations if we overrun */
3625 while (!num_headers ||
3626 howmany(unit_bytes, iclog_space) > num_headers) {
3627 unit_bytes += sizeof(xlog_op_header_t);
3628 num_headers++;
3629 }
3630 unit_bytes += log->l_iclog_hsize * num_headers;
3631
3632 /* for commit-rec LR header - note: padding will subsume the ophdr */
3633 unit_bytes += log->l_iclog_hsize;
3634
3635 /* for roundoff padding for transaction data and one for commit record */
3636 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3637 /* log su roundoff */
3638 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3639 } else {
3640 /* BB roundoff */
3641 unit_bytes += 2 * BBSIZE;
3642 }
3643
3644 return unit_bytes;
3645 }
3646
3647 /*
3648 * Allocate and initialise a new log ticket.
3649 */
3650 struct xlog_ticket *
xlog_ticket_alloc(struct xlog * log,int unit_bytes,int cnt,char client,bool permanent,xfs_km_flags_t alloc_flags)3651 xlog_ticket_alloc(
3652 struct xlog *log,
3653 int unit_bytes,
3654 int cnt,
3655 char client,
3656 bool permanent,
3657 xfs_km_flags_t alloc_flags)
3658 {
3659 struct xlog_ticket *tic;
3660 int unit_res;
3661
3662 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3663 if (!tic)
3664 return NULL;
3665
3666 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3667
3668 atomic_set(&tic->t_ref, 1);
3669 tic->t_task = current;
3670 INIT_LIST_HEAD(&tic->t_queue);
3671 tic->t_unit_res = unit_res;
3672 tic->t_curr_res = unit_res;
3673 tic->t_cnt = cnt;
3674 tic->t_ocnt = cnt;
3675 tic->t_tid = prandom_u32();
3676 tic->t_clientid = client;
3677 tic->t_flags = XLOG_TIC_INITED;
3678 if (permanent)
3679 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3680
3681 xlog_tic_reset_res(tic);
3682
3683 return tic;
3684 }
3685
3686
3687 /******************************************************************************
3688 *
3689 * Log debug routines
3690 *
3691 ******************************************************************************
3692 */
3693 #if defined(DEBUG)
3694 /*
3695 * Make sure that the destination ptr is within the valid data region of
3696 * one of the iclogs. This uses backup pointers stored in a different
3697 * part of the log in case we trash the log structure.
3698 */
3699 void
xlog_verify_dest_ptr(struct xlog * log,void * ptr)3700 xlog_verify_dest_ptr(
3701 struct xlog *log,
3702 void *ptr)
3703 {
3704 int i;
3705 int good_ptr = 0;
3706
3707 for (i = 0; i < log->l_iclog_bufs; i++) {
3708 if (ptr >= log->l_iclog_bak[i] &&
3709 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3710 good_ptr++;
3711 }
3712
3713 if (!good_ptr)
3714 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3715 }
3716
3717 /*
3718 * Check to make sure the grant write head didn't just over lap the tail. If
3719 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3720 * the cycles differ by exactly one and check the byte count.
3721 *
3722 * This check is run unlocked, so can give false positives. Rather than assert
3723 * on failures, use a warn-once flag and a panic tag to allow the admin to
3724 * determine if they want to panic the machine when such an error occurs. For
3725 * debug kernels this will have the same effect as using an assert but, unlinke
3726 * an assert, it can be turned off at runtime.
3727 */
3728 STATIC void
xlog_verify_grant_tail(struct xlog * log)3729 xlog_verify_grant_tail(
3730 struct xlog *log)
3731 {
3732 int tail_cycle, tail_blocks;
3733 int cycle, space;
3734
3735 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3736 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3737 if (tail_cycle != cycle) {
3738 if (cycle - 1 != tail_cycle &&
3739 !(log->l_flags & XLOG_TAIL_WARN)) {
3740 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3741 "%s: cycle - 1 != tail_cycle", __func__);
3742 log->l_flags |= XLOG_TAIL_WARN;
3743 }
3744
3745 if (space > BBTOB(tail_blocks) &&
3746 !(log->l_flags & XLOG_TAIL_WARN)) {
3747 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3748 "%s: space > BBTOB(tail_blocks)", __func__);
3749 log->l_flags |= XLOG_TAIL_WARN;
3750 }
3751 }
3752 }
3753
3754 /* check if it will fit */
3755 STATIC void
xlog_verify_tail_lsn(struct xlog * log,struct xlog_in_core * iclog,xfs_lsn_t tail_lsn)3756 xlog_verify_tail_lsn(
3757 struct xlog *log,
3758 struct xlog_in_core *iclog,
3759 xfs_lsn_t tail_lsn)
3760 {
3761 int blocks;
3762
3763 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3764 blocks =
3765 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3766 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3767 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3768 } else {
3769 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3770
3771 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3772 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3773
3774 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3775 if (blocks < BTOBB(iclog->ic_offset) + 1)
3776 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3777 }
3778 } /* xlog_verify_tail_lsn */
3779
3780 /*
3781 * Perform a number of checks on the iclog before writing to disk.
3782 *
3783 * 1. Make sure the iclogs are still circular
3784 * 2. Make sure we have a good magic number
3785 * 3. Make sure we don't have magic numbers in the data
3786 * 4. Check fields of each log operation header for:
3787 * A. Valid client identifier
3788 * B. tid ptr value falls in valid ptr space (user space code)
3789 * C. Length in log record header is correct according to the
3790 * individual operation headers within record.
3791 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3792 * log, check the preceding blocks of the physical log to make sure all
3793 * the cycle numbers agree with the current cycle number.
3794 */
3795 STATIC void
xlog_verify_iclog(struct xlog * log,struct xlog_in_core * iclog,int count,bool syncing)3796 xlog_verify_iclog(
3797 struct xlog *log,
3798 struct xlog_in_core *iclog,
3799 int count,
3800 bool syncing)
3801 {
3802 xlog_op_header_t *ophead;
3803 xlog_in_core_t *icptr;
3804 xlog_in_core_2_t *xhdr;
3805 void *base_ptr, *ptr, *p;
3806 ptrdiff_t field_offset;
3807 __uint8_t clientid;
3808 int len, i, j, k, op_len;
3809 int idx;
3810
3811 /* check validity of iclog pointers */
3812 spin_lock(&log->l_icloglock);
3813 icptr = log->l_iclog;
3814 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3815 ASSERT(icptr);
3816
3817 if (icptr != log->l_iclog)
3818 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3819 spin_unlock(&log->l_icloglock);
3820
3821 /* check log magic numbers */
3822 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3823 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3824
3825 base_ptr = ptr = &iclog->ic_header;
3826 p = &iclog->ic_header;
3827 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3828 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3829 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3830 __func__);
3831 }
3832
3833 /* check fields */
3834 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3835 base_ptr = ptr = iclog->ic_datap;
3836 ophead = ptr;
3837 xhdr = iclog->ic_data;
3838 for (i = 0; i < len; i++) {
3839 ophead = ptr;
3840
3841 /* clientid is only 1 byte */
3842 p = &ophead->oh_clientid;
3843 field_offset = p - base_ptr;
3844 if (!syncing || (field_offset & 0x1ff)) {
3845 clientid = ophead->oh_clientid;
3846 } else {
3847 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3848 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3849 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3850 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3851 clientid = xlog_get_client_id(
3852 xhdr[j].hic_xheader.xh_cycle_data[k]);
3853 } else {
3854 clientid = xlog_get_client_id(
3855 iclog->ic_header.h_cycle_data[idx]);
3856 }
3857 }
3858 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3859 xfs_warn(log->l_mp,
3860 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3861 __func__, clientid, ophead,
3862 (unsigned long)field_offset);
3863
3864 /* check length */
3865 p = &ophead->oh_len;
3866 field_offset = p - base_ptr;
3867 if (!syncing || (field_offset & 0x1ff)) {
3868 op_len = be32_to_cpu(ophead->oh_len);
3869 } else {
3870 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3871 (uintptr_t)iclog->ic_datap);
3872 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3873 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3874 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3875 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3876 } else {
3877 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3878 }
3879 }
3880 ptr += sizeof(xlog_op_header_t) + op_len;
3881 }
3882 } /* xlog_verify_iclog */
3883 #endif
3884
3885 /*
3886 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3887 */
3888 STATIC int
xlog_state_ioerror(struct xlog * log)3889 xlog_state_ioerror(
3890 struct xlog *log)
3891 {
3892 xlog_in_core_t *iclog, *ic;
3893
3894 iclog = log->l_iclog;
3895 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3896 /*
3897 * Mark all the incore logs IOERROR.
3898 * From now on, no log flushes will result.
3899 */
3900 ic = iclog;
3901 do {
3902 ic->ic_state = XLOG_STATE_IOERROR;
3903 ic = ic->ic_next;
3904 } while (ic != iclog);
3905 return 0;
3906 }
3907 /*
3908 * Return non-zero, if state transition has already happened.
3909 */
3910 return 1;
3911 }
3912
3913 /*
3914 * This is called from xfs_force_shutdown, when we're forcibly
3915 * shutting down the filesystem, typically because of an IO error.
3916 * Our main objectives here are to make sure that:
3917 * a. if !logerror, flush the logs to disk. Anything modified
3918 * after this is ignored.
3919 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3920 * parties to find out, 'atomically'.
3921 * c. those who're sleeping on log reservations, pinned objects and
3922 * other resources get woken up, and be told the bad news.
3923 * d. nothing new gets queued up after (b) and (c) are done.
3924 *
3925 * Note: for the !logerror case we need to flush the regions held in memory out
3926 * to disk first. This needs to be done before the log is marked as shutdown,
3927 * otherwise the iclog writes will fail.
3928 */
3929 int
xfs_log_force_umount(struct xfs_mount * mp,int logerror)3930 xfs_log_force_umount(
3931 struct xfs_mount *mp,
3932 int logerror)
3933 {
3934 struct xlog *log;
3935 int retval;
3936
3937 log = mp->m_log;
3938
3939 /*
3940 * If this happens during log recovery, don't worry about
3941 * locking; the log isn't open for business yet.
3942 */
3943 if (!log ||
3944 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3945 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3946 if (mp->m_sb_bp)
3947 mp->m_sb_bp->b_flags |= XBF_DONE;
3948 return 0;
3949 }
3950
3951 /*
3952 * Somebody could've already done the hard work for us.
3953 * No need to get locks for this.
3954 */
3955 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3956 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3957 return 1;
3958 }
3959
3960 /*
3961 * Flush all the completed transactions to disk before marking the log
3962 * being shut down. We need to do it in this order to ensure that
3963 * completed operations are safely on disk before we shut down, and that
3964 * we don't have to issue any buffer IO after the shutdown flags are set
3965 * to guarantee this.
3966 */
3967 if (!logerror)
3968 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3969
3970 /*
3971 * mark the filesystem and the as in a shutdown state and wake
3972 * everybody up to tell them the bad news.
3973 */
3974 spin_lock(&log->l_icloglock);
3975 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3976 if (mp->m_sb_bp)
3977 mp->m_sb_bp->b_flags |= XBF_DONE;
3978
3979 /*
3980 * Mark the log and the iclogs with IO error flags to prevent any
3981 * further log IO from being issued or completed.
3982 */
3983 log->l_flags |= XLOG_IO_ERROR;
3984 retval = xlog_state_ioerror(log);
3985 spin_unlock(&log->l_icloglock);
3986
3987 /*
3988 * We don't want anybody waiting for log reservations after this. That
3989 * means we have to wake up everybody queued up on reserveq as well as
3990 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3991 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3992 * action is protected by the grant locks.
3993 */
3994 xlog_grant_head_wake_all(&log->l_reserve_head);
3995 xlog_grant_head_wake_all(&log->l_write_head);
3996
3997 /*
3998 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3999 * as if the log writes were completed. The abort handling in the log
4000 * item committed callback functions will do this again under lock to
4001 * avoid races.
4002 */
4003 wake_up_all(&log->l_cilp->xc_commit_wait);
4004 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4005
4006 #ifdef XFSERRORDEBUG
4007 {
4008 xlog_in_core_t *iclog;
4009
4010 spin_lock(&log->l_icloglock);
4011 iclog = log->l_iclog;
4012 do {
4013 ASSERT(iclog->ic_callback == 0);
4014 iclog = iclog->ic_next;
4015 } while (iclog != log->l_iclog);
4016 spin_unlock(&log->l_icloglock);
4017 }
4018 #endif
4019 /* return non-zero if log IOERROR transition had already happened */
4020 return retval;
4021 }
4022
4023 STATIC int
xlog_iclogs_empty(struct xlog * log)4024 xlog_iclogs_empty(
4025 struct xlog *log)
4026 {
4027 xlog_in_core_t *iclog;
4028
4029 iclog = log->l_iclog;
4030 do {
4031 /* endianness does not matter here, zero is zero in
4032 * any language.
4033 */
4034 if (iclog->ic_header.h_num_logops)
4035 return 0;
4036 iclog = iclog->ic_next;
4037 } while (iclog != log->l_iclog);
4038 return 1;
4039 }
4040
4041 /*
4042 * Verify that an LSN stamped into a piece of metadata is valid. This is
4043 * intended for use in read verifiers on v5 superblocks.
4044 */
4045 bool
xfs_log_check_lsn(struct xfs_mount * mp,xfs_lsn_t lsn)4046 xfs_log_check_lsn(
4047 struct xfs_mount *mp,
4048 xfs_lsn_t lsn)
4049 {
4050 struct xlog *log = mp->m_log;
4051 bool valid;
4052
4053 /*
4054 * norecovery mode skips mount-time log processing and unconditionally
4055 * resets the in-core LSN. We can't validate in this mode, but
4056 * modifications are not allowed anyways so just return true.
4057 */
4058 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4059 return true;
4060
4061 /*
4062 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4063 * handled by recovery and thus safe to ignore here.
4064 */
4065 if (lsn == NULLCOMMITLSN)
4066 return true;
4067
4068 valid = xlog_valid_lsn(mp->m_log, lsn);
4069
4070 /* warn the user about what's gone wrong before verifier failure */
4071 if (!valid) {
4072 spin_lock(&log->l_icloglock);
4073 xfs_warn(mp,
4074 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4075 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4076 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4077 log->l_curr_cycle, log->l_curr_block);
4078 spin_unlock(&log->l_icloglock);
4079 }
4080
4081 return valid;
4082 }
4083