• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
37 
38 kmem_zone_t	*xfs_log_ticket_zone;
39 
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43 	struct xlog		*log,
44 	struct xlog_ticket	*ticket,
45 	struct xlog_in_core	**iclog,
46 	xfs_lsn_t		*commitlsnp);
47 
48 STATIC struct xlog *
49 xlog_alloc_log(
50 	struct xfs_mount	*mp,
51 	struct xfs_buftarg	*log_target,
52 	xfs_daddr_t		blk_offset,
53 	int			num_bblks);
54 STATIC int
55 xlog_space_left(
56 	struct xlog		*log,
57 	atomic64_t		*head);
58 STATIC int
59 xlog_sync(
60 	struct xlog		*log,
61 	struct xlog_in_core	*iclog);
62 STATIC void
63 xlog_dealloc_log(
64 	struct xlog		*log);
65 
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70 	struct xlog		*log,
71 	int			aborted,
72 	struct xlog_in_core	*iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75 	struct xlog		*log,
76 	int			len,
77 	struct xlog_in_core	**iclog,
78 	struct xlog_ticket	*ticket,
79 	int			*continued_write,
80 	int			*logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83 	struct xlog		*log,
84 	struct xlog_in_core	*iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87 	struct xlog		*log,
88 	struct xlog_in_core	*iclog,
89 	int			eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92 	struct xlog		*log,
93 	struct xlog_in_core	*iclog);
94 
95 STATIC void
96 xlog_grant_push_ail(
97 	struct xlog		*log,
98 	int			need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101 	struct xlog		*log,
102 	struct xlog_ticket	*ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105 	struct xlog		*log,
106 	struct xlog_ticket	*ticket);
107 
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111 	struct xlog		*log,
112 	void			*ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115 	struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118 	struct xlog		*log,
119 	struct xlog_in_core	*iclog,
120 	int			count,
121 	bool                    syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124 	struct xlog		*log,
125 	struct xlog_in_core	*iclog,
126 	xfs_lsn_t		tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133 
134 STATIC int
135 xlog_iclogs_empty(
136 	struct xlog		*log);
137 
138 static void
xlog_grant_sub_space(struct xlog * log,atomic64_t * head,int bytes)139 xlog_grant_sub_space(
140 	struct xlog		*log,
141 	atomic64_t		*head,
142 	int			bytes)
143 {
144 	int64_t	head_val = atomic64_read(head);
145 	int64_t new, old;
146 
147 	do {
148 		int	cycle, space;
149 
150 		xlog_crack_grant_head_val(head_val, &cycle, &space);
151 
152 		space -= bytes;
153 		if (space < 0) {
154 			space += log->l_logsize;
155 			cycle--;
156 		}
157 
158 		old = head_val;
159 		new = xlog_assign_grant_head_val(cycle, space);
160 		head_val = atomic64_cmpxchg(head, old, new);
161 	} while (head_val != old);
162 }
163 
164 static void
xlog_grant_add_space(struct xlog * log,atomic64_t * head,int bytes)165 xlog_grant_add_space(
166 	struct xlog		*log,
167 	atomic64_t		*head,
168 	int			bytes)
169 {
170 	int64_t	head_val = atomic64_read(head);
171 	int64_t new, old;
172 
173 	do {
174 		int		tmp;
175 		int		cycle, space;
176 
177 		xlog_crack_grant_head_val(head_val, &cycle, &space);
178 
179 		tmp = log->l_logsize - space;
180 		if (tmp > bytes)
181 			space += bytes;
182 		else {
183 			space = bytes - tmp;
184 			cycle++;
185 		}
186 
187 		old = head_val;
188 		new = xlog_assign_grant_head_val(cycle, space);
189 		head_val = atomic64_cmpxchg(head, old, new);
190 	} while (head_val != old);
191 }
192 
193 STATIC void
xlog_grant_head_init(struct xlog_grant_head * head)194 xlog_grant_head_init(
195 	struct xlog_grant_head	*head)
196 {
197 	xlog_assign_grant_head(&head->grant, 1, 0);
198 	INIT_LIST_HEAD(&head->waiters);
199 	spin_lock_init(&head->lock);
200 }
201 
202 STATIC void
xlog_grant_head_wake_all(struct xlog_grant_head * head)203 xlog_grant_head_wake_all(
204 	struct xlog_grant_head	*head)
205 {
206 	struct xlog_ticket	*tic;
207 
208 	spin_lock(&head->lock);
209 	list_for_each_entry(tic, &head->waiters, t_queue)
210 		wake_up_process(tic->t_task);
211 	spin_unlock(&head->lock);
212 }
213 
214 static inline int
xlog_ticket_reservation(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic)215 xlog_ticket_reservation(
216 	struct xlog		*log,
217 	struct xlog_grant_head	*head,
218 	struct xlog_ticket	*tic)
219 {
220 	if (head == &log->l_write_head) {
221 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 		return tic->t_unit_res;
223 	} else {
224 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 			return tic->t_unit_res * tic->t_cnt;
226 		else
227 			return tic->t_unit_res;
228 	}
229 }
230 
231 STATIC bool
xlog_grant_head_wake(struct xlog * log,struct xlog_grant_head * head,int * free_bytes)232 xlog_grant_head_wake(
233 	struct xlog		*log,
234 	struct xlog_grant_head	*head,
235 	int			*free_bytes)
236 {
237 	struct xlog_ticket	*tic;
238 	int			need_bytes;
239 
240 	list_for_each_entry(tic, &head->waiters, t_queue) {
241 		need_bytes = xlog_ticket_reservation(log, head, tic);
242 		if (*free_bytes < need_bytes)
243 			return false;
244 
245 		*free_bytes -= need_bytes;
246 		trace_xfs_log_grant_wake_up(log, tic);
247 		wake_up_process(tic->t_task);
248 	}
249 
250 	return true;
251 }
252 
253 STATIC int
xlog_grant_head_wait(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int need_bytes)254 xlog_grant_head_wait(
255 	struct xlog		*log,
256 	struct xlog_grant_head	*head,
257 	struct xlog_ticket	*tic,
258 	int			need_bytes) __releases(&head->lock)
259 					    __acquires(&head->lock)
260 {
261 	list_add_tail(&tic->t_queue, &head->waiters);
262 
263 	do {
264 		if (XLOG_FORCED_SHUTDOWN(log))
265 			goto shutdown;
266 		xlog_grant_push_ail(log, need_bytes);
267 
268 		__set_current_state(TASK_UNINTERRUPTIBLE);
269 		spin_unlock(&head->lock);
270 
271 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
272 
273 		trace_xfs_log_grant_sleep(log, tic);
274 		schedule();
275 		trace_xfs_log_grant_wake(log, tic);
276 
277 		spin_lock(&head->lock);
278 		if (XLOG_FORCED_SHUTDOWN(log))
279 			goto shutdown;
280 	} while (xlog_space_left(log, &head->grant) < need_bytes);
281 
282 	list_del_init(&tic->t_queue);
283 	return 0;
284 shutdown:
285 	list_del_init(&tic->t_queue);
286 	return -EIO;
287 }
288 
289 /*
290  * Atomically get the log space required for a log ticket.
291  *
292  * Once a ticket gets put onto head->waiters, it will only return after the
293  * needed reservation is satisfied.
294  *
295  * This function is structured so that it has a lock free fast path. This is
296  * necessary because every new transaction reservation will come through this
297  * path. Hence any lock will be globally hot if we take it unconditionally on
298  * every pass.
299  *
300  * As tickets are only ever moved on and off head->waiters under head->lock, we
301  * only need to take that lock if we are going to add the ticket to the queue
302  * and sleep. We can avoid taking the lock if the ticket was never added to
303  * head->waiters because the t_queue list head will be empty and we hold the
304  * only reference to it so it can safely be checked unlocked.
305  */
306 STATIC int
xlog_grant_head_check(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int * need_bytes)307 xlog_grant_head_check(
308 	struct xlog		*log,
309 	struct xlog_grant_head	*head,
310 	struct xlog_ticket	*tic,
311 	int			*need_bytes)
312 {
313 	int			free_bytes;
314 	int			error = 0;
315 
316 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317 
318 	/*
319 	 * If there are other waiters on the queue then give them a chance at
320 	 * logspace before us.  Wake up the first waiters, if we do not wake
321 	 * up all the waiters then go to sleep waiting for more free space,
322 	 * otherwise try to get some space for this transaction.
323 	 */
324 	*need_bytes = xlog_ticket_reservation(log, head, tic);
325 	free_bytes = xlog_space_left(log, &head->grant);
326 	if (!list_empty_careful(&head->waiters)) {
327 		spin_lock(&head->lock);
328 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 		    free_bytes < *need_bytes) {
330 			error = xlog_grant_head_wait(log, head, tic,
331 						     *need_bytes);
332 		}
333 		spin_unlock(&head->lock);
334 	} else if (free_bytes < *need_bytes) {
335 		spin_lock(&head->lock);
336 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 		spin_unlock(&head->lock);
338 	}
339 
340 	return error;
341 }
342 
343 static void
xlog_tic_reset_res(xlog_ticket_t * tic)344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346 	tic->t_res_num = 0;
347 	tic->t_res_arr_sum = 0;
348 	tic->t_res_num_ophdrs = 0;
349 }
350 
351 static void
xlog_tic_add_region(xlog_ticket_t * tic,uint len,uint type)352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 		/* add to overflow and start again */
356 		tic->t_res_o_flow += tic->t_res_arr_sum;
357 		tic->t_res_num = 0;
358 		tic->t_res_arr_sum = 0;
359 	}
360 
361 	tic->t_res_arr[tic->t_res_num].r_len = len;
362 	tic->t_res_arr[tic->t_res_num].r_type = type;
363 	tic->t_res_arr_sum += len;
364 	tic->t_res_num++;
365 }
366 
367 /*
368  * Replenish the byte reservation required by moving the grant write head.
369  */
370 int
xfs_log_regrant(struct xfs_mount * mp,struct xlog_ticket * tic)371 xfs_log_regrant(
372 	struct xfs_mount	*mp,
373 	struct xlog_ticket	*tic)
374 {
375 	struct xlog		*log = mp->m_log;
376 	int			need_bytes;
377 	int			error = 0;
378 
379 	if (XLOG_FORCED_SHUTDOWN(log))
380 		return -EIO;
381 
382 	XFS_STATS_INC(mp, xs_try_logspace);
383 
384 	/*
385 	 * This is a new transaction on the ticket, so we need to change the
386 	 * transaction ID so that the next transaction has a different TID in
387 	 * the log. Just add one to the existing tid so that we can see chains
388 	 * of rolling transactions in the log easily.
389 	 */
390 	tic->t_tid++;
391 
392 	xlog_grant_push_ail(log, tic->t_unit_res);
393 
394 	tic->t_curr_res = tic->t_unit_res;
395 	xlog_tic_reset_res(tic);
396 
397 	if (tic->t_cnt > 0)
398 		return 0;
399 
400 	trace_xfs_log_regrant(log, tic);
401 
402 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 				      &need_bytes);
404 	if (error)
405 		goto out_error;
406 
407 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 	trace_xfs_log_regrant_exit(log, tic);
409 	xlog_verify_grant_tail(log);
410 	return 0;
411 
412 out_error:
413 	/*
414 	 * If we are failing, make sure the ticket doesn't have any current
415 	 * reservations.  We don't want to add this back when the ticket/
416 	 * transaction gets cancelled.
417 	 */
418 	tic->t_curr_res = 0;
419 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
420 	return error;
421 }
422 
423 /*
424  * Reserve log space and return a ticket corresponding the reservation.
425  *
426  * Each reservation is going to reserve extra space for a log record header.
427  * When writes happen to the on-disk log, we don't subtract the length of the
428  * log record header from any reservation.  By wasting space in each
429  * reservation, we prevent over allocation problems.
430  */
431 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticp,__uint8_t client,bool permanent)432 xfs_log_reserve(
433 	struct xfs_mount	*mp,
434 	int		 	unit_bytes,
435 	int		 	cnt,
436 	struct xlog_ticket	**ticp,
437 	__uint8_t	 	client,
438 	bool			permanent)
439 {
440 	struct xlog		*log = mp->m_log;
441 	struct xlog_ticket	*tic;
442 	int			need_bytes;
443 	int			error = 0;
444 
445 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
446 
447 	if (XLOG_FORCED_SHUTDOWN(log))
448 		return -EIO;
449 
450 	XFS_STATS_INC(mp, xs_try_logspace);
451 
452 	ASSERT(*ticp == NULL);
453 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
454 				KM_SLEEP | KM_MAYFAIL);
455 	if (!tic)
456 		return -ENOMEM;
457 
458 	*ticp = tic;
459 
460 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
461 					    : tic->t_unit_res);
462 
463 	trace_xfs_log_reserve(log, tic);
464 
465 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
466 				      &need_bytes);
467 	if (error)
468 		goto out_error;
469 
470 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
471 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
472 	trace_xfs_log_reserve_exit(log, tic);
473 	xlog_verify_grant_tail(log);
474 	return 0;
475 
476 out_error:
477 	/*
478 	 * If we are failing, make sure the ticket doesn't have any current
479 	 * reservations.  We don't want to add this back when the ticket/
480 	 * transaction gets cancelled.
481 	 */
482 	tic->t_curr_res = 0;
483 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
484 	return error;
485 }
486 
487 
488 /*
489  * NOTES:
490  *
491  *	1. currblock field gets updated at startup and after in-core logs
492  *		marked as with WANT_SYNC.
493  */
494 
495 /*
496  * This routine is called when a user of a log manager ticket is done with
497  * the reservation.  If the ticket was ever used, then a commit record for
498  * the associated transaction is written out as a log operation header with
499  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
500  * a given ticket.  If the ticket was one with a permanent reservation, then
501  * a few operations are done differently.  Permanent reservation tickets by
502  * default don't release the reservation.  They just commit the current
503  * transaction with the belief that the reservation is still needed.  A flag
504  * must be passed in before permanent reservations are actually released.
505  * When these type of tickets are not released, they need to be set into
506  * the inited state again.  By doing this, a start record will be written
507  * out when the next write occurs.
508  */
509 xfs_lsn_t
xfs_log_done(struct xfs_mount * mp,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,bool regrant)510 xfs_log_done(
511 	struct xfs_mount	*mp,
512 	struct xlog_ticket	*ticket,
513 	struct xlog_in_core	**iclog,
514 	bool			regrant)
515 {
516 	struct xlog		*log = mp->m_log;
517 	xfs_lsn_t		lsn = 0;
518 
519 	if (XLOG_FORCED_SHUTDOWN(log) ||
520 	    /*
521 	     * If nothing was ever written, don't write out commit record.
522 	     * If we get an error, just continue and give back the log ticket.
523 	     */
524 	    (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
525 	     (xlog_commit_record(log, ticket, iclog, &lsn)))) {
526 		lsn = (xfs_lsn_t) -1;
527 		regrant = false;
528 	}
529 
530 
531 	if (!regrant) {
532 		trace_xfs_log_done_nonperm(log, ticket);
533 
534 		/*
535 		 * Release ticket if not permanent reservation or a specific
536 		 * request has been made to release a permanent reservation.
537 		 */
538 		xlog_ungrant_log_space(log, ticket);
539 	} else {
540 		trace_xfs_log_done_perm(log, ticket);
541 
542 		xlog_regrant_reserve_log_space(log, ticket);
543 		/* If this ticket was a permanent reservation and we aren't
544 		 * trying to release it, reset the inited flags; so next time
545 		 * we write, a start record will be written out.
546 		 */
547 		ticket->t_flags |= XLOG_TIC_INITED;
548 	}
549 
550 	xfs_log_ticket_put(ticket);
551 	return lsn;
552 }
553 
554 /*
555  * Attaches a new iclog I/O completion callback routine during
556  * transaction commit.  If the log is in error state, a non-zero
557  * return code is handed back and the caller is responsible for
558  * executing the callback at an appropriate time.
559  */
560 int
xfs_log_notify(struct xfs_mount * mp,struct xlog_in_core * iclog,xfs_log_callback_t * cb)561 xfs_log_notify(
562 	struct xfs_mount	*mp,
563 	struct xlog_in_core	*iclog,
564 	xfs_log_callback_t	*cb)
565 {
566 	int	abortflg;
567 
568 	spin_lock(&iclog->ic_callback_lock);
569 	abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
570 	if (!abortflg) {
571 		ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
572 			      (iclog->ic_state == XLOG_STATE_WANT_SYNC));
573 		cb->cb_next = NULL;
574 		*(iclog->ic_callback_tail) = cb;
575 		iclog->ic_callback_tail = &(cb->cb_next);
576 	}
577 	spin_unlock(&iclog->ic_callback_lock);
578 	return abortflg;
579 }
580 
581 int
xfs_log_release_iclog(struct xfs_mount * mp,struct xlog_in_core * iclog)582 xfs_log_release_iclog(
583 	struct xfs_mount	*mp,
584 	struct xlog_in_core	*iclog)
585 {
586 	if (xlog_state_release_iclog(mp->m_log, iclog)) {
587 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
588 		return -EIO;
589 	}
590 
591 	return 0;
592 }
593 
594 /*
595  * Mount a log filesystem
596  *
597  * mp		- ubiquitous xfs mount point structure
598  * log_target	- buftarg of on-disk log device
599  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
600  * num_bblocks	- Number of BBSIZE blocks in on-disk log
601  *
602  * Return error or zero.
603  */
604 int
xfs_log_mount(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)605 xfs_log_mount(
606 	xfs_mount_t	*mp,
607 	xfs_buftarg_t	*log_target,
608 	xfs_daddr_t	blk_offset,
609 	int		num_bblks)
610 {
611 	int		error = 0;
612 	int		min_logfsbs;
613 
614 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
615 		xfs_notice(mp, "Mounting V%d Filesystem",
616 			   XFS_SB_VERSION_NUM(&mp->m_sb));
617 	} else {
618 		xfs_notice(mp,
619 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
620 			   XFS_SB_VERSION_NUM(&mp->m_sb));
621 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
622 	}
623 
624 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
625 	if (IS_ERR(mp->m_log)) {
626 		error = PTR_ERR(mp->m_log);
627 		goto out;
628 	}
629 
630 	/*
631 	 * Validate the given log space and drop a critical message via syslog
632 	 * if the log size is too small that would lead to some unexpected
633 	 * situations in transaction log space reservation stage.
634 	 *
635 	 * Note: we can't just reject the mount if the validation fails.  This
636 	 * would mean that people would have to downgrade their kernel just to
637 	 * remedy the situation as there is no way to grow the log (short of
638 	 * black magic surgery with xfs_db).
639 	 *
640 	 * We can, however, reject mounts for CRC format filesystems, as the
641 	 * mkfs binary being used to make the filesystem should never create a
642 	 * filesystem with a log that is too small.
643 	 */
644 	min_logfsbs = xfs_log_calc_minimum_size(mp);
645 
646 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
647 		xfs_warn(mp,
648 		"Log size %d blocks too small, minimum size is %d blocks",
649 			 mp->m_sb.sb_logblocks, min_logfsbs);
650 		error = -EINVAL;
651 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
652 		xfs_warn(mp,
653 		"Log size %d blocks too large, maximum size is %lld blocks",
654 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
655 		error = -EINVAL;
656 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
657 		xfs_warn(mp,
658 		"log size %lld bytes too large, maximum size is %lld bytes",
659 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
660 			 XFS_MAX_LOG_BYTES);
661 		error = -EINVAL;
662 	}
663 	if (error) {
664 		if (xfs_sb_version_hascrc(&mp->m_sb)) {
665 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
666 			ASSERT(0);
667 			goto out_free_log;
668 		}
669 		xfs_crit(mp, "Log size out of supported range.");
670 		xfs_crit(mp,
671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
672 	}
673 
674 	/*
675 	 * Initialize the AIL now we have a log.
676 	 */
677 	error = xfs_trans_ail_init(mp);
678 	if (error) {
679 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
680 		goto out_free_log;
681 	}
682 	mp->m_log->l_ailp = mp->m_ail;
683 
684 	/*
685 	 * skip log recovery on a norecovery mount.  pretend it all
686 	 * just worked.
687 	 */
688 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
689 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
690 
691 		if (readonly)
692 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
693 
694 		error = xlog_recover(mp->m_log);
695 
696 		if (readonly)
697 			mp->m_flags |= XFS_MOUNT_RDONLY;
698 		if (error) {
699 			xfs_warn(mp, "log mount/recovery failed: error %d",
700 				error);
701 			xlog_recover_cancel(mp->m_log);
702 			goto out_destroy_ail;
703 		}
704 	}
705 
706 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
707 			       "log");
708 	if (error)
709 		goto out_destroy_ail;
710 
711 	/* Normal transactions can now occur */
712 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
713 
714 	/*
715 	 * Now the log has been fully initialised and we know were our
716 	 * space grant counters are, we can initialise the permanent ticket
717 	 * needed for delayed logging to work.
718 	 */
719 	xlog_cil_init_post_recovery(mp->m_log);
720 
721 	return 0;
722 
723 out_destroy_ail:
724 	xfs_trans_ail_destroy(mp);
725 out_free_log:
726 	xlog_dealloc_log(mp->m_log);
727 out:
728 	return error;
729 }
730 
731 /*
732  * Finish the recovery of the file system.  This is separate from the
733  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
734  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
735  * here.
736  *
737  * If we finish recovery successfully, start the background log work. If we are
738  * not doing recovery, then we have a RO filesystem and we don't need to start
739  * it.
740  */
741 int
xfs_log_mount_finish(struct xfs_mount * mp)742 xfs_log_mount_finish(
743 	struct xfs_mount	*mp)
744 {
745 	int	error = 0;
746 	bool	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
747 
748 	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
749 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
750 		return 0;
751 	} else if (readonly) {
752 		/* Allow unlinked processing to proceed */
753 		mp->m_flags &= ~XFS_MOUNT_RDONLY;
754 	}
755 
756 	/*
757 	 * During the second phase of log recovery, we need iget and
758 	 * iput to behave like they do for an active filesystem.
759 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
760 	 * of inodes before we're done replaying log items on those
761 	 * inodes.  Turn it off immediately after recovery finishes
762 	 * so that we don't leak the quota inodes if subsequent mount
763 	 * activities fail.
764 	 *
765 	 * We let all inodes involved in redo item processing end up on
766 	 * the LRU instead of being evicted immediately so that if we do
767 	 * something to an unlinked inode, the irele won't cause
768 	 * premature truncation and freeing of the inode, which results
769 	 * in log recovery failure.  We have to evict the unreferenced
770 	 * lru inodes after clearing MS_ACTIVE because we don't
771 	 * otherwise clean up the lru if there's a subsequent failure in
772 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
773 	 * else (e.g. quotacheck) references the inodes before the
774 	 * mount failure occurs.
775 	 */
776 	mp->m_super->s_flags |= MS_ACTIVE;
777 	error = xlog_recover_finish(mp->m_log);
778 	if (!error)
779 		xfs_log_work_queue(mp);
780 	mp->m_super->s_flags &= ~MS_ACTIVE;
781 	evict_inodes(mp->m_super);
782 
783 	if (readonly)
784 		mp->m_flags |= XFS_MOUNT_RDONLY;
785 
786 	return error;
787 }
788 
789 /*
790  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
791  * the log.
792  */
793 int
xfs_log_mount_cancel(struct xfs_mount * mp)794 xfs_log_mount_cancel(
795 	struct xfs_mount	*mp)
796 {
797 	int			error;
798 
799 	error = xlog_recover_cancel(mp->m_log);
800 	xfs_log_unmount(mp);
801 
802 	return error;
803 }
804 
805 /*
806  * Final log writes as part of unmount.
807  *
808  * Mark the filesystem clean as unmount happens.  Note that during relocation
809  * this routine needs to be executed as part of source-bag while the
810  * deallocation must not be done until source-end.
811  */
812 
813 /*
814  * Unmount record used to have a string "Unmount filesystem--" in the
815  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
816  * We just write the magic number now since that particular field isn't
817  * currently architecture converted and "Unmount" is a bit foo.
818  * As far as I know, there weren't any dependencies on the old behaviour.
819  */
820 
821 static int
xfs_log_unmount_write(xfs_mount_t * mp)822 xfs_log_unmount_write(xfs_mount_t *mp)
823 {
824 	struct xlog	 *log = mp->m_log;
825 	xlog_in_core_t	 *iclog;
826 #ifdef DEBUG
827 	xlog_in_core_t	 *first_iclog;
828 #endif
829 	xlog_ticket_t	*tic = NULL;
830 	xfs_lsn_t	 lsn;
831 	int		 error;
832 
833 	/*
834 	 * Don't write out unmount record on norecovery mounts or ro devices.
835 	 * Or, if we are doing a forced umount (typically because of IO errors).
836 	 */
837 	if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
838 	    xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
839 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
840 		return 0;
841 	}
842 
843 	error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
844 	ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
845 
846 #ifdef DEBUG
847 	first_iclog = iclog = log->l_iclog;
848 	do {
849 		if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
850 			ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
851 			ASSERT(iclog->ic_offset == 0);
852 		}
853 		iclog = iclog->ic_next;
854 	} while (iclog != first_iclog);
855 #endif
856 	if (! (XLOG_FORCED_SHUTDOWN(log))) {
857 		error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
858 		if (!error) {
859 			/* the data section must be 32 bit size aligned */
860 			struct {
861 			    __uint16_t magic;
862 			    __uint16_t pad1;
863 			    __uint32_t pad2; /* may as well make it 64 bits */
864 			} magic = {
865 				.magic = XLOG_UNMOUNT_TYPE,
866 			};
867 			struct xfs_log_iovec reg = {
868 				.i_addr = &magic,
869 				.i_len = sizeof(magic),
870 				.i_type = XLOG_REG_TYPE_UNMOUNT,
871 			};
872 			struct xfs_log_vec vec = {
873 				.lv_niovecs = 1,
874 				.lv_iovecp = &reg,
875 			};
876 
877 			/* remove inited flag, and account for space used */
878 			tic->t_flags = 0;
879 			tic->t_curr_res -= sizeof(magic);
880 			error = xlog_write(log, &vec, tic, &lsn,
881 					   NULL, XLOG_UNMOUNT_TRANS);
882 			/*
883 			 * At this point, we're umounting anyway,
884 			 * so there's no point in transitioning log state
885 			 * to IOERROR. Just continue...
886 			 */
887 		}
888 
889 		if (error)
890 			xfs_alert(mp, "%s: unmount record failed", __func__);
891 
892 
893 		spin_lock(&log->l_icloglock);
894 		iclog = log->l_iclog;
895 		atomic_inc(&iclog->ic_refcnt);
896 		xlog_state_want_sync(log, iclog);
897 		spin_unlock(&log->l_icloglock);
898 		error = xlog_state_release_iclog(log, iclog);
899 
900 		spin_lock(&log->l_icloglock);
901 		if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
902 		      iclog->ic_state == XLOG_STATE_DIRTY)) {
903 			if (!XLOG_FORCED_SHUTDOWN(log)) {
904 				xlog_wait(&iclog->ic_force_wait,
905 							&log->l_icloglock);
906 			} else {
907 				spin_unlock(&log->l_icloglock);
908 			}
909 		} else {
910 			spin_unlock(&log->l_icloglock);
911 		}
912 		if (tic) {
913 			trace_xfs_log_umount_write(log, tic);
914 			xlog_ungrant_log_space(log, tic);
915 			xfs_log_ticket_put(tic);
916 		}
917 	} else {
918 		/*
919 		 * We're already in forced_shutdown mode, couldn't
920 		 * even attempt to write out the unmount transaction.
921 		 *
922 		 * Go through the motions of sync'ing and releasing
923 		 * the iclog, even though no I/O will actually happen,
924 		 * we need to wait for other log I/Os that may already
925 		 * be in progress.  Do this as a separate section of
926 		 * code so we'll know if we ever get stuck here that
927 		 * we're in this odd situation of trying to unmount
928 		 * a file system that went into forced_shutdown as
929 		 * the result of an unmount..
930 		 */
931 		spin_lock(&log->l_icloglock);
932 		iclog = log->l_iclog;
933 		atomic_inc(&iclog->ic_refcnt);
934 
935 		xlog_state_want_sync(log, iclog);
936 		spin_unlock(&log->l_icloglock);
937 		error =  xlog_state_release_iclog(log, iclog);
938 
939 		spin_lock(&log->l_icloglock);
940 
941 		if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
942 			|| iclog->ic_state == XLOG_STATE_DIRTY
943 			|| iclog->ic_state == XLOG_STATE_IOERROR) ) {
944 
945 				xlog_wait(&iclog->ic_force_wait,
946 							&log->l_icloglock);
947 		} else {
948 			spin_unlock(&log->l_icloglock);
949 		}
950 	}
951 
952 	return error;
953 }	/* xfs_log_unmount_write */
954 
955 /*
956  * Empty the log for unmount/freeze.
957  *
958  * To do this, we first need to shut down the background log work so it is not
959  * trying to cover the log as we clean up. We then need to unpin all objects in
960  * the log so we can then flush them out. Once they have completed their IO and
961  * run the callbacks removing themselves from the AIL, we can write the unmount
962  * record.
963  */
964 void
xfs_log_quiesce(struct xfs_mount * mp)965 xfs_log_quiesce(
966 	struct xfs_mount	*mp)
967 {
968 	cancel_delayed_work_sync(&mp->m_log->l_work);
969 	xfs_log_force(mp, XFS_LOG_SYNC);
970 
971 	/*
972 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
973 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
974 	 * xfs_buf_iowait() cannot be used because it was pushed with the
975 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
976 	 * the IO to complete.
977 	 */
978 	xfs_ail_push_all_sync(mp->m_ail);
979 	xfs_wait_buftarg(mp->m_ddev_targp);
980 	xfs_buf_lock(mp->m_sb_bp);
981 	xfs_buf_unlock(mp->m_sb_bp);
982 
983 	xfs_log_unmount_write(mp);
984 }
985 
986 /*
987  * Shut down and release the AIL and Log.
988  *
989  * During unmount, we need to ensure we flush all the dirty metadata objects
990  * from the AIL so that the log is empty before we write the unmount record to
991  * the log. Once this is done, we can tear down the AIL and the log.
992  */
993 void
xfs_log_unmount(struct xfs_mount * mp)994 xfs_log_unmount(
995 	struct xfs_mount	*mp)
996 {
997 	xfs_log_quiesce(mp);
998 
999 	xfs_trans_ail_destroy(mp);
1000 
1001 	xfs_sysfs_del(&mp->m_log->l_kobj);
1002 
1003 	xlog_dealloc_log(mp->m_log);
1004 }
1005 
1006 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)1007 xfs_log_item_init(
1008 	struct xfs_mount	*mp,
1009 	struct xfs_log_item	*item,
1010 	int			type,
1011 	const struct xfs_item_ops *ops)
1012 {
1013 	item->li_mountp = mp;
1014 	item->li_ailp = mp->m_ail;
1015 	item->li_type = type;
1016 	item->li_ops = ops;
1017 	item->li_lv = NULL;
1018 
1019 	INIT_LIST_HEAD(&item->li_ail);
1020 	INIT_LIST_HEAD(&item->li_cil);
1021 }
1022 
1023 /*
1024  * Wake up processes waiting for log space after we have moved the log tail.
1025  */
1026 void
xfs_log_space_wake(struct xfs_mount * mp)1027 xfs_log_space_wake(
1028 	struct xfs_mount	*mp)
1029 {
1030 	struct xlog		*log = mp->m_log;
1031 	int			free_bytes;
1032 
1033 	if (XLOG_FORCED_SHUTDOWN(log))
1034 		return;
1035 
1036 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1037 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1038 
1039 		spin_lock(&log->l_write_head.lock);
1040 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1041 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1042 		spin_unlock(&log->l_write_head.lock);
1043 	}
1044 
1045 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1046 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1047 
1048 		spin_lock(&log->l_reserve_head.lock);
1049 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1050 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1051 		spin_unlock(&log->l_reserve_head.lock);
1052 	}
1053 }
1054 
1055 /*
1056  * Determine if we have a transaction that has gone to disk that needs to be
1057  * covered. To begin the transition to the idle state firstly the log needs to
1058  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1059  * we start attempting to cover the log.
1060  *
1061  * Only if we are then in a state where covering is needed, the caller is
1062  * informed that dummy transactions are required to move the log into the idle
1063  * state.
1064  *
1065  * If there are any items in the AIl or CIL, then we do not want to attempt to
1066  * cover the log as we may be in a situation where there isn't log space
1067  * available to run a dummy transaction and this can lead to deadlocks when the
1068  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1069  * there's no point in running a dummy transaction at this point because we
1070  * can't start trying to idle the log until both the CIL and AIL are empty.
1071  */
1072 static int
xfs_log_need_covered(xfs_mount_t * mp)1073 xfs_log_need_covered(xfs_mount_t *mp)
1074 {
1075 	struct xlog	*log = mp->m_log;
1076 	int		needed = 0;
1077 
1078 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1079 		return 0;
1080 
1081 	if (!xlog_cil_empty(log))
1082 		return 0;
1083 
1084 	spin_lock(&log->l_icloglock);
1085 	switch (log->l_covered_state) {
1086 	case XLOG_STATE_COVER_DONE:
1087 	case XLOG_STATE_COVER_DONE2:
1088 	case XLOG_STATE_COVER_IDLE:
1089 		break;
1090 	case XLOG_STATE_COVER_NEED:
1091 	case XLOG_STATE_COVER_NEED2:
1092 		if (xfs_ail_min_lsn(log->l_ailp))
1093 			break;
1094 		if (!xlog_iclogs_empty(log))
1095 			break;
1096 
1097 		needed = 1;
1098 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1099 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1100 		else
1101 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1102 		break;
1103 	default:
1104 		needed = 1;
1105 		break;
1106 	}
1107 	spin_unlock(&log->l_icloglock);
1108 	return needed;
1109 }
1110 
1111 /*
1112  * We may be holding the log iclog lock upon entering this routine.
1113  */
1114 xfs_lsn_t
xlog_assign_tail_lsn_locked(struct xfs_mount * mp)1115 xlog_assign_tail_lsn_locked(
1116 	struct xfs_mount	*mp)
1117 {
1118 	struct xlog		*log = mp->m_log;
1119 	struct xfs_log_item	*lip;
1120 	xfs_lsn_t		tail_lsn;
1121 
1122 	assert_spin_locked(&mp->m_ail->xa_lock);
1123 
1124 	/*
1125 	 * To make sure we always have a valid LSN for the log tail we keep
1126 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1127 	 * and use that when the AIL was empty.
1128 	 */
1129 	lip = xfs_ail_min(mp->m_ail);
1130 	if (lip)
1131 		tail_lsn = lip->li_lsn;
1132 	else
1133 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1134 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1135 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1136 	return tail_lsn;
1137 }
1138 
1139 xfs_lsn_t
xlog_assign_tail_lsn(struct xfs_mount * mp)1140 xlog_assign_tail_lsn(
1141 	struct xfs_mount	*mp)
1142 {
1143 	xfs_lsn_t		tail_lsn;
1144 
1145 	spin_lock(&mp->m_ail->xa_lock);
1146 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1147 	spin_unlock(&mp->m_ail->xa_lock);
1148 
1149 	return tail_lsn;
1150 }
1151 
1152 /*
1153  * Return the space in the log between the tail and the head.  The head
1154  * is passed in the cycle/bytes formal parms.  In the special case where
1155  * the reserve head has wrapped passed the tail, this calculation is no
1156  * longer valid.  In this case, just return 0 which means there is no space
1157  * in the log.  This works for all places where this function is called
1158  * with the reserve head.  Of course, if the write head were to ever
1159  * wrap the tail, we should blow up.  Rather than catch this case here,
1160  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1161  *
1162  * This code also handles the case where the reservation head is behind
1163  * the tail.  The details of this case are described below, but the end
1164  * result is that we return the size of the log as the amount of space left.
1165  */
1166 STATIC int
xlog_space_left(struct xlog * log,atomic64_t * head)1167 xlog_space_left(
1168 	struct xlog	*log,
1169 	atomic64_t	*head)
1170 {
1171 	int		free_bytes;
1172 	int		tail_bytes;
1173 	int		tail_cycle;
1174 	int		head_cycle;
1175 	int		head_bytes;
1176 
1177 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1178 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1179 	tail_bytes = BBTOB(tail_bytes);
1180 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1181 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1182 	else if (tail_cycle + 1 < head_cycle)
1183 		return 0;
1184 	else if (tail_cycle < head_cycle) {
1185 		ASSERT(tail_cycle == (head_cycle - 1));
1186 		free_bytes = tail_bytes - head_bytes;
1187 	} else {
1188 		/*
1189 		 * The reservation head is behind the tail.
1190 		 * In this case we just want to return the size of the
1191 		 * log as the amount of space left.
1192 		 */
1193 		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1194 		xfs_alert(log->l_mp,
1195 			  "  tail_cycle = %d, tail_bytes = %d",
1196 			  tail_cycle, tail_bytes);
1197 		xfs_alert(log->l_mp,
1198 			  "  GH   cycle = %d, GH   bytes = %d",
1199 			  head_cycle, head_bytes);
1200 		ASSERT(0);
1201 		free_bytes = log->l_logsize;
1202 	}
1203 	return free_bytes;
1204 }
1205 
1206 
1207 /*
1208  * Log function which is called when an io completes.
1209  *
1210  * The log manager needs its own routine, in order to control what
1211  * happens with the buffer after the write completes.
1212  */
1213 static void
xlog_iodone(xfs_buf_t * bp)1214 xlog_iodone(xfs_buf_t *bp)
1215 {
1216 	struct xlog_in_core	*iclog = bp->b_fspriv;
1217 	struct xlog		*l = iclog->ic_log;
1218 	int			aborted = 0;
1219 
1220 	/*
1221 	 * Race to shutdown the filesystem if we see an error or the iclog is in
1222 	 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1223 	 * CRC errors into log recovery.
1224 	 */
1225 	if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR,
1226 			   XFS_RANDOM_IODONE_IOERR) ||
1227 	    iclog->ic_state & XLOG_STATE_IOABORT) {
1228 		if (iclog->ic_state & XLOG_STATE_IOABORT)
1229 			iclog->ic_state &= ~XLOG_STATE_IOABORT;
1230 
1231 		xfs_buf_ioerror_alert(bp, __func__);
1232 		xfs_buf_stale(bp);
1233 		xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1234 		/*
1235 		 * This flag will be propagated to the trans-committed
1236 		 * callback routines to let them know that the log-commit
1237 		 * didn't succeed.
1238 		 */
1239 		aborted = XFS_LI_ABORTED;
1240 	} else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1241 		aborted = XFS_LI_ABORTED;
1242 	}
1243 
1244 	/* log I/O is always issued ASYNC */
1245 	ASSERT(bp->b_flags & XBF_ASYNC);
1246 	xlog_state_done_syncing(iclog, aborted);
1247 
1248 	/*
1249 	 * drop the buffer lock now that we are done. Nothing references
1250 	 * the buffer after this, so an unmount waiting on this lock can now
1251 	 * tear it down safely. As such, it is unsafe to reference the buffer
1252 	 * (bp) after the unlock as we could race with it being freed.
1253 	 */
1254 	xfs_buf_unlock(bp);
1255 }
1256 
1257 /*
1258  * Return size of each in-core log record buffer.
1259  *
1260  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1261  *
1262  * If the filesystem blocksize is too large, we may need to choose a
1263  * larger size since the directory code currently logs entire blocks.
1264  */
1265 
1266 STATIC void
xlog_get_iclog_buffer_size(struct xfs_mount * mp,struct xlog * log)1267 xlog_get_iclog_buffer_size(
1268 	struct xfs_mount	*mp,
1269 	struct xlog		*log)
1270 {
1271 	int size;
1272 	int xhdrs;
1273 
1274 	if (mp->m_logbufs <= 0)
1275 		log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1276 	else
1277 		log->l_iclog_bufs = mp->m_logbufs;
1278 
1279 	/*
1280 	 * Buffer size passed in from mount system call.
1281 	 */
1282 	if (mp->m_logbsize > 0) {
1283 		size = log->l_iclog_size = mp->m_logbsize;
1284 		log->l_iclog_size_log = 0;
1285 		while (size != 1) {
1286 			log->l_iclog_size_log++;
1287 			size >>= 1;
1288 		}
1289 
1290 		if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1291 			/* # headers = size / 32k
1292 			 * one header holds cycles from 32k of data
1293 			 */
1294 
1295 			xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1296 			if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1297 				xhdrs++;
1298 			log->l_iclog_hsize = xhdrs << BBSHIFT;
1299 			log->l_iclog_heads = xhdrs;
1300 		} else {
1301 			ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1302 			log->l_iclog_hsize = BBSIZE;
1303 			log->l_iclog_heads = 1;
1304 		}
1305 		goto done;
1306 	}
1307 
1308 	/* All machines use 32kB buffers by default. */
1309 	log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1310 	log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1311 
1312 	/* the default log size is 16k or 32k which is one header sector */
1313 	log->l_iclog_hsize = BBSIZE;
1314 	log->l_iclog_heads = 1;
1315 
1316 done:
1317 	/* are we being asked to make the sizes selected above visible? */
1318 	if (mp->m_logbufs == 0)
1319 		mp->m_logbufs = log->l_iclog_bufs;
1320 	if (mp->m_logbsize == 0)
1321 		mp->m_logbsize = log->l_iclog_size;
1322 }	/* xlog_get_iclog_buffer_size */
1323 
1324 
1325 void
xfs_log_work_queue(struct xfs_mount * mp)1326 xfs_log_work_queue(
1327 	struct xfs_mount        *mp)
1328 {
1329 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1330 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1331 }
1332 
1333 /*
1334  * Every sync period we need to unpin all items in the AIL and push them to
1335  * disk. If there is nothing dirty, then we might need to cover the log to
1336  * indicate that the filesystem is idle.
1337  */
1338 static void
xfs_log_worker(struct work_struct * work)1339 xfs_log_worker(
1340 	struct work_struct	*work)
1341 {
1342 	struct xlog		*log = container_of(to_delayed_work(work),
1343 						struct xlog, l_work);
1344 	struct xfs_mount	*mp = log->l_mp;
1345 
1346 	/* dgc: errors ignored - not fatal and nowhere to report them */
1347 	if (xfs_log_need_covered(mp)) {
1348 		/*
1349 		 * Dump a transaction into the log that contains no real change.
1350 		 * This is needed to stamp the current tail LSN into the log
1351 		 * during the covering operation.
1352 		 *
1353 		 * We cannot use an inode here for this - that will push dirty
1354 		 * state back up into the VFS and then periodic inode flushing
1355 		 * will prevent log covering from making progress. Hence we
1356 		 * synchronously log the superblock instead to ensure the
1357 		 * superblock is immediately unpinned and can be written back.
1358 		 */
1359 		xfs_sync_sb(mp, true);
1360 	} else
1361 		xfs_log_force(mp, 0);
1362 
1363 	/* start pushing all the metadata that is currently dirty */
1364 	xfs_ail_push_all(mp->m_ail);
1365 
1366 	/* queue us up again */
1367 	xfs_log_work_queue(mp);
1368 }
1369 
1370 /*
1371  * This routine initializes some of the log structure for a given mount point.
1372  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1373  * some other stuff may be filled in too.
1374  */
1375 STATIC struct xlog *
xlog_alloc_log(struct xfs_mount * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)1376 xlog_alloc_log(
1377 	struct xfs_mount	*mp,
1378 	struct xfs_buftarg	*log_target,
1379 	xfs_daddr_t		blk_offset,
1380 	int			num_bblks)
1381 {
1382 	struct xlog		*log;
1383 	xlog_rec_header_t	*head;
1384 	xlog_in_core_t		**iclogp;
1385 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1386 	xfs_buf_t		*bp;
1387 	int			i;
1388 	int			error = -ENOMEM;
1389 	uint			log2_size = 0;
1390 
1391 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1392 	if (!log) {
1393 		xfs_warn(mp, "Log allocation failed: No memory!");
1394 		goto out;
1395 	}
1396 
1397 	log->l_mp	   = mp;
1398 	log->l_targ	   = log_target;
1399 	log->l_logsize     = BBTOB(num_bblks);
1400 	log->l_logBBstart  = blk_offset;
1401 	log->l_logBBsize   = num_bblks;
1402 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1403 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1404 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1405 
1406 	log->l_prev_block  = -1;
1407 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1408 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1409 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1410 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1411 
1412 	xlog_grant_head_init(&log->l_reserve_head);
1413 	xlog_grant_head_init(&log->l_write_head);
1414 
1415 	error = -EFSCORRUPTED;
1416 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1417 	        log2_size = mp->m_sb.sb_logsectlog;
1418 		if (log2_size < BBSHIFT) {
1419 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1420 				log2_size, BBSHIFT);
1421 			goto out_free_log;
1422 		}
1423 
1424 	        log2_size -= BBSHIFT;
1425 		if (log2_size > mp->m_sectbb_log) {
1426 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1427 				log2_size, mp->m_sectbb_log);
1428 			goto out_free_log;
1429 		}
1430 
1431 		/* for larger sector sizes, must have v2 or external log */
1432 		if (log2_size && log->l_logBBstart > 0 &&
1433 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1434 			xfs_warn(mp,
1435 		"log sector size (0x%x) invalid for configuration.",
1436 				log2_size);
1437 			goto out_free_log;
1438 		}
1439 	}
1440 	log->l_sectBBsize = 1 << log2_size;
1441 
1442 	xlog_get_iclog_buffer_size(mp, log);
1443 
1444 	/*
1445 	 * Use a NULL block for the extra log buffer used during splits so that
1446 	 * it will trigger errors if we ever try to do IO on it without first
1447 	 * having set it up properly.
1448 	 */
1449 	error = -ENOMEM;
1450 	bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1451 			   BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1452 	if (!bp)
1453 		goto out_free_log;
1454 
1455 	/*
1456 	 * The iclogbuf buffer locks are held over IO but we are not going to do
1457 	 * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1458 	 * when appropriately.
1459 	 */
1460 	ASSERT(xfs_buf_islocked(bp));
1461 	xfs_buf_unlock(bp);
1462 
1463 	/* use high priority wq for log I/O completion */
1464 	bp->b_ioend_wq = mp->m_log_workqueue;
1465 	bp->b_iodone = xlog_iodone;
1466 	log->l_xbuf = bp;
1467 
1468 	spin_lock_init(&log->l_icloglock);
1469 	init_waitqueue_head(&log->l_flush_wait);
1470 
1471 	iclogp = &log->l_iclog;
1472 	/*
1473 	 * The amount of memory to allocate for the iclog structure is
1474 	 * rather funky due to the way the structure is defined.  It is
1475 	 * done this way so that we can use different sizes for machines
1476 	 * with different amounts of memory.  See the definition of
1477 	 * xlog_in_core_t in xfs_log_priv.h for details.
1478 	 */
1479 	ASSERT(log->l_iclog_size >= 4096);
1480 	for (i=0; i < log->l_iclog_bufs; i++) {
1481 		*iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1482 		if (!*iclogp)
1483 			goto out_free_iclog;
1484 
1485 		iclog = *iclogp;
1486 		iclog->ic_prev = prev_iclog;
1487 		prev_iclog = iclog;
1488 
1489 		bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1490 					  BTOBB(log->l_iclog_size),
1491 					  XBF_NO_IOACCT);
1492 		if (!bp)
1493 			goto out_free_iclog;
1494 
1495 		ASSERT(xfs_buf_islocked(bp));
1496 		xfs_buf_unlock(bp);
1497 
1498 		/* use high priority wq for log I/O completion */
1499 		bp->b_ioend_wq = mp->m_log_workqueue;
1500 		bp->b_iodone = xlog_iodone;
1501 		iclog->ic_bp = bp;
1502 		iclog->ic_data = bp->b_addr;
1503 #ifdef DEBUG
1504 		log->l_iclog_bak[i] = &iclog->ic_header;
1505 #endif
1506 		head = &iclog->ic_header;
1507 		memset(head, 0, sizeof(xlog_rec_header_t));
1508 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1509 		head->h_version = cpu_to_be32(
1510 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1511 		head->h_size = cpu_to_be32(log->l_iclog_size);
1512 		/* new fields */
1513 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1514 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1515 
1516 		iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1517 		iclog->ic_state = XLOG_STATE_ACTIVE;
1518 		iclog->ic_log = log;
1519 		atomic_set(&iclog->ic_refcnt, 0);
1520 		spin_lock_init(&iclog->ic_callback_lock);
1521 		iclog->ic_callback_tail = &(iclog->ic_callback);
1522 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1523 
1524 		init_waitqueue_head(&iclog->ic_force_wait);
1525 		init_waitqueue_head(&iclog->ic_write_wait);
1526 
1527 		iclogp = &iclog->ic_next;
1528 	}
1529 	*iclogp = log->l_iclog;			/* complete ring */
1530 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1531 
1532 	error = xlog_cil_init(log);
1533 	if (error)
1534 		goto out_free_iclog;
1535 	return log;
1536 
1537 out_free_iclog:
1538 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1539 		prev_iclog = iclog->ic_next;
1540 		if (iclog->ic_bp)
1541 			xfs_buf_free(iclog->ic_bp);
1542 		kmem_free(iclog);
1543 	}
1544 	spinlock_destroy(&log->l_icloglock);
1545 	xfs_buf_free(log->l_xbuf);
1546 out_free_log:
1547 	kmem_free(log);
1548 out:
1549 	return ERR_PTR(error);
1550 }	/* xlog_alloc_log */
1551 
1552 
1553 /*
1554  * Write out the commit record of a transaction associated with the given
1555  * ticket.  Return the lsn of the commit record.
1556  */
1557 STATIC int
xlog_commit_record(struct xlog * log,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,xfs_lsn_t * commitlsnp)1558 xlog_commit_record(
1559 	struct xlog		*log,
1560 	struct xlog_ticket	*ticket,
1561 	struct xlog_in_core	**iclog,
1562 	xfs_lsn_t		*commitlsnp)
1563 {
1564 	struct xfs_mount *mp = log->l_mp;
1565 	int	error;
1566 	struct xfs_log_iovec reg = {
1567 		.i_addr = NULL,
1568 		.i_len = 0,
1569 		.i_type = XLOG_REG_TYPE_COMMIT,
1570 	};
1571 	struct xfs_log_vec vec = {
1572 		.lv_niovecs = 1,
1573 		.lv_iovecp = &reg,
1574 	};
1575 
1576 	ASSERT_ALWAYS(iclog);
1577 	error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1578 					XLOG_COMMIT_TRANS);
1579 	if (error)
1580 		xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1581 	return error;
1582 }
1583 
1584 /*
1585  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1586  * log space.  This code pushes on the lsn which would supposedly free up
1587  * the 25% which we want to leave free.  We may need to adopt a policy which
1588  * pushes on an lsn which is further along in the log once we reach the high
1589  * water mark.  In this manner, we would be creating a low water mark.
1590  */
1591 STATIC void
xlog_grant_push_ail(struct xlog * log,int need_bytes)1592 xlog_grant_push_ail(
1593 	struct xlog	*log,
1594 	int		need_bytes)
1595 {
1596 	xfs_lsn_t	threshold_lsn = 0;
1597 	xfs_lsn_t	last_sync_lsn;
1598 	int		free_blocks;
1599 	int		free_bytes;
1600 	int		threshold_block;
1601 	int		threshold_cycle;
1602 	int		free_threshold;
1603 
1604 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1605 
1606 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1607 	free_blocks = BTOBBT(free_bytes);
1608 
1609 	/*
1610 	 * Set the threshold for the minimum number of free blocks in the
1611 	 * log to the maximum of what the caller needs, one quarter of the
1612 	 * log, and 256 blocks.
1613 	 */
1614 	free_threshold = BTOBB(need_bytes);
1615 	free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1616 	free_threshold = MAX(free_threshold, 256);
1617 	if (free_blocks >= free_threshold)
1618 		return;
1619 
1620 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1621 						&threshold_block);
1622 	threshold_block += free_threshold;
1623 	if (threshold_block >= log->l_logBBsize) {
1624 		threshold_block -= log->l_logBBsize;
1625 		threshold_cycle += 1;
1626 	}
1627 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1628 					threshold_block);
1629 	/*
1630 	 * Don't pass in an lsn greater than the lsn of the last
1631 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1632 	 * so that it doesn't change between the compare and the set.
1633 	 */
1634 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1635 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1636 		threshold_lsn = last_sync_lsn;
1637 
1638 	/*
1639 	 * Get the transaction layer to kick the dirty buffers out to
1640 	 * disk asynchronously. No point in trying to do this if
1641 	 * the filesystem is shutting down.
1642 	 */
1643 	if (!XLOG_FORCED_SHUTDOWN(log))
1644 		xfs_ail_push(log->l_ailp, threshold_lsn);
1645 }
1646 
1647 /*
1648  * Stamp cycle number in every block
1649  */
1650 STATIC void
xlog_pack_data(struct xlog * log,struct xlog_in_core * iclog,int roundoff)1651 xlog_pack_data(
1652 	struct xlog		*log,
1653 	struct xlog_in_core	*iclog,
1654 	int			roundoff)
1655 {
1656 	int			i, j, k;
1657 	int			size = iclog->ic_offset + roundoff;
1658 	__be32			cycle_lsn;
1659 	char			*dp;
1660 
1661 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1662 
1663 	dp = iclog->ic_datap;
1664 	for (i = 0; i < BTOBB(size); i++) {
1665 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1666 			break;
1667 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1668 		*(__be32 *)dp = cycle_lsn;
1669 		dp += BBSIZE;
1670 	}
1671 
1672 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1673 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1674 
1675 		for ( ; i < BTOBB(size); i++) {
1676 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1677 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1678 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1679 			*(__be32 *)dp = cycle_lsn;
1680 			dp += BBSIZE;
1681 		}
1682 
1683 		for (i = 1; i < log->l_iclog_heads; i++)
1684 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1685 	}
1686 }
1687 
1688 /*
1689  * Calculate the checksum for a log buffer.
1690  *
1691  * This is a little more complicated than it should be because the various
1692  * headers and the actual data are non-contiguous.
1693  */
1694 __le32
xlog_cksum(struct xlog * log,struct xlog_rec_header * rhead,char * dp,int size)1695 xlog_cksum(
1696 	struct xlog		*log,
1697 	struct xlog_rec_header	*rhead,
1698 	char			*dp,
1699 	int			size)
1700 {
1701 	__uint32_t		crc;
1702 
1703 	/* first generate the crc for the record header ... */
1704 	crc = xfs_start_cksum((char *)rhead,
1705 			      sizeof(struct xlog_rec_header),
1706 			      offsetof(struct xlog_rec_header, h_crc));
1707 
1708 	/* ... then for additional cycle data for v2 logs ... */
1709 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1710 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1711 		int		i;
1712 		int		xheads;
1713 
1714 		xheads = size / XLOG_HEADER_CYCLE_SIZE;
1715 		if (size % XLOG_HEADER_CYCLE_SIZE)
1716 			xheads++;
1717 
1718 		for (i = 1; i < xheads; i++) {
1719 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1720 				     sizeof(struct xlog_rec_ext_header));
1721 		}
1722 	}
1723 
1724 	/* ... and finally for the payload */
1725 	crc = crc32c(crc, dp, size);
1726 
1727 	return xfs_end_cksum(crc);
1728 }
1729 
1730 /*
1731  * The bdstrat callback function for log bufs. This gives us a central
1732  * place to trap bufs in case we get hit by a log I/O error and need to
1733  * shutdown. Actually, in practice, even when we didn't get a log error,
1734  * we transition the iclogs to IOERROR state *after* flushing all existing
1735  * iclogs to disk. This is because we don't want anymore new transactions to be
1736  * started or completed afterwards.
1737  *
1738  * We lock the iclogbufs here so that we can serialise against IO completion
1739  * during unmount. We might be processing a shutdown triggered during unmount,
1740  * and that can occur asynchronously to the unmount thread, and hence we need to
1741  * ensure that completes before tearing down the iclogbufs. Hence we need to
1742  * hold the buffer lock across the log IO to acheive that.
1743  */
1744 STATIC int
xlog_bdstrat(struct xfs_buf * bp)1745 xlog_bdstrat(
1746 	struct xfs_buf		*bp)
1747 {
1748 	struct xlog_in_core	*iclog = bp->b_fspriv;
1749 
1750 	xfs_buf_lock(bp);
1751 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
1752 		xfs_buf_ioerror(bp, -EIO);
1753 		xfs_buf_stale(bp);
1754 		xfs_buf_ioend(bp);
1755 		/*
1756 		 * It would seem logical to return EIO here, but we rely on
1757 		 * the log state machine to propagate I/O errors instead of
1758 		 * doing it here. Similarly, IO completion will unlock the
1759 		 * buffer, so we don't do it here.
1760 		 */
1761 		return 0;
1762 	}
1763 
1764 	xfs_buf_submit(bp);
1765 	return 0;
1766 }
1767 
1768 /*
1769  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1770  * fashion.  Previously, we should have moved the current iclog
1771  * ptr in the log to point to the next available iclog.  This allows further
1772  * write to continue while this code syncs out an iclog ready to go.
1773  * Before an in-core log can be written out, the data section must be scanned
1774  * to save away the 1st word of each BBSIZE block into the header.  We replace
1775  * it with the current cycle count.  Each BBSIZE block is tagged with the
1776  * cycle count because there in an implicit assumption that drives will
1777  * guarantee that entire 512 byte blocks get written at once.  In other words,
1778  * we can't have part of a 512 byte block written and part not written.  By
1779  * tagging each block, we will know which blocks are valid when recovering
1780  * after an unclean shutdown.
1781  *
1782  * This routine is single threaded on the iclog.  No other thread can be in
1783  * this routine with the same iclog.  Changing contents of iclog can there-
1784  * fore be done without grabbing the state machine lock.  Updating the global
1785  * log will require grabbing the lock though.
1786  *
1787  * The entire log manager uses a logical block numbering scheme.  Only
1788  * log_sync (and then only bwrite()) know about the fact that the log may
1789  * not start with block zero on a given device.  The log block start offset
1790  * is added immediately before calling bwrite().
1791  */
1792 
1793 STATIC int
xlog_sync(struct xlog * log,struct xlog_in_core * iclog)1794 xlog_sync(
1795 	struct xlog		*log,
1796 	struct xlog_in_core	*iclog)
1797 {
1798 	xfs_buf_t	*bp;
1799 	int		i;
1800 	uint		count;		/* byte count of bwrite */
1801 	uint		count_init;	/* initial count before roundup */
1802 	int		roundoff;       /* roundoff to BB or stripe */
1803 	int		split = 0;	/* split write into two regions */
1804 	int		error;
1805 	int		v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1806 	int		size;
1807 
1808 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1809 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1810 
1811 	/* Add for LR header */
1812 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1813 
1814 	/* Round out the log write size */
1815 	if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1816 		/* we have a v2 stripe unit to use */
1817 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1818 	} else {
1819 		count = BBTOB(BTOBB(count_init));
1820 	}
1821 	roundoff = count - count_init;
1822 	ASSERT(roundoff >= 0);
1823 	ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1824                 roundoff < log->l_mp->m_sb.sb_logsunit)
1825 		||
1826 		(log->l_mp->m_sb.sb_logsunit <= 1 &&
1827 		 roundoff < BBTOB(1)));
1828 
1829 	/* move grant heads by roundoff in sync */
1830 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1831 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1832 
1833 	/* put cycle number in every block */
1834 	xlog_pack_data(log, iclog, roundoff);
1835 
1836 	/* real byte length */
1837 	size = iclog->ic_offset;
1838 	if (v2)
1839 		size += roundoff;
1840 	iclog->ic_header.h_len = cpu_to_be32(size);
1841 
1842 	bp = iclog->ic_bp;
1843 	XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1844 
1845 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1846 
1847 	/* Do we need to split this write into 2 parts? */
1848 	if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1849 		char		*dptr;
1850 
1851 		split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1852 		count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1853 		iclog->ic_bwritecnt = 2;
1854 
1855 		/*
1856 		 * Bump the cycle numbers at the start of each block in the
1857 		 * part of the iclog that ends up in the buffer that gets
1858 		 * written to the start of the log.
1859 		 *
1860 		 * Watch out for the header magic number case, though.
1861 		 */
1862 		dptr = (char *)&iclog->ic_header + count;
1863 		for (i = 0; i < split; i += BBSIZE) {
1864 			__uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1865 			if (++cycle == XLOG_HEADER_MAGIC_NUM)
1866 				cycle++;
1867 			*(__be32 *)dptr = cpu_to_be32(cycle);
1868 
1869 			dptr += BBSIZE;
1870 		}
1871 	} else {
1872 		iclog->ic_bwritecnt = 1;
1873 	}
1874 
1875 	/* calculcate the checksum */
1876 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1877 					    iclog->ic_datap, size);
1878 #ifdef DEBUG
1879 	/*
1880 	 * Intentionally corrupt the log record CRC based on the error injection
1881 	 * frequency, if defined. This facilitates testing log recovery in the
1882 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1883 	 * write on I/O completion and shutdown the fs. The subsequent mount
1884 	 * detects the bad CRC and attempts to recover.
1885 	 */
1886 	if (log->l_badcrc_factor &&
1887 	    (prandom_u32() % log->l_badcrc_factor == 0)) {
1888 		iclog->ic_header.h_crc &= 0xAAAAAAAA;
1889 		iclog->ic_state |= XLOG_STATE_IOABORT;
1890 		xfs_warn(log->l_mp,
1891 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1892 			 be64_to_cpu(iclog->ic_header.h_lsn));
1893 	}
1894 #endif
1895 
1896 	bp->b_io_length = BTOBB(count);
1897 	bp->b_fspriv = iclog;
1898 	bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1899 	bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
1900 
1901 	if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1902 		bp->b_flags |= XBF_FUA;
1903 
1904 		/*
1905 		 * Flush the data device before flushing the log to make
1906 		 * sure all meta data written back from the AIL actually made
1907 		 * it to disk before stamping the new log tail LSN into the
1908 		 * log buffer.  For an external log we need to issue the
1909 		 * flush explicitly, and unfortunately synchronously here;
1910 		 * for an internal log we can simply use the block layer
1911 		 * state machine for preflushes.
1912 		 */
1913 		if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1914 			xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1915 		else
1916 			bp->b_flags |= XBF_FLUSH;
1917 	}
1918 
1919 	ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1920 	ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1921 
1922 	xlog_verify_iclog(log, iclog, count, true);
1923 
1924 	/* account for log which doesn't start at block #0 */
1925 	XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1926 
1927 	/*
1928 	 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1929 	 * is shutting down.
1930 	 */
1931 	error = xlog_bdstrat(bp);
1932 	if (error) {
1933 		xfs_buf_ioerror_alert(bp, "xlog_sync");
1934 		return error;
1935 	}
1936 	if (split) {
1937 		bp = iclog->ic_log->l_xbuf;
1938 		XFS_BUF_SET_ADDR(bp, 0);	     /* logical 0 */
1939 		xfs_buf_associate_memory(bp,
1940 				(char *)&iclog->ic_header + count, split);
1941 		bp->b_fspriv = iclog;
1942 		bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1943 		bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
1944 		if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1945 			bp->b_flags |= XBF_FUA;
1946 
1947 		ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1948 		ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1949 
1950 		/* account for internal log which doesn't start at block #0 */
1951 		XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1952 		error = xlog_bdstrat(bp);
1953 		if (error) {
1954 			xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1955 			return error;
1956 		}
1957 	}
1958 	return 0;
1959 }	/* xlog_sync */
1960 
1961 /*
1962  * Deallocate a log structure
1963  */
1964 STATIC void
xlog_dealloc_log(struct xlog * log)1965 xlog_dealloc_log(
1966 	struct xlog	*log)
1967 {
1968 	xlog_in_core_t	*iclog, *next_iclog;
1969 	int		i;
1970 
1971 	xlog_cil_destroy(log);
1972 
1973 	/*
1974 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1975 	 * is done before we tear down these buffers.
1976 	 */
1977 	iclog = log->l_iclog;
1978 	for (i = 0; i < log->l_iclog_bufs; i++) {
1979 		xfs_buf_lock(iclog->ic_bp);
1980 		xfs_buf_unlock(iclog->ic_bp);
1981 		iclog = iclog->ic_next;
1982 	}
1983 
1984 	/*
1985 	 * Always need to ensure that the extra buffer does not point to memory
1986 	 * owned by another log buffer before we free it. Also, cycle the lock
1987 	 * first to ensure we've completed IO on it.
1988 	 */
1989 	xfs_buf_lock(log->l_xbuf);
1990 	xfs_buf_unlock(log->l_xbuf);
1991 	xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1992 	xfs_buf_free(log->l_xbuf);
1993 
1994 	iclog = log->l_iclog;
1995 	for (i = 0; i < log->l_iclog_bufs; i++) {
1996 		xfs_buf_free(iclog->ic_bp);
1997 		next_iclog = iclog->ic_next;
1998 		kmem_free(iclog);
1999 		iclog = next_iclog;
2000 	}
2001 	spinlock_destroy(&log->l_icloglock);
2002 
2003 	log->l_mp->m_log = NULL;
2004 	kmem_free(log);
2005 }	/* xlog_dealloc_log */
2006 
2007 /*
2008  * Update counters atomically now that memcpy is done.
2009  */
2010 /* ARGSUSED */
2011 static inline void
xlog_state_finish_copy(struct xlog * log,struct xlog_in_core * iclog,int record_cnt,int copy_bytes)2012 xlog_state_finish_copy(
2013 	struct xlog		*log,
2014 	struct xlog_in_core	*iclog,
2015 	int			record_cnt,
2016 	int			copy_bytes)
2017 {
2018 	spin_lock(&log->l_icloglock);
2019 
2020 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2021 	iclog->ic_offset += copy_bytes;
2022 
2023 	spin_unlock(&log->l_icloglock);
2024 }	/* xlog_state_finish_copy */
2025 
2026 
2027 
2028 
2029 /*
2030  * print out info relating to regions written which consume
2031  * the reservation
2032  */
2033 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)2034 xlog_print_tic_res(
2035 	struct xfs_mount	*mp,
2036 	struct xlog_ticket	*ticket)
2037 {
2038 	uint i;
2039 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2040 
2041 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
2042 #define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
2043 	static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2044 	    REG_TYPE_STR(BFORMAT, "bformat"),
2045 	    REG_TYPE_STR(BCHUNK, "bchunk"),
2046 	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2047 	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2048 	    REG_TYPE_STR(IFORMAT, "iformat"),
2049 	    REG_TYPE_STR(ICORE, "icore"),
2050 	    REG_TYPE_STR(IEXT, "iext"),
2051 	    REG_TYPE_STR(IBROOT, "ibroot"),
2052 	    REG_TYPE_STR(ILOCAL, "ilocal"),
2053 	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2054 	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2055 	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2056 	    REG_TYPE_STR(QFORMAT, "qformat"),
2057 	    REG_TYPE_STR(DQUOT, "dquot"),
2058 	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2059 	    REG_TYPE_STR(LRHEADER, "LR header"),
2060 	    REG_TYPE_STR(UNMOUNT, "unmount"),
2061 	    REG_TYPE_STR(COMMIT, "commit"),
2062 	    REG_TYPE_STR(TRANSHDR, "trans header"),
2063 	    REG_TYPE_STR(ICREATE, "inode create")
2064 	};
2065 #undef REG_TYPE_STR
2066 
2067 	xfs_warn(mp, "xlog_write: reservation summary:");
2068 	xfs_warn(mp, "  unit res    = %d bytes",
2069 		 ticket->t_unit_res);
2070 	xfs_warn(mp, "  current res = %d bytes",
2071 		 ticket->t_curr_res);
2072 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2073 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2074 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2075 		 ticket->t_res_num_ophdrs, ophdr_spc);
2076 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2077 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2078 	xfs_warn(mp, "  num regions = %u",
2079 		 ticket->t_res_num);
2080 
2081 	for (i = 0; i < ticket->t_res_num; i++) {
2082 		uint r_type = ticket->t_res_arr[i].r_type;
2083 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2084 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2085 			    "bad-rtype" : res_type_str[r_type]),
2086 			    ticket->t_res_arr[i].r_len);
2087 	}
2088 
2089 	xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2090 		"xlog_write: reservation ran out. Need to up reservation");
2091 	xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2092 }
2093 
2094 /*
2095  * Calculate the potential space needed by the log vector.  Each region gets
2096  * its own xlog_op_header_t and may need to be double word aligned.
2097  */
2098 static int
xlog_write_calc_vec_length(struct xlog_ticket * ticket,struct xfs_log_vec * log_vector)2099 xlog_write_calc_vec_length(
2100 	struct xlog_ticket	*ticket,
2101 	struct xfs_log_vec	*log_vector)
2102 {
2103 	struct xfs_log_vec	*lv;
2104 	int			headers = 0;
2105 	int			len = 0;
2106 	int			i;
2107 
2108 	/* acct for start rec of xact */
2109 	if (ticket->t_flags & XLOG_TIC_INITED)
2110 		headers++;
2111 
2112 	for (lv = log_vector; lv; lv = lv->lv_next) {
2113 		/* we don't write ordered log vectors */
2114 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2115 			continue;
2116 
2117 		headers += lv->lv_niovecs;
2118 
2119 		for (i = 0; i < lv->lv_niovecs; i++) {
2120 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2121 
2122 			len += vecp->i_len;
2123 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2124 		}
2125 	}
2126 
2127 	ticket->t_res_num_ophdrs += headers;
2128 	len += headers * sizeof(struct xlog_op_header);
2129 
2130 	return len;
2131 }
2132 
2133 /*
2134  * If first write for transaction, insert start record  We can't be trying to
2135  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2136  */
2137 static int
xlog_write_start_rec(struct xlog_op_header * ophdr,struct xlog_ticket * ticket)2138 xlog_write_start_rec(
2139 	struct xlog_op_header	*ophdr,
2140 	struct xlog_ticket	*ticket)
2141 {
2142 	if (!(ticket->t_flags & XLOG_TIC_INITED))
2143 		return 0;
2144 
2145 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2146 	ophdr->oh_clientid = ticket->t_clientid;
2147 	ophdr->oh_len = 0;
2148 	ophdr->oh_flags = XLOG_START_TRANS;
2149 	ophdr->oh_res2 = 0;
2150 
2151 	ticket->t_flags &= ~XLOG_TIC_INITED;
2152 
2153 	return sizeof(struct xlog_op_header);
2154 }
2155 
2156 static xlog_op_header_t *
xlog_write_setup_ophdr(struct xlog * log,struct xlog_op_header * ophdr,struct xlog_ticket * ticket,uint flags)2157 xlog_write_setup_ophdr(
2158 	struct xlog		*log,
2159 	struct xlog_op_header	*ophdr,
2160 	struct xlog_ticket	*ticket,
2161 	uint			flags)
2162 {
2163 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2164 	ophdr->oh_clientid = ticket->t_clientid;
2165 	ophdr->oh_res2 = 0;
2166 
2167 	/* are we copying a commit or unmount record? */
2168 	ophdr->oh_flags = flags;
2169 
2170 	/*
2171 	 * We've seen logs corrupted with bad transaction client ids.  This
2172 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2173 	 * and shut down the filesystem.
2174 	 */
2175 	switch (ophdr->oh_clientid)  {
2176 	case XFS_TRANSACTION:
2177 	case XFS_VOLUME:
2178 	case XFS_LOG:
2179 		break;
2180 	default:
2181 		xfs_warn(log->l_mp,
2182 			"Bad XFS transaction clientid 0x%x in ticket 0x%p",
2183 			ophdr->oh_clientid, ticket);
2184 		return NULL;
2185 	}
2186 
2187 	return ophdr;
2188 }
2189 
2190 /*
2191  * Set up the parameters of the region copy into the log. This has
2192  * to handle region write split across multiple log buffers - this
2193  * state is kept external to this function so that this code can
2194  * be written in an obvious, self documenting manner.
2195  */
2196 static int
xlog_write_setup_copy(struct xlog_ticket * ticket,struct xlog_op_header * ophdr,int space_available,int space_required,int * copy_off,int * copy_len,int * last_was_partial_copy,int * bytes_consumed)2197 xlog_write_setup_copy(
2198 	struct xlog_ticket	*ticket,
2199 	struct xlog_op_header	*ophdr,
2200 	int			space_available,
2201 	int			space_required,
2202 	int			*copy_off,
2203 	int			*copy_len,
2204 	int			*last_was_partial_copy,
2205 	int			*bytes_consumed)
2206 {
2207 	int			still_to_copy;
2208 
2209 	still_to_copy = space_required - *bytes_consumed;
2210 	*copy_off = *bytes_consumed;
2211 
2212 	if (still_to_copy <= space_available) {
2213 		/* write of region completes here */
2214 		*copy_len = still_to_copy;
2215 		ophdr->oh_len = cpu_to_be32(*copy_len);
2216 		if (*last_was_partial_copy)
2217 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2218 		*last_was_partial_copy = 0;
2219 		*bytes_consumed = 0;
2220 		return 0;
2221 	}
2222 
2223 	/* partial write of region, needs extra log op header reservation */
2224 	*copy_len = space_available;
2225 	ophdr->oh_len = cpu_to_be32(*copy_len);
2226 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2227 	if (*last_was_partial_copy)
2228 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2229 	*bytes_consumed += *copy_len;
2230 	(*last_was_partial_copy)++;
2231 
2232 	/* account for new log op header */
2233 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2234 	ticket->t_res_num_ophdrs++;
2235 
2236 	return sizeof(struct xlog_op_header);
2237 }
2238 
2239 static int
xlog_write_copy_finish(struct xlog * log,struct xlog_in_core * iclog,uint flags,int * record_cnt,int * data_cnt,int * partial_copy,int * partial_copy_len,int log_offset,struct xlog_in_core ** commit_iclog)2240 xlog_write_copy_finish(
2241 	struct xlog		*log,
2242 	struct xlog_in_core	*iclog,
2243 	uint			flags,
2244 	int			*record_cnt,
2245 	int			*data_cnt,
2246 	int			*partial_copy,
2247 	int			*partial_copy_len,
2248 	int			log_offset,
2249 	struct xlog_in_core	**commit_iclog)
2250 {
2251 	if (*partial_copy) {
2252 		/*
2253 		 * This iclog has already been marked WANT_SYNC by
2254 		 * xlog_state_get_iclog_space.
2255 		 */
2256 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2257 		*record_cnt = 0;
2258 		*data_cnt = 0;
2259 		return xlog_state_release_iclog(log, iclog);
2260 	}
2261 
2262 	*partial_copy = 0;
2263 	*partial_copy_len = 0;
2264 
2265 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2266 		/* no more space in this iclog - push it. */
2267 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2268 		*record_cnt = 0;
2269 		*data_cnt = 0;
2270 
2271 		spin_lock(&log->l_icloglock);
2272 		xlog_state_want_sync(log, iclog);
2273 		spin_unlock(&log->l_icloglock);
2274 
2275 		if (!commit_iclog)
2276 			return xlog_state_release_iclog(log, iclog);
2277 		ASSERT(flags & XLOG_COMMIT_TRANS);
2278 		*commit_iclog = iclog;
2279 	}
2280 
2281 	return 0;
2282 }
2283 
2284 /*
2285  * Write some region out to in-core log
2286  *
2287  * This will be called when writing externally provided regions or when
2288  * writing out a commit record for a given transaction.
2289  *
2290  * General algorithm:
2291  *	1. Find total length of this write.  This may include adding to the
2292  *		lengths passed in.
2293  *	2. Check whether we violate the tickets reservation.
2294  *	3. While writing to this iclog
2295  *	    A. Reserve as much space in this iclog as can get
2296  *	    B. If this is first write, save away start lsn
2297  *	    C. While writing this region:
2298  *		1. If first write of transaction, write start record
2299  *		2. Write log operation header (header per region)
2300  *		3. Find out if we can fit entire region into this iclog
2301  *		4. Potentially, verify destination memcpy ptr
2302  *		5. Memcpy (partial) region
2303  *		6. If partial copy, release iclog; otherwise, continue
2304  *			copying more regions into current iclog
2305  *	4. Mark want sync bit (in simulation mode)
2306  *	5. Release iclog for potential flush to on-disk log.
2307  *
2308  * ERRORS:
2309  * 1.	Panic if reservation is overrun.  This should never happen since
2310  *	reservation amounts are generated internal to the filesystem.
2311  * NOTES:
2312  * 1. Tickets are single threaded data structures.
2313  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2314  *	syncing routine.  When a single log_write region needs to span
2315  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2316  *	on all log operation writes which don't contain the end of the
2317  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2318  *	operation which contains the end of the continued log_write region.
2319  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2320  *	we don't really know exactly how much space will be used.  As a result,
2321  *	we don't update ic_offset until the end when we know exactly how many
2322  *	bytes have been written out.
2323  */
2324 int
xlog_write(struct xlog * log,struct xfs_log_vec * log_vector,struct xlog_ticket * ticket,xfs_lsn_t * start_lsn,struct xlog_in_core ** commit_iclog,uint flags)2325 xlog_write(
2326 	struct xlog		*log,
2327 	struct xfs_log_vec	*log_vector,
2328 	struct xlog_ticket	*ticket,
2329 	xfs_lsn_t		*start_lsn,
2330 	struct xlog_in_core	**commit_iclog,
2331 	uint			flags)
2332 {
2333 	struct xlog_in_core	*iclog = NULL;
2334 	struct xfs_log_iovec	*vecp;
2335 	struct xfs_log_vec	*lv;
2336 	int			len;
2337 	int			index;
2338 	int			partial_copy = 0;
2339 	int			partial_copy_len = 0;
2340 	int			contwr = 0;
2341 	int			record_cnt = 0;
2342 	int			data_cnt = 0;
2343 	int			error;
2344 
2345 	*start_lsn = 0;
2346 
2347 	len = xlog_write_calc_vec_length(ticket, log_vector);
2348 
2349 	/*
2350 	 * Region headers and bytes are already accounted for.
2351 	 * We only need to take into account start records and
2352 	 * split regions in this function.
2353 	 */
2354 	if (ticket->t_flags & XLOG_TIC_INITED)
2355 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2356 
2357 	/*
2358 	 * Commit record headers need to be accounted for. These
2359 	 * come in as separate writes so are easy to detect.
2360 	 */
2361 	if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2362 		ticket->t_curr_res -= sizeof(xlog_op_header_t);
2363 
2364 	if (ticket->t_curr_res < 0)
2365 		xlog_print_tic_res(log->l_mp, ticket);
2366 
2367 	index = 0;
2368 	lv = log_vector;
2369 	vecp = lv->lv_iovecp;
2370 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2371 		void		*ptr;
2372 		int		log_offset;
2373 
2374 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2375 						   &contwr, &log_offset);
2376 		if (error)
2377 			return error;
2378 
2379 		ASSERT(log_offset <= iclog->ic_size - 1);
2380 		ptr = iclog->ic_datap + log_offset;
2381 
2382 		/* start_lsn is the first lsn written to. That's all we need. */
2383 		if (!*start_lsn)
2384 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2385 
2386 		/*
2387 		 * This loop writes out as many regions as can fit in the amount
2388 		 * of space which was allocated by xlog_state_get_iclog_space().
2389 		 */
2390 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2391 			struct xfs_log_iovec	*reg;
2392 			struct xlog_op_header	*ophdr;
2393 			int			start_rec_copy;
2394 			int			copy_len;
2395 			int			copy_off;
2396 			bool			ordered = false;
2397 
2398 			/* ordered log vectors have no regions to write */
2399 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2400 				ASSERT(lv->lv_niovecs == 0);
2401 				ordered = true;
2402 				goto next_lv;
2403 			}
2404 
2405 			reg = &vecp[index];
2406 			ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2407 			ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2408 
2409 			start_rec_copy = xlog_write_start_rec(ptr, ticket);
2410 			if (start_rec_copy) {
2411 				record_cnt++;
2412 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2413 						   start_rec_copy);
2414 			}
2415 
2416 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2417 			if (!ophdr)
2418 				return -EIO;
2419 
2420 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2421 					   sizeof(struct xlog_op_header));
2422 
2423 			len += xlog_write_setup_copy(ticket, ophdr,
2424 						     iclog->ic_size-log_offset,
2425 						     reg->i_len,
2426 						     &copy_off, &copy_len,
2427 						     &partial_copy,
2428 						     &partial_copy_len);
2429 			xlog_verify_dest_ptr(log, ptr);
2430 
2431 			/*
2432 			 * Copy region.
2433 			 *
2434 			 * Unmount records just log an opheader, so can have
2435 			 * empty payloads with no data region to copy. Hence we
2436 			 * only copy the payload if the vector says it has data
2437 			 * to copy.
2438 			 */
2439 			ASSERT(copy_len >= 0);
2440 			if (copy_len > 0) {
2441 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2442 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2443 						   copy_len);
2444 			}
2445 			copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2446 			record_cnt++;
2447 			data_cnt += contwr ? copy_len : 0;
2448 
2449 			error = xlog_write_copy_finish(log, iclog, flags,
2450 						       &record_cnt, &data_cnt,
2451 						       &partial_copy,
2452 						       &partial_copy_len,
2453 						       log_offset,
2454 						       commit_iclog);
2455 			if (error)
2456 				return error;
2457 
2458 			/*
2459 			 * if we had a partial copy, we need to get more iclog
2460 			 * space but we don't want to increment the region
2461 			 * index because there is still more is this region to
2462 			 * write.
2463 			 *
2464 			 * If we completed writing this region, and we flushed
2465 			 * the iclog (indicated by resetting of the record
2466 			 * count), then we also need to get more log space. If
2467 			 * this was the last record, though, we are done and
2468 			 * can just return.
2469 			 */
2470 			if (partial_copy)
2471 				break;
2472 
2473 			if (++index == lv->lv_niovecs) {
2474 next_lv:
2475 				lv = lv->lv_next;
2476 				index = 0;
2477 				if (lv)
2478 					vecp = lv->lv_iovecp;
2479 			}
2480 			if (record_cnt == 0 && ordered == false) {
2481 				if (!lv)
2482 					return 0;
2483 				break;
2484 			}
2485 		}
2486 	}
2487 
2488 	ASSERT(len == 0);
2489 
2490 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2491 	if (!commit_iclog)
2492 		return xlog_state_release_iclog(log, iclog);
2493 
2494 	ASSERT(flags & XLOG_COMMIT_TRANS);
2495 	*commit_iclog = iclog;
2496 	return 0;
2497 }
2498 
2499 
2500 /*****************************************************************************
2501  *
2502  *		State Machine functions
2503  *
2504  *****************************************************************************
2505  */
2506 
2507 /* Clean iclogs starting from the head.  This ordering must be
2508  * maintained, so an iclog doesn't become ACTIVE beyond one that
2509  * is SYNCING.  This is also required to maintain the notion that we use
2510  * a ordered wait queue to hold off would be writers to the log when every
2511  * iclog is trying to sync to disk.
2512  *
2513  * State Change: DIRTY -> ACTIVE
2514  */
2515 STATIC void
xlog_state_clean_log(struct xlog * log)2516 xlog_state_clean_log(
2517 	struct xlog *log)
2518 {
2519 	xlog_in_core_t	*iclog;
2520 	int changed = 0;
2521 
2522 	iclog = log->l_iclog;
2523 	do {
2524 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
2525 			iclog->ic_state	= XLOG_STATE_ACTIVE;
2526 			iclog->ic_offset       = 0;
2527 			ASSERT(iclog->ic_callback == NULL);
2528 			/*
2529 			 * If the number of ops in this iclog indicate it just
2530 			 * contains the dummy transaction, we can
2531 			 * change state into IDLE (the second time around).
2532 			 * Otherwise we should change the state into
2533 			 * NEED a dummy.
2534 			 * We don't need to cover the dummy.
2535 			 */
2536 			if (!changed &&
2537 			   (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2538 			   		XLOG_COVER_OPS)) {
2539 				changed = 1;
2540 			} else {
2541 				/*
2542 				 * We have two dirty iclogs so start over
2543 				 * This could also be num of ops indicates
2544 				 * this is not the dummy going out.
2545 				 */
2546 				changed = 2;
2547 			}
2548 			iclog->ic_header.h_num_logops = 0;
2549 			memset(iclog->ic_header.h_cycle_data, 0,
2550 			      sizeof(iclog->ic_header.h_cycle_data));
2551 			iclog->ic_header.h_lsn = 0;
2552 		} else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2553 			/* do nothing */;
2554 		else
2555 			break;	/* stop cleaning */
2556 		iclog = iclog->ic_next;
2557 	} while (iclog != log->l_iclog);
2558 
2559 	/* log is locked when we are called */
2560 	/*
2561 	 * Change state for the dummy log recording.
2562 	 * We usually go to NEED. But we go to NEED2 if the changed indicates
2563 	 * we are done writing the dummy record.
2564 	 * If we are done with the second dummy recored (DONE2), then
2565 	 * we go to IDLE.
2566 	 */
2567 	if (changed) {
2568 		switch (log->l_covered_state) {
2569 		case XLOG_STATE_COVER_IDLE:
2570 		case XLOG_STATE_COVER_NEED:
2571 		case XLOG_STATE_COVER_NEED2:
2572 			log->l_covered_state = XLOG_STATE_COVER_NEED;
2573 			break;
2574 
2575 		case XLOG_STATE_COVER_DONE:
2576 			if (changed == 1)
2577 				log->l_covered_state = XLOG_STATE_COVER_NEED2;
2578 			else
2579 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2580 			break;
2581 
2582 		case XLOG_STATE_COVER_DONE2:
2583 			if (changed == 1)
2584 				log->l_covered_state = XLOG_STATE_COVER_IDLE;
2585 			else
2586 				log->l_covered_state = XLOG_STATE_COVER_NEED;
2587 			break;
2588 
2589 		default:
2590 			ASSERT(0);
2591 		}
2592 	}
2593 }	/* xlog_state_clean_log */
2594 
2595 STATIC xfs_lsn_t
xlog_get_lowest_lsn(struct xlog * log)2596 xlog_get_lowest_lsn(
2597 	struct xlog	*log)
2598 {
2599 	xlog_in_core_t  *lsn_log;
2600 	xfs_lsn_t	lowest_lsn, lsn;
2601 
2602 	lsn_log = log->l_iclog;
2603 	lowest_lsn = 0;
2604 	do {
2605 	    if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2606 		lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2607 		if ((lsn && !lowest_lsn) ||
2608 		    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2609 			lowest_lsn = lsn;
2610 		}
2611 	    }
2612 	    lsn_log = lsn_log->ic_next;
2613 	} while (lsn_log != log->l_iclog);
2614 	return lowest_lsn;
2615 }
2616 
2617 
2618 STATIC void
xlog_state_do_callback(struct xlog * log,int aborted,struct xlog_in_core * ciclog)2619 xlog_state_do_callback(
2620 	struct xlog		*log,
2621 	int			aborted,
2622 	struct xlog_in_core	*ciclog)
2623 {
2624 	xlog_in_core_t	   *iclog;
2625 	xlog_in_core_t	   *first_iclog;	/* used to know when we've
2626 						 * processed all iclogs once */
2627 	xfs_log_callback_t *cb, *cb_next;
2628 	int		   flushcnt = 0;
2629 	xfs_lsn_t	   lowest_lsn;
2630 	int		   ioerrors;	/* counter: iclogs with errors */
2631 	int		   loopdidcallbacks; /* flag: inner loop did callbacks*/
2632 	int		   funcdidcallbacks; /* flag: function did callbacks */
2633 	int		   repeats;	/* for issuing console warnings if
2634 					 * looping too many times */
2635 	int		   wake = 0;
2636 
2637 	spin_lock(&log->l_icloglock);
2638 	first_iclog = iclog = log->l_iclog;
2639 	ioerrors = 0;
2640 	funcdidcallbacks = 0;
2641 	repeats = 0;
2642 
2643 	do {
2644 		/*
2645 		 * Scan all iclogs starting with the one pointed to by the
2646 		 * log.  Reset this starting point each time the log is
2647 		 * unlocked (during callbacks).
2648 		 *
2649 		 * Keep looping through iclogs until one full pass is made
2650 		 * without running any callbacks.
2651 		 */
2652 		first_iclog = log->l_iclog;
2653 		iclog = log->l_iclog;
2654 		loopdidcallbacks = 0;
2655 		repeats++;
2656 
2657 		do {
2658 
2659 			/* skip all iclogs in the ACTIVE & DIRTY states */
2660 			if (iclog->ic_state &
2661 			    (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2662 				iclog = iclog->ic_next;
2663 				continue;
2664 			}
2665 
2666 			/*
2667 			 * Between marking a filesystem SHUTDOWN and stopping
2668 			 * the log, we do flush all iclogs to disk (if there
2669 			 * wasn't a log I/O error). So, we do want things to
2670 			 * go smoothly in case of just a SHUTDOWN  w/o a
2671 			 * LOG_IO_ERROR.
2672 			 */
2673 			if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2674 				/*
2675 				 * Can only perform callbacks in order.  Since
2676 				 * this iclog is not in the DONE_SYNC/
2677 				 * DO_CALLBACK state, we skip the rest and
2678 				 * just try to clean up.  If we set our iclog
2679 				 * to DO_CALLBACK, we will not process it when
2680 				 * we retry since a previous iclog is in the
2681 				 * CALLBACK and the state cannot change since
2682 				 * we are holding the l_icloglock.
2683 				 */
2684 				if (!(iclog->ic_state &
2685 					(XLOG_STATE_DONE_SYNC |
2686 						 XLOG_STATE_DO_CALLBACK))) {
2687 					if (ciclog && (ciclog->ic_state ==
2688 							XLOG_STATE_DONE_SYNC)) {
2689 						ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2690 					}
2691 					break;
2692 				}
2693 				/*
2694 				 * We now have an iclog that is in either the
2695 				 * DO_CALLBACK or DONE_SYNC states. The other
2696 				 * states (WANT_SYNC, SYNCING, or CALLBACK were
2697 				 * caught by the above if and are going to
2698 				 * clean (i.e. we aren't doing their callbacks)
2699 				 * see the above if.
2700 				 */
2701 
2702 				/*
2703 				 * We will do one more check here to see if we
2704 				 * have chased our tail around.
2705 				 */
2706 
2707 				lowest_lsn = xlog_get_lowest_lsn(log);
2708 				if (lowest_lsn &&
2709 				    XFS_LSN_CMP(lowest_lsn,
2710 						be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2711 					iclog = iclog->ic_next;
2712 					continue; /* Leave this iclog for
2713 						   * another thread */
2714 				}
2715 
2716 				iclog->ic_state = XLOG_STATE_CALLBACK;
2717 
2718 
2719 				/*
2720 				 * Completion of a iclog IO does not imply that
2721 				 * a transaction has completed, as transactions
2722 				 * can be large enough to span many iclogs. We
2723 				 * cannot change the tail of the log half way
2724 				 * through a transaction as this may be the only
2725 				 * transaction in the log and moving th etail to
2726 				 * point to the middle of it will prevent
2727 				 * recovery from finding the start of the
2728 				 * transaction. Hence we should only update the
2729 				 * last_sync_lsn if this iclog contains
2730 				 * transaction completion callbacks on it.
2731 				 *
2732 				 * We have to do this before we drop the
2733 				 * icloglock to ensure we are the only one that
2734 				 * can update it.
2735 				 */
2736 				ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2737 					be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2738 				if (iclog->ic_callback)
2739 					atomic64_set(&log->l_last_sync_lsn,
2740 						be64_to_cpu(iclog->ic_header.h_lsn));
2741 
2742 			} else
2743 				ioerrors++;
2744 
2745 			spin_unlock(&log->l_icloglock);
2746 
2747 			/*
2748 			 * Keep processing entries in the callback list until
2749 			 * we come around and it is empty.  We need to
2750 			 * atomically see that the list is empty and change the
2751 			 * state to DIRTY so that we don't miss any more
2752 			 * callbacks being added.
2753 			 */
2754 			spin_lock(&iclog->ic_callback_lock);
2755 			cb = iclog->ic_callback;
2756 			while (cb) {
2757 				iclog->ic_callback_tail = &(iclog->ic_callback);
2758 				iclog->ic_callback = NULL;
2759 				spin_unlock(&iclog->ic_callback_lock);
2760 
2761 				/* perform callbacks in the order given */
2762 				for (; cb; cb = cb_next) {
2763 					cb_next = cb->cb_next;
2764 					cb->cb_func(cb->cb_arg, aborted);
2765 				}
2766 				spin_lock(&iclog->ic_callback_lock);
2767 				cb = iclog->ic_callback;
2768 			}
2769 
2770 			loopdidcallbacks++;
2771 			funcdidcallbacks++;
2772 
2773 			spin_lock(&log->l_icloglock);
2774 			ASSERT(iclog->ic_callback == NULL);
2775 			spin_unlock(&iclog->ic_callback_lock);
2776 			if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2777 				iclog->ic_state = XLOG_STATE_DIRTY;
2778 
2779 			/*
2780 			 * Transition from DIRTY to ACTIVE if applicable.
2781 			 * NOP if STATE_IOERROR.
2782 			 */
2783 			xlog_state_clean_log(log);
2784 
2785 			/* wake up threads waiting in xfs_log_force() */
2786 			wake_up_all(&iclog->ic_force_wait);
2787 
2788 			iclog = iclog->ic_next;
2789 		} while (first_iclog != iclog);
2790 
2791 		if (repeats > 5000) {
2792 			flushcnt += repeats;
2793 			repeats = 0;
2794 			xfs_warn(log->l_mp,
2795 				"%s: possible infinite loop (%d iterations)",
2796 				__func__, flushcnt);
2797 		}
2798 	} while (!ioerrors && loopdidcallbacks);
2799 
2800 #ifdef DEBUG
2801 	/*
2802 	 * Make one last gasp attempt to see if iclogs are being left in limbo.
2803 	 * If the above loop finds an iclog earlier than the current iclog and
2804 	 * in one of the syncing states, the current iclog is put into
2805 	 * DO_CALLBACK and the callbacks are deferred to the completion of the
2806 	 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2807 	 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2808 	 * states.
2809 	 *
2810 	 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2811 	 * for ic_state == SYNCING.
2812 	 */
2813 	if (funcdidcallbacks) {
2814 		first_iclog = iclog = log->l_iclog;
2815 		do {
2816 			ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2817 			/*
2818 			 * Terminate the loop if iclogs are found in states
2819 			 * which will cause other threads to clean up iclogs.
2820 			 *
2821 			 * SYNCING - i/o completion will go through logs
2822 			 * DONE_SYNC - interrupt thread should be waiting for
2823 			 *              l_icloglock
2824 			 * IOERROR - give up hope all ye who enter here
2825 			 */
2826 			if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2827 			    iclog->ic_state & XLOG_STATE_SYNCING ||
2828 			    iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2829 			    iclog->ic_state == XLOG_STATE_IOERROR )
2830 				break;
2831 			iclog = iclog->ic_next;
2832 		} while (first_iclog != iclog);
2833 	}
2834 #endif
2835 
2836 	if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2837 		wake = 1;
2838 	spin_unlock(&log->l_icloglock);
2839 
2840 	if (wake)
2841 		wake_up_all(&log->l_flush_wait);
2842 }
2843 
2844 
2845 /*
2846  * Finish transitioning this iclog to the dirty state.
2847  *
2848  * Make sure that we completely execute this routine only when this is
2849  * the last call to the iclog.  There is a good chance that iclog flushes,
2850  * when we reach the end of the physical log, get turned into 2 separate
2851  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2852  * routine.  By using the reference count bwritecnt, we guarantee that only
2853  * the second completion goes through.
2854  *
2855  * Callbacks could take time, so they are done outside the scope of the
2856  * global state machine log lock.
2857  */
2858 STATIC void
xlog_state_done_syncing(xlog_in_core_t * iclog,int aborted)2859 xlog_state_done_syncing(
2860 	xlog_in_core_t	*iclog,
2861 	int		aborted)
2862 {
2863 	struct xlog	   *log = iclog->ic_log;
2864 
2865 	spin_lock(&log->l_icloglock);
2866 
2867 	ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2868 	       iclog->ic_state == XLOG_STATE_IOERROR);
2869 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2870 	ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2871 
2872 
2873 	/*
2874 	 * If we got an error, either on the first buffer, or in the case of
2875 	 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2876 	 * and none should ever be attempted to be written to disk
2877 	 * again.
2878 	 */
2879 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
2880 		if (--iclog->ic_bwritecnt == 1) {
2881 			spin_unlock(&log->l_icloglock);
2882 			return;
2883 		}
2884 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2885 	}
2886 
2887 	/*
2888 	 * Someone could be sleeping prior to writing out the next
2889 	 * iclog buffer, we wake them all, one will get to do the
2890 	 * I/O, the others get to wait for the result.
2891 	 */
2892 	wake_up_all(&iclog->ic_write_wait);
2893 	spin_unlock(&log->l_icloglock);
2894 	xlog_state_do_callback(log, aborted, iclog);	/* also cleans log */
2895 }	/* xlog_state_done_syncing */
2896 
2897 
2898 /*
2899  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2900  * sleep.  We wait on the flush queue on the head iclog as that should be
2901  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2902  * we will wait here and all new writes will sleep until a sync completes.
2903  *
2904  * The in-core logs are used in a circular fashion. They are not used
2905  * out-of-order even when an iclog past the head is free.
2906  *
2907  * return:
2908  *	* log_offset where xlog_write() can start writing into the in-core
2909  *		log's data space.
2910  *	* in-core log pointer to which xlog_write() should write.
2911  *	* boolean indicating this is a continued write to an in-core log.
2912  *		If this is the last write, then the in-core log's offset field
2913  *		needs to be incremented, depending on the amount of data which
2914  *		is copied.
2915  */
2916 STATIC int
xlog_state_get_iclog_space(struct xlog * log,int len,struct xlog_in_core ** iclogp,struct xlog_ticket * ticket,int * continued_write,int * logoffsetp)2917 xlog_state_get_iclog_space(
2918 	struct xlog		*log,
2919 	int			len,
2920 	struct xlog_in_core	**iclogp,
2921 	struct xlog_ticket	*ticket,
2922 	int			*continued_write,
2923 	int			*logoffsetp)
2924 {
2925 	int		  log_offset;
2926 	xlog_rec_header_t *head;
2927 	xlog_in_core_t	  *iclog;
2928 	int		  error;
2929 
2930 restart:
2931 	spin_lock(&log->l_icloglock);
2932 	if (XLOG_FORCED_SHUTDOWN(log)) {
2933 		spin_unlock(&log->l_icloglock);
2934 		return -EIO;
2935 	}
2936 
2937 	iclog = log->l_iclog;
2938 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2939 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2940 
2941 		/* Wait for log writes to have flushed */
2942 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2943 		goto restart;
2944 	}
2945 
2946 	head = &iclog->ic_header;
2947 
2948 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2949 	log_offset = iclog->ic_offset;
2950 
2951 	/* On the 1st write to an iclog, figure out lsn.  This works
2952 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2953 	 * committing to.  If the offset is set, that's how many blocks
2954 	 * must be written.
2955 	 */
2956 	if (log_offset == 0) {
2957 		ticket->t_curr_res -= log->l_iclog_hsize;
2958 		xlog_tic_add_region(ticket,
2959 				    log->l_iclog_hsize,
2960 				    XLOG_REG_TYPE_LRHEADER);
2961 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2962 		head->h_lsn = cpu_to_be64(
2963 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2964 		ASSERT(log->l_curr_block >= 0);
2965 	}
2966 
2967 	/* If there is enough room to write everything, then do it.  Otherwise,
2968 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2969 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2970 	 * until you know exactly how many bytes get copied.  Therefore, wait
2971 	 * until later to update ic_offset.
2972 	 *
2973 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2974 	 * can fit into remaining data section.
2975 	 */
2976 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2977 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2978 
2979 		/*
2980 		 * If I'm the only one writing to this iclog, sync it to disk.
2981 		 * We need to do an atomic compare and decrement here to avoid
2982 		 * racing with concurrent atomic_dec_and_lock() calls in
2983 		 * xlog_state_release_iclog() when there is more than one
2984 		 * reference to the iclog.
2985 		 */
2986 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2987 			/* we are the only one */
2988 			spin_unlock(&log->l_icloglock);
2989 			error = xlog_state_release_iclog(log, iclog);
2990 			if (error)
2991 				return error;
2992 		} else {
2993 			spin_unlock(&log->l_icloglock);
2994 		}
2995 		goto restart;
2996 	}
2997 
2998 	/* Do we have enough room to write the full amount in the remainder
2999 	 * of this iclog?  Or must we continue a write on the next iclog and
3000 	 * mark this iclog as completely taken?  In the case where we switch
3001 	 * iclogs (to mark it taken), this particular iclog will release/sync
3002 	 * to disk in xlog_write().
3003 	 */
3004 	if (len <= iclog->ic_size - iclog->ic_offset) {
3005 		*continued_write = 0;
3006 		iclog->ic_offset += len;
3007 	} else {
3008 		*continued_write = 1;
3009 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3010 	}
3011 	*iclogp = iclog;
3012 
3013 	ASSERT(iclog->ic_offset <= iclog->ic_size);
3014 	spin_unlock(&log->l_icloglock);
3015 
3016 	*logoffsetp = log_offset;
3017 	return 0;
3018 }	/* xlog_state_get_iclog_space */
3019 
3020 /* The first cnt-1 times through here we don't need to
3021  * move the grant write head because the permanent
3022  * reservation has reserved cnt times the unit amount.
3023  * Release part of current permanent unit reservation and
3024  * reset current reservation to be one units worth.  Also
3025  * move grant reservation head forward.
3026  */
3027 STATIC void
xlog_regrant_reserve_log_space(struct xlog * log,struct xlog_ticket * ticket)3028 xlog_regrant_reserve_log_space(
3029 	struct xlog		*log,
3030 	struct xlog_ticket	*ticket)
3031 {
3032 	trace_xfs_log_regrant_reserve_enter(log, ticket);
3033 
3034 	if (ticket->t_cnt > 0)
3035 		ticket->t_cnt--;
3036 
3037 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3038 					ticket->t_curr_res);
3039 	xlog_grant_sub_space(log, &log->l_write_head.grant,
3040 					ticket->t_curr_res);
3041 	ticket->t_curr_res = ticket->t_unit_res;
3042 	xlog_tic_reset_res(ticket);
3043 
3044 	trace_xfs_log_regrant_reserve_sub(log, ticket);
3045 
3046 	/* just return if we still have some of the pre-reserved space */
3047 	if (ticket->t_cnt > 0)
3048 		return;
3049 
3050 	xlog_grant_add_space(log, &log->l_reserve_head.grant,
3051 					ticket->t_unit_res);
3052 
3053 	trace_xfs_log_regrant_reserve_exit(log, ticket);
3054 
3055 	ticket->t_curr_res = ticket->t_unit_res;
3056 	xlog_tic_reset_res(ticket);
3057 }	/* xlog_regrant_reserve_log_space */
3058 
3059 
3060 /*
3061  * Give back the space left from a reservation.
3062  *
3063  * All the information we need to make a correct determination of space left
3064  * is present.  For non-permanent reservations, things are quite easy.  The
3065  * count should have been decremented to zero.  We only need to deal with the
3066  * space remaining in the current reservation part of the ticket.  If the
3067  * ticket contains a permanent reservation, there may be left over space which
3068  * needs to be released.  A count of N means that N-1 refills of the current
3069  * reservation can be done before we need to ask for more space.  The first
3070  * one goes to fill up the first current reservation.  Once we run out of
3071  * space, the count will stay at zero and the only space remaining will be
3072  * in the current reservation field.
3073  */
3074 STATIC void
xlog_ungrant_log_space(struct xlog * log,struct xlog_ticket * ticket)3075 xlog_ungrant_log_space(
3076 	struct xlog		*log,
3077 	struct xlog_ticket	*ticket)
3078 {
3079 	int	bytes;
3080 
3081 	if (ticket->t_cnt > 0)
3082 		ticket->t_cnt--;
3083 
3084 	trace_xfs_log_ungrant_enter(log, ticket);
3085 	trace_xfs_log_ungrant_sub(log, ticket);
3086 
3087 	/*
3088 	 * If this is a permanent reservation ticket, we may be able to free
3089 	 * up more space based on the remaining count.
3090 	 */
3091 	bytes = ticket->t_curr_res;
3092 	if (ticket->t_cnt > 0) {
3093 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3094 		bytes += ticket->t_unit_res*ticket->t_cnt;
3095 	}
3096 
3097 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3098 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3099 
3100 	trace_xfs_log_ungrant_exit(log, ticket);
3101 
3102 	xfs_log_space_wake(log->l_mp);
3103 }
3104 
3105 /*
3106  * Flush iclog to disk if this is the last reference to the given iclog and
3107  * the WANT_SYNC bit is set.
3108  *
3109  * When this function is entered, the iclog is not necessarily in the
3110  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3111  *
3112  *
3113  */
3114 STATIC int
xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog)3115 xlog_state_release_iclog(
3116 	struct xlog		*log,
3117 	struct xlog_in_core	*iclog)
3118 {
3119 	int		sync = 0;	/* do we sync? */
3120 
3121 	if (iclog->ic_state & XLOG_STATE_IOERROR)
3122 		return -EIO;
3123 
3124 	ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3125 	if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3126 		return 0;
3127 
3128 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3129 		spin_unlock(&log->l_icloglock);
3130 		return -EIO;
3131 	}
3132 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3133 	       iclog->ic_state == XLOG_STATE_WANT_SYNC);
3134 
3135 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3136 		/* update tail before writing to iclog */
3137 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3138 		sync++;
3139 		iclog->ic_state = XLOG_STATE_SYNCING;
3140 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3141 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
3142 		/* cycle incremented when incrementing curr_block */
3143 	}
3144 	spin_unlock(&log->l_icloglock);
3145 
3146 	/*
3147 	 * We let the log lock go, so it's possible that we hit a log I/O
3148 	 * error or some other SHUTDOWN condition that marks the iclog
3149 	 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3150 	 * this iclog has consistent data, so we ignore IOERROR
3151 	 * flags after this point.
3152 	 */
3153 	if (sync)
3154 		return xlog_sync(log, iclog);
3155 	return 0;
3156 }	/* xlog_state_release_iclog */
3157 
3158 
3159 /*
3160  * This routine will mark the current iclog in the ring as WANT_SYNC
3161  * and move the current iclog pointer to the next iclog in the ring.
3162  * When this routine is called from xlog_state_get_iclog_space(), the
3163  * exact size of the iclog has not yet been determined.  All we know is
3164  * that every data block.  We have run out of space in this log record.
3165  */
3166 STATIC void
xlog_state_switch_iclogs(struct xlog * log,struct xlog_in_core * iclog,int eventual_size)3167 xlog_state_switch_iclogs(
3168 	struct xlog		*log,
3169 	struct xlog_in_core	*iclog,
3170 	int			eventual_size)
3171 {
3172 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3173 	if (!eventual_size)
3174 		eventual_size = iclog->ic_offset;
3175 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3176 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3177 	log->l_prev_block = log->l_curr_block;
3178 	log->l_prev_cycle = log->l_curr_cycle;
3179 
3180 	/* roll log?: ic_offset changed later */
3181 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3182 
3183 	/* Round up to next log-sunit */
3184 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3185 	    log->l_mp->m_sb.sb_logsunit > 1) {
3186 		__uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3187 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3188 	}
3189 
3190 	if (log->l_curr_block >= log->l_logBBsize) {
3191 		/*
3192 		 * Rewind the current block before the cycle is bumped to make
3193 		 * sure that the combined LSN never transiently moves forward
3194 		 * when the log wraps to the next cycle. This is to support the
3195 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3196 		 * other cases should acquire l_icloglock.
3197 		 */
3198 		log->l_curr_block -= log->l_logBBsize;
3199 		ASSERT(log->l_curr_block >= 0);
3200 		smp_wmb();
3201 		log->l_curr_cycle++;
3202 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3203 			log->l_curr_cycle++;
3204 	}
3205 	ASSERT(iclog == log->l_iclog);
3206 	log->l_iclog = iclog->ic_next;
3207 }	/* xlog_state_switch_iclogs */
3208 
3209 /*
3210  * Write out all data in the in-core log as of this exact moment in time.
3211  *
3212  * Data may be written to the in-core log during this call.  However,
3213  * we don't guarantee this data will be written out.  A change from past
3214  * implementation means this routine will *not* write out zero length LRs.
3215  *
3216  * Basically, we try and perform an intelligent scan of the in-core logs.
3217  * If we determine there is no flushable data, we just return.  There is no
3218  * flushable data if:
3219  *
3220  *	1. the current iclog is active and has no data; the previous iclog
3221  *		is in the active or dirty state.
3222  *	2. the current iclog is drity, and the previous iclog is in the
3223  *		active or dirty state.
3224  *
3225  * We may sleep if:
3226  *
3227  *	1. the current iclog is not in the active nor dirty state.
3228  *	2. the current iclog dirty, and the previous iclog is not in the
3229  *		active nor dirty state.
3230  *	3. the current iclog is active, and there is another thread writing
3231  *		to this particular iclog.
3232  *	4. a) the current iclog is active and has no other writers
3233  *	   b) when we return from flushing out this iclog, it is still
3234  *		not in the active nor dirty state.
3235  */
3236 int
_xfs_log_force(struct xfs_mount * mp,uint flags,int * log_flushed)3237 _xfs_log_force(
3238 	struct xfs_mount	*mp,
3239 	uint			flags,
3240 	int			*log_flushed)
3241 {
3242 	struct xlog		*log = mp->m_log;
3243 	struct xlog_in_core	*iclog;
3244 	xfs_lsn_t		lsn;
3245 
3246 	XFS_STATS_INC(mp, xs_log_force);
3247 
3248 	xlog_cil_force(log);
3249 
3250 	spin_lock(&log->l_icloglock);
3251 
3252 	iclog = log->l_iclog;
3253 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3254 		spin_unlock(&log->l_icloglock);
3255 		return -EIO;
3256 	}
3257 
3258 	/* If the head iclog is not active nor dirty, we just attach
3259 	 * ourselves to the head and go to sleep.
3260 	 */
3261 	if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3262 	    iclog->ic_state == XLOG_STATE_DIRTY) {
3263 		/*
3264 		 * If the head is dirty or (active and empty), then
3265 		 * we need to look at the previous iclog.  If the previous
3266 		 * iclog is active or dirty we are done.  There is nothing
3267 		 * to sync out.  Otherwise, we attach ourselves to the
3268 		 * previous iclog and go to sleep.
3269 		 */
3270 		if (iclog->ic_state == XLOG_STATE_DIRTY ||
3271 		    (atomic_read(&iclog->ic_refcnt) == 0
3272 		     && iclog->ic_offset == 0)) {
3273 			iclog = iclog->ic_prev;
3274 			if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3275 			    iclog->ic_state == XLOG_STATE_DIRTY)
3276 				goto no_sleep;
3277 			else
3278 				goto maybe_sleep;
3279 		} else {
3280 			if (atomic_read(&iclog->ic_refcnt) == 0) {
3281 				/* We are the only one with access to this
3282 				 * iclog.  Flush it out now.  There should
3283 				 * be a roundoff of zero to show that someone
3284 				 * has already taken care of the roundoff from
3285 				 * the previous sync.
3286 				 */
3287 				atomic_inc(&iclog->ic_refcnt);
3288 				lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3289 				xlog_state_switch_iclogs(log, iclog, 0);
3290 				spin_unlock(&log->l_icloglock);
3291 
3292 				if (xlog_state_release_iclog(log, iclog))
3293 					return -EIO;
3294 
3295 				if (log_flushed)
3296 					*log_flushed = 1;
3297 				spin_lock(&log->l_icloglock);
3298 				if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3299 				    iclog->ic_state != XLOG_STATE_DIRTY)
3300 					goto maybe_sleep;
3301 				else
3302 					goto no_sleep;
3303 			} else {
3304 				/* Someone else is writing to this iclog.
3305 				 * Use its call to flush out the data.  However,
3306 				 * the other thread may not force out this LR,
3307 				 * so we mark it WANT_SYNC.
3308 				 */
3309 				xlog_state_switch_iclogs(log, iclog, 0);
3310 				goto maybe_sleep;
3311 			}
3312 		}
3313 	}
3314 
3315 	/* By the time we come around again, the iclog could've been filled
3316 	 * which would give it another lsn.  If we have a new lsn, just
3317 	 * return because the relevant data has been flushed.
3318 	 */
3319 maybe_sleep:
3320 	if (flags & XFS_LOG_SYNC) {
3321 		/*
3322 		 * We must check if we're shutting down here, before
3323 		 * we wait, while we're holding the l_icloglock.
3324 		 * Then we check again after waking up, in case our
3325 		 * sleep was disturbed by a bad news.
3326 		 */
3327 		if (iclog->ic_state & XLOG_STATE_IOERROR) {
3328 			spin_unlock(&log->l_icloglock);
3329 			return -EIO;
3330 		}
3331 		XFS_STATS_INC(mp, xs_log_force_sleep);
3332 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3333 		/*
3334 		 * No need to grab the log lock here since we're
3335 		 * only deciding whether or not to return EIO
3336 		 * and the memory read should be atomic.
3337 		 */
3338 		if (iclog->ic_state & XLOG_STATE_IOERROR)
3339 			return -EIO;
3340 	} else {
3341 
3342 no_sleep:
3343 		spin_unlock(&log->l_icloglock);
3344 	}
3345 	return 0;
3346 }
3347 
3348 /*
3349  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3350  * about errors or whether the log was flushed or not. This is the normal
3351  * interface to use when trying to unpin items or move the log forward.
3352  */
3353 void
xfs_log_force(xfs_mount_t * mp,uint flags)3354 xfs_log_force(
3355 	xfs_mount_t	*mp,
3356 	uint		flags)
3357 {
3358 	trace_xfs_log_force(mp, 0, _RET_IP_);
3359 	_xfs_log_force(mp, flags, NULL);
3360 }
3361 
3362 /*
3363  * Force the in-core log to disk for a specific LSN.
3364  *
3365  * Find in-core log with lsn.
3366  *	If it is in the DIRTY state, just return.
3367  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3368  *		state and go to sleep or return.
3369  *	If it is in any other state, go to sleep or return.
3370  *
3371  * Synchronous forces are implemented with a signal variable. All callers
3372  * to force a given lsn to disk will wait on a the sv attached to the
3373  * specific in-core log.  When given in-core log finally completes its
3374  * write to disk, that thread will wake up all threads waiting on the
3375  * sv.
3376  */
3377 int
_xfs_log_force_lsn(struct xfs_mount * mp,xfs_lsn_t lsn,uint flags,int * log_flushed)3378 _xfs_log_force_lsn(
3379 	struct xfs_mount	*mp,
3380 	xfs_lsn_t		lsn,
3381 	uint			flags,
3382 	int			*log_flushed)
3383 {
3384 	struct xlog		*log = mp->m_log;
3385 	struct xlog_in_core	*iclog;
3386 	int			already_slept = 0;
3387 
3388 	ASSERT(lsn != 0);
3389 
3390 	XFS_STATS_INC(mp, xs_log_force);
3391 
3392 	lsn = xlog_cil_force_lsn(log, lsn);
3393 	if (lsn == NULLCOMMITLSN)
3394 		return 0;
3395 
3396 try_again:
3397 	spin_lock(&log->l_icloglock);
3398 	iclog = log->l_iclog;
3399 	if (iclog->ic_state & XLOG_STATE_IOERROR) {
3400 		spin_unlock(&log->l_icloglock);
3401 		return -EIO;
3402 	}
3403 
3404 	do {
3405 		if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3406 			iclog = iclog->ic_next;
3407 			continue;
3408 		}
3409 
3410 		if (iclog->ic_state == XLOG_STATE_DIRTY) {
3411 			spin_unlock(&log->l_icloglock);
3412 			return 0;
3413 		}
3414 
3415 		if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3416 			/*
3417 			 * We sleep here if we haven't already slept (e.g.
3418 			 * this is the first time we've looked at the correct
3419 			 * iclog buf) and the buffer before us is going to
3420 			 * be sync'ed. The reason for this is that if we
3421 			 * are doing sync transactions here, by waiting for
3422 			 * the previous I/O to complete, we can allow a few
3423 			 * more transactions into this iclog before we close
3424 			 * it down.
3425 			 *
3426 			 * Otherwise, we mark the buffer WANT_SYNC, and bump
3427 			 * up the refcnt so we can release the log (which
3428 			 * drops the ref count).  The state switch keeps new
3429 			 * transaction commits from using this buffer.  When
3430 			 * the current commits finish writing into the buffer,
3431 			 * the refcount will drop to zero and the buffer will
3432 			 * go out then.
3433 			 */
3434 			if (!already_slept &&
3435 			    (iclog->ic_prev->ic_state &
3436 			     (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3437 				ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3438 
3439 				XFS_STATS_INC(mp, xs_log_force_sleep);
3440 
3441 				xlog_wait(&iclog->ic_prev->ic_write_wait,
3442 							&log->l_icloglock);
3443 				already_slept = 1;
3444 				goto try_again;
3445 			}
3446 			atomic_inc(&iclog->ic_refcnt);
3447 			xlog_state_switch_iclogs(log, iclog, 0);
3448 			spin_unlock(&log->l_icloglock);
3449 			if (xlog_state_release_iclog(log, iclog))
3450 				return -EIO;
3451 			if (log_flushed)
3452 				*log_flushed = 1;
3453 			spin_lock(&log->l_icloglock);
3454 		}
3455 
3456 		if ((flags & XFS_LOG_SYNC) && /* sleep */
3457 		    !(iclog->ic_state &
3458 		      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3459 			/*
3460 			 * Don't wait on completion if we know that we've
3461 			 * gotten a log write error.
3462 			 */
3463 			if (iclog->ic_state & XLOG_STATE_IOERROR) {
3464 				spin_unlock(&log->l_icloglock);
3465 				return -EIO;
3466 			}
3467 			XFS_STATS_INC(mp, xs_log_force_sleep);
3468 			xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3469 			/*
3470 			 * No need to grab the log lock here since we're
3471 			 * only deciding whether or not to return EIO
3472 			 * and the memory read should be atomic.
3473 			 */
3474 			if (iclog->ic_state & XLOG_STATE_IOERROR)
3475 				return -EIO;
3476 		} else {		/* just return */
3477 			spin_unlock(&log->l_icloglock);
3478 		}
3479 
3480 		return 0;
3481 	} while (iclog != log->l_iclog);
3482 
3483 	spin_unlock(&log->l_icloglock);
3484 	return 0;
3485 }
3486 
3487 /*
3488  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3489  * about errors or whether the log was flushed or not. This is the normal
3490  * interface to use when trying to unpin items or move the log forward.
3491  */
3492 void
xfs_log_force_lsn(xfs_mount_t * mp,xfs_lsn_t lsn,uint flags)3493 xfs_log_force_lsn(
3494 	xfs_mount_t	*mp,
3495 	xfs_lsn_t	lsn,
3496 	uint		flags)
3497 {
3498 	trace_xfs_log_force(mp, lsn, _RET_IP_);
3499 	_xfs_log_force_lsn(mp, lsn, flags, NULL);
3500 }
3501 
3502 /*
3503  * Called when we want to mark the current iclog as being ready to sync to
3504  * disk.
3505  */
3506 STATIC void
xlog_state_want_sync(struct xlog * log,struct xlog_in_core * iclog)3507 xlog_state_want_sync(
3508 	struct xlog		*log,
3509 	struct xlog_in_core	*iclog)
3510 {
3511 	assert_spin_locked(&log->l_icloglock);
3512 
3513 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3514 		xlog_state_switch_iclogs(log, iclog, 0);
3515 	} else {
3516 		ASSERT(iclog->ic_state &
3517 			(XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3518 	}
3519 }
3520 
3521 
3522 /*****************************************************************************
3523  *
3524  *		TICKET functions
3525  *
3526  *****************************************************************************
3527  */
3528 
3529 /*
3530  * Free a used ticket when its refcount falls to zero.
3531  */
3532 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3533 xfs_log_ticket_put(
3534 	xlog_ticket_t	*ticket)
3535 {
3536 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3537 	if (atomic_dec_and_test(&ticket->t_ref))
3538 		kmem_zone_free(xfs_log_ticket_zone, ticket);
3539 }
3540 
3541 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3542 xfs_log_ticket_get(
3543 	xlog_ticket_t	*ticket)
3544 {
3545 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3546 	atomic_inc(&ticket->t_ref);
3547 	return ticket;
3548 }
3549 
3550 /*
3551  * Figure out the total log space unit (in bytes) that would be
3552  * required for a log ticket.
3553  */
3554 int
xfs_log_calc_unit_res(struct xfs_mount * mp,int unit_bytes)3555 xfs_log_calc_unit_res(
3556 	struct xfs_mount	*mp,
3557 	int			unit_bytes)
3558 {
3559 	struct xlog		*log = mp->m_log;
3560 	int			iclog_space;
3561 	uint			num_headers;
3562 
3563 	/*
3564 	 * Permanent reservations have up to 'cnt'-1 active log operations
3565 	 * in the log.  A unit in this case is the amount of space for one
3566 	 * of these log operations.  Normal reservations have a cnt of 1
3567 	 * and their unit amount is the total amount of space required.
3568 	 *
3569 	 * The following lines of code account for non-transaction data
3570 	 * which occupy space in the on-disk log.
3571 	 *
3572 	 * Normal form of a transaction is:
3573 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3574 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3575 	 *
3576 	 * We need to account for all the leadup data and trailer data
3577 	 * around the transaction data.
3578 	 * And then we need to account for the worst case in terms of using
3579 	 * more space.
3580 	 * The worst case will happen if:
3581 	 * - the placement of the transaction happens to be such that the
3582 	 *   roundoff is at its maximum
3583 	 * - the transaction data is synced before the commit record is synced
3584 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3585 	 *   Therefore the commit record is in its own Log Record.
3586 	 *   This can happen as the commit record is called with its
3587 	 *   own region to xlog_write().
3588 	 *   This then means that in the worst case, roundoff can happen for
3589 	 *   the commit-rec as well.
3590 	 *   The commit-rec is smaller than padding in this scenario and so it is
3591 	 *   not added separately.
3592 	 */
3593 
3594 	/* for trans header */
3595 	unit_bytes += sizeof(xlog_op_header_t);
3596 	unit_bytes += sizeof(xfs_trans_header_t);
3597 
3598 	/* for start-rec */
3599 	unit_bytes += sizeof(xlog_op_header_t);
3600 
3601 	/*
3602 	 * for LR headers - the space for data in an iclog is the size minus
3603 	 * the space used for the headers. If we use the iclog size, then we
3604 	 * undercalculate the number of headers required.
3605 	 *
3606 	 * Furthermore - the addition of op headers for split-recs might
3607 	 * increase the space required enough to require more log and op
3608 	 * headers, so take that into account too.
3609 	 *
3610 	 * IMPORTANT: This reservation makes the assumption that if this
3611 	 * transaction is the first in an iclog and hence has the LR headers
3612 	 * accounted to it, then the remaining space in the iclog is
3613 	 * exclusively for this transaction.  i.e. if the transaction is larger
3614 	 * than the iclog, it will be the only thing in that iclog.
3615 	 * Fundamentally, this means we must pass the entire log vector to
3616 	 * xlog_write to guarantee this.
3617 	 */
3618 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3619 	num_headers = howmany(unit_bytes, iclog_space);
3620 
3621 	/* for split-recs - ophdrs added when data split over LRs */
3622 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3623 
3624 	/* add extra header reservations if we overrun */
3625 	while (!num_headers ||
3626 	       howmany(unit_bytes, iclog_space) > num_headers) {
3627 		unit_bytes += sizeof(xlog_op_header_t);
3628 		num_headers++;
3629 	}
3630 	unit_bytes += log->l_iclog_hsize * num_headers;
3631 
3632 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3633 	unit_bytes += log->l_iclog_hsize;
3634 
3635 	/* for roundoff padding for transaction data and one for commit record */
3636 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3637 		/* log su roundoff */
3638 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3639 	} else {
3640 		/* BB roundoff */
3641 		unit_bytes += 2 * BBSIZE;
3642         }
3643 
3644 	return unit_bytes;
3645 }
3646 
3647 /*
3648  * Allocate and initialise a new log ticket.
3649  */
3650 struct xlog_ticket *
xlog_ticket_alloc(struct xlog * log,int unit_bytes,int cnt,char client,bool permanent,xfs_km_flags_t alloc_flags)3651 xlog_ticket_alloc(
3652 	struct xlog		*log,
3653 	int			unit_bytes,
3654 	int			cnt,
3655 	char			client,
3656 	bool			permanent,
3657 	xfs_km_flags_t		alloc_flags)
3658 {
3659 	struct xlog_ticket	*tic;
3660 	int			unit_res;
3661 
3662 	tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3663 	if (!tic)
3664 		return NULL;
3665 
3666 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3667 
3668 	atomic_set(&tic->t_ref, 1);
3669 	tic->t_task		= current;
3670 	INIT_LIST_HEAD(&tic->t_queue);
3671 	tic->t_unit_res		= unit_res;
3672 	tic->t_curr_res		= unit_res;
3673 	tic->t_cnt		= cnt;
3674 	tic->t_ocnt		= cnt;
3675 	tic->t_tid		= prandom_u32();
3676 	tic->t_clientid		= client;
3677 	tic->t_flags		= XLOG_TIC_INITED;
3678 	if (permanent)
3679 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3680 
3681 	xlog_tic_reset_res(tic);
3682 
3683 	return tic;
3684 }
3685 
3686 
3687 /******************************************************************************
3688  *
3689  *		Log debug routines
3690  *
3691  ******************************************************************************
3692  */
3693 #if defined(DEBUG)
3694 /*
3695  * Make sure that the destination ptr is within the valid data region of
3696  * one of the iclogs.  This uses backup pointers stored in a different
3697  * part of the log in case we trash the log structure.
3698  */
3699 void
xlog_verify_dest_ptr(struct xlog * log,void * ptr)3700 xlog_verify_dest_ptr(
3701 	struct xlog	*log,
3702 	void		*ptr)
3703 {
3704 	int i;
3705 	int good_ptr = 0;
3706 
3707 	for (i = 0; i < log->l_iclog_bufs; i++) {
3708 		if (ptr >= log->l_iclog_bak[i] &&
3709 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3710 			good_ptr++;
3711 	}
3712 
3713 	if (!good_ptr)
3714 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3715 }
3716 
3717 /*
3718  * Check to make sure the grant write head didn't just over lap the tail.  If
3719  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3720  * the cycles differ by exactly one and check the byte count.
3721  *
3722  * This check is run unlocked, so can give false positives. Rather than assert
3723  * on failures, use a warn-once flag and a panic tag to allow the admin to
3724  * determine if they want to panic the machine when such an error occurs. For
3725  * debug kernels this will have the same effect as using an assert but, unlinke
3726  * an assert, it can be turned off at runtime.
3727  */
3728 STATIC void
xlog_verify_grant_tail(struct xlog * log)3729 xlog_verify_grant_tail(
3730 	struct xlog	*log)
3731 {
3732 	int		tail_cycle, tail_blocks;
3733 	int		cycle, space;
3734 
3735 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3736 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3737 	if (tail_cycle != cycle) {
3738 		if (cycle - 1 != tail_cycle &&
3739 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3740 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3741 				"%s: cycle - 1 != tail_cycle", __func__);
3742 			log->l_flags |= XLOG_TAIL_WARN;
3743 		}
3744 
3745 		if (space > BBTOB(tail_blocks) &&
3746 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3747 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3748 				"%s: space > BBTOB(tail_blocks)", __func__);
3749 			log->l_flags |= XLOG_TAIL_WARN;
3750 		}
3751 	}
3752 }
3753 
3754 /* check if it will fit */
3755 STATIC void
xlog_verify_tail_lsn(struct xlog * log,struct xlog_in_core * iclog,xfs_lsn_t tail_lsn)3756 xlog_verify_tail_lsn(
3757 	struct xlog		*log,
3758 	struct xlog_in_core	*iclog,
3759 	xfs_lsn_t		tail_lsn)
3760 {
3761     int blocks;
3762 
3763     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3764 	blocks =
3765 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3766 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3767 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3768     } else {
3769 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3770 
3771 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3772 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3773 
3774 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3775 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3776 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3777     }
3778 }	/* xlog_verify_tail_lsn */
3779 
3780 /*
3781  * Perform a number of checks on the iclog before writing to disk.
3782  *
3783  * 1. Make sure the iclogs are still circular
3784  * 2. Make sure we have a good magic number
3785  * 3. Make sure we don't have magic numbers in the data
3786  * 4. Check fields of each log operation header for:
3787  *	A. Valid client identifier
3788  *	B. tid ptr value falls in valid ptr space (user space code)
3789  *	C. Length in log record header is correct according to the
3790  *		individual operation headers within record.
3791  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3792  *	log, check the preceding blocks of the physical log to make sure all
3793  *	the cycle numbers agree with the current cycle number.
3794  */
3795 STATIC void
xlog_verify_iclog(struct xlog * log,struct xlog_in_core * iclog,int count,bool syncing)3796 xlog_verify_iclog(
3797 	struct xlog		*log,
3798 	struct xlog_in_core	*iclog,
3799 	int			count,
3800 	bool                    syncing)
3801 {
3802 	xlog_op_header_t	*ophead;
3803 	xlog_in_core_t		*icptr;
3804 	xlog_in_core_2_t	*xhdr;
3805 	void			*base_ptr, *ptr, *p;
3806 	ptrdiff_t		field_offset;
3807 	__uint8_t		clientid;
3808 	int			len, i, j, k, op_len;
3809 	int			idx;
3810 
3811 	/* check validity of iclog pointers */
3812 	spin_lock(&log->l_icloglock);
3813 	icptr = log->l_iclog;
3814 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3815 		ASSERT(icptr);
3816 
3817 	if (icptr != log->l_iclog)
3818 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3819 	spin_unlock(&log->l_icloglock);
3820 
3821 	/* check log magic numbers */
3822 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3823 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3824 
3825 	base_ptr = ptr = &iclog->ic_header;
3826 	p = &iclog->ic_header;
3827 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3828 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3829 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3830 				__func__);
3831 	}
3832 
3833 	/* check fields */
3834 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3835 	base_ptr = ptr = iclog->ic_datap;
3836 	ophead = ptr;
3837 	xhdr = iclog->ic_data;
3838 	for (i = 0; i < len; i++) {
3839 		ophead = ptr;
3840 
3841 		/* clientid is only 1 byte */
3842 		p = &ophead->oh_clientid;
3843 		field_offset = p - base_ptr;
3844 		if (!syncing || (field_offset & 0x1ff)) {
3845 			clientid = ophead->oh_clientid;
3846 		} else {
3847 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3848 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3849 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3850 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3851 				clientid = xlog_get_client_id(
3852 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3853 			} else {
3854 				clientid = xlog_get_client_id(
3855 					iclog->ic_header.h_cycle_data[idx]);
3856 			}
3857 		}
3858 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3859 			xfs_warn(log->l_mp,
3860 				"%s: invalid clientid %d op 0x%p offset 0x%lx",
3861 				__func__, clientid, ophead,
3862 				(unsigned long)field_offset);
3863 
3864 		/* check length */
3865 		p = &ophead->oh_len;
3866 		field_offset = p - base_ptr;
3867 		if (!syncing || (field_offset & 0x1ff)) {
3868 			op_len = be32_to_cpu(ophead->oh_len);
3869 		} else {
3870 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3871 				    (uintptr_t)iclog->ic_datap);
3872 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3873 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3874 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3875 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3876 			} else {
3877 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3878 			}
3879 		}
3880 		ptr += sizeof(xlog_op_header_t) + op_len;
3881 	}
3882 }	/* xlog_verify_iclog */
3883 #endif
3884 
3885 /*
3886  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3887  */
3888 STATIC int
xlog_state_ioerror(struct xlog * log)3889 xlog_state_ioerror(
3890 	struct xlog	*log)
3891 {
3892 	xlog_in_core_t	*iclog, *ic;
3893 
3894 	iclog = log->l_iclog;
3895 	if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3896 		/*
3897 		 * Mark all the incore logs IOERROR.
3898 		 * From now on, no log flushes will result.
3899 		 */
3900 		ic = iclog;
3901 		do {
3902 			ic->ic_state = XLOG_STATE_IOERROR;
3903 			ic = ic->ic_next;
3904 		} while (ic != iclog);
3905 		return 0;
3906 	}
3907 	/*
3908 	 * Return non-zero, if state transition has already happened.
3909 	 */
3910 	return 1;
3911 }
3912 
3913 /*
3914  * This is called from xfs_force_shutdown, when we're forcibly
3915  * shutting down the filesystem, typically because of an IO error.
3916  * Our main objectives here are to make sure that:
3917  *	a. if !logerror, flush the logs to disk. Anything modified
3918  *	   after this is ignored.
3919  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3920  *	   parties to find out, 'atomically'.
3921  *	c. those who're sleeping on log reservations, pinned objects and
3922  *	    other resources get woken up, and be told the bad news.
3923  *	d. nothing new gets queued up after (b) and (c) are done.
3924  *
3925  * Note: for the !logerror case we need to flush the regions held in memory out
3926  * to disk first. This needs to be done before the log is marked as shutdown,
3927  * otherwise the iclog writes will fail.
3928  */
3929 int
xfs_log_force_umount(struct xfs_mount * mp,int logerror)3930 xfs_log_force_umount(
3931 	struct xfs_mount	*mp,
3932 	int			logerror)
3933 {
3934 	struct xlog	*log;
3935 	int		retval;
3936 
3937 	log = mp->m_log;
3938 
3939 	/*
3940 	 * If this happens during log recovery, don't worry about
3941 	 * locking; the log isn't open for business yet.
3942 	 */
3943 	if (!log ||
3944 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3945 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3946 		if (mp->m_sb_bp)
3947 			mp->m_sb_bp->b_flags |= XBF_DONE;
3948 		return 0;
3949 	}
3950 
3951 	/*
3952 	 * Somebody could've already done the hard work for us.
3953 	 * No need to get locks for this.
3954 	 */
3955 	if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3956 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3957 		return 1;
3958 	}
3959 
3960 	/*
3961 	 * Flush all the completed transactions to disk before marking the log
3962 	 * being shut down. We need to do it in this order to ensure that
3963 	 * completed operations are safely on disk before we shut down, and that
3964 	 * we don't have to issue any buffer IO after the shutdown flags are set
3965 	 * to guarantee this.
3966 	 */
3967 	if (!logerror)
3968 		_xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3969 
3970 	/*
3971 	 * mark the filesystem and the as in a shutdown state and wake
3972 	 * everybody up to tell them the bad news.
3973 	 */
3974 	spin_lock(&log->l_icloglock);
3975 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3976 	if (mp->m_sb_bp)
3977 		mp->m_sb_bp->b_flags |= XBF_DONE;
3978 
3979 	/*
3980 	 * Mark the log and the iclogs with IO error flags to prevent any
3981 	 * further log IO from being issued or completed.
3982 	 */
3983 	log->l_flags |= XLOG_IO_ERROR;
3984 	retval = xlog_state_ioerror(log);
3985 	spin_unlock(&log->l_icloglock);
3986 
3987 	/*
3988 	 * We don't want anybody waiting for log reservations after this. That
3989 	 * means we have to wake up everybody queued up on reserveq as well as
3990 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3991 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3992 	 * action is protected by the grant locks.
3993 	 */
3994 	xlog_grant_head_wake_all(&log->l_reserve_head);
3995 	xlog_grant_head_wake_all(&log->l_write_head);
3996 
3997 	/*
3998 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3999 	 * as if the log writes were completed. The abort handling in the log
4000 	 * item committed callback functions will do this again under lock to
4001 	 * avoid races.
4002 	 */
4003 	wake_up_all(&log->l_cilp->xc_commit_wait);
4004 	xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4005 
4006 #ifdef XFSERRORDEBUG
4007 	{
4008 		xlog_in_core_t	*iclog;
4009 
4010 		spin_lock(&log->l_icloglock);
4011 		iclog = log->l_iclog;
4012 		do {
4013 			ASSERT(iclog->ic_callback == 0);
4014 			iclog = iclog->ic_next;
4015 		} while (iclog != log->l_iclog);
4016 		spin_unlock(&log->l_icloglock);
4017 	}
4018 #endif
4019 	/* return non-zero if log IOERROR transition had already happened */
4020 	return retval;
4021 }
4022 
4023 STATIC int
xlog_iclogs_empty(struct xlog * log)4024 xlog_iclogs_empty(
4025 	struct xlog	*log)
4026 {
4027 	xlog_in_core_t	*iclog;
4028 
4029 	iclog = log->l_iclog;
4030 	do {
4031 		/* endianness does not matter here, zero is zero in
4032 		 * any language.
4033 		 */
4034 		if (iclog->ic_header.h_num_logops)
4035 			return 0;
4036 		iclog = iclog->ic_next;
4037 	} while (iclog != log->l_iclog);
4038 	return 1;
4039 }
4040 
4041 /*
4042  * Verify that an LSN stamped into a piece of metadata is valid. This is
4043  * intended for use in read verifiers on v5 superblocks.
4044  */
4045 bool
xfs_log_check_lsn(struct xfs_mount * mp,xfs_lsn_t lsn)4046 xfs_log_check_lsn(
4047 	struct xfs_mount	*mp,
4048 	xfs_lsn_t		lsn)
4049 {
4050 	struct xlog		*log = mp->m_log;
4051 	bool			valid;
4052 
4053 	/*
4054 	 * norecovery mode skips mount-time log processing and unconditionally
4055 	 * resets the in-core LSN. We can't validate in this mode, but
4056 	 * modifications are not allowed anyways so just return true.
4057 	 */
4058 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4059 		return true;
4060 
4061 	/*
4062 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4063 	 * handled by recovery and thus safe to ignore here.
4064 	 */
4065 	if (lsn == NULLCOMMITLSN)
4066 		return true;
4067 
4068 	valid = xlog_valid_lsn(mp->m_log, lsn);
4069 
4070 	/* warn the user about what's gone wrong before verifier failure */
4071 	if (!valid) {
4072 		spin_lock(&log->l_icloglock);
4073 		xfs_warn(mp,
4074 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4075 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4076 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4077 			 log->l_curr_cycle, log->l_curr_block);
4078 		spin_unlock(&log->l_icloglock);
4079 	}
4080 
4081 	return valid;
4082 }
4083