1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_sysfs.h"
45 #include "xfs_rmap_btree.h"
46 #include "xfs_refcount_btree.h"
47 #include "xfs_reflink.h"
48
49
50 static DEFINE_MUTEX(xfs_uuid_table_mutex);
51 static int xfs_uuid_table_size;
52 static uuid_t *xfs_uuid_table;
53
54 void
xfs_uuid_table_free(void)55 xfs_uuid_table_free(void)
56 {
57 if (xfs_uuid_table_size == 0)
58 return;
59 kmem_free(xfs_uuid_table);
60 xfs_uuid_table = NULL;
61 xfs_uuid_table_size = 0;
62 }
63
64 /*
65 * See if the UUID is unique among mounted XFS filesystems.
66 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
67 */
68 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)69 xfs_uuid_mount(
70 struct xfs_mount *mp)
71 {
72 uuid_t *uuid = &mp->m_sb.sb_uuid;
73 int hole, i;
74
75 if (mp->m_flags & XFS_MOUNT_NOUUID)
76 return 0;
77
78 if (uuid_is_nil(uuid)) {
79 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
80 return -EINVAL;
81 }
82
83 mutex_lock(&xfs_uuid_table_mutex);
84 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
85 if (uuid_is_nil(&xfs_uuid_table[i])) {
86 hole = i;
87 continue;
88 }
89 if (uuid_equal(uuid, &xfs_uuid_table[i]))
90 goto out_duplicate;
91 }
92
93 if (hole < 0) {
94 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
95 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
96 KM_SLEEP);
97 hole = xfs_uuid_table_size++;
98 }
99 xfs_uuid_table[hole] = *uuid;
100 mutex_unlock(&xfs_uuid_table_mutex);
101
102 return 0;
103
104 out_duplicate:
105 mutex_unlock(&xfs_uuid_table_mutex);
106 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
107 return -EINVAL;
108 }
109
110 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)111 xfs_uuid_unmount(
112 struct xfs_mount *mp)
113 {
114 uuid_t *uuid = &mp->m_sb.sb_uuid;
115 int i;
116
117 if (mp->m_flags & XFS_MOUNT_NOUUID)
118 return;
119
120 mutex_lock(&xfs_uuid_table_mutex);
121 for (i = 0; i < xfs_uuid_table_size; i++) {
122 if (uuid_is_nil(&xfs_uuid_table[i]))
123 continue;
124 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
125 continue;
126 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
127 break;
128 }
129 ASSERT(i < xfs_uuid_table_size);
130 mutex_unlock(&xfs_uuid_table_mutex);
131 }
132
133
134 STATIC void
__xfs_free_perag(struct rcu_head * head)135 __xfs_free_perag(
136 struct rcu_head *head)
137 {
138 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
139
140 ASSERT(atomic_read(&pag->pag_ref) == 0);
141 kmem_free(pag);
142 }
143
144 /*
145 * Free up the per-ag resources associated with the mount structure.
146 */
147 STATIC void
xfs_free_perag(xfs_mount_t * mp)148 xfs_free_perag(
149 xfs_mount_t *mp)
150 {
151 xfs_agnumber_t agno;
152 struct xfs_perag *pag;
153
154 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
155 spin_lock(&mp->m_perag_lock);
156 pag = radix_tree_delete(&mp->m_perag_tree, agno);
157 spin_unlock(&mp->m_perag_lock);
158 ASSERT(pag);
159 ASSERT(atomic_read(&pag->pag_ref) == 0);
160 call_rcu(&pag->rcu_head, __xfs_free_perag);
161 }
162 }
163
164 /*
165 * Check size of device based on the (data/realtime) block count.
166 * Note: this check is used by the growfs code as well as mount.
167 */
168 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,__uint64_t nblocks)169 xfs_sb_validate_fsb_count(
170 xfs_sb_t *sbp,
171 __uint64_t nblocks)
172 {
173 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
174 ASSERT(sbp->sb_blocklog >= BBSHIFT);
175
176 /* Limited by ULONG_MAX of page cache index */
177 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
178 return -EFBIG;
179 return 0;
180 }
181
182 int
xfs_initialize_perag(xfs_mount_t * mp,xfs_agnumber_t agcount,xfs_agnumber_t * maxagi)183 xfs_initialize_perag(
184 xfs_mount_t *mp,
185 xfs_agnumber_t agcount,
186 xfs_agnumber_t *maxagi)
187 {
188 xfs_agnumber_t index;
189 xfs_agnumber_t first_initialised = 0;
190 xfs_perag_t *pag;
191 int error = -ENOMEM;
192
193 /*
194 * Walk the current per-ag tree so we don't try to initialise AGs
195 * that already exist (growfs case). Allocate and insert all the
196 * AGs we don't find ready for initialisation.
197 */
198 for (index = 0; index < agcount; index++) {
199 pag = xfs_perag_get(mp, index);
200 if (pag) {
201 xfs_perag_put(pag);
202 continue;
203 }
204 if (!first_initialised)
205 first_initialised = index;
206
207 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
208 if (!pag)
209 goto out_unwind;
210 pag->pag_agno = index;
211 pag->pag_mount = mp;
212 spin_lock_init(&pag->pag_ici_lock);
213 mutex_init(&pag->pag_ici_reclaim_lock);
214 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
215 spin_lock_init(&pag->pag_buf_lock);
216 pag->pag_buf_tree = RB_ROOT;
217
218 if (radix_tree_preload(GFP_NOFS))
219 goto out_unwind;
220
221 spin_lock(&mp->m_perag_lock);
222 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
223 BUG();
224 spin_unlock(&mp->m_perag_lock);
225 radix_tree_preload_end();
226 error = -EEXIST;
227 goto out_unwind;
228 }
229 spin_unlock(&mp->m_perag_lock);
230 radix_tree_preload_end();
231 }
232
233 index = xfs_set_inode_alloc(mp, agcount);
234
235 if (maxagi)
236 *maxagi = index;
237
238 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
239 return 0;
240
241 out_unwind:
242 kmem_free(pag);
243 for (; index > first_initialised; index--) {
244 pag = radix_tree_delete(&mp->m_perag_tree, index);
245 kmem_free(pag);
246 }
247 return error;
248 }
249
250 /*
251 * xfs_readsb
252 *
253 * Does the initial read of the superblock.
254 */
255 int
xfs_readsb(struct xfs_mount * mp,int flags)256 xfs_readsb(
257 struct xfs_mount *mp,
258 int flags)
259 {
260 unsigned int sector_size;
261 struct xfs_buf *bp;
262 struct xfs_sb *sbp = &mp->m_sb;
263 int error;
264 int loud = !(flags & XFS_MFSI_QUIET);
265 const struct xfs_buf_ops *buf_ops;
266
267 ASSERT(mp->m_sb_bp == NULL);
268 ASSERT(mp->m_ddev_targp != NULL);
269
270 /*
271 * For the initial read, we must guess at the sector
272 * size based on the block device. It's enough to
273 * get the sb_sectsize out of the superblock and
274 * then reread with the proper length.
275 * We don't verify it yet, because it may not be complete.
276 */
277 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
278 buf_ops = NULL;
279
280 /*
281 * Allocate a (locked) buffer to hold the superblock. This will be kept
282 * around at all times to optimize access to the superblock. Therefore,
283 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
284 * elevated.
285 */
286 reread:
287 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
288 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
289 buf_ops);
290 if (error) {
291 if (loud)
292 xfs_warn(mp, "SB validate failed with error %d.", error);
293 /* bad CRC means corrupted metadata */
294 if (error == -EFSBADCRC)
295 error = -EFSCORRUPTED;
296 return error;
297 }
298
299 /*
300 * Initialize the mount structure from the superblock.
301 */
302 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
303
304 /*
305 * If we haven't validated the superblock, do so now before we try
306 * to check the sector size and reread the superblock appropriately.
307 */
308 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
309 if (loud)
310 xfs_warn(mp, "Invalid superblock magic number");
311 error = -EINVAL;
312 goto release_buf;
313 }
314
315 /*
316 * We must be able to do sector-sized and sector-aligned IO.
317 */
318 if (sector_size > sbp->sb_sectsize) {
319 if (loud)
320 xfs_warn(mp, "device supports %u byte sectors (not %u)",
321 sector_size, sbp->sb_sectsize);
322 error = -ENOSYS;
323 goto release_buf;
324 }
325
326 if (buf_ops == NULL) {
327 /*
328 * Re-read the superblock so the buffer is correctly sized,
329 * and properly verified.
330 */
331 xfs_buf_relse(bp);
332 sector_size = sbp->sb_sectsize;
333 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
334 goto reread;
335 }
336
337 xfs_reinit_percpu_counters(mp);
338
339 /* no need to be quiet anymore, so reset the buf ops */
340 bp->b_ops = &xfs_sb_buf_ops;
341
342 mp->m_sb_bp = bp;
343 xfs_buf_unlock(bp);
344 return 0;
345
346 release_buf:
347 xfs_buf_relse(bp);
348 return error;
349 }
350
351 /*
352 * Update alignment values based on mount options and sb values
353 */
354 STATIC int
xfs_update_alignment(xfs_mount_t * mp)355 xfs_update_alignment(xfs_mount_t *mp)
356 {
357 xfs_sb_t *sbp = &(mp->m_sb);
358
359 if (mp->m_dalign) {
360 /*
361 * If stripe unit and stripe width are not multiples
362 * of the fs blocksize turn off alignment.
363 */
364 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
365 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
366 xfs_warn(mp,
367 "alignment check failed: sunit/swidth vs. blocksize(%d)",
368 sbp->sb_blocksize);
369 return -EINVAL;
370 } else {
371 /*
372 * Convert the stripe unit and width to FSBs.
373 */
374 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
375 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
376 xfs_warn(mp,
377 "alignment check failed: sunit/swidth vs. agsize(%d)",
378 sbp->sb_agblocks);
379 return -EINVAL;
380 } else if (mp->m_dalign) {
381 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
382 } else {
383 xfs_warn(mp,
384 "alignment check failed: sunit(%d) less than bsize(%d)",
385 mp->m_dalign, sbp->sb_blocksize);
386 return -EINVAL;
387 }
388 }
389
390 /*
391 * Update superblock with new values
392 * and log changes
393 */
394 if (xfs_sb_version_hasdalign(sbp)) {
395 if (sbp->sb_unit != mp->m_dalign) {
396 sbp->sb_unit = mp->m_dalign;
397 mp->m_update_sb = true;
398 }
399 if (sbp->sb_width != mp->m_swidth) {
400 sbp->sb_width = mp->m_swidth;
401 mp->m_update_sb = true;
402 }
403 } else {
404 xfs_warn(mp,
405 "cannot change alignment: superblock does not support data alignment");
406 return -EINVAL;
407 }
408 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
409 xfs_sb_version_hasdalign(&mp->m_sb)) {
410 mp->m_dalign = sbp->sb_unit;
411 mp->m_swidth = sbp->sb_width;
412 }
413
414 return 0;
415 }
416
417 /*
418 * Set the maximum inode count for this filesystem
419 */
420 STATIC void
xfs_set_maxicount(xfs_mount_t * mp)421 xfs_set_maxicount(xfs_mount_t *mp)
422 {
423 xfs_sb_t *sbp = &(mp->m_sb);
424 __uint64_t icount;
425
426 if (sbp->sb_imax_pct) {
427 /*
428 * Make sure the maximum inode count is a multiple
429 * of the units we allocate inodes in.
430 */
431 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
432 do_div(icount, 100);
433 do_div(icount, mp->m_ialloc_blks);
434 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
435 sbp->sb_inopblog;
436 } else {
437 mp->m_maxicount = 0;
438 }
439 }
440
441 /*
442 * Set the default minimum read and write sizes unless
443 * already specified in a mount option.
444 * We use smaller I/O sizes when the file system
445 * is being used for NFS service (wsync mount option).
446 */
447 STATIC void
xfs_set_rw_sizes(xfs_mount_t * mp)448 xfs_set_rw_sizes(xfs_mount_t *mp)
449 {
450 xfs_sb_t *sbp = &(mp->m_sb);
451 int readio_log, writeio_log;
452
453 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
454 if (mp->m_flags & XFS_MOUNT_WSYNC) {
455 readio_log = XFS_WSYNC_READIO_LOG;
456 writeio_log = XFS_WSYNC_WRITEIO_LOG;
457 } else {
458 readio_log = XFS_READIO_LOG_LARGE;
459 writeio_log = XFS_WRITEIO_LOG_LARGE;
460 }
461 } else {
462 readio_log = mp->m_readio_log;
463 writeio_log = mp->m_writeio_log;
464 }
465
466 if (sbp->sb_blocklog > readio_log) {
467 mp->m_readio_log = sbp->sb_blocklog;
468 } else {
469 mp->m_readio_log = readio_log;
470 }
471 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
472 if (sbp->sb_blocklog > writeio_log) {
473 mp->m_writeio_log = sbp->sb_blocklog;
474 } else {
475 mp->m_writeio_log = writeio_log;
476 }
477 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
478 }
479
480 /*
481 * precalculate the low space thresholds for dynamic speculative preallocation.
482 */
483 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)484 xfs_set_low_space_thresholds(
485 struct xfs_mount *mp)
486 {
487 int i;
488
489 for (i = 0; i < XFS_LOWSP_MAX; i++) {
490 __uint64_t space = mp->m_sb.sb_dblocks;
491
492 do_div(space, 100);
493 mp->m_low_space[i] = space * (i + 1);
494 }
495 }
496
497
498 /*
499 * Set whether we're using inode alignment.
500 */
501 STATIC void
xfs_set_inoalignment(xfs_mount_t * mp)502 xfs_set_inoalignment(xfs_mount_t *mp)
503 {
504 if (xfs_sb_version_hasalign(&mp->m_sb) &&
505 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
506 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
507 else
508 mp->m_inoalign_mask = 0;
509 /*
510 * If we are using stripe alignment, check whether
511 * the stripe unit is a multiple of the inode alignment
512 */
513 if (mp->m_dalign && mp->m_inoalign_mask &&
514 !(mp->m_dalign & mp->m_inoalign_mask))
515 mp->m_sinoalign = mp->m_dalign;
516 else
517 mp->m_sinoalign = 0;
518 }
519
520 /*
521 * Check that the data (and log if separate) is an ok size.
522 */
523 STATIC int
xfs_check_sizes(struct xfs_mount * mp)524 xfs_check_sizes(
525 struct xfs_mount *mp)
526 {
527 struct xfs_buf *bp;
528 xfs_daddr_t d;
529 int error;
530
531 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
532 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
533 xfs_warn(mp, "filesystem size mismatch detected");
534 return -EFBIG;
535 }
536 error = xfs_buf_read_uncached(mp->m_ddev_targp,
537 d - XFS_FSS_TO_BB(mp, 1),
538 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
539 if (error) {
540 xfs_warn(mp, "last sector read failed");
541 return error;
542 }
543 xfs_buf_relse(bp);
544
545 if (mp->m_logdev_targp == mp->m_ddev_targp)
546 return 0;
547
548 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
549 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
550 xfs_warn(mp, "log size mismatch detected");
551 return -EFBIG;
552 }
553 error = xfs_buf_read_uncached(mp->m_logdev_targp,
554 d - XFS_FSB_TO_BB(mp, 1),
555 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
556 if (error) {
557 xfs_warn(mp, "log device read failed");
558 return error;
559 }
560 xfs_buf_relse(bp);
561 return 0;
562 }
563
564 /*
565 * Clear the quotaflags in memory and in the superblock.
566 */
567 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)568 xfs_mount_reset_sbqflags(
569 struct xfs_mount *mp)
570 {
571 mp->m_qflags = 0;
572
573 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
574 if (mp->m_sb.sb_qflags == 0)
575 return 0;
576 spin_lock(&mp->m_sb_lock);
577 mp->m_sb.sb_qflags = 0;
578 spin_unlock(&mp->m_sb_lock);
579
580 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
581 return 0;
582
583 return xfs_sync_sb(mp, false);
584 }
585
586 __uint64_t
xfs_default_resblks(xfs_mount_t * mp)587 xfs_default_resblks(xfs_mount_t *mp)
588 {
589 __uint64_t resblks;
590
591 /*
592 * We default to 5% or 8192 fsbs of space reserved, whichever is
593 * smaller. This is intended to cover concurrent allocation
594 * transactions when we initially hit enospc. These each require a 4
595 * block reservation. Hence by default we cover roughly 2000 concurrent
596 * allocation reservations.
597 */
598 resblks = mp->m_sb.sb_dblocks;
599 do_div(resblks, 20);
600 resblks = min_t(__uint64_t, resblks, 8192);
601 return resblks;
602 }
603
604 /*
605 * This function does the following on an initial mount of a file system:
606 * - reads the superblock from disk and init the mount struct
607 * - if we're a 32-bit kernel, do a size check on the superblock
608 * so we don't mount terabyte filesystems
609 * - init mount struct realtime fields
610 * - allocate inode hash table for fs
611 * - init directory manager
612 * - perform recovery and init the log manager
613 */
614 int
xfs_mountfs(struct xfs_mount * mp)615 xfs_mountfs(
616 struct xfs_mount *mp)
617 {
618 struct xfs_sb *sbp = &(mp->m_sb);
619 struct xfs_inode *rip;
620 __uint64_t resblks;
621 uint quotamount = 0;
622 uint quotaflags = 0;
623 int error = 0;
624
625 xfs_sb_mount_common(mp, sbp);
626
627 /*
628 * Check for a mismatched features2 values. Older kernels read & wrote
629 * into the wrong sb offset for sb_features2 on some platforms due to
630 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
631 * which made older superblock reading/writing routines swap it as a
632 * 64-bit value.
633 *
634 * For backwards compatibility, we make both slots equal.
635 *
636 * If we detect a mismatched field, we OR the set bits into the existing
637 * features2 field in case it has already been modified; we don't want
638 * to lose any features. We then update the bad location with the ORed
639 * value so that older kernels will see any features2 flags. The
640 * superblock writeback code ensures the new sb_features2 is copied to
641 * sb_bad_features2 before it is logged or written to disk.
642 */
643 if (xfs_sb_has_mismatched_features2(sbp)) {
644 xfs_warn(mp, "correcting sb_features alignment problem");
645 sbp->sb_features2 |= sbp->sb_bad_features2;
646 mp->m_update_sb = true;
647
648 /*
649 * Re-check for ATTR2 in case it was found in bad_features2
650 * slot.
651 */
652 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
653 !(mp->m_flags & XFS_MOUNT_NOATTR2))
654 mp->m_flags |= XFS_MOUNT_ATTR2;
655 }
656
657 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
658 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
659 xfs_sb_version_removeattr2(&mp->m_sb);
660 mp->m_update_sb = true;
661
662 /* update sb_versionnum for the clearing of the morebits */
663 if (!sbp->sb_features2)
664 mp->m_update_sb = true;
665 }
666
667 /* always use v2 inodes by default now */
668 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
669 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
670 mp->m_update_sb = true;
671 }
672
673 /*
674 * Check if sb_agblocks is aligned at stripe boundary
675 * If sb_agblocks is NOT aligned turn off m_dalign since
676 * allocator alignment is within an ag, therefore ag has
677 * to be aligned at stripe boundary.
678 */
679 error = xfs_update_alignment(mp);
680 if (error)
681 goto out;
682
683 xfs_alloc_compute_maxlevels(mp);
684 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
685 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
686 xfs_ialloc_compute_maxlevels(mp);
687 xfs_rmapbt_compute_maxlevels(mp);
688 xfs_refcountbt_compute_maxlevels(mp);
689
690 xfs_set_maxicount(mp);
691
692 /* enable fail_at_unmount as default */
693 mp->m_fail_unmount = 1;
694
695 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
696 if (error)
697 goto out;
698
699 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
700 &mp->m_kobj, "stats");
701 if (error)
702 goto out_remove_sysfs;
703
704 error = xfs_error_sysfs_init(mp);
705 if (error)
706 goto out_del_stats;
707
708
709 error = xfs_uuid_mount(mp);
710 if (error)
711 goto out_remove_error_sysfs;
712
713 /*
714 * Set the minimum read and write sizes
715 */
716 xfs_set_rw_sizes(mp);
717
718 /* set the low space thresholds for dynamic preallocation */
719 xfs_set_low_space_thresholds(mp);
720
721 /*
722 * Set the inode cluster size.
723 * This may still be overridden by the file system
724 * block size if it is larger than the chosen cluster size.
725 *
726 * For v5 filesystems, scale the cluster size with the inode size to
727 * keep a constant ratio of inode per cluster buffer, but only if mkfs
728 * has set the inode alignment value appropriately for larger cluster
729 * sizes.
730 */
731 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
732 if (xfs_sb_version_hascrc(&mp->m_sb)) {
733 int new_size = mp->m_inode_cluster_size;
734
735 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
736 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
737 mp->m_inode_cluster_size = new_size;
738 }
739
740 /*
741 * If enabled, sparse inode chunk alignment is expected to match the
742 * cluster size. Full inode chunk alignment must match the chunk size,
743 * but that is checked on sb read verification...
744 */
745 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
746 mp->m_sb.sb_spino_align !=
747 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
748 xfs_warn(mp,
749 "Sparse inode block alignment (%u) must match cluster size (%llu).",
750 mp->m_sb.sb_spino_align,
751 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
752 error = -EINVAL;
753 goto out_remove_uuid;
754 }
755
756 /*
757 * Set inode alignment fields
758 */
759 xfs_set_inoalignment(mp);
760
761 /*
762 * Check that the data (and log if separate) is an ok size.
763 */
764 error = xfs_check_sizes(mp);
765 if (error)
766 goto out_remove_uuid;
767
768 /*
769 * Initialize realtime fields in the mount structure
770 */
771 error = xfs_rtmount_init(mp);
772 if (error) {
773 xfs_warn(mp, "RT mount failed");
774 goto out_remove_uuid;
775 }
776
777 /*
778 * Copies the low order bits of the timestamp and the randomly
779 * set "sequence" number out of a UUID.
780 */
781 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
782
783 mp->m_dmevmask = 0; /* not persistent; set after each mount */
784
785 error = xfs_da_mount(mp);
786 if (error) {
787 xfs_warn(mp, "Failed dir/attr init: %d", error);
788 goto out_remove_uuid;
789 }
790
791 /*
792 * Initialize the precomputed transaction reservations values.
793 */
794 xfs_trans_init(mp);
795
796 /*
797 * Allocate and initialize the per-ag data.
798 */
799 spin_lock_init(&mp->m_perag_lock);
800 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
801 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
802 if (error) {
803 xfs_warn(mp, "Failed per-ag init: %d", error);
804 goto out_free_dir;
805 }
806
807 if (!sbp->sb_logblocks) {
808 xfs_warn(mp, "no log defined");
809 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
810 error = -EFSCORRUPTED;
811 goto out_free_perag;
812 }
813
814 /*
815 * Log's mount-time initialization. The first part of recovery can place
816 * some items on the AIL, to be handled when recovery is finished or
817 * cancelled.
818 */
819 error = xfs_log_mount(mp, mp->m_logdev_targp,
820 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
821 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
822 if (error) {
823 xfs_warn(mp, "log mount failed");
824 goto out_fail_wait;
825 }
826
827 /*
828 * Now the log is mounted, we know if it was an unclean shutdown or
829 * not. If it was, with the first phase of recovery has completed, we
830 * have consistent AG blocks on disk. We have not recovered EFIs yet,
831 * but they are recovered transactionally in the second recovery phase
832 * later.
833 *
834 * Hence we can safely re-initialise incore superblock counters from
835 * the per-ag data. These may not be correct if the filesystem was not
836 * cleanly unmounted, so we need to wait for recovery to finish before
837 * doing this.
838 *
839 * If the filesystem was cleanly unmounted, then we can trust the
840 * values in the superblock to be correct and we don't need to do
841 * anything here.
842 *
843 * If we are currently making the filesystem, the initialisation will
844 * fail as the perag data is in an undefined state.
845 */
846 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
847 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
848 !mp->m_sb.sb_inprogress) {
849 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
850 if (error)
851 goto out_log_dealloc;
852 }
853
854 /*
855 * Get and sanity-check the root inode.
856 * Save the pointer to it in the mount structure.
857 */
858 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
859 if (error) {
860 xfs_warn(mp, "failed to read root inode");
861 goto out_log_dealloc;
862 }
863
864 ASSERT(rip != NULL);
865
866 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
867 xfs_warn(mp, "corrupted root inode %llu: not a directory",
868 (unsigned long long)rip->i_ino);
869 xfs_iunlock(rip, XFS_ILOCK_EXCL);
870 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
871 mp);
872 error = -EFSCORRUPTED;
873 goto out_rele_rip;
874 }
875 mp->m_rootip = rip; /* save it */
876
877 xfs_iunlock(rip, XFS_ILOCK_EXCL);
878
879 /*
880 * Initialize realtime inode pointers in the mount structure
881 */
882 error = xfs_rtmount_inodes(mp);
883 if (error) {
884 /*
885 * Free up the root inode.
886 */
887 xfs_warn(mp, "failed to read RT inodes");
888 goto out_rele_rip;
889 }
890
891 /*
892 * If this is a read-only mount defer the superblock updates until
893 * the next remount into writeable mode. Otherwise we would never
894 * perform the update e.g. for the root filesystem.
895 */
896 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
897 error = xfs_sync_sb(mp, false);
898 if (error) {
899 xfs_warn(mp, "failed to write sb changes");
900 goto out_rtunmount;
901 }
902 }
903
904 /*
905 * Initialise the XFS quota management subsystem for this mount
906 */
907 if (XFS_IS_QUOTA_RUNNING(mp)) {
908 error = xfs_qm_newmount(mp, "amount, "aflags);
909 if (error)
910 goto out_rtunmount;
911 } else {
912 ASSERT(!XFS_IS_QUOTA_ON(mp));
913
914 /*
915 * If a file system had quotas running earlier, but decided to
916 * mount without -o uquota/pquota/gquota options, revoke the
917 * quotachecked license.
918 */
919 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
920 xfs_notice(mp, "resetting quota flags");
921 error = xfs_mount_reset_sbqflags(mp);
922 if (error)
923 goto out_rtunmount;
924 }
925 }
926
927 /*
928 * Finish recovering the file system. This part needed to be delayed
929 * until after the root and real-time bitmap inodes were consistently
930 * read in.
931 */
932 error = xfs_log_mount_finish(mp);
933 if (error) {
934 xfs_warn(mp, "log mount finish failed");
935 goto out_rtunmount;
936 }
937
938 /*
939 * Now the log is fully replayed, we can transition to full read-only
940 * mode for read-only mounts. This will sync all the metadata and clean
941 * the log so that the recovery we just performed does not have to be
942 * replayed again on the next mount.
943 *
944 * We use the same quiesce mechanism as the rw->ro remount, as they are
945 * semantically identical operations.
946 */
947 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
948 XFS_MOUNT_RDONLY) {
949 xfs_quiesce_attr(mp);
950 }
951
952 /*
953 * Complete the quota initialisation, post-log-replay component.
954 */
955 if (quotamount) {
956 ASSERT(mp->m_qflags == 0);
957 mp->m_qflags = quotaflags;
958
959 xfs_qm_mount_quotas(mp);
960 }
961
962 /*
963 * Now we are mounted, reserve a small amount of unused space for
964 * privileged transactions. This is needed so that transaction
965 * space required for critical operations can dip into this pool
966 * when at ENOSPC. This is needed for operations like create with
967 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
968 * are not allowed to use this reserved space.
969 *
970 * This may drive us straight to ENOSPC on mount, but that implies
971 * we were already there on the last unmount. Warn if this occurs.
972 */
973 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
974 resblks = xfs_default_resblks(mp);
975 error = xfs_reserve_blocks(mp, &resblks, NULL);
976 if (error)
977 xfs_warn(mp,
978 "Unable to allocate reserve blocks. Continuing without reserve pool.");
979
980 /* Recover any CoW blocks that never got remapped. */
981 error = xfs_reflink_recover_cow(mp);
982 if (error) {
983 xfs_err(mp,
984 "Error %d recovering leftover CoW allocations.", error);
985 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
986 goto out_quota;
987 }
988
989 /* Reserve AG blocks for future btree expansion. */
990 error = xfs_fs_reserve_ag_blocks(mp);
991 if (error && error != -ENOSPC)
992 goto out_agresv;
993 }
994
995 return 0;
996
997 out_agresv:
998 xfs_fs_unreserve_ag_blocks(mp);
999 out_quota:
1000 xfs_qm_unmount_quotas(mp);
1001 out_rtunmount:
1002 xfs_rtunmount_inodes(mp);
1003 out_rele_rip:
1004 IRELE(rip);
1005 cancel_delayed_work_sync(&mp->m_reclaim_work);
1006 xfs_reclaim_inodes(mp, SYNC_WAIT);
1007 /* Clean out dquots that might be in memory after quotacheck. */
1008 xfs_qm_unmount(mp);
1009 out_log_dealloc:
1010 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1011 xfs_log_mount_cancel(mp);
1012 out_fail_wait:
1013 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1014 xfs_wait_buftarg(mp->m_logdev_targp);
1015 xfs_wait_buftarg(mp->m_ddev_targp);
1016 out_free_perag:
1017 xfs_free_perag(mp);
1018 out_free_dir:
1019 xfs_da_unmount(mp);
1020 out_remove_uuid:
1021 xfs_uuid_unmount(mp);
1022 out_remove_error_sysfs:
1023 xfs_error_sysfs_del(mp);
1024 out_del_stats:
1025 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1026 out_remove_sysfs:
1027 xfs_sysfs_del(&mp->m_kobj);
1028 out:
1029 return error;
1030 }
1031
1032 /*
1033 * This flushes out the inodes,dquots and the superblock, unmounts the
1034 * log and makes sure that incore structures are freed.
1035 */
1036 void
xfs_unmountfs(struct xfs_mount * mp)1037 xfs_unmountfs(
1038 struct xfs_mount *mp)
1039 {
1040 __uint64_t resblks;
1041 int error;
1042
1043 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1044 cancel_delayed_work_sync(&mp->m_cowblocks_work);
1045
1046 xfs_fs_unreserve_ag_blocks(mp);
1047 xfs_qm_unmount_quotas(mp);
1048 xfs_rtunmount_inodes(mp);
1049 IRELE(mp->m_rootip);
1050
1051 /*
1052 * We can potentially deadlock here if we have an inode cluster
1053 * that has been freed has its buffer still pinned in memory because
1054 * the transaction is still sitting in a iclog. The stale inodes
1055 * on that buffer will have their flush locks held until the
1056 * transaction hits the disk and the callbacks run. the inode
1057 * flush takes the flush lock unconditionally and with nothing to
1058 * push out the iclog we will never get that unlocked. hence we
1059 * need to force the log first.
1060 */
1061 xfs_log_force(mp, XFS_LOG_SYNC);
1062
1063 /*
1064 * We now need to tell the world we are unmounting. This will allow
1065 * us to detect that the filesystem is going away and we should error
1066 * out anything that we have been retrying in the background. This will
1067 * prevent neverending retries in AIL pushing from hanging the unmount.
1068 */
1069 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1070
1071 /*
1072 * Flush all pending changes from the AIL.
1073 */
1074 xfs_ail_push_all_sync(mp->m_ail);
1075
1076 /*
1077 * And reclaim all inodes. At this point there should be no dirty
1078 * inodes and none should be pinned or locked, but use synchronous
1079 * reclaim just to be sure. We can stop background inode reclaim
1080 * here as well if it is still running.
1081 */
1082 cancel_delayed_work_sync(&mp->m_reclaim_work);
1083 xfs_reclaim_inodes(mp, SYNC_WAIT);
1084
1085 xfs_qm_unmount(mp);
1086
1087 /*
1088 * Unreserve any blocks we have so that when we unmount we don't account
1089 * the reserved free space as used. This is really only necessary for
1090 * lazy superblock counting because it trusts the incore superblock
1091 * counters to be absolutely correct on clean unmount.
1092 *
1093 * We don't bother correcting this elsewhere for lazy superblock
1094 * counting because on mount of an unclean filesystem we reconstruct the
1095 * correct counter value and this is irrelevant.
1096 *
1097 * For non-lazy counter filesystems, this doesn't matter at all because
1098 * we only every apply deltas to the superblock and hence the incore
1099 * value does not matter....
1100 */
1101 resblks = 0;
1102 error = xfs_reserve_blocks(mp, &resblks, NULL);
1103 if (error)
1104 xfs_warn(mp, "Unable to free reserved block pool. "
1105 "Freespace may not be correct on next mount.");
1106
1107 error = xfs_log_sbcount(mp);
1108 if (error)
1109 xfs_warn(mp, "Unable to update superblock counters. "
1110 "Freespace may not be correct on next mount.");
1111
1112
1113 xfs_log_unmount(mp);
1114 xfs_da_unmount(mp);
1115 xfs_uuid_unmount(mp);
1116
1117 #if defined(DEBUG)
1118 xfs_errortag_clearall(mp, 0);
1119 #endif
1120 xfs_free_perag(mp);
1121
1122 xfs_error_sysfs_del(mp);
1123 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1124 xfs_sysfs_del(&mp->m_kobj);
1125 }
1126
1127 /*
1128 * Determine whether modifications can proceed. The caller specifies the minimum
1129 * freeze level for which modifications should not be allowed. This allows
1130 * certain operations to proceed while the freeze sequence is in progress, if
1131 * necessary.
1132 */
1133 bool
xfs_fs_writable(struct xfs_mount * mp,int level)1134 xfs_fs_writable(
1135 struct xfs_mount *mp,
1136 int level)
1137 {
1138 ASSERT(level > SB_UNFROZEN);
1139 if ((mp->m_super->s_writers.frozen >= level) ||
1140 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1141 return false;
1142
1143 return true;
1144 }
1145
1146 /*
1147 * xfs_log_sbcount
1148 *
1149 * Sync the superblock counters to disk.
1150 *
1151 * Note this code can be called during the process of freezing, so we use the
1152 * transaction allocator that does not block when the transaction subsystem is
1153 * in its frozen state.
1154 */
1155 int
xfs_log_sbcount(xfs_mount_t * mp)1156 xfs_log_sbcount(xfs_mount_t *mp)
1157 {
1158 /* allow this to proceed during the freeze sequence... */
1159 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1160 return 0;
1161
1162 /*
1163 * we don't need to do this if we are updating the superblock
1164 * counters on every modification.
1165 */
1166 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1167 return 0;
1168
1169 return xfs_sync_sb(mp, true);
1170 }
1171
1172 /*
1173 * Deltas for the inode count are +/-64, hence we use a large batch size
1174 * of 128 so we don't need to take the counter lock on every update.
1175 */
1176 #define XFS_ICOUNT_BATCH 128
1177 int
xfs_mod_icount(struct xfs_mount * mp,int64_t delta)1178 xfs_mod_icount(
1179 struct xfs_mount *mp,
1180 int64_t delta)
1181 {
1182 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1183 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1184 ASSERT(0);
1185 percpu_counter_add(&mp->m_icount, -delta);
1186 return -EINVAL;
1187 }
1188 return 0;
1189 }
1190
1191 int
xfs_mod_ifree(struct xfs_mount * mp,int64_t delta)1192 xfs_mod_ifree(
1193 struct xfs_mount *mp,
1194 int64_t delta)
1195 {
1196 percpu_counter_add(&mp->m_ifree, delta);
1197 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1198 ASSERT(0);
1199 percpu_counter_add(&mp->m_ifree, -delta);
1200 return -EINVAL;
1201 }
1202 return 0;
1203 }
1204
1205 /*
1206 * Deltas for the block count can vary from 1 to very large, but lock contention
1207 * only occurs on frequent small block count updates such as in the delayed
1208 * allocation path for buffered writes (page a time updates). Hence we set
1209 * a large batch count (1024) to minimise global counter updates except when
1210 * we get near to ENOSPC and we have to be very accurate with our updates.
1211 */
1212 #define XFS_FDBLOCKS_BATCH 1024
1213 int
xfs_mod_fdblocks(struct xfs_mount * mp,int64_t delta,bool rsvd)1214 xfs_mod_fdblocks(
1215 struct xfs_mount *mp,
1216 int64_t delta,
1217 bool rsvd)
1218 {
1219 int64_t lcounter;
1220 long long res_used;
1221 s32 batch;
1222
1223 if (delta > 0) {
1224 /*
1225 * If the reserve pool is depleted, put blocks back into it
1226 * first. Most of the time the pool is full.
1227 */
1228 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1229 percpu_counter_add(&mp->m_fdblocks, delta);
1230 return 0;
1231 }
1232
1233 spin_lock(&mp->m_sb_lock);
1234 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1235
1236 if (res_used > delta) {
1237 mp->m_resblks_avail += delta;
1238 } else {
1239 delta -= res_used;
1240 mp->m_resblks_avail = mp->m_resblks;
1241 percpu_counter_add(&mp->m_fdblocks, delta);
1242 }
1243 spin_unlock(&mp->m_sb_lock);
1244 return 0;
1245 }
1246
1247 /*
1248 * Taking blocks away, need to be more accurate the closer we
1249 * are to zero.
1250 *
1251 * If the counter has a value of less than 2 * max batch size,
1252 * then make everything serialise as we are real close to
1253 * ENOSPC.
1254 */
1255 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1256 XFS_FDBLOCKS_BATCH) < 0)
1257 batch = 1;
1258 else
1259 batch = XFS_FDBLOCKS_BATCH;
1260
1261 __percpu_counter_add(&mp->m_fdblocks, delta, batch);
1262 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1263 XFS_FDBLOCKS_BATCH) >= 0) {
1264 /* we had space! */
1265 return 0;
1266 }
1267
1268 /*
1269 * lock up the sb for dipping into reserves before releasing the space
1270 * that took us to ENOSPC.
1271 */
1272 spin_lock(&mp->m_sb_lock);
1273 percpu_counter_add(&mp->m_fdblocks, -delta);
1274 if (!rsvd)
1275 goto fdblocks_enospc;
1276
1277 lcounter = (long long)mp->m_resblks_avail + delta;
1278 if (lcounter >= 0) {
1279 mp->m_resblks_avail = lcounter;
1280 spin_unlock(&mp->m_sb_lock);
1281 return 0;
1282 }
1283 printk_once(KERN_WARNING
1284 "Filesystem \"%s\": reserve blocks depleted! "
1285 "Consider increasing reserve pool size.",
1286 mp->m_fsname);
1287 fdblocks_enospc:
1288 spin_unlock(&mp->m_sb_lock);
1289 return -ENOSPC;
1290 }
1291
1292 int
xfs_mod_frextents(struct xfs_mount * mp,int64_t delta)1293 xfs_mod_frextents(
1294 struct xfs_mount *mp,
1295 int64_t delta)
1296 {
1297 int64_t lcounter;
1298 int ret = 0;
1299
1300 spin_lock(&mp->m_sb_lock);
1301 lcounter = mp->m_sb.sb_frextents + delta;
1302 if (lcounter < 0)
1303 ret = -ENOSPC;
1304 else
1305 mp->m_sb.sb_frextents = lcounter;
1306 spin_unlock(&mp->m_sb_lock);
1307 return ret;
1308 }
1309
1310 /*
1311 * xfs_getsb() is called to obtain the buffer for the superblock.
1312 * The buffer is returned locked and read in from disk.
1313 * The buffer should be released with a call to xfs_brelse().
1314 *
1315 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1316 * the superblock buffer if it can be locked without sleeping.
1317 * If it can't then we'll return NULL.
1318 */
1319 struct xfs_buf *
xfs_getsb(struct xfs_mount * mp,int flags)1320 xfs_getsb(
1321 struct xfs_mount *mp,
1322 int flags)
1323 {
1324 struct xfs_buf *bp = mp->m_sb_bp;
1325
1326 if (!xfs_buf_trylock(bp)) {
1327 if (flags & XBF_TRYLOCK)
1328 return NULL;
1329 xfs_buf_lock(bp);
1330 }
1331
1332 xfs_buf_hold(bp);
1333 ASSERT(bp->b_flags & XBF_DONE);
1334 return bp;
1335 }
1336
1337 /*
1338 * Used to free the superblock along various error paths.
1339 */
1340 void
xfs_freesb(struct xfs_mount * mp)1341 xfs_freesb(
1342 struct xfs_mount *mp)
1343 {
1344 struct xfs_buf *bp = mp->m_sb_bp;
1345
1346 xfs_buf_lock(bp);
1347 mp->m_sb_bp = NULL;
1348 xfs_buf_relse(bp);
1349 }
1350
1351 /*
1352 * If the underlying (data/log/rt) device is readonly, there are some
1353 * operations that cannot proceed.
1354 */
1355 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)1356 xfs_dev_is_read_only(
1357 struct xfs_mount *mp,
1358 char *message)
1359 {
1360 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1361 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1362 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1363 xfs_notice(mp, "%s required on read-only device.", message);
1364 xfs_notice(mp, "write access unavailable, cannot proceed.");
1365 return -EROFS;
1366 }
1367 return 0;
1368 }
1369