• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_sb.h"
27 #include "xfs_mount.h"
28 #include "xfs_defer.h"
29 #include "xfs_inode.h"
30 #include "xfs_da_format.h"
31 #include "xfs_da_btree.h"
32 #include "xfs_dir2.h"
33 #include "xfs_attr_sf.h"
34 #include "xfs_attr.h"
35 #include "xfs_trans_space.h"
36 #include "xfs_trans.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_bmap_util.h"
42 #include "xfs_error.h"
43 #include "xfs_quota.h"
44 #include "xfs_filestream.h"
45 #include "xfs_cksum.h"
46 #include "xfs_trace.h"
47 #include "xfs_icache.h"
48 #include "xfs_symlink.h"
49 #include "xfs_trans_priv.h"
50 #include "xfs_log.h"
51 #include "xfs_bmap_btree.h"
52 #include "xfs_reflink.h"
53 #include "xfs_dir2_priv.h"
54 
55 kmem_zone_t *xfs_inode_zone;
56 
57 /*
58  * Used in xfs_itruncate_extents().  This is the maximum number of extents
59  * freed from a file in a single transaction.
60  */
61 #define	XFS_ITRUNC_MAX_EXTENTS	2
62 
63 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
64 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
65 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
66 
67 /*
68  * helper function to extract extent size hint from inode
69  */
70 xfs_extlen_t
xfs_get_extsz_hint(struct xfs_inode * ip)71 xfs_get_extsz_hint(
72 	struct xfs_inode	*ip)
73 {
74 	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
75 		return ip->i_d.di_extsize;
76 	if (XFS_IS_REALTIME_INODE(ip))
77 		return ip->i_mount->m_sb.sb_rextsize;
78 	return 0;
79 }
80 
81 /*
82  * Helper function to extract CoW extent size hint from inode.
83  * Between the extent size hint and the CoW extent size hint, we
84  * return the greater of the two.  If the value is zero (automatic),
85  * use the default size.
86  */
87 xfs_extlen_t
xfs_get_cowextsz_hint(struct xfs_inode * ip)88 xfs_get_cowextsz_hint(
89 	struct xfs_inode	*ip)
90 {
91 	xfs_extlen_t		a, b;
92 
93 	a = 0;
94 	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
95 		a = ip->i_d.di_cowextsize;
96 	b = xfs_get_extsz_hint(ip);
97 
98 	a = max(a, b);
99 	if (a == 0)
100 		return XFS_DEFAULT_COWEXTSZ_HINT;
101 	return a;
102 }
103 
104 /*
105  * These two are wrapper routines around the xfs_ilock() routine used to
106  * centralize some grungy code.  They are used in places that wish to lock the
107  * inode solely for reading the extents.  The reason these places can't just
108  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
109  * bringing in of the extents from disk for a file in b-tree format.  If the
110  * inode is in b-tree format, then we need to lock the inode exclusively until
111  * the extents are read in.  Locking it exclusively all the time would limit
112  * our parallelism unnecessarily, though.  What we do instead is check to see
113  * if the extents have been read in yet, and only lock the inode exclusively
114  * if they have not.
115  *
116  * The functions return a value which should be given to the corresponding
117  * xfs_iunlock() call.
118  */
119 uint
xfs_ilock_data_map_shared(struct xfs_inode * ip)120 xfs_ilock_data_map_shared(
121 	struct xfs_inode	*ip)
122 {
123 	uint			lock_mode = XFS_ILOCK_SHARED;
124 
125 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
126 	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
127 		lock_mode = XFS_ILOCK_EXCL;
128 	xfs_ilock(ip, lock_mode);
129 	return lock_mode;
130 }
131 
132 uint
xfs_ilock_attr_map_shared(struct xfs_inode * ip)133 xfs_ilock_attr_map_shared(
134 	struct xfs_inode	*ip)
135 {
136 	uint			lock_mode = XFS_ILOCK_SHARED;
137 
138 	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
139 	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
140 		lock_mode = XFS_ILOCK_EXCL;
141 	xfs_ilock(ip, lock_mode);
142 	return lock_mode;
143 }
144 
145 /*
146  * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
147  * the i_lock.  This routine allows various combinations of the locks to be
148  * obtained.
149  *
150  * The 3 locks should always be ordered so that the IO lock is obtained first,
151  * the mmap lock second and the ilock last in order to prevent deadlock.
152  *
153  * Basic locking order:
154  *
155  * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
156  *
157  * mmap_sem locking order:
158  *
159  * i_iolock -> page lock -> mmap_sem
160  * mmap_sem -> i_mmap_lock -> page_lock
161  *
162  * The difference in mmap_sem locking order mean that we cannot hold the
163  * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
164  * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
165  * in get_user_pages() to map the user pages into the kernel address space for
166  * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
167  * page faults already hold the mmap_sem.
168  *
169  * Hence to serialise fully against both syscall and mmap based IO, we need to
170  * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
171  * taken in places where we need to invalidate the page cache in a race
172  * free manner (e.g. truncate, hole punch and other extent manipulation
173  * functions).
174  */
175 void
xfs_ilock(xfs_inode_t * ip,uint lock_flags)176 xfs_ilock(
177 	xfs_inode_t		*ip,
178 	uint			lock_flags)
179 {
180 	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
181 
182 	/*
183 	 * You can't set both SHARED and EXCL for the same lock,
184 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
185 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
186 	 */
187 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
188 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
189 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
190 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
191 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
192 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
193 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
194 
195 	if (lock_flags & XFS_IOLOCK_EXCL)
196 		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
197 	else if (lock_flags & XFS_IOLOCK_SHARED)
198 		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
199 
200 	if (lock_flags & XFS_MMAPLOCK_EXCL)
201 		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
202 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
203 		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
204 
205 	if (lock_flags & XFS_ILOCK_EXCL)
206 		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
207 	else if (lock_flags & XFS_ILOCK_SHARED)
208 		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
209 }
210 
211 /*
212  * This is just like xfs_ilock(), except that the caller
213  * is guaranteed not to sleep.  It returns 1 if it gets
214  * the requested locks and 0 otherwise.  If the IO lock is
215  * obtained but the inode lock cannot be, then the IO lock
216  * is dropped before returning.
217  *
218  * ip -- the inode being locked
219  * lock_flags -- this parameter indicates the inode's locks to be
220  *       to be locked.  See the comment for xfs_ilock() for a list
221  *	 of valid values.
222  */
223 int
xfs_ilock_nowait(xfs_inode_t * ip,uint lock_flags)224 xfs_ilock_nowait(
225 	xfs_inode_t		*ip,
226 	uint			lock_flags)
227 {
228 	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
229 
230 	/*
231 	 * You can't set both SHARED and EXCL for the same lock,
232 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
233 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
234 	 */
235 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
236 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
237 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
238 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
239 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
240 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
241 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
242 
243 	if (lock_flags & XFS_IOLOCK_EXCL) {
244 		if (!mrtryupdate(&ip->i_iolock))
245 			goto out;
246 	} else if (lock_flags & XFS_IOLOCK_SHARED) {
247 		if (!mrtryaccess(&ip->i_iolock))
248 			goto out;
249 	}
250 
251 	if (lock_flags & XFS_MMAPLOCK_EXCL) {
252 		if (!mrtryupdate(&ip->i_mmaplock))
253 			goto out_undo_iolock;
254 	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
255 		if (!mrtryaccess(&ip->i_mmaplock))
256 			goto out_undo_iolock;
257 	}
258 
259 	if (lock_flags & XFS_ILOCK_EXCL) {
260 		if (!mrtryupdate(&ip->i_lock))
261 			goto out_undo_mmaplock;
262 	} else if (lock_flags & XFS_ILOCK_SHARED) {
263 		if (!mrtryaccess(&ip->i_lock))
264 			goto out_undo_mmaplock;
265 	}
266 	return 1;
267 
268 out_undo_mmaplock:
269 	if (lock_flags & XFS_MMAPLOCK_EXCL)
270 		mrunlock_excl(&ip->i_mmaplock);
271 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
272 		mrunlock_shared(&ip->i_mmaplock);
273 out_undo_iolock:
274 	if (lock_flags & XFS_IOLOCK_EXCL)
275 		mrunlock_excl(&ip->i_iolock);
276 	else if (lock_flags & XFS_IOLOCK_SHARED)
277 		mrunlock_shared(&ip->i_iolock);
278 out:
279 	return 0;
280 }
281 
282 /*
283  * xfs_iunlock() is used to drop the inode locks acquired with
284  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
285  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
286  * that we know which locks to drop.
287  *
288  * ip -- the inode being unlocked
289  * lock_flags -- this parameter indicates the inode's locks to be
290  *       to be unlocked.  See the comment for xfs_ilock() for a list
291  *	 of valid values for this parameter.
292  *
293  */
294 void
xfs_iunlock(xfs_inode_t * ip,uint lock_flags)295 xfs_iunlock(
296 	xfs_inode_t		*ip,
297 	uint			lock_flags)
298 {
299 	/*
300 	 * You can't set both SHARED and EXCL for the same lock,
301 	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
302 	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
303 	 */
304 	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
305 	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
306 	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
307 	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
308 	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
309 	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
310 	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
311 	ASSERT(lock_flags != 0);
312 
313 	if (lock_flags & XFS_IOLOCK_EXCL)
314 		mrunlock_excl(&ip->i_iolock);
315 	else if (lock_flags & XFS_IOLOCK_SHARED)
316 		mrunlock_shared(&ip->i_iolock);
317 
318 	if (lock_flags & XFS_MMAPLOCK_EXCL)
319 		mrunlock_excl(&ip->i_mmaplock);
320 	else if (lock_flags & XFS_MMAPLOCK_SHARED)
321 		mrunlock_shared(&ip->i_mmaplock);
322 
323 	if (lock_flags & XFS_ILOCK_EXCL)
324 		mrunlock_excl(&ip->i_lock);
325 	else if (lock_flags & XFS_ILOCK_SHARED)
326 		mrunlock_shared(&ip->i_lock);
327 
328 	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
329 }
330 
331 /*
332  * give up write locks.  the i/o lock cannot be held nested
333  * if it is being demoted.
334  */
335 void
xfs_ilock_demote(xfs_inode_t * ip,uint lock_flags)336 xfs_ilock_demote(
337 	xfs_inode_t		*ip,
338 	uint			lock_flags)
339 {
340 	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
341 	ASSERT((lock_flags &
342 		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
343 
344 	if (lock_flags & XFS_ILOCK_EXCL)
345 		mrdemote(&ip->i_lock);
346 	if (lock_flags & XFS_MMAPLOCK_EXCL)
347 		mrdemote(&ip->i_mmaplock);
348 	if (lock_flags & XFS_IOLOCK_EXCL)
349 		mrdemote(&ip->i_iolock);
350 
351 	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
352 }
353 
354 #if defined(DEBUG) || defined(XFS_WARN)
355 int
xfs_isilocked(xfs_inode_t * ip,uint lock_flags)356 xfs_isilocked(
357 	xfs_inode_t		*ip,
358 	uint			lock_flags)
359 {
360 	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
361 		if (!(lock_flags & XFS_ILOCK_SHARED))
362 			return !!ip->i_lock.mr_writer;
363 		return rwsem_is_locked(&ip->i_lock.mr_lock);
364 	}
365 
366 	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
367 		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
368 			return !!ip->i_mmaplock.mr_writer;
369 		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
370 	}
371 
372 	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
373 		if (!(lock_flags & XFS_IOLOCK_SHARED))
374 			return !!ip->i_iolock.mr_writer;
375 		return rwsem_is_locked(&ip->i_iolock.mr_lock);
376 	}
377 
378 	ASSERT(0);
379 	return 0;
380 }
381 #endif
382 
383 #ifdef DEBUG
384 int xfs_locked_n;
385 int xfs_small_retries;
386 int xfs_middle_retries;
387 int xfs_lots_retries;
388 int xfs_lock_delays;
389 #endif
390 
391 /*
392  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
393  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
394  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
395  * errors and warnings.
396  */
397 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
398 static bool
xfs_lockdep_subclass_ok(int subclass)399 xfs_lockdep_subclass_ok(
400 	int subclass)
401 {
402 	return subclass < MAX_LOCKDEP_SUBCLASSES;
403 }
404 #else
405 #define xfs_lockdep_subclass_ok(subclass)	(true)
406 #endif
407 
408 /*
409  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
410  * value. This can be called for any type of inode lock combination, including
411  * parent locking. Care must be taken to ensure we don't overrun the subclass
412  * storage fields in the class mask we build.
413  */
414 static inline int
xfs_lock_inumorder(int lock_mode,int subclass)415 xfs_lock_inumorder(int lock_mode, int subclass)
416 {
417 	int	class = 0;
418 
419 	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
420 			      XFS_ILOCK_RTSUM)));
421 	ASSERT(xfs_lockdep_subclass_ok(subclass));
422 
423 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
424 		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
425 		ASSERT(xfs_lockdep_subclass_ok(subclass +
426 						XFS_IOLOCK_PARENT_VAL));
427 		class += subclass << XFS_IOLOCK_SHIFT;
428 		if (lock_mode & XFS_IOLOCK_PARENT)
429 			class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
430 	}
431 
432 	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
433 		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
434 		class += subclass << XFS_MMAPLOCK_SHIFT;
435 	}
436 
437 	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
438 		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
439 		class += subclass << XFS_ILOCK_SHIFT;
440 	}
441 
442 	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
443 }
444 
445 /*
446  * The following routine will lock n inodes in exclusive mode.  We assume the
447  * caller calls us with the inodes in i_ino order.
448  *
449  * We need to detect deadlock where an inode that we lock is in the AIL and we
450  * start waiting for another inode that is locked by a thread in a long running
451  * transaction (such as truncate). This can result in deadlock since the long
452  * running trans might need to wait for the inode we just locked in order to
453  * push the tail and free space in the log.
454  *
455  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
456  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
457  * lock more than one at a time, lockdep will report false positives saying we
458  * have violated locking orders.
459  */
460 static void
xfs_lock_inodes(xfs_inode_t ** ips,int inodes,uint lock_mode)461 xfs_lock_inodes(
462 	xfs_inode_t	**ips,
463 	int		inodes,
464 	uint		lock_mode)
465 {
466 	int		attempts = 0, i, j, try_lock;
467 	xfs_log_item_t	*lp;
468 
469 	/*
470 	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
471 	 * support an arbitrary depth of locking here, but absolute limits on
472 	 * inodes depend on the the type of locking and the limits placed by
473 	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
474 	 * the asserts.
475 	 */
476 	ASSERT(ips && inodes >= 2 && inodes <= 5);
477 	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
478 			    XFS_ILOCK_EXCL));
479 	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
480 			      XFS_ILOCK_SHARED)));
481 	ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
482 		inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
483 	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
484 		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
485 	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
486 		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
487 
488 	if (lock_mode & XFS_IOLOCK_EXCL) {
489 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
490 	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
491 		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
492 
493 	try_lock = 0;
494 	i = 0;
495 again:
496 	for (; i < inodes; i++) {
497 		ASSERT(ips[i]);
498 
499 		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
500 			continue;
501 
502 		/*
503 		 * If try_lock is not set yet, make sure all locked inodes are
504 		 * not in the AIL.  If any are, set try_lock to be used later.
505 		 */
506 		if (!try_lock) {
507 			for (j = (i - 1); j >= 0 && !try_lock; j--) {
508 				lp = (xfs_log_item_t *)ips[j]->i_itemp;
509 				if (lp && (lp->li_flags & XFS_LI_IN_AIL))
510 					try_lock++;
511 			}
512 		}
513 
514 		/*
515 		 * If any of the previous locks we have locked is in the AIL,
516 		 * we must TRY to get the second and subsequent locks. If
517 		 * we can't get any, we must release all we have
518 		 * and try again.
519 		 */
520 		if (!try_lock) {
521 			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
522 			continue;
523 		}
524 
525 		/* try_lock means we have an inode locked that is in the AIL. */
526 		ASSERT(i != 0);
527 		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
528 			continue;
529 
530 		/*
531 		 * Unlock all previous guys and try again.  xfs_iunlock will try
532 		 * to push the tail if the inode is in the AIL.
533 		 */
534 		attempts++;
535 		for (j = i - 1; j >= 0; j--) {
536 			/*
537 			 * Check to see if we've already unlocked this one.  Not
538 			 * the first one going back, and the inode ptr is the
539 			 * same.
540 			 */
541 			if (j != (i - 1) && ips[j] == ips[j + 1])
542 				continue;
543 
544 			xfs_iunlock(ips[j], lock_mode);
545 		}
546 
547 		if ((attempts % 5) == 0) {
548 			delay(1); /* Don't just spin the CPU */
549 #ifdef DEBUG
550 			xfs_lock_delays++;
551 #endif
552 		}
553 		i = 0;
554 		try_lock = 0;
555 		goto again;
556 	}
557 
558 #ifdef DEBUG
559 	if (attempts) {
560 		if (attempts < 5) xfs_small_retries++;
561 		else if (attempts < 100) xfs_middle_retries++;
562 		else xfs_lots_retries++;
563 	} else {
564 		xfs_locked_n++;
565 	}
566 #endif
567 }
568 
569 /*
570  * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
571  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
572  * lock more than one at a time, lockdep will report false positives saying we
573  * have violated locking orders.
574  */
575 void
xfs_lock_two_inodes(xfs_inode_t * ip0,xfs_inode_t * ip1,uint lock_mode)576 xfs_lock_two_inodes(
577 	xfs_inode_t		*ip0,
578 	xfs_inode_t		*ip1,
579 	uint			lock_mode)
580 {
581 	xfs_inode_t		*temp;
582 	int			attempts = 0;
583 	xfs_log_item_t		*lp;
584 
585 	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
586 		ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
587 		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
588 	} else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
589 		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
590 
591 	ASSERT(ip0->i_ino != ip1->i_ino);
592 
593 	if (ip0->i_ino > ip1->i_ino) {
594 		temp = ip0;
595 		ip0 = ip1;
596 		ip1 = temp;
597 	}
598 
599  again:
600 	xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
601 
602 	/*
603 	 * If the first lock we have locked is in the AIL, we must TRY to get
604 	 * the second lock. If we can't get it, we must release the first one
605 	 * and try again.
606 	 */
607 	lp = (xfs_log_item_t *)ip0->i_itemp;
608 	if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
609 		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
610 			xfs_iunlock(ip0, lock_mode);
611 			if ((++attempts % 5) == 0)
612 				delay(1); /* Don't just spin the CPU */
613 			goto again;
614 		}
615 	} else {
616 		xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
617 	}
618 }
619 
620 
621 void
__xfs_iflock(struct xfs_inode * ip)622 __xfs_iflock(
623 	struct xfs_inode	*ip)
624 {
625 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
626 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
627 
628 	do {
629 		prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
630 		if (xfs_isiflocked(ip))
631 			io_schedule();
632 	} while (!xfs_iflock_nowait(ip));
633 
634 	finish_wait(wq, &wait.wait);
635 }
636 
637 STATIC uint
_xfs_dic2xflags(__uint16_t di_flags,uint64_t di_flags2,bool has_attr)638 _xfs_dic2xflags(
639 	__uint16_t		di_flags,
640 	uint64_t		di_flags2,
641 	bool			has_attr)
642 {
643 	uint			flags = 0;
644 
645 	if (di_flags & XFS_DIFLAG_ANY) {
646 		if (di_flags & XFS_DIFLAG_REALTIME)
647 			flags |= FS_XFLAG_REALTIME;
648 		if (di_flags & XFS_DIFLAG_PREALLOC)
649 			flags |= FS_XFLAG_PREALLOC;
650 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
651 			flags |= FS_XFLAG_IMMUTABLE;
652 		if (di_flags & XFS_DIFLAG_APPEND)
653 			flags |= FS_XFLAG_APPEND;
654 		if (di_flags & XFS_DIFLAG_SYNC)
655 			flags |= FS_XFLAG_SYNC;
656 		if (di_flags & XFS_DIFLAG_NOATIME)
657 			flags |= FS_XFLAG_NOATIME;
658 		if (di_flags & XFS_DIFLAG_NODUMP)
659 			flags |= FS_XFLAG_NODUMP;
660 		if (di_flags & XFS_DIFLAG_RTINHERIT)
661 			flags |= FS_XFLAG_RTINHERIT;
662 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
663 			flags |= FS_XFLAG_PROJINHERIT;
664 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
665 			flags |= FS_XFLAG_NOSYMLINKS;
666 		if (di_flags & XFS_DIFLAG_EXTSIZE)
667 			flags |= FS_XFLAG_EXTSIZE;
668 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
669 			flags |= FS_XFLAG_EXTSZINHERIT;
670 		if (di_flags & XFS_DIFLAG_NODEFRAG)
671 			flags |= FS_XFLAG_NODEFRAG;
672 		if (di_flags & XFS_DIFLAG_FILESTREAM)
673 			flags |= FS_XFLAG_FILESTREAM;
674 	}
675 
676 	if (di_flags2 & XFS_DIFLAG2_ANY) {
677 		if (di_flags2 & XFS_DIFLAG2_DAX)
678 			flags |= FS_XFLAG_DAX;
679 		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
680 			flags |= FS_XFLAG_COWEXTSIZE;
681 	}
682 
683 	if (has_attr)
684 		flags |= FS_XFLAG_HASATTR;
685 
686 	return flags;
687 }
688 
689 uint
xfs_ip2xflags(struct xfs_inode * ip)690 xfs_ip2xflags(
691 	struct xfs_inode	*ip)
692 {
693 	struct xfs_icdinode	*dic = &ip->i_d;
694 
695 	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
696 }
697 
698 /*
699  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
700  * is allowed, otherwise it has to be an exact match. If a CI match is found,
701  * ci_name->name will point to a the actual name (caller must free) or
702  * will be set to NULL if an exact match is found.
703  */
704 int
xfs_lookup(xfs_inode_t * dp,struct xfs_name * name,xfs_inode_t ** ipp,struct xfs_name * ci_name)705 xfs_lookup(
706 	xfs_inode_t		*dp,
707 	struct xfs_name		*name,
708 	xfs_inode_t		**ipp,
709 	struct xfs_name		*ci_name)
710 {
711 	xfs_ino_t		inum;
712 	int			error;
713 
714 	trace_xfs_lookup(dp, name);
715 
716 	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
717 		return -EIO;
718 
719 	xfs_ilock(dp, XFS_IOLOCK_SHARED);
720 	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
721 	if (error)
722 		goto out_unlock;
723 
724 	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
725 	if (error)
726 		goto out_free_name;
727 
728 	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
729 	return 0;
730 
731 out_free_name:
732 	if (ci_name)
733 		kmem_free(ci_name->name);
734 out_unlock:
735 	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
736 	*ipp = NULL;
737 	return error;
738 }
739 
740 /*
741  * Allocate an inode on disk and return a copy of its in-core version.
742  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
743  * appropriately within the inode.  The uid and gid for the inode are
744  * set according to the contents of the given cred structure.
745  *
746  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
747  * has a free inode available, call xfs_iget() to obtain the in-core
748  * version of the allocated inode.  Finally, fill in the inode and
749  * log its initial contents.  In this case, ialloc_context would be
750  * set to NULL.
751  *
752  * If xfs_dialloc() does not have an available inode, it will replenish
753  * its supply by doing an allocation. Since we can only do one
754  * allocation within a transaction without deadlocks, we must commit
755  * the current transaction before returning the inode itself.
756  * In this case, therefore, we will set ialloc_context and return.
757  * The caller should then commit the current transaction, start a new
758  * transaction, and call xfs_ialloc() again to actually get the inode.
759  *
760  * To ensure that some other process does not grab the inode that
761  * was allocated during the first call to xfs_ialloc(), this routine
762  * also returns the [locked] bp pointing to the head of the freelist
763  * as ialloc_context.  The caller should hold this buffer across
764  * the commit and pass it back into this routine on the second call.
765  *
766  * If we are allocating quota inodes, we do not have a parent inode
767  * to attach to or associate with (i.e. pip == NULL) because they
768  * are not linked into the directory structure - they are attached
769  * directly to the superblock - and so have no parent.
770  */
771 static int
xfs_ialloc(xfs_trans_t * tp,xfs_inode_t * pip,umode_t mode,xfs_nlink_t nlink,xfs_dev_t rdev,prid_t prid,int okalloc,xfs_buf_t ** ialloc_context,xfs_inode_t ** ipp)772 xfs_ialloc(
773 	xfs_trans_t	*tp,
774 	xfs_inode_t	*pip,
775 	umode_t		mode,
776 	xfs_nlink_t	nlink,
777 	xfs_dev_t	rdev,
778 	prid_t		prid,
779 	int		okalloc,
780 	xfs_buf_t	**ialloc_context,
781 	xfs_inode_t	**ipp)
782 {
783 	struct xfs_mount *mp = tp->t_mountp;
784 	xfs_ino_t	ino;
785 	xfs_inode_t	*ip;
786 	uint		flags;
787 	int		error;
788 	struct timespec	tv;
789 	struct inode	*inode;
790 
791 	/*
792 	 * Call the space management code to pick
793 	 * the on-disk inode to be allocated.
794 	 */
795 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
796 			    ialloc_context, &ino);
797 	if (error)
798 		return error;
799 	if (*ialloc_context || ino == NULLFSINO) {
800 		*ipp = NULL;
801 		return 0;
802 	}
803 	ASSERT(*ialloc_context == NULL);
804 
805 	/*
806 	 * Get the in-core inode with the lock held exclusively.
807 	 * This is because we're setting fields here we need
808 	 * to prevent others from looking at until we're done.
809 	 */
810 	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
811 			 XFS_ILOCK_EXCL, &ip);
812 	if (error)
813 		return error;
814 	ASSERT(ip != NULL);
815 	inode = VFS_I(ip);
816 
817 	/*
818 	 * We always convert v1 inodes to v2 now - we only support filesystems
819 	 * with >= v2 inode capability, so there is no reason for ever leaving
820 	 * an inode in v1 format.
821 	 */
822 	if (ip->i_d.di_version == 1)
823 		ip->i_d.di_version = 2;
824 
825 	inode->i_mode = mode;
826 	set_nlink(inode, nlink);
827 	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
828 	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
829 	xfs_set_projid(ip, prid);
830 
831 	if (pip && XFS_INHERIT_GID(pip)) {
832 		ip->i_d.di_gid = pip->i_d.di_gid;
833 		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
834 			inode->i_mode |= S_ISGID;
835 	}
836 
837 	/*
838 	 * If the group ID of the new file does not match the effective group
839 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
840 	 * (and only if the irix_sgid_inherit compatibility variable is set).
841 	 */
842 	if ((irix_sgid_inherit) &&
843 	    (inode->i_mode & S_ISGID) &&
844 	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
845 		inode->i_mode &= ~S_ISGID;
846 
847 	ip->i_d.di_size = 0;
848 	ip->i_d.di_nextents = 0;
849 	ASSERT(ip->i_d.di_nblocks == 0);
850 
851 	tv = current_time(inode);
852 	inode->i_mtime = tv;
853 	inode->i_atime = tv;
854 	inode->i_ctime = tv;
855 
856 	ip->i_d.di_extsize = 0;
857 	ip->i_d.di_dmevmask = 0;
858 	ip->i_d.di_dmstate = 0;
859 	ip->i_d.di_flags = 0;
860 
861 	if (ip->i_d.di_version == 3) {
862 		inode->i_version = 1;
863 		ip->i_d.di_flags2 = 0;
864 		ip->i_d.di_cowextsize = 0;
865 		ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
866 		ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
867 	}
868 
869 
870 	flags = XFS_ILOG_CORE;
871 	switch (mode & S_IFMT) {
872 	case S_IFIFO:
873 	case S_IFCHR:
874 	case S_IFBLK:
875 	case S_IFSOCK:
876 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
877 		ip->i_df.if_u2.if_rdev = rdev;
878 		ip->i_df.if_flags = 0;
879 		flags |= XFS_ILOG_DEV;
880 		break;
881 	case S_IFREG:
882 	case S_IFDIR:
883 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
884 			uint		di_flags = 0;
885 
886 			if (S_ISDIR(mode)) {
887 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
888 					di_flags |= XFS_DIFLAG_RTINHERIT;
889 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
890 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
891 					ip->i_d.di_extsize = pip->i_d.di_extsize;
892 				}
893 				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
894 					di_flags |= XFS_DIFLAG_PROJINHERIT;
895 			} else if (S_ISREG(mode)) {
896 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
897 					di_flags |= XFS_DIFLAG_REALTIME;
898 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
899 					di_flags |= XFS_DIFLAG_EXTSIZE;
900 					ip->i_d.di_extsize = pip->i_d.di_extsize;
901 				}
902 			}
903 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
904 			    xfs_inherit_noatime)
905 				di_flags |= XFS_DIFLAG_NOATIME;
906 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
907 			    xfs_inherit_nodump)
908 				di_flags |= XFS_DIFLAG_NODUMP;
909 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
910 			    xfs_inherit_sync)
911 				di_flags |= XFS_DIFLAG_SYNC;
912 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
913 			    xfs_inherit_nosymlinks)
914 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
915 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
916 			    xfs_inherit_nodefrag)
917 				di_flags |= XFS_DIFLAG_NODEFRAG;
918 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
919 				di_flags |= XFS_DIFLAG_FILESTREAM;
920 
921 			ip->i_d.di_flags |= di_flags;
922 		}
923 		if (pip &&
924 		    (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
925 		    pip->i_d.di_version == 3 &&
926 		    ip->i_d.di_version == 3) {
927 			uint64_t	di_flags2 = 0;
928 
929 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
930 				di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
931 				ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
932 			}
933 			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
934 				di_flags2 |= XFS_DIFLAG2_DAX;
935 
936 			ip->i_d.di_flags2 |= di_flags2;
937 		}
938 		/* FALLTHROUGH */
939 	case S_IFLNK:
940 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
941 		ip->i_df.if_flags = XFS_IFEXTENTS;
942 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
943 		ip->i_df.if_u1.if_extents = NULL;
944 		break;
945 	default:
946 		ASSERT(0);
947 	}
948 	/*
949 	 * Attribute fork settings for new inode.
950 	 */
951 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
952 	ip->i_d.di_anextents = 0;
953 
954 	/*
955 	 * Log the new values stuffed into the inode.
956 	 */
957 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
958 	xfs_trans_log_inode(tp, ip, flags);
959 
960 	/* now that we have an i_mode we can setup the inode structure */
961 	xfs_setup_inode(ip);
962 
963 	*ipp = ip;
964 	return 0;
965 }
966 
967 /*
968  * Allocates a new inode from disk and return a pointer to the
969  * incore copy. This routine will internally commit the current
970  * transaction and allocate a new one if the Space Manager needed
971  * to do an allocation to replenish the inode free-list.
972  *
973  * This routine is designed to be called from xfs_create and
974  * xfs_create_dir.
975  *
976  */
977 int
xfs_dir_ialloc(xfs_trans_t ** tpp,xfs_inode_t * dp,umode_t mode,xfs_nlink_t nlink,xfs_dev_t rdev,prid_t prid,int okalloc,xfs_inode_t ** ipp,int * committed)978 xfs_dir_ialloc(
979 	xfs_trans_t	**tpp,		/* input: current transaction;
980 					   output: may be a new transaction. */
981 	xfs_inode_t	*dp,		/* directory within whose allocate
982 					   the inode. */
983 	umode_t		mode,
984 	xfs_nlink_t	nlink,
985 	xfs_dev_t	rdev,
986 	prid_t		prid,		/* project id */
987 	int		okalloc,	/* ok to allocate new space */
988 	xfs_inode_t	**ipp,		/* pointer to inode; it will be
989 					   locked. */
990 	int		*committed)
991 
992 {
993 	xfs_trans_t	*tp;
994 	xfs_inode_t	*ip;
995 	xfs_buf_t	*ialloc_context = NULL;
996 	int		code;
997 	void		*dqinfo;
998 	uint		tflags;
999 
1000 	tp = *tpp;
1001 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1002 
1003 	/*
1004 	 * xfs_ialloc will return a pointer to an incore inode if
1005 	 * the Space Manager has an available inode on the free
1006 	 * list. Otherwise, it will do an allocation and replenish
1007 	 * the freelist.  Since we can only do one allocation per
1008 	 * transaction without deadlocks, we will need to commit the
1009 	 * current transaction and start a new one.  We will then
1010 	 * need to call xfs_ialloc again to get the inode.
1011 	 *
1012 	 * If xfs_ialloc did an allocation to replenish the freelist,
1013 	 * it returns the bp containing the head of the freelist as
1014 	 * ialloc_context. We will hold a lock on it across the
1015 	 * transaction commit so that no other process can steal
1016 	 * the inode(s) that we've just allocated.
1017 	 */
1018 	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
1019 			  &ialloc_context, &ip);
1020 
1021 	/*
1022 	 * Return an error if we were unable to allocate a new inode.
1023 	 * This should only happen if we run out of space on disk or
1024 	 * encounter a disk error.
1025 	 */
1026 	if (code) {
1027 		*ipp = NULL;
1028 		return code;
1029 	}
1030 	if (!ialloc_context && !ip) {
1031 		*ipp = NULL;
1032 		return -ENOSPC;
1033 	}
1034 
1035 	/*
1036 	 * If the AGI buffer is non-NULL, then we were unable to get an
1037 	 * inode in one operation.  We need to commit the current
1038 	 * transaction and call xfs_ialloc() again.  It is guaranteed
1039 	 * to succeed the second time.
1040 	 */
1041 	if (ialloc_context) {
1042 		/*
1043 		 * Normally, xfs_trans_commit releases all the locks.
1044 		 * We call bhold to hang on to the ialloc_context across
1045 		 * the commit.  Holding this buffer prevents any other
1046 		 * processes from doing any allocations in this
1047 		 * allocation group.
1048 		 */
1049 		xfs_trans_bhold(tp, ialloc_context);
1050 
1051 		/*
1052 		 * We want the quota changes to be associated with the next
1053 		 * transaction, NOT this one. So, detach the dqinfo from this
1054 		 * and attach it to the next transaction.
1055 		 */
1056 		dqinfo = NULL;
1057 		tflags = 0;
1058 		if (tp->t_dqinfo) {
1059 			dqinfo = (void *)tp->t_dqinfo;
1060 			tp->t_dqinfo = NULL;
1061 			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1062 			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1063 		}
1064 
1065 		code = xfs_trans_roll(&tp, NULL);
1066 		if (committed != NULL)
1067 			*committed = 1;
1068 
1069 		/*
1070 		 * Re-attach the quota info that we detached from prev trx.
1071 		 */
1072 		if (dqinfo) {
1073 			tp->t_dqinfo = dqinfo;
1074 			tp->t_flags |= tflags;
1075 		}
1076 
1077 		if (code) {
1078 			xfs_buf_relse(ialloc_context);
1079 			*tpp = tp;
1080 			*ipp = NULL;
1081 			return code;
1082 		}
1083 		xfs_trans_bjoin(tp, ialloc_context);
1084 
1085 		/*
1086 		 * Call ialloc again. Since we've locked out all
1087 		 * other allocations in this allocation group,
1088 		 * this call should always succeed.
1089 		 */
1090 		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1091 				  okalloc, &ialloc_context, &ip);
1092 
1093 		/*
1094 		 * If we get an error at this point, return to the caller
1095 		 * so that the current transaction can be aborted.
1096 		 */
1097 		if (code) {
1098 			*tpp = tp;
1099 			*ipp = NULL;
1100 			return code;
1101 		}
1102 		ASSERT(!ialloc_context && ip);
1103 
1104 	} else {
1105 		if (committed != NULL)
1106 			*committed = 0;
1107 	}
1108 
1109 	*ipp = ip;
1110 	*tpp = tp;
1111 
1112 	return 0;
1113 }
1114 
1115 /*
1116  * Decrement the link count on an inode & log the change.  If this causes the
1117  * link count to go to zero, move the inode to AGI unlinked list so that it can
1118  * be freed when the last active reference goes away via xfs_inactive().
1119  */
1120 static int			/* error */
xfs_droplink(xfs_trans_t * tp,xfs_inode_t * ip)1121 xfs_droplink(
1122 	xfs_trans_t *tp,
1123 	xfs_inode_t *ip)
1124 {
1125 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1126 
1127 	drop_nlink(VFS_I(ip));
1128 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1129 
1130 	if (VFS_I(ip)->i_nlink)
1131 		return 0;
1132 
1133 	return xfs_iunlink(tp, ip);
1134 }
1135 
1136 /*
1137  * Increment the link count on an inode & log the change.
1138  */
1139 static int
xfs_bumplink(xfs_trans_t * tp,xfs_inode_t * ip)1140 xfs_bumplink(
1141 	xfs_trans_t *tp,
1142 	xfs_inode_t *ip)
1143 {
1144 	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1145 
1146 	ASSERT(ip->i_d.di_version > 1);
1147 	inc_nlink(VFS_I(ip));
1148 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1149 	return 0;
1150 }
1151 
1152 int
xfs_create(xfs_inode_t * dp,struct xfs_name * name,umode_t mode,xfs_dev_t rdev,xfs_inode_t ** ipp)1153 xfs_create(
1154 	xfs_inode_t		*dp,
1155 	struct xfs_name		*name,
1156 	umode_t			mode,
1157 	xfs_dev_t		rdev,
1158 	xfs_inode_t		**ipp)
1159 {
1160 	int			is_dir = S_ISDIR(mode);
1161 	struct xfs_mount	*mp = dp->i_mount;
1162 	struct xfs_inode	*ip = NULL;
1163 	struct xfs_trans	*tp = NULL;
1164 	int			error;
1165 	struct xfs_defer_ops	dfops;
1166 	xfs_fsblock_t		first_block;
1167 	bool                    unlock_dp_on_error = false;
1168 	prid_t			prid;
1169 	struct xfs_dquot	*udqp = NULL;
1170 	struct xfs_dquot	*gdqp = NULL;
1171 	struct xfs_dquot	*pdqp = NULL;
1172 	struct xfs_trans_res	*tres;
1173 	uint			resblks;
1174 
1175 	trace_xfs_create(dp, name);
1176 
1177 	if (XFS_FORCED_SHUTDOWN(mp))
1178 		return -EIO;
1179 
1180 	prid = xfs_get_initial_prid(dp);
1181 
1182 	/*
1183 	 * Make sure that we have allocated dquot(s) on disk.
1184 	 */
1185 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1186 					xfs_kgid_to_gid(current_fsgid()), prid,
1187 					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1188 					&udqp, &gdqp, &pdqp);
1189 	if (error)
1190 		return error;
1191 
1192 	if (is_dir) {
1193 		rdev = 0;
1194 		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1195 		tres = &M_RES(mp)->tr_mkdir;
1196 	} else {
1197 		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1198 		tres = &M_RES(mp)->tr_create;
1199 	}
1200 
1201 	/*
1202 	 * Initially assume that the file does not exist and
1203 	 * reserve the resources for that case.  If that is not
1204 	 * the case we'll drop the one we have and get a more
1205 	 * appropriate transaction later.
1206 	 */
1207 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1208 	if (error == -ENOSPC) {
1209 		/* flush outstanding delalloc blocks and retry */
1210 		xfs_flush_inodes(mp);
1211 		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1212 	}
1213 	if (error == -ENOSPC) {
1214 		/* No space at all so try a "no-allocation" reservation */
1215 		resblks = 0;
1216 		error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1217 	}
1218 	if (error)
1219 		goto out_release_inode;
1220 
1221 	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1222 		      XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
1223 	unlock_dp_on_error = true;
1224 
1225 	xfs_defer_init(&dfops, &first_block);
1226 
1227 	/*
1228 	 * Reserve disk quota and the inode.
1229 	 */
1230 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1231 						pdqp, resblks, 1, 0);
1232 	if (error)
1233 		goto out_trans_cancel;
1234 
1235 	if (!resblks) {
1236 		error = xfs_dir_canenter(tp, dp, name);
1237 		if (error)
1238 			goto out_trans_cancel;
1239 	}
1240 
1241 	/*
1242 	 * A newly created regular or special file just has one directory
1243 	 * entry pointing to them, but a directory also the "." entry
1244 	 * pointing to itself.
1245 	 */
1246 	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1247 			       prid, resblks > 0, &ip, NULL);
1248 	if (error)
1249 		goto out_trans_cancel;
1250 
1251 	/*
1252 	 * Now we join the directory inode to the transaction.  We do not do it
1253 	 * earlier because xfs_dir_ialloc might commit the previous transaction
1254 	 * (and release all the locks).  An error from here on will result in
1255 	 * the transaction cancel unlocking dp so don't do it explicitly in the
1256 	 * error path.
1257 	 */
1258 	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1259 	unlock_dp_on_error = false;
1260 
1261 	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1262 					&first_block, &dfops, resblks ?
1263 					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1264 	if (error) {
1265 		ASSERT(error != -ENOSPC);
1266 		goto out_trans_cancel;
1267 	}
1268 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1269 	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1270 
1271 	if (is_dir) {
1272 		error = xfs_dir_init(tp, ip, dp);
1273 		if (error)
1274 			goto out_bmap_cancel;
1275 
1276 		error = xfs_bumplink(tp, dp);
1277 		if (error)
1278 			goto out_bmap_cancel;
1279 	}
1280 
1281 	/*
1282 	 * If this is a synchronous mount, make sure that the
1283 	 * create transaction goes to disk before returning to
1284 	 * the user.
1285 	 */
1286 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1287 		xfs_trans_set_sync(tp);
1288 
1289 	/*
1290 	 * Attach the dquot(s) to the inodes and modify them incore.
1291 	 * These ids of the inode couldn't have changed since the new
1292 	 * inode has been locked ever since it was created.
1293 	 */
1294 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1295 
1296 	error = xfs_defer_finish(&tp, &dfops, NULL);
1297 	if (error)
1298 		goto out_bmap_cancel;
1299 
1300 	error = xfs_trans_commit(tp);
1301 	if (error)
1302 		goto out_release_inode;
1303 
1304 	xfs_qm_dqrele(udqp);
1305 	xfs_qm_dqrele(gdqp);
1306 	xfs_qm_dqrele(pdqp);
1307 
1308 	*ipp = ip;
1309 	return 0;
1310 
1311  out_bmap_cancel:
1312 	xfs_defer_cancel(&dfops);
1313  out_trans_cancel:
1314 	xfs_trans_cancel(tp);
1315  out_release_inode:
1316 	/*
1317 	 * Wait until after the current transaction is aborted to finish the
1318 	 * setup of the inode and release the inode.  This prevents recursive
1319 	 * transactions and deadlocks from xfs_inactive.
1320 	 */
1321 	if (ip) {
1322 		xfs_finish_inode_setup(ip);
1323 		IRELE(ip);
1324 	}
1325 
1326 	xfs_qm_dqrele(udqp);
1327 	xfs_qm_dqrele(gdqp);
1328 	xfs_qm_dqrele(pdqp);
1329 
1330 	if (unlock_dp_on_error)
1331 		xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1332 	return error;
1333 }
1334 
1335 int
xfs_create_tmpfile(struct xfs_inode * dp,struct dentry * dentry,umode_t mode,struct xfs_inode ** ipp)1336 xfs_create_tmpfile(
1337 	struct xfs_inode	*dp,
1338 	struct dentry		*dentry,
1339 	umode_t			mode,
1340 	struct xfs_inode	**ipp)
1341 {
1342 	struct xfs_mount	*mp = dp->i_mount;
1343 	struct xfs_inode	*ip = NULL;
1344 	struct xfs_trans	*tp = NULL;
1345 	int			error;
1346 	prid_t                  prid;
1347 	struct xfs_dquot	*udqp = NULL;
1348 	struct xfs_dquot	*gdqp = NULL;
1349 	struct xfs_dquot	*pdqp = NULL;
1350 	struct xfs_trans_res	*tres;
1351 	uint			resblks;
1352 
1353 	if (XFS_FORCED_SHUTDOWN(mp))
1354 		return -EIO;
1355 
1356 	prid = xfs_get_initial_prid(dp);
1357 
1358 	/*
1359 	 * Make sure that we have allocated dquot(s) on disk.
1360 	 */
1361 	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1362 				xfs_kgid_to_gid(current_fsgid()), prid,
1363 				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1364 				&udqp, &gdqp, &pdqp);
1365 	if (error)
1366 		return error;
1367 
1368 	resblks = XFS_IALLOC_SPACE_RES(mp);
1369 	tres = &M_RES(mp)->tr_create_tmpfile;
1370 
1371 	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1372 	if (error == -ENOSPC) {
1373 		/* No space at all so try a "no-allocation" reservation */
1374 		resblks = 0;
1375 		error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1376 	}
1377 	if (error)
1378 		goto out_release_inode;
1379 
1380 	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1381 						pdqp, resblks, 1, 0);
1382 	if (error)
1383 		goto out_trans_cancel;
1384 
1385 	error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1386 				prid, resblks > 0, &ip, NULL);
1387 	if (error)
1388 		goto out_trans_cancel;
1389 
1390 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1391 		xfs_trans_set_sync(tp);
1392 
1393 	/*
1394 	 * Attach the dquot(s) to the inodes and modify them incore.
1395 	 * These ids of the inode couldn't have changed since the new
1396 	 * inode has been locked ever since it was created.
1397 	 */
1398 	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1399 
1400 	error = xfs_iunlink(tp, ip);
1401 	if (error)
1402 		goto out_trans_cancel;
1403 
1404 	error = xfs_trans_commit(tp);
1405 	if (error)
1406 		goto out_release_inode;
1407 
1408 	xfs_qm_dqrele(udqp);
1409 	xfs_qm_dqrele(gdqp);
1410 	xfs_qm_dqrele(pdqp);
1411 
1412 	*ipp = ip;
1413 	return 0;
1414 
1415  out_trans_cancel:
1416 	xfs_trans_cancel(tp);
1417  out_release_inode:
1418 	/*
1419 	 * Wait until after the current transaction is aborted to finish the
1420 	 * setup of the inode and release the inode.  This prevents recursive
1421 	 * transactions and deadlocks from xfs_inactive.
1422 	 */
1423 	if (ip) {
1424 		xfs_finish_inode_setup(ip);
1425 		IRELE(ip);
1426 	}
1427 
1428 	xfs_qm_dqrele(udqp);
1429 	xfs_qm_dqrele(gdqp);
1430 	xfs_qm_dqrele(pdqp);
1431 
1432 	return error;
1433 }
1434 
1435 int
xfs_link(xfs_inode_t * tdp,xfs_inode_t * sip,struct xfs_name * target_name)1436 xfs_link(
1437 	xfs_inode_t		*tdp,
1438 	xfs_inode_t		*sip,
1439 	struct xfs_name		*target_name)
1440 {
1441 	xfs_mount_t		*mp = tdp->i_mount;
1442 	xfs_trans_t		*tp;
1443 	int			error;
1444 	struct xfs_defer_ops	dfops;
1445 	xfs_fsblock_t           first_block;
1446 	int			resblks;
1447 
1448 	trace_xfs_link(tdp, target_name);
1449 
1450 	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1451 
1452 	if (XFS_FORCED_SHUTDOWN(mp))
1453 		return -EIO;
1454 
1455 	error = xfs_qm_dqattach(sip, 0);
1456 	if (error)
1457 		goto std_return;
1458 
1459 	error = xfs_qm_dqattach(tdp, 0);
1460 	if (error)
1461 		goto std_return;
1462 
1463 	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1464 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1465 	if (error == -ENOSPC) {
1466 		resblks = 0;
1467 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1468 	}
1469 	if (error)
1470 		goto std_return;
1471 
1472 	xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
1473 	xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1474 
1475 	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1476 	xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1477 
1478 	/*
1479 	 * If we are using project inheritance, we only allow hard link
1480 	 * creation in our tree when the project IDs are the same; else
1481 	 * the tree quota mechanism could be circumvented.
1482 	 */
1483 	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1484 		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1485 		error = -EXDEV;
1486 		goto error_return;
1487 	}
1488 
1489 	if (!resblks) {
1490 		error = xfs_dir_canenter(tp, tdp, target_name);
1491 		if (error)
1492 			goto error_return;
1493 	}
1494 
1495 	xfs_defer_init(&dfops, &first_block);
1496 
1497 	/*
1498 	 * Handle initial link state of O_TMPFILE inode
1499 	 */
1500 	if (VFS_I(sip)->i_nlink == 0) {
1501 		error = xfs_iunlink_remove(tp, sip);
1502 		if (error)
1503 			goto error_return;
1504 	}
1505 
1506 	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1507 					&first_block, &dfops, resblks);
1508 	if (error)
1509 		goto error_return;
1510 	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1511 	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1512 
1513 	error = xfs_bumplink(tp, sip);
1514 	if (error)
1515 		goto error_return;
1516 
1517 	/*
1518 	 * If this is a synchronous mount, make sure that the
1519 	 * link transaction goes to disk before returning to
1520 	 * the user.
1521 	 */
1522 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1523 		xfs_trans_set_sync(tp);
1524 
1525 	error = xfs_defer_finish(&tp, &dfops, NULL);
1526 	if (error) {
1527 		xfs_defer_cancel(&dfops);
1528 		goto error_return;
1529 	}
1530 
1531 	return xfs_trans_commit(tp);
1532 
1533  error_return:
1534 	xfs_trans_cancel(tp);
1535  std_return:
1536 	return error;
1537 }
1538 
1539 /*
1540  * Free up the underlying blocks past new_size.  The new size must be smaller
1541  * than the current size.  This routine can be used both for the attribute and
1542  * data fork, and does not modify the inode size, which is left to the caller.
1543  *
1544  * The transaction passed to this routine must have made a permanent log
1545  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1546  * given transaction and start new ones, so make sure everything involved in
1547  * the transaction is tidy before calling here.  Some transaction will be
1548  * returned to the caller to be committed.  The incoming transaction must
1549  * already include the inode, and both inode locks must be held exclusively.
1550  * The inode must also be "held" within the transaction.  On return the inode
1551  * will be "held" within the returned transaction.  This routine does NOT
1552  * require any disk space to be reserved for it within the transaction.
1553  *
1554  * If we get an error, we must return with the inode locked and linked into the
1555  * current transaction. This keeps things simple for the higher level code,
1556  * because it always knows that the inode is locked and held in the transaction
1557  * that returns to it whether errors occur or not.  We don't mark the inode
1558  * dirty on error so that transactions can be easily aborted if possible.
1559  */
1560 int
xfs_itruncate_extents(struct xfs_trans ** tpp,struct xfs_inode * ip,int whichfork,xfs_fsize_t new_size)1561 xfs_itruncate_extents(
1562 	struct xfs_trans	**tpp,
1563 	struct xfs_inode	*ip,
1564 	int			whichfork,
1565 	xfs_fsize_t		new_size)
1566 {
1567 	struct xfs_mount	*mp = ip->i_mount;
1568 	struct xfs_trans	*tp = *tpp;
1569 	struct xfs_defer_ops	dfops;
1570 	xfs_fsblock_t		first_block;
1571 	xfs_fileoff_t		first_unmap_block;
1572 	xfs_fileoff_t		last_block;
1573 	xfs_filblks_t		unmap_len;
1574 	int			error = 0;
1575 	int			done = 0;
1576 
1577 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1578 	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1579 	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1580 	ASSERT(new_size <= XFS_ISIZE(ip));
1581 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1582 	ASSERT(ip->i_itemp != NULL);
1583 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1584 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1585 
1586 	trace_xfs_itruncate_extents_start(ip, new_size);
1587 
1588 	/*
1589 	 * Since it is possible for space to become allocated beyond
1590 	 * the end of the file (in a crash where the space is allocated
1591 	 * but the inode size is not yet updated), simply remove any
1592 	 * blocks which show up between the new EOF and the maximum
1593 	 * possible file size.  If the first block to be removed is
1594 	 * beyond the maximum file size (ie it is the same as last_block),
1595 	 * then there is nothing to do.
1596 	 */
1597 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1598 	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1599 	if (first_unmap_block == last_block)
1600 		return 0;
1601 
1602 	ASSERT(first_unmap_block < last_block);
1603 	unmap_len = last_block - first_unmap_block + 1;
1604 	while (!done) {
1605 		xfs_defer_init(&dfops, &first_block);
1606 		error = xfs_bunmapi(tp, ip,
1607 				    first_unmap_block, unmap_len,
1608 				    xfs_bmapi_aflag(whichfork),
1609 				    XFS_ITRUNC_MAX_EXTENTS,
1610 				    &first_block, &dfops,
1611 				    &done);
1612 		if (error)
1613 			goto out_bmap_cancel;
1614 
1615 		/*
1616 		 * Duplicate the transaction that has the permanent
1617 		 * reservation and commit the old transaction.
1618 		 */
1619 		error = xfs_defer_finish(&tp, &dfops, ip);
1620 		if (error)
1621 			goto out_bmap_cancel;
1622 
1623 		error = xfs_trans_roll(&tp, ip);
1624 		if (error)
1625 			goto out;
1626 	}
1627 
1628 	/* Remove all pending CoW reservations. */
1629 	error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block,
1630 			last_block, true);
1631 	if (error)
1632 		goto out;
1633 
1634 	/*
1635 	 * Clear the reflink flag if there are no data fork blocks and
1636 	 * there are no extents staged in the cow fork.
1637 	 */
1638 	if (xfs_is_reflink_inode(ip) && ip->i_cnextents == 0) {
1639 		if (ip->i_d.di_nblocks == 0)
1640 			ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1641 		xfs_inode_clear_cowblocks_tag(ip);
1642 	}
1643 
1644 	/*
1645 	 * Always re-log the inode so that our permanent transaction can keep
1646 	 * on rolling it forward in the log.
1647 	 */
1648 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1649 
1650 	trace_xfs_itruncate_extents_end(ip, new_size);
1651 
1652 out:
1653 	*tpp = tp;
1654 	return error;
1655 out_bmap_cancel:
1656 	/*
1657 	 * If the bunmapi call encounters an error, return to the caller where
1658 	 * the transaction can be properly aborted.  We just need to make sure
1659 	 * we're not holding any resources that we were not when we came in.
1660 	 */
1661 	xfs_defer_cancel(&dfops);
1662 	goto out;
1663 }
1664 
1665 int
xfs_release(xfs_inode_t * ip)1666 xfs_release(
1667 	xfs_inode_t	*ip)
1668 {
1669 	xfs_mount_t	*mp = ip->i_mount;
1670 	int		error;
1671 
1672 	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1673 		return 0;
1674 
1675 	/* If this is a read-only mount, don't do this (would generate I/O) */
1676 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1677 		return 0;
1678 
1679 	if (!XFS_FORCED_SHUTDOWN(mp)) {
1680 		int truncated;
1681 
1682 		/*
1683 		 * If we previously truncated this file and removed old data
1684 		 * in the process, we want to initiate "early" writeout on
1685 		 * the last close.  This is an attempt to combat the notorious
1686 		 * NULL files problem which is particularly noticeable from a
1687 		 * truncate down, buffered (re-)write (delalloc), followed by
1688 		 * a crash.  What we are effectively doing here is
1689 		 * significantly reducing the time window where we'd otherwise
1690 		 * be exposed to that problem.
1691 		 */
1692 		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1693 		if (truncated) {
1694 			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1695 			if (ip->i_delayed_blks > 0) {
1696 				error = filemap_flush(VFS_I(ip)->i_mapping);
1697 				if (error)
1698 					return error;
1699 			}
1700 		}
1701 	}
1702 
1703 	if (VFS_I(ip)->i_nlink == 0)
1704 		return 0;
1705 
1706 	if (xfs_can_free_eofblocks(ip, false)) {
1707 
1708 		/*
1709 		 * Check if the inode is being opened, written and closed
1710 		 * frequently and we have delayed allocation blocks outstanding
1711 		 * (e.g. streaming writes from the NFS server), truncating the
1712 		 * blocks past EOF will cause fragmentation to occur.
1713 		 *
1714 		 * In this case don't do the truncation, but we have to be
1715 		 * careful how we detect this case. Blocks beyond EOF show up as
1716 		 * i_delayed_blks even when the inode is clean, so we need to
1717 		 * truncate them away first before checking for a dirty release.
1718 		 * Hence on the first dirty close we will still remove the
1719 		 * speculative allocation, but after that we will leave it in
1720 		 * place.
1721 		 */
1722 		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1723 			return 0;
1724 		/*
1725 		 * If we can't get the iolock just skip truncating the blocks
1726 		 * past EOF because we could deadlock with the mmap_sem
1727 		 * otherwise. We'll get another chance to drop them once the
1728 		 * last reference to the inode is dropped, so we'll never leak
1729 		 * blocks permanently.
1730 		 */
1731 		if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1732 			error = xfs_free_eofblocks(ip);
1733 			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1734 			if (error)
1735 				return error;
1736 		}
1737 
1738 		/* delalloc blocks after truncation means it really is dirty */
1739 		if (ip->i_delayed_blks)
1740 			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1741 	}
1742 	return 0;
1743 }
1744 
1745 /*
1746  * xfs_inactive_truncate
1747  *
1748  * Called to perform a truncate when an inode becomes unlinked.
1749  */
1750 STATIC int
xfs_inactive_truncate(struct xfs_inode * ip)1751 xfs_inactive_truncate(
1752 	struct xfs_inode *ip)
1753 {
1754 	struct xfs_mount	*mp = ip->i_mount;
1755 	struct xfs_trans	*tp;
1756 	int			error;
1757 
1758 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1759 	if (error) {
1760 		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1761 		return error;
1762 	}
1763 
1764 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1765 	xfs_trans_ijoin(tp, ip, 0);
1766 
1767 	/*
1768 	 * Log the inode size first to prevent stale data exposure in the event
1769 	 * of a system crash before the truncate completes. See the related
1770 	 * comment in xfs_vn_setattr_size() for details.
1771 	 */
1772 	ip->i_d.di_size = 0;
1773 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1774 
1775 	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1776 	if (error)
1777 		goto error_trans_cancel;
1778 
1779 	ASSERT(ip->i_d.di_nextents == 0);
1780 
1781 	error = xfs_trans_commit(tp);
1782 	if (error)
1783 		goto error_unlock;
1784 
1785 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1786 	return 0;
1787 
1788 error_trans_cancel:
1789 	xfs_trans_cancel(tp);
1790 error_unlock:
1791 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1792 	return error;
1793 }
1794 
1795 /*
1796  * xfs_inactive_ifree()
1797  *
1798  * Perform the inode free when an inode is unlinked.
1799  */
1800 STATIC int
xfs_inactive_ifree(struct xfs_inode * ip)1801 xfs_inactive_ifree(
1802 	struct xfs_inode *ip)
1803 {
1804 	struct xfs_defer_ops	dfops;
1805 	xfs_fsblock_t		first_block;
1806 	struct xfs_mount	*mp = ip->i_mount;
1807 	struct xfs_trans	*tp;
1808 	int			error;
1809 
1810 	/*
1811 	 * We try to use a per-AG reservation for any block needed by the finobt
1812 	 * tree, but as the finobt feature predates the per-AG reservation
1813 	 * support a degraded file system might not have enough space for the
1814 	 * reservation at mount time.  In that case try to dip into the reserved
1815 	 * pool and pray.
1816 	 *
1817 	 * Send a warning if the reservation does happen to fail, as the inode
1818 	 * now remains allocated and sits on the unlinked list until the fs is
1819 	 * repaired.
1820 	 */
1821 	if (unlikely(mp->m_inotbt_nores)) {
1822 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1823 				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1824 				&tp);
1825 	} else {
1826 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1827 	}
1828 	if (error) {
1829 		if (error == -ENOSPC) {
1830 			xfs_warn_ratelimited(mp,
1831 			"Failed to remove inode(s) from unlinked list. "
1832 			"Please free space, unmount and run xfs_repair.");
1833 		} else {
1834 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1835 		}
1836 		return error;
1837 	}
1838 
1839 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1840 	xfs_trans_ijoin(tp, ip, 0);
1841 
1842 	xfs_defer_init(&dfops, &first_block);
1843 	error = xfs_ifree(tp, ip, &dfops);
1844 	if (error) {
1845 		/*
1846 		 * If we fail to free the inode, shut down.  The cancel
1847 		 * might do that, we need to make sure.  Otherwise the
1848 		 * inode might be lost for a long time or forever.
1849 		 */
1850 		if (!XFS_FORCED_SHUTDOWN(mp)) {
1851 			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1852 				__func__, error);
1853 			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1854 		}
1855 		xfs_trans_cancel(tp);
1856 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1857 		return error;
1858 	}
1859 
1860 	/*
1861 	 * Credit the quota account(s). The inode is gone.
1862 	 */
1863 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1864 
1865 	/*
1866 	 * Just ignore errors at this point.  There is nothing we can do except
1867 	 * to try to keep going. Make sure it's not a silent error.
1868 	 */
1869 	error = xfs_defer_finish(&tp, &dfops, NULL);
1870 	if (error) {
1871 		xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
1872 			__func__, error);
1873 		xfs_defer_cancel(&dfops);
1874 	}
1875 	error = xfs_trans_commit(tp);
1876 	if (error)
1877 		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1878 			__func__, error);
1879 
1880 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1881 	return 0;
1882 }
1883 
1884 /*
1885  * xfs_inactive
1886  *
1887  * This is called when the vnode reference count for the vnode
1888  * goes to zero.  If the file has been unlinked, then it must
1889  * now be truncated.  Also, we clear all of the read-ahead state
1890  * kept for the inode here since the file is now closed.
1891  */
1892 void
xfs_inactive(xfs_inode_t * ip)1893 xfs_inactive(
1894 	xfs_inode_t	*ip)
1895 {
1896 	struct xfs_mount	*mp;
1897 	int			error;
1898 	int			truncate = 0;
1899 
1900 	/*
1901 	 * If the inode is already free, then there can be nothing
1902 	 * to clean up here.
1903 	 */
1904 	if (VFS_I(ip)->i_mode == 0) {
1905 		ASSERT(ip->i_df.if_real_bytes == 0);
1906 		ASSERT(ip->i_df.if_broot_bytes == 0);
1907 		return;
1908 	}
1909 
1910 	mp = ip->i_mount;
1911 	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1912 
1913 	/* If this is a read-only mount, don't do this (would generate I/O) */
1914 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1915 		return;
1916 
1917 	if (VFS_I(ip)->i_nlink != 0) {
1918 		/*
1919 		 * force is true because we are evicting an inode from the
1920 		 * cache. Post-eof blocks must be freed, lest we end up with
1921 		 * broken free space accounting.
1922 		 *
1923 		 * Note: don't bother with iolock here since lockdep complains
1924 		 * about acquiring it in reclaim context. We have the only
1925 		 * reference to the inode at this point anyways.
1926 		 */
1927 		if (xfs_can_free_eofblocks(ip, true))
1928 			xfs_free_eofblocks(ip);
1929 
1930 		return;
1931 	}
1932 
1933 	if (S_ISREG(VFS_I(ip)->i_mode) &&
1934 	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1935 	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1936 		truncate = 1;
1937 
1938 	error = xfs_qm_dqattach(ip, 0);
1939 	if (error)
1940 		return;
1941 
1942 	if (S_ISLNK(VFS_I(ip)->i_mode))
1943 		error = xfs_inactive_symlink(ip);
1944 	else if (truncate)
1945 		error = xfs_inactive_truncate(ip);
1946 	if (error)
1947 		return;
1948 
1949 	/*
1950 	 * If there are attributes associated with the file then blow them away
1951 	 * now.  The code calls a routine that recursively deconstructs the
1952 	 * attribute fork. If also blows away the in-core attribute fork.
1953 	 */
1954 	if (XFS_IFORK_Q(ip)) {
1955 		error = xfs_attr_inactive(ip);
1956 		if (error)
1957 			return;
1958 	}
1959 
1960 	ASSERT(!ip->i_afp);
1961 	ASSERT(ip->i_d.di_anextents == 0);
1962 	ASSERT(ip->i_d.di_forkoff == 0);
1963 
1964 	/*
1965 	 * Free the inode.
1966 	 */
1967 	error = xfs_inactive_ifree(ip);
1968 	if (error)
1969 		return;
1970 
1971 	/*
1972 	 * Release the dquots held by inode, if any.
1973 	 */
1974 	xfs_qm_dqdetach(ip);
1975 }
1976 
1977 /*
1978  * This is called when the inode's link count goes to 0 or we are creating a
1979  * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1980  * set to true as the link count is dropped to zero by the VFS after we've
1981  * created the file successfully, so we have to add it to the unlinked list
1982  * while the link count is non-zero.
1983  *
1984  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1985  * list when the inode is freed.
1986  */
1987 STATIC int
xfs_iunlink(struct xfs_trans * tp,struct xfs_inode * ip)1988 xfs_iunlink(
1989 	struct xfs_trans *tp,
1990 	struct xfs_inode *ip)
1991 {
1992 	xfs_mount_t	*mp = tp->t_mountp;
1993 	xfs_agi_t	*agi;
1994 	xfs_dinode_t	*dip;
1995 	xfs_buf_t	*agibp;
1996 	xfs_buf_t	*ibp;
1997 	xfs_agino_t	agino;
1998 	short		bucket_index;
1999 	int		offset;
2000 	int		error;
2001 
2002 	ASSERT(VFS_I(ip)->i_mode != 0);
2003 
2004 	/*
2005 	 * Get the agi buffer first.  It ensures lock ordering
2006 	 * on the list.
2007 	 */
2008 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
2009 	if (error)
2010 		return error;
2011 	agi = XFS_BUF_TO_AGI(agibp);
2012 
2013 	/*
2014 	 * Get the index into the agi hash table for the
2015 	 * list this inode will go on.
2016 	 */
2017 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2018 	ASSERT(agino != 0);
2019 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2020 	ASSERT(agi->agi_unlinked[bucket_index]);
2021 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
2022 
2023 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
2024 		/*
2025 		 * There is already another inode in the bucket we need
2026 		 * to add ourselves to.  Add us at the front of the list.
2027 		 * Here we put the head pointer into our next pointer,
2028 		 * and then we fall through to point the head at us.
2029 		 */
2030 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2031 				       0, 0);
2032 		if (error)
2033 			return error;
2034 
2035 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2036 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2037 		offset = ip->i_imap.im_boffset +
2038 			offsetof(xfs_dinode_t, di_next_unlinked);
2039 
2040 		/* need to recalc the inode CRC if appropriate */
2041 		xfs_dinode_calc_crc(mp, dip);
2042 
2043 		xfs_trans_inode_buf(tp, ibp);
2044 		xfs_trans_log_buf(tp, ibp, offset,
2045 				  (offset + sizeof(xfs_agino_t) - 1));
2046 		xfs_inobp_check(mp, ibp);
2047 	}
2048 
2049 	/*
2050 	 * Point the bucket head pointer at the inode being inserted.
2051 	 */
2052 	ASSERT(agino != 0);
2053 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2054 	offset = offsetof(xfs_agi_t, agi_unlinked) +
2055 		(sizeof(xfs_agino_t) * bucket_index);
2056 	xfs_trans_log_buf(tp, agibp, offset,
2057 			  (offset + sizeof(xfs_agino_t) - 1));
2058 	return 0;
2059 }
2060 
2061 /*
2062  * Pull the on-disk inode from the AGI unlinked list.
2063  */
2064 STATIC int
xfs_iunlink_remove(xfs_trans_t * tp,xfs_inode_t * ip)2065 xfs_iunlink_remove(
2066 	xfs_trans_t	*tp,
2067 	xfs_inode_t	*ip)
2068 {
2069 	xfs_ino_t	next_ino;
2070 	xfs_mount_t	*mp;
2071 	xfs_agi_t	*agi;
2072 	xfs_dinode_t	*dip;
2073 	xfs_buf_t	*agibp;
2074 	xfs_buf_t	*ibp;
2075 	xfs_agnumber_t	agno;
2076 	xfs_agino_t	agino;
2077 	xfs_agino_t	next_agino;
2078 	xfs_buf_t	*last_ibp;
2079 	xfs_dinode_t	*last_dip = NULL;
2080 	short		bucket_index;
2081 	int		offset, last_offset = 0;
2082 	int		error;
2083 
2084 	mp = tp->t_mountp;
2085 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2086 
2087 	/*
2088 	 * Get the agi buffer first.  It ensures lock ordering
2089 	 * on the list.
2090 	 */
2091 	error = xfs_read_agi(mp, tp, agno, &agibp);
2092 	if (error)
2093 		return error;
2094 
2095 	agi = XFS_BUF_TO_AGI(agibp);
2096 
2097 	/*
2098 	 * Get the index into the agi hash table for the
2099 	 * list this inode will go on.
2100 	 */
2101 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2102 	ASSERT(agino != 0);
2103 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2104 	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2105 	ASSERT(agi->agi_unlinked[bucket_index]);
2106 
2107 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2108 		/*
2109 		 * We're at the head of the list.  Get the inode's on-disk
2110 		 * buffer to see if there is anyone after us on the list.
2111 		 * Only modify our next pointer if it is not already NULLAGINO.
2112 		 * This saves us the overhead of dealing with the buffer when
2113 		 * there is no need to change it.
2114 		 */
2115 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2116 				       0, 0);
2117 		if (error) {
2118 			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2119 				__func__, error);
2120 			return error;
2121 		}
2122 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2123 		ASSERT(next_agino != 0);
2124 		if (next_agino != NULLAGINO) {
2125 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2126 			offset = ip->i_imap.im_boffset +
2127 				offsetof(xfs_dinode_t, di_next_unlinked);
2128 
2129 			/* need to recalc the inode CRC if appropriate */
2130 			xfs_dinode_calc_crc(mp, dip);
2131 
2132 			xfs_trans_inode_buf(tp, ibp);
2133 			xfs_trans_log_buf(tp, ibp, offset,
2134 					  (offset + sizeof(xfs_agino_t) - 1));
2135 			xfs_inobp_check(mp, ibp);
2136 		} else {
2137 			xfs_trans_brelse(tp, ibp);
2138 		}
2139 		/*
2140 		 * Point the bucket head pointer at the next inode.
2141 		 */
2142 		ASSERT(next_agino != 0);
2143 		ASSERT(next_agino != agino);
2144 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2145 		offset = offsetof(xfs_agi_t, agi_unlinked) +
2146 			(sizeof(xfs_agino_t) * bucket_index);
2147 		xfs_trans_log_buf(tp, agibp, offset,
2148 				  (offset + sizeof(xfs_agino_t) - 1));
2149 	} else {
2150 		/*
2151 		 * We need to search the list for the inode being freed.
2152 		 */
2153 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2154 		last_ibp = NULL;
2155 		while (next_agino != agino) {
2156 			struct xfs_imap	imap;
2157 
2158 			if (last_ibp)
2159 				xfs_trans_brelse(tp, last_ibp);
2160 
2161 			imap.im_blkno = 0;
2162 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2163 
2164 			error = xfs_imap(mp, tp, next_ino, &imap, 0);
2165 			if (error) {
2166 				xfs_warn(mp,
2167 	"%s: xfs_imap returned error %d.",
2168 					 __func__, error);
2169 				return error;
2170 			}
2171 
2172 			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2173 					       &last_ibp, 0, 0);
2174 			if (error) {
2175 				xfs_warn(mp,
2176 	"%s: xfs_imap_to_bp returned error %d.",
2177 					__func__, error);
2178 				return error;
2179 			}
2180 
2181 			last_offset = imap.im_boffset;
2182 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2183 			ASSERT(next_agino != NULLAGINO);
2184 			ASSERT(next_agino != 0);
2185 		}
2186 
2187 		/*
2188 		 * Now last_ibp points to the buffer previous to us on the
2189 		 * unlinked list.  Pull us from the list.
2190 		 */
2191 		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2192 				       0, 0);
2193 		if (error) {
2194 			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2195 				__func__, error);
2196 			return error;
2197 		}
2198 		next_agino = be32_to_cpu(dip->di_next_unlinked);
2199 		ASSERT(next_agino != 0);
2200 		ASSERT(next_agino != agino);
2201 		if (next_agino != NULLAGINO) {
2202 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2203 			offset = ip->i_imap.im_boffset +
2204 				offsetof(xfs_dinode_t, di_next_unlinked);
2205 
2206 			/* need to recalc the inode CRC if appropriate */
2207 			xfs_dinode_calc_crc(mp, dip);
2208 
2209 			xfs_trans_inode_buf(tp, ibp);
2210 			xfs_trans_log_buf(tp, ibp, offset,
2211 					  (offset + sizeof(xfs_agino_t) - 1));
2212 			xfs_inobp_check(mp, ibp);
2213 		} else {
2214 			xfs_trans_brelse(tp, ibp);
2215 		}
2216 		/*
2217 		 * Point the previous inode on the list to the next inode.
2218 		 */
2219 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2220 		ASSERT(next_agino != 0);
2221 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2222 
2223 		/* need to recalc the inode CRC if appropriate */
2224 		xfs_dinode_calc_crc(mp, last_dip);
2225 
2226 		xfs_trans_inode_buf(tp, last_ibp);
2227 		xfs_trans_log_buf(tp, last_ibp, offset,
2228 				  (offset + sizeof(xfs_agino_t) - 1));
2229 		xfs_inobp_check(mp, last_ibp);
2230 	}
2231 	return 0;
2232 }
2233 
2234 /*
2235  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2236  * inodes that are in memory - they all must be marked stale and attached to
2237  * the cluster buffer.
2238  */
2239 STATIC int
xfs_ifree_cluster(xfs_inode_t * free_ip,xfs_trans_t * tp,struct xfs_icluster * xic)2240 xfs_ifree_cluster(
2241 	xfs_inode_t		*free_ip,
2242 	xfs_trans_t		*tp,
2243 	struct xfs_icluster	*xic)
2244 {
2245 	xfs_mount_t		*mp = free_ip->i_mount;
2246 	int			blks_per_cluster;
2247 	int			inodes_per_cluster;
2248 	int			nbufs;
2249 	int			i, j;
2250 	int			ioffset;
2251 	xfs_daddr_t		blkno;
2252 	xfs_buf_t		*bp;
2253 	xfs_inode_t		*ip;
2254 	xfs_inode_log_item_t	*iip;
2255 	xfs_log_item_t		*lip;
2256 	struct xfs_perag	*pag;
2257 	xfs_ino_t		inum;
2258 
2259 	inum = xic->first_ino;
2260 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2261 	blks_per_cluster = xfs_icluster_size_fsb(mp);
2262 	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2263 	nbufs = mp->m_ialloc_blks / blks_per_cluster;
2264 
2265 	for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2266 		/*
2267 		 * The allocation bitmap tells us which inodes of the chunk were
2268 		 * physically allocated. Skip the cluster if an inode falls into
2269 		 * a sparse region.
2270 		 */
2271 		ioffset = inum - xic->first_ino;
2272 		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2273 			ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2274 			continue;
2275 		}
2276 
2277 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2278 					 XFS_INO_TO_AGBNO(mp, inum));
2279 
2280 		/*
2281 		 * We obtain and lock the backing buffer first in the process
2282 		 * here, as we have to ensure that any dirty inode that we
2283 		 * can't get the flush lock on is attached to the buffer.
2284 		 * If we scan the in-memory inodes first, then buffer IO can
2285 		 * complete before we get a lock on it, and hence we may fail
2286 		 * to mark all the active inodes on the buffer stale.
2287 		 */
2288 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2289 					mp->m_bsize * blks_per_cluster,
2290 					XBF_UNMAPPED);
2291 
2292 		if (!bp)
2293 			return -ENOMEM;
2294 
2295 		/*
2296 		 * This buffer may not have been correctly initialised as we
2297 		 * didn't read it from disk. That's not important because we are
2298 		 * only using to mark the buffer as stale in the log, and to
2299 		 * attach stale cached inodes on it. That means it will never be
2300 		 * dispatched for IO. If it is, we want to know about it, and we
2301 		 * want it to fail. We can acheive this by adding a write
2302 		 * verifier to the buffer.
2303 		 */
2304 		 bp->b_ops = &xfs_inode_buf_ops;
2305 
2306 		/*
2307 		 * Walk the inodes already attached to the buffer and mark them
2308 		 * stale. These will all have the flush locks held, so an
2309 		 * in-memory inode walk can't lock them. By marking them all
2310 		 * stale first, we will not attempt to lock them in the loop
2311 		 * below as the XFS_ISTALE flag will be set.
2312 		 */
2313 		lip = bp->b_fspriv;
2314 		while (lip) {
2315 			if (lip->li_type == XFS_LI_INODE) {
2316 				iip = (xfs_inode_log_item_t *)lip;
2317 				ASSERT(iip->ili_logged == 1);
2318 				lip->li_cb = xfs_istale_done;
2319 				xfs_trans_ail_copy_lsn(mp->m_ail,
2320 							&iip->ili_flush_lsn,
2321 							&iip->ili_item.li_lsn);
2322 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2323 			}
2324 			lip = lip->li_bio_list;
2325 		}
2326 
2327 
2328 		/*
2329 		 * For each inode in memory attempt to add it to the inode
2330 		 * buffer and set it up for being staled on buffer IO
2331 		 * completion.  This is safe as we've locked out tail pushing
2332 		 * and flushing by locking the buffer.
2333 		 *
2334 		 * We have already marked every inode that was part of a
2335 		 * transaction stale above, which means there is no point in
2336 		 * even trying to lock them.
2337 		 */
2338 		for (i = 0; i < inodes_per_cluster; i++) {
2339 retry:
2340 			rcu_read_lock();
2341 			ip = radix_tree_lookup(&pag->pag_ici_root,
2342 					XFS_INO_TO_AGINO(mp, (inum + i)));
2343 
2344 			/* Inode not in memory, nothing to do */
2345 			if (!ip) {
2346 				rcu_read_unlock();
2347 				continue;
2348 			}
2349 
2350 			/*
2351 			 * because this is an RCU protected lookup, we could
2352 			 * find a recently freed or even reallocated inode
2353 			 * during the lookup. We need to check under the
2354 			 * i_flags_lock for a valid inode here. Skip it if it
2355 			 * is not valid, the wrong inode or stale.
2356 			 */
2357 			spin_lock(&ip->i_flags_lock);
2358 			if (ip->i_ino != inum + i ||
2359 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2360 				spin_unlock(&ip->i_flags_lock);
2361 				rcu_read_unlock();
2362 				continue;
2363 			}
2364 			spin_unlock(&ip->i_flags_lock);
2365 
2366 			/*
2367 			 * Don't try to lock/unlock the current inode, but we
2368 			 * _cannot_ skip the other inodes that we did not find
2369 			 * in the list attached to the buffer and are not
2370 			 * already marked stale. If we can't lock it, back off
2371 			 * and retry.
2372 			 */
2373 			if (ip != free_ip) {
2374 				if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2375 					rcu_read_unlock();
2376 					delay(1);
2377 					goto retry;
2378 				}
2379 
2380 				/*
2381 				 * Check the inode number again in case we're
2382 				 * racing with freeing in xfs_reclaim_inode().
2383 				 * See the comments in that function for more
2384 				 * information as to why the initial check is
2385 				 * not sufficient.
2386 				 */
2387 				if (ip->i_ino != inum + i) {
2388 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2389 					rcu_read_unlock();
2390 					continue;
2391 				}
2392 			}
2393 			rcu_read_unlock();
2394 
2395 			xfs_iflock(ip);
2396 			xfs_iflags_set(ip, XFS_ISTALE);
2397 
2398 			/*
2399 			 * we don't need to attach clean inodes or those only
2400 			 * with unlogged changes (which we throw away, anyway).
2401 			 */
2402 			iip = ip->i_itemp;
2403 			if (!iip || xfs_inode_clean(ip)) {
2404 				ASSERT(ip != free_ip);
2405 				xfs_ifunlock(ip);
2406 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2407 				continue;
2408 			}
2409 
2410 			iip->ili_last_fields = iip->ili_fields;
2411 			iip->ili_fields = 0;
2412 			iip->ili_fsync_fields = 0;
2413 			iip->ili_logged = 1;
2414 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2415 						&iip->ili_item.li_lsn);
2416 
2417 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2418 						  &iip->ili_item);
2419 
2420 			if (ip != free_ip)
2421 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2422 		}
2423 
2424 		xfs_trans_stale_inode_buf(tp, bp);
2425 		xfs_trans_binval(tp, bp);
2426 	}
2427 
2428 	xfs_perag_put(pag);
2429 	return 0;
2430 }
2431 
2432 /*
2433  * Free any local-format buffers sitting around before we reset to
2434  * extents format.
2435  */
2436 static inline void
xfs_ifree_local_data(struct xfs_inode * ip,int whichfork)2437 xfs_ifree_local_data(
2438 	struct xfs_inode	*ip,
2439 	int			whichfork)
2440 {
2441 	struct xfs_ifork	*ifp;
2442 
2443 	if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2444 		return;
2445 
2446 	ifp = XFS_IFORK_PTR(ip, whichfork);
2447 	xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2448 }
2449 
2450 /*
2451  * This is called to return an inode to the inode free list.
2452  * The inode should already be truncated to 0 length and have
2453  * no pages associated with it.  This routine also assumes that
2454  * the inode is already a part of the transaction.
2455  *
2456  * The on-disk copy of the inode will have been added to the list
2457  * of unlinked inodes in the AGI. We need to remove the inode from
2458  * that list atomically with respect to freeing it here.
2459  */
2460 int
xfs_ifree(xfs_trans_t * tp,xfs_inode_t * ip,struct xfs_defer_ops * dfops)2461 xfs_ifree(
2462 	xfs_trans_t	*tp,
2463 	xfs_inode_t	*ip,
2464 	struct xfs_defer_ops	*dfops)
2465 {
2466 	int			error;
2467 	struct xfs_icluster	xic = { 0 };
2468 
2469 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2470 	ASSERT(VFS_I(ip)->i_nlink == 0);
2471 	ASSERT(ip->i_d.di_nextents == 0);
2472 	ASSERT(ip->i_d.di_anextents == 0);
2473 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2474 	ASSERT(ip->i_d.di_nblocks == 0);
2475 
2476 	/*
2477 	 * Pull the on-disk inode from the AGI unlinked list.
2478 	 */
2479 	error = xfs_iunlink_remove(tp, ip);
2480 	if (error)
2481 		return error;
2482 
2483 	error = xfs_difree(tp, ip->i_ino, dfops, &xic);
2484 	if (error)
2485 		return error;
2486 
2487 	xfs_ifree_local_data(ip, XFS_DATA_FORK);
2488 	xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2489 
2490 	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2491 	ip->i_d.di_flags = 0;
2492 	ip->i_d.di_dmevmask = 0;
2493 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2494 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2495 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2496 	/*
2497 	 * Bump the generation count so no one will be confused
2498 	 * by reincarnations of this inode.
2499 	 */
2500 	VFS_I(ip)->i_generation++;
2501 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2502 
2503 	if (xic.deleted)
2504 		error = xfs_ifree_cluster(ip, tp, &xic);
2505 
2506 	return error;
2507 }
2508 
2509 /*
2510  * This is called to unpin an inode.  The caller must have the inode locked
2511  * in at least shared mode so that the buffer cannot be subsequently pinned
2512  * once someone is waiting for it to be unpinned.
2513  */
2514 static void
xfs_iunpin(struct xfs_inode * ip)2515 xfs_iunpin(
2516 	struct xfs_inode	*ip)
2517 {
2518 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2519 
2520 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2521 
2522 	/* Give the log a push to start the unpinning I/O */
2523 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2524 
2525 }
2526 
2527 static void
__xfs_iunpin_wait(struct xfs_inode * ip)2528 __xfs_iunpin_wait(
2529 	struct xfs_inode	*ip)
2530 {
2531 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2532 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2533 
2534 	xfs_iunpin(ip);
2535 
2536 	do {
2537 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2538 		if (xfs_ipincount(ip))
2539 			io_schedule();
2540 	} while (xfs_ipincount(ip));
2541 	finish_wait(wq, &wait.wait);
2542 }
2543 
2544 void
xfs_iunpin_wait(struct xfs_inode * ip)2545 xfs_iunpin_wait(
2546 	struct xfs_inode	*ip)
2547 {
2548 	if (xfs_ipincount(ip))
2549 		__xfs_iunpin_wait(ip);
2550 }
2551 
2552 /*
2553  * Removing an inode from the namespace involves removing the directory entry
2554  * and dropping the link count on the inode. Removing the directory entry can
2555  * result in locking an AGF (directory blocks were freed) and removing a link
2556  * count can result in placing the inode on an unlinked list which results in
2557  * locking an AGI.
2558  *
2559  * The big problem here is that we have an ordering constraint on AGF and AGI
2560  * locking - inode allocation locks the AGI, then can allocate a new extent for
2561  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2562  * removes the inode from the unlinked list, requiring that we lock the AGI
2563  * first, and then freeing the inode can result in an inode chunk being freed
2564  * and hence freeing disk space requiring that we lock an AGF.
2565  *
2566  * Hence the ordering that is imposed by other parts of the code is AGI before
2567  * AGF. This means we cannot remove the directory entry before we drop the inode
2568  * reference count and put it on the unlinked list as this results in a lock
2569  * order of AGF then AGI, and this can deadlock against inode allocation and
2570  * freeing. Therefore we must drop the link counts before we remove the
2571  * directory entry.
2572  *
2573  * This is still safe from a transactional point of view - it is not until we
2574  * get to xfs_defer_finish() that we have the possibility of multiple
2575  * transactions in this operation. Hence as long as we remove the directory
2576  * entry and drop the link count in the first transaction of the remove
2577  * operation, there are no transactional constraints on the ordering here.
2578  */
2579 int
xfs_remove(xfs_inode_t * dp,struct xfs_name * name,xfs_inode_t * ip)2580 xfs_remove(
2581 	xfs_inode_t             *dp,
2582 	struct xfs_name		*name,
2583 	xfs_inode_t		*ip)
2584 {
2585 	xfs_mount_t		*mp = dp->i_mount;
2586 	xfs_trans_t             *tp = NULL;
2587 	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2588 	int                     error = 0;
2589 	struct xfs_defer_ops	dfops;
2590 	xfs_fsblock_t           first_block;
2591 	uint			resblks;
2592 
2593 	trace_xfs_remove(dp, name);
2594 
2595 	if (XFS_FORCED_SHUTDOWN(mp))
2596 		return -EIO;
2597 
2598 	error = xfs_qm_dqattach(dp, 0);
2599 	if (error)
2600 		goto std_return;
2601 
2602 	error = xfs_qm_dqattach(ip, 0);
2603 	if (error)
2604 		goto std_return;
2605 
2606 	/*
2607 	 * We try to get the real space reservation first,
2608 	 * allowing for directory btree deletion(s) implying
2609 	 * possible bmap insert(s).  If we can't get the space
2610 	 * reservation then we use 0 instead, and avoid the bmap
2611 	 * btree insert(s) in the directory code by, if the bmap
2612 	 * insert tries to happen, instead trimming the LAST
2613 	 * block from the directory.
2614 	 */
2615 	resblks = XFS_REMOVE_SPACE_RES(mp);
2616 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2617 	if (error == -ENOSPC) {
2618 		resblks = 0;
2619 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2620 				&tp);
2621 	}
2622 	if (error) {
2623 		ASSERT(error != -ENOSPC);
2624 		goto std_return;
2625 	}
2626 
2627 	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2628 	xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2629 
2630 	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2631 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2632 
2633 	/*
2634 	 * If we're removing a directory perform some additional validation.
2635 	 */
2636 	if (is_dir) {
2637 		ASSERT(VFS_I(ip)->i_nlink >= 2);
2638 		if (VFS_I(ip)->i_nlink != 2) {
2639 			error = -ENOTEMPTY;
2640 			goto out_trans_cancel;
2641 		}
2642 		if (!xfs_dir_isempty(ip)) {
2643 			error = -ENOTEMPTY;
2644 			goto out_trans_cancel;
2645 		}
2646 
2647 		/* Drop the link from ip's "..".  */
2648 		error = xfs_droplink(tp, dp);
2649 		if (error)
2650 			goto out_trans_cancel;
2651 
2652 		/* Drop the "." link from ip to self.  */
2653 		error = xfs_droplink(tp, ip);
2654 		if (error)
2655 			goto out_trans_cancel;
2656 	} else {
2657 		/*
2658 		 * When removing a non-directory we need to log the parent
2659 		 * inode here.  For a directory this is done implicitly
2660 		 * by the xfs_droplink call for the ".." entry.
2661 		 */
2662 		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2663 	}
2664 	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2665 
2666 	/* Drop the link from dp to ip. */
2667 	error = xfs_droplink(tp, ip);
2668 	if (error)
2669 		goto out_trans_cancel;
2670 
2671 	xfs_defer_init(&dfops, &first_block);
2672 	error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2673 					&first_block, &dfops, resblks);
2674 	if (error) {
2675 		ASSERT(error != -ENOENT);
2676 		goto out_bmap_cancel;
2677 	}
2678 
2679 	/*
2680 	 * If this is a synchronous mount, make sure that the
2681 	 * remove transaction goes to disk before returning to
2682 	 * the user.
2683 	 */
2684 	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2685 		xfs_trans_set_sync(tp);
2686 
2687 	error = xfs_defer_finish(&tp, &dfops, NULL);
2688 	if (error)
2689 		goto out_bmap_cancel;
2690 
2691 	error = xfs_trans_commit(tp);
2692 	if (error)
2693 		goto std_return;
2694 
2695 	if (is_dir && xfs_inode_is_filestream(ip))
2696 		xfs_filestream_deassociate(ip);
2697 
2698 	return 0;
2699 
2700  out_bmap_cancel:
2701 	xfs_defer_cancel(&dfops);
2702  out_trans_cancel:
2703 	xfs_trans_cancel(tp);
2704  std_return:
2705 	return error;
2706 }
2707 
2708 /*
2709  * Enter all inodes for a rename transaction into a sorted array.
2710  */
2711 #define __XFS_SORT_INODES	5
2712 STATIC void
xfs_sort_for_rename(struct xfs_inode * dp1,struct xfs_inode * dp2,struct xfs_inode * ip1,struct xfs_inode * ip2,struct xfs_inode * wip,struct xfs_inode ** i_tab,int * num_inodes)2713 xfs_sort_for_rename(
2714 	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2715 	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2716 	struct xfs_inode	*ip1,	/* in: inode of old entry */
2717 	struct xfs_inode	*ip2,	/* in: inode of new entry */
2718 	struct xfs_inode	*wip,	/* in: whiteout inode */
2719 	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2720 	int			*num_inodes)  /* in/out: inodes in array */
2721 {
2722 	int			i, j;
2723 
2724 	ASSERT(*num_inodes == __XFS_SORT_INODES);
2725 	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2726 
2727 	/*
2728 	 * i_tab contains a list of pointers to inodes.  We initialize
2729 	 * the table here & we'll sort it.  We will then use it to
2730 	 * order the acquisition of the inode locks.
2731 	 *
2732 	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2733 	 */
2734 	i = 0;
2735 	i_tab[i++] = dp1;
2736 	i_tab[i++] = dp2;
2737 	i_tab[i++] = ip1;
2738 	if (ip2)
2739 		i_tab[i++] = ip2;
2740 	if (wip)
2741 		i_tab[i++] = wip;
2742 	*num_inodes = i;
2743 
2744 	/*
2745 	 * Sort the elements via bubble sort.  (Remember, there are at
2746 	 * most 5 elements to sort, so this is adequate.)
2747 	 */
2748 	for (i = 0; i < *num_inodes; i++) {
2749 		for (j = 1; j < *num_inodes; j++) {
2750 			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2751 				struct xfs_inode *temp = i_tab[j];
2752 				i_tab[j] = i_tab[j-1];
2753 				i_tab[j-1] = temp;
2754 			}
2755 		}
2756 	}
2757 }
2758 
2759 static int
xfs_finish_rename(struct xfs_trans * tp,struct xfs_defer_ops * dfops)2760 xfs_finish_rename(
2761 	struct xfs_trans	*tp,
2762 	struct xfs_defer_ops	*dfops)
2763 {
2764 	int			error;
2765 
2766 	/*
2767 	 * If this is a synchronous mount, make sure that the rename transaction
2768 	 * goes to disk before returning to the user.
2769 	 */
2770 	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2771 		xfs_trans_set_sync(tp);
2772 
2773 	error = xfs_defer_finish(&tp, dfops, NULL);
2774 	if (error) {
2775 		xfs_defer_cancel(dfops);
2776 		xfs_trans_cancel(tp);
2777 		return error;
2778 	}
2779 
2780 	return xfs_trans_commit(tp);
2781 }
2782 
2783 /*
2784  * xfs_cross_rename()
2785  *
2786  * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2787  */
2788 STATIC int
xfs_cross_rename(struct xfs_trans * tp,struct xfs_inode * dp1,struct xfs_name * name1,struct xfs_inode * ip1,struct xfs_inode * dp2,struct xfs_name * name2,struct xfs_inode * ip2,struct xfs_defer_ops * dfops,xfs_fsblock_t * first_block,int spaceres)2789 xfs_cross_rename(
2790 	struct xfs_trans	*tp,
2791 	struct xfs_inode	*dp1,
2792 	struct xfs_name		*name1,
2793 	struct xfs_inode	*ip1,
2794 	struct xfs_inode	*dp2,
2795 	struct xfs_name		*name2,
2796 	struct xfs_inode	*ip2,
2797 	struct xfs_defer_ops	*dfops,
2798 	xfs_fsblock_t		*first_block,
2799 	int			spaceres)
2800 {
2801 	int		error = 0;
2802 	int		ip1_flags = 0;
2803 	int		ip2_flags = 0;
2804 	int		dp2_flags = 0;
2805 
2806 	/* Swap inode number for dirent in first parent */
2807 	error = xfs_dir_replace(tp, dp1, name1,
2808 				ip2->i_ino,
2809 				first_block, dfops, spaceres);
2810 	if (error)
2811 		goto out_trans_abort;
2812 
2813 	/* Swap inode number for dirent in second parent */
2814 	error = xfs_dir_replace(tp, dp2, name2,
2815 				ip1->i_ino,
2816 				first_block, dfops, spaceres);
2817 	if (error)
2818 		goto out_trans_abort;
2819 
2820 	/*
2821 	 * If we're renaming one or more directories across different parents,
2822 	 * update the respective ".." entries (and link counts) to match the new
2823 	 * parents.
2824 	 */
2825 	if (dp1 != dp2) {
2826 		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2827 
2828 		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2829 			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2830 						dp1->i_ino, first_block,
2831 						dfops, spaceres);
2832 			if (error)
2833 				goto out_trans_abort;
2834 
2835 			/* transfer ip2 ".." reference to dp1 */
2836 			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2837 				error = xfs_droplink(tp, dp2);
2838 				if (error)
2839 					goto out_trans_abort;
2840 				error = xfs_bumplink(tp, dp1);
2841 				if (error)
2842 					goto out_trans_abort;
2843 			}
2844 
2845 			/*
2846 			 * Although ip1 isn't changed here, userspace needs
2847 			 * to be warned about the change, so that applications
2848 			 * relying on it (like backup ones), will properly
2849 			 * notify the change
2850 			 */
2851 			ip1_flags |= XFS_ICHGTIME_CHG;
2852 			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2853 		}
2854 
2855 		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2856 			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2857 						dp2->i_ino, first_block,
2858 						dfops, spaceres);
2859 			if (error)
2860 				goto out_trans_abort;
2861 
2862 			/* transfer ip1 ".." reference to dp2 */
2863 			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2864 				error = xfs_droplink(tp, dp1);
2865 				if (error)
2866 					goto out_trans_abort;
2867 				error = xfs_bumplink(tp, dp2);
2868 				if (error)
2869 					goto out_trans_abort;
2870 			}
2871 
2872 			/*
2873 			 * Although ip2 isn't changed here, userspace needs
2874 			 * to be warned about the change, so that applications
2875 			 * relying on it (like backup ones), will properly
2876 			 * notify the change
2877 			 */
2878 			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2879 			ip2_flags |= XFS_ICHGTIME_CHG;
2880 		}
2881 	}
2882 
2883 	if (ip1_flags) {
2884 		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2885 		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2886 	}
2887 	if (ip2_flags) {
2888 		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2889 		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2890 	}
2891 	if (dp2_flags) {
2892 		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2893 		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2894 	}
2895 	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2896 	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2897 	return xfs_finish_rename(tp, dfops);
2898 
2899 out_trans_abort:
2900 	xfs_defer_cancel(dfops);
2901 	xfs_trans_cancel(tp);
2902 	return error;
2903 }
2904 
2905 /*
2906  * xfs_rename_alloc_whiteout()
2907  *
2908  * Return a referenced, unlinked, unlocked inode that that can be used as a
2909  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2910  * crash between allocating the inode and linking it into the rename transaction
2911  * recovery will free the inode and we won't leak it.
2912  */
2913 static int
xfs_rename_alloc_whiteout(struct xfs_inode * dp,struct xfs_inode ** wip)2914 xfs_rename_alloc_whiteout(
2915 	struct xfs_inode	*dp,
2916 	struct xfs_inode	**wip)
2917 {
2918 	struct xfs_inode	*tmpfile;
2919 	int			error;
2920 
2921 	error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2922 	if (error)
2923 		return error;
2924 
2925 	/*
2926 	 * Prepare the tmpfile inode as if it were created through the VFS.
2927 	 * Otherwise, the link increment paths will complain about nlink 0->1.
2928 	 * Drop the link count as done by d_tmpfile(), complete the inode setup
2929 	 * and flag it as linkable.
2930 	 */
2931 	drop_nlink(VFS_I(tmpfile));
2932 	xfs_setup_iops(tmpfile);
2933 	xfs_finish_inode_setup(tmpfile);
2934 	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2935 
2936 	*wip = tmpfile;
2937 	return 0;
2938 }
2939 
2940 /*
2941  * xfs_rename
2942  */
2943 int
xfs_rename(struct xfs_inode * src_dp,struct xfs_name * src_name,struct xfs_inode * src_ip,struct xfs_inode * target_dp,struct xfs_name * target_name,struct xfs_inode * target_ip,unsigned int flags)2944 xfs_rename(
2945 	struct xfs_inode	*src_dp,
2946 	struct xfs_name		*src_name,
2947 	struct xfs_inode	*src_ip,
2948 	struct xfs_inode	*target_dp,
2949 	struct xfs_name		*target_name,
2950 	struct xfs_inode	*target_ip,
2951 	unsigned int		flags)
2952 {
2953 	struct xfs_mount	*mp = src_dp->i_mount;
2954 	struct xfs_trans	*tp;
2955 	struct xfs_defer_ops	dfops;
2956 	xfs_fsblock_t		first_block;
2957 	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2958 	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2959 	int			num_inodes = __XFS_SORT_INODES;
2960 	bool			new_parent = (src_dp != target_dp);
2961 	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2962 	int			spaceres;
2963 	int			error;
2964 
2965 	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2966 
2967 	if ((flags & RENAME_EXCHANGE) && !target_ip)
2968 		return -EINVAL;
2969 
2970 	/*
2971 	 * If we are doing a whiteout operation, allocate the whiteout inode
2972 	 * we will be placing at the target and ensure the type is set
2973 	 * appropriately.
2974 	 */
2975 	if (flags & RENAME_WHITEOUT) {
2976 		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2977 		error = xfs_rename_alloc_whiteout(target_dp, &wip);
2978 		if (error)
2979 			return error;
2980 
2981 		/* setup target dirent info as whiteout */
2982 		src_name->type = XFS_DIR3_FT_CHRDEV;
2983 	}
2984 
2985 	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2986 				inodes, &num_inodes);
2987 
2988 	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2989 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2990 	if (error == -ENOSPC) {
2991 		spaceres = 0;
2992 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2993 				&tp);
2994 	}
2995 	if (error)
2996 		goto out_release_wip;
2997 
2998 	/*
2999 	 * Attach the dquots to the inodes
3000 	 */
3001 	error = xfs_qm_vop_rename_dqattach(inodes);
3002 	if (error)
3003 		goto out_trans_cancel;
3004 
3005 	/*
3006 	 * Lock all the participating inodes. Depending upon whether
3007 	 * the target_name exists in the target directory, and
3008 	 * whether the target directory is the same as the source
3009 	 * directory, we can lock from 2 to 4 inodes.
3010 	 */
3011 	if (!new_parent)
3012 		xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
3013 	else
3014 		xfs_lock_two_inodes(src_dp, target_dp,
3015 				    XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
3016 
3017 	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3018 
3019 	/*
3020 	 * Join all the inodes to the transaction. From this point on,
3021 	 * we can rely on either trans_commit or trans_cancel to unlock
3022 	 * them.
3023 	 */
3024 	xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
3025 	if (new_parent)
3026 		xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
3027 	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3028 	if (target_ip)
3029 		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3030 	if (wip)
3031 		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3032 
3033 	/*
3034 	 * If we are using project inheritance, we only allow renames
3035 	 * into our tree when the project IDs are the same; else the
3036 	 * tree quota mechanism would be circumvented.
3037 	 */
3038 	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3039 		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3040 		error = -EXDEV;
3041 		goto out_trans_cancel;
3042 	}
3043 
3044 	xfs_defer_init(&dfops, &first_block);
3045 
3046 	/* RENAME_EXCHANGE is unique from here on. */
3047 	if (flags & RENAME_EXCHANGE)
3048 		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3049 					target_dp, target_name, target_ip,
3050 					&dfops, &first_block, spaceres);
3051 
3052 	/*
3053 	 * Set up the target.
3054 	 */
3055 	if (target_ip == NULL) {
3056 		/*
3057 		 * If there's no space reservation, check the entry will
3058 		 * fit before actually inserting it.
3059 		 */
3060 		if (!spaceres) {
3061 			error = xfs_dir_canenter(tp, target_dp, target_name);
3062 			if (error)
3063 				goto out_trans_cancel;
3064 		}
3065 		/*
3066 		 * If target does not exist and the rename crosses
3067 		 * directories, adjust the target directory link count
3068 		 * to account for the ".." reference from the new entry.
3069 		 */
3070 		error = xfs_dir_createname(tp, target_dp, target_name,
3071 						src_ip->i_ino, &first_block,
3072 						&dfops, spaceres);
3073 		if (error)
3074 			goto out_bmap_cancel;
3075 
3076 		xfs_trans_ichgtime(tp, target_dp,
3077 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3078 
3079 		if (new_parent && src_is_directory) {
3080 			error = xfs_bumplink(tp, target_dp);
3081 			if (error)
3082 				goto out_bmap_cancel;
3083 		}
3084 	} else { /* target_ip != NULL */
3085 		/*
3086 		 * If target exists and it's a directory, check that both
3087 		 * target and source are directories and that target can be
3088 		 * destroyed, or that neither is a directory.
3089 		 */
3090 		if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3091 			/*
3092 			 * Make sure target dir is empty.
3093 			 */
3094 			if (!(xfs_dir_isempty(target_ip)) ||
3095 			    (VFS_I(target_ip)->i_nlink > 2)) {
3096 				error = -EEXIST;
3097 				goto out_trans_cancel;
3098 			}
3099 		}
3100 
3101 		/*
3102 		 * Link the source inode under the target name.
3103 		 * If the source inode is a directory and we are moving
3104 		 * it across directories, its ".." entry will be
3105 		 * inconsistent until we replace that down below.
3106 		 *
3107 		 * In case there is already an entry with the same
3108 		 * name at the destination directory, remove it first.
3109 		 */
3110 		error = xfs_dir_replace(tp, target_dp, target_name,
3111 					src_ip->i_ino,
3112 					&first_block, &dfops, spaceres);
3113 		if (error)
3114 			goto out_bmap_cancel;
3115 
3116 		xfs_trans_ichgtime(tp, target_dp,
3117 					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3118 
3119 		/*
3120 		 * Decrement the link count on the target since the target
3121 		 * dir no longer points to it.
3122 		 */
3123 		error = xfs_droplink(tp, target_ip);
3124 		if (error)
3125 			goto out_bmap_cancel;
3126 
3127 		if (src_is_directory) {
3128 			/*
3129 			 * Drop the link from the old "." entry.
3130 			 */
3131 			error = xfs_droplink(tp, target_ip);
3132 			if (error)
3133 				goto out_bmap_cancel;
3134 		}
3135 	} /* target_ip != NULL */
3136 
3137 	/*
3138 	 * Remove the source.
3139 	 */
3140 	if (new_parent && src_is_directory) {
3141 		/*
3142 		 * Rewrite the ".." entry to point to the new
3143 		 * directory.
3144 		 */
3145 		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3146 					target_dp->i_ino,
3147 					&first_block, &dfops, spaceres);
3148 		ASSERT(error != -EEXIST);
3149 		if (error)
3150 			goto out_bmap_cancel;
3151 	}
3152 
3153 	/*
3154 	 * We always want to hit the ctime on the source inode.
3155 	 *
3156 	 * This isn't strictly required by the standards since the source
3157 	 * inode isn't really being changed, but old unix file systems did
3158 	 * it and some incremental backup programs won't work without it.
3159 	 */
3160 	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3161 	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3162 
3163 	/*
3164 	 * Adjust the link count on src_dp.  This is necessary when
3165 	 * renaming a directory, either within one parent when
3166 	 * the target existed, or across two parent directories.
3167 	 */
3168 	if (src_is_directory && (new_parent || target_ip != NULL)) {
3169 
3170 		/*
3171 		 * Decrement link count on src_directory since the
3172 		 * entry that's moved no longer points to it.
3173 		 */
3174 		error = xfs_droplink(tp, src_dp);
3175 		if (error)
3176 			goto out_bmap_cancel;
3177 	}
3178 
3179 	/*
3180 	 * For whiteouts, we only need to update the source dirent with the
3181 	 * inode number of the whiteout inode rather than removing it
3182 	 * altogether.
3183 	 */
3184 	if (wip) {
3185 		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3186 					&first_block, &dfops, spaceres);
3187 	} else
3188 		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3189 					   &first_block, &dfops, spaceres);
3190 	if (error)
3191 		goto out_bmap_cancel;
3192 
3193 	/*
3194 	 * For whiteouts, we need to bump the link count on the whiteout inode.
3195 	 * This means that failures all the way up to this point leave the inode
3196 	 * on the unlinked list and so cleanup is a simple matter of dropping
3197 	 * the remaining reference to it. If we fail here after bumping the link
3198 	 * count, we're shutting down the filesystem so we'll never see the
3199 	 * intermediate state on disk.
3200 	 */
3201 	if (wip) {
3202 		ASSERT(VFS_I(wip)->i_nlink == 0);
3203 		error = xfs_bumplink(tp, wip);
3204 		if (error)
3205 			goto out_bmap_cancel;
3206 		error = xfs_iunlink_remove(tp, wip);
3207 		if (error)
3208 			goto out_bmap_cancel;
3209 		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3210 
3211 		/*
3212 		 * Now we have a real link, clear the "I'm a tmpfile" state
3213 		 * flag from the inode so it doesn't accidentally get misused in
3214 		 * future.
3215 		 */
3216 		VFS_I(wip)->i_state &= ~I_LINKABLE;
3217 	}
3218 
3219 	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3220 	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3221 	if (new_parent)
3222 		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3223 
3224 	error = xfs_finish_rename(tp, &dfops);
3225 	if (wip)
3226 		IRELE(wip);
3227 	return error;
3228 
3229 out_bmap_cancel:
3230 	xfs_defer_cancel(&dfops);
3231 out_trans_cancel:
3232 	xfs_trans_cancel(tp);
3233 out_release_wip:
3234 	if (wip)
3235 		IRELE(wip);
3236 	return error;
3237 }
3238 
3239 STATIC int
xfs_iflush_cluster(struct xfs_inode * ip,struct xfs_buf * bp)3240 xfs_iflush_cluster(
3241 	struct xfs_inode	*ip,
3242 	struct xfs_buf		*bp)
3243 {
3244 	struct xfs_mount	*mp = ip->i_mount;
3245 	struct xfs_perag	*pag;
3246 	unsigned long		first_index, mask;
3247 	unsigned long		inodes_per_cluster;
3248 	int			cilist_size;
3249 	struct xfs_inode	**cilist;
3250 	struct xfs_inode	*cip;
3251 	int			nr_found;
3252 	int			clcount = 0;
3253 	int			bufwasdelwri;
3254 	int			i;
3255 
3256 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3257 
3258 	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3259 	cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3260 	cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3261 	if (!cilist)
3262 		goto out_put;
3263 
3264 	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3265 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3266 	rcu_read_lock();
3267 	/* really need a gang lookup range call here */
3268 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3269 					first_index, inodes_per_cluster);
3270 	if (nr_found == 0)
3271 		goto out_free;
3272 
3273 	for (i = 0; i < nr_found; i++) {
3274 		cip = cilist[i];
3275 		if (cip == ip)
3276 			continue;
3277 
3278 		/*
3279 		 * because this is an RCU protected lookup, we could find a
3280 		 * recently freed or even reallocated inode during the lookup.
3281 		 * We need to check under the i_flags_lock for a valid inode
3282 		 * here. Skip it if it is not valid or the wrong inode.
3283 		 */
3284 		spin_lock(&cip->i_flags_lock);
3285 		if (!cip->i_ino ||
3286 		    __xfs_iflags_test(cip, XFS_ISTALE)) {
3287 			spin_unlock(&cip->i_flags_lock);
3288 			continue;
3289 		}
3290 
3291 		/*
3292 		 * Once we fall off the end of the cluster, no point checking
3293 		 * any more inodes in the list because they will also all be
3294 		 * outside the cluster.
3295 		 */
3296 		if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3297 			spin_unlock(&cip->i_flags_lock);
3298 			break;
3299 		}
3300 		spin_unlock(&cip->i_flags_lock);
3301 
3302 		/*
3303 		 * Do an un-protected check to see if the inode is dirty and
3304 		 * is a candidate for flushing.  These checks will be repeated
3305 		 * later after the appropriate locks are acquired.
3306 		 */
3307 		if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3308 			continue;
3309 
3310 		/*
3311 		 * Try to get locks.  If any are unavailable or it is pinned,
3312 		 * then this inode cannot be flushed and is skipped.
3313 		 */
3314 
3315 		if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3316 			continue;
3317 		if (!xfs_iflock_nowait(cip)) {
3318 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3319 			continue;
3320 		}
3321 		if (xfs_ipincount(cip)) {
3322 			xfs_ifunlock(cip);
3323 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3324 			continue;
3325 		}
3326 
3327 
3328 		/*
3329 		 * Check the inode number again, just to be certain we are not
3330 		 * racing with freeing in xfs_reclaim_inode(). See the comments
3331 		 * in that function for more information as to why the initial
3332 		 * check is not sufficient.
3333 		 */
3334 		if (!cip->i_ino) {
3335 			xfs_ifunlock(cip);
3336 			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3337 			continue;
3338 		}
3339 
3340 		/*
3341 		 * arriving here means that this inode can be flushed.  First
3342 		 * re-check that it's dirty before flushing.
3343 		 */
3344 		if (!xfs_inode_clean(cip)) {
3345 			int	error;
3346 			error = xfs_iflush_int(cip, bp);
3347 			if (error) {
3348 				xfs_iunlock(cip, XFS_ILOCK_SHARED);
3349 				goto cluster_corrupt_out;
3350 			}
3351 			clcount++;
3352 		} else {
3353 			xfs_ifunlock(cip);
3354 		}
3355 		xfs_iunlock(cip, XFS_ILOCK_SHARED);
3356 	}
3357 
3358 	if (clcount) {
3359 		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3360 		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3361 	}
3362 
3363 out_free:
3364 	rcu_read_unlock();
3365 	kmem_free(cilist);
3366 out_put:
3367 	xfs_perag_put(pag);
3368 	return 0;
3369 
3370 
3371 cluster_corrupt_out:
3372 	/*
3373 	 * Corruption detected in the clustering loop.  Invalidate the
3374 	 * inode buffer and shut down the filesystem.
3375 	 */
3376 	rcu_read_unlock();
3377 	/*
3378 	 * Clean up the buffer.  If it was delwri, just release it --
3379 	 * brelse can handle it with no problems.  If not, shut down the
3380 	 * filesystem before releasing the buffer.
3381 	 */
3382 	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3383 	if (bufwasdelwri)
3384 		xfs_buf_relse(bp);
3385 
3386 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3387 
3388 	if (!bufwasdelwri) {
3389 		/*
3390 		 * Just like incore_relse: if we have b_iodone functions,
3391 		 * mark the buffer as an error and call them.  Otherwise
3392 		 * mark it as stale and brelse.
3393 		 */
3394 		if (bp->b_iodone) {
3395 			bp->b_flags &= ~XBF_DONE;
3396 			xfs_buf_stale(bp);
3397 			xfs_buf_ioerror(bp, -EIO);
3398 			xfs_buf_ioend(bp);
3399 		} else {
3400 			xfs_buf_stale(bp);
3401 			xfs_buf_relse(bp);
3402 		}
3403 	}
3404 
3405 	/*
3406 	 * Unlocks the flush lock
3407 	 */
3408 	xfs_iflush_abort(cip, false);
3409 	kmem_free(cilist);
3410 	xfs_perag_put(pag);
3411 	return -EFSCORRUPTED;
3412 }
3413 
3414 /*
3415  * Flush dirty inode metadata into the backing buffer.
3416  *
3417  * The caller must have the inode lock and the inode flush lock held.  The
3418  * inode lock will still be held upon return to the caller, and the inode
3419  * flush lock will be released after the inode has reached the disk.
3420  *
3421  * The caller must write out the buffer returned in *bpp and release it.
3422  */
3423 int
xfs_iflush(struct xfs_inode * ip,struct xfs_buf ** bpp)3424 xfs_iflush(
3425 	struct xfs_inode	*ip,
3426 	struct xfs_buf		**bpp)
3427 {
3428 	struct xfs_mount	*mp = ip->i_mount;
3429 	struct xfs_buf		*bp = NULL;
3430 	struct xfs_dinode	*dip;
3431 	int			error;
3432 
3433 	XFS_STATS_INC(mp, xs_iflush_count);
3434 
3435 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3436 	ASSERT(xfs_isiflocked(ip));
3437 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3438 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3439 
3440 	*bpp = NULL;
3441 
3442 	xfs_iunpin_wait(ip);
3443 
3444 	/*
3445 	 * For stale inodes we cannot rely on the backing buffer remaining
3446 	 * stale in cache for the remaining life of the stale inode and so
3447 	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3448 	 * inodes below. We have to check this after ensuring the inode is
3449 	 * unpinned so that it is safe to reclaim the stale inode after the
3450 	 * flush call.
3451 	 */
3452 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3453 		xfs_ifunlock(ip);
3454 		return 0;
3455 	}
3456 
3457 	/*
3458 	 * This may have been unpinned because the filesystem is shutting
3459 	 * down forcibly. If that's the case we must not write this inode
3460 	 * to disk, because the log record didn't make it to disk.
3461 	 *
3462 	 * We also have to remove the log item from the AIL in this case,
3463 	 * as we wait for an empty AIL as part of the unmount process.
3464 	 */
3465 	if (XFS_FORCED_SHUTDOWN(mp)) {
3466 		error = -EIO;
3467 		goto abort_out;
3468 	}
3469 
3470 	/*
3471 	 * Get the buffer containing the on-disk inode. We are doing a try-lock
3472 	 * operation here, so we may get  an EAGAIN error. In that case, we
3473 	 * simply want to return with the inode still dirty.
3474 	 *
3475 	 * If we get any other error, we effectively have a corruption situation
3476 	 * and we cannot flush the inode, so we treat it the same as failing
3477 	 * xfs_iflush_int().
3478 	 */
3479 	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3480 			       0);
3481 	if (error == -EAGAIN) {
3482 		xfs_ifunlock(ip);
3483 		return error;
3484 	}
3485 	if (error)
3486 		goto corrupt_out;
3487 
3488 	/*
3489 	 * First flush out the inode that xfs_iflush was called with.
3490 	 */
3491 	error = xfs_iflush_int(ip, bp);
3492 	if (error)
3493 		goto corrupt_out;
3494 
3495 	/*
3496 	 * If the buffer is pinned then push on the log now so we won't
3497 	 * get stuck waiting in the write for too long.
3498 	 */
3499 	if (xfs_buf_ispinned(bp))
3500 		xfs_log_force(mp, 0);
3501 
3502 	/*
3503 	 * inode clustering:
3504 	 * see if other inodes can be gathered into this write
3505 	 */
3506 	error = xfs_iflush_cluster(ip, bp);
3507 	if (error)
3508 		goto cluster_corrupt_out;
3509 
3510 	*bpp = bp;
3511 	return 0;
3512 
3513 corrupt_out:
3514 	if (bp)
3515 		xfs_buf_relse(bp);
3516 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3517 cluster_corrupt_out:
3518 	error = -EFSCORRUPTED;
3519 abort_out:
3520 	/*
3521 	 * Unlocks the flush lock
3522 	 */
3523 	xfs_iflush_abort(ip, false);
3524 	return error;
3525 }
3526 
3527 STATIC int
xfs_iflush_int(struct xfs_inode * ip,struct xfs_buf * bp)3528 xfs_iflush_int(
3529 	struct xfs_inode	*ip,
3530 	struct xfs_buf		*bp)
3531 {
3532 	struct xfs_inode_log_item *iip = ip->i_itemp;
3533 	struct xfs_dinode	*dip;
3534 	struct xfs_mount	*mp = ip->i_mount;
3535 
3536 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3537 	ASSERT(xfs_isiflocked(ip));
3538 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3539 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3540 	ASSERT(iip != NULL && iip->ili_fields != 0);
3541 	ASSERT(ip->i_d.di_version > 1);
3542 
3543 	/* set *dip = inode's place in the buffer */
3544 	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3545 
3546 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3547 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3548 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3549 			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3550 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3551 		goto corrupt_out;
3552 	}
3553 	if (S_ISREG(VFS_I(ip)->i_mode)) {
3554 		if (XFS_TEST_ERROR(
3555 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3556 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3557 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3558 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3559 				"%s: Bad regular inode %Lu, ptr 0x%p",
3560 				__func__, ip->i_ino, ip);
3561 			goto corrupt_out;
3562 		}
3563 	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3564 		if (XFS_TEST_ERROR(
3565 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3566 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3567 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3568 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3569 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3570 				"%s: Bad directory inode %Lu, ptr 0x%p",
3571 				__func__, ip->i_ino, ip);
3572 			goto corrupt_out;
3573 		}
3574 	}
3575 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3576 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3577 				XFS_RANDOM_IFLUSH_5)) {
3578 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3579 			"%s: detected corrupt incore inode %Lu, "
3580 			"total extents = %d, nblocks = %Ld, ptr 0x%p",
3581 			__func__, ip->i_ino,
3582 			ip->i_d.di_nextents + ip->i_d.di_anextents,
3583 			ip->i_d.di_nblocks, ip);
3584 		goto corrupt_out;
3585 	}
3586 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3587 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3588 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3589 			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3590 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3591 		goto corrupt_out;
3592 	}
3593 
3594 	/*
3595 	 * Inode item log recovery for v2 inodes are dependent on the
3596 	 * di_flushiter count for correct sequencing. We bump the flush
3597 	 * iteration count so we can detect flushes which postdate a log record
3598 	 * during recovery. This is redundant as we now log every change and
3599 	 * hence this can't happen but we need to still do it to ensure
3600 	 * backwards compatibility with old kernels that predate logging all
3601 	 * inode changes.
3602 	 */
3603 	if (ip->i_d.di_version < 3)
3604 		ip->i_d.di_flushiter++;
3605 
3606 	/* Check the inline directory data. */
3607 	if (S_ISDIR(VFS_I(ip)->i_mode) &&
3608 	    ip->i_d.di_format == XFS_DINODE_FMT_LOCAL &&
3609 	    xfs_dir2_sf_verify(ip))
3610 		goto corrupt_out;
3611 
3612 	/*
3613 	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3614 	 * copy out the core of the inode, because if the inode is dirty at all
3615 	 * the core must be.
3616 	 */
3617 	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3618 
3619 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3620 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3621 		ip->i_d.di_flushiter = 0;
3622 
3623 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3624 	if (XFS_IFORK_Q(ip))
3625 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3626 	xfs_inobp_check(mp, bp);
3627 
3628 	/*
3629 	 * We've recorded everything logged in the inode, so we'd like to clear
3630 	 * the ili_fields bits so we don't log and flush things unnecessarily.
3631 	 * However, we can't stop logging all this information until the data
3632 	 * we've copied into the disk buffer is written to disk.  If we did we
3633 	 * might overwrite the copy of the inode in the log with all the data
3634 	 * after re-logging only part of it, and in the face of a crash we
3635 	 * wouldn't have all the data we need to recover.
3636 	 *
3637 	 * What we do is move the bits to the ili_last_fields field.  When
3638 	 * logging the inode, these bits are moved back to the ili_fields field.
3639 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3640 	 * know that the information those bits represent is permanently on
3641 	 * disk.  As long as the flush completes before the inode is logged
3642 	 * again, then both ili_fields and ili_last_fields will be cleared.
3643 	 *
3644 	 * We can play with the ili_fields bits here, because the inode lock
3645 	 * must be held exclusively in order to set bits there and the flush
3646 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3647 	 * done routine can tell whether or not to look in the AIL.  Also, store
3648 	 * the current LSN of the inode so that we can tell whether the item has
3649 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3650 	 * need the AIL lock, because it is a 64 bit value that cannot be read
3651 	 * atomically.
3652 	 */
3653 	iip->ili_last_fields = iip->ili_fields;
3654 	iip->ili_fields = 0;
3655 	iip->ili_fsync_fields = 0;
3656 	iip->ili_logged = 1;
3657 
3658 	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3659 				&iip->ili_item.li_lsn);
3660 
3661 	/*
3662 	 * Attach the function xfs_iflush_done to the inode's
3663 	 * buffer.  This will remove the inode from the AIL
3664 	 * and unlock the inode's flush lock when the inode is
3665 	 * completely written to disk.
3666 	 */
3667 	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3668 
3669 	/* generate the checksum. */
3670 	xfs_dinode_calc_crc(mp, dip);
3671 
3672 	ASSERT(bp->b_fspriv != NULL);
3673 	ASSERT(bp->b_iodone != NULL);
3674 	return 0;
3675 
3676 corrupt_out:
3677 	return -EFSCORRUPTED;
3678 }
3679