• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Pid namespaces
3  *
4  * Authors:
5  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7  *     Many thanks to Oleg Nesterov for comments and help
8  *
9  */
10 
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/user_namespace.h>
14 #include <linux/syscalls.h>
15 #include <linux/err.h>
16 #include <linux/acct.h>
17 #include <linux/slab.h>
18 #include <linux/proc_ns.h>
19 #include <linux/reboot.h>
20 #include <linux/export.h>
21 
22 struct pid_cache {
23 	int nr_ids;
24 	char name[16];
25 	struct kmem_cache *cachep;
26 	struct list_head list;
27 };
28 
29 static LIST_HEAD(pid_caches_lh);
30 static DEFINE_MUTEX(pid_caches_mutex);
31 static struct kmem_cache *pid_ns_cachep;
32 
33 /*
34  * creates the kmem cache to allocate pids from.
35  * @nr_ids: the number of numerical ids this pid will have to carry
36  */
37 
create_pid_cachep(int nr_ids)38 static struct kmem_cache *create_pid_cachep(int nr_ids)
39 {
40 	struct pid_cache *pcache;
41 	struct kmem_cache *cachep;
42 
43 	mutex_lock(&pid_caches_mutex);
44 	list_for_each_entry(pcache, &pid_caches_lh, list)
45 		if (pcache->nr_ids == nr_ids)
46 			goto out;
47 
48 	pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
49 	if (pcache == NULL)
50 		goto err_alloc;
51 
52 	snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
53 	cachep = kmem_cache_create(pcache->name,
54 			sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
55 			0, SLAB_HWCACHE_ALIGN, NULL);
56 	if (cachep == NULL)
57 		goto err_cachep;
58 
59 	pcache->nr_ids = nr_ids;
60 	pcache->cachep = cachep;
61 	list_add(&pcache->list, &pid_caches_lh);
62 out:
63 	mutex_unlock(&pid_caches_mutex);
64 	return pcache->cachep;
65 
66 err_cachep:
67 	kfree(pcache);
68 err_alloc:
69 	mutex_unlock(&pid_caches_mutex);
70 	return NULL;
71 }
72 
proc_cleanup_work(struct work_struct * work)73 static void proc_cleanup_work(struct work_struct *work)
74 {
75 	struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
76 	pid_ns_release_proc(ns);
77 }
78 
79 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
80 #define MAX_PID_NS_LEVEL 32
81 
inc_pid_namespaces(struct user_namespace * ns)82 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
83 {
84 	return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
85 }
86 
dec_pid_namespaces(struct ucounts * ucounts)87 static void dec_pid_namespaces(struct ucounts *ucounts)
88 {
89 	dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
90 }
91 
create_pid_namespace(struct user_namespace * user_ns,struct pid_namespace * parent_pid_ns)92 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
93 	struct pid_namespace *parent_pid_ns)
94 {
95 	struct pid_namespace *ns;
96 	unsigned int level = parent_pid_ns->level + 1;
97 	struct ucounts *ucounts;
98 	int i;
99 	int err;
100 
101 	err = -ENOSPC;
102 	if (level > MAX_PID_NS_LEVEL)
103 		goto out;
104 	ucounts = inc_pid_namespaces(user_ns);
105 	if (!ucounts)
106 		goto out;
107 
108 	err = -ENOMEM;
109 	ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
110 	if (ns == NULL)
111 		goto out_dec;
112 
113 	ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
114 	if (!ns->pidmap[0].page)
115 		goto out_free;
116 
117 	ns->pid_cachep = create_pid_cachep(level + 1);
118 	if (ns->pid_cachep == NULL)
119 		goto out_free_map;
120 
121 	err = ns_alloc_inum(&ns->ns);
122 	if (err)
123 		goto out_free_map;
124 	ns->ns.ops = &pidns_operations;
125 
126 	kref_init(&ns->kref);
127 	ns->level = level;
128 	ns->parent = get_pid_ns(parent_pid_ns);
129 	ns->user_ns = get_user_ns(user_ns);
130 	ns->ucounts = ucounts;
131 	ns->nr_hashed = PIDNS_HASH_ADDING;
132 	INIT_WORK(&ns->proc_work, proc_cleanup_work);
133 
134 	set_bit(0, ns->pidmap[0].page);
135 	atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
136 
137 	for (i = 1; i < PIDMAP_ENTRIES; i++)
138 		atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
139 
140 	return ns;
141 
142 out_free_map:
143 	kfree(ns->pidmap[0].page);
144 out_free:
145 	kmem_cache_free(pid_ns_cachep, ns);
146 out_dec:
147 	dec_pid_namespaces(ucounts);
148 out:
149 	return ERR_PTR(err);
150 }
151 
delayed_free_pidns(struct rcu_head * p)152 static void delayed_free_pidns(struct rcu_head *p)
153 {
154 	struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
155 
156 	dec_pid_namespaces(ns->ucounts);
157 	put_user_ns(ns->user_ns);
158 
159 	kmem_cache_free(pid_ns_cachep, ns);
160 }
161 
destroy_pid_namespace(struct pid_namespace * ns)162 static void destroy_pid_namespace(struct pid_namespace *ns)
163 {
164 	int i;
165 
166 	ns_free_inum(&ns->ns);
167 	for (i = 0; i < PIDMAP_ENTRIES; i++)
168 		kfree(ns->pidmap[i].page);
169 	call_rcu(&ns->rcu, delayed_free_pidns);
170 }
171 
copy_pid_ns(unsigned long flags,struct user_namespace * user_ns,struct pid_namespace * old_ns)172 struct pid_namespace *copy_pid_ns(unsigned long flags,
173 	struct user_namespace *user_ns, struct pid_namespace *old_ns)
174 {
175 	if (!(flags & CLONE_NEWPID))
176 		return get_pid_ns(old_ns);
177 	if (task_active_pid_ns(current) != old_ns)
178 		return ERR_PTR(-EINVAL);
179 	return create_pid_namespace(user_ns, old_ns);
180 }
181 
free_pid_ns(struct kref * kref)182 static void free_pid_ns(struct kref *kref)
183 {
184 	struct pid_namespace *ns;
185 
186 	ns = container_of(kref, struct pid_namespace, kref);
187 	destroy_pid_namespace(ns);
188 }
189 
put_pid_ns(struct pid_namespace * ns)190 void put_pid_ns(struct pid_namespace *ns)
191 {
192 	struct pid_namespace *parent;
193 
194 	while (ns != &init_pid_ns) {
195 		parent = ns->parent;
196 		if (!kref_put(&ns->kref, free_pid_ns))
197 			break;
198 		ns = parent;
199 	}
200 }
201 EXPORT_SYMBOL_GPL(put_pid_ns);
202 
zap_pid_ns_processes(struct pid_namespace * pid_ns)203 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
204 {
205 	int nr;
206 	int rc;
207 	struct task_struct *task, *me = current;
208 	int init_pids = thread_group_leader(me) ? 1 : 2;
209 
210 	/* Don't allow any more processes into the pid namespace */
211 	disable_pid_allocation(pid_ns);
212 
213 	/*
214 	 * Ignore SIGCHLD causing any terminated children to autoreap.
215 	 * This speeds up the namespace shutdown, plus see the comment
216 	 * below.
217 	 */
218 	spin_lock_irq(&me->sighand->siglock);
219 	me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
220 	spin_unlock_irq(&me->sighand->siglock);
221 
222 	/*
223 	 * The last thread in the cgroup-init thread group is terminating.
224 	 * Find remaining pid_ts in the namespace, signal and wait for them
225 	 * to exit.
226 	 *
227 	 * Note:  This signals each threads in the namespace - even those that
228 	 * 	  belong to the same thread group, To avoid this, we would have
229 	 * 	  to walk the entire tasklist looking a processes in this
230 	 * 	  namespace, but that could be unnecessarily expensive if the
231 	 * 	  pid namespace has just a few processes. Or we need to
232 	 * 	  maintain a tasklist for each pid namespace.
233 	 *
234 	 */
235 	read_lock(&tasklist_lock);
236 	nr = next_pidmap(pid_ns, 1);
237 	while (nr > 0) {
238 		rcu_read_lock();
239 
240 		task = pid_task(find_vpid(nr), PIDTYPE_PID);
241 		if (task && !__fatal_signal_pending(task))
242 			send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
243 
244 		rcu_read_unlock();
245 
246 		nr = next_pidmap(pid_ns, nr);
247 	}
248 	read_unlock(&tasklist_lock);
249 
250 	/*
251 	 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
252 	 * sys_wait4() will also block until our children traced from the
253 	 * parent namespace are detached and become EXIT_DEAD.
254 	 */
255 	do {
256 		clear_thread_flag(TIF_SIGPENDING);
257 		rc = sys_wait4(-1, NULL, __WALL, NULL);
258 	} while (rc != -ECHILD);
259 
260 	/*
261 	 * sys_wait4() above can't reap the EXIT_DEAD children but we do not
262 	 * really care, we could reparent them to the global init. We could
263 	 * exit and reap ->child_reaper even if it is not the last thread in
264 	 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
265 	 * pid_ns can not go away until proc_kill_sb() drops the reference.
266 	 *
267 	 * But this ns can also have other tasks injected by setns()+fork().
268 	 * Again, ignoring the user visible semantics we do not really need
269 	 * to wait until they are all reaped, but they can be reparented to
270 	 * us and thus we need to ensure that pid->child_reaper stays valid
271 	 * until they all go away. See free_pid()->wake_up_process().
272 	 *
273 	 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
274 	 * if reparented.
275 	 */
276 	for (;;) {
277 		set_current_state(TASK_INTERRUPTIBLE);
278 		if (pid_ns->nr_hashed == init_pids)
279 			break;
280 		schedule();
281 	}
282 	__set_current_state(TASK_RUNNING);
283 
284 	if (pid_ns->reboot)
285 		current->signal->group_exit_code = pid_ns->reboot;
286 
287 	acct_exit_ns(pid_ns);
288 	return;
289 }
290 
291 #ifdef CONFIG_CHECKPOINT_RESTORE
pid_ns_ctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)292 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
293 		void __user *buffer, size_t *lenp, loff_t *ppos)
294 {
295 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
296 	struct ctl_table tmp = *table;
297 
298 	if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
299 		return -EPERM;
300 
301 	/*
302 	 * Writing directly to ns' last_pid field is OK, since this field
303 	 * is volatile in a living namespace anyway and a code writing to
304 	 * it should synchronize its usage with external means.
305 	 */
306 
307 	tmp.data = &pid_ns->last_pid;
308 	return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
309 }
310 
311 extern int pid_max;
312 static int zero = 0;
313 static struct ctl_table pid_ns_ctl_table[] = {
314 	{
315 		.procname = "ns_last_pid",
316 		.maxlen = sizeof(int),
317 		.mode = 0666, /* permissions are checked in the handler */
318 		.proc_handler = pid_ns_ctl_handler,
319 		.extra1 = &zero,
320 		.extra2 = &pid_max,
321 	},
322 	{ }
323 };
324 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
325 #endif	/* CONFIG_CHECKPOINT_RESTORE */
326 
reboot_pid_ns(struct pid_namespace * pid_ns,int cmd)327 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
328 {
329 	if (pid_ns == &init_pid_ns)
330 		return 0;
331 
332 	switch (cmd) {
333 	case LINUX_REBOOT_CMD_RESTART2:
334 	case LINUX_REBOOT_CMD_RESTART:
335 		pid_ns->reboot = SIGHUP;
336 		break;
337 
338 	case LINUX_REBOOT_CMD_POWER_OFF:
339 	case LINUX_REBOOT_CMD_HALT:
340 		pid_ns->reboot = SIGINT;
341 		break;
342 	default:
343 		return -EINVAL;
344 	}
345 
346 	read_lock(&tasklist_lock);
347 	force_sig(SIGKILL, pid_ns->child_reaper);
348 	read_unlock(&tasklist_lock);
349 
350 	do_exit(0);
351 
352 	/* Not reached */
353 	return 0;
354 }
355 
to_pid_ns(struct ns_common * ns)356 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
357 {
358 	return container_of(ns, struct pid_namespace, ns);
359 }
360 
pidns_get(struct task_struct * task)361 static struct ns_common *pidns_get(struct task_struct *task)
362 {
363 	struct pid_namespace *ns;
364 
365 	rcu_read_lock();
366 	ns = task_active_pid_ns(task);
367 	if (ns)
368 		get_pid_ns(ns);
369 	rcu_read_unlock();
370 
371 	return ns ? &ns->ns : NULL;
372 }
373 
pidns_put(struct ns_common * ns)374 static void pidns_put(struct ns_common *ns)
375 {
376 	put_pid_ns(to_pid_ns(ns));
377 }
378 
pidns_install(struct nsproxy * nsproxy,struct ns_common * ns)379 static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
380 {
381 	struct pid_namespace *active = task_active_pid_ns(current);
382 	struct pid_namespace *ancestor, *new = to_pid_ns(ns);
383 
384 	if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
385 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
386 		return -EPERM;
387 
388 	/*
389 	 * Only allow entering the current active pid namespace
390 	 * or a child of the current active pid namespace.
391 	 *
392 	 * This is required for fork to return a usable pid value and
393 	 * this maintains the property that processes and their
394 	 * children can not escape their current pid namespace.
395 	 */
396 	if (new->level < active->level)
397 		return -EINVAL;
398 
399 	ancestor = new;
400 	while (ancestor->level > active->level)
401 		ancestor = ancestor->parent;
402 	if (ancestor != active)
403 		return -EINVAL;
404 
405 	put_pid_ns(nsproxy->pid_ns_for_children);
406 	nsproxy->pid_ns_for_children = get_pid_ns(new);
407 	return 0;
408 }
409 
pidns_get_parent(struct ns_common * ns)410 static struct ns_common *pidns_get_parent(struct ns_common *ns)
411 {
412 	struct pid_namespace *active = task_active_pid_ns(current);
413 	struct pid_namespace *pid_ns, *p;
414 
415 	/* See if the parent is in the current namespace */
416 	pid_ns = p = to_pid_ns(ns)->parent;
417 	for (;;) {
418 		if (!p)
419 			return ERR_PTR(-EPERM);
420 		if (p == active)
421 			break;
422 		p = p->parent;
423 	}
424 
425 	return &get_pid_ns(pid_ns)->ns;
426 }
427 
pidns_owner(struct ns_common * ns)428 static struct user_namespace *pidns_owner(struct ns_common *ns)
429 {
430 	return to_pid_ns(ns)->user_ns;
431 }
432 
433 const struct proc_ns_operations pidns_operations = {
434 	.name		= "pid",
435 	.type		= CLONE_NEWPID,
436 	.get		= pidns_get,
437 	.put		= pidns_put,
438 	.install	= pidns_install,
439 	.owner		= pidns_owner,
440 	.get_parent	= pidns_get_parent,
441 };
442 
pid_namespaces_init(void)443 static __init int pid_namespaces_init(void)
444 {
445 	pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
446 
447 #ifdef CONFIG_CHECKPOINT_RESTORE
448 	register_sysctl_paths(kern_path, pid_ns_ctl_table);
449 #endif
450 	return 0;
451 }
452 
453 __initcall(pid_namespaces_init);
454