1 /*
2 I2C functions
3 Copyright (C) 2003-2004 Kevin Thayer <nufan_wfk at yahoo.com>
4 Copyright (C) 2005-2007 Hans Verkuil <hverkuil@xs4all.nl>
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 /*
22 This file includes an i2c implementation that was reverse engineered
23 from the Hauppauge windows driver. Older ivtv versions used i2c-algo-bit,
24 which whilst fine under most circumstances, had trouble with the Zilog
25 CPU on the PVR-150 which handles IR functions (occasional inability to
26 communicate with the chip until it was reset) and also with the i2c
27 bus being completely unreachable when multiple PVR cards were present.
28
29 The implementation is very similar to i2c-algo-bit, but there are enough
30 subtle differences that the two are hard to merge. The general strategy
31 employed by i2c-algo-bit is to use udelay() to implement the timing
32 when putting out bits on the scl/sda lines. The general strategy taken
33 here is to poll the lines for state changes (see ivtv_waitscl and
34 ivtv_waitsda). In addition there are small delays at various locations
35 which poll the SCL line 5 times (ivtv_scldelay). I would guess that
36 since this is memory mapped I/O that the length of those delays is tied
37 to the PCI bus clock. There is some extra code to do with recovery
38 and retries. Since it is not known what causes the actual i2c problems
39 in the first place, the only goal if one was to attempt to use
40 i2c-algo-bit would be to try to make it follow the same code path.
41 This would be a lot of work, and I'm also not convinced that it would
42 provide a generic benefit to i2c-algo-bit. Therefore consider this
43 an engineering solution -- not pretty, but it works.
44
45 Some more general comments about what we are doing:
46
47 The i2c bus is a 2 wire serial bus, with clock (SCL) and data (SDA)
48 lines. To communicate on the bus (as a master, we don't act as a slave),
49 we first initiate a start condition (ivtv_start). We then write the
50 address of the device that we want to communicate with, along with a flag
51 that indicates whether this is a read or a write. The slave then issues
52 an ACK signal (ivtv_ack), which tells us that it is ready for reading /
53 writing. We then proceed with reading or writing (ivtv_read/ivtv_write),
54 and finally issue a stop condition (ivtv_stop) to make the bus available
55 to other masters.
56
57 There is an additional form of transaction where a write may be
58 immediately followed by a read. In this case, there is no intervening
59 stop condition. (Only the msp3400 chip uses this method of data transfer).
60 */
61
62 #include "ivtv-driver.h"
63 #include "ivtv-cards.h"
64 #include "ivtv-gpio.h"
65 #include "ivtv-i2c.h"
66 #include <media/drv-intf/cx25840.h>
67
68 /* i2c implementation for cx23415/6 chip, ivtv project.
69 * Author: Kevin Thayer (nufan_wfk at yahoo.com)
70 */
71 /* i2c stuff */
72 #define IVTV_REG_I2C_SETSCL_OFFSET 0x7000
73 #define IVTV_REG_I2C_SETSDA_OFFSET 0x7004
74 #define IVTV_REG_I2C_GETSCL_OFFSET 0x7008
75 #define IVTV_REG_I2C_GETSDA_OFFSET 0x700c
76
77 #define IVTV_CS53L32A_I2C_ADDR 0x11
78 #define IVTV_M52790_I2C_ADDR 0x48
79 #define IVTV_CX25840_I2C_ADDR 0x44
80 #define IVTV_SAA7115_I2C_ADDR 0x21
81 #define IVTV_SAA7127_I2C_ADDR 0x44
82 #define IVTV_SAA717x_I2C_ADDR 0x21
83 #define IVTV_MSP3400_I2C_ADDR 0x40
84 #define IVTV_HAUPPAUGE_I2C_ADDR 0x50
85 #define IVTV_WM8739_I2C_ADDR 0x1a
86 #define IVTV_WM8775_I2C_ADDR 0x1b
87 #define IVTV_TEA5767_I2C_ADDR 0x60
88 #define IVTV_UPD64031A_I2C_ADDR 0x12
89 #define IVTV_UPD64083_I2C_ADDR 0x5c
90 #define IVTV_VP27SMPX_I2C_ADDR 0x5b
91 #define IVTV_M52790_I2C_ADDR 0x48
92 #define IVTV_AVERMEDIA_IR_RX_I2C_ADDR 0x40
93 #define IVTV_HAUP_EXT_IR_RX_I2C_ADDR 0x1a
94 #define IVTV_HAUP_INT_IR_RX_I2C_ADDR 0x18
95 #define IVTV_Z8F0811_IR_TX_I2C_ADDR 0x70
96 #define IVTV_Z8F0811_IR_RX_I2C_ADDR 0x71
97 #define IVTV_ADAPTEC_IR_ADDR 0x6b
98
99 /* This array should match the IVTV_HW_ defines */
100 static const u8 hw_addrs[] = {
101 IVTV_CX25840_I2C_ADDR,
102 IVTV_SAA7115_I2C_ADDR,
103 IVTV_SAA7127_I2C_ADDR,
104 IVTV_MSP3400_I2C_ADDR,
105 0,
106 IVTV_WM8775_I2C_ADDR,
107 IVTV_CS53L32A_I2C_ADDR,
108 0,
109 IVTV_SAA7115_I2C_ADDR,
110 IVTV_UPD64031A_I2C_ADDR,
111 IVTV_UPD64083_I2C_ADDR,
112 IVTV_SAA717x_I2C_ADDR,
113 IVTV_WM8739_I2C_ADDR,
114 IVTV_VP27SMPX_I2C_ADDR,
115 IVTV_M52790_I2C_ADDR,
116 0, /* IVTV_HW_GPIO dummy driver ID */
117 IVTV_AVERMEDIA_IR_RX_I2C_ADDR, /* IVTV_HW_I2C_IR_RX_AVER */
118 IVTV_HAUP_EXT_IR_RX_I2C_ADDR, /* IVTV_HW_I2C_IR_RX_HAUP_EXT */
119 IVTV_HAUP_INT_IR_RX_I2C_ADDR, /* IVTV_HW_I2C_IR_RX_HAUP_INT */
120 IVTV_Z8F0811_IR_TX_I2C_ADDR, /* IVTV_HW_Z8F0811_IR_TX_HAUP */
121 IVTV_Z8F0811_IR_RX_I2C_ADDR, /* IVTV_HW_Z8F0811_IR_RX_HAUP */
122 IVTV_ADAPTEC_IR_ADDR, /* IVTV_HW_I2C_IR_RX_ADAPTEC */
123 };
124
125 /* This array should match the IVTV_HW_ defines */
126 static const char * const hw_devicenames[] = {
127 "cx25840",
128 "saa7115",
129 "saa7127_auto", /* saa7127 or saa7129 */
130 "msp3400",
131 "tuner",
132 "wm8775",
133 "cs53l32a",
134 "tveeprom",
135 "saa7114",
136 "upd64031a",
137 "upd64083",
138 "saa717x",
139 "wm8739",
140 "vp27smpx",
141 "m52790",
142 "gpio",
143 "ir_video", /* IVTV_HW_I2C_IR_RX_AVER */
144 "ir_video", /* IVTV_HW_I2C_IR_RX_HAUP_EXT */
145 "ir_video", /* IVTV_HW_I2C_IR_RX_HAUP_INT */
146 "ir_tx_z8f0811_haup", /* IVTV_HW_Z8F0811_IR_TX_HAUP */
147 "ir_rx_z8f0811_haup", /* IVTV_HW_Z8F0811_IR_RX_HAUP */
148 "ir_video", /* IVTV_HW_I2C_IR_RX_ADAPTEC */
149 };
150
get_key_adaptec(struct IR_i2c * ir,enum rc_type * protocol,u32 * scancode,u8 * toggle)151 static int get_key_adaptec(struct IR_i2c *ir, enum rc_type *protocol,
152 u32 *scancode, u8 *toggle)
153 {
154 unsigned char keybuf[4];
155
156 keybuf[0] = 0x00;
157 i2c_master_send(ir->c, keybuf, 1);
158 /* poll IR chip */
159 if (i2c_master_recv(ir->c, keybuf, sizeof(keybuf)) != sizeof(keybuf)) {
160 return 0;
161 }
162
163 /* key pressed ? */
164 if (keybuf[2] == 0xff)
165 return 0;
166
167 /* remove repeat bit */
168 keybuf[2] &= 0x7f;
169 keybuf[3] |= 0x80;
170
171 *protocol = RC_TYPE_UNKNOWN;
172 *scancode = keybuf[3] | keybuf[2] << 8 | keybuf[1] << 16 |keybuf[0] << 24;
173 *toggle = 0;
174 return 1;
175 }
176
ivtv_i2c_new_ir(struct ivtv * itv,u32 hw,const char * type,u8 addr)177 static int ivtv_i2c_new_ir(struct ivtv *itv, u32 hw, const char *type, u8 addr)
178 {
179 struct i2c_board_info info;
180 struct i2c_adapter *adap = &itv->i2c_adap;
181 struct IR_i2c_init_data *init_data = &itv->ir_i2c_init_data;
182 unsigned short addr_list[2] = { addr, I2C_CLIENT_END };
183
184 /* Only allow one IR transmitter to be registered per board */
185 if (hw & IVTV_HW_IR_TX_ANY) {
186 if (itv->hw_flags & IVTV_HW_IR_TX_ANY)
187 return -1;
188 memset(&info, 0, sizeof(struct i2c_board_info));
189 strlcpy(info.type, type, I2C_NAME_SIZE);
190 return i2c_new_probed_device(adap, &info, addr_list, NULL)
191 == NULL ? -1 : 0;
192 }
193
194 /* Only allow one IR receiver to be registered per board */
195 if (itv->hw_flags & IVTV_HW_IR_RX_ANY)
196 return -1;
197
198 /* Our default information for ir-kbd-i2c.c to use */
199 switch (hw) {
200 case IVTV_HW_I2C_IR_RX_AVER:
201 init_data->ir_codes = RC_MAP_AVERMEDIA_CARDBUS;
202 init_data->internal_get_key_func =
203 IR_KBD_GET_KEY_AVERMEDIA_CARDBUS;
204 init_data->type = RC_BIT_OTHER;
205 init_data->name = "AVerMedia AVerTV card";
206 break;
207 case IVTV_HW_I2C_IR_RX_HAUP_EXT:
208 case IVTV_HW_I2C_IR_RX_HAUP_INT:
209 init_data->ir_codes = RC_MAP_HAUPPAUGE;
210 init_data->internal_get_key_func = IR_KBD_GET_KEY_HAUP;
211 init_data->type = RC_BIT_RC5;
212 init_data->name = itv->card_name;
213 break;
214 case IVTV_HW_Z8F0811_IR_RX_HAUP:
215 /* Default to grey remote */
216 init_data->ir_codes = RC_MAP_HAUPPAUGE;
217 init_data->internal_get_key_func = IR_KBD_GET_KEY_HAUP_XVR;
218 init_data->type = RC_BIT_RC5 | RC_BIT_RC6_MCE |
219 RC_BIT_RC6_6A_32;
220 init_data->name = itv->card_name;
221 break;
222 case IVTV_HW_I2C_IR_RX_ADAPTEC:
223 init_data->get_key = get_key_adaptec;
224 init_data->name = itv->card_name;
225 /* FIXME: The protocol and RC_MAP needs to be corrected */
226 init_data->ir_codes = RC_MAP_EMPTY;
227 init_data->type = RC_BIT_UNKNOWN;
228 break;
229 }
230
231 memset(&info, 0, sizeof(struct i2c_board_info));
232 info.platform_data = init_data;
233 strlcpy(info.type, type, I2C_NAME_SIZE);
234
235 return i2c_new_probed_device(adap, &info, addr_list, NULL) == NULL ?
236 -1 : 0;
237 }
238
239 /* Instantiate the IR receiver device using probing -- undesirable */
ivtv_i2c_new_ir_legacy(struct ivtv * itv)240 struct i2c_client *ivtv_i2c_new_ir_legacy(struct ivtv *itv)
241 {
242 struct i2c_board_info info;
243 /*
244 * The external IR receiver is at i2c address 0x34.
245 * The internal IR receiver is at i2c address 0x30.
246 *
247 * In theory, both can be fitted, and Hauppauge suggests an external
248 * overrides an internal. That's why we probe 0x1a (~0x34) first. CB
249 *
250 * Some of these addresses we probe may collide with other i2c address
251 * allocations, so this function must be called after all other i2c
252 * devices we care about are registered.
253 */
254 const unsigned short addr_list[] = {
255 0x1a, /* Hauppauge IR external - collides with WM8739 */
256 0x18, /* Hauppauge IR internal */
257 I2C_CLIENT_END
258 };
259
260 memset(&info, 0, sizeof(struct i2c_board_info));
261 strlcpy(info.type, "ir_video", I2C_NAME_SIZE);
262 return i2c_new_probed_device(&itv->i2c_adap, &info, addr_list, NULL);
263 }
264
ivtv_i2c_register(struct ivtv * itv,unsigned idx)265 int ivtv_i2c_register(struct ivtv *itv, unsigned idx)
266 {
267 struct v4l2_subdev *sd;
268 struct i2c_adapter *adap = &itv->i2c_adap;
269 const char *type = hw_devicenames[idx];
270 u32 hw = 1 << idx;
271
272 if (hw == IVTV_HW_TUNER) {
273 /* special tuner handling */
274 sd = v4l2_i2c_new_subdev(&itv->v4l2_dev, adap, type, 0,
275 itv->card_i2c->radio);
276 if (sd)
277 sd->grp_id = 1 << idx;
278 sd = v4l2_i2c_new_subdev(&itv->v4l2_dev, adap, type, 0,
279 itv->card_i2c->demod);
280 if (sd)
281 sd->grp_id = 1 << idx;
282 sd = v4l2_i2c_new_subdev(&itv->v4l2_dev, adap, type, 0,
283 itv->card_i2c->tv);
284 if (sd)
285 sd->grp_id = 1 << idx;
286 return sd ? 0 : -1;
287 }
288
289 if (hw & IVTV_HW_IR_ANY)
290 return ivtv_i2c_new_ir(itv, hw, type, hw_addrs[idx]);
291
292 /* Is it not an I2C device or one we do not wish to register? */
293 if (!hw_addrs[idx])
294 return -1;
295
296 /* It's an I2C device other than an analog tuner or IR chip */
297 if (hw == IVTV_HW_UPD64031A || hw == IVTV_HW_UPD6408X) {
298 sd = v4l2_i2c_new_subdev(&itv->v4l2_dev,
299 adap, type, 0, I2C_ADDRS(hw_addrs[idx]));
300 } else if (hw == IVTV_HW_CX25840) {
301 struct cx25840_platform_data pdata;
302 struct i2c_board_info cx25840_info = {
303 .type = "cx25840",
304 .addr = hw_addrs[idx],
305 .platform_data = &pdata,
306 };
307
308 pdata.pvr150_workaround = itv->pvr150_workaround;
309 sd = v4l2_i2c_new_subdev_board(&itv->v4l2_dev, adap,
310 &cx25840_info, NULL);
311 } else {
312 sd = v4l2_i2c_new_subdev(&itv->v4l2_dev,
313 adap, type, hw_addrs[idx], NULL);
314 }
315 if (sd)
316 sd->grp_id = 1 << idx;
317 return sd ? 0 : -1;
318 }
319
ivtv_find_hw(struct ivtv * itv,u32 hw)320 struct v4l2_subdev *ivtv_find_hw(struct ivtv *itv, u32 hw)
321 {
322 struct v4l2_subdev *result = NULL;
323 struct v4l2_subdev *sd;
324
325 spin_lock(&itv->v4l2_dev.lock);
326 v4l2_device_for_each_subdev(sd, &itv->v4l2_dev) {
327 if (sd->grp_id == hw) {
328 result = sd;
329 break;
330 }
331 }
332 spin_unlock(&itv->v4l2_dev.lock);
333 return result;
334 }
335
336 /* Set the serial clock line to the desired state */
ivtv_setscl(struct ivtv * itv,int state)337 static void ivtv_setscl(struct ivtv *itv, int state)
338 {
339 /* write them out */
340 /* write bits are inverted */
341 write_reg(~state, IVTV_REG_I2C_SETSCL_OFFSET);
342 }
343
344 /* Set the serial data line to the desired state */
ivtv_setsda(struct ivtv * itv,int state)345 static void ivtv_setsda(struct ivtv *itv, int state)
346 {
347 /* write them out */
348 /* write bits are inverted */
349 write_reg(~state & 1, IVTV_REG_I2C_SETSDA_OFFSET);
350 }
351
352 /* Read the serial clock line */
ivtv_getscl(struct ivtv * itv)353 static int ivtv_getscl(struct ivtv *itv)
354 {
355 return read_reg(IVTV_REG_I2C_GETSCL_OFFSET) & 1;
356 }
357
358 /* Read the serial data line */
ivtv_getsda(struct ivtv * itv)359 static int ivtv_getsda(struct ivtv *itv)
360 {
361 return read_reg(IVTV_REG_I2C_GETSDA_OFFSET) & 1;
362 }
363
364 /* Implement a short delay by polling the serial clock line */
ivtv_scldelay(struct ivtv * itv)365 static void ivtv_scldelay(struct ivtv *itv)
366 {
367 int i;
368
369 for (i = 0; i < 5; ++i)
370 ivtv_getscl(itv);
371 }
372
373 /* Wait for the serial clock line to become set to a specific value */
ivtv_waitscl(struct ivtv * itv,int val)374 static int ivtv_waitscl(struct ivtv *itv, int val)
375 {
376 int i;
377
378 ivtv_scldelay(itv);
379 for (i = 0; i < 1000; ++i) {
380 if (ivtv_getscl(itv) == val)
381 return 1;
382 }
383 return 0;
384 }
385
386 /* Wait for the serial data line to become set to a specific value */
ivtv_waitsda(struct ivtv * itv,int val)387 static int ivtv_waitsda(struct ivtv *itv, int val)
388 {
389 int i;
390
391 ivtv_scldelay(itv);
392 for (i = 0; i < 1000; ++i) {
393 if (ivtv_getsda(itv) == val)
394 return 1;
395 }
396 return 0;
397 }
398
399 /* Wait for the slave to issue an ACK */
ivtv_ack(struct ivtv * itv)400 static int ivtv_ack(struct ivtv *itv)
401 {
402 int ret = 0;
403
404 if (ivtv_getscl(itv) == 1) {
405 IVTV_DEBUG_HI_I2C("SCL was high starting an ack\n");
406 ivtv_setscl(itv, 0);
407 if (!ivtv_waitscl(itv, 0)) {
408 IVTV_DEBUG_I2C("Could not set SCL low starting an ack\n");
409 return -EREMOTEIO;
410 }
411 }
412 ivtv_setsda(itv, 1);
413 ivtv_scldelay(itv);
414 ivtv_setscl(itv, 1);
415 if (!ivtv_waitsda(itv, 0)) {
416 IVTV_DEBUG_I2C("Slave did not ack\n");
417 ret = -EREMOTEIO;
418 }
419 ivtv_setscl(itv, 0);
420 if (!ivtv_waitscl(itv, 0)) {
421 IVTV_DEBUG_I2C("Failed to set SCL low after ACK\n");
422 ret = -EREMOTEIO;
423 }
424 return ret;
425 }
426
427 /* Write a single byte to the i2c bus and wait for the slave to ACK */
ivtv_sendbyte(struct ivtv * itv,unsigned char byte)428 static int ivtv_sendbyte(struct ivtv *itv, unsigned char byte)
429 {
430 int i, bit;
431
432 IVTV_DEBUG_HI_I2C("write %x\n",byte);
433 for (i = 0; i < 8; ++i, byte<<=1) {
434 ivtv_setscl(itv, 0);
435 if (!ivtv_waitscl(itv, 0)) {
436 IVTV_DEBUG_I2C("Error setting SCL low\n");
437 return -EREMOTEIO;
438 }
439 bit = (byte>>7)&1;
440 ivtv_setsda(itv, bit);
441 if (!ivtv_waitsda(itv, bit)) {
442 IVTV_DEBUG_I2C("Error setting SDA\n");
443 return -EREMOTEIO;
444 }
445 ivtv_setscl(itv, 1);
446 if (!ivtv_waitscl(itv, 1)) {
447 IVTV_DEBUG_I2C("Slave not ready for bit\n");
448 return -EREMOTEIO;
449 }
450 }
451 ivtv_setscl(itv, 0);
452 if (!ivtv_waitscl(itv, 0)) {
453 IVTV_DEBUG_I2C("Error setting SCL low\n");
454 return -EREMOTEIO;
455 }
456 return ivtv_ack(itv);
457 }
458
459 /* Read a byte from the i2c bus and send a NACK if applicable (i.e. for the
460 final byte) */
ivtv_readbyte(struct ivtv * itv,unsigned char * byte,int nack)461 static int ivtv_readbyte(struct ivtv *itv, unsigned char *byte, int nack)
462 {
463 int i;
464
465 *byte = 0;
466
467 ivtv_setsda(itv, 1);
468 ivtv_scldelay(itv);
469 for (i = 0; i < 8; ++i) {
470 ivtv_setscl(itv, 0);
471 ivtv_scldelay(itv);
472 ivtv_setscl(itv, 1);
473 if (!ivtv_waitscl(itv, 1)) {
474 IVTV_DEBUG_I2C("Error setting SCL high\n");
475 return -EREMOTEIO;
476 }
477 *byte = ((*byte)<<1)|ivtv_getsda(itv);
478 }
479 ivtv_setscl(itv, 0);
480 ivtv_scldelay(itv);
481 ivtv_setsda(itv, nack);
482 ivtv_scldelay(itv);
483 ivtv_setscl(itv, 1);
484 ivtv_scldelay(itv);
485 ivtv_setscl(itv, 0);
486 ivtv_scldelay(itv);
487 IVTV_DEBUG_HI_I2C("read %x\n",*byte);
488 return 0;
489 }
490
491 /* Issue a start condition on the i2c bus to alert slaves to prepare for
492 an address write */
ivtv_start(struct ivtv * itv)493 static int ivtv_start(struct ivtv *itv)
494 {
495 int sda;
496
497 sda = ivtv_getsda(itv);
498 if (sda != 1) {
499 IVTV_DEBUG_HI_I2C("SDA was low at start\n");
500 ivtv_setsda(itv, 1);
501 if (!ivtv_waitsda(itv, 1)) {
502 IVTV_DEBUG_I2C("SDA stuck low\n");
503 return -EREMOTEIO;
504 }
505 }
506 if (ivtv_getscl(itv) != 1) {
507 ivtv_setscl(itv, 1);
508 if (!ivtv_waitscl(itv, 1)) {
509 IVTV_DEBUG_I2C("SCL stuck low at start\n");
510 return -EREMOTEIO;
511 }
512 }
513 ivtv_setsda(itv, 0);
514 ivtv_scldelay(itv);
515 return 0;
516 }
517
518 /* Issue a stop condition on the i2c bus to release it */
ivtv_stop(struct ivtv * itv)519 static int ivtv_stop(struct ivtv *itv)
520 {
521 int i;
522
523 if (ivtv_getscl(itv) != 0) {
524 IVTV_DEBUG_HI_I2C("SCL not low when stopping\n");
525 ivtv_setscl(itv, 0);
526 if (!ivtv_waitscl(itv, 0)) {
527 IVTV_DEBUG_I2C("SCL could not be set low\n");
528 }
529 }
530 ivtv_setsda(itv, 0);
531 ivtv_scldelay(itv);
532 ivtv_setscl(itv, 1);
533 if (!ivtv_waitscl(itv, 1)) {
534 IVTV_DEBUG_I2C("SCL could not be set high\n");
535 return -EREMOTEIO;
536 }
537 ivtv_scldelay(itv);
538 ivtv_setsda(itv, 1);
539 if (!ivtv_waitsda(itv, 1)) {
540 IVTV_DEBUG_I2C("resetting I2C\n");
541 for (i = 0; i < 16; ++i) {
542 ivtv_setscl(itv, 0);
543 ivtv_scldelay(itv);
544 ivtv_setscl(itv, 1);
545 ivtv_scldelay(itv);
546 ivtv_setsda(itv, 1);
547 }
548 ivtv_waitsda(itv, 1);
549 return -EREMOTEIO;
550 }
551 return 0;
552 }
553
554 /* Write a message to the given i2c slave. do_stop may be 0 to prevent
555 issuing the i2c stop condition (when following with a read) */
ivtv_write(struct ivtv * itv,unsigned char addr,unsigned char * data,u32 len,int do_stop)556 static int ivtv_write(struct ivtv *itv, unsigned char addr, unsigned char *data, u32 len, int do_stop)
557 {
558 int retry, ret = -EREMOTEIO;
559 u32 i;
560
561 for (retry = 0; ret != 0 && retry < 8; ++retry) {
562 ret = ivtv_start(itv);
563
564 if (ret == 0) {
565 ret = ivtv_sendbyte(itv, addr<<1);
566 for (i = 0; ret == 0 && i < len; ++i)
567 ret = ivtv_sendbyte(itv, data[i]);
568 }
569 if (ret != 0 || do_stop) {
570 ivtv_stop(itv);
571 }
572 }
573 if (ret)
574 IVTV_DEBUG_I2C("i2c write to %x failed\n", addr);
575 return ret;
576 }
577
578 /* Read data from the given i2c slave. A stop condition is always issued. */
ivtv_read(struct ivtv * itv,unsigned char addr,unsigned char * data,u32 len)579 static int ivtv_read(struct ivtv *itv, unsigned char addr, unsigned char *data, u32 len)
580 {
581 int retry, ret = -EREMOTEIO;
582 u32 i;
583
584 for (retry = 0; ret != 0 && retry < 8; ++retry) {
585 ret = ivtv_start(itv);
586 if (ret == 0)
587 ret = ivtv_sendbyte(itv, (addr << 1) | 1);
588 for (i = 0; ret == 0 && i < len; ++i) {
589 ret = ivtv_readbyte(itv, &data[i], i == len - 1);
590 }
591 ivtv_stop(itv);
592 }
593 if (ret)
594 IVTV_DEBUG_I2C("i2c read from %x failed\n", addr);
595 return ret;
596 }
597
598 /* Kernel i2c transfer implementation. Takes a number of messages to be read
599 or written. If a read follows a write, this will occur without an
600 intervening stop condition */
ivtv_xfer(struct i2c_adapter * i2c_adap,struct i2c_msg * msgs,int num)601 static int ivtv_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs, int num)
602 {
603 struct v4l2_device *v4l2_dev = i2c_get_adapdata(i2c_adap);
604 struct ivtv *itv = to_ivtv(v4l2_dev);
605 int retval;
606 int i;
607
608 mutex_lock(&itv->i2c_bus_lock);
609 for (i = retval = 0; retval == 0 && i < num; i++) {
610 if (msgs[i].flags & I2C_M_RD)
611 retval = ivtv_read(itv, msgs[i].addr, msgs[i].buf, msgs[i].len);
612 else {
613 /* if followed by a read, don't stop */
614 int stop = !(i + 1 < num && msgs[i + 1].flags == I2C_M_RD);
615
616 retval = ivtv_write(itv, msgs[i].addr, msgs[i].buf, msgs[i].len, stop);
617 }
618 }
619 mutex_unlock(&itv->i2c_bus_lock);
620 return retval ? retval : num;
621 }
622
623 /* Kernel i2c capabilities */
ivtv_functionality(struct i2c_adapter * adap)624 static u32 ivtv_functionality(struct i2c_adapter *adap)
625 {
626 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
627 }
628
629 static const struct i2c_algorithm ivtv_algo = {
630 .master_xfer = ivtv_xfer,
631 .functionality = ivtv_functionality,
632 };
633
634 /* template for our-bit banger */
635 static struct i2c_adapter ivtv_i2c_adap_hw_template = {
636 .name = "ivtv i2c driver",
637 .algo = &ivtv_algo,
638 .algo_data = NULL, /* filled from template */
639 .owner = THIS_MODULE,
640 };
641
ivtv_setscl_old(void * data,int state)642 static void ivtv_setscl_old(void *data, int state)
643 {
644 struct ivtv *itv = (struct ivtv *)data;
645
646 if (state)
647 itv->i2c_state |= 0x01;
648 else
649 itv->i2c_state &= ~0x01;
650
651 /* write them out */
652 /* write bits are inverted */
653 write_reg(~itv->i2c_state, IVTV_REG_I2C_SETSCL_OFFSET);
654 }
655
ivtv_setsda_old(void * data,int state)656 static void ivtv_setsda_old(void *data, int state)
657 {
658 struct ivtv *itv = (struct ivtv *)data;
659
660 if (state)
661 itv->i2c_state |= 0x01;
662 else
663 itv->i2c_state &= ~0x01;
664
665 /* write them out */
666 /* write bits are inverted */
667 write_reg(~itv->i2c_state, IVTV_REG_I2C_SETSDA_OFFSET);
668 }
669
ivtv_getscl_old(void * data)670 static int ivtv_getscl_old(void *data)
671 {
672 struct ivtv *itv = (struct ivtv *)data;
673
674 return read_reg(IVTV_REG_I2C_GETSCL_OFFSET) & 1;
675 }
676
ivtv_getsda_old(void * data)677 static int ivtv_getsda_old(void *data)
678 {
679 struct ivtv *itv = (struct ivtv *)data;
680
681 return read_reg(IVTV_REG_I2C_GETSDA_OFFSET) & 1;
682 }
683
684 /* template for i2c-bit-algo */
685 static struct i2c_adapter ivtv_i2c_adap_template = {
686 .name = "ivtv i2c driver",
687 .algo = NULL, /* set by i2c-algo-bit */
688 .algo_data = NULL, /* filled from template */
689 .owner = THIS_MODULE,
690 };
691
692 #define IVTV_ALGO_BIT_TIMEOUT (2) /* seconds */
693
694 static const struct i2c_algo_bit_data ivtv_i2c_algo_template = {
695 .setsda = ivtv_setsda_old,
696 .setscl = ivtv_setscl_old,
697 .getsda = ivtv_getsda_old,
698 .getscl = ivtv_getscl_old,
699 .udelay = IVTV_DEFAULT_I2C_CLOCK_PERIOD / 2, /* microseconds */
700 .timeout = IVTV_ALGO_BIT_TIMEOUT * HZ, /* jiffies */
701 };
702
703 static struct i2c_client ivtv_i2c_client_template = {
704 .name = "ivtv internal",
705 };
706
707 /* init + register i2c adapter */
init_ivtv_i2c(struct ivtv * itv)708 int init_ivtv_i2c(struct ivtv *itv)
709 {
710 int retval;
711
712 IVTV_DEBUG_I2C("i2c init\n");
713
714 /* Sanity checks for the I2C hardware arrays. They must be the
715 * same size.
716 */
717 if (ARRAY_SIZE(hw_devicenames) != ARRAY_SIZE(hw_addrs)) {
718 IVTV_ERR("Mismatched I2C hardware arrays\n");
719 return -ENODEV;
720 }
721 if (itv->options.newi2c > 0) {
722 itv->i2c_adap = ivtv_i2c_adap_hw_template;
723 } else {
724 itv->i2c_adap = ivtv_i2c_adap_template;
725 itv->i2c_algo = ivtv_i2c_algo_template;
726 }
727 itv->i2c_algo.udelay = itv->options.i2c_clock_period / 2;
728 itv->i2c_algo.data = itv;
729 itv->i2c_adap.algo_data = &itv->i2c_algo;
730
731 sprintf(itv->i2c_adap.name + strlen(itv->i2c_adap.name), " #%d",
732 itv->instance);
733 i2c_set_adapdata(&itv->i2c_adap, &itv->v4l2_dev);
734
735 itv->i2c_client = ivtv_i2c_client_template;
736 itv->i2c_client.adapter = &itv->i2c_adap;
737 itv->i2c_adap.dev.parent = &itv->pdev->dev;
738
739 IVTV_DEBUG_I2C("setting scl and sda to 1\n");
740 ivtv_setscl(itv, 1);
741 ivtv_setsda(itv, 1);
742
743 if (itv->options.newi2c > 0)
744 retval = i2c_add_adapter(&itv->i2c_adap);
745 else
746 retval = i2c_bit_add_bus(&itv->i2c_adap);
747
748 return retval;
749 }
750
exit_ivtv_i2c(struct ivtv * itv)751 void exit_ivtv_i2c(struct ivtv *itv)
752 {
753 IVTV_DEBUG_I2C("i2c exit\n");
754
755 i2c_del_adapter(&itv->i2c_adap);
756 }
757