• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_PAGEMAP_H
2 #define _LINUX_PAGEMAP_H
3 
4 /*
5  * Copyright 1995 Linus Torvalds
6  */
7 #include <linux/mm.h>
8 #include <linux/fs.h>
9 #include <linux/list.h>
10 #include <linux/highmem.h>
11 #include <linux/compiler.h>
12 #include <asm/uaccess.h>
13 #include <linux/gfp.h>
14 #include <linux/bitops.h>
15 #include <linux/hardirq.h> /* for in_interrupt() */
16 #include <linux/hugetlb_inline.h>
17 
18 /*
19  * Bits in mapping->flags.
20  */
21 enum mapping_flags {
22 	AS_EIO		= 0,	/* IO error on async write */
23 	AS_ENOSPC	= 1,	/* ENOSPC on async write */
24 	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
25 	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
26 	AS_EXITING	= 4, 	/* final truncate in progress */
27 	/* writeback related tags are not used */
28 	AS_NO_WRITEBACK_TAGS = 5,
29 };
30 
mapping_set_error(struct address_space * mapping,int error)31 static inline void mapping_set_error(struct address_space *mapping, int error)
32 {
33 	if (unlikely(error)) {
34 		if (error == -ENOSPC)
35 			set_bit(AS_ENOSPC, &mapping->flags);
36 		else
37 			set_bit(AS_EIO, &mapping->flags);
38 	}
39 }
40 
mapping_set_unevictable(struct address_space * mapping)41 static inline void mapping_set_unevictable(struct address_space *mapping)
42 {
43 	set_bit(AS_UNEVICTABLE, &mapping->flags);
44 }
45 
mapping_clear_unevictable(struct address_space * mapping)46 static inline void mapping_clear_unevictable(struct address_space *mapping)
47 {
48 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
49 }
50 
mapping_unevictable(struct address_space * mapping)51 static inline int mapping_unevictable(struct address_space *mapping)
52 {
53 	if (mapping)
54 		return test_bit(AS_UNEVICTABLE, &mapping->flags);
55 	return !!mapping;
56 }
57 
mapping_set_exiting(struct address_space * mapping)58 static inline void mapping_set_exiting(struct address_space *mapping)
59 {
60 	set_bit(AS_EXITING, &mapping->flags);
61 }
62 
mapping_exiting(struct address_space * mapping)63 static inline int mapping_exiting(struct address_space *mapping)
64 {
65 	return test_bit(AS_EXITING, &mapping->flags);
66 }
67 
mapping_set_no_writeback_tags(struct address_space * mapping)68 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
69 {
70 	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
71 }
72 
mapping_use_writeback_tags(struct address_space * mapping)73 static inline int mapping_use_writeback_tags(struct address_space *mapping)
74 {
75 	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
76 }
77 
mapping_gfp_mask(struct address_space * mapping)78 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
79 {
80 	return mapping->gfp_mask;
81 }
82 
83 /* Restricts the given gfp_mask to what the mapping allows. */
mapping_gfp_constraint(struct address_space * mapping,gfp_t gfp_mask)84 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
85 		gfp_t gfp_mask)
86 {
87 	return mapping_gfp_mask(mapping) & gfp_mask;
88 }
89 
90 /*
91  * This is non-atomic.  Only to be used before the mapping is activated.
92  * Probably needs a barrier...
93  */
mapping_set_gfp_mask(struct address_space * m,gfp_t mask)94 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
95 {
96 	m->gfp_mask = mask;
97 }
98 
99 void release_pages(struct page **pages, int nr, bool cold);
100 
101 /*
102  * speculatively take a reference to a page.
103  * If the page is free (_refcount == 0), then _refcount is untouched, and 0
104  * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
105  *
106  * This function must be called inside the same rcu_read_lock() section as has
107  * been used to lookup the page in the pagecache radix-tree (or page table):
108  * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
109  *
110  * Unless an RCU grace period has passed, the count of all pages coming out
111  * of the allocator must be considered unstable. page_count may return higher
112  * than expected, and put_page must be able to do the right thing when the
113  * page has been finished with, no matter what it is subsequently allocated
114  * for (because put_page is what is used here to drop an invalid speculative
115  * reference).
116  *
117  * This is the interesting part of the lockless pagecache (and lockless
118  * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
119  * has the following pattern:
120  * 1. find page in radix tree
121  * 2. conditionally increment refcount
122  * 3. check the page is still in pagecache (if no, goto 1)
123  *
124  * Remove-side that cares about stability of _refcount (eg. reclaim) has the
125  * following (with tree_lock held for write):
126  * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
127  * B. remove page from pagecache
128  * C. free the page
129  *
130  * There are 2 critical interleavings that matter:
131  * - 2 runs before A: in this case, A sees elevated refcount and bails out
132  * - A runs before 2: in this case, 2 sees zero refcount and retries;
133  *   subsequently, B will complete and 1 will find no page, causing the
134  *   lookup to return NULL.
135  *
136  * It is possible that between 1 and 2, the page is removed then the exact same
137  * page is inserted into the same position in pagecache. That's OK: the
138  * old find_get_page using tree_lock could equally have run before or after
139  * such a re-insertion, depending on order that locks are granted.
140  *
141  * Lookups racing against pagecache insertion isn't a big problem: either 1
142  * will find the page or it will not. Likewise, the old find_get_page could run
143  * either before the insertion or afterwards, depending on timing.
144  */
page_cache_get_speculative(struct page * page)145 static inline int page_cache_get_speculative(struct page *page)
146 {
147 	VM_BUG_ON(in_interrupt());
148 
149 #ifdef CONFIG_TINY_RCU
150 # ifdef CONFIG_PREEMPT_COUNT
151 	VM_BUG_ON(!in_atomic() && !irqs_disabled());
152 # endif
153 	/*
154 	 * Preempt must be disabled here - we rely on rcu_read_lock doing
155 	 * this for us.
156 	 *
157 	 * Pagecache won't be truncated from interrupt context, so if we have
158 	 * found a page in the radix tree here, we have pinned its refcount by
159 	 * disabling preempt, and hence no need for the "speculative get" that
160 	 * SMP requires.
161 	 */
162 	VM_BUG_ON_PAGE(page_count(page) == 0, page);
163 	page_ref_inc(page);
164 
165 #else
166 	if (unlikely(!get_page_unless_zero(page))) {
167 		/*
168 		 * Either the page has been freed, or will be freed.
169 		 * In either case, retry here and the caller should
170 		 * do the right thing (see comments above).
171 		 */
172 		return 0;
173 	}
174 #endif
175 	VM_BUG_ON_PAGE(PageTail(page), page);
176 
177 	return 1;
178 }
179 
180 /*
181  * Same as above, but add instead of inc (could just be merged)
182  */
page_cache_add_speculative(struct page * page,int count)183 static inline int page_cache_add_speculative(struct page *page, int count)
184 {
185 	VM_BUG_ON(in_interrupt());
186 
187 #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
188 # ifdef CONFIG_PREEMPT_COUNT
189 	VM_BUG_ON(!in_atomic() && !irqs_disabled());
190 # endif
191 	VM_BUG_ON_PAGE(page_count(page) == 0, page);
192 	page_ref_add(page, count);
193 
194 #else
195 	if (unlikely(!page_ref_add_unless(page, count, 0)))
196 		return 0;
197 #endif
198 	VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
199 
200 	return 1;
201 }
202 
203 #ifdef CONFIG_NUMA
204 extern struct page *__page_cache_alloc(gfp_t gfp);
205 #else
__page_cache_alloc(gfp_t gfp)206 static inline struct page *__page_cache_alloc(gfp_t gfp)
207 {
208 	return alloc_pages(gfp, 0);
209 }
210 #endif
211 
page_cache_alloc(struct address_space * x)212 static inline struct page *page_cache_alloc(struct address_space *x)
213 {
214 	return __page_cache_alloc(mapping_gfp_mask(x));
215 }
216 
page_cache_alloc_cold(struct address_space * x)217 static inline struct page *page_cache_alloc_cold(struct address_space *x)
218 {
219 	return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
220 }
221 
readahead_gfp_mask(struct address_space * x)222 static inline gfp_t readahead_gfp_mask(struct address_space *x)
223 {
224 	return mapping_gfp_mask(x) |
225 				  __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN;
226 }
227 
228 typedef int filler_t(struct file *, struct page *);
229 
230 pgoff_t page_cache_next_hole(struct address_space *mapping,
231 			     pgoff_t index, unsigned long max_scan);
232 pgoff_t page_cache_prev_hole(struct address_space *mapping,
233 			     pgoff_t index, unsigned long max_scan);
234 
235 #define FGP_ACCESSED		0x00000001
236 #define FGP_LOCK		0x00000002
237 #define FGP_CREAT		0x00000004
238 #define FGP_WRITE		0x00000008
239 #define FGP_NOFS		0x00000010
240 #define FGP_NOWAIT		0x00000020
241 
242 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
243 		int fgp_flags, gfp_t cache_gfp_mask);
244 
245 /**
246  * find_get_page - find and get a page reference
247  * @mapping: the address_space to search
248  * @offset: the page index
249  *
250  * Looks up the page cache slot at @mapping & @offset.  If there is a
251  * page cache page, it is returned with an increased refcount.
252  *
253  * Otherwise, %NULL is returned.
254  */
find_get_page(struct address_space * mapping,pgoff_t offset)255 static inline struct page *find_get_page(struct address_space *mapping,
256 					pgoff_t offset)
257 {
258 	return pagecache_get_page(mapping, offset, 0, 0);
259 }
260 
find_get_page_flags(struct address_space * mapping,pgoff_t offset,int fgp_flags)261 static inline struct page *find_get_page_flags(struct address_space *mapping,
262 					pgoff_t offset, int fgp_flags)
263 {
264 	return pagecache_get_page(mapping, offset, fgp_flags, 0);
265 }
266 
267 /**
268  * find_lock_page - locate, pin and lock a pagecache page
269  * pagecache_get_page - find and get a page reference
270  * @mapping: the address_space to search
271  * @offset: the page index
272  *
273  * Looks up the page cache slot at @mapping & @offset.  If there is a
274  * page cache page, it is returned locked and with an increased
275  * refcount.
276  *
277  * Otherwise, %NULL is returned.
278  *
279  * find_lock_page() may sleep.
280  */
find_lock_page(struct address_space * mapping,pgoff_t offset)281 static inline struct page *find_lock_page(struct address_space *mapping,
282 					pgoff_t offset)
283 {
284 	return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
285 }
286 
287 /**
288  * find_or_create_page - locate or add a pagecache page
289  * @mapping: the page's address_space
290  * @index: the page's index into the mapping
291  * @gfp_mask: page allocation mode
292  *
293  * Looks up the page cache slot at @mapping & @offset.  If there is a
294  * page cache page, it is returned locked and with an increased
295  * refcount.
296  *
297  * If the page is not present, a new page is allocated using @gfp_mask
298  * and added to the page cache and the VM's LRU list.  The page is
299  * returned locked and with an increased refcount.
300  *
301  * On memory exhaustion, %NULL is returned.
302  *
303  * find_or_create_page() may sleep, even if @gfp_flags specifies an
304  * atomic allocation!
305  */
find_or_create_page(struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)306 static inline struct page *find_or_create_page(struct address_space *mapping,
307 					pgoff_t offset, gfp_t gfp_mask)
308 {
309 	return pagecache_get_page(mapping, offset,
310 					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
311 					gfp_mask);
312 }
313 
314 /**
315  * grab_cache_page_nowait - returns locked page at given index in given cache
316  * @mapping: target address_space
317  * @index: the page index
318  *
319  * Same as grab_cache_page(), but do not wait if the page is unavailable.
320  * This is intended for speculative data generators, where the data can
321  * be regenerated if the page couldn't be grabbed.  This routine should
322  * be safe to call while holding the lock for another page.
323  *
324  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
325  * and deadlock against the caller's locked page.
326  */
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)327 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
328 				pgoff_t index)
329 {
330 	return pagecache_get_page(mapping, index,
331 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
332 			mapping_gfp_mask(mapping));
333 }
334 
335 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
336 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
337 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
338 			  unsigned int nr_entries, struct page **entries,
339 			  pgoff_t *indices);
340 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
341 			unsigned int nr_pages, struct page **pages);
342 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
343 			       unsigned int nr_pages, struct page **pages);
344 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
345 			int tag, unsigned int nr_pages, struct page **pages);
346 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
347 			int tag, unsigned int nr_entries,
348 			struct page **entries, pgoff_t *indices);
349 
350 struct page *grab_cache_page_write_begin(struct address_space *mapping,
351 			pgoff_t index, unsigned flags);
352 
353 /*
354  * Returns locked page at given index in given cache, creating it if needed.
355  */
grab_cache_page(struct address_space * mapping,pgoff_t index)356 static inline struct page *grab_cache_page(struct address_space *mapping,
357 								pgoff_t index)
358 {
359 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
360 }
361 
362 extern struct page * read_cache_page(struct address_space *mapping,
363 				pgoff_t index, filler_t *filler, void *data);
364 extern struct page * read_cache_page_gfp(struct address_space *mapping,
365 				pgoff_t index, gfp_t gfp_mask);
366 extern int read_cache_pages(struct address_space *mapping,
367 		struct list_head *pages, filler_t *filler, void *data);
368 
read_mapping_page(struct address_space * mapping,pgoff_t index,void * data)369 static inline struct page *read_mapping_page(struct address_space *mapping,
370 				pgoff_t index, void *data)
371 {
372 	filler_t *filler = mapping->a_ops->readpage;
373 	return read_cache_page(mapping, index, filler, data);
374 }
375 
376 /*
377  * Get index of the page with in radix-tree
378  * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
379  */
page_to_index(struct page * page)380 static inline pgoff_t page_to_index(struct page *page)
381 {
382 	pgoff_t pgoff;
383 
384 	if (likely(!PageTransTail(page)))
385 		return page->index;
386 
387 	/*
388 	 *  We don't initialize ->index for tail pages: calculate based on
389 	 *  head page
390 	 */
391 	pgoff = compound_head(page)->index;
392 	pgoff += page - compound_head(page);
393 	return pgoff;
394 }
395 
396 /*
397  * Get the offset in PAGE_SIZE.
398  * (TODO: hugepage should have ->index in PAGE_SIZE)
399  */
page_to_pgoff(struct page * page)400 static inline pgoff_t page_to_pgoff(struct page *page)
401 {
402 	if (unlikely(PageHeadHuge(page)))
403 		return page->index << compound_order(page);
404 
405 	return page_to_index(page);
406 }
407 
408 /*
409  * Return byte-offset into filesystem object for page.
410  */
page_offset(struct page * page)411 static inline loff_t page_offset(struct page *page)
412 {
413 	return ((loff_t)page->index) << PAGE_SHIFT;
414 }
415 
page_file_offset(struct page * page)416 static inline loff_t page_file_offset(struct page *page)
417 {
418 	return ((loff_t)page_index(page)) << PAGE_SHIFT;
419 }
420 
421 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
422 				     unsigned long address);
423 
linear_page_index(struct vm_area_struct * vma,unsigned long address)424 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
425 					unsigned long address)
426 {
427 	pgoff_t pgoff;
428 	if (unlikely(is_vm_hugetlb_page(vma)))
429 		return linear_hugepage_index(vma, address);
430 	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
431 	pgoff += vma->vm_pgoff;
432 	return pgoff;
433 }
434 
435 extern void __lock_page(struct page *page);
436 extern int __lock_page_killable(struct page *page);
437 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
438 				unsigned int flags);
439 extern void unlock_page(struct page *page);
440 
trylock_page(struct page * page)441 static inline int trylock_page(struct page *page)
442 {
443 	page = compound_head(page);
444 	return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
445 }
446 
447 /*
448  * lock_page may only be called if we have the page's inode pinned.
449  */
lock_page(struct page * page)450 static inline void lock_page(struct page *page)
451 {
452 	might_sleep();
453 	if (!trylock_page(page))
454 		__lock_page(page);
455 }
456 
457 /*
458  * lock_page_killable is like lock_page but can be interrupted by fatal
459  * signals.  It returns 0 if it locked the page and -EINTR if it was
460  * killed while waiting.
461  */
lock_page_killable(struct page * page)462 static inline int lock_page_killable(struct page *page)
463 {
464 	might_sleep();
465 	if (!trylock_page(page))
466 		return __lock_page_killable(page);
467 	return 0;
468 }
469 
470 /*
471  * lock_page_or_retry - Lock the page, unless this would block and the
472  * caller indicated that it can handle a retry.
473  *
474  * Return value and mmap_sem implications depend on flags; see
475  * __lock_page_or_retry().
476  */
lock_page_or_retry(struct page * page,struct mm_struct * mm,unsigned int flags)477 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
478 				     unsigned int flags)
479 {
480 	might_sleep();
481 	return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
482 }
483 
484 /*
485  * This is exported only for wait_on_page_locked/wait_on_page_writeback,
486  * and for filesystems which need to wait on PG_private.
487  */
488 extern void wait_on_page_bit(struct page *page, int bit_nr);
489 
490 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
491 extern int wait_on_page_bit_killable_timeout(struct page *page,
492 					     int bit_nr, unsigned long timeout);
493 
wait_on_page_locked_killable(struct page * page)494 static inline int wait_on_page_locked_killable(struct page *page)
495 {
496 	if (!PageLocked(page))
497 		return 0;
498 	return wait_on_page_bit_killable(compound_head(page), PG_locked);
499 }
500 
501 extern wait_queue_head_t *page_waitqueue(struct page *page);
wake_up_page(struct page * page,int bit)502 static inline void wake_up_page(struct page *page, int bit)
503 {
504 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
505 }
506 
507 /*
508  * Wait for a page to be unlocked.
509  *
510  * This must be called with the caller "holding" the page,
511  * ie with increased "page->count" so that the page won't
512  * go away during the wait..
513  */
wait_on_page_locked(struct page * page)514 static inline void wait_on_page_locked(struct page *page)
515 {
516 	if (PageLocked(page))
517 		wait_on_page_bit(compound_head(page), PG_locked);
518 }
519 
520 /*
521  * Wait for a page to complete writeback
522  */
wait_on_page_writeback(struct page * page)523 static inline void wait_on_page_writeback(struct page *page)
524 {
525 	if (PageWriteback(page))
526 		wait_on_page_bit(page, PG_writeback);
527 }
528 
529 extern void end_page_writeback(struct page *page);
530 void wait_for_stable_page(struct page *page);
531 
532 void page_endio(struct page *page, bool is_write, int err);
533 
534 /*
535  * Add an arbitrary waiter to a page's wait queue
536  */
537 extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
538 
539 /*
540  * Fault everything in given userspace address range in.
541  */
fault_in_pages_writeable(char __user * uaddr,int size)542 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
543 {
544 	char __user *end = uaddr + size - 1;
545 
546 	if (unlikely(size == 0))
547 		return 0;
548 
549 	if (unlikely(uaddr > end))
550 		return -EFAULT;
551 	/*
552 	 * Writing zeroes into userspace here is OK, because we know that if
553 	 * the zero gets there, we'll be overwriting it.
554 	 */
555 	do {
556 		if (unlikely(__put_user(0, uaddr) != 0))
557 			return -EFAULT;
558 		uaddr += PAGE_SIZE;
559 	} while (uaddr <= end);
560 
561 	/* Check whether the range spilled into the next page. */
562 	if (((unsigned long)uaddr & PAGE_MASK) ==
563 			((unsigned long)end & PAGE_MASK))
564 		return __put_user(0, end);
565 
566 	return 0;
567 }
568 
fault_in_pages_readable(const char __user * uaddr,int size)569 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
570 {
571 	volatile char c;
572 	const char __user *end = uaddr + size - 1;
573 
574 	if (unlikely(size == 0))
575 		return 0;
576 
577 	if (unlikely(uaddr > end))
578 		return -EFAULT;
579 
580 	do {
581 		if (unlikely(__get_user(c, uaddr) != 0))
582 			return -EFAULT;
583 		uaddr += PAGE_SIZE;
584 	} while (uaddr <= end);
585 
586 	/* Check whether the range spilled into the next page. */
587 	if (((unsigned long)uaddr & PAGE_MASK) ==
588 			((unsigned long)end & PAGE_MASK)) {
589 		return __get_user(c, end);
590 	}
591 
592 	(void)c;
593 	return 0;
594 }
595 
596 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
597 				pgoff_t index, gfp_t gfp_mask);
598 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
599 				pgoff_t index, gfp_t gfp_mask);
600 extern void delete_from_page_cache(struct page *page);
601 extern void __delete_from_page_cache(struct page *page, void *shadow);
602 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
603 
604 /*
605  * Like add_to_page_cache_locked, but used to add newly allocated pages:
606  * the page is new, so we can just run __SetPageLocked() against it.
607  */
add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)608 static inline int add_to_page_cache(struct page *page,
609 		struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
610 {
611 	int error;
612 
613 	__SetPageLocked(page);
614 	error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
615 	if (unlikely(error))
616 		__ClearPageLocked(page);
617 	return error;
618 }
619 
dir_pages(struct inode * inode)620 static inline unsigned long dir_pages(struct inode *inode)
621 {
622 	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
623 			       PAGE_SHIFT;
624 }
625 
626 #endif /* _LINUX_PAGEMAP_H */
627