1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2006 Nick Piggin
5 * Copyright (C) 2012 Konstantin Khlebnikov
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2, or (at
10 * your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21 #ifndef _LINUX_RADIX_TREE_H
22 #define _LINUX_RADIX_TREE_H
23
24 #include <linux/bitops.h>
25 #include <linux/preempt.h>
26 #include <linux/types.h>
27 #include <linux/bug.h>
28 #include <linux/kernel.h>
29 #include <linux/rcupdate.h>
30
31 /*
32 * The bottom two bits of the slot determine how the remaining bits in the
33 * slot are interpreted:
34 *
35 * 00 - data pointer
36 * 01 - internal entry
37 * 10 - exceptional entry
38 * 11 - this bit combination is currently unused/reserved
39 *
40 * The internal entry may be a pointer to the next level in the tree, a
41 * sibling entry, or an indicator that the entry in this slot has been moved
42 * to another location in the tree and the lookup should be restarted. While
43 * NULL fits the 'data pointer' pattern, it means that there is no entry in
44 * the tree for this index (no matter what level of the tree it is found at).
45 * This means that you cannot store NULL in the tree as a value for the index.
46 */
47 #define RADIX_TREE_ENTRY_MASK 3UL
48 #define RADIX_TREE_INTERNAL_NODE 1UL
49
50 /*
51 * Most users of the radix tree store pointers but shmem/tmpfs stores swap
52 * entries in the same tree. They are marked as exceptional entries to
53 * distinguish them from pointers to struct page.
54 * EXCEPTIONAL_ENTRY tests the bit, EXCEPTIONAL_SHIFT shifts content past it.
55 */
56 #define RADIX_TREE_EXCEPTIONAL_ENTRY 2
57 #define RADIX_TREE_EXCEPTIONAL_SHIFT 2
58
radix_tree_is_internal_node(void * ptr)59 static inline bool radix_tree_is_internal_node(void *ptr)
60 {
61 return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) ==
62 RADIX_TREE_INTERNAL_NODE;
63 }
64
65 /*** radix-tree API starts here ***/
66
67 #define RADIX_TREE_MAX_TAGS 3
68
69 #ifndef RADIX_TREE_MAP_SHIFT
70 #define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
71 #endif
72
73 #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
74 #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1)
75
76 #define RADIX_TREE_TAG_LONGS \
77 ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
78
79 #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long))
80 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
81 RADIX_TREE_MAP_SHIFT))
82
83 /* Internally used bits of node->count */
84 #define RADIX_TREE_COUNT_SHIFT (RADIX_TREE_MAP_SHIFT + 1)
85 #define RADIX_TREE_COUNT_MASK ((1UL << RADIX_TREE_COUNT_SHIFT) - 1)
86
87 struct radix_tree_node {
88 unsigned char shift; /* Bits remaining in each slot */
89 unsigned char offset; /* Slot offset in parent */
90 unsigned int count;
91 union {
92 struct {
93 /* Used when ascending tree */
94 struct radix_tree_node *parent;
95 /* For tree user */
96 void *private_data;
97 };
98 /* Used when freeing node */
99 struct rcu_head rcu_head;
100 };
101 /* For tree user */
102 struct list_head private_list;
103 void __rcu *slots[RADIX_TREE_MAP_SIZE];
104 unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
105 };
106
107 /* root tags are stored in gfp_mask, shifted by __GFP_BITS_SHIFT */
108 struct radix_tree_root {
109 gfp_t gfp_mask;
110 struct radix_tree_node __rcu *rnode;
111 };
112
113 #define RADIX_TREE_INIT(mask) { \
114 .gfp_mask = (mask), \
115 .rnode = NULL, \
116 }
117
118 #define RADIX_TREE(name, mask) \
119 struct radix_tree_root name = RADIX_TREE_INIT(mask)
120
121 #define INIT_RADIX_TREE(root, mask) \
122 do { \
123 (root)->gfp_mask = (mask); \
124 (root)->rnode = NULL; \
125 } while (0)
126
radix_tree_empty(struct radix_tree_root * root)127 static inline bool radix_tree_empty(struct radix_tree_root *root)
128 {
129 return root->rnode == NULL;
130 }
131
132 /**
133 * Radix-tree synchronization
134 *
135 * The radix-tree API requires that users provide all synchronisation (with
136 * specific exceptions, noted below).
137 *
138 * Synchronization of access to the data items being stored in the tree, and
139 * management of their lifetimes must be completely managed by API users.
140 *
141 * For API usage, in general,
142 * - any function _modifying_ the tree or tags (inserting or deleting
143 * items, setting or clearing tags) must exclude other modifications, and
144 * exclude any functions reading the tree.
145 * - any function _reading_ the tree or tags (looking up items or tags,
146 * gang lookups) must exclude modifications to the tree, but may occur
147 * concurrently with other readers.
148 *
149 * The notable exceptions to this rule are the following functions:
150 * __radix_tree_lookup
151 * radix_tree_lookup
152 * radix_tree_lookup_slot
153 * radix_tree_tag_get
154 * radix_tree_gang_lookup
155 * radix_tree_gang_lookup_slot
156 * radix_tree_gang_lookup_tag
157 * radix_tree_gang_lookup_tag_slot
158 * radix_tree_tagged
159 *
160 * The first 8 functions are able to be called locklessly, using RCU. The
161 * caller must ensure calls to these functions are made within rcu_read_lock()
162 * regions. Other readers (lock-free or otherwise) and modifications may be
163 * running concurrently.
164 *
165 * It is still required that the caller manage the synchronization and lifetimes
166 * of the items. So if RCU lock-free lookups are used, typically this would mean
167 * that the items have their own locks, or are amenable to lock-free access; and
168 * that the items are freed by RCU (or only freed after having been deleted from
169 * the radix tree *and* a synchronize_rcu() grace period).
170 *
171 * (Note, rcu_assign_pointer and rcu_dereference are not needed to control
172 * access to data items when inserting into or looking up from the radix tree)
173 *
174 * Note that the value returned by radix_tree_tag_get() may not be relied upon
175 * if only the RCU read lock is held. Functions to set/clear tags and to
176 * delete nodes running concurrently with it may affect its result such that
177 * two consecutive reads in the same locked section may return different
178 * values. If reliability is required, modification functions must also be
179 * excluded from concurrency.
180 *
181 * radix_tree_tagged is able to be called without locking or RCU.
182 */
183
184 /**
185 * radix_tree_deref_slot - dereference a slot
186 * @pslot: pointer to slot, returned by radix_tree_lookup_slot
187 * Returns: item that was stored in that slot with any direct pointer flag
188 * removed.
189 *
190 * For use with radix_tree_lookup_slot(). Caller must hold tree at least read
191 * locked across slot lookup and dereference. Not required if write lock is
192 * held (ie. items cannot be concurrently inserted).
193 *
194 * radix_tree_deref_retry must be used to confirm validity of the pointer if
195 * only the read lock is held.
196 */
radix_tree_deref_slot(void ** pslot)197 static inline void *radix_tree_deref_slot(void **pslot)
198 {
199 return rcu_dereference(*pslot);
200 }
201
202 /**
203 * radix_tree_deref_slot_protected - dereference a slot without RCU lock but with tree lock held
204 * @pslot: pointer to slot, returned by radix_tree_lookup_slot
205 * Returns: item that was stored in that slot with any direct pointer flag
206 * removed.
207 *
208 * Similar to radix_tree_deref_slot but only used during migration when a pages
209 * mapping is being moved. The caller does not hold the RCU read lock but it
210 * must hold the tree lock to prevent parallel updates.
211 */
radix_tree_deref_slot_protected(void ** pslot,spinlock_t * treelock)212 static inline void *radix_tree_deref_slot_protected(void **pslot,
213 spinlock_t *treelock)
214 {
215 return rcu_dereference_protected(*pslot, lockdep_is_held(treelock));
216 }
217
218 /**
219 * radix_tree_deref_retry - check radix_tree_deref_slot
220 * @arg: pointer returned by radix_tree_deref_slot
221 * Returns: 0 if retry is not required, otherwise retry is required
222 *
223 * radix_tree_deref_retry must be used with radix_tree_deref_slot.
224 */
radix_tree_deref_retry(void * arg)225 static inline int radix_tree_deref_retry(void *arg)
226 {
227 return unlikely(radix_tree_is_internal_node(arg));
228 }
229
230 /**
231 * radix_tree_exceptional_entry - radix_tree_deref_slot gave exceptional entry?
232 * @arg: value returned by radix_tree_deref_slot
233 * Returns: 0 if well-aligned pointer, non-0 if exceptional entry.
234 */
radix_tree_exceptional_entry(void * arg)235 static inline int radix_tree_exceptional_entry(void *arg)
236 {
237 /* Not unlikely because radix_tree_exception often tested first */
238 return (unsigned long)arg & RADIX_TREE_EXCEPTIONAL_ENTRY;
239 }
240
241 /**
242 * radix_tree_exception - radix_tree_deref_slot returned either exception?
243 * @arg: value returned by radix_tree_deref_slot
244 * Returns: 0 if well-aligned pointer, non-0 if either kind of exception.
245 */
radix_tree_exception(void * arg)246 static inline int radix_tree_exception(void *arg)
247 {
248 return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK);
249 }
250
251 /**
252 * radix_tree_replace_slot - replace item in a slot
253 * @pslot: pointer to slot, returned by radix_tree_lookup_slot
254 * @item: new item to store in the slot.
255 *
256 * For use with radix_tree_lookup_slot(). Caller must hold tree write locked
257 * across slot lookup and replacement.
258 */
radix_tree_replace_slot(void ** pslot,void * item)259 static inline void radix_tree_replace_slot(void **pslot, void *item)
260 {
261 BUG_ON(radix_tree_is_internal_node(item));
262 rcu_assign_pointer(*pslot, item);
263 }
264
265 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
266 unsigned order, struct radix_tree_node **nodep,
267 void ***slotp);
268 int __radix_tree_insert(struct radix_tree_root *, unsigned long index,
269 unsigned order, void *);
radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * entry)270 static inline int radix_tree_insert(struct radix_tree_root *root,
271 unsigned long index, void *entry)
272 {
273 return __radix_tree_insert(root, index, 0, entry);
274 }
275 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
276 struct radix_tree_node **nodep, void ***slotp);
277 void *radix_tree_lookup(struct radix_tree_root *, unsigned long);
278 void **radix_tree_lookup_slot(struct radix_tree_root *, unsigned long);
279 bool __radix_tree_delete_node(struct radix_tree_root *root,
280 struct radix_tree_node *node);
281 void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *);
282 void *radix_tree_delete(struct radix_tree_root *, unsigned long);
283 void radix_tree_clear_tags(struct radix_tree_root *root,
284 struct radix_tree_node *node,
285 void **slot);
286 unsigned int radix_tree_gang_lookup(struct radix_tree_root *root,
287 void **results, unsigned long first_index,
288 unsigned int max_items);
289 unsigned int radix_tree_gang_lookup_slot(struct radix_tree_root *root,
290 void ***results, unsigned long *indices,
291 unsigned long first_index, unsigned int max_items);
292 int radix_tree_preload(gfp_t gfp_mask);
293 int radix_tree_maybe_preload(gfp_t gfp_mask);
294 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order);
295 void radix_tree_init(void);
296 void *radix_tree_tag_set(struct radix_tree_root *root,
297 unsigned long index, unsigned int tag);
298 void *radix_tree_tag_clear(struct radix_tree_root *root,
299 unsigned long index, unsigned int tag);
300 int radix_tree_tag_get(struct radix_tree_root *root,
301 unsigned long index, unsigned int tag);
302 unsigned int
303 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
304 unsigned long first_index, unsigned int max_items,
305 unsigned int tag);
306 unsigned int
307 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
308 unsigned long first_index, unsigned int max_items,
309 unsigned int tag);
310 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
311 unsigned long *first_indexp, unsigned long last_index,
312 unsigned long nr_to_tag,
313 unsigned int fromtag, unsigned int totag);
314 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag);
315 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item);
316
radix_tree_preload_end(void)317 static inline void radix_tree_preload_end(void)
318 {
319 preempt_enable();
320 }
321
322 /**
323 * struct radix_tree_iter - radix tree iterator state
324 *
325 * @index: index of current slot
326 * @next_index: one beyond the last index for this chunk
327 * @tags: bit-mask for tag-iterating
328 * @shift: shift for the node that holds our slots
329 *
330 * This radix tree iterator works in terms of "chunks" of slots. A chunk is a
331 * subinterval of slots contained within one radix tree leaf node. It is
332 * described by a pointer to its first slot and a struct radix_tree_iter
333 * which holds the chunk's position in the tree and its size. For tagged
334 * iteration radix_tree_iter also holds the slots' bit-mask for one chosen
335 * radix tree tag.
336 */
337 struct radix_tree_iter {
338 unsigned long index;
339 unsigned long next_index;
340 unsigned long tags;
341 #ifdef CONFIG_RADIX_TREE_MULTIORDER
342 unsigned int shift;
343 #endif
344 };
345
iter_shift(struct radix_tree_iter * iter)346 static inline unsigned int iter_shift(struct radix_tree_iter *iter)
347 {
348 #ifdef CONFIG_RADIX_TREE_MULTIORDER
349 return iter->shift;
350 #else
351 return 0;
352 #endif
353 }
354
355 #define RADIX_TREE_ITER_TAG_MASK 0x00FF /* tag index in lower byte */
356 #define RADIX_TREE_ITER_TAGGED 0x0100 /* lookup tagged slots */
357 #define RADIX_TREE_ITER_CONTIG 0x0200 /* stop at first hole */
358
359 /**
360 * radix_tree_iter_init - initialize radix tree iterator
361 *
362 * @iter: pointer to iterator state
363 * @start: iteration starting index
364 * Returns: NULL
365 */
366 static __always_inline void **
radix_tree_iter_init(struct radix_tree_iter * iter,unsigned long start)367 radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start)
368 {
369 /*
370 * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it
371 * in the case of a successful tagged chunk lookup. If the lookup was
372 * unsuccessful or non-tagged then nobody cares about ->tags.
373 *
374 * Set index to zero to bypass next_index overflow protection.
375 * See the comment in radix_tree_next_chunk() for details.
376 */
377 iter->index = 0;
378 iter->next_index = start;
379 return NULL;
380 }
381
382 /**
383 * radix_tree_next_chunk - find next chunk of slots for iteration
384 *
385 * @root: radix tree root
386 * @iter: iterator state
387 * @flags: RADIX_TREE_ITER_* flags and tag index
388 * Returns: pointer to chunk first slot, or NULL if there no more left
389 *
390 * This function looks up the next chunk in the radix tree starting from
391 * @iter->next_index. It returns a pointer to the chunk's first slot.
392 * Also it fills @iter with data about chunk: position in the tree (index),
393 * its end (next_index), and constructs a bit mask for tagged iterating (tags).
394 */
395 void **radix_tree_next_chunk(struct radix_tree_root *root,
396 struct radix_tree_iter *iter, unsigned flags);
397
398 /**
399 * radix_tree_iter_retry - retry this chunk of the iteration
400 * @iter: iterator state
401 *
402 * If we iterate over a tree protected only by the RCU lock, a race
403 * against deletion or creation may result in seeing a slot for which
404 * radix_tree_deref_retry() returns true. If so, call this function
405 * and continue the iteration.
406 */
407 static inline __must_check
radix_tree_iter_retry(struct radix_tree_iter * iter)408 void **radix_tree_iter_retry(struct radix_tree_iter *iter)
409 {
410 iter->next_index = iter->index;
411 iter->tags = 0;
412 return NULL;
413 }
414
415 static inline unsigned long
__radix_tree_iter_add(struct radix_tree_iter * iter,unsigned long slots)416 __radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots)
417 {
418 return iter->index + (slots << iter_shift(iter));
419 }
420
421 /**
422 * radix_tree_iter_next - resume iterating when the chunk may be invalid
423 * @iter: iterator state
424 *
425 * If the iterator needs to release then reacquire a lock, the chunk may
426 * have been invalidated by an insertion or deletion. Call this function
427 * to continue the iteration from the next index.
428 */
429 static inline __must_check
radix_tree_iter_next(struct radix_tree_iter * iter)430 void **radix_tree_iter_next(struct radix_tree_iter *iter)
431 {
432 iter->next_index = __radix_tree_iter_add(iter, 1);
433 iter->tags = 0;
434 return NULL;
435 }
436
437 /**
438 * radix_tree_chunk_size - get current chunk size
439 *
440 * @iter: pointer to radix tree iterator
441 * Returns: current chunk size
442 */
443 static __always_inline long
radix_tree_chunk_size(struct radix_tree_iter * iter)444 radix_tree_chunk_size(struct radix_tree_iter *iter)
445 {
446 return (iter->next_index - iter->index) >> iter_shift(iter);
447 }
448
entry_to_node(void * ptr)449 static inline struct radix_tree_node *entry_to_node(void *ptr)
450 {
451 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
452 }
453
454 /**
455 * radix_tree_next_slot - find next slot in chunk
456 *
457 * @slot: pointer to current slot
458 * @iter: pointer to interator state
459 * @flags: RADIX_TREE_ITER_*, should be constant
460 * Returns: pointer to next slot, or NULL if there no more left
461 *
462 * This function updates @iter->index in the case of a successful lookup.
463 * For tagged lookup it also eats @iter->tags.
464 *
465 * There are several cases where 'slot' can be passed in as NULL to this
466 * function. These cases result from the use of radix_tree_iter_next() or
467 * radix_tree_iter_retry(). In these cases we don't end up dereferencing
468 * 'slot' because either:
469 * a) we are doing tagged iteration and iter->tags has been set to 0, or
470 * b) we are doing non-tagged iteration, and iter->index and iter->next_index
471 * have been set up so that radix_tree_chunk_size() returns 1 or 0.
472 */
473 static __always_inline void **
radix_tree_next_slot(void ** slot,struct radix_tree_iter * iter,unsigned flags)474 radix_tree_next_slot(void **slot, struct radix_tree_iter *iter, unsigned flags)
475 {
476 if (flags & RADIX_TREE_ITER_TAGGED) {
477 void *canon = slot;
478
479 iter->tags >>= 1;
480 if (unlikely(!iter->tags))
481 return NULL;
482 while (IS_ENABLED(CONFIG_RADIX_TREE_MULTIORDER) &&
483 radix_tree_is_internal_node(slot[1])) {
484 if (entry_to_node(slot[1]) == canon) {
485 iter->tags >>= 1;
486 iter->index = __radix_tree_iter_add(iter, 1);
487 slot++;
488 continue;
489 }
490 iter->next_index = __radix_tree_iter_add(iter, 1);
491 return NULL;
492 }
493 if (likely(iter->tags & 1ul)) {
494 iter->index = __radix_tree_iter_add(iter, 1);
495 return slot + 1;
496 }
497 if (!(flags & RADIX_TREE_ITER_CONTIG)) {
498 unsigned offset = __ffs(iter->tags);
499
500 iter->tags >>= offset;
501 iter->index = __radix_tree_iter_add(iter, offset + 1);
502 return slot + offset + 1;
503 }
504 } else {
505 long count = radix_tree_chunk_size(iter);
506 void *canon = slot;
507
508 while (--count > 0) {
509 slot++;
510 iter->index = __radix_tree_iter_add(iter, 1);
511
512 if (IS_ENABLED(CONFIG_RADIX_TREE_MULTIORDER) &&
513 radix_tree_is_internal_node(*slot)) {
514 if (entry_to_node(*slot) == canon)
515 continue;
516 iter->next_index = iter->index;
517 break;
518 }
519
520 if (likely(*slot))
521 return slot;
522 if (flags & RADIX_TREE_ITER_CONTIG) {
523 /* forbid switching to the next chunk */
524 iter->next_index = 0;
525 break;
526 }
527 }
528 }
529 return NULL;
530 }
531
532 /**
533 * radix_tree_for_each_slot - iterate over non-empty slots
534 *
535 * @slot: the void** variable for pointer to slot
536 * @root: the struct radix_tree_root pointer
537 * @iter: the struct radix_tree_iter pointer
538 * @start: iteration starting index
539 *
540 * @slot points to radix tree slot, @iter->index contains its index.
541 */
542 #define radix_tree_for_each_slot(slot, root, iter, start) \
543 for (slot = radix_tree_iter_init(iter, start) ; \
544 slot || (slot = radix_tree_next_chunk(root, iter, 0)) ; \
545 slot = radix_tree_next_slot(slot, iter, 0))
546
547 /**
548 * radix_tree_for_each_contig - iterate over contiguous slots
549 *
550 * @slot: the void** variable for pointer to slot
551 * @root: the struct radix_tree_root pointer
552 * @iter: the struct radix_tree_iter pointer
553 * @start: iteration starting index
554 *
555 * @slot points to radix tree slot, @iter->index contains its index.
556 */
557 #define radix_tree_for_each_contig(slot, root, iter, start) \
558 for (slot = radix_tree_iter_init(iter, start) ; \
559 slot || (slot = radix_tree_next_chunk(root, iter, \
560 RADIX_TREE_ITER_CONTIG)) ; \
561 slot = radix_tree_next_slot(slot, iter, \
562 RADIX_TREE_ITER_CONTIG))
563
564 /**
565 * radix_tree_for_each_tagged - iterate over tagged slots
566 *
567 * @slot: the void** variable for pointer to slot
568 * @root: the struct radix_tree_root pointer
569 * @iter: the struct radix_tree_iter pointer
570 * @start: iteration starting index
571 * @tag: tag index
572 *
573 * @slot points to radix tree slot, @iter->index contains its index.
574 */
575 #define radix_tree_for_each_tagged(slot, root, iter, start, tag) \
576 for (slot = radix_tree_iter_init(iter, start) ; \
577 slot || (slot = radix_tree_next_chunk(root, iter, \
578 RADIX_TREE_ITER_TAGGED | tag)) ; \
579 slot = radix_tree_next_slot(slot, iter, \
580 RADIX_TREE_ITER_TAGGED))
581
582 #endif /* _LINUX_RADIX_TREE_H */
583