1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/backing-dev.h>
30 #include <trace/events/ext4.h>
31
32 #ifdef CONFIG_EXT4_DEBUG
33 ushort ext4_mballoc_debug __read_mostly;
34
35 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
36 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
37 #endif
38
39 /*
40 * MUSTDO:
41 * - test ext4_ext_search_left() and ext4_ext_search_right()
42 * - search for metadata in few groups
43 *
44 * TODO v4:
45 * - normalization should take into account whether file is still open
46 * - discard preallocations if no free space left (policy?)
47 * - don't normalize tails
48 * - quota
49 * - reservation for superuser
50 *
51 * TODO v3:
52 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
53 * - track min/max extents in each group for better group selection
54 * - mb_mark_used() may allocate chunk right after splitting buddy
55 * - tree of groups sorted by number of free blocks
56 * - error handling
57 */
58
59 /*
60 * The allocation request involve request for multiple number of blocks
61 * near to the goal(block) value specified.
62 *
63 * During initialization phase of the allocator we decide to use the
64 * group preallocation or inode preallocation depending on the size of
65 * the file. The size of the file could be the resulting file size we
66 * would have after allocation, or the current file size, which ever
67 * is larger. If the size is less than sbi->s_mb_stream_request we
68 * select to use the group preallocation. The default value of
69 * s_mb_stream_request is 16 blocks. This can also be tuned via
70 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
71 * terms of number of blocks.
72 *
73 * The main motivation for having small file use group preallocation is to
74 * ensure that we have small files closer together on the disk.
75 *
76 * First stage the allocator looks at the inode prealloc list,
77 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
78 * spaces for this particular inode. The inode prealloc space is
79 * represented as:
80 *
81 * pa_lstart -> the logical start block for this prealloc space
82 * pa_pstart -> the physical start block for this prealloc space
83 * pa_len -> length for this prealloc space (in clusters)
84 * pa_free -> free space available in this prealloc space (in clusters)
85 *
86 * The inode preallocation space is used looking at the _logical_ start
87 * block. If only the logical file block falls within the range of prealloc
88 * space we will consume the particular prealloc space. This makes sure that
89 * we have contiguous physical blocks representing the file blocks
90 *
91 * The important thing to be noted in case of inode prealloc space is that
92 * we don't modify the values associated to inode prealloc space except
93 * pa_free.
94 *
95 * If we are not able to find blocks in the inode prealloc space and if we
96 * have the group allocation flag set then we look at the locality group
97 * prealloc space. These are per CPU prealloc list represented as
98 *
99 * ext4_sb_info.s_locality_groups[smp_processor_id()]
100 *
101 * The reason for having a per cpu locality group is to reduce the contention
102 * between CPUs. It is possible to get scheduled at this point.
103 *
104 * The locality group prealloc space is used looking at whether we have
105 * enough free space (pa_free) within the prealloc space.
106 *
107 * If we can't allocate blocks via inode prealloc or/and locality group
108 * prealloc then we look at the buddy cache. The buddy cache is represented
109 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
110 * mapped to the buddy and bitmap information regarding different
111 * groups. The buddy information is attached to buddy cache inode so that
112 * we can access them through the page cache. The information regarding
113 * each group is loaded via ext4_mb_load_buddy. The information involve
114 * block bitmap and buddy information. The information are stored in the
115 * inode as:
116 *
117 * { page }
118 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
119 *
120 *
121 * one block each for bitmap and buddy information. So for each group we
122 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
123 * blocksize) blocks. So it can have information regarding groups_per_page
124 * which is blocks_per_page/2
125 *
126 * The buddy cache inode is not stored on disk. The inode is thrown
127 * away when the filesystem is unmounted.
128 *
129 * We look for count number of blocks in the buddy cache. If we were able
130 * to locate that many free blocks we return with additional information
131 * regarding rest of the contiguous physical block available
132 *
133 * Before allocating blocks via buddy cache we normalize the request
134 * blocks. This ensure we ask for more blocks that we needed. The extra
135 * blocks that we get after allocation is added to the respective prealloc
136 * list. In case of inode preallocation we follow a list of heuristics
137 * based on file size. This can be found in ext4_mb_normalize_request. If
138 * we are doing a group prealloc we try to normalize the request to
139 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
140 * dependent on the cluster size; for non-bigalloc file systems, it is
141 * 512 blocks. This can be tuned via
142 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
143 * terms of number of blocks. If we have mounted the file system with -O
144 * stripe=<value> option the group prealloc request is normalized to the
145 * the smallest multiple of the stripe value (sbi->s_stripe) which is
146 * greater than the default mb_group_prealloc.
147 *
148 * The regular allocator (using the buddy cache) supports a few tunables.
149 *
150 * /sys/fs/ext4/<partition>/mb_min_to_scan
151 * /sys/fs/ext4/<partition>/mb_max_to_scan
152 * /sys/fs/ext4/<partition>/mb_order2_req
153 *
154 * The regular allocator uses buddy scan only if the request len is power of
155 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
156 * value of s_mb_order2_reqs can be tuned via
157 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
158 * stripe size (sbi->s_stripe), we try to search for contiguous block in
159 * stripe size. This should result in better allocation on RAID setups. If
160 * not, we search in the specific group using bitmap for best extents. The
161 * tunable min_to_scan and max_to_scan control the behaviour here.
162 * min_to_scan indicate how long the mballoc __must__ look for a best
163 * extent and max_to_scan indicates how long the mballoc __can__ look for a
164 * best extent in the found extents. Searching for the blocks starts with
165 * the group specified as the goal value in allocation context via
166 * ac_g_ex. Each group is first checked based on the criteria whether it
167 * can be used for allocation. ext4_mb_good_group explains how the groups are
168 * checked.
169 *
170 * Both the prealloc space are getting populated as above. So for the first
171 * request we will hit the buddy cache which will result in this prealloc
172 * space getting filled. The prealloc space is then later used for the
173 * subsequent request.
174 */
175
176 /*
177 * mballoc operates on the following data:
178 * - on-disk bitmap
179 * - in-core buddy (actually includes buddy and bitmap)
180 * - preallocation descriptors (PAs)
181 *
182 * there are two types of preallocations:
183 * - inode
184 * assiged to specific inode and can be used for this inode only.
185 * it describes part of inode's space preallocated to specific
186 * physical blocks. any block from that preallocated can be used
187 * independent. the descriptor just tracks number of blocks left
188 * unused. so, before taking some block from descriptor, one must
189 * make sure corresponded logical block isn't allocated yet. this
190 * also means that freeing any block within descriptor's range
191 * must discard all preallocated blocks.
192 * - locality group
193 * assigned to specific locality group which does not translate to
194 * permanent set of inodes: inode can join and leave group. space
195 * from this type of preallocation can be used for any inode. thus
196 * it's consumed from the beginning to the end.
197 *
198 * relation between them can be expressed as:
199 * in-core buddy = on-disk bitmap + preallocation descriptors
200 *
201 * this mean blocks mballoc considers used are:
202 * - allocated blocks (persistent)
203 * - preallocated blocks (non-persistent)
204 *
205 * consistency in mballoc world means that at any time a block is either
206 * free or used in ALL structures. notice: "any time" should not be read
207 * literally -- time is discrete and delimited by locks.
208 *
209 * to keep it simple, we don't use block numbers, instead we count number of
210 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
211 *
212 * all operations can be expressed as:
213 * - init buddy: buddy = on-disk + PAs
214 * - new PA: buddy += N; PA = N
215 * - use inode PA: on-disk += N; PA -= N
216 * - discard inode PA buddy -= on-disk - PA; PA = 0
217 * - use locality group PA on-disk += N; PA -= N
218 * - discard locality group PA buddy -= PA; PA = 0
219 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
220 * is used in real operation because we can't know actual used
221 * bits from PA, only from on-disk bitmap
222 *
223 * if we follow this strict logic, then all operations above should be atomic.
224 * given some of them can block, we'd have to use something like semaphores
225 * killing performance on high-end SMP hardware. let's try to relax it using
226 * the following knowledge:
227 * 1) if buddy is referenced, it's already initialized
228 * 2) while block is used in buddy and the buddy is referenced,
229 * nobody can re-allocate that block
230 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
231 * bit set and PA claims same block, it's OK. IOW, one can set bit in
232 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
233 * block
234 *
235 * so, now we're building a concurrency table:
236 * - init buddy vs.
237 * - new PA
238 * blocks for PA are allocated in the buddy, buddy must be referenced
239 * until PA is linked to allocation group to avoid concurrent buddy init
240 * - use inode PA
241 * we need to make sure that either on-disk bitmap or PA has uptodate data
242 * given (3) we care that PA-=N operation doesn't interfere with init
243 * - discard inode PA
244 * the simplest way would be to have buddy initialized by the discard
245 * - use locality group PA
246 * again PA-=N must be serialized with init
247 * - discard locality group PA
248 * the simplest way would be to have buddy initialized by the discard
249 * - new PA vs.
250 * - use inode PA
251 * i_data_sem serializes them
252 * - discard inode PA
253 * discard process must wait until PA isn't used by another process
254 * - use locality group PA
255 * some mutex should serialize them
256 * - discard locality group PA
257 * discard process must wait until PA isn't used by another process
258 * - use inode PA
259 * - use inode PA
260 * i_data_sem or another mutex should serializes them
261 * - discard inode PA
262 * discard process must wait until PA isn't used by another process
263 * - use locality group PA
264 * nothing wrong here -- they're different PAs covering different blocks
265 * - discard locality group PA
266 * discard process must wait until PA isn't used by another process
267 *
268 * now we're ready to make few consequences:
269 * - PA is referenced and while it is no discard is possible
270 * - PA is referenced until block isn't marked in on-disk bitmap
271 * - PA changes only after on-disk bitmap
272 * - discard must not compete with init. either init is done before
273 * any discard or they're serialized somehow
274 * - buddy init as sum of on-disk bitmap and PAs is done atomically
275 *
276 * a special case when we've used PA to emptiness. no need to modify buddy
277 * in this case, but we should care about concurrent init
278 *
279 */
280
281 /*
282 * Logic in few words:
283 *
284 * - allocation:
285 * load group
286 * find blocks
287 * mark bits in on-disk bitmap
288 * release group
289 *
290 * - use preallocation:
291 * find proper PA (per-inode or group)
292 * load group
293 * mark bits in on-disk bitmap
294 * release group
295 * release PA
296 *
297 * - free:
298 * load group
299 * mark bits in on-disk bitmap
300 * release group
301 *
302 * - discard preallocations in group:
303 * mark PAs deleted
304 * move them onto local list
305 * load on-disk bitmap
306 * load group
307 * remove PA from object (inode or locality group)
308 * mark free blocks in-core
309 *
310 * - discard inode's preallocations:
311 */
312
313 /*
314 * Locking rules
315 *
316 * Locks:
317 * - bitlock on a group (group)
318 * - object (inode/locality) (object)
319 * - per-pa lock (pa)
320 *
321 * Paths:
322 * - new pa
323 * object
324 * group
325 *
326 * - find and use pa:
327 * pa
328 *
329 * - release consumed pa:
330 * pa
331 * group
332 * object
333 *
334 * - generate in-core bitmap:
335 * group
336 * pa
337 *
338 * - discard all for given object (inode, locality group):
339 * object
340 * pa
341 * group
342 *
343 * - discard all for given group:
344 * group
345 * pa
346 * group
347 * object
348 *
349 */
350 static struct kmem_cache *ext4_pspace_cachep;
351 static struct kmem_cache *ext4_ac_cachep;
352 static struct kmem_cache *ext4_free_data_cachep;
353
354 /* We create slab caches for groupinfo data structures based on the
355 * superblock block size. There will be one per mounted filesystem for
356 * each unique s_blocksize_bits */
357 #define NR_GRPINFO_CACHES 8
358 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
359
360 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
361 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
362 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
363 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
364 };
365
366 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
367 ext4_group_t group);
368 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
369 ext4_group_t group);
370 static void ext4_free_data_callback(struct super_block *sb,
371 struct ext4_journal_cb_entry *jce, int rc);
372
mb_correct_addr_and_bit(int * bit,void * addr)373 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
374 {
375 #if BITS_PER_LONG == 64
376 *bit += ((unsigned long) addr & 7UL) << 3;
377 addr = (void *) ((unsigned long) addr & ~7UL);
378 #elif BITS_PER_LONG == 32
379 *bit += ((unsigned long) addr & 3UL) << 3;
380 addr = (void *) ((unsigned long) addr & ~3UL);
381 #else
382 #error "how many bits you are?!"
383 #endif
384 return addr;
385 }
386
mb_test_bit(int bit,void * addr)387 static inline int mb_test_bit(int bit, void *addr)
388 {
389 /*
390 * ext4_test_bit on architecture like powerpc
391 * needs unsigned long aligned address
392 */
393 addr = mb_correct_addr_and_bit(&bit, addr);
394 return ext4_test_bit(bit, addr);
395 }
396
mb_set_bit(int bit,void * addr)397 static inline void mb_set_bit(int bit, void *addr)
398 {
399 addr = mb_correct_addr_and_bit(&bit, addr);
400 ext4_set_bit(bit, addr);
401 }
402
mb_clear_bit(int bit,void * addr)403 static inline void mb_clear_bit(int bit, void *addr)
404 {
405 addr = mb_correct_addr_and_bit(&bit, addr);
406 ext4_clear_bit(bit, addr);
407 }
408
mb_test_and_clear_bit(int bit,void * addr)409 static inline int mb_test_and_clear_bit(int bit, void *addr)
410 {
411 addr = mb_correct_addr_and_bit(&bit, addr);
412 return ext4_test_and_clear_bit(bit, addr);
413 }
414
mb_find_next_zero_bit(void * addr,int max,int start)415 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
416 {
417 int fix = 0, ret, tmpmax;
418 addr = mb_correct_addr_and_bit(&fix, addr);
419 tmpmax = max + fix;
420 start += fix;
421
422 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
423 if (ret > max)
424 return max;
425 return ret;
426 }
427
mb_find_next_bit(void * addr,int max,int start)428 static inline int mb_find_next_bit(void *addr, int max, int start)
429 {
430 int fix = 0, ret, tmpmax;
431 addr = mb_correct_addr_and_bit(&fix, addr);
432 tmpmax = max + fix;
433 start += fix;
434
435 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
436 if (ret > max)
437 return max;
438 return ret;
439 }
440
mb_find_buddy(struct ext4_buddy * e4b,int order,int * max)441 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
442 {
443 char *bb;
444
445 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
446 BUG_ON(max == NULL);
447
448 if (order > e4b->bd_blkbits + 1) {
449 *max = 0;
450 return NULL;
451 }
452
453 /* at order 0 we see each particular block */
454 if (order == 0) {
455 *max = 1 << (e4b->bd_blkbits + 3);
456 return e4b->bd_bitmap;
457 }
458
459 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
460 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
461
462 return bb;
463 }
464
465 #ifdef DOUBLE_CHECK
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)466 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
467 int first, int count)
468 {
469 int i;
470 struct super_block *sb = e4b->bd_sb;
471
472 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
473 return;
474 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
475 for (i = 0; i < count; i++) {
476 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
477 ext4_fsblk_t blocknr;
478
479 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
480 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
481 ext4_grp_locked_error(sb, e4b->bd_group,
482 inode ? inode->i_ino : 0,
483 blocknr,
484 "freeing block already freed "
485 "(bit %u)",
486 first + i);
487 }
488 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
489 }
490 }
491
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)492 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
493 {
494 int i;
495
496 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
497 return;
498 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
499 for (i = 0; i < count; i++) {
500 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
501 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
502 }
503 }
504
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)505 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
506 {
507 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
508 unsigned char *b1, *b2;
509 int i;
510 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
511 b2 = (unsigned char *) bitmap;
512 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
513 if (b1[i] != b2[i]) {
514 ext4_msg(e4b->bd_sb, KERN_ERR,
515 "corruption in group %u "
516 "at byte %u(%u): %x in copy != %x "
517 "on disk/prealloc",
518 e4b->bd_group, i, i * 8, b1[i], b2[i]);
519 BUG();
520 }
521 }
522 }
523 }
524
525 #else
mb_free_blocks_double(struct inode * inode,struct ext4_buddy * e4b,int first,int count)526 static inline void mb_free_blocks_double(struct inode *inode,
527 struct ext4_buddy *e4b, int first, int count)
528 {
529 return;
530 }
mb_mark_used_double(struct ext4_buddy * e4b,int first,int count)531 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
532 int first, int count)
533 {
534 return;
535 }
mb_cmp_bitmaps(struct ext4_buddy * e4b,void * bitmap)536 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
537 {
538 return;
539 }
540 #endif
541
542 #ifdef AGGRESSIVE_CHECK
543
544 #define MB_CHECK_ASSERT(assert) \
545 do { \
546 if (!(assert)) { \
547 printk(KERN_EMERG \
548 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
549 function, file, line, # assert); \
550 BUG(); \
551 } \
552 } while (0)
553
__mb_check_buddy(struct ext4_buddy * e4b,char * file,const char * function,int line)554 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
555 const char *function, int line)
556 {
557 struct super_block *sb = e4b->bd_sb;
558 int order = e4b->bd_blkbits + 1;
559 int max;
560 int max2;
561 int i;
562 int j;
563 int k;
564 int count;
565 struct ext4_group_info *grp;
566 int fragments = 0;
567 int fstart;
568 struct list_head *cur;
569 void *buddy;
570 void *buddy2;
571
572 {
573 static int mb_check_counter;
574 if (mb_check_counter++ % 100 != 0)
575 return 0;
576 }
577
578 while (order > 1) {
579 buddy = mb_find_buddy(e4b, order, &max);
580 MB_CHECK_ASSERT(buddy);
581 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
582 MB_CHECK_ASSERT(buddy2);
583 MB_CHECK_ASSERT(buddy != buddy2);
584 MB_CHECK_ASSERT(max * 2 == max2);
585
586 count = 0;
587 for (i = 0; i < max; i++) {
588
589 if (mb_test_bit(i, buddy)) {
590 /* only single bit in buddy2 may be 1 */
591 if (!mb_test_bit(i << 1, buddy2)) {
592 MB_CHECK_ASSERT(
593 mb_test_bit((i<<1)+1, buddy2));
594 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
595 MB_CHECK_ASSERT(
596 mb_test_bit(i << 1, buddy2));
597 }
598 continue;
599 }
600
601 /* both bits in buddy2 must be 1 */
602 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
603 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
604
605 for (j = 0; j < (1 << order); j++) {
606 k = (i * (1 << order)) + j;
607 MB_CHECK_ASSERT(
608 !mb_test_bit(k, e4b->bd_bitmap));
609 }
610 count++;
611 }
612 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
613 order--;
614 }
615
616 fstart = -1;
617 buddy = mb_find_buddy(e4b, 0, &max);
618 for (i = 0; i < max; i++) {
619 if (!mb_test_bit(i, buddy)) {
620 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
621 if (fstart == -1) {
622 fragments++;
623 fstart = i;
624 }
625 continue;
626 }
627 fstart = -1;
628 /* check used bits only */
629 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
630 buddy2 = mb_find_buddy(e4b, j, &max2);
631 k = i >> j;
632 MB_CHECK_ASSERT(k < max2);
633 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
634 }
635 }
636 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
637 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
638
639 grp = ext4_get_group_info(sb, e4b->bd_group);
640 list_for_each(cur, &grp->bb_prealloc_list) {
641 ext4_group_t groupnr;
642 struct ext4_prealloc_space *pa;
643 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
644 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
645 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
646 for (i = 0; i < pa->pa_len; i++)
647 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
648 }
649 return 0;
650 }
651 #undef MB_CHECK_ASSERT
652 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
653 __FILE__, __func__, __LINE__)
654 #else
655 #define mb_check_buddy(e4b)
656 #endif
657
658 /*
659 * Divide blocks started from @first with length @len into
660 * smaller chunks with power of 2 blocks.
661 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
662 * then increase bb_counters[] for corresponded chunk size.
663 */
ext4_mb_mark_free_simple(struct super_block * sb,void * buddy,ext4_grpblk_t first,ext4_grpblk_t len,struct ext4_group_info * grp)664 static void ext4_mb_mark_free_simple(struct super_block *sb,
665 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
666 struct ext4_group_info *grp)
667 {
668 struct ext4_sb_info *sbi = EXT4_SB(sb);
669 ext4_grpblk_t min;
670 ext4_grpblk_t max;
671 ext4_grpblk_t chunk;
672 unsigned int border;
673
674 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
675
676 border = 2 << sb->s_blocksize_bits;
677
678 while (len > 0) {
679 /* find how many blocks can be covered since this position */
680 max = ffs(first | border) - 1;
681
682 /* find how many blocks of power 2 we need to mark */
683 min = fls(len) - 1;
684
685 if (max < min)
686 min = max;
687 chunk = 1 << min;
688
689 /* mark multiblock chunks only */
690 grp->bb_counters[min]++;
691 if (min > 0)
692 mb_clear_bit(first >> min,
693 buddy + sbi->s_mb_offsets[min]);
694
695 len -= chunk;
696 first += chunk;
697 }
698 }
699
700 /*
701 * Cache the order of the largest free extent we have available in this block
702 * group.
703 */
704 static void
mb_set_largest_free_order(struct super_block * sb,struct ext4_group_info * grp)705 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
706 {
707 int i;
708 int bits;
709
710 grp->bb_largest_free_order = -1; /* uninit */
711
712 bits = sb->s_blocksize_bits + 1;
713 for (i = bits; i >= 0; i--) {
714 if (grp->bb_counters[i] > 0) {
715 grp->bb_largest_free_order = i;
716 break;
717 }
718 }
719 }
720
721 static noinline_for_stack
ext4_mb_generate_buddy(struct super_block * sb,void * buddy,void * bitmap,ext4_group_t group)722 void ext4_mb_generate_buddy(struct super_block *sb,
723 void *buddy, void *bitmap, ext4_group_t group)
724 {
725 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
726 struct ext4_sb_info *sbi = EXT4_SB(sb);
727 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
728 ext4_grpblk_t i = 0;
729 ext4_grpblk_t first;
730 ext4_grpblk_t len;
731 unsigned free = 0;
732 unsigned fragments = 0;
733 unsigned long long period = get_cycles();
734
735 /* initialize buddy from bitmap which is aggregation
736 * of on-disk bitmap and preallocations */
737 i = mb_find_next_zero_bit(bitmap, max, 0);
738 grp->bb_first_free = i;
739 while (i < max) {
740 fragments++;
741 first = i;
742 i = mb_find_next_bit(bitmap, max, i);
743 len = i - first;
744 free += len;
745 if (len > 1)
746 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
747 else
748 grp->bb_counters[0]++;
749 if (i < max)
750 i = mb_find_next_zero_bit(bitmap, max, i);
751 }
752 grp->bb_fragments = fragments;
753
754 if (free != grp->bb_free) {
755 ext4_grp_locked_error(sb, group, 0, 0,
756 "block bitmap and bg descriptor "
757 "inconsistent: %u vs %u free clusters",
758 free, grp->bb_free);
759 /*
760 * If we intend to continue, we consider group descriptor
761 * corrupt and update bb_free using bitmap value
762 */
763 grp->bb_free = free;
764 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
765 percpu_counter_sub(&sbi->s_freeclusters_counter,
766 grp->bb_free);
767 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
768 }
769 mb_set_largest_free_order(sb, grp);
770
771 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
772
773 period = get_cycles() - period;
774 spin_lock(&EXT4_SB(sb)->s_bal_lock);
775 EXT4_SB(sb)->s_mb_buddies_generated++;
776 EXT4_SB(sb)->s_mb_generation_time += period;
777 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
778 }
779
mb_regenerate_buddy(struct ext4_buddy * e4b)780 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
781 {
782 int count;
783 int order = 1;
784 void *buddy;
785
786 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
787 ext4_set_bits(buddy, 0, count);
788 }
789 e4b->bd_info->bb_fragments = 0;
790 memset(e4b->bd_info->bb_counters, 0,
791 sizeof(*e4b->bd_info->bb_counters) *
792 (e4b->bd_sb->s_blocksize_bits + 2));
793
794 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
795 e4b->bd_bitmap, e4b->bd_group);
796 }
797
798 /* The buddy information is attached the buddy cache inode
799 * for convenience. The information regarding each group
800 * is loaded via ext4_mb_load_buddy. The information involve
801 * block bitmap and buddy information. The information are
802 * stored in the inode as
803 *
804 * { page }
805 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
806 *
807 *
808 * one block each for bitmap and buddy information.
809 * So for each group we take up 2 blocks. A page can
810 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
811 * So it can have information regarding groups_per_page which
812 * is blocks_per_page/2
813 *
814 * Locking note: This routine takes the block group lock of all groups
815 * for this page; do not hold this lock when calling this routine!
816 */
817
ext4_mb_init_cache(struct page * page,char * incore,gfp_t gfp)818 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
819 {
820 ext4_group_t ngroups;
821 int blocksize;
822 int blocks_per_page;
823 int groups_per_page;
824 int err = 0;
825 int i;
826 ext4_group_t first_group, group;
827 int first_block;
828 struct super_block *sb;
829 struct buffer_head *bhs;
830 struct buffer_head **bh = NULL;
831 struct inode *inode;
832 char *data;
833 char *bitmap;
834 struct ext4_group_info *grinfo;
835
836 mb_debug(1, "init page %lu\n", page->index);
837
838 inode = page->mapping->host;
839 sb = inode->i_sb;
840 ngroups = ext4_get_groups_count(sb);
841 blocksize = i_blocksize(inode);
842 blocks_per_page = PAGE_SIZE / blocksize;
843
844 groups_per_page = blocks_per_page >> 1;
845 if (groups_per_page == 0)
846 groups_per_page = 1;
847
848 /* allocate buffer_heads to read bitmaps */
849 if (groups_per_page > 1) {
850 i = sizeof(struct buffer_head *) * groups_per_page;
851 bh = kzalloc(i, gfp);
852 if (bh == NULL) {
853 err = -ENOMEM;
854 goto out;
855 }
856 } else
857 bh = &bhs;
858
859 first_group = page->index * blocks_per_page / 2;
860
861 /* read all groups the page covers into the cache */
862 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
863 if (group >= ngroups)
864 break;
865
866 grinfo = ext4_get_group_info(sb, group);
867 /*
868 * If page is uptodate then we came here after online resize
869 * which added some new uninitialized group info structs, so
870 * we must skip all initialized uptodate buddies on the page,
871 * which may be currently in use by an allocating task.
872 */
873 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
874 bh[i] = NULL;
875 continue;
876 }
877 bh[i] = ext4_read_block_bitmap_nowait(sb, group);
878 if (IS_ERR(bh[i])) {
879 err = PTR_ERR(bh[i]);
880 bh[i] = NULL;
881 goto out;
882 }
883 mb_debug(1, "read bitmap for group %u\n", group);
884 }
885
886 /* wait for I/O completion */
887 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
888 int err2;
889
890 if (!bh[i])
891 continue;
892 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
893 if (!err)
894 err = err2;
895 }
896
897 first_block = page->index * blocks_per_page;
898 for (i = 0; i < blocks_per_page; i++) {
899 group = (first_block + i) >> 1;
900 if (group >= ngroups)
901 break;
902
903 if (!bh[group - first_group])
904 /* skip initialized uptodate buddy */
905 continue;
906
907 if (!buffer_verified(bh[group - first_group]))
908 /* Skip faulty bitmaps */
909 continue;
910 err = 0;
911
912 /*
913 * data carry information regarding this
914 * particular group in the format specified
915 * above
916 *
917 */
918 data = page_address(page) + (i * blocksize);
919 bitmap = bh[group - first_group]->b_data;
920
921 /*
922 * We place the buddy block and bitmap block
923 * close together
924 */
925 if ((first_block + i) & 1) {
926 /* this is block of buddy */
927 BUG_ON(incore == NULL);
928 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
929 group, page->index, i * blocksize);
930 trace_ext4_mb_buddy_bitmap_load(sb, group);
931 grinfo = ext4_get_group_info(sb, group);
932 grinfo->bb_fragments = 0;
933 memset(grinfo->bb_counters, 0,
934 sizeof(*grinfo->bb_counters) *
935 (sb->s_blocksize_bits+2));
936 /*
937 * incore got set to the group block bitmap below
938 */
939 ext4_lock_group(sb, group);
940 /* init the buddy */
941 memset(data, 0xff, blocksize);
942 ext4_mb_generate_buddy(sb, data, incore, group);
943 ext4_unlock_group(sb, group);
944 incore = NULL;
945 } else {
946 /* this is block of bitmap */
947 BUG_ON(incore != NULL);
948 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
949 group, page->index, i * blocksize);
950 trace_ext4_mb_bitmap_load(sb, group);
951
952 /* see comments in ext4_mb_put_pa() */
953 ext4_lock_group(sb, group);
954 memcpy(data, bitmap, blocksize);
955
956 /* mark all preallocated blks used in in-core bitmap */
957 ext4_mb_generate_from_pa(sb, data, group);
958 ext4_mb_generate_from_freelist(sb, data, group);
959 ext4_unlock_group(sb, group);
960
961 /* set incore so that the buddy information can be
962 * generated using this
963 */
964 incore = data;
965 }
966 }
967 SetPageUptodate(page);
968
969 out:
970 if (bh) {
971 for (i = 0; i < groups_per_page; i++)
972 brelse(bh[i]);
973 if (bh != &bhs)
974 kfree(bh);
975 }
976 return err;
977 }
978
979 /*
980 * Lock the buddy and bitmap pages. This make sure other parallel init_group
981 * on the same buddy page doesn't happen whild holding the buddy page lock.
982 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
983 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
984 */
ext4_mb_get_buddy_page_lock(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)985 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
986 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
987 {
988 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
989 int block, pnum, poff;
990 int blocks_per_page;
991 struct page *page;
992
993 e4b->bd_buddy_page = NULL;
994 e4b->bd_bitmap_page = NULL;
995
996 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
997 /*
998 * the buddy cache inode stores the block bitmap
999 * and buddy information in consecutive blocks.
1000 * So for each group we need two blocks.
1001 */
1002 block = group * 2;
1003 pnum = block / blocks_per_page;
1004 poff = block % blocks_per_page;
1005 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1006 if (!page)
1007 return -ENOMEM;
1008 BUG_ON(page->mapping != inode->i_mapping);
1009 e4b->bd_bitmap_page = page;
1010 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1011
1012 if (blocks_per_page >= 2) {
1013 /* buddy and bitmap are on the same page */
1014 return 0;
1015 }
1016
1017 block++;
1018 pnum = block / blocks_per_page;
1019 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1020 if (!page)
1021 return -ENOMEM;
1022 BUG_ON(page->mapping != inode->i_mapping);
1023 e4b->bd_buddy_page = page;
1024 return 0;
1025 }
1026
ext4_mb_put_buddy_page_lock(struct ext4_buddy * e4b)1027 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1028 {
1029 if (e4b->bd_bitmap_page) {
1030 unlock_page(e4b->bd_bitmap_page);
1031 put_page(e4b->bd_bitmap_page);
1032 }
1033 if (e4b->bd_buddy_page) {
1034 unlock_page(e4b->bd_buddy_page);
1035 put_page(e4b->bd_buddy_page);
1036 }
1037 }
1038
1039 /*
1040 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1041 * block group lock of all groups for this page; do not hold the BG lock when
1042 * calling this routine!
1043 */
1044 static noinline_for_stack
ext4_mb_init_group(struct super_block * sb,ext4_group_t group,gfp_t gfp)1045 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1046 {
1047
1048 struct ext4_group_info *this_grp;
1049 struct ext4_buddy e4b;
1050 struct page *page;
1051 int ret = 0;
1052
1053 might_sleep();
1054 mb_debug(1, "init group %u\n", group);
1055 this_grp = ext4_get_group_info(sb, group);
1056 /*
1057 * This ensures that we don't reinit the buddy cache
1058 * page which map to the group from which we are already
1059 * allocating. If we are looking at the buddy cache we would
1060 * have taken a reference using ext4_mb_load_buddy and that
1061 * would have pinned buddy page to page cache.
1062 * The call to ext4_mb_get_buddy_page_lock will mark the
1063 * page accessed.
1064 */
1065 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1066 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1067 /*
1068 * somebody initialized the group
1069 * return without doing anything
1070 */
1071 goto err;
1072 }
1073
1074 page = e4b.bd_bitmap_page;
1075 ret = ext4_mb_init_cache(page, NULL, gfp);
1076 if (ret)
1077 goto err;
1078 if (!PageUptodate(page)) {
1079 ret = -EIO;
1080 goto err;
1081 }
1082
1083 if (e4b.bd_buddy_page == NULL) {
1084 /*
1085 * If both the bitmap and buddy are in
1086 * the same page we don't need to force
1087 * init the buddy
1088 */
1089 ret = 0;
1090 goto err;
1091 }
1092 /* init buddy cache */
1093 page = e4b.bd_buddy_page;
1094 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1095 if (ret)
1096 goto err;
1097 if (!PageUptodate(page)) {
1098 ret = -EIO;
1099 goto err;
1100 }
1101 err:
1102 ext4_mb_put_buddy_page_lock(&e4b);
1103 return ret;
1104 }
1105
1106 /*
1107 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1108 * block group lock of all groups for this page; do not hold the BG lock when
1109 * calling this routine!
1110 */
1111 static noinline_for_stack int
ext4_mb_load_buddy_gfp(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b,gfp_t gfp)1112 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1113 struct ext4_buddy *e4b, gfp_t gfp)
1114 {
1115 int blocks_per_page;
1116 int block;
1117 int pnum;
1118 int poff;
1119 struct page *page;
1120 int ret;
1121 struct ext4_group_info *grp;
1122 struct ext4_sb_info *sbi = EXT4_SB(sb);
1123 struct inode *inode = sbi->s_buddy_cache;
1124
1125 might_sleep();
1126 mb_debug(1, "load group %u\n", group);
1127
1128 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1129 grp = ext4_get_group_info(sb, group);
1130
1131 e4b->bd_blkbits = sb->s_blocksize_bits;
1132 e4b->bd_info = grp;
1133 e4b->bd_sb = sb;
1134 e4b->bd_group = group;
1135 e4b->bd_buddy_page = NULL;
1136 e4b->bd_bitmap_page = NULL;
1137
1138 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1139 /*
1140 * we need full data about the group
1141 * to make a good selection
1142 */
1143 ret = ext4_mb_init_group(sb, group, gfp);
1144 if (ret)
1145 return ret;
1146 }
1147
1148 /*
1149 * the buddy cache inode stores the block bitmap
1150 * and buddy information in consecutive blocks.
1151 * So for each group we need two blocks.
1152 */
1153 block = group * 2;
1154 pnum = block / blocks_per_page;
1155 poff = block % blocks_per_page;
1156
1157 /* we could use find_or_create_page(), but it locks page
1158 * what we'd like to avoid in fast path ... */
1159 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1160 if (page == NULL || !PageUptodate(page)) {
1161 if (page)
1162 /*
1163 * drop the page reference and try
1164 * to get the page with lock. If we
1165 * are not uptodate that implies
1166 * somebody just created the page but
1167 * is yet to initialize the same. So
1168 * wait for it to initialize.
1169 */
1170 put_page(page);
1171 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1172 if (page) {
1173 BUG_ON(page->mapping != inode->i_mapping);
1174 if (!PageUptodate(page)) {
1175 ret = ext4_mb_init_cache(page, NULL, gfp);
1176 if (ret) {
1177 unlock_page(page);
1178 goto err;
1179 }
1180 mb_cmp_bitmaps(e4b, page_address(page) +
1181 (poff * sb->s_blocksize));
1182 }
1183 unlock_page(page);
1184 }
1185 }
1186 if (page == NULL) {
1187 ret = -ENOMEM;
1188 goto err;
1189 }
1190 if (!PageUptodate(page)) {
1191 ret = -EIO;
1192 goto err;
1193 }
1194
1195 /* Pages marked accessed already */
1196 e4b->bd_bitmap_page = page;
1197 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1198
1199 block++;
1200 pnum = block / blocks_per_page;
1201 poff = block % blocks_per_page;
1202
1203 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1204 if (page == NULL || !PageUptodate(page)) {
1205 if (page)
1206 put_page(page);
1207 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1208 if (page) {
1209 BUG_ON(page->mapping != inode->i_mapping);
1210 if (!PageUptodate(page)) {
1211 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1212 gfp);
1213 if (ret) {
1214 unlock_page(page);
1215 goto err;
1216 }
1217 }
1218 unlock_page(page);
1219 }
1220 }
1221 if (page == NULL) {
1222 ret = -ENOMEM;
1223 goto err;
1224 }
1225 if (!PageUptodate(page)) {
1226 ret = -EIO;
1227 goto err;
1228 }
1229
1230 /* Pages marked accessed already */
1231 e4b->bd_buddy_page = page;
1232 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1233
1234 BUG_ON(e4b->bd_bitmap_page == NULL);
1235 BUG_ON(e4b->bd_buddy_page == NULL);
1236
1237 return 0;
1238
1239 err:
1240 if (page)
1241 put_page(page);
1242 if (e4b->bd_bitmap_page)
1243 put_page(e4b->bd_bitmap_page);
1244 if (e4b->bd_buddy_page)
1245 put_page(e4b->bd_buddy_page);
1246 e4b->bd_buddy = NULL;
1247 e4b->bd_bitmap = NULL;
1248 return ret;
1249 }
1250
ext4_mb_load_buddy(struct super_block * sb,ext4_group_t group,struct ext4_buddy * e4b)1251 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1252 struct ext4_buddy *e4b)
1253 {
1254 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1255 }
1256
ext4_mb_unload_buddy(struct ext4_buddy * e4b)1257 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1258 {
1259 if (e4b->bd_bitmap_page)
1260 put_page(e4b->bd_bitmap_page);
1261 if (e4b->bd_buddy_page)
1262 put_page(e4b->bd_buddy_page);
1263 }
1264
1265
mb_find_order_for_block(struct ext4_buddy * e4b,int block)1266 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1267 {
1268 int order = 1;
1269 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1270 void *bb;
1271
1272 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1273 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1274
1275 bb = e4b->bd_buddy;
1276 while (order <= e4b->bd_blkbits + 1) {
1277 block = block >> 1;
1278 if (!mb_test_bit(block, bb)) {
1279 /* this block is part of buddy of order 'order' */
1280 return order;
1281 }
1282 bb += bb_incr;
1283 bb_incr >>= 1;
1284 order++;
1285 }
1286 return 0;
1287 }
1288
mb_clear_bits(void * bm,int cur,int len)1289 static void mb_clear_bits(void *bm, int cur, int len)
1290 {
1291 __u32 *addr;
1292
1293 len = cur + len;
1294 while (cur < len) {
1295 if ((cur & 31) == 0 && (len - cur) >= 32) {
1296 /* fast path: clear whole word at once */
1297 addr = bm + (cur >> 3);
1298 *addr = 0;
1299 cur += 32;
1300 continue;
1301 }
1302 mb_clear_bit(cur, bm);
1303 cur++;
1304 }
1305 }
1306
1307 /* clear bits in given range
1308 * will return first found zero bit if any, -1 otherwise
1309 */
mb_test_and_clear_bits(void * bm,int cur,int len)1310 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1311 {
1312 __u32 *addr;
1313 int zero_bit = -1;
1314
1315 len = cur + len;
1316 while (cur < len) {
1317 if ((cur & 31) == 0 && (len - cur) >= 32) {
1318 /* fast path: clear whole word at once */
1319 addr = bm + (cur >> 3);
1320 if (*addr != (__u32)(-1) && zero_bit == -1)
1321 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1322 *addr = 0;
1323 cur += 32;
1324 continue;
1325 }
1326 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1327 zero_bit = cur;
1328 cur++;
1329 }
1330
1331 return zero_bit;
1332 }
1333
ext4_set_bits(void * bm,int cur,int len)1334 void ext4_set_bits(void *bm, int cur, int len)
1335 {
1336 __u32 *addr;
1337
1338 len = cur + len;
1339 while (cur < len) {
1340 if ((cur & 31) == 0 && (len - cur) >= 32) {
1341 /* fast path: set whole word at once */
1342 addr = bm + (cur >> 3);
1343 *addr = 0xffffffff;
1344 cur += 32;
1345 continue;
1346 }
1347 mb_set_bit(cur, bm);
1348 cur++;
1349 }
1350 }
1351
1352 /*
1353 * _________________________________________________________________ */
1354
mb_buddy_adjust_border(int * bit,void * bitmap,int side)1355 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1356 {
1357 if (mb_test_bit(*bit + side, bitmap)) {
1358 mb_clear_bit(*bit, bitmap);
1359 (*bit) -= side;
1360 return 1;
1361 }
1362 else {
1363 (*bit) += side;
1364 mb_set_bit(*bit, bitmap);
1365 return -1;
1366 }
1367 }
1368
mb_buddy_mark_free(struct ext4_buddy * e4b,int first,int last)1369 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1370 {
1371 int max;
1372 int order = 1;
1373 void *buddy = mb_find_buddy(e4b, order, &max);
1374
1375 while (buddy) {
1376 void *buddy2;
1377
1378 /* Bits in range [first; last] are known to be set since
1379 * corresponding blocks were allocated. Bits in range
1380 * (first; last) will stay set because they form buddies on
1381 * upper layer. We just deal with borders if they don't
1382 * align with upper layer and then go up.
1383 * Releasing entire group is all about clearing
1384 * single bit of highest order buddy.
1385 */
1386
1387 /* Example:
1388 * ---------------------------------
1389 * | 1 | 1 | 1 | 1 |
1390 * ---------------------------------
1391 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1392 * ---------------------------------
1393 * 0 1 2 3 4 5 6 7
1394 * \_____________________/
1395 *
1396 * Neither [1] nor [6] is aligned to above layer.
1397 * Left neighbour [0] is free, so mark it busy,
1398 * decrease bb_counters and extend range to
1399 * [0; 6]
1400 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1401 * mark [6] free, increase bb_counters and shrink range to
1402 * [0; 5].
1403 * Then shift range to [0; 2], go up and do the same.
1404 */
1405
1406
1407 if (first & 1)
1408 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1409 if (!(last & 1))
1410 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1411 if (first > last)
1412 break;
1413 order++;
1414
1415 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1416 mb_clear_bits(buddy, first, last - first + 1);
1417 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1418 break;
1419 }
1420 first >>= 1;
1421 last >>= 1;
1422 buddy = buddy2;
1423 }
1424 }
1425
mb_free_blocks(struct inode * inode,struct ext4_buddy * e4b,int first,int count)1426 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1427 int first, int count)
1428 {
1429 int left_is_free = 0;
1430 int right_is_free = 0;
1431 int block;
1432 int last = first + count - 1;
1433 struct super_block *sb = e4b->bd_sb;
1434
1435 if (WARN_ON(count == 0))
1436 return;
1437 BUG_ON(last >= (sb->s_blocksize << 3));
1438 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1439 /* Don't bother if the block group is corrupt. */
1440 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1441 return;
1442
1443 mb_check_buddy(e4b);
1444 mb_free_blocks_double(inode, e4b, first, count);
1445
1446 e4b->bd_info->bb_free += count;
1447 if (first < e4b->bd_info->bb_first_free)
1448 e4b->bd_info->bb_first_free = first;
1449
1450 /* access memory sequentially: check left neighbour,
1451 * clear range and then check right neighbour
1452 */
1453 if (first != 0)
1454 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1455 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1456 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1457 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1458
1459 if (unlikely(block != -1)) {
1460 struct ext4_sb_info *sbi = EXT4_SB(sb);
1461 ext4_fsblk_t blocknr;
1462
1463 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1464 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1465 ext4_grp_locked_error(sb, e4b->bd_group,
1466 inode ? inode->i_ino : 0,
1467 blocknr,
1468 "freeing already freed block "
1469 "(bit %u); block bitmap corrupt.",
1470 block);
1471 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1472 percpu_counter_sub(&sbi->s_freeclusters_counter,
1473 e4b->bd_info->bb_free);
1474 /* Mark the block group as corrupt. */
1475 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1476 &e4b->bd_info->bb_state);
1477 mb_regenerate_buddy(e4b);
1478 goto done;
1479 }
1480
1481 /* let's maintain fragments counter */
1482 if (left_is_free && right_is_free)
1483 e4b->bd_info->bb_fragments--;
1484 else if (!left_is_free && !right_is_free)
1485 e4b->bd_info->bb_fragments++;
1486
1487 /* buddy[0] == bd_bitmap is a special case, so handle
1488 * it right away and let mb_buddy_mark_free stay free of
1489 * zero order checks.
1490 * Check if neighbours are to be coaleasced,
1491 * adjust bitmap bb_counters and borders appropriately.
1492 */
1493 if (first & 1) {
1494 first += !left_is_free;
1495 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1496 }
1497 if (!(last & 1)) {
1498 last -= !right_is_free;
1499 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1500 }
1501
1502 if (first <= last)
1503 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1504
1505 done:
1506 mb_set_largest_free_order(sb, e4b->bd_info);
1507 mb_check_buddy(e4b);
1508 }
1509
mb_find_extent(struct ext4_buddy * e4b,int block,int needed,struct ext4_free_extent * ex)1510 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1511 int needed, struct ext4_free_extent *ex)
1512 {
1513 int next = block;
1514 int max, order;
1515 void *buddy;
1516
1517 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1518 BUG_ON(ex == NULL);
1519
1520 buddy = mb_find_buddy(e4b, 0, &max);
1521 BUG_ON(buddy == NULL);
1522 BUG_ON(block >= max);
1523 if (mb_test_bit(block, buddy)) {
1524 ex->fe_len = 0;
1525 ex->fe_start = 0;
1526 ex->fe_group = 0;
1527 return 0;
1528 }
1529
1530 /* find actual order */
1531 order = mb_find_order_for_block(e4b, block);
1532 block = block >> order;
1533
1534 ex->fe_len = 1 << order;
1535 ex->fe_start = block << order;
1536 ex->fe_group = e4b->bd_group;
1537
1538 /* calc difference from given start */
1539 next = next - ex->fe_start;
1540 ex->fe_len -= next;
1541 ex->fe_start += next;
1542
1543 while (needed > ex->fe_len &&
1544 mb_find_buddy(e4b, order, &max)) {
1545
1546 if (block + 1 >= max)
1547 break;
1548
1549 next = (block + 1) * (1 << order);
1550 if (mb_test_bit(next, e4b->bd_bitmap))
1551 break;
1552
1553 order = mb_find_order_for_block(e4b, next);
1554
1555 block = next >> order;
1556 ex->fe_len += 1 << order;
1557 }
1558
1559 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1560 return ex->fe_len;
1561 }
1562
mb_mark_used(struct ext4_buddy * e4b,struct ext4_free_extent * ex)1563 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1564 {
1565 int ord;
1566 int mlen = 0;
1567 int max = 0;
1568 int cur;
1569 int start = ex->fe_start;
1570 int len = ex->fe_len;
1571 unsigned ret = 0;
1572 int len0 = len;
1573 void *buddy;
1574
1575 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1576 BUG_ON(e4b->bd_group != ex->fe_group);
1577 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1578 mb_check_buddy(e4b);
1579 mb_mark_used_double(e4b, start, len);
1580
1581 e4b->bd_info->bb_free -= len;
1582 if (e4b->bd_info->bb_first_free == start)
1583 e4b->bd_info->bb_first_free += len;
1584
1585 /* let's maintain fragments counter */
1586 if (start != 0)
1587 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1588 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1589 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1590 if (mlen && max)
1591 e4b->bd_info->bb_fragments++;
1592 else if (!mlen && !max)
1593 e4b->bd_info->bb_fragments--;
1594
1595 /* let's maintain buddy itself */
1596 while (len) {
1597 ord = mb_find_order_for_block(e4b, start);
1598
1599 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1600 /* the whole chunk may be allocated at once! */
1601 mlen = 1 << ord;
1602 buddy = mb_find_buddy(e4b, ord, &max);
1603 BUG_ON((start >> ord) >= max);
1604 mb_set_bit(start >> ord, buddy);
1605 e4b->bd_info->bb_counters[ord]--;
1606 start += mlen;
1607 len -= mlen;
1608 BUG_ON(len < 0);
1609 continue;
1610 }
1611
1612 /* store for history */
1613 if (ret == 0)
1614 ret = len | (ord << 16);
1615
1616 /* we have to split large buddy */
1617 BUG_ON(ord <= 0);
1618 buddy = mb_find_buddy(e4b, ord, &max);
1619 mb_set_bit(start >> ord, buddy);
1620 e4b->bd_info->bb_counters[ord]--;
1621
1622 ord--;
1623 cur = (start >> ord) & ~1U;
1624 buddy = mb_find_buddy(e4b, ord, &max);
1625 mb_clear_bit(cur, buddy);
1626 mb_clear_bit(cur + 1, buddy);
1627 e4b->bd_info->bb_counters[ord]++;
1628 e4b->bd_info->bb_counters[ord]++;
1629 }
1630 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1631
1632 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1633 mb_check_buddy(e4b);
1634
1635 return ret;
1636 }
1637
1638 /*
1639 * Must be called under group lock!
1640 */
ext4_mb_use_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1641 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1642 struct ext4_buddy *e4b)
1643 {
1644 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1645 int ret;
1646
1647 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1648 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1649
1650 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1651 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1652 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1653
1654 /* preallocation can change ac_b_ex, thus we store actually
1655 * allocated blocks for history */
1656 ac->ac_f_ex = ac->ac_b_ex;
1657
1658 ac->ac_status = AC_STATUS_FOUND;
1659 ac->ac_tail = ret & 0xffff;
1660 ac->ac_buddy = ret >> 16;
1661
1662 /*
1663 * take the page reference. We want the page to be pinned
1664 * so that we don't get a ext4_mb_init_cache_call for this
1665 * group until we update the bitmap. That would mean we
1666 * double allocate blocks. The reference is dropped
1667 * in ext4_mb_release_context
1668 */
1669 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1670 get_page(ac->ac_bitmap_page);
1671 ac->ac_buddy_page = e4b->bd_buddy_page;
1672 get_page(ac->ac_buddy_page);
1673 /* store last allocated for subsequent stream allocation */
1674 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1675 spin_lock(&sbi->s_md_lock);
1676 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1677 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1678 spin_unlock(&sbi->s_md_lock);
1679 }
1680 }
1681
1682 /*
1683 * regular allocator, for general purposes allocation
1684 */
1685
ext4_mb_check_limits(struct ext4_allocation_context * ac,struct ext4_buddy * e4b,int finish_group)1686 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1687 struct ext4_buddy *e4b,
1688 int finish_group)
1689 {
1690 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1691 struct ext4_free_extent *bex = &ac->ac_b_ex;
1692 struct ext4_free_extent *gex = &ac->ac_g_ex;
1693 struct ext4_free_extent ex;
1694 int max;
1695
1696 if (ac->ac_status == AC_STATUS_FOUND)
1697 return;
1698 /*
1699 * We don't want to scan for a whole year
1700 */
1701 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1702 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1703 ac->ac_status = AC_STATUS_BREAK;
1704 return;
1705 }
1706
1707 /*
1708 * Haven't found good chunk so far, let's continue
1709 */
1710 if (bex->fe_len < gex->fe_len)
1711 return;
1712
1713 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1714 && bex->fe_group == e4b->bd_group) {
1715 /* recheck chunk's availability - we don't know
1716 * when it was found (within this lock-unlock
1717 * period or not) */
1718 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1719 if (max >= gex->fe_len) {
1720 ext4_mb_use_best_found(ac, e4b);
1721 return;
1722 }
1723 }
1724 }
1725
1726 /*
1727 * The routine checks whether found extent is good enough. If it is,
1728 * then the extent gets marked used and flag is set to the context
1729 * to stop scanning. Otherwise, the extent is compared with the
1730 * previous found extent and if new one is better, then it's stored
1731 * in the context. Later, the best found extent will be used, if
1732 * mballoc can't find good enough extent.
1733 *
1734 * FIXME: real allocation policy is to be designed yet!
1735 */
ext4_mb_measure_extent(struct ext4_allocation_context * ac,struct ext4_free_extent * ex,struct ext4_buddy * e4b)1736 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1737 struct ext4_free_extent *ex,
1738 struct ext4_buddy *e4b)
1739 {
1740 struct ext4_free_extent *bex = &ac->ac_b_ex;
1741 struct ext4_free_extent *gex = &ac->ac_g_ex;
1742
1743 BUG_ON(ex->fe_len <= 0);
1744 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1745 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1746 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1747
1748 ac->ac_found++;
1749
1750 /*
1751 * The special case - take what you catch first
1752 */
1753 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1754 *bex = *ex;
1755 ext4_mb_use_best_found(ac, e4b);
1756 return;
1757 }
1758
1759 /*
1760 * Let's check whether the chuck is good enough
1761 */
1762 if (ex->fe_len == gex->fe_len) {
1763 *bex = *ex;
1764 ext4_mb_use_best_found(ac, e4b);
1765 return;
1766 }
1767
1768 /*
1769 * If this is first found extent, just store it in the context
1770 */
1771 if (bex->fe_len == 0) {
1772 *bex = *ex;
1773 return;
1774 }
1775
1776 /*
1777 * If new found extent is better, store it in the context
1778 */
1779 if (bex->fe_len < gex->fe_len) {
1780 /* if the request isn't satisfied, any found extent
1781 * larger than previous best one is better */
1782 if (ex->fe_len > bex->fe_len)
1783 *bex = *ex;
1784 } else if (ex->fe_len > gex->fe_len) {
1785 /* if the request is satisfied, then we try to find
1786 * an extent that still satisfy the request, but is
1787 * smaller than previous one */
1788 if (ex->fe_len < bex->fe_len)
1789 *bex = *ex;
1790 }
1791
1792 ext4_mb_check_limits(ac, e4b, 0);
1793 }
1794
1795 static noinline_for_stack
ext4_mb_try_best_found(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1796 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1797 struct ext4_buddy *e4b)
1798 {
1799 struct ext4_free_extent ex = ac->ac_b_ex;
1800 ext4_group_t group = ex.fe_group;
1801 int max;
1802 int err;
1803
1804 BUG_ON(ex.fe_len <= 0);
1805 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1806 if (err)
1807 return err;
1808
1809 ext4_lock_group(ac->ac_sb, group);
1810 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1811
1812 if (max > 0) {
1813 ac->ac_b_ex = ex;
1814 ext4_mb_use_best_found(ac, e4b);
1815 }
1816
1817 ext4_unlock_group(ac->ac_sb, group);
1818 ext4_mb_unload_buddy(e4b);
1819
1820 return 0;
1821 }
1822
1823 static noinline_for_stack
ext4_mb_find_by_goal(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1824 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1825 struct ext4_buddy *e4b)
1826 {
1827 ext4_group_t group = ac->ac_g_ex.fe_group;
1828 int max;
1829 int err;
1830 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1831 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1832 struct ext4_free_extent ex;
1833
1834 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1835 return 0;
1836 if (grp->bb_free == 0)
1837 return 0;
1838
1839 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1840 if (err)
1841 return err;
1842
1843 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1844 ext4_mb_unload_buddy(e4b);
1845 return 0;
1846 }
1847
1848 ext4_lock_group(ac->ac_sb, group);
1849 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1850 ac->ac_g_ex.fe_len, &ex);
1851 ex.fe_logical = 0xDEADFA11; /* debug value */
1852
1853 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1854 ext4_fsblk_t start;
1855
1856 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1857 ex.fe_start;
1858 /* use do_div to get remainder (would be 64-bit modulo) */
1859 if (do_div(start, sbi->s_stripe) == 0) {
1860 ac->ac_found++;
1861 ac->ac_b_ex = ex;
1862 ext4_mb_use_best_found(ac, e4b);
1863 }
1864 } else if (max >= ac->ac_g_ex.fe_len) {
1865 BUG_ON(ex.fe_len <= 0);
1866 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1867 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1868 ac->ac_found++;
1869 ac->ac_b_ex = ex;
1870 ext4_mb_use_best_found(ac, e4b);
1871 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1872 /* Sometimes, caller may want to merge even small
1873 * number of blocks to an existing extent */
1874 BUG_ON(ex.fe_len <= 0);
1875 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1876 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1877 ac->ac_found++;
1878 ac->ac_b_ex = ex;
1879 ext4_mb_use_best_found(ac, e4b);
1880 }
1881 ext4_unlock_group(ac->ac_sb, group);
1882 ext4_mb_unload_buddy(e4b);
1883
1884 return 0;
1885 }
1886
1887 /*
1888 * The routine scans buddy structures (not bitmap!) from given order
1889 * to max order and tries to find big enough chunk to satisfy the req
1890 */
1891 static noinline_for_stack
ext4_mb_simple_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1892 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1893 struct ext4_buddy *e4b)
1894 {
1895 struct super_block *sb = ac->ac_sb;
1896 struct ext4_group_info *grp = e4b->bd_info;
1897 void *buddy;
1898 int i;
1899 int k;
1900 int max;
1901
1902 BUG_ON(ac->ac_2order <= 0);
1903 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1904 if (grp->bb_counters[i] == 0)
1905 continue;
1906
1907 buddy = mb_find_buddy(e4b, i, &max);
1908 BUG_ON(buddy == NULL);
1909
1910 k = mb_find_next_zero_bit(buddy, max, 0);
1911 BUG_ON(k >= max);
1912
1913 ac->ac_found++;
1914
1915 ac->ac_b_ex.fe_len = 1 << i;
1916 ac->ac_b_ex.fe_start = k << i;
1917 ac->ac_b_ex.fe_group = e4b->bd_group;
1918
1919 ext4_mb_use_best_found(ac, e4b);
1920
1921 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1922
1923 if (EXT4_SB(sb)->s_mb_stats)
1924 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1925
1926 break;
1927 }
1928 }
1929
1930 /*
1931 * The routine scans the group and measures all found extents.
1932 * In order to optimize scanning, caller must pass number of
1933 * free blocks in the group, so the routine can know upper limit.
1934 */
1935 static noinline_for_stack
ext4_mb_complex_scan_group(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1936 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1937 struct ext4_buddy *e4b)
1938 {
1939 struct super_block *sb = ac->ac_sb;
1940 void *bitmap = e4b->bd_bitmap;
1941 struct ext4_free_extent ex;
1942 int i;
1943 int free;
1944
1945 free = e4b->bd_info->bb_free;
1946 BUG_ON(free <= 0);
1947
1948 i = e4b->bd_info->bb_first_free;
1949
1950 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1951 i = mb_find_next_zero_bit(bitmap,
1952 EXT4_CLUSTERS_PER_GROUP(sb), i);
1953 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1954 /*
1955 * IF we have corrupt bitmap, we won't find any
1956 * free blocks even though group info says we
1957 * we have free blocks
1958 */
1959 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1960 "%d free clusters as per "
1961 "group info. But bitmap says 0",
1962 free);
1963 break;
1964 }
1965
1966 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1967 BUG_ON(ex.fe_len <= 0);
1968 if (free < ex.fe_len) {
1969 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1970 "%d free clusters as per "
1971 "group info. But got %d blocks",
1972 free, ex.fe_len);
1973 /*
1974 * The number of free blocks differs. This mostly
1975 * indicate that the bitmap is corrupt. So exit
1976 * without claiming the space.
1977 */
1978 break;
1979 }
1980 ex.fe_logical = 0xDEADC0DE; /* debug value */
1981 ext4_mb_measure_extent(ac, &ex, e4b);
1982
1983 i += ex.fe_len;
1984 free -= ex.fe_len;
1985 }
1986
1987 ext4_mb_check_limits(ac, e4b, 1);
1988 }
1989
1990 /*
1991 * This is a special case for storages like raid5
1992 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1993 */
1994 static noinline_for_stack
ext4_mb_scan_aligned(struct ext4_allocation_context * ac,struct ext4_buddy * e4b)1995 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1996 struct ext4_buddy *e4b)
1997 {
1998 struct super_block *sb = ac->ac_sb;
1999 struct ext4_sb_info *sbi = EXT4_SB(sb);
2000 void *bitmap = e4b->bd_bitmap;
2001 struct ext4_free_extent ex;
2002 ext4_fsblk_t first_group_block;
2003 ext4_fsblk_t a;
2004 ext4_grpblk_t i;
2005 int max;
2006
2007 BUG_ON(sbi->s_stripe == 0);
2008
2009 /* find first stripe-aligned block in group */
2010 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2011
2012 a = first_group_block + sbi->s_stripe - 1;
2013 do_div(a, sbi->s_stripe);
2014 i = (a * sbi->s_stripe) - first_group_block;
2015
2016 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2017 if (!mb_test_bit(i, bitmap)) {
2018 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2019 if (max >= sbi->s_stripe) {
2020 ac->ac_found++;
2021 ex.fe_logical = 0xDEADF00D; /* debug value */
2022 ac->ac_b_ex = ex;
2023 ext4_mb_use_best_found(ac, e4b);
2024 break;
2025 }
2026 }
2027 i += sbi->s_stripe;
2028 }
2029 }
2030
2031 /*
2032 * This is now called BEFORE we load the buddy bitmap.
2033 * Returns either 1 or 0 indicating that the group is either suitable
2034 * for the allocation or not. In addition it can also return negative
2035 * error code when something goes wrong.
2036 */
ext4_mb_good_group(struct ext4_allocation_context * ac,ext4_group_t group,int cr)2037 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2038 ext4_group_t group, int cr)
2039 {
2040 unsigned free, fragments;
2041 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2042 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2043
2044 BUG_ON(cr < 0 || cr >= 4);
2045
2046 free = grp->bb_free;
2047 if (free == 0)
2048 return 0;
2049 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2050 return 0;
2051
2052 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2053 return 0;
2054
2055 /* We only do this if the grp has never been initialized */
2056 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2057 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2058 if (ret)
2059 return ret;
2060 }
2061
2062 fragments = grp->bb_fragments;
2063 if (fragments == 0)
2064 return 0;
2065
2066 switch (cr) {
2067 case 0:
2068 BUG_ON(ac->ac_2order == 0);
2069
2070 /* Avoid using the first bg of a flexgroup for data files */
2071 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2072 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2073 ((group % flex_size) == 0))
2074 return 0;
2075
2076 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2077 (free / fragments) >= ac->ac_g_ex.fe_len)
2078 return 1;
2079
2080 if (grp->bb_largest_free_order < ac->ac_2order)
2081 return 0;
2082
2083 return 1;
2084 case 1:
2085 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2086 return 1;
2087 break;
2088 case 2:
2089 if (free >= ac->ac_g_ex.fe_len)
2090 return 1;
2091 break;
2092 case 3:
2093 return 1;
2094 default:
2095 BUG();
2096 }
2097
2098 return 0;
2099 }
2100
2101 static noinline_for_stack int
ext4_mb_regular_allocator(struct ext4_allocation_context * ac)2102 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2103 {
2104 ext4_group_t ngroups, group, i;
2105 int cr;
2106 int err = 0, first_err = 0;
2107 struct ext4_sb_info *sbi;
2108 struct super_block *sb;
2109 struct ext4_buddy e4b;
2110
2111 sb = ac->ac_sb;
2112 sbi = EXT4_SB(sb);
2113 ngroups = ext4_get_groups_count(sb);
2114 /* non-extent files are limited to low blocks/groups */
2115 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2116 ngroups = sbi->s_blockfile_groups;
2117
2118 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2119
2120 /* first, try the goal */
2121 err = ext4_mb_find_by_goal(ac, &e4b);
2122 if (err || ac->ac_status == AC_STATUS_FOUND)
2123 goto out;
2124
2125 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2126 goto out;
2127
2128 /*
2129 * ac->ac2_order is set only if the fe_len is a power of 2
2130 * if ac2_order is set we also set criteria to 0 so that we
2131 * try exact allocation using buddy.
2132 */
2133 i = fls(ac->ac_g_ex.fe_len);
2134 ac->ac_2order = 0;
2135 /*
2136 * We search using buddy data only if the order of the request
2137 * is greater than equal to the sbi_s_mb_order2_reqs
2138 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2139 * We also support searching for power-of-two requests only for
2140 * requests upto maximum buddy size we have constructed.
2141 */
2142 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2143 /*
2144 * This should tell if fe_len is exactly power of 2
2145 */
2146 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2147 ac->ac_2order = i - 1;
2148 }
2149
2150 /* if stream allocation is enabled, use global goal */
2151 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2152 /* TBD: may be hot point */
2153 spin_lock(&sbi->s_md_lock);
2154 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2155 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2156 spin_unlock(&sbi->s_md_lock);
2157 }
2158
2159 /* Let's just scan groups to find more-less suitable blocks */
2160 cr = ac->ac_2order ? 0 : 1;
2161 /*
2162 * cr == 0 try to get exact allocation,
2163 * cr == 3 try to get anything
2164 */
2165 repeat:
2166 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2167 ac->ac_criteria = cr;
2168 /*
2169 * searching for the right group start
2170 * from the goal value specified
2171 */
2172 group = ac->ac_g_ex.fe_group;
2173
2174 for (i = 0; i < ngroups; group++, i++) {
2175 int ret = 0;
2176 cond_resched();
2177 /*
2178 * Artificially restricted ngroups for non-extent
2179 * files makes group > ngroups possible on first loop.
2180 */
2181 if (group >= ngroups)
2182 group = 0;
2183
2184 /* This now checks without needing the buddy page */
2185 ret = ext4_mb_good_group(ac, group, cr);
2186 if (ret <= 0) {
2187 if (!first_err)
2188 first_err = ret;
2189 continue;
2190 }
2191
2192 err = ext4_mb_load_buddy(sb, group, &e4b);
2193 if (err)
2194 goto out;
2195
2196 ext4_lock_group(sb, group);
2197
2198 /*
2199 * We need to check again after locking the
2200 * block group
2201 */
2202 ret = ext4_mb_good_group(ac, group, cr);
2203 if (ret <= 0) {
2204 ext4_unlock_group(sb, group);
2205 ext4_mb_unload_buddy(&e4b);
2206 if (!first_err)
2207 first_err = ret;
2208 continue;
2209 }
2210
2211 ac->ac_groups_scanned++;
2212 if (cr == 0)
2213 ext4_mb_simple_scan_group(ac, &e4b);
2214 else if (cr == 1 && sbi->s_stripe &&
2215 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2216 ext4_mb_scan_aligned(ac, &e4b);
2217 else
2218 ext4_mb_complex_scan_group(ac, &e4b);
2219
2220 ext4_unlock_group(sb, group);
2221 ext4_mb_unload_buddy(&e4b);
2222
2223 if (ac->ac_status != AC_STATUS_CONTINUE)
2224 break;
2225 }
2226 }
2227
2228 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2229 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2230 /*
2231 * We've been searching too long. Let's try to allocate
2232 * the best chunk we've found so far
2233 */
2234
2235 ext4_mb_try_best_found(ac, &e4b);
2236 if (ac->ac_status != AC_STATUS_FOUND) {
2237 /*
2238 * Someone more lucky has already allocated it.
2239 * The only thing we can do is just take first
2240 * found block(s)
2241 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2242 */
2243 ac->ac_b_ex.fe_group = 0;
2244 ac->ac_b_ex.fe_start = 0;
2245 ac->ac_b_ex.fe_len = 0;
2246 ac->ac_status = AC_STATUS_CONTINUE;
2247 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2248 cr = 3;
2249 atomic_inc(&sbi->s_mb_lost_chunks);
2250 goto repeat;
2251 }
2252 }
2253 out:
2254 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2255 err = first_err;
2256 return err;
2257 }
2258
ext4_mb_seq_groups_start(struct seq_file * seq,loff_t * pos)2259 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2260 {
2261 struct super_block *sb = seq->private;
2262 ext4_group_t group;
2263
2264 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2265 return NULL;
2266 group = *pos + 1;
2267 return (void *) ((unsigned long) group);
2268 }
2269
ext4_mb_seq_groups_next(struct seq_file * seq,void * v,loff_t * pos)2270 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2271 {
2272 struct super_block *sb = seq->private;
2273 ext4_group_t group;
2274
2275 ++*pos;
2276 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2277 return NULL;
2278 group = *pos + 1;
2279 return (void *) ((unsigned long) group);
2280 }
2281
ext4_mb_seq_groups_show(struct seq_file * seq,void * v)2282 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2283 {
2284 struct super_block *sb = seq->private;
2285 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2286 int i;
2287 int err, buddy_loaded = 0;
2288 struct ext4_buddy e4b;
2289 struct ext4_group_info *grinfo;
2290 struct sg {
2291 struct ext4_group_info info;
2292 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2293 } sg;
2294
2295 group--;
2296 if (group == 0)
2297 seq_puts(seq, "#group: free frags first ["
2298 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2299 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2300
2301 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2302 sizeof(struct ext4_group_info);
2303 grinfo = ext4_get_group_info(sb, group);
2304 /* Load the group info in memory only if not already loaded. */
2305 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2306 err = ext4_mb_load_buddy(sb, group, &e4b);
2307 if (err) {
2308 seq_printf(seq, "#%-5u: I/O error\n", group);
2309 return 0;
2310 }
2311 buddy_loaded = 1;
2312 }
2313
2314 memcpy(&sg, ext4_get_group_info(sb, group), i);
2315
2316 if (buddy_loaded)
2317 ext4_mb_unload_buddy(&e4b);
2318
2319 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2320 sg.info.bb_fragments, sg.info.bb_first_free);
2321 for (i = 0; i <= 13; i++)
2322 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2323 sg.info.bb_counters[i] : 0);
2324 seq_printf(seq, " ]\n");
2325
2326 return 0;
2327 }
2328
ext4_mb_seq_groups_stop(struct seq_file * seq,void * v)2329 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2330 {
2331 }
2332
2333 static const struct seq_operations ext4_mb_seq_groups_ops = {
2334 .start = ext4_mb_seq_groups_start,
2335 .next = ext4_mb_seq_groups_next,
2336 .stop = ext4_mb_seq_groups_stop,
2337 .show = ext4_mb_seq_groups_show,
2338 };
2339
ext4_mb_seq_groups_open(struct inode * inode,struct file * file)2340 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2341 {
2342 struct super_block *sb = PDE_DATA(inode);
2343 int rc;
2344
2345 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2346 if (rc == 0) {
2347 struct seq_file *m = file->private_data;
2348 m->private = sb;
2349 }
2350 return rc;
2351
2352 }
2353
2354 const struct file_operations ext4_seq_mb_groups_fops = {
2355 .open = ext4_mb_seq_groups_open,
2356 .read = seq_read,
2357 .llseek = seq_lseek,
2358 .release = seq_release,
2359 };
2360
get_groupinfo_cache(int blocksize_bits)2361 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2362 {
2363 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2364 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2365
2366 BUG_ON(!cachep);
2367 return cachep;
2368 }
2369
2370 /*
2371 * Allocate the top-level s_group_info array for the specified number
2372 * of groups
2373 */
ext4_mb_alloc_groupinfo(struct super_block * sb,ext4_group_t ngroups)2374 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2375 {
2376 struct ext4_sb_info *sbi = EXT4_SB(sb);
2377 unsigned size;
2378 struct ext4_group_info ***new_groupinfo;
2379
2380 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2381 EXT4_DESC_PER_BLOCK_BITS(sb);
2382 if (size <= sbi->s_group_info_size)
2383 return 0;
2384
2385 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2386 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2387 if (!new_groupinfo) {
2388 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2389 return -ENOMEM;
2390 }
2391 if (sbi->s_group_info) {
2392 memcpy(new_groupinfo, sbi->s_group_info,
2393 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2394 kvfree(sbi->s_group_info);
2395 }
2396 sbi->s_group_info = new_groupinfo;
2397 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2398 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2399 sbi->s_group_info_size);
2400 return 0;
2401 }
2402
2403 /* Create and initialize ext4_group_info data for the given group. */
ext4_mb_add_groupinfo(struct super_block * sb,ext4_group_t group,struct ext4_group_desc * desc)2404 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2405 struct ext4_group_desc *desc)
2406 {
2407 int i;
2408 int metalen = 0;
2409 struct ext4_sb_info *sbi = EXT4_SB(sb);
2410 struct ext4_group_info **meta_group_info;
2411 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2412
2413 /*
2414 * First check if this group is the first of a reserved block.
2415 * If it's true, we have to allocate a new table of pointers
2416 * to ext4_group_info structures
2417 */
2418 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2419 metalen = sizeof(*meta_group_info) <<
2420 EXT4_DESC_PER_BLOCK_BITS(sb);
2421 meta_group_info = kmalloc(metalen, GFP_NOFS);
2422 if (meta_group_info == NULL) {
2423 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2424 "for a buddy group");
2425 goto exit_meta_group_info;
2426 }
2427 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2428 meta_group_info;
2429 }
2430
2431 meta_group_info =
2432 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2433 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2434
2435 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2436 if (meta_group_info[i] == NULL) {
2437 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2438 goto exit_group_info;
2439 }
2440 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2441 &(meta_group_info[i]->bb_state));
2442
2443 /*
2444 * initialize bb_free to be able to skip
2445 * empty groups without initialization
2446 */
2447 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2448 meta_group_info[i]->bb_free =
2449 ext4_free_clusters_after_init(sb, group, desc);
2450 } else {
2451 meta_group_info[i]->bb_free =
2452 ext4_free_group_clusters(sb, desc);
2453 }
2454
2455 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2456 init_rwsem(&meta_group_info[i]->alloc_sem);
2457 meta_group_info[i]->bb_free_root = RB_ROOT;
2458 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2459
2460 #ifdef DOUBLE_CHECK
2461 {
2462 struct buffer_head *bh;
2463 meta_group_info[i]->bb_bitmap =
2464 kmalloc(sb->s_blocksize, GFP_NOFS);
2465 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2466 bh = ext4_read_block_bitmap(sb, group);
2467 BUG_ON(IS_ERR_OR_NULL(bh));
2468 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2469 sb->s_blocksize);
2470 put_bh(bh);
2471 }
2472 #endif
2473
2474 return 0;
2475
2476 exit_group_info:
2477 /* If a meta_group_info table has been allocated, release it now */
2478 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2479 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2480 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2481 }
2482 exit_meta_group_info:
2483 return -ENOMEM;
2484 } /* ext4_mb_add_groupinfo */
2485
ext4_mb_init_backend(struct super_block * sb)2486 static int ext4_mb_init_backend(struct super_block *sb)
2487 {
2488 ext4_group_t ngroups = ext4_get_groups_count(sb);
2489 ext4_group_t i;
2490 struct ext4_sb_info *sbi = EXT4_SB(sb);
2491 int err;
2492 struct ext4_group_desc *desc;
2493 struct kmem_cache *cachep;
2494
2495 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2496 if (err)
2497 return err;
2498
2499 sbi->s_buddy_cache = new_inode(sb);
2500 if (sbi->s_buddy_cache == NULL) {
2501 ext4_msg(sb, KERN_ERR, "can't get new inode");
2502 goto err_freesgi;
2503 }
2504 /* To avoid potentially colliding with an valid on-disk inode number,
2505 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2506 * not in the inode hash, so it should never be found by iget(), but
2507 * this will avoid confusion if it ever shows up during debugging. */
2508 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2509 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2510 for (i = 0; i < ngroups; i++) {
2511 desc = ext4_get_group_desc(sb, i, NULL);
2512 if (desc == NULL) {
2513 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2514 goto err_freebuddy;
2515 }
2516 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2517 goto err_freebuddy;
2518 }
2519
2520 return 0;
2521
2522 err_freebuddy:
2523 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2524 while (i-- > 0)
2525 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2526 i = sbi->s_group_info_size;
2527 while (i-- > 0)
2528 kfree(sbi->s_group_info[i]);
2529 iput(sbi->s_buddy_cache);
2530 err_freesgi:
2531 kvfree(sbi->s_group_info);
2532 return -ENOMEM;
2533 }
2534
ext4_groupinfo_destroy_slabs(void)2535 static void ext4_groupinfo_destroy_slabs(void)
2536 {
2537 int i;
2538
2539 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2540 if (ext4_groupinfo_caches[i])
2541 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2542 ext4_groupinfo_caches[i] = NULL;
2543 }
2544 }
2545
ext4_groupinfo_create_slab(size_t size)2546 static int ext4_groupinfo_create_slab(size_t size)
2547 {
2548 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2549 int slab_size;
2550 int blocksize_bits = order_base_2(size);
2551 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2552 struct kmem_cache *cachep;
2553
2554 if (cache_index >= NR_GRPINFO_CACHES)
2555 return -EINVAL;
2556
2557 if (unlikely(cache_index < 0))
2558 cache_index = 0;
2559
2560 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2561 if (ext4_groupinfo_caches[cache_index]) {
2562 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2563 return 0; /* Already created */
2564 }
2565
2566 slab_size = offsetof(struct ext4_group_info,
2567 bb_counters[blocksize_bits + 2]);
2568
2569 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2570 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2571 NULL);
2572
2573 ext4_groupinfo_caches[cache_index] = cachep;
2574
2575 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2576 if (!cachep) {
2577 printk(KERN_EMERG
2578 "EXT4-fs: no memory for groupinfo slab cache\n");
2579 return -ENOMEM;
2580 }
2581
2582 return 0;
2583 }
2584
ext4_mb_init(struct super_block * sb)2585 int ext4_mb_init(struct super_block *sb)
2586 {
2587 struct ext4_sb_info *sbi = EXT4_SB(sb);
2588 unsigned i, j;
2589 unsigned offset, offset_incr;
2590 unsigned max;
2591 int ret;
2592
2593 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2594
2595 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2596 if (sbi->s_mb_offsets == NULL) {
2597 ret = -ENOMEM;
2598 goto out;
2599 }
2600
2601 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2602 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2603 if (sbi->s_mb_maxs == NULL) {
2604 ret = -ENOMEM;
2605 goto out;
2606 }
2607
2608 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2609 if (ret < 0)
2610 goto out;
2611
2612 /* order 0 is regular bitmap */
2613 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2614 sbi->s_mb_offsets[0] = 0;
2615
2616 i = 1;
2617 offset = 0;
2618 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2619 max = sb->s_blocksize << 2;
2620 do {
2621 sbi->s_mb_offsets[i] = offset;
2622 sbi->s_mb_maxs[i] = max;
2623 offset += offset_incr;
2624 offset_incr = offset_incr >> 1;
2625 max = max >> 1;
2626 i++;
2627 } while (i <= sb->s_blocksize_bits + 1);
2628
2629 spin_lock_init(&sbi->s_md_lock);
2630 spin_lock_init(&sbi->s_bal_lock);
2631 sbi->s_mb_free_pending = 0;
2632
2633 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2634 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2635 sbi->s_mb_stats = MB_DEFAULT_STATS;
2636 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2637 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2638 /*
2639 * The default group preallocation is 512, which for 4k block
2640 * sizes translates to 2 megabytes. However for bigalloc file
2641 * systems, this is probably too big (i.e, if the cluster size
2642 * is 1 megabyte, then group preallocation size becomes half a
2643 * gigabyte!). As a default, we will keep a two megabyte
2644 * group pralloc size for cluster sizes up to 64k, and after
2645 * that, we will force a minimum group preallocation size of
2646 * 32 clusters. This translates to 8 megs when the cluster
2647 * size is 256k, and 32 megs when the cluster size is 1 meg,
2648 * which seems reasonable as a default.
2649 */
2650 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2651 sbi->s_cluster_bits, 32);
2652 /*
2653 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2654 * to the lowest multiple of s_stripe which is bigger than
2655 * the s_mb_group_prealloc as determined above. We want
2656 * the preallocation size to be an exact multiple of the
2657 * RAID stripe size so that preallocations don't fragment
2658 * the stripes.
2659 */
2660 if (sbi->s_stripe > 1) {
2661 sbi->s_mb_group_prealloc = roundup(
2662 sbi->s_mb_group_prealloc, sbi->s_stripe);
2663 }
2664
2665 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2666 if (sbi->s_locality_groups == NULL) {
2667 ret = -ENOMEM;
2668 goto out;
2669 }
2670 for_each_possible_cpu(i) {
2671 struct ext4_locality_group *lg;
2672 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2673 mutex_init(&lg->lg_mutex);
2674 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2675 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2676 spin_lock_init(&lg->lg_prealloc_lock);
2677 }
2678
2679 /* init file for buddy data */
2680 ret = ext4_mb_init_backend(sb);
2681 if (ret != 0)
2682 goto out_free_locality_groups;
2683
2684 return 0;
2685
2686 out_free_locality_groups:
2687 free_percpu(sbi->s_locality_groups);
2688 sbi->s_locality_groups = NULL;
2689 out:
2690 kfree(sbi->s_mb_offsets);
2691 sbi->s_mb_offsets = NULL;
2692 kfree(sbi->s_mb_maxs);
2693 sbi->s_mb_maxs = NULL;
2694 return ret;
2695 }
2696
2697 /* need to called with the ext4 group lock held */
ext4_mb_cleanup_pa(struct ext4_group_info * grp)2698 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2699 {
2700 struct ext4_prealloc_space *pa;
2701 struct list_head *cur, *tmp;
2702 int count = 0;
2703
2704 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2705 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2706 list_del(&pa->pa_group_list);
2707 count++;
2708 kmem_cache_free(ext4_pspace_cachep, pa);
2709 }
2710 if (count)
2711 mb_debug(1, "mballoc: %u PAs left\n", count);
2712
2713 }
2714
ext4_mb_release(struct super_block * sb)2715 int ext4_mb_release(struct super_block *sb)
2716 {
2717 ext4_group_t ngroups = ext4_get_groups_count(sb);
2718 ext4_group_t i;
2719 int num_meta_group_infos;
2720 struct ext4_group_info *grinfo;
2721 struct ext4_sb_info *sbi = EXT4_SB(sb);
2722 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2723
2724 if (sbi->s_group_info) {
2725 for (i = 0; i < ngroups; i++) {
2726 grinfo = ext4_get_group_info(sb, i);
2727 #ifdef DOUBLE_CHECK
2728 kfree(grinfo->bb_bitmap);
2729 #endif
2730 ext4_lock_group(sb, i);
2731 ext4_mb_cleanup_pa(grinfo);
2732 ext4_unlock_group(sb, i);
2733 kmem_cache_free(cachep, grinfo);
2734 }
2735 num_meta_group_infos = (ngroups +
2736 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2737 EXT4_DESC_PER_BLOCK_BITS(sb);
2738 for (i = 0; i < num_meta_group_infos; i++)
2739 kfree(sbi->s_group_info[i]);
2740 kvfree(sbi->s_group_info);
2741 }
2742 kfree(sbi->s_mb_offsets);
2743 kfree(sbi->s_mb_maxs);
2744 iput(sbi->s_buddy_cache);
2745 if (sbi->s_mb_stats) {
2746 ext4_msg(sb, KERN_INFO,
2747 "mballoc: %u blocks %u reqs (%u success)",
2748 atomic_read(&sbi->s_bal_allocated),
2749 atomic_read(&sbi->s_bal_reqs),
2750 atomic_read(&sbi->s_bal_success));
2751 ext4_msg(sb, KERN_INFO,
2752 "mballoc: %u extents scanned, %u goal hits, "
2753 "%u 2^N hits, %u breaks, %u lost",
2754 atomic_read(&sbi->s_bal_ex_scanned),
2755 atomic_read(&sbi->s_bal_goals),
2756 atomic_read(&sbi->s_bal_2orders),
2757 atomic_read(&sbi->s_bal_breaks),
2758 atomic_read(&sbi->s_mb_lost_chunks));
2759 ext4_msg(sb, KERN_INFO,
2760 "mballoc: %lu generated and it took %Lu",
2761 sbi->s_mb_buddies_generated,
2762 sbi->s_mb_generation_time);
2763 ext4_msg(sb, KERN_INFO,
2764 "mballoc: %u preallocated, %u discarded",
2765 atomic_read(&sbi->s_mb_preallocated),
2766 atomic_read(&sbi->s_mb_discarded));
2767 }
2768
2769 free_percpu(sbi->s_locality_groups);
2770
2771 return 0;
2772 }
2773
ext4_issue_discard(struct super_block * sb,ext4_group_t block_group,ext4_grpblk_t cluster,int count,unsigned long flags)2774 static inline int ext4_issue_discard(struct super_block *sb,
2775 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2776 unsigned long flags)
2777 {
2778 ext4_fsblk_t discard_block;
2779
2780 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2781 ext4_group_first_block_no(sb, block_group));
2782 count = EXT4_C2B(EXT4_SB(sb), count);
2783 trace_ext4_discard_blocks(sb,
2784 (unsigned long long) discard_block, count);
2785 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, flags);
2786 }
2787
2788 /*
2789 * This function is called by the jbd2 layer once the commit has finished,
2790 * so we know we can free the blocks that were released with that commit.
2791 */
ext4_free_data_callback(struct super_block * sb,struct ext4_journal_cb_entry * jce,int rc)2792 static void ext4_free_data_callback(struct super_block *sb,
2793 struct ext4_journal_cb_entry *jce,
2794 int rc)
2795 {
2796 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2797 struct ext4_buddy e4b;
2798 struct ext4_group_info *db;
2799 int err, count = 0, count2 = 0;
2800
2801 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2802 entry->efd_count, entry->efd_group, entry);
2803
2804 if (test_opt(sb, DISCARD)) {
2805 err = ext4_issue_discard(sb, entry->efd_group,
2806 entry->efd_start_cluster,
2807 entry->efd_count, 0);
2808 if (err && err != -EOPNOTSUPP)
2809 ext4_msg(sb, KERN_WARNING, "discard request in"
2810 " group:%d block:%d count:%d failed"
2811 " with %d", entry->efd_group,
2812 entry->efd_start_cluster,
2813 entry->efd_count, err);
2814 }
2815
2816 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2817 /* we expect to find existing buddy because it's pinned */
2818 BUG_ON(err != 0);
2819
2820 spin_lock(&EXT4_SB(sb)->s_md_lock);
2821 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2822 spin_unlock(&EXT4_SB(sb)->s_md_lock);
2823
2824 db = e4b.bd_info;
2825 /* there are blocks to put in buddy to make them really free */
2826 count += entry->efd_count;
2827 count2++;
2828 ext4_lock_group(sb, entry->efd_group);
2829 /* Take it out of per group rb tree */
2830 rb_erase(&entry->efd_node, &(db->bb_free_root));
2831 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2832
2833 /*
2834 * Clear the trimmed flag for the group so that the next
2835 * ext4_trim_fs can trim it.
2836 * If the volume is mounted with -o discard, online discard
2837 * is supported and the free blocks will be trimmed online.
2838 */
2839 if (!test_opt(sb, DISCARD))
2840 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2841
2842 if (!db->bb_free_root.rb_node) {
2843 /* No more items in the per group rb tree
2844 * balance refcounts from ext4_mb_free_metadata()
2845 */
2846 put_page(e4b.bd_buddy_page);
2847 put_page(e4b.bd_bitmap_page);
2848 }
2849 ext4_unlock_group(sb, entry->efd_group);
2850 kmem_cache_free(ext4_free_data_cachep, entry);
2851 ext4_mb_unload_buddy(&e4b);
2852
2853 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2854 }
2855
ext4_init_mballoc(void)2856 int __init ext4_init_mballoc(void)
2857 {
2858 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2859 SLAB_RECLAIM_ACCOUNT);
2860 if (ext4_pspace_cachep == NULL)
2861 return -ENOMEM;
2862
2863 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2864 SLAB_RECLAIM_ACCOUNT);
2865 if (ext4_ac_cachep == NULL) {
2866 kmem_cache_destroy(ext4_pspace_cachep);
2867 return -ENOMEM;
2868 }
2869
2870 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2871 SLAB_RECLAIM_ACCOUNT);
2872 if (ext4_free_data_cachep == NULL) {
2873 kmem_cache_destroy(ext4_pspace_cachep);
2874 kmem_cache_destroy(ext4_ac_cachep);
2875 return -ENOMEM;
2876 }
2877 return 0;
2878 }
2879
ext4_exit_mballoc(void)2880 void ext4_exit_mballoc(void)
2881 {
2882 /*
2883 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2884 * before destroying the slab cache.
2885 */
2886 rcu_barrier();
2887 kmem_cache_destroy(ext4_pspace_cachep);
2888 kmem_cache_destroy(ext4_ac_cachep);
2889 kmem_cache_destroy(ext4_free_data_cachep);
2890 ext4_groupinfo_destroy_slabs();
2891 }
2892
2893
2894 /*
2895 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2896 * Returns 0 if success or error code
2897 */
2898 static noinline_for_stack int
ext4_mb_mark_diskspace_used(struct ext4_allocation_context * ac,handle_t * handle,unsigned int reserv_clstrs)2899 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2900 handle_t *handle, unsigned int reserv_clstrs)
2901 {
2902 struct buffer_head *bitmap_bh = NULL;
2903 struct ext4_group_desc *gdp;
2904 struct buffer_head *gdp_bh;
2905 struct ext4_sb_info *sbi;
2906 struct super_block *sb;
2907 ext4_fsblk_t block;
2908 int err, len;
2909
2910 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2911 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2912
2913 sb = ac->ac_sb;
2914 sbi = EXT4_SB(sb);
2915
2916 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2917 if (IS_ERR(bitmap_bh)) {
2918 err = PTR_ERR(bitmap_bh);
2919 bitmap_bh = NULL;
2920 goto out_err;
2921 }
2922
2923 BUFFER_TRACE(bitmap_bh, "getting write access");
2924 err = ext4_journal_get_write_access(handle, bitmap_bh);
2925 if (err)
2926 goto out_err;
2927
2928 err = -EIO;
2929 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2930 if (!gdp)
2931 goto out_err;
2932
2933 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2934 ext4_free_group_clusters(sb, gdp));
2935
2936 BUFFER_TRACE(gdp_bh, "get_write_access");
2937 err = ext4_journal_get_write_access(handle, gdp_bh);
2938 if (err)
2939 goto out_err;
2940
2941 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2942
2943 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2944 if (!ext4_data_block_valid(sbi, block, len)) {
2945 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2946 "fs metadata", block, block+len);
2947 /* File system mounted not to panic on error
2948 * Fix the bitmap and return EFSCORRUPTED
2949 * We leak some of the blocks here.
2950 */
2951 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2952 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2953 ac->ac_b_ex.fe_len);
2954 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2955 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2956 if (!err)
2957 err = -EFSCORRUPTED;
2958 goto out_err;
2959 }
2960
2961 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2962 #ifdef AGGRESSIVE_CHECK
2963 {
2964 int i;
2965 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2966 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2967 bitmap_bh->b_data));
2968 }
2969 }
2970 #endif
2971 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2972 ac->ac_b_ex.fe_len);
2973 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2974 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2975 ext4_free_group_clusters_set(sb, gdp,
2976 ext4_free_clusters_after_init(sb,
2977 ac->ac_b_ex.fe_group, gdp));
2978 }
2979 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2980 ext4_free_group_clusters_set(sb, gdp, len);
2981 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2982 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2983
2984 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2985 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2986 /*
2987 * Now reduce the dirty block count also. Should not go negative
2988 */
2989 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2990 /* release all the reserved blocks if non delalloc */
2991 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2992 reserv_clstrs);
2993
2994 if (sbi->s_log_groups_per_flex) {
2995 ext4_group_t flex_group = ext4_flex_group(sbi,
2996 ac->ac_b_ex.fe_group);
2997 atomic64_sub(ac->ac_b_ex.fe_len,
2998 &sbi->s_flex_groups[flex_group].free_clusters);
2999 }
3000
3001 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3002 if (err)
3003 goto out_err;
3004 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3005
3006 out_err:
3007 brelse(bitmap_bh);
3008 return err;
3009 }
3010
3011 /*
3012 * here we normalize request for locality group
3013 * Group request are normalized to s_mb_group_prealloc, which goes to
3014 * s_strip if we set the same via mount option.
3015 * s_mb_group_prealloc can be configured via
3016 * /sys/fs/ext4/<partition>/mb_group_prealloc
3017 *
3018 * XXX: should we try to preallocate more than the group has now?
3019 */
ext4_mb_normalize_group_request(struct ext4_allocation_context * ac)3020 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3021 {
3022 struct super_block *sb = ac->ac_sb;
3023 struct ext4_locality_group *lg = ac->ac_lg;
3024
3025 BUG_ON(lg == NULL);
3026 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3027 mb_debug(1, "#%u: goal %u blocks for locality group\n",
3028 current->pid, ac->ac_g_ex.fe_len);
3029 }
3030
3031 /*
3032 * Normalization means making request better in terms of
3033 * size and alignment
3034 */
3035 static noinline_for_stack void
ext4_mb_normalize_request(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)3036 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3037 struct ext4_allocation_request *ar)
3038 {
3039 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3040 int bsbits, max;
3041 ext4_lblk_t end;
3042 loff_t size, start_off;
3043 loff_t orig_size __maybe_unused;
3044 ext4_lblk_t start;
3045 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3046 struct ext4_prealloc_space *pa;
3047
3048 /* do normalize only data requests, metadata requests
3049 do not need preallocation */
3050 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3051 return;
3052
3053 /* sometime caller may want exact blocks */
3054 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3055 return;
3056
3057 /* caller may indicate that preallocation isn't
3058 * required (it's a tail, for example) */
3059 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3060 return;
3061
3062 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3063 ext4_mb_normalize_group_request(ac);
3064 return ;
3065 }
3066
3067 bsbits = ac->ac_sb->s_blocksize_bits;
3068
3069 /* first, let's learn actual file size
3070 * given current request is allocated */
3071 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3072 size = size << bsbits;
3073 if (size < i_size_read(ac->ac_inode))
3074 size = i_size_read(ac->ac_inode);
3075 orig_size = size;
3076
3077 /* max size of free chunks */
3078 max = 2 << bsbits;
3079
3080 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3081 (req <= (size) || max <= (chunk_size))
3082
3083 /* first, try to predict filesize */
3084 /* XXX: should this table be tunable? */
3085 start_off = 0;
3086 if (size <= 16 * 1024) {
3087 size = 16 * 1024;
3088 } else if (size <= 32 * 1024) {
3089 size = 32 * 1024;
3090 } else if (size <= 64 * 1024) {
3091 size = 64 * 1024;
3092 } else if (size <= 128 * 1024) {
3093 size = 128 * 1024;
3094 } else if (size <= 256 * 1024) {
3095 size = 256 * 1024;
3096 } else if (size <= 512 * 1024) {
3097 size = 512 * 1024;
3098 } else if (size <= 1024 * 1024) {
3099 size = 1024 * 1024;
3100 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3101 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3102 (21 - bsbits)) << 21;
3103 size = 2 * 1024 * 1024;
3104 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3105 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3106 (22 - bsbits)) << 22;
3107 size = 4 * 1024 * 1024;
3108 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3109 (8<<20)>>bsbits, max, 8 * 1024)) {
3110 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3111 (23 - bsbits)) << 23;
3112 size = 8 * 1024 * 1024;
3113 } else {
3114 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3115 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3116 ac->ac_o_ex.fe_len) << bsbits;
3117 }
3118 size = size >> bsbits;
3119 start = start_off >> bsbits;
3120
3121 /* don't cover already allocated blocks in selected range */
3122 if (ar->pleft && start <= ar->lleft) {
3123 size -= ar->lleft + 1 - start;
3124 start = ar->lleft + 1;
3125 }
3126 if (ar->pright && start + size - 1 >= ar->lright)
3127 size -= start + size - ar->lright;
3128
3129 /*
3130 * Trim allocation request for filesystems with artificially small
3131 * groups.
3132 */
3133 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3134 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3135
3136 end = start + size;
3137
3138 /* check we don't cross already preallocated blocks */
3139 rcu_read_lock();
3140 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3141 ext4_lblk_t pa_end;
3142
3143 if (pa->pa_deleted)
3144 continue;
3145 spin_lock(&pa->pa_lock);
3146 if (pa->pa_deleted) {
3147 spin_unlock(&pa->pa_lock);
3148 continue;
3149 }
3150
3151 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3152 pa->pa_len);
3153
3154 /* PA must not overlap original request */
3155 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3156 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3157
3158 /* skip PAs this normalized request doesn't overlap with */
3159 if (pa->pa_lstart >= end || pa_end <= start) {
3160 spin_unlock(&pa->pa_lock);
3161 continue;
3162 }
3163 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3164
3165 /* adjust start or end to be adjacent to this pa */
3166 if (pa_end <= ac->ac_o_ex.fe_logical) {
3167 BUG_ON(pa_end < start);
3168 start = pa_end;
3169 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3170 BUG_ON(pa->pa_lstart > end);
3171 end = pa->pa_lstart;
3172 }
3173 spin_unlock(&pa->pa_lock);
3174 }
3175 rcu_read_unlock();
3176 size = end - start;
3177
3178 /* XXX: extra loop to check we really don't overlap preallocations */
3179 rcu_read_lock();
3180 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3181 ext4_lblk_t pa_end;
3182
3183 spin_lock(&pa->pa_lock);
3184 if (pa->pa_deleted == 0) {
3185 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3186 pa->pa_len);
3187 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3188 }
3189 spin_unlock(&pa->pa_lock);
3190 }
3191 rcu_read_unlock();
3192
3193 if (start + size <= ac->ac_o_ex.fe_logical &&
3194 start > ac->ac_o_ex.fe_logical) {
3195 ext4_msg(ac->ac_sb, KERN_ERR,
3196 "start %lu, size %lu, fe_logical %lu",
3197 (unsigned long) start, (unsigned long) size,
3198 (unsigned long) ac->ac_o_ex.fe_logical);
3199 BUG();
3200 }
3201 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3202
3203 /* now prepare goal request */
3204
3205 /* XXX: is it better to align blocks WRT to logical
3206 * placement or satisfy big request as is */
3207 ac->ac_g_ex.fe_logical = start;
3208 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3209
3210 /* define goal start in order to merge */
3211 if (ar->pright && (ar->lright == (start + size))) {
3212 /* merge to the right */
3213 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3214 &ac->ac_f_ex.fe_group,
3215 &ac->ac_f_ex.fe_start);
3216 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3217 }
3218 if (ar->pleft && (ar->lleft + 1 == start)) {
3219 /* merge to the left */
3220 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3221 &ac->ac_f_ex.fe_group,
3222 &ac->ac_f_ex.fe_start);
3223 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3224 }
3225
3226 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3227 (unsigned) orig_size, (unsigned) start);
3228 }
3229
ext4_mb_collect_stats(struct ext4_allocation_context * ac)3230 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3231 {
3232 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3233
3234 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3235 atomic_inc(&sbi->s_bal_reqs);
3236 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3237 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3238 atomic_inc(&sbi->s_bal_success);
3239 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3240 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3241 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3242 atomic_inc(&sbi->s_bal_goals);
3243 if (ac->ac_found > sbi->s_mb_max_to_scan)
3244 atomic_inc(&sbi->s_bal_breaks);
3245 }
3246
3247 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3248 trace_ext4_mballoc_alloc(ac);
3249 else
3250 trace_ext4_mballoc_prealloc(ac);
3251 }
3252
3253 /*
3254 * Called on failure; free up any blocks from the inode PA for this
3255 * context. We don't need this for MB_GROUP_PA because we only change
3256 * pa_free in ext4_mb_release_context(), but on failure, we've already
3257 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3258 */
ext4_discard_allocated_blocks(struct ext4_allocation_context * ac)3259 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3260 {
3261 struct ext4_prealloc_space *pa = ac->ac_pa;
3262 struct ext4_buddy e4b;
3263 int err;
3264
3265 if (pa == NULL) {
3266 if (ac->ac_f_ex.fe_len == 0)
3267 return;
3268 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3269 if (err) {
3270 /*
3271 * This should never happen since we pin the
3272 * pages in the ext4_allocation_context so
3273 * ext4_mb_load_buddy() should never fail.
3274 */
3275 WARN(1, "mb_load_buddy failed (%d)", err);
3276 return;
3277 }
3278 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3279 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3280 ac->ac_f_ex.fe_len);
3281 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3282 ext4_mb_unload_buddy(&e4b);
3283 return;
3284 }
3285 if (pa->pa_type == MB_INODE_PA)
3286 pa->pa_free += ac->ac_b_ex.fe_len;
3287 }
3288
3289 /*
3290 * use blocks preallocated to inode
3291 */
ext4_mb_use_inode_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3292 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3293 struct ext4_prealloc_space *pa)
3294 {
3295 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3296 ext4_fsblk_t start;
3297 ext4_fsblk_t end;
3298 int len;
3299
3300 /* found preallocated blocks, use them */
3301 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3302 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3303 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3304 len = EXT4_NUM_B2C(sbi, end - start);
3305 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3306 &ac->ac_b_ex.fe_start);
3307 ac->ac_b_ex.fe_len = len;
3308 ac->ac_status = AC_STATUS_FOUND;
3309 ac->ac_pa = pa;
3310
3311 BUG_ON(start < pa->pa_pstart);
3312 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3313 BUG_ON(pa->pa_free < len);
3314 pa->pa_free -= len;
3315
3316 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3317 }
3318
3319 /*
3320 * use blocks preallocated to locality group
3321 */
ext4_mb_use_group_pa(struct ext4_allocation_context * ac,struct ext4_prealloc_space * pa)3322 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3323 struct ext4_prealloc_space *pa)
3324 {
3325 unsigned int len = ac->ac_o_ex.fe_len;
3326
3327 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3328 &ac->ac_b_ex.fe_group,
3329 &ac->ac_b_ex.fe_start);
3330 ac->ac_b_ex.fe_len = len;
3331 ac->ac_status = AC_STATUS_FOUND;
3332 ac->ac_pa = pa;
3333
3334 /* we don't correct pa_pstart or pa_plen here to avoid
3335 * possible race when the group is being loaded concurrently
3336 * instead we correct pa later, after blocks are marked
3337 * in on-disk bitmap -- see ext4_mb_release_context()
3338 * Other CPUs are prevented from allocating from this pa by lg_mutex
3339 */
3340 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3341 }
3342
3343 /*
3344 * Return the prealloc space that have minimal distance
3345 * from the goal block. @cpa is the prealloc
3346 * space that is having currently known minimal distance
3347 * from the goal block.
3348 */
3349 static struct ext4_prealloc_space *
ext4_mb_check_group_pa(ext4_fsblk_t goal_block,struct ext4_prealloc_space * pa,struct ext4_prealloc_space * cpa)3350 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3351 struct ext4_prealloc_space *pa,
3352 struct ext4_prealloc_space *cpa)
3353 {
3354 ext4_fsblk_t cur_distance, new_distance;
3355
3356 if (cpa == NULL) {
3357 atomic_inc(&pa->pa_count);
3358 return pa;
3359 }
3360 cur_distance = abs(goal_block - cpa->pa_pstart);
3361 new_distance = abs(goal_block - pa->pa_pstart);
3362
3363 if (cur_distance <= new_distance)
3364 return cpa;
3365
3366 /* drop the previous reference */
3367 atomic_dec(&cpa->pa_count);
3368 atomic_inc(&pa->pa_count);
3369 return pa;
3370 }
3371
3372 /*
3373 * search goal blocks in preallocated space
3374 */
3375 static noinline_for_stack int
ext4_mb_use_preallocated(struct ext4_allocation_context * ac)3376 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3377 {
3378 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3379 int order, i;
3380 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3381 struct ext4_locality_group *lg;
3382 struct ext4_prealloc_space *pa, *cpa = NULL;
3383 ext4_fsblk_t goal_block;
3384
3385 /* only data can be preallocated */
3386 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3387 return 0;
3388
3389 /* first, try per-file preallocation */
3390 rcu_read_lock();
3391 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3392
3393 /* all fields in this condition don't change,
3394 * so we can skip locking for them */
3395 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3396 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3397 EXT4_C2B(sbi, pa->pa_len)))
3398 continue;
3399
3400 /* non-extent files can't have physical blocks past 2^32 */
3401 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3402 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3403 EXT4_MAX_BLOCK_FILE_PHYS))
3404 continue;
3405
3406 /* found preallocated blocks, use them */
3407 spin_lock(&pa->pa_lock);
3408 if (pa->pa_deleted == 0 && pa->pa_free) {
3409 atomic_inc(&pa->pa_count);
3410 ext4_mb_use_inode_pa(ac, pa);
3411 spin_unlock(&pa->pa_lock);
3412 ac->ac_criteria = 10;
3413 rcu_read_unlock();
3414 return 1;
3415 }
3416 spin_unlock(&pa->pa_lock);
3417 }
3418 rcu_read_unlock();
3419
3420 /* can we use group allocation? */
3421 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3422 return 0;
3423
3424 /* inode may have no locality group for some reason */
3425 lg = ac->ac_lg;
3426 if (lg == NULL)
3427 return 0;
3428 order = fls(ac->ac_o_ex.fe_len) - 1;
3429 if (order > PREALLOC_TB_SIZE - 1)
3430 /* The max size of hash table is PREALLOC_TB_SIZE */
3431 order = PREALLOC_TB_SIZE - 1;
3432
3433 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3434 /*
3435 * search for the prealloc space that is having
3436 * minimal distance from the goal block.
3437 */
3438 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3439 rcu_read_lock();
3440 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3441 pa_inode_list) {
3442 spin_lock(&pa->pa_lock);
3443 if (pa->pa_deleted == 0 &&
3444 pa->pa_free >= ac->ac_o_ex.fe_len) {
3445
3446 cpa = ext4_mb_check_group_pa(goal_block,
3447 pa, cpa);
3448 }
3449 spin_unlock(&pa->pa_lock);
3450 }
3451 rcu_read_unlock();
3452 }
3453 if (cpa) {
3454 ext4_mb_use_group_pa(ac, cpa);
3455 ac->ac_criteria = 20;
3456 return 1;
3457 }
3458 return 0;
3459 }
3460
3461 /*
3462 * the function goes through all block freed in the group
3463 * but not yet committed and marks them used in in-core bitmap.
3464 * buddy must be generated from this bitmap
3465 * Need to be called with the ext4 group lock held
3466 */
ext4_mb_generate_from_freelist(struct super_block * sb,void * bitmap,ext4_group_t group)3467 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3468 ext4_group_t group)
3469 {
3470 struct rb_node *n;
3471 struct ext4_group_info *grp;
3472 struct ext4_free_data *entry;
3473
3474 grp = ext4_get_group_info(sb, group);
3475 n = rb_first(&(grp->bb_free_root));
3476
3477 while (n) {
3478 entry = rb_entry(n, struct ext4_free_data, efd_node);
3479 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3480 n = rb_next(n);
3481 }
3482 return;
3483 }
3484
3485 /*
3486 * the function goes through all preallocation in this group and marks them
3487 * used in in-core bitmap. buddy must be generated from this bitmap
3488 * Need to be called with ext4 group lock held
3489 */
3490 static noinline_for_stack
ext4_mb_generate_from_pa(struct super_block * sb,void * bitmap,ext4_group_t group)3491 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3492 ext4_group_t group)
3493 {
3494 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3495 struct ext4_prealloc_space *pa;
3496 struct list_head *cur;
3497 ext4_group_t groupnr;
3498 ext4_grpblk_t start;
3499 int preallocated = 0;
3500 int len;
3501
3502 /* all form of preallocation discards first load group,
3503 * so the only competing code is preallocation use.
3504 * we don't need any locking here
3505 * notice we do NOT ignore preallocations with pa_deleted
3506 * otherwise we could leave used blocks available for
3507 * allocation in buddy when concurrent ext4_mb_put_pa()
3508 * is dropping preallocation
3509 */
3510 list_for_each(cur, &grp->bb_prealloc_list) {
3511 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3512 spin_lock(&pa->pa_lock);
3513 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3514 &groupnr, &start);
3515 len = pa->pa_len;
3516 spin_unlock(&pa->pa_lock);
3517 if (unlikely(len == 0))
3518 continue;
3519 BUG_ON(groupnr != group);
3520 ext4_set_bits(bitmap, start, len);
3521 preallocated += len;
3522 }
3523 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3524 }
3525
ext4_mb_pa_callback(struct rcu_head * head)3526 static void ext4_mb_pa_callback(struct rcu_head *head)
3527 {
3528 struct ext4_prealloc_space *pa;
3529 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3530
3531 BUG_ON(atomic_read(&pa->pa_count));
3532 BUG_ON(pa->pa_deleted == 0);
3533 kmem_cache_free(ext4_pspace_cachep, pa);
3534 }
3535
3536 /*
3537 * drops a reference to preallocated space descriptor
3538 * if this was the last reference and the space is consumed
3539 */
ext4_mb_put_pa(struct ext4_allocation_context * ac,struct super_block * sb,struct ext4_prealloc_space * pa)3540 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3541 struct super_block *sb, struct ext4_prealloc_space *pa)
3542 {
3543 ext4_group_t grp;
3544 ext4_fsblk_t grp_blk;
3545
3546 /* in this short window concurrent discard can set pa_deleted */
3547 spin_lock(&pa->pa_lock);
3548 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3549 spin_unlock(&pa->pa_lock);
3550 return;
3551 }
3552
3553 if (pa->pa_deleted == 1) {
3554 spin_unlock(&pa->pa_lock);
3555 return;
3556 }
3557
3558 pa->pa_deleted = 1;
3559 spin_unlock(&pa->pa_lock);
3560
3561 grp_blk = pa->pa_pstart;
3562 /*
3563 * If doing group-based preallocation, pa_pstart may be in the
3564 * next group when pa is used up
3565 */
3566 if (pa->pa_type == MB_GROUP_PA)
3567 grp_blk--;
3568
3569 grp = ext4_get_group_number(sb, grp_blk);
3570
3571 /*
3572 * possible race:
3573 *
3574 * P1 (buddy init) P2 (regular allocation)
3575 * find block B in PA
3576 * copy on-disk bitmap to buddy
3577 * mark B in on-disk bitmap
3578 * drop PA from group
3579 * mark all PAs in buddy
3580 *
3581 * thus, P1 initializes buddy with B available. to prevent this
3582 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3583 * against that pair
3584 */
3585 ext4_lock_group(sb, grp);
3586 list_del(&pa->pa_group_list);
3587 ext4_unlock_group(sb, grp);
3588
3589 spin_lock(pa->pa_obj_lock);
3590 list_del_rcu(&pa->pa_inode_list);
3591 spin_unlock(pa->pa_obj_lock);
3592
3593 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3594 }
3595
3596 /*
3597 * creates new preallocated space for given inode
3598 */
3599 static noinline_for_stack int
ext4_mb_new_inode_pa(struct ext4_allocation_context * ac)3600 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3601 {
3602 struct super_block *sb = ac->ac_sb;
3603 struct ext4_sb_info *sbi = EXT4_SB(sb);
3604 struct ext4_prealloc_space *pa;
3605 struct ext4_group_info *grp;
3606 struct ext4_inode_info *ei;
3607
3608 /* preallocate only when found space is larger then requested */
3609 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3610 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3611 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3612
3613 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3614 if (pa == NULL)
3615 return -ENOMEM;
3616
3617 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3618 int winl;
3619 int wins;
3620 int win;
3621 int offs;
3622
3623 /* we can't allocate as much as normalizer wants.
3624 * so, found space must get proper lstart
3625 * to cover original request */
3626 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3627 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3628
3629 /* we're limited by original request in that
3630 * logical block must be covered any way
3631 * winl is window we can move our chunk within */
3632 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3633
3634 /* also, we should cover whole original request */
3635 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3636
3637 /* the smallest one defines real window */
3638 win = min(winl, wins);
3639
3640 offs = ac->ac_o_ex.fe_logical %
3641 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3642 if (offs && offs < win)
3643 win = offs;
3644
3645 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3646 EXT4_NUM_B2C(sbi, win);
3647 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3648 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3649 }
3650
3651 /* preallocation can change ac_b_ex, thus we store actually
3652 * allocated blocks for history */
3653 ac->ac_f_ex = ac->ac_b_ex;
3654
3655 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3656 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3657 pa->pa_len = ac->ac_b_ex.fe_len;
3658 pa->pa_free = pa->pa_len;
3659 atomic_set(&pa->pa_count, 1);
3660 spin_lock_init(&pa->pa_lock);
3661 INIT_LIST_HEAD(&pa->pa_inode_list);
3662 INIT_LIST_HEAD(&pa->pa_group_list);
3663 pa->pa_deleted = 0;
3664 pa->pa_type = MB_INODE_PA;
3665
3666 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3667 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3668 trace_ext4_mb_new_inode_pa(ac, pa);
3669
3670 ext4_mb_use_inode_pa(ac, pa);
3671 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3672
3673 ei = EXT4_I(ac->ac_inode);
3674 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3675
3676 pa->pa_obj_lock = &ei->i_prealloc_lock;
3677 pa->pa_inode = ac->ac_inode;
3678
3679 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3680 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3681 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3682
3683 spin_lock(pa->pa_obj_lock);
3684 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3685 spin_unlock(pa->pa_obj_lock);
3686
3687 return 0;
3688 }
3689
3690 /*
3691 * creates new preallocated space for locality group inodes belongs to
3692 */
3693 static noinline_for_stack int
ext4_mb_new_group_pa(struct ext4_allocation_context * ac)3694 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3695 {
3696 struct super_block *sb = ac->ac_sb;
3697 struct ext4_locality_group *lg;
3698 struct ext4_prealloc_space *pa;
3699 struct ext4_group_info *grp;
3700
3701 /* preallocate only when found space is larger then requested */
3702 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3703 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3704 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3705
3706 BUG_ON(ext4_pspace_cachep == NULL);
3707 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3708 if (pa == NULL)
3709 return -ENOMEM;
3710
3711 /* preallocation can change ac_b_ex, thus we store actually
3712 * allocated blocks for history */
3713 ac->ac_f_ex = ac->ac_b_ex;
3714
3715 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3716 pa->pa_lstart = pa->pa_pstart;
3717 pa->pa_len = ac->ac_b_ex.fe_len;
3718 pa->pa_free = pa->pa_len;
3719 atomic_set(&pa->pa_count, 1);
3720 spin_lock_init(&pa->pa_lock);
3721 INIT_LIST_HEAD(&pa->pa_inode_list);
3722 INIT_LIST_HEAD(&pa->pa_group_list);
3723 pa->pa_deleted = 0;
3724 pa->pa_type = MB_GROUP_PA;
3725
3726 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3727 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3728 trace_ext4_mb_new_group_pa(ac, pa);
3729
3730 ext4_mb_use_group_pa(ac, pa);
3731 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3732
3733 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3734 lg = ac->ac_lg;
3735 BUG_ON(lg == NULL);
3736
3737 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3738 pa->pa_inode = NULL;
3739
3740 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3741 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3742 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3743
3744 /*
3745 * We will later add the new pa to the right bucket
3746 * after updating the pa_free in ext4_mb_release_context
3747 */
3748 return 0;
3749 }
3750
ext4_mb_new_preallocation(struct ext4_allocation_context * ac)3751 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3752 {
3753 int err;
3754
3755 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3756 err = ext4_mb_new_group_pa(ac);
3757 else
3758 err = ext4_mb_new_inode_pa(ac);
3759 return err;
3760 }
3761
3762 /*
3763 * finds all unused blocks in on-disk bitmap, frees them in
3764 * in-core bitmap and buddy.
3765 * @pa must be unlinked from inode and group lists, so that
3766 * nobody else can find/use it.
3767 * the caller MUST hold group/inode locks.
3768 * TODO: optimize the case when there are no in-core structures yet
3769 */
3770 static noinline_for_stack int
ext4_mb_release_inode_pa(struct ext4_buddy * e4b,struct buffer_head * bitmap_bh,struct ext4_prealloc_space * pa)3771 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3772 struct ext4_prealloc_space *pa)
3773 {
3774 struct super_block *sb = e4b->bd_sb;
3775 struct ext4_sb_info *sbi = EXT4_SB(sb);
3776 unsigned int end;
3777 unsigned int next;
3778 ext4_group_t group;
3779 ext4_grpblk_t bit;
3780 unsigned long long grp_blk_start;
3781 int err = 0;
3782 int free = 0;
3783
3784 BUG_ON(pa->pa_deleted == 0);
3785 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3786 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3787 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3788 end = bit + pa->pa_len;
3789
3790 while (bit < end) {
3791 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3792 if (bit >= end)
3793 break;
3794 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3795 mb_debug(1, " free preallocated %u/%u in group %u\n",
3796 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3797 (unsigned) next - bit, (unsigned) group);
3798 free += next - bit;
3799
3800 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3801 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3802 EXT4_C2B(sbi, bit)),
3803 next - bit);
3804 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3805 bit = next + 1;
3806 }
3807 if (free != pa->pa_free) {
3808 ext4_msg(e4b->bd_sb, KERN_CRIT,
3809 "pa %p: logic %lu, phys. %lu, len %lu",
3810 pa, (unsigned long) pa->pa_lstart,
3811 (unsigned long) pa->pa_pstart,
3812 (unsigned long) pa->pa_len);
3813 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3814 free, pa->pa_free);
3815 /*
3816 * pa is already deleted so we use the value obtained
3817 * from the bitmap and continue.
3818 */
3819 }
3820 atomic_add(free, &sbi->s_mb_discarded);
3821
3822 return err;
3823 }
3824
3825 static noinline_for_stack int
ext4_mb_release_group_pa(struct ext4_buddy * e4b,struct ext4_prealloc_space * pa)3826 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3827 struct ext4_prealloc_space *pa)
3828 {
3829 struct super_block *sb = e4b->bd_sb;
3830 ext4_group_t group;
3831 ext4_grpblk_t bit;
3832
3833 trace_ext4_mb_release_group_pa(sb, pa);
3834 BUG_ON(pa->pa_deleted == 0);
3835 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3836 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3837 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3838 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3839 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3840
3841 return 0;
3842 }
3843
3844 /*
3845 * releases all preallocations in given group
3846 *
3847 * first, we need to decide discard policy:
3848 * - when do we discard
3849 * 1) ENOSPC
3850 * - how many do we discard
3851 * 1) how many requested
3852 */
3853 static noinline_for_stack int
ext4_mb_discard_group_preallocations(struct super_block * sb,ext4_group_t group,int needed)3854 ext4_mb_discard_group_preallocations(struct super_block *sb,
3855 ext4_group_t group, int needed)
3856 {
3857 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3858 struct buffer_head *bitmap_bh = NULL;
3859 struct ext4_prealloc_space *pa, *tmp;
3860 struct list_head list;
3861 struct ext4_buddy e4b;
3862 int err;
3863 int busy = 0;
3864 int free = 0;
3865
3866 mb_debug(1, "discard preallocation for group %u\n", group);
3867
3868 if (list_empty(&grp->bb_prealloc_list))
3869 return 0;
3870
3871 bitmap_bh = ext4_read_block_bitmap(sb, group);
3872 if (IS_ERR(bitmap_bh)) {
3873 err = PTR_ERR(bitmap_bh);
3874 ext4_error(sb, "Error %d reading block bitmap for %u",
3875 err, group);
3876 return 0;
3877 }
3878
3879 err = ext4_mb_load_buddy(sb, group, &e4b);
3880 if (err) {
3881 ext4_warning(sb, "Error %d loading buddy information for %u",
3882 err, group);
3883 put_bh(bitmap_bh);
3884 return 0;
3885 }
3886
3887 if (needed == 0)
3888 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3889
3890 INIT_LIST_HEAD(&list);
3891 repeat:
3892 ext4_lock_group(sb, group);
3893 list_for_each_entry_safe(pa, tmp,
3894 &grp->bb_prealloc_list, pa_group_list) {
3895 spin_lock(&pa->pa_lock);
3896 if (atomic_read(&pa->pa_count)) {
3897 spin_unlock(&pa->pa_lock);
3898 busy = 1;
3899 continue;
3900 }
3901 if (pa->pa_deleted) {
3902 spin_unlock(&pa->pa_lock);
3903 continue;
3904 }
3905
3906 /* seems this one can be freed ... */
3907 pa->pa_deleted = 1;
3908
3909 /* we can trust pa_free ... */
3910 free += pa->pa_free;
3911
3912 spin_unlock(&pa->pa_lock);
3913
3914 list_del(&pa->pa_group_list);
3915 list_add(&pa->u.pa_tmp_list, &list);
3916 }
3917
3918 /* if we still need more blocks and some PAs were used, try again */
3919 if (free < needed && busy) {
3920 busy = 0;
3921 ext4_unlock_group(sb, group);
3922 cond_resched();
3923 goto repeat;
3924 }
3925
3926 /* found anything to free? */
3927 if (list_empty(&list)) {
3928 BUG_ON(free != 0);
3929 goto out;
3930 }
3931
3932 /* now free all selected PAs */
3933 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3934
3935 /* remove from object (inode or locality group) */
3936 spin_lock(pa->pa_obj_lock);
3937 list_del_rcu(&pa->pa_inode_list);
3938 spin_unlock(pa->pa_obj_lock);
3939
3940 if (pa->pa_type == MB_GROUP_PA)
3941 ext4_mb_release_group_pa(&e4b, pa);
3942 else
3943 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3944
3945 list_del(&pa->u.pa_tmp_list);
3946 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3947 }
3948
3949 out:
3950 ext4_unlock_group(sb, group);
3951 ext4_mb_unload_buddy(&e4b);
3952 put_bh(bitmap_bh);
3953 return free;
3954 }
3955
3956 /*
3957 * releases all non-used preallocated blocks for given inode
3958 *
3959 * It's important to discard preallocations under i_data_sem
3960 * We don't want another block to be served from the prealloc
3961 * space when we are discarding the inode prealloc space.
3962 *
3963 * FIXME!! Make sure it is valid at all the call sites
3964 */
ext4_discard_preallocations(struct inode * inode)3965 void ext4_discard_preallocations(struct inode *inode)
3966 {
3967 struct ext4_inode_info *ei = EXT4_I(inode);
3968 struct super_block *sb = inode->i_sb;
3969 struct buffer_head *bitmap_bh = NULL;
3970 struct ext4_prealloc_space *pa, *tmp;
3971 ext4_group_t group = 0;
3972 struct list_head list;
3973 struct ext4_buddy e4b;
3974 int err;
3975
3976 if (!S_ISREG(inode->i_mode)) {
3977 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3978 return;
3979 }
3980
3981 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3982 trace_ext4_discard_preallocations(inode);
3983
3984 INIT_LIST_HEAD(&list);
3985
3986 repeat:
3987 /* first, collect all pa's in the inode */
3988 spin_lock(&ei->i_prealloc_lock);
3989 while (!list_empty(&ei->i_prealloc_list)) {
3990 pa = list_entry(ei->i_prealloc_list.next,
3991 struct ext4_prealloc_space, pa_inode_list);
3992 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3993 spin_lock(&pa->pa_lock);
3994 if (atomic_read(&pa->pa_count)) {
3995 /* this shouldn't happen often - nobody should
3996 * use preallocation while we're discarding it */
3997 spin_unlock(&pa->pa_lock);
3998 spin_unlock(&ei->i_prealloc_lock);
3999 ext4_msg(sb, KERN_ERR,
4000 "uh-oh! used pa while discarding");
4001 WARN_ON(1);
4002 schedule_timeout_uninterruptible(HZ);
4003 goto repeat;
4004
4005 }
4006 if (pa->pa_deleted == 0) {
4007 pa->pa_deleted = 1;
4008 spin_unlock(&pa->pa_lock);
4009 list_del_rcu(&pa->pa_inode_list);
4010 list_add(&pa->u.pa_tmp_list, &list);
4011 continue;
4012 }
4013
4014 /* someone is deleting pa right now */
4015 spin_unlock(&pa->pa_lock);
4016 spin_unlock(&ei->i_prealloc_lock);
4017
4018 /* we have to wait here because pa_deleted
4019 * doesn't mean pa is already unlinked from
4020 * the list. as we might be called from
4021 * ->clear_inode() the inode will get freed
4022 * and concurrent thread which is unlinking
4023 * pa from inode's list may access already
4024 * freed memory, bad-bad-bad */
4025
4026 /* XXX: if this happens too often, we can
4027 * add a flag to force wait only in case
4028 * of ->clear_inode(), but not in case of
4029 * regular truncate */
4030 schedule_timeout_uninterruptible(HZ);
4031 goto repeat;
4032 }
4033 spin_unlock(&ei->i_prealloc_lock);
4034
4035 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4036 BUG_ON(pa->pa_type != MB_INODE_PA);
4037 group = ext4_get_group_number(sb, pa->pa_pstart);
4038
4039 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4040 GFP_NOFS|__GFP_NOFAIL);
4041 if (err) {
4042 ext4_error(sb, "Error %d loading buddy information for %u",
4043 err, group);
4044 continue;
4045 }
4046
4047 bitmap_bh = ext4_read_block_bitmap(sb, group);
4048 if (IS_ERR(bitmap_bh)) {
4049 err = PTR_ERR(bitmap_bh);
4050 ext4_error(sb, "Error %d reading block bitmap for %u",
4051 err, group);
4052 ext4_mb_unload_buddy(&e4b);
4053 continue;
4054 }
4055
4056 ext4_lock_group(sb, group);
4057 list_del(&pa->pa_group_list);
4058 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4059 ext4_unlock_group(sb, group);
4060
4061 ext4_mb_unload_buddy(&e4b);
4062 put_bh(bitmap_bh);
4063
4064 list_del(&pa->u.pa_tmp_list);
4065 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4066 }
4067 }
4068
4069 #ifdef CONFIG_EXT4_DEBUG
ext4_mb_show_ac(struct ext4_allocation_context * ac)4070 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4071 {
4072 struct super_block *sb = ac->ac_sb;
4073 ext4_group_t ngroups, i;
4074
4075 if (!ext4_mballoc_debug ||
4076 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4077 return;
4078
4079 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4080 " Allocation context details:");
4081 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4082 ac->ac_status, ac->ac_flags);
4083 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4084 "goal %lu/%lu/%lu@%lu, "
4085 "best %lu/%lu/%lu@%lu cr %d",
4086 (unsigned long)ac->ac_o_ex.fe_group,
4087 (unsigned long)ac->ac_o_ex.fe_start,
4088 (unsigned long)ac->ac_o_ex.fe_len,
4089 (unsigned long)ac->ac_o_ex.fe_logical,
4090 (unsigned long)ac->ac_g_ex.fe_group,
4091 (unsigned long)ac->ac_g_ex.fe_start,
4092 (unsigned long)ac->ac_g_ex.fe_len,
4093 (unsigned long)ac->ac_g_ex.fe_logical,
4094 (unsigned long)ac->ac_b_ex.fe_group,
4095 (unsigned long)ac->ac_b_ex.fe_start,
4096 (unsigned long)ac->ac_b_ex.fe_len,
4097 (unsigned long)ac->ac_b_ex.fe_logical,
4098 (int)ac->ac_criteria);
4099 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4100 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4101 ngroups = ext4_get_groups_count(sb);
4102 for (i = 0; i < ngroups; i++) {
4103 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4104 struct ext4_prealloc_space *pa;
4105 ext4_grpblk_t start;
4106 struct list_head *cur;
4107 ext4_lock_group(sb, i);
4108 list_for_each(cur, &grp->bb_prealloc_list) {
4109 pa = list_entry(cur, struct ext4_prealloc_space,
4110 pa_group_list);
4111 spin_lock(&pa->pa_lock);
4112 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4113 NULL, &start);
4114 spin_unlock(&pa->pa_lock);
4115 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4116 start, pa->pa_len);
4117 }
4118 ext4_unlock_group(sb, i);
4119
4120 if (grp->bb_free == 0)
4121 continue;
4122 printk(KERN_ERR "%u: %d/%d \n",
4123 i, grp->bb_free, grp->bb_fragments);
4124 }
4125 printk(KERN_ERR "\n");
4126 }
4127 #else
ext4_mb_show_ac(struct ext4_allocation_context * ac)4128 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4129 {
4130 return;
4131 }
4132 #endif
4133
4134 /*
4135 * We use locality group preallocation for small size file. The size of the
4136 * file is determined by the current size or the resulting size after
4137 * allocation which ever is larger
4138 *
4139 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4140 */
ext4_mb_group_or_file(struct ext4_allocation_context * ac)4141 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4142 {
4143 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4144 int bsbits = ac->ac_sb->s_blocksize_bits;
4145 loff_t size, isize;
4146
4147 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4148 return;
4149
4150 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4151 return;
4152
4153 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4154 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4155 >> bsbits;
4156
4157 if ((size == isize) &&
4158 !ext4_fs_is_busy(sbi) &&
4159 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4160 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4161 return;
4162 }
4163
4164 if (sbi->s_mb_group_prealloc <= 0) {
4165 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4166 return;
4167 }
4168
4169 /* don't use group allocation for large files */
4170 size = max(size, isize);
4171 if (size > sbi->s_mb_stream_request) {
4172 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4173 return;
4174 }
4175
4176 BUG_ON(ac->ac_lg != NULL);
4177 /*
4178 * locality group prealloc space are per cpu. The reason for having
4179 * per cpu locality group is to reduce the contention between block
4180 * request from multiple CPUs.
4181 */
4182 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4183
4184 /* we're going to use group allocation */
4185 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4186
4187 /* serialize all allocations in the group */
4188 mutex_lock(&ac->ac_lg->lg_mutex);
4189 }
4190
4191 static noinline_for_stack int
ext4_mb_initialize_context(struct ext4_allocation_context * ac,struct ext4_allocation_request * ar)4192 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4193 struct ext4_allocation_request *ar)
4194 {
4195 struct super_block *sb = ar->inode->i_sb;
4196 struct ext4_sb_info *sbi = EXT4_SB(sb);
4197 struct ext4_super_block *es = sbi->s_es;
4198 ext4_group_t group;
4199 unsigned int len;
4200 ext4_fsblk_t goal;
4201 ext4_grpblk_t block;
4202
4203 /* we can't allocate > group size */
4204 len = ar->len;
4205
4206 /* just a dirty hack to filter too big requests */
4207 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4208 len = EXT4_CLUSTERS_PER_GROUP(sb);
4209
4210 /* start searching from the goal */
4211 goal = ar->goal;
4212 if (goal < le32_to_cpu(es->s_first_data_block) ||
4213 goal >= ext4_blocks_count(es))
4214 goal = le32_to_cpu(es->s_first_data_block);
4215 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4216
4217 /* set up allocation goals */
4218 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4219 ac->ac_status = AC_STATUS_CONTINUE;
4220 ac->ac_sb = sb;
4221 ac->ac_inode = ar->inode;
4222 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4223 ac->ac_o_ex.fe_group = group;
4224 ac->ac_o_ex.fe_start = block;
4225 ac->ac_o_ex.fe_len = len;
4226 ac->ac_g_ex = ac->ac_o_ex;
4227 ac->ac_flags = ar->flags;
4228
4229 /* we have to define context: we'll we work with a file or
4230 * locality group. this is a policy, actually */
4231 ext4_mb_group_or_file(ac);
4232
4233 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4234 "left: %u/%u, right %u/%u to %swritable\n",
4235 (unsigned) ar->len, (unsigned) ar->logical,
4236 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4237 (unsigned) ar->lleft, (unsigned) ar->pleft,
4238 (unsigned) ar->lright, (unsigned) ar->pright,
4239 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4240 return 0;
4241
4242 }
4243
4244 static noinline_for_stack void
ext4_mb_discard_lg_preallocations(struct super_block * sb,struct ext4_locality_group * lg,int order,int total_entries)4245 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4246 struct ext4_locality_group *lg,
4247 int order, int total_entries)
4248 {
4249 ext4_group_t group = 0;
4250 struct ext4_buddy e4b;
4251 struct list_head discard_list;
4252 struct ext4_prealloc_space *pa, *tmp;
4253
4254 mb_debug(1, "discard locality group preallocation\n");
4255
4256 INIT_LIST_HEAD(&discard_list);
4257
4258 spin_lock(&lg->lg_prealloc_lock);
4259 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4260 pa_inode_list) {
4261 spin_lock(&pa->pa_lock);
4262 if (atomic_read(&pa->pa_count)) {
4263 /*
4264 * This is the pa that we just used
4265 * for block allocation. So don't
4266 * free that
4267 */
4268 spin_unlock(&pa->pa_lock);
4269 continue;
4270 }
4271 if (pa->pa_deleted) {
4272 spin_unlock(&pa->pa_lock);
4273 continue;
4274 }
4275 /* only lg prealloc space */
4276 BUG_ON(pa->pa_type != MB_GROUP_PA);
4277
4278 /* seems this one can be freed ... */
4279 pa->pa_deleted = 1;
4280 spin_unlock(&pa->pa_lock);
4281
4282 list_del_rcu(&pa->pa_inode_list);
4283 list_add(&pa->u.pa_tmp_list, &discard_list);
4284
4285 total_entries--;
4286 if (total_entries <= 5) {
4287 /*
4288 * we want to keep only 5 entries
4289 * allowing it to grow to 8. This
4290 * mak sure we don't call discard
4291 * soon for this list.
4292 */
4293 break;
4294 }
4295 }
4296 spin_unlock(&lg->lg_prealloc_lock);
4297
4298 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4299 int err;
4300
4301 group = ext4_get_group_number(sb, pa->pa_pstart);
4302 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4303 GFP_NOFS|__GFP_NOFAIL);
4304 if (err) {
4305 ext4_error(sb, "Error %d loading buddy information for %u",
4306 err, group);
4307 continue;
4308 }
4309 ext4_lock_group(sb, group);
4310 list_del(&pa->pa_group_list);
4311 ext4_mb_release_group_pa(&e4b, pa);
4312 ext4_unlock_group(sb, group);
4313
4314 ext4_mb_unload_buddy(&e4b);
4315 list_del(&pa->u.pa_tmp_list);
4316 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4317 }
4318 }
4319
4320 /*
4321 * We have incremented pa_count. So it cannot be freed at this
4322 * point. Also we hold lg_mutex. So no parallel allocation is
4323 * possible from this lg. That means pa_free cannot be updated.
4324 *
4325 * A parallel ext4_mb_discard_group_preallocations is possible.
4326 * which can cause the lg_prealloc_list to be updated.
4327 */
4328
ext4_mb_add_n_trim(struct ext4_allocation_context * ac)4329 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4330 {
4331 int order, added = 0, lg_prealloc_count = 1;
4332 struct super_block *sb = ac->ac_sb;
4333 struct ext4_locality_group *lg = ac->ac_lg;
4334 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4335
4336 order = fls(pa->pa_free) - 1;
4337 if (order > PREALLOC_TB_SIZE - 1)
4338 /* The max size of hash table is PREALLOC_TB_SIZE */
4339 order = PREALLOC_TB_SIZE - 1;
4340 /* Add the prealloc space to lg */
4341 spin_lock(&lg->lg_prealloc_lock);
4342 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4343 pa_inode_list) {
4344 spin_lock(&tmp_pa->pa_lock);
4345 if (tmp_pa->pa_deleted) {
4346 spin_unlock(&tmp_pa->pa_lock);
4347 continue;
4348 }
4349 if (!added && pa->pa_free < tmp_pa->pa_free) {
4350 /* Add to the tail of the previous entry */
4351 list_add_tail_rcu(&pa->pa_inode_list,
4352 &tmp_pa->pa_inode_list);
4353 added = 1;
4354 /*
4355 * we want to count the total
4356 * number of entries in the list
4357 */
4358 }
4359 spin_unlock(&tmp_pa->pa_lock);
4360 lg_prealloc_count++;
4361 }
4362 if (!added)
4363 list_add_tail_rcu(&pa->pa_inode_list,
4364 &lg->lg_prealloc_list[order]);
4365 spin_unlock(&lg->lg_prealloc_lock);
4366
4367 /* Now trim the list to be not more than 8 elements */
4368 if (lg_prealloc_count > 8) {
4369 ext4_mb_discard_lg_preallocations(sb, lg,
4370 order, lg_prealloc_count);
4371 return;
4372 }
4373 return ;
4374 }
4375
4376 /*
4377 * release all resource we used in allocation
4378 */
ext4_mb_release_context(struct ext4_allocation_context * ac)4379 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4380 {
4381 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4382 struct ext4_prealloc_space *pa = ac->ac_pa;
4383 if (pa) {
4384 if (pa->pa_type == MB_GROUP_PA) {
4385 /* see comment in ext4_mb_use_group_pa() */
4386 spin_lock(&pa->pa_lock);
4387 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4388 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4389 pa->pa_free -= ac->ac_b_ex.fe_len;
4390 pa->pa_len -= ac->ac_b_ex.fe_len;
4391 spin_unlock(&pa->pa_lock);
4392 }
4393 }
4394 if (pa) {
4395 /*
4396 * We want to add the pa to the right bucket.
4397 * Remove it from the list and while adding
4398 * make sure the list to which we are adding
4399 * doesn't grow big.
4400 */
4401 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4402 spin_lock(pa->pa_obj_lock);
4403 list_del_rcu(&pa->pa_inode_list);
4404 spin_unlock(pa->pa_obj_lock);
4405 ext4_mb_add_n_trim(ac);
4406 }
4407 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4408 }
4409 if (ac->ac_bitmap_page)
4410 put_page(ac->ac_bitmap_page);
4411 if (ac->ac_buddy_page)
4412 put_page(ac->ac_buddy_page);
4413 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4414 mutex_unlock(&ac->ac_lg->lg_mutex);
4415 ext4_mb_collect_stats(ac);
4416 return 0;
4417 }
4418
ext4_mb_discard_preallocations(struct super_block * sb,int needed)4419 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4420 {
4421 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4422 int ret;
4423 int freed = 0;
4424
4425 trace_ext4_mb_discard_preallocations(sb, needed);
4426 for (i = 0; i < ngroups && needed > 0; i++) {
4427 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4428 freed += ret;
4429 needed -= ret;
4430 }
4431
4432 return freed;
4433 }
4434
4435 /*
4436 * Main entry point into mballoc to allocate blocks
4437 * it tries to use preallocation first, then falls back
4438 * to usual allocation
4439 */
ext4_mb_new_blocks(handle_t * handle,struct ext4_allocation_request * ar,int * errp)4440 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4441 struct ext4_allocation_request *ar, int *errp)
4442 {
4443 int freed;
4444 struct ext4_allocation_context *ac = NULL;
4445 struct ext4_sb_info *sbi;
4446 struct super_block *sb;
4447 ext4_fsblk_t block = 0;
4448 unsigned int inquota = 0;
4449 unsigned int reserv_clstrs = 0;
4450
4451 might_sleep();
4452 sb = ar->inode->i_sb;
4453 sbi = EXT4_SB(sb);
4454
4455 trace_ext4_request_blocks(ar);
4456
4457 /* Allow to use superuser reservation for quota file */
4458 if (IS_NOQUOTA(ar->inode))
4459 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4460
4461 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4462 /* Without delayed allocation we need to verify
4463 * there is enough free blocks to do block allocation
4464 * and verify allocation doesn't exceed the quota limits.
4465 */
4466 while (ar->len &&
4467 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4468
4469 /* let others to free the space */
4470 cond_resched();
4471 ar->len = ar->len >> 1;
4472 }
4473 if (!ar->len) {
4474 *errp = -ENOSPC;
4475 return 0;
4476 }
4477 reserv_clstrs = ar->len;
4478 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4479 dquot_alloc_block_nofail(ar->inode,
4480 EXT4_C2B(sbi, ar->len));
4481 } else {
4482 while (ar->len &&
4483 dquot_alloc_block(ar->inode,
4484 EXT4_C2B(sbi, ar->len))) {
4485
4486 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4487 ar->len--;
4488 }
4489 }
4490 inquota = ar->len;
4491 if (ar->len == 0) {
4492 *errp = -EDQUOT;
4493 goto out;
4494 }
4495 }
4496
4497 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4498 if (!ac) {
4499 ar->len = 0;
4500 *errp = -ENOMEM;
4501 goto out;
4502 }
4503
4504 *errp = ext4_mb_initialize_context(ac, ar);
4505 if (*errp) {
4506 ar->len = 0;
4507 goto out;
4508 }
4509
4510 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4511 if (!ext4_mb_use_preallocated(ac)) {
4512 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4513 ext4_mb_normalize_request(ac, ar);
4514 repeat:
4515 /* allocate space in core */
4516 *errp = ext4_mb_regular_allocator(ac);
4517 if (*errp)
4518 goto discard_and_exit;
4519
4520 /* as we've just preallocated more space than
4521 * user requested originally, we store allocated
4522 * space in a special descriptor */
4523 if (ac->ac_status == AC_STATUS_FOUND &&
4524 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4525 *errp = ext4_mb_new_preallocation(ac);
4526 if (*errp) {
4527 discard_and_exit:
4528 ext4_discard_allocated_blocks(ac);
4529 goto errout;
4530 }
4531 }
4532 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4533 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4534 if (*errp) {
4535 ext4_discard_allocated_blocks(ac);
4536 goto errout;
4537 } else {
4538 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4539 ar->len = ac->ac_b_ex.fe_len;
4540 }
4541 } else {
4542 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4543 if (freed)
4544 goto repeat;
4545 *errp = -ENOSPC;
4546 }
4547
4548 errout:
4549 if (*errp) {
4550 ac->ac_b_ex.fe_len = 0;
4551 ar->len = 0;
4552 ext4_mb_show_ac(ac);
4553 }
4554 ext4_mb_release_context(ac);
4555 out:
4556 if (ac)
4557 kmem_cache_free(ext4_ac_cachep, ac);
4558 if (inquota && ar->len < inquota)
4559 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4560 if (!ar->len) {
4561 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4562 /* release all the reserved blocks if non delalloc */
4563 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4564 reserv_clstrs);
4565 }
4566
4567 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4568
4569 return block;
4570 }
4571
4572 /*
4573 * We can merge two free data extents only if the physical blocks
4574 * are contiguous, AND the extents were freed by the same transaction,
4575 * AND the blocks are associated with the same group.
4576 */
can_merge(struct ext4_free_data * entry1,struct ext4_free_data * entry2)4577 static int can_merge(struct ext4_free_data *entry1,
4578 struct ext4_free_data *entry2)
4579 {
4580 if ((entry1->efd_tid == entry2->efd_tid) &&
4581 (entry1->efd_group == entry2->efd_group) &&
4582 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4583 return 1;
4584 return 0;
4585 }
4586
4587 static noinline_for_stack int
ext4_mb_free_metadata(handle_t * handle,struct ext4_buddy * e4b,struct ext4_free_data * new_entry)4588 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4589 struct ext4_free_data *new_entry)
4590 {
4591 ext4_group_t group = e4b->bd_group;
4592 ext4_grpblk_t cluster;
4593 ext4_grpblk_t clusters = new_entry->efd_count;
4594 struct ext4_free_data *entry;
4595 struct ext4_group_info *db = e4b->bd_info;
4596 struct super_block *sb = e4b->bd_sb;
4597 struct ext4_sb_info *sbi = EXT4_SB(sb);
4598 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4599 struct rb_node *parent = NULL, *new_node;
4600
4601 BUG_ON(!ext4_handle_valid(handle));
4602 BUG_ON(e4b->bd_bitmap_page == NULL);
4603 BUG_ON(e4b->bd_buddy_page == NULL);
4604
4605 new_node = &new_entry->efd_node;
4606 cluster = new_entry->efd_start_cluster;
4607
4608 if (!*n) {
4609 /* first free block exent. We need to
4610 protect buddy cache from being freed,
4611 * otherwise we'll refresh it from
4612 * on-disk bitmap and lose not-yet-available
4613 * blocks */
4614 get_page(e4b->bd_buddy_page);
4615 get_page(e4b->bd_bitmap_page);
4616 }
4617 while (*n) {
4618 parent = *n;
4619 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4620 if (cluster < entry->efd_start_cluster)
4621 n = &(*n)->rb_left;
4622 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4623 n = &(*n)->rb_right;
4624 else {
4625 ext4_grp_locked_error(sb, group, 0,
4626 ext4_group_first_block_no(sb, group) +
4627 EXT4_C2B(sbi, cluster),
4628 "Block already on to-be-freed list");
4629 return 0;
4630 }
4631 }
4632
4633 rb_link_node(new_node, parent, n);
4634 rb_insert_color(new_node, &db->bb_free_root);
4635
4636 /* Now try to see the extent can be merged to left and right */
4637 node = rb_prev(new_node);
4638 if (node) {
4639 entry = rb_entry(node, struct ext4_free_data, efd_node);
4640 if (can_merge(entry, new_entry) &&
4641 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4642 new_entry->efd_start_cluster = entry->efd_start_cluster;
4643 new_entry->efd_count += entry->efd_count;
4644 rb_erase(node, &(db->bb_free_root));
4645 kmem_cache_free(ext4_free_data_cachep, entry);
4646 }
4647 }
4648
4649 node = rb_next(new_node);
4650 if (node) {
4651 entry = rb_entry(node, struct ext4_free_data, efd_node);
4652 if (can_merge(new_entry, entry) &&
4653 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4654 new_entry->efd_count += entry->efd_count;
4655 rb_erase(node, &(db->bb_free_root));
4656 kmem_cache_free(ext4_free_data_cachep, entry);
4657 }
4658 }
4659 /* Add the extent to transaction's private list */
4660 new_entry->efd_jce.jce_func = ext4_free_data_callback;
4661 spin_lock(&sbi->s_md_lock);
4662 _ext4_journal_callback_add(handle, &new_entry->efd_jce);
4663 sbi->s_mb_free_pending += clusters;
4664 spin_unlock(&sbi->s_md_lock);
4665 return 0;
4666 }
4667
4668 /**
4669 * ext4_free_blocks() -- Free given blocks and update quota
4670 * @handle: handle for this transaction
4671 * @inode: inode
4672 * @block: start physical block to free
4673 * @count: number of blocks to count
4674 * @flags: flags used by ext4_free_blocks
4675 */
ext4_free_blocks(handle_t * handle,struct inode * inode,struct buffer_head * bh,ext4_fsblk_t block,unsigned long count,int flags)4676 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4677 struct buffer_head *bh, ext4_fsblk_t block,
4678 unsigned long count, int flags)
4679 {
4680 struct buffer_head *bitmap_bh = NULL;
4681 struct super_block *sb = inode->i_sb;
4682 struct ext4_group_desc *gdp;
4683 unsigned int overflow;
4684 ext4_grpblk_t bit;
4685 struct buffer_head *gd_bh;
4686 ext4_group_t block_group;
4687 struct ext4_sb_info *sbi;
4688 struct ext4_buddy e4b;
4689 unsigned int count_clusters;
4690 int err = 0;
4691 int ret;
4692
4693 might_sleep();
4694 if (bh) {
4695 if (block)
4696 BUG_ON(block != bh->b_blocknr);
4697 else
4698 block = bh->b_blocknr;
4699 }
4700
4701 sbi = EXT4_SB(sb);
4702 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4703 !ext4_data_block_valid(sbi, block, count)) {
4704 ext4_error(sb, "Freeing blocks not in datazone - "
4705 "block = %llu, count = %lu", block, count);
4706 goto error_return;
4707 }
4708
4709 ext4_debug("freeing block %llu\n", block);
4710 trace_ext4_free_blocks(inode, block, count, flags);
4711
4712 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4713 BUG_ON(count > 1);
4714
4715 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4716 inode, bh, block);
4717 }
4718
4719 /*
4720 * If the extent to be freed does not begin on a cluster
4721 * boundary, we need to deal with partial clusters at the
4722 * beginning and end of the extent. Normally we will free
4723 * blocks at the beginning or the end unless we are explicitly
4724 * requested to avoid doing so.
4725 */
4726 overflow = EXT4_PBLK_COFF(sbi, block);
4727 if (overflow) {
4728 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4729 overflow = sbi->s_cluster_ratio - overflow;
4730 block += overflow;
4731 if (count > overflow)
4732 count -= overflow;
4733 else
4734 return;
4735 } else {
4736 block -= overflow;
4737 count += overflow;
4738 }
4739 }
4740 overflow = EXT4_LBLK_COFF(sbi, count);
4741 if (overflow) {
4742 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4743 if (count > overflow)
4744 count -= overflow;
4745 else
4746 return;
4747 } else
4748 count += sbi->s_cluster_ratio - overflow;
4749 }
4750
4751 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4752 int i;
4753 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4754
4755 for (i = 0; i < count; i++) {
4756 cond_resched();
4757 if (is_metadata)
4758 bh = sb_find_get_block(inode->i_sb, block + i);
4759 ext4_forget(handle, is_metadata, inode, bh, block + i);
4760 }
4761 }
4762
4763 do_more:
4764 overflow = 0;
4765 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4766
4767 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4768 ext4_get_group_info(sb, block_group))))
4769 return;
4770
4771 /*
4772 * Check to see if we are freeing blocks across a group
4773 * boundary.
4774 */
4775 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4776 overflow = EXT4_C2B(sbi, bit) + count -
4777 EXT4_BLOCKS_PER_GROUP(sb);
4778 count -= overflow;
4779 }
4780 count_clusters = EXT4_NUM_B2C(sbi, count);
4781 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4782 if (IS_ERR(bitmap_bh)) {
4783 err = PTR_ERR(bitmap_bh);
4784 bitmap_bh = NULL;
4785 goto error_return;
4786 }
4787 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4788 if (!gdp) {
4789 err = -EIO;
4790 goto error_return;
4791 }
4792
4793 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4794 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4795 in_range(block, ext4_inode_table(sb, gdp),
4796 EXT4_SB(sb)->s_itb_per_group) ||
4797 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4798 EXT4_SB(sb)->s_itb_per_group)) {
4799
4800 ext4_error(sb, "Freeing blocks in system zone - "
4801 "Block = %llu, count = %lu", block, count);
4802 /* err = 0. ext4_std_error should be a no op */
4803 goto error_return;
4804 }
4805
4806 BUFFER_TRACE(bitmap_bh, "getting write access");
4807 err = ext4_journal_get_write_access(handle, bitmap_bh);
4808 if (err)
4809 goto error_return;
4810
4811 /*
4812 * We are about to modify some metadata. Call the journal APIs
4813 * to unshare ->b_data if a currently-committing transaction is
4814 * using it
4815 */
4816 BUFFER_TRACE(gd_bh, "get_write_access");
4817 err = ext4_journal_get_write_access(handle, gd_bh);
4818 if (err)
4819 goto error_return;
4820 #ifdef AGGRESSIVE_CHECK
4821 {
4822 int i;
4823 for (i = 0; i < count_clusters; i++)
4824 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4825 }
4826 #endif
4827 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4828
4829 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4830 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4831 GFP_NOFS|__GFP_NOFAIL);
4832 if (err)
4833 goto error_return;
4834
4835 /*
4836 * We need to make sure we don't reuse the freed block until after the
4837 * transaction is committed. We make an exception if the inode is to be
4838 * written in writeback mode since writeback mode has weak data
4839 * consistency guarantees.
4840 */
4841 if (ext4_handle_valid(handle) &&
4842 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4843 !ext4_should_writeback_data(inode))) {
4844 struct ext4_free_data *new_entry;
4845 /*
4846 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4847 * to fail.
4848 */
4849 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4850 GFP_NOFS|__GFP_NOFAIL);
4851 new_entry->efd_start_cluster = bit;
4852 new_entry->efd_group = block_group;
4853 new_entry->efd_count = count_clusters;
4854 new_entry->efd_tid = handle->h_transaction->t_tid;
4855
4856 ext4_lock_group(sb, block_group);
4857 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4858 ext4_mb_free_metadata(handle, &e4b, new_entry);
4859 } else {
4860 /* need to update group_info->bb_free and bitmap
4861 * with group lock held. generate_buddy look at
4862 * them with group lock_held
4863 */
4864 if (test_opt(sb, DISCARD)) {
4865 err = ext4_issue_discard(sb, block_group, bit, count,
4866 0);
4867 if (err && err != -EOPNOTSUPP)
4868 ext4_msg(sb, KERN_WARNING, "discard request in"
4869 " group:%d block:%d count:%lu failed"
4870 " with %d", block_group, bit, count,
4871 err);
4872 } else
4873 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4874
4875 ext4_lock_group(sb, block_group);
4876 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4877 mb_free_blocks(inode, &e4b, bit, count_clusters);
4878 }
4879
4880 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4881 ext4_free_group_clusters_set(sb, gdp, ret);
4882 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4883 ext4_group_desc_csum_set(sb, block_group, gdp);
4884 ext4_unlock_group(sb, block_group);
4885
4886 if (sbi->s_log_groups_per_flex) {
4887 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4888 atomic64_add(count_clusters,
4889 &sbi->s_flex_groups[flex_group].free_clusters);
4890 }
4891
4892 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4893 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4894 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4895
4896 ext4_mb_unload_buddy(&e4b);
4897
4898 /* We dirtied the bitmap block */
4899 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4900 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4901
4902 /* And the group descriptor block */
4903 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4904 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4905 if (!err)
4906 err = ret;
4907
4908 if (overflow && !err) {
4909 block += count;
4910 count = overflow;
4911 put_bh(bitmap_bh);
4912 goto do_more;
4913 }
4914 error_return:
4915 brelse(bitmap_bh);
4916 ext4_std_error(sb, err);
4917 return;
4918 }
4919
4920 /**
4921 * ext4_group_add_blocks() -- Add given blocks to an existing group
4922 * @handle: handle to this transaction
4923 * @sb: super block
4924 * @block: start physical block to add to the block group
4925 * @count: number of blocks to free
4926 *
4927 * This marks the blocks as free in the bitmap and buddy.
4928 */
ext4_group_add_blocks(handle_t * handle,struct super_block * sb,ext4_fsblk_t block,unsigned long count)4929 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4930 ext4_fsblk_t block, unsigned long count)
4931 {
4932 struct buffer_head *bitmap_bh = NULL;
4933 struct buffer_head *gd_bh;
4934 ext4_group_t block_group;
4935 ext4_grpblk_t bit;
4936 unsigned int i;
4937 struct ext4_group_desc *desc;
4938 struct ext4_sb_info *sbi = EXT4_SB(sb);
4939 struct ext4_buddy e4b;
4940 int err = 0, ret, blk_free_count;
4941 ext4_grpblk_t blocks_freed;
4942
4943 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4944
4945 if (count == 0)
4946 return 0;
4947
4948 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4949 /*
4950 * Check to see if we are freeing blocks across a group
4951 * boundary.
4952 */
4953 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4954 ext4_warning(sb, "too much blocks added to group %u",
4955 block_group);
4956 err = -EINVAL;
4957 goto error_return;
4958 }
4959
4960 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4961 if (IS_ERR(bitmap_bh)) {
4962 err = PTR_ERR(bitmap_bh);
4963 bitmap_bh = NULL;
4964 goto error_return;
4965 }
4966
4967 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4968 if (!desc) {
4969 err = -EIO;
4970 goto error_return;
4971 }
4972
4973 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4974 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4975 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4976 in_range(block + count - 1, ext4_inode_table(sb, desc),
4977 sbi->s_itb_per_group)) {
4978 ext4_error(sb, "Adding blocks in system zones - "
4979 "Block = %llu, count = %lu",
4980 block, count);
4981 err = -EINVAL;
4982 goto error_return;
4983 }
4984
4985 BUFFER_TRACE(bitmap_bh, "getting write access");
4986 err = ext4_journal_get_write_access(handle, bitmap_bh);
4987 if (err)
4988 goto error_return;
4989
4990 /*
4991 * We are about to modify some metadata. Call the journal APIs
4992 * to unshare ->b_data if a currently-committing transaction is
4993 * using it
4994 */
4995 BUFFER_TRACE(gd_bh, "get_write_access");
4996 err = ext4_journal_get_write_access(handle, gd_bh);
4997 if (err)
4998 goto error_return;
4999
5000 for (i = 0, blocks_freed = 0; i < count; i++) {
5001 BUFFER_TRACE(bitmap_bh, "clear bit");
5002 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5003 ext4_error(sb, "bit already cleared for block %llu",
5004 (ext4_fsblk_t)(block + i));
5005 BUFFER_TRACE(bitmap_bh, "bit already cleared");
5006 } else {
5007 blocks_freed++;
5008 }
5009 }
5010
5011 err = ext4_mb_load_buddy(sb, block_group, &e4b);
5012 if (err)
5013 goto error_return;
5014
5015 /*
5016 * need to update group_info->bb_free and bitmap
5017 * with group lock held. generate_buddy look at
5018 * them with group lock_held
5019 */
5020 ext4_lock_group(sb, block_group);
5021 mb_clear_bits(bitmap_bh->b_data, bit, count);
5022 mb_free_blocks(NULL, &e4b, bit, count);
5023 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
5024 ext4_free_group_clusters_set(sb, desc, blk_free_count);
5025 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5026 ext4_group_desc_csum_set(sb, block_group, desc);
5027 ext4_unlock_group(sb, block_group);
5028 percpu_counter_add(&sbi->s_freeclusters_counter,
5029 EXT4_NUM_B2C(sbi, blocks_freed));
5030
5031 if (sbi->s_log_groups_per_flex) {
5032 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5033 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
5034 &sbi->s_flex_groups[flex_group].free_clusters);
5035 }
5036
5037 ext4_mb_unload_buddy(&e4b);
5038
5039 /* We dirtied the bitmap block */
5040 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5041 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5042
5043 /* And the group descriptor block */
5044 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5045 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5046 if (!err)
5047 err = ret;
5048
5049 error_return:
5050 brelse(bitmap_bh);
5051 ext4_std_error(sb, err);
5052 return err;
5053 }
5054
5055 /**
5056 * ext4_trim_extent -- function to TRIM one single free extent in the group
5057 * @sb: super block for the file system
5058 * @start: starting block of the free extent in the alloc. group
5059 * @count: number of blocks to TRIM
5060 * @group: alloc. group we are working with
5061 * @e4b: ext4 buddy for the group
5062 * @blkdev_flags: flags for the block device
5063 *
5064 * Trim "count" blocks starting at "start" in the "group". To assure that no
5065 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5066 * be called with under the group lock.
5067 */
ext4_trim_extent(struct super_block * sb,int start,int count,ext4_group_t group,struct ext4_buddy * e4b,unsigned long blkdev_flags)5068 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5069 ext4_group_t group, struct ext4_buddy *e4b,
5070 unsigned long blkdev_flags)
5071 __releases(bitlock)
5072 __acquires(bitlock)
5073 {
5074 struct ext4_free_extent ex;
5075 int ret = 0;
5076
5077 trace_ext4_trim_extent(sb, group, start, count);
5078
5079 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5080
5081 ex.fe_start = start;
5082 ex.fe_group = group;
5083 ex.fe_len = count;
5084
5085 /*
5086 * Mark blocks used, so no one can reuse them while
5087 * being trimmed.
5088 */
5089 mb_mark_used(e4b, &ex);
5090 ext4_unlock_group(sb, group);
5091 ret = ext4_issue_discard(sb, group, start, count, blkdev_flags);
5092 ext4_lock_group(sb, group);
5093 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5094 return ret;
5095 }
5096
5097 /**
5098 * ext4_trim_all_free -- function to trim all free space in alloc. group
5099 * @sb: super block for file system
5100 * @group: group to be trimmed
5101 * @start: first group block to examine
5102 * @max: last group block to examine
5103 * @minblocks: minimum extent block count
5104 * @blkdev_flags: flags for the block device
5105 *
5106 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5107 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5108 * the extent.
5109 *
5110 *
5111 * ext4_trim_all_free walks through group's block bitmap searching for free
5112 * extents. When the free extent is found, mark it as used in group buddy
5113 * bitmap. Then issue a TRIM command on this extent and free the extent in
5114 * the group buddy bitmap. This is done until whole group is scanned.
5115 */
5116 static ext4_grpblk_t
ext4_trim_all_free(struct super_block * sb,ext4_group_t group,ext4_grpblk_t start,ext4_grpblk_t max,ext4_grpblk_t minblocks,unsigned long blkdev_flags)5117 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5118 ext4_grpblk_t start, ext4_grpblk_t max,
5119 ext4_grpblk_t minblocks, unsigned long blkdev_flags)
5120 {
5121 void *bitmap;
5122 ext4_grpblk_t next, count = 0, free_count = 0;
5123 struct ext4_buddy e4b;
5124 int ret = 0;
5125
5126 trace_ext4_trim_all_free(sb, group, start, max);
5127
5128 ret = ext4_mb_load_buddy(sb, group, &e4b);
5129 if (ret) {
5130 ext4_warning(sb, "Error %d loading buddy information for %u",
5131 ret, group);
5132 return ret;
5133 }
5134 bitmap = e4b.bd_bitmap;
5135
5136 ext4_lock_group(sb, group);
5137 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5138 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5139 goto out;
5140
5141 start = (e4b.bd_info->bb_first_free > start) ?
5142 e4b.bd_info->bb_first_free : start;
5143
5144 while (start <= max) {
5145 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5146 if (start > max)
5147 break;
5148 next = mb_find_next_bit(bitmap, max + 1, start);
5149
5150 if ((next - start) >= minblocks) {
5151 ret = ext4_trim_extent(sb, start,
5152 next - start, group, &e4b,
5153 blkdev_flags);
5154 if (ret && ret != -EOPNOTSUPP)
5155 break;
5156 ret = 0;
5157 count += next - start;
5158 }
5159 free_count += next - start;
5160 start = next + 1;
5161
5162 if (fatal_signal_pending(current)) {
5163 count = -ERESTARTSYS;
5164 break;
5165 }
5166
5167 if (need_resched()) {
5168 ext4_unlock_group(sb, group);
5169 cond_resched();
5170 ext4_lock_group(sb, group);
5171 }
5172
5173 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5174 break;
5175 }
5176
5177 if (!ret) {
5178 ret = count;
5179 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5180 }
5181 out:
5182 ext4_unlock_group(sb, group);
5183 ext4_mb_unload_buddy(&e4b);
5184
5185 ext4_debug("trimmed %d blocks in the group %d\n",
5186 count, group);
5187
5188 return ret;
5189 }
5190
5191 /**
5192 * ext4_trim_fs() -- trim ioctl handle function
5193 * @sb: superblock for filesystem
5194 * @range: fstrim_range structure
5195 * @blkdev_flags: flags for the block device
5196 *
5197 * start: First Byte to trim
5198 * len: number of Bytes to trim from start
5199 * minlen: minimum extent length in Bytes
5200 * ext4_trim_fs goes through all allocation groups containing Bytes from
5201 * start to start+len. For each such a group ext4_trim_all_free function
5202 * is invoked to trim all free space.
5203 */
ext4_trim_fs(struct super_block * sb,struct fstrim_range * range,unsigned long blkdev_flags)5204 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range,
5205 unsigned long blkdev_flags)
5206 {
5207 struct ext4_group_info *grp;
5208 ext4_group_t group, first_group, last_group;
5209 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5210 uint64_t start, end, minlen, trimmed = 0;
5211 ext4_fsblk_t first_data_blk =
5212 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5213 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5214 int ret = 0;
5215
5216 start = range->start >> sb->s_blocksize_bits;
5217 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5218 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5219 range->minlen >> sb->s_blocksize_bits);
5220
5221 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5222 start >= max_blks ||
5223 range->len < sb->s_blocksize)
5224 return -EINVAL;
5225 if (end >= max_blks)
5226 end = max_blks - 1;
5227 if (end <= first_data_blk)
5228 goto out;
5229 if (start < first_data_blk)
5230 start = first_data_blk;
5231
5232 /* Determine first and last group to examine based on start and end */
5233 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5234 &first_group, &first_cluster);
5235 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5236 &last_group, &last_cluster);
5237
5238 /* end now represents the last cluster to discard in this group */
5239 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5240
5241 for (group = first_group; group <= last_group; group++) {
5242 grp = ext4_get_group_info(sb, group);
5243 /* We only do this if the grp has never been initialized */
5244 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5245 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5246 if (ret)
5247 break;
5248 }
5249
5250 /*
5251 * For all the groups except the last one, last cluster will
5252 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5253 * change it for the last group, note that last_cluster is
5254 * already computed earlier by ext4_get_group_no_and_offset()
5255 */
5256 if (group == last_group)
5257 end = last_cluster;
5258
5259 if (grp->bb_free >= minlen) {
5260 cnt = ext4_trim_all_free(sb, group, first_cluster,
5261 end, minlen, blkdev_flags);
5262 if (cnt < 0) {
5263 ret = cnt;
5264 break;
5265 }
5266 trimmed += cnt;
5267 }
5268
5269 /*
5270 * For every group except the first one, we are sure
5271 * that the first cluster to discard will be cluster #0.
5272 */
5273 first_cluster = 0;
5274 }
5275
5276 if (!ret)
5277 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5278
5279 out:
5280 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5281 return ret;
5282 }
5283