1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/cpu_rmap.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "ef10_regs.h"
23 #include "farch_regs.h"
24 #include "io.h"
25 #include "workarounds.h"
26
27 /**************************************************************************
28 *
29 * Generic buffer handling
30 * These buffers are used for interrupt status, MAC stats, etc.
31 *
32 **************************************************************************/
33
efx_nic_alloc_buffer(struct efx_nic * efx,struct efx_buffer * buffer,unsigned int len,gfp_t gfp_flags)34 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
35 unsigned int len, gfp_t gfp_flags)
36 {
37 buffer->addr = dma_zalloc_coherent(&efx->pci_dev->dev, len,
38 &buffer->dma_addr, gfp_flags);
39 if (!buffer->addr)
40 return -ENOMEM;
41 buffer->len = len;
42 return 0;
43 }
44
efx_nic_free_buffer(struct efx_nic * efx,struct efx_buffer * buffer)45 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
46 {
47 if (buffer->addr) {
48 dma_free_coherent(&efx->pci_dev->dev, buffer->len,
49 buffer->addr, buffer->dma_addr);
50 buffer->addr = NULL;
51 }
52 }
53
54 /* Check whether an event is present in the eventq at the current
55 * read pointer. Only useful for self-test.
56 */
efx_nic_event_present(struct efx_channel * channel)57 bool efx_nic_event_present(struct efx_channel *channel)
58 {
59 return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
60 }
61
efx_nic_event_test_start(struct efx_channel * channel)62 void efx_nic_event_test_start(struct efx_channel *channel)
63 {
64 channel->event_test_cpu = -1;
65 smp_wmb();
66 channel->efx->type->ev_test_generate(channel);
67 }
68
efx_nic_irq_test_start(struct efx_nic * efx)69 int efx_nic_irq_test_start(struct efx_nic *efx)
70 {
71 efx->last_irq_cpu = -1;
72 smp_wmb();
73 return efx->type->irq_test_generate(efx);
74 }
75
76 /* Hook interrupt handler(s)
77 * Try MSI and then legacy interrupts.
78 */
efx_nic_init_interrupt(struct efx_nic * efx)79 int efx_nic_init_interrupt(struct efx_nic *efx)
80 {
81 struct efx_channel *channel;
82 unsigned int n_irqs;
83 int rc;
84
85 if (!EFX_INT_MODE_USE_MSI(efx)) {
86 rc = request_irq(efx->legacy_irq,
87 efx->type->irq_handle_legacy, IRQF_SHARED,
88 efx->name, efx);
89 if (rc) {
90 netif_err(efx, drv, efx->net_dev,
91 "failed to hook legacy IRQ %d\n",
92 efx->pci_dev->irq);
93 goto fail1;
94 }
95 return 0;
96 }
97
98 #ifdef CONFIG_RFS_ACCEL
99 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
100 efx->net_dev->rx_cpu_rmap =
101 alloc_irq_cpu_rmap(efx->n_rx_channels);
102 if (!efx->net_dev->rx_cpu_rmap) {
103 rc = -ENOMEM;
104 goto fail1;
105 }
106 }
107 #endif
108
109 /* Hook MSI or MSI-X interrupt */
110 n_irqs = 0;
111 efx_for_each_channel(channel, efx) {
112 rc = request_irq(channel->irq, efx->type->irq_handle_msi,
113 IRQF_PROBE_SHARED, /* Not shared */
114 efx->msi_context[channel->channel].name,
115 &efx->msi_context[channel->channel]);
116 if (rc) {
117 netif_err(efx, drv, efx->net_dev,
118 "failed to hook IRQ %d\n", channel->irq);
119 goto fail2;
120 }
121 ++n_irqs;
122
123 #ifdef CONFIG_RFS_ACCEL
124 if (efx->interrupt_mode == EFX_INT_MODE_MSIX &&
125 channel->channel < efx->n_rx_channels) {
126 rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
127 channel->irq);
128 if (rc)
129 goto fail2;
130 }
131 #endif
132 }
133
134 return 0;
135
136 fail2:
137 #ifdef CONFIG_RFS_ACCEL
138 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
139 efx->net_dev->rx_cpu_rmap = NULL;
140 #endif
141 efx_for_each_channel(channel, efx) {
142 if (n_irqs-- == 0)
143 break;
144 free_irq(channel->irq, &efx->msi_context[channel->channel]);
145 }
146 fail1:
147 return rc;
148 }
149
efx_nic_fini_interrupt(struct efx_nic * efx)150 void efx_nic_fini_interrupt(struct efx_nic *efx)
151 {
152 struct efx_channel *channel;
153
154 #ifdef CONFIG_RFS_ACCEL
155 free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
156 efx->net_dev->rx_cpu_rmap = NULL;
157 #endif
158
159 if (EFX_INT_MODE_USE_MSI(efx)) {
160 /* Disable MSI/MSI-X interrupts */
161 efx_for_each_channel(channel, efx)
162 free_irq(channel->irq,
163 &efx->msi_context[channel->channel]);
164 } else {
165 /* Disable legacy interrupt */
166 free_irq(efx->legacy_irq, efx);
167 }
168 }
169
170 /* Register dump */
171
172 #define REGISTER_REVISION_FA 1
173 #define REGISTER_REVISION_FB 2
174 #define REGISTER_REVISION_FC 3
175 #define REGISTER_REVISION_FZ 3 /* last Falcon arch revision */
176 #define REGISTER_REVISION_ED 4
177 #define REGISTER_REVISION_EZ 4 /* latest EF10 revision */
178
179 struct efx_nic_reg {
180 u32 offset:24;
181 u32 min_revision:3, max_revision:3;
182 };
183
184 #define REGISTER(name, arch, min_rev, max_rev) { \
185 arch ## R_ ## min_rev ## max_rev ## _ ## name, \
186 REGISTER_REVISION_ ## arch ## min_rev, \
187 REGISTER_REVISION_ ## arch ## max_rev \
188 }
189 #define REGISTER_AA(name) REGISTER(name, F, A, A)
190 #define REGISTER_AB(name) REGISTER(name, F, A, B)
191 #define REGISTER_AZ(name) REGISTER(name, F, A, Z)
192 #define REGISTER_BB(name) REGISTER(name, F, B, B)
193 #define REGISTER_BZ(name) REGISTER(name, F, B, Z)
194 #define REGISTER_CZ(name) REGISTER(name, F, C, Z)
195 #define REGISTER_DZ(name) REGISTER(name, E, D, Z)
196
197 static const struct efx_nic_reg efx_nic_regs[] = {
198 REGISTER_AZ(ADR_REGION),
199 REGISTER_AZ(INT_EN_KER),
200 REGISTER_BZ(INT_EN_CHAR),
201 REGISTER_AZ(INT_ADR_KER),
202 REGISTER_BZ(INT_ADR_CHAR),
203 /* INT_ACK_KER is WO */
204 /* INT_ISR0 is RC */
205 REGISTER_AZ(HW_INIT),
206 REGISTER_CZ(USR_EV_CFG),
207 REGISTER_AB(EE_SPI_HCMD),
208 REGISTER_AB(EE_SPI_HADR),
209 REGISTER_AB(EE_SPI_HDATA),
210 REGISTER_AB(EE_BASE_PAGE),
211 REGISTER_AB(EE_VPD_CFG0),
212 /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
213 /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
214 /* PCIE_CORE_INDIRECT is indirect */
215 REGISTER_AB(NIC_STAT),
216 REGISTER_AB(GPIO_CTL),
217 REGISTER_AB(GLB_CTL),
218 /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
219 REGISTER_BZ(DP_CTRL),
220 REGISTER_AZ(MEM_STAT),
221 REGISTER_AZ(CS_DEBUG),
222 REGISTER_AZ(ALTERA_BUILD),
223 REGISTER_AZ(CSR_SPARE),
224 REGISTER_AB(PCIE_SD_CTL0123),
225 REGISTER_AB(PCIE_SD_CTL45),
226 REGISTER_AB(PCIE_PCS_CTL_STAT),
227 /* DEBUG_DATA_OUT is not used */
228 /* DRV_EV is WO */
229 REGISTER_AZ(EVQ_CTL),
230 REGISTER_AZ(EVQ_CNT1),
231 REGISTER_AZ(EVQ_CNT2),
232 REGISTER_AZ(BUF_TBL_CFG),
233 REGISTER_AZ(SRM_RX_DC_CFG),
234 REGISTER_AZ(SRM_TX_DC_CFG),
235 REGISTER_AZ(SRM_CFG),
236 /* BUF_TBL_UPD is WO */
237 REGISTER_AZ(SRM_UPD_EVQ),
238 REGISTER_AZ(SRAM_PARITY),
239 REGISTER_AZ(RX_CFG),
240 REGISTER_BZ(RX_FILTER_CTL),
241 /* RX_FLUSH_DESCQ is WO */
242 REGISTER_AZ(RX_DC_CFG),
243 REGISTER_AZ(RX_DC_PF_WM),
244 REGISTER_BZ(RX_RSS_TKEY),
245 /* RX_NODESC_DROP is RC */
246 REGISTER_AA(RX_SELF_RST),
247 /* RX_DEBUG, RX_PUSH_DROP are not used */
248 REGISTER_CZ(RX_RSS_IPV6_REG1),
249 REGISTER_CZ(RX_RSS_IPV6_REG2),
250 REGISTER_CZ(RX_RSS_IPV6_REG3),
251 /* TX_FLUSH_DESCQ is WO */
252 REGISTER_AZ(TX_DC_CFG),
253 REGISTER_AA(TX_CHKSM_CFG),
254 REGISTER_AZ(TX_CFG),
255 /* TX_PUSH_DROP is not used */
256 REGISTER_AZ(TX_RESERVED),
257 REGISTER_BZ(TX_PACE),
258 /* TX_PACE_DROP_QID is RC */
259 REGISTER_BB(TX_VLAN),
260 REGISTER_BZ(TX_IPFIL_PORTEN),
261 REGISTER_AB(MD_TXD),
262 REGISTER_AB(MD_RXD),
263 REGISTER_AB(MD_CS),
264 REGISTER_AB(MD_PHY_ADR),
265 REGISTER_AB(MD_ID),
266 /* MD_STAT is RC */
267 REGISTER_AB(MAC_STAT_DMA),
268 REGISTER_AB(MAC_CTRL),
269 REGISTER_BB(GEN_MODE),
270 REGISTER_AB(MAC_MC_HASH_REG0),
271 REGISTER_AB(MAC_MC_HASH_REG1),
272 REGISTER_AB(GM_CFG1),
273 REGISTER_AB(GM_CFG2),
274 /* GM_IPG and GM_HD are not used */
275 REGISTER_AB(GM_MAX_FLEN),
276 /* GM_TEST is not used */
277 REGISTER_AB(GM_ADR1),
278 REGISTER_AB(GM_ADR2),
279 REGISTER_AB(GMF_CFG0),
280 REGISTER_AB(GMF_CFG1),
281 REGISTER_AB(GMF_CFG2),
282 REGISTER_AB(GMF_CFG3),
283 REGISTER_AB(GMF_CFG4),
284 REGISTER_AB(GMF_CFG5),
285 REGISTER_BB(TX_SRC_MAC_CTL),
286 REGISTER_AB(XM_ADR_LO),
287 REGISTER_AB(XM_ADR_HI),
288 REGISTER_AB(XM_GLB_CFG),
289 REGISTER_AB(XM_TX_CFG),
290 REGISTER_AB(XM_RX_CFG),
291 REGISTER_AB(XM_MGT_INT_MASK),
292 REGISTER_AB(XM_FC),
293 REGISTER_AB(XM_PAUSE_TIME),
294 REGISTER_AB(XM_TX_PARAM),
295 REGISTER_AB(XM_RX_PARAM),
296 /* XM_MGT_INT_MSK (note no 'A') is RC */
297 REGISTER_AB(XX_PWR_RST),
298 REGISTER_AB(XX_SD_CTL),
299 REGISTER_AB(XX_TXDRV_CTL),
300 /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
301 /* XX_CORE_STAT is partly RC */
302 REGISTER_DZ(BIU_HW_REV_ID),
303 REGISTER_DZ(MC_DB_LWRD),
304 REGISTER_DZ(MC_DB_HWRD),
305 };
306
307 struct efx_nic_reg_table {
308 u32 offset:24;
309 u32 min_revision:3, max_revision:3;
310 u32 step:6, rows:21;
311 };
312
313 #define REGISTER_TABLE_DIMENSIONS(_, offset, arch, min_rev, max_rev, step, rows) { \
314 offset, \
315 REGISTER_REVISION_ ## arch ## min_rev, \
316 REGISTER_REVISION_ ## arch ## max_rev, \
317 step, rows \
318 }
319 #define REGISTER_TABLE(name, arch, min_rev, max_rev) \
320 REGISTER_TABLE_DIMENSIONS( \
321 name, arch ## R_ ## min_rev ## max_rev ## _ ## name, \
322 arch, min_rev, max_rev, \
323 arch ## R_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
324 arch ## R_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
325 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, F, A, A)
326 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, F, A, Z)
327 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, F, B, B)
328 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, F, B, Z)
329 #define REGISTER_TABLE_BB_CZ(name) \
330 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, B, B, \
331 FR_BZ_ ## name ## _STEP, \
332 FR_BB_ ## name ## _ROWS), \
333 REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, C, Z, \
334 FR_BZ_ ## name ## _STEP, \
335 FR_CZ_ ## name ## _ROWS)
336 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, F, C, Z)
337 #define REGISTER_TABLE_DZ(name) REGISTER_TABLE(name, E, D, Z)
338
339 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
340 /* DRIVER is not used */
341 /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
342 REGISTER_TABLE_BB(TX_IPFIL_TBL),
343 REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
344 REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
345 REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
346 REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
347 REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
348 REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
349 REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
350 /* We can't reasonably read all of the buffer table (up to 8MB!).
351 * However this driver will only use a few entries. Reading
352 * 1K entries allows for some expansion of queue count and
353 * size before we need to change the version. */
354 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
355 F, A, A, 8, 1024),
356 REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
357 F, B, Z, 8, 1024),
358 REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
359 REGISTER_TABLE_BB_CZ(TIMER_TBL),
360 REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
361 REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
362 /* TX_FILTER_TBL0 is huge and not used by this driver */
363 REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
364 REGISTER_TABLE_CZ(MC_TREG_SMEM),
365 /* MSIX_PBA_TABLE is not mapped */
366 /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
367 REGISTER_TABLE_BZ(RX_FILTER_TBL0),
368 REGISTER_TABLE_DZ(BIU_MC_SFT_STATUS),
369 };
370
efx_nic_get_regs_len(struct efx_nic * efx)371 size_t efx_nic_get_regs_len(struct efx_nic *efx)
372 {
373 const struct efx_nic_reg *reg;
374 const struct efx_nic_reg_table *table;
375 size_t len = 0;
376
377 for (reg = efx_nic_regs;
378 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
379 reg++)
380 if (efx->type->revision >= reg->min_revision &&
381 efx->type->revision <= reg->max_revision)
382 len += sizeof(efx_oword_t);
383
384 for (table = efx_nic_reg_tables;
385 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
386 table++)
387 if (efx->type->revision >= table->min_revision &&
388 efx->type->revision <= table->max_revision)
389 len += table->rows * min_t(size_t, table->step, 16);
390
391 return len;
392 }
393
efx_nic_get_regs(struct efx_nic * efx,void * buf)394 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
395 {
396 const struct efx_nic_reg *reg;
397 const struct efx_nic_reg_table *table;
398
399 for (reg = efx_nic_regs;
400 reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
401 reg++) {
402 if (efx->type->revision >= reg->min_revision &&
403 efx->type->revision <= reg->max_revision) {
404 efx_reado(efx, (efx_oword_t *)buf, reg->offset);
405 buf += sizeof(efx_oword_t);
406 }
407 }
408
409 for (table = efx_nic_reg_tables;
410 table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
411 table++) {
412 size_t size, i;
413
414 if (!(efx->type->revision >= table->min_revision &&
415 efx->type->revision <= table->max_revision))
416 continue;
417
418 size = min_t(size_t, table->step, 16);
419
420 for (i = 0; i < table->rows; i++) {
421 switch (table->step) {
422 case 4: /* 32-bit SRAM */
423 efx_readd(efx, buf, table->offset + 4 * i);
424 break;
425 case 8: /* 64-bit SRAM */
426 efx_sram_readq(efx,
427 efx->membase + table->offset,
428 buf, i);
429 break;
430 case 16: /* 128-bit-readable register */
431 efx_reado_table(efx, buf, table->offset, i);
432 break;
433 case 32: /* 128-bit register, interleaved */
434 efx_reado_table(efx, buf, table->offset, 2 * i);
435 break;
436 default:
437 WARN_ON(1);
438 return;
439 }
440 buf += size;
441 }
442 }
443 }
444
445 /**
446 * efx_nic_describe_stats - Describe supported statistics for ethtool
447 * @desc: Array of &struct efx_hw_stat_desc describing the statistics
448 * @count: Length of the @desc array
449 * @mask: Bitmask of which elements of @desc are enabled
450 * @names: Buffer to copy names to, or %NULL. The names are copied
451 * starting at intervals of %ETH_GSTRING_LEN bytes.
452 *
453 * Returns the number of visible statistics, i.e. the number of set
454 * bits in the first @count bits of @mask for which a name is defined.
455 */
efx_nic_describe_stats(const struct efx_hw_stat_desc * desc,size_t count,const unsigned long * mask,u8 * names)456 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
457 const unsigned long *mask, u8 *names)
458 {
459 size_t visible = 0;
460 size_t index;
461
462 for_each_set_bit(index, mask, count) {
463 if (desc[index].name) {
464 if (names) {
465 strlcpy(names, desc[index].name,
466 ETH_GSTRING_LEN);
467 names += ETH_GSTRING_LEN;
468 }
469 ++visible;
470 }
471 }
472
473 return visible;
474 }
475
476 /**
477 * efx_nic_update_stats - Convert statistics DMA buffer to array of u64
478 * @desc: Array of &struct efx_hw_stat_desc describing the DMA buffer
479 * layout. DMA widths of 0, 16, 32 and 64 are supported; where
480 * the width is specified as 0 the corresponding element of
481 * @stats is not updated.
482 * @count: Length of the @desc array
483 * @mask: Bitmask of which elements of @desc are enabled
484 * @stats: Buffer to update with the converted statistics. The length
485 * of this array must be at least @count.
486 * @dma_buf: DMA buffer containing hardware statistics
487 * @accumulate: If set, the converted values will be added rather than
488 * directly stored to the corresponding elements of @stats
489 */
efx_nic_update_stats(const struct efx_hw_stat_desc * desc,size_t count,const unsigned long * mask,u64 * stats,const void * dma_buf,bool accumulate)490 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
491 const unsigned long *mask,
492 u64 *stats, const void *dma_buf, bool accumulate)
493 {
494 size_t index;
495
496 for_each_set_bit(index, mask, count) {
497 if (desc[index].dma_width) {
498 const void *addr = dma_buf + desc[index].offset;
499 u64 val;
500
501 switch (desc[index].dma_width) {
502 case 16:
503 val = le16_to_cpup((__le16 *)addr);
504 break;
505 case 32:
506 val = le32_to_cpup((__le32 *)addr);
507 break;
508 case 64:
509 val = le64_to_cpup((__le64 *)addr);
510 break;
511 default:
512 WARN_ON(1);
513 val = 0;
514 break;
515 }
516
517 if (accumulate)
518 stats[index] += val;
519 else
520 stats[index] = val;
521 }
522 }
523 }
524
efx_nic_fix_nodesc_drop_stat(struct efx_nic * efx,u64 * rx_nodesc_drops)525 void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *rx_nodesc_drops)
526 {
527 /* if down, or this is the first update after coming up */
528 if (!(efx->net_dev->flags & IFF_UP) || !efx->rx_nodesc_drops_prev_state)
529 efx->rx_nodesc_drops_while_down +=
530 *rx_nodesc_drops - efx->rx_nodesc_drops_total;
531 efx->rx_nodesc_drops_total = *rx_nodesc_drops;
532 efx->rx_nodesc_drops_prev_state = !!(efx->net_dev->flags & IFF_UP);
533 *rx_nodesc_drops -= efx->rx_nodesc_drops_while_down;
534 }
535