• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _LINUX_PID_H
2 #define _LINUX_PID_H
3 
4 #include <linux/rcupdate.h>
5 
6 enum pid_type
7 {
8 	PIDTYPE_PID,
9 	PIDTYPE_PGID,
10 	PIDTYPE_SID,
11 	PIDTYPE_MAX,
12 	/* only valid to __task_pid_nr_ns() */
13 	__PIDTYPE_TGID
14 };
15 
16 /*
17  * What is struct pid?
18  *
19  * A struct pid is the kernel's internal notion of a process identifier.
20  * It refers to individual tasks, process groups, and sessions.  While
21  * there are processes attached to it the struct pid lives in a hash
22  * table, so it and then the processes that it refers to can be found
23  * quickly from the numeric pid value.  The attached processes may be
24  * quickly accessed by following pointers from struct pid.
25  *
26  * Storing pid_t values in the kernel and referring to them later has a
27  * problem.  The process originally with that pid may have exited and the
28  * pid allocator wrapped, and another process could have come along
29  * and been assigned that pid.
30  *
31  * Referring to user space processes by holding a reference to struct
32  * task_struct has a problem.  When the user space process exits
33  * the now useless task_struct is still kept.  A task_struct plus a
34  * stack consumes around 10K of low kernel memory.  More precisely
35  * this is THREAD_SIZE + sizeof(struct task_struct).  By comparison
36  * a struct pid is about 64 bytes.
37  *
38  * Holding a reference to struct pid solves both of these problems.
39  * It is small so holding a reference does not consume a lot of
40  * resources, and since a new struct pid is allocated when the numeric pid
41  * value is reused (when pids wrap around) we don't mistakenly refer to new
42  * processes.
43  */
44 
45 
46 /*
47  * struct upid is used to get the id of the struct pid, as it is
48  * seen in particular namespace. Later the struct pid is found with
49  * find_pid_ns() using the int nr and struct pid_namespace *ns.
50  */
51 
52 struct upid {
53 	/* Try to keep pid_chain in the same cacheline as nr for find_vpid */
54 	int nr;
55 	struct pid_namespace *ns;
56 	struct hlist_node pid_chain;
57 };
58 
59 struct pid
60 {
61 	atomic_t count;
62 	unsigned int level;
63 	/* lists of tasks that use this pid */
64 	struct hlist_head tasks[PIDTYPE_MAX];
65 	struct rcu_head rcu;
66 	struct upid numbers[1];
67 };
68 
69 extern struct pid init_struct_pid;
70 
71 struct pid_link
72 {
73 	struct hlist_node node;
74 	struct pid *pid;
75 };
76 
get_pid(struct pid * pid)77 static inline struct pid *get_pid(struct pid *pid)
78 {
79 	if (pid)
80 		atomic_inc(&pid->count);
81 	return pid;
82 }
83 
84 extern void put_pid(struct pid *pid);
85 extern struct task_struct *pid_task(struct pid *pid, enum pid_type);
86 extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type);
87 
88 extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
89 
90 /*
91  * these helpers must be called with the tasklist_lock write-held.
92  */
93 extern void attach_pid(struct task_struct *task, enum pid_type);
94 extern void detach_pid(struct task_struct *task, enum pid_type);
95 extern void change_pid(struct task_struct *task, enum pid_type,
96 			struct pid *pid);
97 extern void transfer_pid(struct task_struct *old, struct task_struct *new,
98 			 enum pid_type);
99 
100 struct pid_namespace;
101 extern struct pid_namespace init_pid_ns;
102 
103 /*
104  * look up a PID in the hash table. Must be called with the tasklist_lock
105  * or rcu_read_lock() held.
106  *
107  * find_pid_ns() finds the pid in the namespace specified
108  * find_vpid() finds the pid by its virtual id, i.e. in the current namespace
109  *
110  * see also find_task_by_vpid() set in include/linux/sched.h
111  */
112 extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns);
113 extern struct pid *find_vpid(int nr);
114 
115 /*
116  * Lookup a PID in the hash table, and return with it's count elevated.
117  */
118 extern struct pid *find_get_pid(int nr);
119 extern struct pid *find_ge_pid(int nr, struct pid_namespace *);
120 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last);
121 
122 extern struct pid *alloc_pid(struct pid_namespace *ns);
123 extern void free_pid(struct pid *pid);
124 extern void disable_pid_allocation(struct pid_namespace *ns);
125 
126 /*
127  * ns_of_pid() returns the pid namespace in which the specified pid was
128  * allocated.
129  *
130  * NOTE:
131  * 	ns_of_pid() is expected to be called for a process (task) that has
132  * 	an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid
133  * 	is expected to be non-NULL. If @pid is NULL, caller should handle
134  * 	the resulting NULL pid-ns.
135  */
ns_of_pid(struct pid * pid)136 static inline struct pid_namespace *ns_of_pid(struct pid *pid)
137 {
138 	struct pid_namespace *ns = NULL;
139 	if (pid)
140 		ns = pid->numbers[pid->level].ns;
141 	return ns;
142 }
143 
144 /*
145  * is_child_reaper returns true if the pid is the init process
146  * of the current namespace. As this one could be checked before
147  * pid_ns->child_reaper is assigned in copy_process, we check
148  * with the pid number.
149  */
is_child_reaper(struct pid * pid)150 static inline bool is_child_reaper(struct pid *pid)
151 {
152 	return pid->numbers[pid->level].nr == 1;
153 }
154 
155 /*
156  * the helpers to get the pid's id seen from different namespaces
157  *
158  * pid_nr()    : global id, i.e. the id seen from the init namespace;
159  * pid_vnr()   : virtual id, i.e. the id seen from the pid namespace of
160  *               current.
161  * pid_nr_ns() : id seen from the ns specified.
162  *
163  * see also task_xid_nr() etc in include/linux/sched.h
164  */
165 
pid_nr(struct pid * pid)166 static inline pid_t pid_nr(struct pid *pid)
167 {
168 	pid_t nr = 0;
169 	if (pid)
170 		nr = pid->numbers[0].nr;
171 	return nr;
172 }
173 
174 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns);
175 pid_t pid_vnr(struct pid *pid);
176 
177 #define do_each_pid_task(pid, type, task)				\
178 	do {								\
179 		if ((pid) != NULL)					\
180 			hlist_for_each_entry_rcu((task),		\
181 				&(pid)->tasks[type], pids[type].node) {
182 
183 			/*
184 			 * Both old and new leaders may be attached to
185 			 * the same pid in the middle of de_thread().
186 			 */
187 #define while_each_pid_task(pid, type, task)				\
188 				if (type == PIDTYPE_PID)		\
189 					break;				\
190 			}						\
191 	} while (0)
192 
193 #define do_each_pid_thread(pid, type, task)				\
194 	do_each_pid_task(pid, type, task) {				\
195 		struct task_struct *tg___ = task;			\
196 		do {
197 
198 #define while_each_pid_thread(pid, type, task)				\
199 		} while_each_thread(tg___, task);			\
200 		task = tg___;						\
201 	} while_each_pid_task(pid, type, task)
202 #endif /* _LINUX_PID_H */
203