• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*---------------------------------------------------------------------------+
2   |  poly_sin.c                                                               |
3   |                                                                           |
4   |  Computation of an approximation of the sin function and the cosine       |
5   |  function by a polynomial.                                                |
6   |                                                                           |
7   | Copyright (C) 1992,1993,1994,1997,1999                                    |
8   |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
9   |                  E-mail   billm@melbpc.org.au                             |
10   |                                                                           |
11   |                                                                           |
12   +---------------------------------------------------------------------------*/
13  
14  #include "exception.h"
15  #include "reg_constant.h"
16  #include "fpu_emu.h"
17  #include "fpu_system.h"
18  #include "control_w.h"
19  #include "poly.h"
20  
21  #define	N_COEFF_P	4
22  #define	N_COEFF_N	4
23  
24  static const unsigned long long pos_terms_l[N_COEFF_P] = {
25  	0xaaaaaaaaaaaaaaabLL,
26  	0x00d00d00d00cf906LL,
27  	0x000006b99159a8bbLL,
28  	0x000000000d7392e6LL
29  };
30  
31  static const unsigned long long neg_terms_l[N_COEFF_N] = {
32  	0x2222222222222167LL,
33  	0x0002e3bc74aab624LL,
34  	0x0000000b09229062LL,
35  	0x00000000000c7973LL
36  };
37  
38  #define	N_COEFF_PH	4
39  #define	N_COEFF_NH	4
40  static const unsigned long long pos_terms_h[N_COEFF_PH] = {
41  	0x0000000000000000LL,
42  	0x05b05b05b05b0406LL,
43  	0x000049f93edd91a9LL,
44  	0x00000000c9c9ed62LL
45  };
46  
47  static const unsigned long long neg_terms_h[N_COEFF_NH] = {
48  	0xaaaaaaaaaaaaaa98LL,
49  	0x001a01a01a019064LL,
50  	0x0000008f76c68a77LL,
51  	0x0000000000d58f5eLL
52  };
53  
54  /*--- poly_sine() -----------------------------------------------------------+
55   |                                                                           |
56   +---------------------------------------------------------------------------*/
poly_sine(FPU_REG * st0_ptr)57  void poly_sine(FPU_REG *st0_ptr)
58  {
59  	int exponent, echange;
60  	Xsig accumulator, argSqrd, argTo4;
61  	unsigned long fix_up, adj;
62  	unsigned long long fixed_arg;
63  	FPU_REG result;
64  
65  	exponent = exponent(st0_ptr);
66  
67  	accumulator.lsw = accumulator.midw = accumulator.msw = 0;
68  
69  	/* Split into two ranges, for arguments below and above 1.0 */
70  	/* The boundary between upper and lower is approx 0.88309101259 */
71  	if ((exponent < -1)
72  	    || ((exponent == -1) && (st0_ptr->sigh <= 0xe21240aa))) {
73  		/* The argument is <= 0.88309101259 */
74  
75  		argSqrd.msw = st0_ptr->sigh;
76  		argSqrd.midw = st0_ptr->sigl;
77  		argSqrd.lsw = 0;
78  		mul64_Xsig(&argSqrd, &significand(st0_ptr));
79  		shr_Xsig(&argSqrd, 2 * (-1 - exponent));
80  		argTo4.msw = argSqrd.msw;
81  		argTo4.midw = argSqrd.midw;
82  		argTo4.lsw = argSqrd.lsw;
83  		mul_Xsig_Xsig(&argTo4, &argTo4);
84  
85  		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
86  				N_COEFF_N - 1);
87  		mul_Xsig_Xsig(&accumulator, &argSqrd);
88  		negate_Xsig(&accumulator);
89  
90  		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
91  				N_COEFF_P - 1);
92  
93  		shr_Xsig(&accumulator, 2);	/* Divide by four */
94  		accumulator.msw |= 0x80000000;	/* Add 1.0 */
95  
96  		mul64_Xsig(&accumulator, &significand(st0_ptr));
97  		mul64_Xsig(&accumulator, &significand(st0_ptr));
98  		mul64_Xsig(&accumulator, &significand(st0_ptr));
99  
100  		/* Divide by four, FPU_REG compatible, etc */
101  		exponent = 3 * exponent;
102  
103  		/* The minimum exponent difference is 3 */
104  		shr_Xsig(&accumulator, exponent(st0_ptr) - exponent);
105  
106  		negate_Xsig(&accumulator);
107  		XSIG_LL(accumulator) += significand(st0_ptr);
108  
109  		echange = round_Xsig(&accumulator);
110  
111  		setexponentpos(&result, exponent(st0_ptr) + echange);
112  	} else {
113  		/* The argument is > 0.88309101259 */
114  		/* We use sin(st(0)) = cos(pi/2-st(0)) */
115  
116  		fixed_arg = significand(st0_ptr);
117  
118  		if (exponent == 0) {
119  			/* The argument is >= 1.0 */
120  
121  			/* Put the binary point at the left. */
122  			fixed_arg <<= 1;
123  		}
124  		/* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
125  		fixed_arg = 0x921fb54442d18469LL - fixed_arg;
126  		/* There is a special case which arises due to rounding, to fix here. */
127  		if (fixed_arg == 0xffffffffffffffffLL)
128  			fixed_arg = 0;
129  
130  		XSIG_LL(argSqrd) = fixed_arg;
131  		argSqrd.lsw = 0;
132  		mul64_Xsig(&argSqrd, &fixed_arg);
133  
134  		XSIG_LL(argTo4) = XSIG_LL(argSqrd);
135  		argTo4.lsw = argSqrd.lsw;
136  		mul_Xsig_Xsig(&argTo4, &argTo4);
137  
138  		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
139  				N_COEFF_NH - 1);
140  		mul_Xsig_Xsig(&accumulator, &argSqrd);
141  		negate_Xsig(&accumulator);
142  
143  		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
144  				N_COEFF_PH - 1);
145  		negate_Xsig(&accumulator);
146  
147  		mul64_Xsig(&accumulator, &fixed_arg);
148  		mul64_Xsig(&accumulator, &fixed_arg);
149  
150  		shr_Xsig(&accumulator, 3);
151  		negate_Xsig(&accumulator);
152  
153  		add_Xsig_Xsig(&accumulator, &argSqrd);
154  
155  		shr_Xsig(&accumulator, 1);
156  
157  		accumulator.lsw |= 1;	/* A zero accumulator here would cause problems */
158  		negate_Xsig(&accumulator);
159  
160  		/* The basic computation is complete. Now fix the answer to
161  		   compensate for the error due to the approximation used for
162  		   pi/2
163  		 */
164  
165  		/* This has an exponent of -65 */
166  		fix_up = 0x898cc517;
167  		/* The fix-up needs to be improved for larger args */
168  		if (argSqrd.msw & 0xffc00000) {
169  			/* Get about 32 bit precision in these: */
170  			fix_up -= mul_32_32(0x898cc517, argSqrd.msw) / 6;
171  		}
172  		fix_up = mul_32_32(fix_up, LL_MSW(fixed_arg));
173  
174  		adj = accumulator.lsw;	/* temp save */
175  		accumulator.lsw -= fix_up;
176  		if (accumulator.lsw > adj)
177  			XSIG_LL(accumulator)--;
178  
179  		echange = round_Xsig(&accumulator);
180  
181  		setexponentpos(&result, echange - 1);
182  	}
183  
184  	significand(&result) = XSIG_LL(accumulator);
185  	setsign(&result, getsign(st0_ptr));
186  	FPU_copy_to_reg0(&result, TAG_Valid);
187  
188  #ifdef PARANOID
189  	if ((exponent(&result) >= 0)
190  	    && (significand(&result) > 0x8000000000000000LL)) {
191  		EXCEPTION(EX_INTERNAL | 0x150);
192  	}
193  #endif /* PARANOID */
194  
195  }
196  
197  /*--- poly_cos() ------------------------------------------------------------+
198   |                                                                           |
199   +---------------------------------------------------------------------------*/
poly_cos(FPU_REG * st0_ptr)200  void poly_cos(FPU_REG *st0_ptr)
201  {
202  	FPU_REG result;
203  	long int exponent, exp2, echange;
204  	Xsig accumulator, argSqrd, fix_up, argTo4;
205  	unsigned long long fixed_arg;
206  
207  #ifdef PARANOID
208  	if ((exponent(st0_ptr) > 0)
209  	    || ((exponent(st0_ptr) == 0)
210  		&& (significand(st0_ptr) > 0xc90fdaa22168c234LL))) {
211  		EXCEPTION(EX_Invalid);
212  		FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
213  		return;
214  	}
215  #endif /* PARANOID */
216  
217  	exponent = exponent(st0_ptr);
218  
219  	accumulator.lsw = accumulator.midw = accumulator.msw = 0;
220  
221  	if ((exponent < -1)
222  	    || ((exponent == -1) && (st0_ptr->sigh <= 0xb00d6f54))) {
223  		/* arg is < 0.687705 */
224  
225  		argSqrd.msw = st0_ptr->sigh;
226  		argSqrd.midw = st0_ptr->sigl;
227  		argSqrd.lsw = 0;
228  		mul64_Xsig(&argSqrd, &significand(st0_ptr));
229  
230  		if (exponent < -1) {
231  			/* shift the argument right by the required places */
232  			shr_Xsig(&argSqrd, 2 * (-1 - exponent));
233  		}
234  
235  		argTo4.msw = argSqrd.msw;
236  		argTo4.midw = argSqrd.midw;
237  		argTo4.lsw = argSqrd.lsw;
238  		mul_Xsig_Xsig(&argTo4, &argTo4);
239  
240  		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
241  				N_COEFF_NH - 1);
242  		mul_Xsig_Xsig(&accumulator, &argSqrd);
243  		negate_Xsig(&accumulator);
244  
245  		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
246  				N_COEFF_PH - 1);
247  		negate_Xsig(&accumulator);
248  
249  		mul64_Xsig(&accumulator, &significand(st0_ptr));
250  		mul64_Xsig(&accumulator, &significand(st0_ptr));
251  		shr_Xsig(&accumulator, -2 * (1 + exponent));
252  
253  		shr_Xsig(&accumulator, 3);
254  		negate_Xsig(&accumulator);
255  
256  		add_Xsig_Xsig(&accumulator, &argSqrd);
257  
258  		shr_Xsig(&accumulator, 1);
259  
260  		/* It doesn't matter if accumulator is all zero here, the
261  		   following code will work ok */
262  		negate_Xsig(&accumulator);
263  
264  		if (accumulator.lsw & 0x80000000)
265  			XSIG_LL(accumulator)++;
266  		if (accumulator.msw == 0) {
267  			/* The result is 1.0 */
268  			FPU_copy_to_reg0(&CONST_1, TAG_Valid);
269  			return;
270  		} else {
271  			significand(&result) = XSIG_LL(accumulator);
272  
273  			/* will be a valid positive nr with expon = -1 */
274  			setexponentpos(&result, -1);
275  		}
276  	} else {
277  		fixed_arg = significand(st0_ptr);
278  
279  		if (exponent == 0) {
280  			/* The argument is >= 1.0 */
281  
282  			/* Put the binary point at the left. */
283  			fixed_arg <<= 1;
284  		}
285  		/* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
286  		fixed_arg = 0x921fb54442d18469LL - fixed_arg;
287  		/* There is a special case which arises due to rounding, to fix here. */
288  		if (fixed_arg == 0xffffffffffffffffLL)
289  			fixed_arg = 0;
290  
291  		exponent = -1;
292  		exp2 = -1;
293  
294  		/* A shift is needed here only for a narrow range of arguments,
295  		   i.e. for fixed_arg approx 2^-32, but we pick up more... */
296  		if (!(LL_MSW(fixed_arg) & 0xffff0000)) {
297  			fixed_arg <<= 16;
298  			exponent -= 16;
299  			exp2 -= 16;
300  		}
301  
302  		XSIG_LL(argSqrd) = fixed_arg;
303  		argSqrd.lsw = 0;
304  		mul64_Xsig(&argSqrd, &fixed_arg);
305  
306  		if (exponent < -1) {
307  			/* shift the argument right by the required places */
308  			shr_Xsig(&argSqrd, 2 * (-1 - exponent));
309  		}
310  
311  		argTo4.msw = argSqrd.msw;
312  		argTo4.midw = argSqrd.midw;
313  		argTo4.lsw = argSqrd.lsw;
314  		mul_Xsig_Xsig(&argTo4, &argTo4);
315  
316  		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
317  				N_COEFF_N - 1);
318  		mul_Xsig_Xsig(&accumulator, &argSqrd);
319  		negate_Xsig(&accumulator);
320  
321  		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
322  				N_COEFF_P - 1);
323  
324  		shr_Xsig(&accumulator, 2);	/* Divide by four */
325  		accumulator.msw |= 0x80000000;	/* Add 1.0 */
326  
327  		mul64_Xsig(&accumulator, &fixed_arg);
328  		mul64_Xsig(&accumulator, &fixed_arg);
329  		mul64_Xsig(&accumulator, &fixed_arg);
330  
331  		/* Divide by four, FPU_REG compatible, etc */
332  		exponent = 3 * exponent;
333  
334  		/* The minimum exponent difference is 3 */
335  		shr_Xsig(&accumulator, exp2 - exponent);
336  
337  		negate_Xsig(&accumulator);
338  		XSIG_LL(accumulator) += fixed_arg;
339  
340  		/* The basic computation is complete. Now fix the answer to
341  		   compensate for the error due to the approximation used for
342  		   pi/2
343  		 */
344  
345  		/* This has an exponent of -65 */
346  		XSIG_LL(fix_up) = 0x898cc51701b839a2ll;
347  		fix_up.lsw = 0;
348  
349  		/* The fix-up needs to be improved for larger args */
350  		if (argSqrd.msw & 0xffc00000) {
351  			/* Get about 32 bit precision in these: */
352  			fix_up.msw -= mul_32_32(0x898cc517, argSqrd.msw) / 2;
353  			fix_up.msw += mul_32_32(0x898cc517, argTo4.msw) / 24;
354  		}
355  
356  		exp2 += norm_Xsig(&accumulator);
357  		shr_Xsig(&accumulator, 1);	/* Prevent overflow */
358  		exp2++;
359  		shr_Xsig(&fix_up, 65 + exp2);
360  
361  		add_Xsig_Xsig(&accumulator, &fix_up);
362  
363  		echange = round_Xsig(&accumulator);
364  
365  		setexponentpos(&result, exp2 + echange);
366  		significand(&result) = XSIG_LL(accumulator);
367  	}
368  
369  	FPU_copy_to_reg0(&result, TAG_Valid);
370  
371  #ifdef PARANOID
372  	if ((exponent(&result) >= 0)
373  	    && (significand(&result) > 0x8000000000000000LL)) {
374  		EXCEPTION(EX_INTERNAL | 0x151);
375  	}
376  #endif /* PARANOID */
377  
378  }
379