• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5 
6 #include "sched.h"
7 
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
10 
11 #include "walt.h"
12 
13 int sched_rr_timeslice = RR_TIMESLICE;
14 
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16 
17 struct rt_bandwidth def_rt_bandwidth;
18 
sched_rt_period_timer(struct hrtimer * timer)19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20 {
21 	struct rt_bandwidth *rt_b =
22 		container_of(timer, struct rt_bandwidth, rt_period_timer);
23 	int idle = 0;
24 	int overrun;
25 
26 	raw_spin_lock(&rt_b->rt_runtime_lock);
27 	for (;;) {
28 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29 		if (!overrun)
30 			break;
31 
32 		raw_spin_unlock(&rt_b->rt_runtime_lock);
33 		idle = do_sched_rt_period_timer(rt_b, overrun);
34 		raw_spin_lock(&rt_b->rt_runtime_lock);
35 	}
36 	if (idle)
37 		rt_b->rt_period_active = 0;
38 	raw_spin_unlock(&rt_b->rt_runtime_lock);
39 
40 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41 }
42 
init_rt_bandwidth(struct rt_bandwidth * rt_b,u64 period,u64 runtime)43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44 {
45 	rt_b->rt_period = ns_to_ktime(period);
46 	rt_b->rt_runtime = runtime;
47 
48 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
49 
50 	hrtimer_init(&rt_b->rt_period_timer,
51 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
52 	rt_b->rt_period_timer.function = sched_rt_period_timer;
53 }
54 
start_rt_bandwidth(struct rt_bandwidth * rt_b)55 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
56 {
57 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
58 		return;
59 
60 	raw_spin_lock(&rt_b->rt_runtime_lock);
61 	if (!rt_b->rt_period_active) {
62 		rt_b->rt_period_active = 1;
63 		/*
64 		 * SCHED_DEADLINE updates the bandwidth, as a run away
65 		 * RT task with a DL task could hog a CPU. But DL does
66 		 * not reset the period. If a deadline task was running
67 		 * without an RT task running, it can cause RT tasks to
68 		 * throttle when they start up. Kick the timer right away
69 		 * to update the period.
70 		 */
71 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
72 		hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
73 	}
74 	raw_spin_unlock(&rt_b->rt_runtime_lock);
75 }
76 
init_rt_rq(struct rt_rq * rt_rq)77 void init_rt_rq(struct rt_rq *rt_rq)
78 {
79 	struct rt_prio_array *array;
80 	int i;
81 
82 	array = &rt_rq->active;
83 	for (i = 0; i < MAX_RT_PRIO; i++) {
84 		INIT_LIST_HEAD(array->queue + i);
85 		__clear_bit(i, array->bitmap);
86 	}
87 	/* delimiter for bitsearch: */
88 	__set_bit(MAX_RT_PRIO, array->bitmap);
89 
90 #if defined CONFIG_SMP
91 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
92 	rt_rq->highest_prio.next = MAX_RT_PRIO;
93 	rt_rq->rt_nr_migratory = 0;
94 	rt_rq->overloaded = 0;
95 	plist_head_init(&rt_rq->pushable_tasks);
96 #endif /* CONFIG_SMP */
97 	/* We start is dequeued state, because no RT tasks are queued */
98 	rt_rq->rt_queued = 0;
99 
100 	rt_rq->rt_time = 0;
101 	rt_rq->rt_throttled = 0;
102 	rt_rq->rt_runtime = 0;
103 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
104 }
105 
106 #ifdef CONFIG_RT_GROUP_SCHED
destroy_rt_bandwidth(struct rt_bandwidth * rt_b)107 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
108 {
109 	hrtimer_cancel(&rt_b->rt_period_timer);
110 }
111 
112 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
113 
rt_task_of(struct sched_rt_entity * rt_se)114 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
115 {
116 #ifdef CONFIG_SCHED_DEBUG
117 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
118 #endif
119 	return container_of(rt_se, struct task_struct, rt);
120 }
121 
rq_of_rt_rq(struct rt_rq * rt_rq)122 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
123 {
124 	return rt_rq->rq;
125 }
126 
rt_rq_of_se(struct sched_rt_entity * rt_se)127 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
128 {
129 	return rt_se->rt_rq;
130 }
131 
rq_of_rt_se(struct sched_rt_entity * rt_se)132 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
133 {
134 	struct rt_rq *rt_rq = rt_se->rt_rq;
135 
136 	return rt_rq->rq;
137 }
138 
free_rt_sched_group(struct task_group * tg)139 void free_rt_sched_group(struct task_group *tg)
140 {
141 	int i;
142 
143 	if (tg->rt_se)
144 		destroy_rt_bandwidth(&tg->rt_bandwidth);
145 
146 	for_each_possible_cpu(i) {
147 		if (tg->rt_rq)
148 			kfree(tg->rt_rq[i]);
149 		if (tg->rt_se)
150 			kfree(tg->rt_se[i]);
151 	}
152 
153 	kfree(tg->rt_rq);
154 	kfree(tg->rt_se);
155 }
156 
init_tg_rt_entry(struct task_group * tg,struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int cpu,struct sched_rt_entity * parent)157 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
158 		struct sched_rt_entity *rt_se, int cpu,
159 		struct sched_rt_entity *parent)
160 {
161 	struct rq *rq = cpu_rq(cpu);
162 
163 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
164 	rt_rq->rt_nr_boosted = 0;
165 	rt_rq->rq = rq;
166 	rt_rq->tg = tg;
167 
168 	tg->rt_rq[cpu] = rt_rq;
169 	tg->rt_se[cpu] = rt_se;
170 
171 	if (!rt_se)
172 		return;
173 
174 	if (!parent)
175 		rt_se->rt_rq = &rq->rt;
176 	else
177 		rt_se->rt_rq = parent->my_q;
178 
179 	rt_se->my_q = rt_rq;
180 	rt_se->parent = parent;
181 	INIT_LIST_HEAD(&rt_se->run_list);
182 }
183 
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)184 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
185 {
186 	struct rt_rq *rt_rq;
187 	struct sched_rt_entity *rt_se;
188 	int i;
189 
190 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
191 	if (!tg->rt_rq)
192 		goto err;
193 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
194 	if (!tg->rt_se)
195 		goto err;
196 
197 	init_rt_bandwidth(&tg->rt_bandwidth,
198 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
199 
200 	for_each_possible_cpu(i) {
201 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
202 				     GFP_KERNEL, cpu_to_node(i));
203 		if (!rt_rq)
204 			goto err;
205 
206 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
207 				     GFP_KERNEL, cpu_to_node(i));
208 		if (!rt_se)
209 			goto err_free_rq;
210 
211 		init_rt_rq(rt_rq);
212 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
213 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
214 	}
215 
216 	return 1;
217 
218 err_free_rq:
219 	kfree(rt_rq);
220 err:
221 	return 0;
222 }
223 
224 #else /* CONFIG_RT_GROUP_SCHED */
225 
226 #define rt_entity_is_task(rt_se) (1)
227 
rt_task_of(struct sched_rt_entity * rt_se)228 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
229 {
230 	return container_of(rt_se, struct task_struct, rt);
231 }
232 
rq_of_rt_rq(struct rt_rq * rt_rq)233 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
234 {
235 	return container_of(rt_rq, struct rq, rt);
236 }
237 
rq_of_rt_se(struct sched_rt_entity * rt_se)238 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
239 {
240 	struct task_struct *p = rt_task_of(rt_se);
241 
242 	return task_rq(p);
243 }
244 
rt_rq_of_se(struct sched_rt_entity * rt_se)245 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
246 {
247 	struct rq *rq = rq_of_rt_se(rt_se);
248 
249 	return &rq->rt;
250 }
251 
free_rt_sched_group(struct task_group * tg)252 void free_rt_sched_group(struct task_group *tg) { }
253 
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)254 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
255 {
256 	return 1;
257 }
258 #endif /* CONFIG_RT_GROUP_SCHED */
259 
260 #ifdef CONFIG_SMP
261 
262 static void pull_rt_task(struct rq *this_rq);
263 
need_pull_rt_task(struct rq * rq,struct task_struct * prev)264 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
265 {
266 	/* Try to pull RT tasks here if we lower this rq's prio */
267 	return rq->rt.highest_prio.curr > prev->prio;
268 }
269 
rt_overloaded(struct rq * rq)270 static inline int rt_overloaded(struct rq *rq)
271 {
272 	return atomic_read(&rq->rd->rto_count);
273 }
274 
rt_set_overload(struct rq * rq)275 static inline void rt_set_overload(struct rq *rq)
276 {
277 	if (!rq->online)
278 		return;
279 
280 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
281 	/*
282 	 * Make sure the mask is visible before we set
283 	 * the overload count. That is checked to determine
284 	 * if we should look at the mask. It would be a shame
285 	 * if we looked at the mask, but the mask was not
286 	 * updated yet.
287 	 *
288 	 * Matched by the barrier in pull_rt_task().
289 	 */
290 	smp_wmb();
291 	atomic_inc(&rq->rd->rto_count);
292 }
293 
rt_clear_overload(struct rq * rq)294 static inline void rt_clear_overload(struct rq *rq)
295 {
296 	if (!rq->online)
297 		return;
298 
299 	/* the order here really doesn't matter */
300 	atomic_dec(&rq->rd->rto_count);
301 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
302 }
303 
update_rt_migration(struct rt_rq * rt_rq)304 static void update_rt_migration(struct rt_rq *rt_rq)
305 {
306 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
307 		if (!rt_rq->overloaded) {
308 			rt_set_overload(rq_of_rt_rq(rt_rq));
309 			rt_rq->overloaded = 1;
310 		}
311 	} else if (rt_rq->overloaded) {
312 		rt_clear_overload(rq_of_rt_rq(rt_rq));
313 		rt_rq->overloaded = 0;
314 	}
315 }
316 
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)317 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
318 {
319 	struct task_struct *p;
320 
321 	if (!rt_entity_is_task(rt_se))
322 		return;
323 
324 	p = rt_task_of(rt_se);
325 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
326 
327 	rt_rq->rt_nr_total++;
328 	if (tsk_nr_cpus_allowed(p) > 1)
329 		rt_rq->rt_nr_migratory++;
330 
331 	update_rt_migration(rt_rq);
332 }
333 
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)334 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
335 {
336 	struct task_struct *p;
337 
338 	if (!rt_entity_is_task(rt_se))
339 		return;
340 
341 	p = rt_task_of(rt_se);
342 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
343 
344 	rt_rq->rt_nr_total--;
345 	if (tsk_nr_cpus_allowed(p) > 1)
346 		rt_rq->rt_nr_migratory--;
347 
348 	update_rt_migration(rt_rq);
349 }
350 
has_pushable_tasks(struct rq * rq)351 static inline int has_pushable_tasks(struct rq *rq)
352 {
353 	return !plist_head_empty(&rq->rt.pushable_tasks);
354 }
355 
356 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
357 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
358 
359 static void push_rt_tasks(struct rq *);
360 static void pull_rt_task(struct rq *);
361 
queue_push_tasks(struct rq * rq)362 static inline void queue_push_tasks(struct rq *rq)
363 {
364 	if (!has_pushable_tasks(rq))
365 		return;
366 
367 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
368 }
369 
queue_pull_task(struct rq * rq)370 static inline void queue_pull_task(struct rq *rq)
371 {
372 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
373 }
374 
enqueue_pushable_task(struct rq * rq,struct task_struct * p)375 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
376 {
377 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
378 	plist_node_init(&p->pushable_tasks, p->prio);
379 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
380 
381 	/* Update the highest prio pushable task */
382 	if (p->prio < rq->rt.highest_prio.next)
383 		rq->rt.highest_prio.next = p->prio;
384 }
385 
dequeue_pushable_task(struct rq * rq,struct task_struct * p)386 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
387 {
388 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
389 
390 	/* Update the new highest prio pushable task */
391 	if (has_pushable_tasks(rq)) {
392 		p = plist_first_entry(&rq->rt.pushable_tasks,
393 				      struct task_struct, pushable_tasks);
394 		rq->rt.highest_prio.next = p->prio;
395 	} else
396 		rq->rt.highest_prio.next = MAX_RT_PRIO;
397 }
398 
399 #else
400 
enqueue_pushable_task(struct rq * rq,struct task_struct * p)401 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
402 {
403 }
404 
dequeue_pushable_task(struct rq * rq,struct task_struct * p)405 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
406 {
407 }
408 
409 static inline
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)410 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
411 {
412 }
413 
414 static inline
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)415 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
416 {
417 }
418 
need_pull_rt_task(struct rq * rq,struct task_struct * prev)419 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
420 {
421 	return false;
422 }
423 
pull_rt_task(struct rq * this_rq)424 static inline void pull_rt_task(struct rq *this_rq)
425 {
426 }
427 
queue_push_tasks(struct rq * rq)428 static inline void queue_push_tasks(struct rq *rq)
429 {
430 }
431 #endif /* CONFIG_SMP */
432 
433 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
434 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
435 
on_rt_rq(struct sched_rt_entity * rt_se)436 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
437 {
438 	return rt_se->on_rq;
439 }
440 
441 #ifdef CONFIG_RT_GROUP_SCHED
442 
sched_rt_runtime(struct rt_rq * rt_rq)443 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
444 {
445 	if (!rt_rq->tg)
446 		return RUNTIME_INF;
447 
448 	return rt_rq->rt_runtime;
449 }
450 
sched_rt_period(struct rt_rq * rt_rq)451 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
452 {
453 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
454 }
455 
456 typedef struct task_group *rt_rq_iter_t;
457 
next_task_group(struct task_group * tg)458 static inline struct task_group *next_task_group(struct task_group *tg)
459 {
460 	do {
461 		tg = list_entry_rcu(tg->list.next,
462 			typeof(struct task_group), list);
463 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
464 
465 	if (&tg->list == &task_groups)
466 		tg = NULL;
467 
468 	return tg;
469 }
470 
471 #define for_each_rt_rq(rt_rq, iter, rq)					\
472 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
473 		(iter = next_task_group(iter)) &&			\
474 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
475 
476 #define for_each_sched_rt_entity(rt_se) \
477 	for (; rt_se; rt_se = rt_se->parent)
478 
group_rt_rq(struct sched_rt_entity * rt_se)479 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
480 {
481 	return rt_se->my_q;
482 }
483 
484 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
485 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
486 
sched_rt_rq_enqueue(struct rt_rq * rt_rq)487 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
488 {
489 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
490 	struct rq *rq = rq_of_rt_rq(rt_rq);
491 	struct sched_rt_entity *rt_se;
492 
493 	int cpu = cpu_of(rq);
494 
495 	rt_se = rt_rq->tg->rt_se[cpu];
496 
497 	if (rt_rq->rt_nr_running) {
498 		if (!rt_se)
499 			enqueue_top_rt_rq(rt_rq);
500 		else if (!on_rt_rq(rt_se))
501 			enqueue_rt_entity(rt_se, 0);
502 
503 		if (rt_rq->highest_prio.curr < curr->prio)
504 			resched_curr(rq);
505 	}
506 }
507 
sched_rt_rq_dequeue(struct rt_rq * rt_rq)508 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
509 {
510 	struct sched_rt_entity *rt_se;
511 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
512 
513 	rt_se = rt_rq->tg->rt_se[cpu];
514 
515 	if (!rt_se)
516 		dequeue_top_rt_rq(rt_rq);
517 	else if (on_rt_rq(rt_se))
518 		dequeue_rt_entity(rt_se, 0);
519 }
520 
rt_rq_throttled(struct rt_rq * rt_rq)521 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
522 {
523 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
524 }
525 
rt_se_boosted(struct sched_rt_entity * rt_se)526 static int rt_se_boosted(struct sched_rt_entity *rt_se)
527 {
528 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
529 	struct task_struct *p;
530 
531 	if (rt_rq)
532 		return !!rt_rq->rt_nr_boosted;
533 
534 	p = rt_task_of(rt_se);
535 	return p->prio != p->normal_prio;
536 }
537 
538 #ifdef CONFIG_SMP
sched_rt_period_mask(void)539 static inline const struct cpumask *sched_rt_period_mask(void)
540 {
541 	return this_rq()->rd->span;
542 }
543 #else
sched_rt_period_mask(void)544 static inline const struct cpumask *sched_rt_period_mask(void)
545 {
546 	return cpu_online_mask;
547 }
548 #endif
549 
550 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)551 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
552 {
553 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
554 }
555 
sched_rt_bandwidth(struct rt_rq * rt_rq)556 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
557 {
558 	return &rt_rq->tg->rt_bandwidth;
559 }
560 
561 #else /* !CONFIG_RT_GROUP_SCHED */
562 
sched_rt_runtime(struct rt_rq * rt_rq)563 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
564 {
565 	return rt_rq->rt_runtime;
566 }
567 
sched_rt_period(struct rt_rq * rt_rq)568 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
569 {
570 	return ktime_to_ns(def_rt_bandwidth.rt_period);
571 }
572 
573 typedef struct rt_rq *rt_rq_iter_t;
574 
575 #define for_each_rt_rq(rt_rq, iter, rq) \
576 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
577 
578 #define for_each_sched_rt_entity(rt_se) \
579 	for (; rt_se; rt_se = NULL)
580 
group_rt_rq(struct sched_rt_entity * rt_se)581 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
582 {
583 	return NULL;
584 }
585 
sched_rt_rq_enqueue(struct rt_rq * rt_rq)586 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
587 {
588 	struct rq *rq = rq_of_rt_rq(rt_rq);
589 
590 	if (!rt_rq->rt_nr_running)
591 		return;
592 
593 	enqueue_top_rt_rq(rt_rq);
594 	resched_curr(rq);
595 }
596 
sched_rt_rq_dequeue(struct rt_rq * rt_rq)597 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
598 {
599 	dequeue_top_rt_rq(rt_rq);
600 }
601 
rt_rq_throttled(struct rt_rq * rt_rq)602 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
603 {
604 	return rt_rq->rt_throttled;
605 }
606 
sched_rt_period_mask(void)607 static inline const struct cpumask *sched_rt_period_mask(void)
608 {
609 	return cpu_online_mask;
610 }
611 
612 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)613 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
614 {
615 	return &cpu_rq(cpu)->rt;
616 }
617 
sched_rt_bandwidth(struct rt_rq * rt_rq)618 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
619 {
620 	return &def_rt_bandwidth;
621 }
622 
623 #endif /* CONFIG_RT_GROUP_SCHED */
624 
sched_rt_bandwidth_account(struct rt_rq * rt_rq)625 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
626 {
627 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
628 
629 	return (hrtimer_active(&rt_b->rt_period_timer) ||
630 		rt_rq->rt_time < rt_b->rt_runtime);
631 }
632 
633 #ifdef CONFIG_SMP
634 /*
635  * We ran out of runtime, see if we can borrow some from our neighbours.
636  */
do_balance_runtime(struct rt_rq * rt_rq)637 static void do_balance_runtime(struct rt_rq *rt_rq)
638 {
639 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
640 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
641 	int i, weight;
642 	u64 rt_period;
643 
644 	weight = cpumask_weight(rd->span);
645 
646 	raw_spin_lock(&rt_b->rt_runtime_lock);
647 	rt_period = ktime_to_ns(rt_b->rt_period);
648 	for_each_cpu(i, rd->span) {
649 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
650 		s64 diff;
651 
652 		if (iter == rt_rq)
653 			continue;
654 
655 		raw_spin_lock(&iter->rt_runtime_lock);
656 		/*
657 		 * Either all rqs have inf runtime and there's nothing to steal
658 		 * or __disable_runtime() below sets a specific rq to inf to
659 		 * indicate its been disabled and disalow stealing.
660 		 */
661 		if (iter->rt_runtime == RUNTIME_INF)
662 			goto next;
663 
664 		/*
665 		 * From runqueues with spare time, take 1/n part of their
666 		 * spare time, but no more than our period.
667 		 */
668 		diff = iter->rt_runtime - iter->rt_time;
669 		if (diff > 0) {
670 			diff = div_u64((u64)diff, weight);
671 			if (rt_rq->rt_runtime + diff > rt_period)
672 				diff = rt_period - rt_rq->rt_runtime;
673 			iter->rt_runtime -= diff;
674 			rt_rq->rt_runtime += diff;
675 			if (rt_rq->rt_runtime == rt_period) {
676 				raw_spin_unlock(&iter->rt_runtime_lock);
677 				break;
678 			}
679 		}
680 next:
681 		raw_spin_unlock(&iter->rt_runtime_lock);
682 	}
683 	raw_spin_unlock(&rt_b->rt_runtime_lock);
684 }
685 
686 /*
687  * Ensure this RQ takes back all the runtime it lend to its neighbours.
688  */
__disable_runtime(struct rq * rq)689 static void __disable_runtime(struct rq *rq)
690 {
691 	struct root_domain *rd = rq->rd;
692 	rt_rq_iter_t iter;
693 	struct rt_rq *rt_rq;
694 
695 	if (unlikely(!scheduler_running))
696 		return;
697 
698 	for_each_rt_rq(rt_rq, iter, rq) {
699 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
700 		s64 want;
701 		int i;
702 
703 		raw_spin_lock(&rt_b->rt_runtime_lock);
704 		raw_spin_lock(&rt_rq->rt_runtime_lock);
705 		/*
706 		 * Either we're all inf and nobody needs to borrow, or we're
707 		 * already disabled and thus have nothing to do, or we have
708 		 * exactly the right amount of runtime to take out.
709 		 */
710 		if (rt_rq->rt_runtime == RUNTIME_INF ||
711 				rt_rq->rt_runtime == rt_b->rt_runtime)
712 			goto balanced;
713 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
714 
715 		/*
716 		 * Calculate the difference between what we started out with
717 		 * and what we current have, that's the amount of runtime
718 		 * we lend and now have to reclaim.
719 		 */
720 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
721 
722 		/*
723 		 * Greedy reclaim, take back as much as we can.
724 		 */
725 		for_each_cpu(i, rd->span) {
726 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
727 			s64 diff;
728 
729 			/*
730 			 * Can't reclaim from ourselves or disabled runqueues.
731 			 */
732 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
733 				continue;
734 
735 			raw_spin_lock(&iter->rt_runtime_lock);
736 			if (want > 0) {
737 				diff = min_t(s64, iter->rt_runtime, want);
738 				iter->rt_runtime -= diff;
739 				want -= diff;
740 			} else {
741 				iter->rt_runtime -= want;
742 				want -= want;
743 			}
744 			raw_spin_unlock(&iter->rt_runtime_lock);
745 
746 			if (!want)
747 				break;
748 		}
749 
750 		raw_spin_lock(&rt_rq->rt_runtime_lock);
751 		/*
752 		 * We cannot be left wanting - that would mean some runtime
753 		 * leaked out of the system.
754 		 */
755 		BUG_ON(want);
756 balanced:
757 		/*
758 		 * Disable all the borrow logic by pretending we have inf
759 		 * runtime - in which case borrowing doesn't make sense.
760 		 */
761 		rt_rq->rt_runtime = RUNTIME_INF;
762 		rt_rq->rt_throttled = 0;
763 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
764 		raw_spin_unlock(&rt_b->rt_runtime_lock);
765 
766 		/* Make rt_rq available for pick_next_task() */
767 		sched_rt_rq_enqueue(rt_rq);
768 	}
769 }
770 
__enable_runtime(struct rq * rq)771 static void __enable_runtime(struct rq *rq)
772 {
773 	rt_rq_iter_t iter;
774 	struct rt_rq *rt_rq;
775 
776 	if (unlikely(!scheduler_running))
777 		return;
778 
779 	/*
780 	 * Reset each runqueue's bandwidth settings
781 	 */
782 	for_each_rt_rq(rt_rq, iter, rq) {
783 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
784 
785 		raw_spin_lock(&rt_b->rt_runtime_lock);
786 		raw_spin_lock(&rt_rq->rt_runtime_lock);
787 		rt_rq->rt_runtime = rt_b->rt_runtime;
788 		rt_rq->rt_time = 0;
789 		rt_rq->rt_throttled = 0;
790 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
791 		raw_spin_unlock(&rt_b->rt_runtime_lock);
792 	}
793 }
794 
balance_runtime(struct rt_rq * rt_rq)795 static void balance_runtime(struct rt_rq *rt_rq)
796 {
797 	if (!sched_feat(RT_RUNTIME_SHARE))
798 		return;
799 
800 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
801 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
802 		do_balance_runtime(rt_rq);
803 		raw_spin_lock(&rt_rq->rt_runtime_lock);
804 	}
805 }
806 #else /* !CONFIG_SMP */
balance_runtime(struct rt_rq * rt_rq)807 static inline void balance_runtime(struct rt_rq *rt_rq) {}
808 #endif /* CONFIG_SMP */
809 
do_sched_rt_period_timer(struct rt_bandwidth * rt_b,int overrun)810 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
811 {
812 	int i, idle = 1, throttled = 0;
813 	const struct cpumask *span;
814 
815 	span = sched_rt_period_mask();
816 #ifdef CONFIG_RT_GROUP_SCHED
817 	/*
818 	 * FIXME: isolated CPUs should really leave the root task group,
819 	 * whether they are isolcpus or were isolated via cpusets, lest
820 	 * the timer run on a CPU which does not service all runqueues,
821 	 * potentially leaving other CPUs indefinitely throttled.  If
822 	 * isolation is really required, the user will turn the throttle
823 	 * off to kill the perturbations it causes anyway.  Meanwhile,
824 	 * this maintains functionality for boot and/or troubleshooting.
825 	 */
826 	if (rt_b == &root_task_group.rt_bandwidth)
827 		span = cpu_online_mask;
828 #endif
829 	for_each_cpu(i, span) {
830 		int enqueue = 0;
831 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
832 		struct rq *rq = rq_of_rt_rq(rt_rq);
833 
834 		raw_spin_lock(&rq->lock);
835 		if (rt_rq->rt_time) {
836 			u64 runtime;
837 
838 			raw_spin_lock(&rt_rq->rt_runtime_lock);
839 			if (rt_rq->rt_throttled)
840 				balance_runtime(rt_rq);
841 			runtime = rt_rq->rt_runtime;
842 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
843 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
844 				rt_rq->rt_throttled = 0;
845 				enqueue = 1;
846 
847 				/*
848 				 * When we're idle and a woken (rt) task is
849 				 * throttled check_preempt_curr() will set
850 				 * skip_update and the time between the wakeup
851 				 * and this unthrottle will get accounted as
852 				 * 'runtime'.
853 				 */
854 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
855 					rq_clock_skip_update(rq, false);
856 			}
857 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
858 				idle = 0;
859 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
860 		} else if (rt_rq->rt_nr_running) {
861 			idle = 0;
862 			if (!rt_rq_throttled(rt_rq))
863 				enqueue = 1;
864 		}
865 		if (rt_rq->rt_throttled)
866 			throttled = 1;
867 
868 		if (enqueue)
869 			sched_rt_rq_enqueue(rt_rq);
870 		raw_spin_unlock(&rq->lock);
871 	}
872 
873 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
874 		return 1;
875 
876 	return idle;
877 }
878 
rt_se_prio(struct sched_rt_entity * rt_se)879 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
880 {
881 #ifdef CONFIG_RT_GROUP_SCHED
882 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
883 
884 	if (rt_rq)
885 		return rt_rq->highest_prio.curr;
886 #endif
887 
888 	return rt_task_of(rt_se)->prio;
889 }
890 
dump_throttled_rt_tasks(struct rt_rq * rt_rq)891 static void dump_throttled_rt_tasks(struct rt_rq *rt_rq)
892 {
893 	struct rt_prio_array *array = &rt_rq->active;
894 	struct sched_rt_entity *rt_se;
895 	char buf[500];
896 	char *pos = buf;
897 	char *end = buf + sizeof(buf);
898 	int idx;
899 
900 	pos += snprintf(pos, sizeof(buf),
901 		"sched: RT throttling activated for rt_rq %p (cpu %d)\n",
902 		rt_rq, cpu_of(rq_of_rt_rq(rt_rq)));
903 
904 	if (bitmap_empty(array->bitmap, MAX_RT_PRIO))
905 		goto out;
906 
907 	pos += snprintf(pos, end - pos, "potential CPU hogs:\n");
908 	idx = sched_find_first_bit(array->bitmap);
909 	while (idx < MAX_RT_PRIO) {
910 		list_for_each_entry(rt_se, array->queue + idx, run_list) {
911 			struct task_struct *p;
912 
913 			if (!rt_entity_is_task(rt_se))
914 				continue;
915 
916 			p = rt_task_of(rt_se);
917 			if (pos < end)
918 				pos += snprintf(pos, end - pos, "\t%s (%d)\n",
919 					p->comm, p->pid);
920 		}
921 		idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx + 1);
922 	}
923 out:
924 #ifdef CONFIG_PANIC_ON_RT_THROTTLING
925 	/*
926 	 * Use pr_err() in the BUG() case since printk_sched() will
927 	 * not get flushed and deadlock is not a concern.
928 	 */
929 	pr_err("%s", buf);
930 	BUG();
931 #else
932 	printk_deferred("%s", buf);
933 #endif
934 }
935 
sched_rt_runtime_exceeded(struct rt_rq * rt_rq)936 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
937 {
938 	u64 runtime = sched_rt_runtime(rt_rq);
939 
940 	if (rt_rq->rt_throttled)
941 		return rt_rq_throttled(rt_rq);
942 
943 	if (runtime >= sched_rt_period(rt_rq))
944 		return 0;
945 
946 	balance_runtime(rt_rq);
947 	runtime = sched_rt_runtime(rt_rq);
948 	if (runtime == RUNTIME_INF)
949 		return 0;
950 
951 	if (rt_rq->rt_time > runtime) {
952 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
953 
954 		/*
955 		 * Don't actually throttle groups that have no runtime assigned
956 		 * but accrue some time due to boosting.
957 		 */
958 		if (likely(rt_b->rt_runtime)) {
959 			static bool once = false;
960 
961 			rt_rq->rt_throttled = 1;
962 
963 			if (!once) {
964 				once = true;
965 				dump_throttled_rt_tasks(rt_rq);
966 			}
967 		} else {
968 			/*
969 			 * In case we did anyway, make it go away,
970 			 * replenishment is a joke, since it will replenish us
971 			 * with exactly 0 ns.
972 			 */
973 			rt_rq->rt_time = 0;
974 		}
975 
976 		if (rt_rq_throttled(rt_rq)) {
977 			sched_rt_rq_dequeue(rt_rq);
978 			return 1;
979 		}
980 	}
981 
982 	return 0;
983 }
984 
985 /*
986  * Update the current task's runtime statistics. Skip current tasks that
987  * are not in our scheduling class.
988  */
update_curr_rt(struct rq * rq)989 static void update_curr_rt(struct rq *rq)
990 {
991 	struct task_struct *curr = rq->curr;
992 	struct sched_rt_entity *rt_se = &curr->rt;
993 	u64 delta_exec;
994 
995 	if (curr->sched_class != &rt_sched_class)
996 		return;
997 
998 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
999 	if (unlikely((s64)delta_exec <= 0))
1000 		return;
1001 
1002 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1003 	cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_RT);
1004 
1005 	schedstat_set(curr->se.statistics.exec_max,
1006 		      max(curr->se.statistics.exec_max, delta_exec));
1007 
1008 	curr->se.sum_exec_runtime += delta_exec;
1009 	account_group_exec_runtime(curr, delta_exec);
1010 
1011 	curr->se.exec_start = rq_clock_task(rq);
1012 	cpuacct_charge(curr, delta_exec);
1013 
1014 	sched_rt_avg_update(rq, delta_exec);
1015 
1016 	if (!rt_bandwidth_enabled())
1017 		return;
1018 
1019 	for_each_sched_rt_entity(rt_se) {
1020 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1021 
1022 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1023 			raw_spin_lock(&rt_rq->rt_runtime_lock);
1024 			rt_rq->rt_time += delta_exec;
1025 			if (sched_rt_runtime_exceeded(rt_rq))
1026 				resched_curr(rq);
1027 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1028 		}
1029 	}
1030 }
1031 
1032 static void
dequeue_top_rt_rq(struct rt_rq * rt_rq)1033 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1034 {
1035 	struct rq *rq = rq_of_rt_rq(rt_rq);
1036 
1037 	BUG_ON(&rq->rt != rt_rq);
1038 
1039 	if (!rt_rq->rt_queued)
1040 		return;
1041 
1042 	BUG_ON(!rq->nr_running);
1043 
1044 	sub_nr_running(rq, rt_rq->rt_nr_running);
1045 	rt_rq->rt_queued = 0;
1046 }
1047 
1048 static void
enqueue_top_rt_rq(struct rt_rq * rt_rq)1049 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1050 {
1051 	struct rq *rq = rq_of_rt_rq(rt_rq);
1052 
1053 	BUG_ON(&rq->rt != rt_rq);
1054 
1055 	if (rt_rq->rt_queued)
1056 		return;
1057 	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1058 		return;
1059 
1060 	add_nr_running(rq, rt_rq->rt_nr_running);
1061 	rt_rq->rt_queued = 1;
1062 }
1063 
1064 #if defined CONFIG_SMP
1065 
1066 static void
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1067 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1068 {
1069 	struct rq *rq = rq_of_rt_rq(rt_rq);
1070 
1071 #ifdef CONFIG_RT_GROUP_SCHED
1072 	/*
1073 	 * Change rq's cpupri only if rt_rq is the top queue.
1074 	 */
1075 	if (&rq->rt != rt_rq)
1076 		return;
1077 #endif
1078 	if (rq->online && prio < prev_prio)
1079 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1080 }
1081 
1082 static void
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1083 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1084 {
1085 	struct rq *rq = rq_of_rt_rq(rt_rq);
1086 
1087 #ifdef CONFIG_RT_GROUP_SCHED
1088 	/*
1089 	 * Change rq's cpupri only if rt_rq is the top queue.
1090 	 */
1091 	if (&rq->rt != rt_rq)
1092 		return;
1093 #endif
1094 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1095 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1096 }
1097 
1098 #else /* CONFIG_SMP */
1099 
1100 static inline
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1101 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1102 static inline
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1103 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1104 
1105 #endif /* CONFIG_SMP */
1106 
1107 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1108 static void
inc_rt_prio(struct rt_rq * rt_rq,int prio)1109 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1110 {
1111 	int prev_prio = rt_rq->highest_prio.curr;
1112 
1113 	if (prio < prev_prio)
1114 		rt_rq->highest_prio.curr = prio;
1115 
1116 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1117 }
1118 
1119 static void
dec_rt_prio(struct rt_rq * rt_rq,int prio)1120 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1121 {
1122 	int prev_prio = rt_rq->highest_prio.curr;
1123 
1124 	if (rt_rq->rt_nr_running) {
1125 
1126 		WARN_ON(prio < prev_prio);
1127 
1128 		/*
1129 		 * This may have been our highest task, and therefore
1130 		 * we may have some recomputation to do
1131 		 */
1132 		if (prio == prev_prio) {
1133 			struct rt_prio_array *array = &rt_rq->active;
1134 
1135 			rt_rq->highest_prio.curr =
1136 				sched_find_first_bit(array->bitmap);
1137 		}
1138 
1139 	} else
1140 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1141 
1142 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1143 }
1144 
1145 #else
1146 
inc_rt_prio(struct rt_rq * rt_rq,int prio)1147 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
dec_rt_prio(struct rt_rq * rt_rq,int prio)1148 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1149 
1150 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1151 
1152 #ifdef CONFIG_RT_GROUP_SCHED
1153 
1154 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1155 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1156 {
1157 	if (rt_se_boosted(rt_se))
1158 		rt_rq->rt_nr_boosted++;
1159 
1160 	if (rt_rq->tg)
1161 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1162 }
1163 
1164 static void
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1165 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1166 {
1167 	if (rt_se_boosted(rt_se))
1168 		rt_rq->rt_nr_boosted--;
1169 
1170 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1171 }
1172 
1173 #else /* CONFIG_RT_GROUP_SCHED */
1174 
1175 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1176 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1177 {
1178 	start_rt_bandwidth(&def_rt_bandwidth);
1179 }
1180 
1181 static inline
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1182 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1183 
1184 #endif /* CONFIG_RT_GROUP_SCHED */
1185 
1186 static inline
rt_se_nr_running(struct sched_rt_entity * rt_se)1187 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1188 {
1189 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1190 
1191 	if (group_rq)
1192 		return group_rq->rt_nr_running;
1193 	else
1194 		return 1;
1195 }
1196 
1197 static inline
rt_se_rr_nr_running(struct sched_rt_entity * rt_se)1198 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1199 {
1200 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1201 	struct task_struct *tsk;
1202 
1203 	if (group_rq)
1204 		return group_rq->rr_nr_running;
1205 
1206 	tsk = rt_task_of(rt_se);
1207 
1208 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1209 }
1210 
1211 static inline
inc_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1212 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1213 {
1214 	int prio = rt_se_prio(rt_se);
1215 
1216 	WARN_ON(!rt_prio(prio));
1217 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1218 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1219 
1220 	inc_rt_prio(rt_rq, prio);
1221 	inc_rt_migration(rt_se, rt_rq);
1222 	inc_rt_group(rt_se, rt_rq);
1223 }
1224 
1225 static inline
dec_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1226 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1227 {
1228 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1229 	WARN_ON(!rt_rq->rt_nr_running);
1230 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1231 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1232 
1233 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1234 	dec_rt_migration(rt_se, rt_rq);
1235 	dec_rt_group(rt_se, rt_rq);
1236 }
1237 
1238 /*
1239  * Change rt_se->run_list location unless SAVE && !MOVE
1240  *
1241  * assumes ENQUEUE/DEQUEUE flags match
1242  */
move_entity(unsigned int flags)1243 static inline bool move_entity(unsigned int flags)
1244 {
1245 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1246 		return false;
1247 
1248 	return true;
1249 }
1250 
__delist_rt_entity(struct sched_rt_entity * rt_se,struct rt_prio_array * array)1251 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1252 {
1253 	list_del_init(&rt_se->run_list);
1254 
1255 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1256 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1257 
1258 	rt_se->on_list = 0;
1259 }
1260 
__enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1261 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1262 {
1263 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1264 	struct rt_prio_array *array = &rt_rq->active;
1265 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1266 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1267 
1268 	/*
1269 	 * Don't enqueue the group if its throttled, or when empty.
1270 	 * The latter is a consequence of the former when a child group
1271 	 * get throttled and the current group doesn't have any other
1272 	 * active members.
1273 	 */
1274 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1275 		if (rt_se->on_list)
1276 			__delist_rt_entity(rt_se, array);
1277 		return;
1278 	}
1279 
1280 	if (move_entity(flags)) {
1281 		WARN_ON_ONCE(rt_se->on_list);
1282 		if (flags & ENQUEUE_HEAD)
1283 			list_add(&rt_se->run_list, queue);
1284 		else
1285 			list_add_tail(&rt_se->run_list, queue);
1286 
1287 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1288 		rt_se->on_list = 1;
1289 	}
1290 	rt_se->on_rq = 1;
1291 
1292 	inc_rt_tasks(rt_se, rt_rq);
1293 }
1294 
__dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1295 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1296 {
1297 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1298 	struct rt_prio_array *array = &rt_rq->active;
1299 
1300 	if (move_entity(flags)) {
1301 		WARN_ON_ONCE(!rt_se->on_list);
1302 		__delist_rt_entity(rt_se, array);
1303 	}
1304 	rt_se->on_rq = 0;
1305 
1306 	dec_rt_tasks(rt_se, rt_rq);
1307 }
1308 
1309 /*
1310  * Because the prio of an upper entry depends on the lower
1311  * entries, we must remove entries top - down.
1312  */
dequeue_rt_stack(struct sched_rt_entity * rt_se,unsigned int flags)1313 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1314 {
1315 	struct sched_rt_entity *back = NULL;
1316 
1317 	for_each_sched_rt_entity(rt_se) {
1318 		rt_se->back = back;
1319 		back = rt_se;
1320 	}
1321 
1322 	dequeue_top_rt_rq(rt_rq_of_se(back));
1323 
1324 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1325 		if (on_rt_rq(rt_se))
1326 			__dequeue_rt_entity(rt_se, flags);
1327 	}
1328 }
1329 
enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1330 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1331 {
1332 	struct rq *rq = rq_of_rt_se(rt_se);
1333 
1334 	dequeue_rt_stack(rt_se, flags);
1335 	for_each_sched_rt_entity(rt_se)
1336 		__enqueue_rt_entity(rt_se, flags);
1337 	enqueue_top_rt_rq(&rq->rt);
1338 }
1339 
dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1340 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1341 {
1342 	struct rq *rq = rq_of_rt_se(rt_se);
1343 
1344 	dequeue_rt_stack(rt_se, flags);
1345 
1346 	for_each_sched_rt_entity(rt_se) {
1347 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1348 
1349 		if (rt_rq && rt_rq->rt_nr_running)
1350 			__enqueue_rt_entity(rt_se, flags);
1351 	}
1352 	enqueue_top_rt_rq(&rq->rt);
1353 }
1354 
1355 /*
1356  * Adding/removing a task to/from a priority array:
1357  */
1358 static void
enqueue_task_rt(struct rq * rq,struct task_struct * p,int flags)1359 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1360 {
1361 	struct sched_rt_entity *rt_se = &p->rt;
1362 
1363 	if (flags & ENQUEUE_WAKEUP)
1364 		rt_se->timeout = 0;
1365 
1366 	enqueue_rt_entity(rt_se, flags);
1367 	walt_inc_cumulative_runnable_avg(rq, p);
1368 
1369 	if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
1370 		enqueue_pushable_task(rq, p);
1371 }
1372 
dequeue_task_rt(struct rq * rq,struct task_struct * p,int flags)1373 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1374 {
1375 	struct sched_rt_entity *rt_se = &p->rt;
1376 
1377 	update_curr_rt(rq);
1378 	dequeue_rt_entity(rt_se, flags);
1379 	walt_dec_cumulative_runnable_avg(rq, p);
1380 
1381 	dequeue_pushable_task(rq, p);
1382 }
1383 
1384 /*
1385  * Put task to the head or the end of the run list without the overhead of
1386  * dequeue followed by enqueue.
1387  */
1388 static void
requeue_rt_entity(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int head)1389 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1390 {
1391 	if (on_rt_rq(rt_se)) {
1392 		struct rt_prio_array *array = &rt_rq->active;
1393 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1394 
1395 		if (head)
1396 			list_move(&rt_se->run_list, queue);
1397 		else
1398 			list_move_tail(&rt_se->run_list, queue);
1399 	}
1400 }
1401 
requeue_task_rt(struct rq * rq,struct task_struct * p,int head)1402 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1403 {
1404 	struct sched_rt_entity *rt_se = &p->rt;
1405 	struct rt_rq *rt_rq;
1406 
1407 	for_each_sched_rt_entity(rt_se) {
1408 		rt_rq = rt_rq_of_se(rt_se);
1409 		requeue_rt_entity(rt_rq, rt_se, head);
1410 	}
1411 }
1412 
yield_task_rt(struct rq * rq)1413 static void yield_task_rt(struct rq *rq)
1414 {
1415 	requeue_task_rt(rq, rq->curr, 0);
1416 }
1417 
1418 #ifdef CONFIG_SMP
1419 static int find_lowest_rq(struct task_struct *task);
1420 
1421 static int
select_task_rq_rt(struct task_struct * p,int cpu,int sd_flag,int flags)1422 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1423 {
1424 	struct task_struct *curr;
1425 	struct rq *rq;
1426 
1427 	/* For anything but wake ups, just return the task_cpu */
1428 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1429 		goto out;
1430 
1431 	rq = cpu_rq(cpu);
1432 
1433 	rcu_read_lock();
1434 	curr = READ_ONCE(rq->curr); /* unlocked access */
1435 
1436 	/*
1437 	 * If the current task on @p's runqueue is an RT task, then
1438 	 * try to see if we can wake this RT task up on another
1439 	 * runqueue. Otherwise simply start this RT task
1440 	 * on its current runqueue.
1441 	 *
1442 	 * We want to avoid overloading runqueues. If the woken
1443 	 * task is a higher priority, then it will stay on this CPU
1444 	 * and the lower prio task should be moved to another CPU.
1445 	 * Even though this will probably make the lower prio task
1446 	 * lose its cache, we do not want to bounce a higher task
1447 	 * around just because it gave up its CPU, perhaps for a
1448 	 * lock?
1449 	 *
1450 	 * For equal prio tasks, we just let the scheduler sort it out.
1451 	 *
1452 	 * Otherwise, just let it ride on the affined RQ and the
1453 	 * post-schedule router will push the preempted task away
1454 	 *
1455 	 * This test is optimistic, if we get it wrong the load-balancer
1456 	 * will have to sort it out.
1457 	 */
1458 	if (curr && unlikely(rt_task(curr)) &&
1459 	    (tsk_nr_cpus_allowed(curr) < 2 ||
1460 	     curr->prio <= p->prio)) {
1461 		int target = find_lowest_rq(p);
1462 
1463 		/*
1464 		 * Don't bother moving it if the destination CPU is
1465 		 * not running a lower priority task.
1466 		 */
1467 		if (target != -1 &&
1468 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1469 			cpu = target;
1470 	}
1471 	rcu_read_unlock();
1472 
1473 out:
1474 	return cpu;
1475 }
1476 
check_preempt_equal_prio(struct rq * rq,struct task_struct * p)1477 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1478 {
1479 	/*
1480 	 * Current can't be migrated, useless to reschedule,
1481 	 * let's hope p can move out.
1482 	 */
1483 	if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
1484 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1485 		return;
1486 
1487 	/*
1488 	 * p is migratable, so let's not schedule it and
1489 	 * see if it is pushed or pulled somewhere else.
1490 	 */
1491 	if (tsk_nr_cpus_allowed(p) != 1
1492 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1493 		return;
1494 
1495 	/*
1496 	 * There appears to be other cpus that can accept
1497 	 * current and none to run 'p', so lets reschedule
1498 	 * to try and push current away:
1499 	 */
1500 	requeue_task_rt(rq, p, 1);
1501 	resched_curr(rq);
1502 }
1503 
1504 #endif /* CONFIG_SMP */
1505 
1506 /*
1507  * Preempt the current task with a newly woken task if needed:
1508  */
check_preempt_curr_rt(struct rq * rq,struct task_struct * p,int flags)1509 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1510 {
1511 	if (p->prio < rq->curr->prio) {
1512 		resched_curr(rq);
1513 		return;
1514 	}
1515 
1516 #ifdef CONFIG_SMP
1517 	/*
1518 	 * If:
1519 	 *
1520 	 * - the newly woken task is of equal priority to the current task
1521 	 * - the newly woken task is non-migratable while current is migratable
1522 	 * - current will be preempted on the next reschedule
1523 	 *
1524 	 * we should check to see if current can readily move to a different
1525 	 * cpu.  If so, we will reschedule to allow the push logic to try
1526 	 * to move current somewhere else, making room for our non-migratable
1527 	 * task.
1528 	 */
1529 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1530 		check_preempt_equal_prio(rq, p);
1531 #endif
1532 }
1533 
pick_next_rt_entity(struct rq * rq,struct rt_rq * rt_rq)1534 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1535 						   struct rt_rq *rt_rq)
1536 {
1537 	struct rt_prio_array *array = &rt_rq->active;
1538 	struct sched_rt_entity *next = NULL;
1539 	struct list_head *queue;
1540 	int idx;
1541 
1542 	idx = sched_find_first_bit(array->bitmap);
1543 	BUG_ON(idx >= MAX_RT_PRIO);
1544 
1545 	queue = array->queue + idx;
1546 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1547 
1548 	return next;
1549 }
1550 
_pick_next_task_rt(struct rq * rq)1551 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1552 {
1553 	struct sched_rt_entity *rt_se;
1554 	struct task_struct *p;
1555 	struct rt_rq *rt_rq  = &rq->rt;
1556 
1557 	do {
1558 		rt_se = pick_next_rt_entity(rq, rt_rq);
1559 		BUG_ON(!rt_se);
1560 		rt_rq = group_rt_rq(rt_se);
1561 	} while (rt_rq);
1562 
1563 	p = rt_task_of(rt_se);
1564 	p->se.exec_start = rq_clock_task(rq);
1565 
1566 	return p;
1567 }
1568 
1569 static struct task_struct *
pick_next_task_rt(struct rq * rq,struct task_struct * prev,struct pin_cookie cookie)1570 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
1571 {
1572 	struct task_struct *p;
1573 	struct rt_rq *rt_rq = &rq->rt;
1574 
1575 	if (need_pull_rt_task(rq, prev)) {
1576 		/*
1577 		 * This is OK, because current is on_cpu, which avoids it being
1578 		 * picked for load-balance and preemption/IRQs are still
1579 		 * disabled avoiding further scheduler activity on it and we're
1580 		 * being very careful to re-start the picking loop.
1581 		 */
1582 		lockdep_unpin_lock(&rq->lock, cookie);
1583 		pull_rt_task(rq);
1584 		lockdep_repin_lock(&rq->lock, cookie);
1585 		/*
1586 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1587 		 * means a dl or stop task can slip in, in which case we need
1588 		 * to re-start task selection.
1589 		 */
1590 		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1591 			     rq->dl.dl_nr_running))
1592 			return RETRY_TASK;
1593 	}
1594 
1595 	/*
1596 	 * We may dequeue prev's rt_rq in put_prev_task().
1597 	 * So, we update time before rt_nr_running check.
1598 	 */
1599 	if (prev->sched_class == &rt_sched_class)
1600 		update_curr_rt(rq);
1601 
1602 	if (!rt_rq->rt_queued)
1603 		return NULL;
1604 
1605 	put_prev_task(rq, prev);
1606 
1607 	p = _pick_next_task_rt(rq);
1608 
1609 	/* The running task is never eligible for pushing */
1610 	dequeue_pushable_task(rq, p);
1611 
1612 	queue_push_tasks(rq);
1613 
1614 	return p;
1615 }
1616 
put_prev_task_rt(struct rq * rq,struct task_struct * p)1617 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1618 {
1619 	update_curr_rt(rq);
1620 
1621 	/*
1622 	 * The previous task needs to be made eligible for pushing
1623 	 * if it is still active
1624 	 */
1625 	if (on_rt_rq(&p->rt) && tsk_nr_cpus_allowed(p) > 1)
1626 		enqueue_pushable_task(rq, p);
1627 }
1628 
1629 #ifdef CONFIG_SMP
1630 
1631 /* Only try algorithms three times */
1632 #define RT_MAX_TRIES 3
1633 
pick_rt_task(struct rq * rq,struct task_struct * p,int cpu)1634 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1635 {
1636 	if (!task_running(rq, p) &&
1637 	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1638 		return 1;
1639 	return 0;
1640 }
1641 
1642 /*
1643  * Return the highest pushable rq's task, which is suitable to be executed
1644  * on the cpu, NULL otherwise
1645  */
pick_highest_pushable_task(struct rq * rq,int cpu)1646 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1647 {
1648 	struct plist_head *head = &rq->rt.pushable_tasks;
1649 	struct task_struct *p;
1650 
1651 	if (!has_pushable_tasks(rq))
1652 		return NULL;
1653 
1654 	plist_for_each_entry(p, head, pushable_tasks) {
1655 		if (pick_rt_task(rq, p, cpu))
1656 			return p;
1657 	}
1658 
1659 	return NULL;
1660 }
1661 
1662 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1663 
find_lowest_rq(struct task_struct * task)1664 static int find_lowest_rq(struct task_struct *task)
1665 {
1666 	struct sched_domain *sd;
1667 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1668 	int this_cpu = smp_processor_id();
1669 	int cpu      = task_cpu(task);
1670 
1671 	/* Make sure the mask is initialized first */
1672 	if (unlikely(!lowest_mask))
1673 		return -1;
1674 
1675 	if (tsk_nr_cpus_allowed(task) == 1)
1676 		return -1; /* No other targets possible */
1677 
1678 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1679 		return -1; /* No targets found */
1680 
1681 	/*
1682 	 * At this point we have built a mask of cpus representing the
1683 	 * lowest priority tasks in the system.  Now we want to elect
1684 	 * the best one based on our affinity and topology.
1685 	 *
1686 	 * We prioritize the last cpu that the task executed on since
1687 	 * it is most likely cache-hot in that location.
1688 	 */
1689 	if (cpumask_test_cpu(cpu, lowest_mask))
1690 		return cpu;
1691 
1692 	/*
1693 	 * Otherwise, we consult the sched_domains span maps to figure
1694 	 * out which cpu is logically closest to our hot cache data.
1695 	 */
1696 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1697 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1698 
1699 	rcu_read_lock();
1700 	for_each_domain(cpu, sd) {
1701 		if (sd->flags & SD_WAKE_AFFINE) {
1702 			int best_cpu;
1703 
1704 			/*
1705 			 * "this_cpu" is cheaper to preempt than a
1706 			 * remote processor.
1707 			 */
1708 			if (this_cpu != -1 &&
1709 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1710 				rcu_read_unlock();
1711 				return this_cpu;
1712 			}
1713 
1714 			best_cpu = cpumask_first_and(lowest_mask,
1715 						     sched_domain_span(sd));
1716 			if (best_cpu < nr_cpu_ids) {
1717 				rcu_read_unlock();
1718 				return best_cpu;
1719 			}
1720 		}
1721 	}
1722 	rcu_read_unlock();
1723 
1724 	/*
1725 	 * And finally, if there were no matches within the domains
1726 	 * just give the caller *something* to work with from the compatible
1727 	 * locations.
1728 	 */
1729 	if (this_cpu != -1)
1730 		return this_cpu;
1731 
1732 	cpu = cpumask_any(lowest_mask);
1733 	if (cpu < nr_cpu_ids)
1734 		return cpu;
1735 	return -1;
1736 }
1737 
1738 /* Will lock the rq it finds */
find_lock_lowest_rq(struct task_struct * task,struct rq * rq)1739 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1740 {
1741 	struct rq *lowest_rq = NULL;
1742 	int tries;
1743 	int cpu;
1744 
1745 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1746 		cpu = find_lowest_rq(task);
1747 
1748 		if ((cpu == -1) || (cpu == rq->cpu))
1749 			break;
1750 
1751 		lowest_rq = cpu_rq(cpu);
1752 
1753 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1754 			/*
1755 			 * Target rq has tasks of equal or higher priority,
1756 			 * retrying does not release any lock and is unlikely
1757 			 * to yield a different result.
1758 			 */
1759 			lowest_rq = NULL;
1760 			break;
1761 		}
1762 
1763 		/* if the prio of this runqueue changed, try again */
1764 		if (double_lock_balance(rq, lowest_rq)) {
1765 			/*
1766 			 * We had to unlock the run queue. In
1767 			 * the mean time, task could have
1768 			 * migrated already or had its affinity changed.
1769 			 * Also make sure that it wasn't scheduled on its rq.
1770 			 */
1771 			if (unlikely(task_rq(task) != rq ||
1772 				     !cpumask_test_cpu(lowest_rq->cpu,
1773 						       tsk_cpus_allowed(task)) ||
1774 				     task_running(rq, task) ||
1775 				     !rt_task(task) ||
1776 				     !task_on_rq_queued(task))) {
1777 
1778 				double_unlock_balance(rq, lowest_rq);
1779 				lowest_rq = NULL;
1780 				break;
1781 			}
1782 		}
1783 
1784 		/* If this rq is still suitable use it. */
1785 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1786 			break;
1787 
1788 		/* try again */
1789 		double_unlock_balance(rq, lowest_rq);
1790 		lowest_rq = NULL;
1791 	}
1792 
1793 	return lowest_rq;
1794 }
1795 
pick_next_pushable_task(struct rq * rq)1796 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1797 {
1798 	struct task_struct *p;
1799 
1800 	if (!has_pushable_tasks(rq))
1801 		return NULL;
1802 
1803 	p = plist_first_entry(&rq->rt.pushable_tasks,
1804 			      struct task_struct, pushable_tasks);
1805 
1806 	BUG_ON(rq->cpu != task_cpu(p));
1807 	BUG_ON(task_current(rq, p));
1808 	BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
1809 
1810 	BUG_ON(!task_on_rq_queued(p));
1811 	BUG_ON(!rt_task(p));
1812 
1813 	return p;
1814 }
1815 
1816 /*
1817  * If the current CPU has more than one RT task, see if the non
1818  * running task can migrate over to a CPU that is running a task
1819  * of lesser priority.
1820  */
push_rt_task(struct rq * rq)1821 static int push_rt_task(struct rq *rq)
1822 {
1823 	struct task_struct *next_task;
1824 	struct rq *lowest_rq;
1825 	int ret = 0;
1826 
1827 	if (!rq->rt.overloaded)
1828 		return 0;
1829 
1830 	next_task = pick_next_pushable_task(rq);
1831 	if (!next_task)
1832 		return 0;
1833 
1834 retry:
1835 	if (unlikely(next_task == rq->curr)) {
1836 		WARN_ON(1);
1837 		return 0;
1838 	}
1839 
1840 	/*
1841 	 * It's possible that the next_task slipped in of
1842 	 * higher priority than current. If that's the case
1843 	 * just reschedule current.
1844 	 */
1845 	if (unlikely(next_task->prio < rq->curr->prio)) {
1846 		resched_curr(rq);
1847 		return 0;
1848 	}
1849 
1850 	/* We might release rq lock */
1851 	get_task_struct(next_task);
1852 
1853 	/* find_lock_lowest_rq locks the rq if found */
1854 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1855 	if (!lowest_rq) {
1856 		struct task_struct *task;
1857 		/*
1858 		 * find_lock_lowest_rq releases rq->lock
1859 		 * so it is possible that next_task has migrated.
1860 		 *
1861 		 * We need to make sure that the task is still on the same
1862 		 * run-queue and is also still the next task eligible for
1863 		 * pushing.
1864 		 */
1865 		task = pick_next_pushable_task(rq);
1866 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1867 			/*
1868 			 * The task hasn't migrated, and is still the next
1869 			 * eligible task, but we failed to find a run-queue
1870 			 * to push it to.  Do not retry in this case, since
1871 			 * other cpus will pull from us when ready.
1872 			 */
1873 			goto out;
1874 		}
1875 
1876 		if (!task)
1877 			/* No more tasks, just exit */
1878 			goto out;
1879 
1880 		/*
1881 		 * Something has shifted, try again.
1882 		 */
1883 		put_task_struct(next_task);
1884 		next_task = task;
1885 		goto retry;
1886 	}
1887 
1888 	deactivate_task(rq, next_task, 0);
1889 	next_task->on_rq = TASK_ON_RQ_MIGRATING;
1890 	set_task_cpu(next_task, lowest_rq->cpu);
1891 	next_task->on_rq = TASK_ON_RQ_QUEUED;
1892 	activate_task(lowest_rq, next_task, 0);
1893 	ret = 1;
1894 
1895 	resched_curr(lowest_rq);
1896 
1897 	double_unlock_balance(rq, lowest_rq);
1898 
1899 out:
1900 	put_task_struct(next_task);
1901 
1902 	return ret;
1903 }
1904 
push_rt_tasks(struct rq * rq)1905 static void push_rt_tasks(struct rq *rq)
1906 {
1907 	/* push_rt_task will return true if it moved an RT */
1908 	while (push_rt_task(rq))
1909 		;
1910 }
1911 
1912 #ifdef HAVE_RT_PUSH_IPI
1913 
1914 /*
1915  * When a high priority task schedules out from a CPU and a lower priority
1916  * task is scheduled in, a check is made to see if there's any RT tasks
1917  * on other CPUs that are waiting to run because a higher priority RT task
1918  * is currently running on its CPU. In this case, the CPU with multiple RT
1919  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1920  * up that may be able to run one of its non-running queued RT tasks.
1921  *
1922  * All CPUs with overloaded RT tasks need to be notified as there is currently
1923  * no way to know which of these CPUs have the highest priority task waiting
1924  * to run. Instead of trying to take a spinlock on each of these CPUs,
1925  * which has shown to cause large latency when done on machines with many
1926  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1927  * RT tasks waiting to run.
1928  *
1929  * Just sending an IPI to each of the CPUs is also an issue, as on large
1930  * count CPU machines, this can cause an IPI storm on a CPU, especially
1931  * if its the only CPU with multiple RT tasks queued, and a large number
1932  * of CPUs scheduling a lower priority task at the same time.
1933  *
1934  * Each root domain has its own irq work function that can iterate over
1935  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1936  * tassk must be checked if there's one or many CPUs that are lowering
1937  * their priority, there's a single irq work iterator that will try to
1938  * push off RT tasks that are waiting to run.
1939  *
1940  * When a CPU schedules a lower priority task, it will kick off the
1941  * irq work iterator that will jump to each CPU with overloaded RT tasks.
1942  * As it only takes the first CPU that schedules a lower priority task
1943  * to start the process, the rto_start variable is incremented and if
1944  * the atomic result is one, then that CPU will try to take the rto_lock.
1945  * This prevents high contention on the lock as the process handles all
1946  * CPUs scheduling lower priority tasks.
1947  *
1948  * All CPUs that are scheduling a lower priority task will increment the
1949  * rt_loop_next variable. This will make sure that the irq work iterator
1950  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1951  * priority task, even if the iterator is in the middle of a scan. Incrementing
1952  * the rt_loop_next will cause the iterator to perform another scan.
1953  *
1954  */
rto_next_cpu(struct root_domain * rd)1955 static int rto_next_cpu(struct root_domain *rd)
1956 {
1957 	int next;
1958 	int cpu;
1959 
1960 	/*
1961 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1962 	 * rt_next_cpu() will simply return the first CPU found in
1963 	 * the rto_mask.
1964 	 *
1965 	 * If rto_next_cpu() is called with rto_cpu is a valid cpu, it
1966 	 * will return the next CPU found in the rto_mask.
1967 	 *
1968 	 * If there are no more CPUs left in the rto_mask, then a check is made
1969 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
1970 	 * the rto_lock held, but any CPU may increment the rto_loop_next
1971 	 * without any locking.
1972 	 */
1973 	for (;;) {
1974 
1975 		/* When rto_cpu is -1 this acts like cpumask_first() */
1976 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1977 
1978 		rd->rto_cpu = cpu;
1979 
1980 		if (cpu < nr_cpu_ids)
1981 			return cpu;
1982 
1983 		rd->rto_cpu = -1;
1984 
1985 		/*
1986 		 * ACQUIRE ensures we see the @rto_mask changes
1987 		 * made prior to the @next value observed.
1988 		 *
1989 		 * Matches WMB in rt_set_overload().
1990 		 */
1991 		next = atomic_read_acquire(&rd->rto_loop_next);
1992 
1993 		if (rd->rto_loop == next)
1994 			break;
1995 
1996 		rd->rto_loop = next;
1997 	}
1998 
1999 	return -1;
2000 }
2001 
rto_start_trylock(atomic_t * v)2002 static inline bool rto_start_trylock(atomic_t *v)
2003 {
2004 	return !atomic_cmpxchg_acquire(v, 0, 1);
2005 }
2006 
rto_start_unlock(atomic_t * v)2007 static inline void rto_start_unlock(atomic_t *v)
2008 {
2009 	atomic_set_release(v, 0);
2010 }
2011 
tell_cpu_to_push(struct rq * rq)2012 static void tell_cpu_to_push(struct rq *rq)
2013 {
2014 	int cpu = -1;
2015 
2016 	/* Keep the loop going if the IPI is currently active */
2017 	atomic_inc(&rq->rd->rto_loop_next);
2018 
2019 	/* Only one CPU can initiate a loop at a time */
2020 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2021 		return;
2022 
2023 	raw_spin_lock(&rq->rd->rto_lock);
2024 
2025 	/*
2026 	 * The rto_cpu is updated under the lock, if it has a valid cpu
2027 	 * then the IPI is still running and will continue due to the
2028 	 * update to loop_next, and nothing needs to be done here.
2029 	 * Otherwise it is finishing up and an ipi needs to be sent.
2030 	 */
2031 	if (rq->rd->rto_cpu < 0)
2032 		cpu = rto_next_cpu(rq->rd);
2033 
2034 	raw_spin_unlock(&rq->rd->rto_lock);
2035 
2036 	rto_start_unlock(&rq->rd->rto_loop_start);
2037 
2038 	if (cpu >= 0) {
2039 		/* Make sure the rd does not get freed while pushing */
2040 		sched_get_rd(rq->rd);
2041 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2042 	}
2043 }
2044 
2045 /* Called from hardirq context */
rto_push_irq_work_func(struct irq_work * work)2046 void rto_push_irq_work_func(struct irq_work *work)
2047 {
2048 	struct root_domain *rd =
2049 		container_of(work, struct root_domain, rto_push_work);
2050 	struct rq *rq;
2051 	int cpu;
2052 
2053 	rq = this_rq();
2054 
2055 	/*
2056 	 * We do not need to grab the lock to check for has_pushable_tasks.
2057 	 * When it gets updated, a check is made if a push is possible.
2058 	 */
2059 	if (has_pushable_tasks(rq)) {
2060 		raw_spin_lock(&rq->lock);
2061 		push_rt_tasks(rq);
2062 		raw_spin_unlock(&rq->lock);
2063 	}
2064 
2065 	raw_spin_lock(&rd->rto_lock);
2066 
2067 	/* Pass the IPI to the next rt overloaded queue */
2068 	cpu = rto_next_cpu(rd);
2069 
2070 	raw_spin_unlock(&rd->rto_lock);
2071 
2072 	if (cpu < 0) {
2073 		sched_put_rd(rd);
2074 		return;
2075 	}
2076 
2077 	/* Try the next RT overloaded CPU */
2078 	irq_work_queue_on(&rd->rto_push_work, cpu);
2079 }
2080 #endif /* HAVE_RT_PUSH_IPI */
2081 
pull_rt_task(struct rq * this_rq)2082 static void pull_rt_task(struct rq *this_rq)
2083 {
2084 	int this_cpu = this_rq->cpu, cpu;
2085 	bool resched = false;
2086 	struct task_struct *p;
2087 	struct rq *src_rq;
2088 	int rt_overload_count = rt_overloaded(this_rq);
2089 
2090 	if (likely(!rt_overload_count))
2091 		return;
2092 
2093 	/*
2094 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2095 	 * see overloaded we must also see the rto_mask bit.
2096 	 */
2097 	smp_rmb();
2098 
2099 	/* If we are the only overloaded CPU do nothing */
2100 	if (rt_overload_count == 1 &&
2101 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2102 		return;
2103 
2104 #ifdef HAVE_RT_PUSH_IPI
2105 	if (sched_feat(RT_PUSH_IPI)) {
2106 		tell_cpu_to_push(this_rq);
2107 		return;
2108 	}
2109 #endif
2110 
2111 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2112 		if (this_cpu == cpu)
2113 			continue;
2114 
2115 		src_rq = cpu_rq(cpu);
2116 
2117 		/*
2118 		 * Don't bother taking the src_rq->lock if the next highest
2119 		 * task is known to be lower-priority than our current task.
2120 		 * This may look racy, but if this value is about to go
2121 		 * logically higher, the src_rq will push this task away.
2122 		 * And if its going logically lower, we do not care
2123 		 */
2124 		if (src_rq->rt.highest_prio.next >=
2125 		    this_rq->rt.highest_prio.curr)
2126 			continue;
2127 
2128 		/*
2129 		 * We can potentially drop this_rq's lock in
2130 		 * double_lock_balance, and another CPU could
2131 		 * alter this_rq
2132 		 */
2133 		double_lock_balance(this_rq, src_rq);
2134 
2135 		/*
2136 		 * We can pull only a task, which is pushable
2137 		 * on its rq, and no others.
2138 		 */
2139 		p = pick_highest_pushable_task(src_rq, this_cpu);
2140 
2141 		/*
2142 		 * Do we have an RT task that preempts
2143 		 * the to-be-scheduled task?
2144 		 */
2145 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2146 			WARN_ON(p == src_rq->curr);
2147 			WARN_ON(!task_on_rq_queued(p));
2148 
2149 			/*
2150 			 * There's a chance that p is higher in priority
2151 			 * than what's currently running on its cpu.
2152 			 * This is just that p is wakeing up and hasn't
2153 			 * had a chance to schedule. We only pull
2154 			 * p if it is lower in priority than the
2155 			 * current task on the run queue
2156 			 */
2157 			if (p->prio < src_rq->curr->prio)
2158 				goto skip;
2159 
2160 			resched = true;
2161 
2162 			deactivate_task(src_rq, p, 0);
2163 			p->on_rq = TASK_ON_RQ_MIGRATING;
2164 			set_task_cpu(p, this_cpu);
2165 			p->on_rq = TASK_ON_RQ_QUEUED;
2166 			activate_task(this_rq, p, 0);
2167 			/*
2168 			 * We continue with the search, just in
2169 			 * case there's an even higher prio task
2170 			 * in another runqueue. (low likelihood
2171 			 * but possible)
2172 			 */
2173 		}
2174 skip:
2175 		double_unlock_balance(this_rq, src_rq);
2176 	}
2177 
2178 	if (resched)
2179 		resched_curr(this_rq);
2180 }
2181 
2182 /*
2183  * If we are not running and we are not going to reschedule soon, we should
2184  * try to push tasks away now
2185  */
task_woken_rt(struct rq * rq,struct task_struct * p)2186 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2187 {
2188 	if (!task_running(rq, p) &&
2189 	    !test_tsk_need_resched(rq->curr) &&
2190 	    tsk_nr_cpus_allowed(p) > 1 &&
2191 	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2192 	    (tsk_nr_cpus_allowed(rq->curr) < 2 ||
2193 	     rq->curr->prio <= p->prio))
2194 		push_rt_tasks(rq);
2195 }
2196 
2197 /* Assumes rq->lock is held */
rq_online_rt(struct rq * rq)2198 static void rq_online_rt(struct rq *rq)
2199 {
2200 	if (rq->rt.overloaded)
2201 		rt_set_overload(rq);
2202 
2203 	__enable_runtime(rq);
2204 
2205 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2206 }
2207 
2208 /* Assumes rq->lock is held */
rq_offline_rt(struct rq * rq)2209 static void rq_offline_rt(struct rq *rq)
2210 {
2211 	if (rq->rt.overloaded)
2212 		rt_clear_overload(rq);
2213 
2214 	__disable_runtime(rq);
2215 
2216 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2217 }
2218 
2219 /*
2220  * When switch from the rt queue, we bring ourselves to a position
2221  * that we might want to pull RT tasks from other runqueues.
2222  */
switched_from_rt(struct rq * rq,struct task_struct * p)2223 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2224 {
2225 	/*
2226 	 * If there are other RT tasks then we will reschedule
2227 	 * and the scheduling of the other RT tasks will handle
2228 	 * the balancing. But if we are the last RT task
2229 	 * we may need to handle the pulling of RT tasks
2230 	 * now.
2231 	 */
2232 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2233 		return;
2234 
2235 	queue_pull_task(rq);
2236 }
2237 
init_sched_rt_class(void)2238 void __init init_sched_rt_class(void)
2239 {
2240 	unsigned int i;
2241 
2242 	for_each_possible_cpu(i) {
2243 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2244 					GFP_KERNEL, cpu_to_node(i));
2245 	}
2246 }
2247 #endif /* CONFIG_SMP */
2248 
2249 /*
2250  * When switching a task to RT, we may overload the runqueue
2251  * with RT tasks. In this case we try to push them off to
2252  * other runqueues.
2253  */
switched_to_rt(struct rq * rq,struct task_struct * p)2254 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2255 {
2256 	/*
2257 	 * If we are already running, then there's nothing
2258 	 * that needs to be done. But if we are not running
2259 	 * we may need to preempt the current running task.
2260 	 * If that current running task is also an RT task
2261 	 * then see if we can move to another run queue.
2262 	 */
2263 	if (task_on_rq_queued(p) && rq->curr != p) {
2264 #ifdef CONFIG_SMP
2265 		if (tsk_nr_cpus_allowed(p) > 1 && rq->rt.overloaded)
2266 			queue_push_tasks(rq);
2267 #endif /* CONFIG_SMP */
2268 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2269 			resched_curr(rq);
2270 	}
2271 }
2272 
2273 /*
2274  * Priority of the task has changed. This may cause
2275  * us to initiate a push or pull.
2276  */
2277 static void
prio_changed_rt(struct rq * rq,struct task_struct * p,int oldprio)2278 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2279 {
2280 	if (!task_on_rq_queued(p))
2281 		return;
2282 
2283 	if (rq->curr == p) {
2284 #ifdef CONFIG_SMP
2285 		/*
2286 		 * If our priority decreases while running, we
2287 		 * may need to pull tasks to this runqueue.
2288 		 */
2289 		if (oldprio < p->prio)
2290 			queue_pull_task(rq);
2291 
2292 		/*
2293 		 * If there's a higher priority task waiting to run
2294 		 * then reschedule.
2295 		 */
2296 		if (p->prio > rq->rt.highest_prio.curr)
2297 			resched_curr(rq);
2298 #else
2299 		/* For UP simply resched on drop of prio */
2300 		if (oldprio < p->prio)
2301 			resched_curr(rq);
2302 #endif /* CONFIG_SMP */
2303 	} else {
2304 		/*
2305 		 * This task is not running, but if it is
2306 		 * greater than the current running task
2307 		 * then reschedule.
2308 		 */
2309 		if (p->prio < rq->curr->prio)
2310 			resched_curr(rq);
2311 	}
2312 }
2313 
watchdog(struct rq * rq,struct task_struct * p)2314 static void watchdog(struct rq *rq, struct task_struct *p)
2315 {
2316 	unsigned long soft, hard;
2317 
2318 	/* max may change after cur was read, this will be fixed next tick */
2319 	soft = task_rlimit(p, RLIMIT_RTTIME);
2320 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2321 
2322 	if (soft != RLIM_INFINITY) {
2323 		unsigned long next;
2324 
2325 		if (p->rt.watchdog_stamp != jiffies) {
2326 			p->rt.timeout++;
2327 			p->rt.watchdog_stamp = jiffies;
2328 		}
2329 
2330 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2331 		if (p->rt.timeout > next)
2332 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2333 	}
2334 }
2335 
task_tick_rt(struct rq * rq,struct task_struct * p,int queued)2336 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2337 {
2338 	struct sched_rt_entity *rt_se = &p->rt;
2339 
2340 	update_curr_rt(rq);
2341 
2342 	watchdog(rq, p);
2343 
2344 	/*
2345 	 * RR tasks need a special form of timeslice management.
2346 	 * FIFO tasks have no timeslices.
2347 	 */
2348 	if (p->policy != SCHED_RR)
2349 		return;
2350 
2351 	if (--p->rt.time_slice)
2352 		return;
2353 
2354 	p->rt.time_slice = sched_rr_timeslice;
2355 
2356 	/*
2357 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2358 	 * the only element on the queue
2359 	 */
2360 	for_each_sched_rt_entity(rt_se) {
2361 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2362 			requeue_task_rt(rq, p, 0);
2363 			resched_curr(rq);
2364 			return;
2365 		}
2366 	}
2367 }
2368 
set_curr_task_rt(struct rq * rq)2369 static void set_curr_task_rt(struct rq *rq)
2370 {
2371 	struct task_struct *p = rq->curr;
2372 
2373 	p->se.exec_start = rq_clock_task(rq);
2374 
2375 	/* The running task is never eligible for pushing */
2376 	dequeue_pushable_task(rq, p);
2377 }
2378 
get_rr_interval_rt(struct rq * rq,struct task_struct * task)2379 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2380 {
2381 	/*
2382 	 * Time slice is 0 for SCHED_FIFO tasks
2383 	 */
2384 	if (task->policy == SCHED_RR)
2385 		return sched_rr_timeslice;
2386 	else
2387 		return 0;
2388 }
2389 
2390 const struct sched_class rt_sched_class = {
2391 	.next			= &fair_sched_class,
2392 	.enqueue_task		= enqueue_task_rt,
2393 	.dequeue_task		= dequeue_task_rt,
2394 	.yield_task		= yield_task_rt,
2395 
2396 	.check_preempt_curr	= check_preempt_curr_rt,
2397 
2398 	.pick_next_task		= pick_next_task_rt,
2399 	.put_prev_task		= put_prev_task_rt,
2400 
2401 #ifdef CONFIG_SMP
2402 	.select_task_rq		= select_task_rq_rt,
2403 
2404 	.set_cpus_allowed       = set_cpus_allowed_common,
2405 	.rq_online              = rq_online_rt,
2406 	.rq_offline             = rq_offline_rt,
2407 	.task_woken		= task_woken_rt,
2408 	.switched_from		= switched_from_rt,
2409 #endif
2410 
2411 	.set_curr_task          = set_curr_task_rt,
2412 	.task_tick		= task_tick_rt,
2413 
2414 	.get_rr_interval	= get_rr_interval_rt,
2415 
2416 	.prio_changed		= prio_changed_rt,
2417 	.switched_to		= switched_to_rt,
2418 
2419 	.update_curr		= update_curr_rt,
2420 };
2421 
2422 #ifdef CONFIG_SCHED_DEBUG
2423 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2424 
print_rt_stats(struct seq_file * m,int cpu)2425 void print_rt_stats(struct seq_file *m, int cpu)
2426 {
2427 	rt_rq_iter_t iter;
2428 	struct rt_rq *rt_rq;
2429 
2430 	rcu_read_lock();
2431 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2432 		print_rt_rq(m, cpu, rt_rq);
2433 	rcu_read_unlock();
2434 }
2435 #endif /* CONFIG_SCHED_DEBUG */
2436