1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #include "sched.h"
7
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
10
11 #include "walt.h"
12
13 int sched_rr_timeslice = RR_TIMESLICE;
14
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16
17 struct rt_bandwidth def_rt_bandwidth;
18
sched_rt_period_timer(struct hrtimer * timer)19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20 {
21 struct rt_bandwidth *rt_b =
22 container_of(timer, struct rt_bandwidth, rt_period_timer);
23 int idle = 0;
24 int overrun;
25
26 raw_spin_lock(&rt_b->rt_runtime_lock);
27 for (;;) {
28 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29 if (!overrun)
30 break;
31
32 raw_spin_unlock(&rt_b->rt_runtime_lock);
33 idle = do_sched_rt_period_timer(rt_b, overrun);
34 raw_spin_lock(&rt_b->rt_runtime_lock);
35 }
36 if (idle)
37 rt_b->rt_period_active = 0;
38 raw_spin_unlock(&rt_b->rt_runtime_lock);
39
40 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41 }
42
init_rt_bandwidth(struct rt_bandwidth * rt_b,u64 period,u64 runtime)43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44 {
45 rt_b->rt_period = ns_to_ktime(period);
46 rt_b->rt_runtime = runtime;
47
48 raw_spin_lock_init(&rt_b->rt_runtime_lock);
49
50 hrtimer_init(&rt_b->rt_period_timer,
51 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
52 rt_b->rt_period_timer.function = sched_rt_period_timer;
53 }
54
start_rt_bandwidth(struct rt_bandwidth * rt_b)55 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
56 {
57 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
58 return;
59
60 raw_spin_lock(&rt_b->rt_runtime_lock);
61 if (!rt_b->rt_period_active) {
62 rt_b->rt_period_active = 1;
63 /*
64 * SCHED_DEADLINE updates the bandwidth, as a run away
65 * RT task with a DL task could hog a CPU. But DL does
66 * not reset the period. If a deadline task was running
67 * without an RT task running, it can cause RT tasks to
68 * throttle when they start up. Kick the timer right away
69 * to update the period.
70 */
71 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
72 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
73 }
74 raw_spin_unlock(&rt_b->rt_runtime_lock);
75 }
76
init_rt_rq(struct rt_rq * rt_rq)77 void init_rt_rq(struct rt_rq *rt_rq)
78 {
79 struct rt_prio_array *array;
80 int i;
81
82 array = &rt_rq->active;
83 for (i = 0; i < MAX_RT_PRIO; i++) {
84 INIT_LIST_HEAD(array->queue + i);
85 __clear_bit(i, array->bitmap);
86 }
87 /* delimiter for bitsearch: */
88 __set_bit(MAX_RT_PRIO, array->bitmap);
89
90 #if defined CONFIG_SMP
91 rt_rq->highest_prio.curr = MAX_RT_PRIO;
92 rt_rq->highest_prio.next = MAX_RT_PRIO;
93 rt_rq->rt_nr_migratory = 0;
94 rt_rq->overloaded = 0;
95 plist_head_init(&rt_rq->pushable_tasks);
96 #endif /* CONFIG_SMP */
97 /* We start is dequeued state, because no RT tasks are queued */
98 rt_rq->rt_queued = 0;
99
100 rt_rq->rt_time = 0;
101 rt_rq->rt_throttled = 0;
102 rt_rq->rt_runtime = 0;
103 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
104 }
105
106 #ifdef CONFIG_RT_GROUP_SCHED
destroy_rt_bandwidth(struct rt_bandwidth * rt_b)107 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
108 {
109 hrtimer_cancel(&rt_b->rt_period_timer);
110 }
111
112 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
113
rt_task_of(struct sched_rt_entity * rt_se)114 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
115 {
116 #ifdef CONFIG_SCHED_DEBUG
117 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
118 #endif
119 return container_of(rt_se, struct task_struct, rt);
120 }
121
rq_of_rt_rq(struct rt_rq * rt_rq)122 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
123 {
124 return rt_rq->rq;
125 }
126
rt_rq_of_se(struct sched_rt_entity * rt_se)127 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
128 {
129 return rt_se->rt_rq;
130 }
131
rq_of_rt_se(struct sched_rt_entity * rt_se)132 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
133 {
134 struct rt_rq *rt_rq = rt_se->rt_rq;
135
136 return rt_rq->rq;
137 }
138
free_rt_sched_group(struct task_group * tg)139 void free_rt_sched_group(struct task_group *tg)
140 {
141 int i;
142
143 if (tg->rt_se)
144 destroy_rt_bandwidth(&tg->rt_bandwidth);
145
146 for_each_possible_cpu(i) {
147 if (tg->rt_rq)
148 kfree(tg->rt_rq[i]);
149 if (tg->rt_se)
150 kfree(tg->rt_se[i]);
151 }
152
153 kfree(tg->rt_rq);
154 kfree(tg->rt_se);
155 }
156
init_tg_rt_entry(struct task_group * tg,struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int cpu,struct sched_rt_entity * parent)157 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
158 struct sched_rt_entity *rt_se, int cpu,
159 struct sched_rt_entity *parent)
160 {
161 struct rq *rq = cpu_rq(cpu);
162
163 rt_rq->highest_prio.curr = MAX_RT_PRIO;
164 rt_rq->rt_nr_boosted = 0;
165 rt_rq->rq = rq;
166 rt_rq->tg = tg;
167
168 tg->rt_rq[cpu] = rt_rq;
169 tg->rt_se[cpu] = rt_se;
170
171 if (!rt_se)
172 return;
173
174 if (!parent)
175 rt_se->rt_rq = &rq->rt;
176 else
177 rt_se->rt_rq = parent->my_q;
178
179 rt_se->my_q = rt_rq;
180 rt_se->parent = parent;
181 INIT_LIST_HEAD(&rt_se->run_list);
182 }
183
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)184 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
185 {
186 struct rt_rq *rt_rq;
187 struct sched_rt_entity *rt_se;
188 int i;
189
190 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
191 if (!tg->rt_rq)
192 goto err;
193 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
194 if (!tg->rt_se)
195 goto err;
196
197 init_rt_bandwidth(&tg->rt_bandwidth,
198 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
199
200 for_each_possible_cpu(i) {
201 rt_rq = kzalloc_node(sizeof(struct rt_rq),
202 GFP_KERNEL, cpu_to_node(i));
203 if (!rt_rq)
204 goto err;
205
206 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
207 GFP_KERNEL, cpu_to_node(i));
208 if (!rt_se)
209 goto err_free_rq;
210
211 init_rt_rq(rt_rq);
212 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
213 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
214 }
215
216 return 1;
217
218 err_free_rq:
219 kfree(rt_rq);
220 err:
221 return 0;
222 }
223
224 #else /* CONFIG_RT_GROUP_SCHED */
225
226 #define rt_entity_is_task(rt_se) (1)
227
rt_task_of(struct sched_rt_entity * rt_se)228 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
229 {
230 return container_of(rt_se, struct task_struct, rt);
231 }
232
rq_of_rt_rq(struct rt_rq * rt_rq)233 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
234 {
235 return container_of(rt_rq, struct rq, rt);
236 }
237
rq_of_rt_se(struct sched_rt_entity * rt_se)238 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
239 {
240 struct task_struct *p = rt_task_of(rt_se);
241
242 return task_rq(p);
243 }
244
rt_rq_of_se(struct sched_rt_entity * rt_se)245 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
246 {
247 struct rq *rq = rq_of_rt_se(rt_se);
248
249 return &rq->rt;
250 }
251
free_rt_sched_group(struct task_group * tg)252 void free_rt_sched_group(struct task_group *tg) { }
253
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)254 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
255 {
256 return 1;
257 }
258 #endif /* CONFIG_RT_GROUP_SCHED */
259
260 #ifdef CONFIG_SMP
261
262 static void pull_rt_task(struct rq *this_rq);
263
need_pull_rt_task(struct rq * rq,struct task_struct * prev)264 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
265 {
266 /* Try to pull RT tasks here if we lower this rq's prio */
267 return rq->rt.highest_prio.curr > prev->prio;
268 }
269
rt_overloaded(struct rq * rq)270 static inline int rt_overloaded(struct rq *rq)
271 {
272 return atomic_read(&rq->rd->rto_count);
273 }
274
rt_set_overload(struct rq * rq)275 static inline void rt_set_overload(struct rq *rq)
276 {
277 if (!rq->online)
278 return;
279
280 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
281 /*
282 * Make sure the mask is visible before we set
283 * the overload count. That is checked to determine
284 * if we should look at the mask. It would be a shame
285 * if we looked at the mask, but the mask was not
286 * updated yet.
287 *
288 * Matched by the barrier in pull_rt_task().
289 */
290 smp_wmb();
291 atomic_inc(&rq->rd->rto_count);
292 }
293
rt_clear_overload(struct rq * rq)294 static inline void rt_clear_overload(struct rq *rq)
295 {
296 if (!rq->online)
297 return;
298
299 /* the order here really doesn't matter */
300 atomic_dec(&rq->rd->rto_count);
301 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
302 }
303
update_rt_migration(struct rt_rq * rt_rq)304 static void update_rt_migration(struct rt_rq *rt_rq)
305 {
306 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
307 if (!rt_rq->overloaded) {
308 rt_set_overload(rq_of_rt_rq(rt_rq));
309 rt_rq->overloaded = 1;
310 }
311 } else if (rt_rq->overloaded) {
312 rt_clear_overload(rq_of_rt_rq(rt_rq));
313 rt_rq->overloaded = 0;
314 }
315 }
316
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)317 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
318 {
319 struct task_struct *p;
320
321 if (!rt_entity_is_task(rt_se))
322 return;
323
324 p = rt_task_of(rt_se);
325 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
326
327 rt_rq->rt_nr_total++;
328 if (tsk_nr_cpus_allowed(p) > 1)
329 rt_rq->rt_nr_migratory++;
330
331 update_rt_migration(rt_rq);
332 }
333
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)334 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
335 {
336 struct task_struct *p;
337
338 if (!rt_entity_is_task(rt_se))
339 return;
340
341 p = rt_task_of(rt_se);
342 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
343
344 rt_rq->rt_nr_total--;
345 if (tsk_nr_cpus_allowed(p) > 1)
346 rt_rq->rt_nr_migratory--;
347
348 update_rt_migration(rt_rq);
349 }
350
has_pushable_tasks(struct rq * rq)351 static inline int has_pushable_tasks(struct rq *rq)
352 {
353 return !plist_head_empty(&rq->rt.pushable_tasks);
354 }
355
356 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
357 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
358
359 static void push_rt_tasks(struct rq *);
360 static void pull_rt_task(struct rq *);
361
queue_push_tasks(struct rq * rq)362 static inline void queue_push_tasks(struct rq *rq)
363 {
364 if (!has_pushable_tasks(rq))
365 return;
366
367 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
368 }
369
queue_pull_task(struct rq * rq)370 static inline void queue_pull_task(struct rq *rq)
371 {
372 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
373 }
374
enqueue_pushable_task(struct rq * rq,struct task_struct * p)375 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
376 {
377 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
378 plist_node_init(&p->pushable_tasks, p->prio);
379 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
380
381 /* Update the highest prio pushable task */
382 if (p->prio < rq->rt.highest_prio.next)
383 rq->rt.highest_prio.next = p->prio;
384 }
385
dequeue_pushable_task(struct rq * rq,struct task_struct * p)386 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
387 {
388 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
389
390 /* Update the new highest prio pushable task */
391 if (has_pushable_tasks(rq)) {
392 p = plist_first_entry(&rq->rt.pushable_tasks,
393 struct task_struct, pushable_tasks);
394 rq->rt.highest_prio.next = p->prio;
395 } else
396 rq->rt.highest_prio.next = MAX_RT_PRIO;
397 }
398
399 #else
400
enqueue_pushable_task(struct rq * rq,struct task_struct * p)401 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
402 {
403 }
404
dequeue_pushable_task(struct rq * rq,struct task_struct * p)405 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
406 {
407 }
408
409 static inline
inc_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)410 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
411 {
412 }
413
414 static inline
dec_rt_migration(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)415 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
416 {
417 }
418
need_pull_rt_task(struct rq * rq,struct task_struct * prev)419 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
420 {
421 return false;
422 }
423
pull_rt_task(struct rq * this_rq)424 static inline void pull_rt_task(struct rq *this_rq)
425 {
426 }
427
queue_push_tasks(struct rq * rq)428 static inline void queue_push_tasks(struct rq *rq)
429 {
430 }
431 #endif /* CONFIG_SMP */
432
433 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
434 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
435
on_rt_rq(struct sched_rt_entity * rt_se)436 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
437 {
438 return rt_se->on_rq;
439 }
440
441 #ifdef CONFIG_RT_GROUP_SCHED
442
sched_rt_runtime(struct rt_rq * rt_rq)443 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
444 {
445 if (!rt_rq->tg)
446 return RUNTIME_INF;
447
448 return rt_rq->rt_runtime;
449 }
450
sched_rt_period(struct rt_rq * rt_rq)451 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
452 {
453 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
454 }
455
456 typedef struct task_group *rt_rq_iter_t;
457
next_task_group(struct task_group * tg)458 static inline struct task_group *next_task_group(struct task_group *tg)
459 {
460 do {
461 tg = list_entry_rcu(tg->list.next,
462 typeof(struct task_group), list);
463 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
464
465 if (&tg->list == &task_groups)
466 tg = NULL;
467
468 return tg;
469 }
470
471 #define for_each_rt_rq(rt_rq, iter, rq) \
472 for (iter = container_of(&task_groups, typeof(*iter), list); \
473 (iter = next_task_group(iter)) && \
474 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
475
476 #define for_each_sched_rt_entity(rt_se) \
477 for (; rt_se; rt_se = rt_se->parent)
478
group_rt_rq(struct sched_rt_entity * rt_se)479 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
480 {
481 return rt_se->my_q;
482 }
483
484 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
485 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
486
sched_rt_rq_enqueue(struct rt_rq * rt_rq)487 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
488 {
489 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
490 struct rq *rq = rq_of_rt_rq(rt_rq);
491 struct sched_rt_entity *rt_se;
492
493 int cpu = cpu_of(rq);
494
495 rt_se = rt_rq->tg->rt_se[cpu];
496
497 if (rt_rq->rt_nr_running) {
498 if (!rt_se)
499 enqueue_top_rt_rq(rt_rq);
500 else if (!on_rt_rq(rt_se))
501 enqueue_rt_entity(rt_se, 0);
502
503 if (rt_rq->highest_prio.curr < curr->prio)
504 resched_curr(rq);
505 }
506 }
507
sched_rt_rq_dequeue(struct rt_rq * rt_rq)508 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
509 {
510 struct sched_rt_entity *rt_se;
511 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
512
513 rt_se = rt_rq->tg->rt_se[cpu];
514
515 if (!rt_se)
516 dequeue_top_rt_rq(rt_rq);
517 else if (on_rt_rq(rt_se))
518 dequeue_rt_entity(rt_se, 0);
519 }
520
rt_rq_throttled(struct rt_rq * rt_rq)521 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
522 {
523 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
524 }
525
rt_se_boosted(struct sched_rt_entity * rt_se)526 static int rt_se_boosted(struct sched_rt_entity *rt_se)
527 {
528 struct rt_rq *rt_rq = group_rt_rq(rt_se);
529 struct task_struct *p;
530
531 if (rt_rq)
532 return !!rt_rq->rt_nr_boosted;
533
534 p = rt_task_of(rt_se);
535 return p->prio != p->normal_prio;
536 }
537
538 #ifdef CONFIG_SMP
sched_rt_period_mask(void)539 static inline const struct cpumask *sched_rt_period_mask(void)
540 {
541 return this_rq()->rd->span;
542 }
543 #else
sched_rt_period_mask(void)544 static inline const struct cpumask *sched_rt_period_mask(void)
545 {
546 return cpu_online_mask;
547 }
548 #endif
549
550 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)551 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
552 {
553 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
554 }
555
sched_rt_bandwidth(struct rt_rq * rt_rq)556 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
557 {
558 return &rt_rq->tg->rt_bandwidth;
559 }
560
561 #else /* !CONFIG_RT_GROUP_SCHED */
562
sched_rt_runtime(struct rt_rq * rt_rq)563 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
564 {
565 return rt_rq->rt_runtime;
566 }
567
sched_rt_period(struct rt_rq * rt_rq)568 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
569 {
570 return ktime_to_ns(def_rt_bandwidth.rt_period);
571 }
572
573 typedef struct rt_rq *rt_rq_iter_t;
574
575 #define for_each_rt_rq(rt_rq, iter, rq) \
576 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
577
578 #define for_each_sched_rt_entity(rt_se) \
579 for (; rt_se; rt_se = NULL)
580
group_rt_rq(struct sched_rt_entity * rt_se)581 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
582 {
583 return NULL;
584 }
585
sched_rt_rq_enqueue(struct rt_rq * rt_rq)586 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
587 {
588 struct rq *rq = rq_of_rt_rq(rt_rq);
589
590 if (!rt_rq->rt_nr_running)
591 return;
592
593 enqueue_top_rt_rq(rt_rq);
594 resched_curr(rq);
595 }
596
sched_rt_rq_dequeue(struct rt_rq * rt_rq)597 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
598 {
599 dequeue_top_rt_rq(rt_rq);
600 }
601
rt_rq_throttled(struct rt_rq * rt_rq)602 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
603 {
604 return rt_rq->rt_throttled;
605 }
606
sched_rt_period_mask(void)607 static inline const struct cpumask *sched_rt_period_mask(void)
608 {
609 return cpu_online_mask;
610 }
611
612 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)613 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
614 {
615 return &cpu_rq(cpu)->rt;
616 }
617
sched_rt_bandwidth(struct rt_rq * rt_rq)618 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
619 {
620 return &def_rt_bandwidth;
621 }
622
623 #endif /* CONFIG_RT_GROUP_SCHED */
624
sched_rt_bandwidth_account(struct rt_rq * rt_rq)625 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
626 {
627 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
628
629 return (hrtimer_active(&rt_b->rt_period_timer) ||
630 rt_rq->rt_time < rt_b->rt_runtime);
631 }
632
633 #ifdef CONFIG_SMP
634 /*
635 * We ran out of runtime, see if we can borrow some from our neighbours.
636 */
do_balance_runtime(struct rt_rq * rt_rq)637 static void do_balance_runtime(struct rt_rq *rt_rq)
638 {
639 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
640 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
641 int i, weight;
642 u64 rt_period;
643
644 weight = cpumask_weight(rd->span);
645
646 raw_spin_lock(&rt_b->rt_runtime_lock);
647 rt_period = ktime_to_ns(rt_b->rt_period);
648 for_each_cpu(i, rd->span) {
649 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
650 s64 diff;
651
652 if (iter == rt_rq)
653 continue;
654
655 raw_spin_lock(&iter->rt_runtime_lock);
656 /*
657 * Either all rqs have inf runtime and there's nothing to steal
658 * or __disable_runtime() below sets a specific rq to inf to
659 * indicate its been disabled and disalow stealing.
660 */
661 if (iter->rt_runtime == RUNTIME_INF)
662 goto next;
663
664 /*
665 * From runqueues with spare time, take 1/n part of their
666 * spare time, but no more than our period.
667 */
668 diff = iter->rt_runtime - iter->rt_time;
669 if (diff > 0) {
670 diff = div_u64((u64)diff, weight);
671 if (rt_rq->rt_runtime + diff > rt_period)
672 diff = rt_period - rt_rq->rt_runtime;
673 iter->rt_runtime -= diff;
674 rt_rq->rt_runtime += diff;
675 if (rt_rq->rt_runtime == rt_period) {
676 raw_spin_unlock(&iter->rt_runtime_lock);
677 break;
678 }
679 }
680 next:
681 raw_spin_unlock(&iter->rt_runtime_lock);
682 }
683 raw_spin_unlock(&rt_b->rt_runtime_lock);
684 }
685
686 /*
687 * Ensure this RQ takes back all the runtime it lend to its neighbours.
688 */
__disable_runtime(struct rq * rq)689 static void __disable_runtime(struct rq *rq)
690 {
691 struct root_domain *rd = rq->rd;
692 rt_rq_iter_t iter;
693 struct rt_rq *rt_rq;
694
695 if (unlikely(!scheduler_running))
696 return;
697
698 for_each_rt_rq(rt_rq, iter, rq) {
699 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
700 s64 want;
701 int i;
702
703 raw_spin_lock(&rt_b->rt_runtime_lock);
704 raw_spin_lock(&rt_rq->rt_runtime_lock);
705 /*
706 * Either we're all inf and nobody needs to borrow, or we're
707 * already disabled and thus have nothing to do, or we have
708 * exactly the right amount of runtime to take out.
709 */
710 if (rt_rq->rt_runtime == RUNTIME_INF ||
711 rt_rq->rt_runtime == rt_b->rt_runtime)
712 goto balanced;
713 raw_spin_unlock(&rt_rq->rt_runtime_lock);
714
715 /*
716 * Calculate the difference between what we started out with
717 * and what we current have, that's the amount of runtime
718 * we lend and now have to reclaim.
719 */
720 want = rt_b->rt_runtime - rt_rq->rt_runtime;
721
722 /*
723 * Greedy reclaim, take back as much as we can.
724 */
725 for_each_cpu(i, rd->span) {
726 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
727 s64 diff;
728
729 /*
730 * Can't reclaim from ourselves or disabled runqueues.
731 */
732 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
733 continue;
734
735 raw_spin_lock(&iter->rt_runtime_lock);
736 if (want > 0) {
737 diff = min_t(s64, iter->rt_runtime, want);
738 iter->rt_runtime -= diff;
739 want -= diff;
740 } else {
741 iter->rt_runtime -= want;
742 want -= want;
743 }
744 raw_spin_unlock(&iter->rt_runtime_lock);
745
746 if (!want)
747 break;
748 }
749
750 raw_spin_lock(&rt_rq->rt_runtime_lock);
751 /*
752 * We cannot be left wanting - that would mean some runtime
753 * leaked out of the system.
754 */
755 BUG_ON(want);
756 balanced:
757 /*
758 * Disable all the borrow logic by pretending we have inf
759 * runtime - in which case borrowing doesn't make sense.
760 */
761 rt_rq->rt_runtime = RUNTIME_INF;
762 rt_rq->rt_throttled = 0;
763 raw_spin_unlock(&rt_rq->rt_runtime_lock);
764 raw_spin_unlock(&rt_b->rt_runtime_lock);
765
766 /* Make rt_rq available for pick_next_task() */
767 sched_rt_rq_enqueue(rt_rq);
768 }
769 }
770
__enable_runtime(struct rq * rq)771 static void __enable_runtime(struct rq *rq)
772 {
773 rt_rq_iter_t iter;
774 struct rt_rq *rt_rq;
775
776 if (unlikely(!scheduler_running))
777 return;
778
779 /*
780 * Reset each runqueue's bandwidth settings
781 */
782 for_each_rt_rq(rt_rq, iter, rq) {
783 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
784
785 raw_spin_lock(&rt_b->rt_runtime_lock);
786 raw_spin_lock(&rt_rq->rt_runtime_lock);
787 rt_rq->rt_runtime = rt_b->rt_runtime;
788 rt_rq->rt_time = 0;
789 rt_rq->rt_throttled = 0;
790 raw_spin_unlock(&rt_rq->rt_runtime_lock);
791 raw_spin_unlock(&rt_b->rt_runtime_lock);
792 }
793 }
794
balance_runtime(struct rt_rq * rt_rq)795 static void balance_runtime(struct rt_rq *rt_rq)
796 {
797 if (!sched_feat(RT_RUNTIME_SHARE))
798 return;
799
800 if (rt_rq->rt_time > rt_rq->rt_runtime) {
801 raw_spin_unlock(&rt_rq->rt_runtime_lock);
802 do_balance_runtime(rt_rq);
803 raw_spin_lock(&rt_rq->rt_runtime_lock);
804 }
805 }
806 #else /* !CONFIG_SMP */
balance_runtime(struct rt_rq * rt_rq)807 static inline void balance_runtime(struct rt_rq *rt_rq) {}
808 #endif /* CONFIG_SMP */
809
do_sched_rt_period_timer(struct rt_bandwidth * rt_b,int overrun)810 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
811 {
812 int i, idle = 1, throttled = 0;
813 const struct cpumask *span;
814
815 span = sched_rt_period_mask();
816 #ifdef CONFIG_RT_GROUP_SCHED
817 /*
818 * FIXME: isolated CPUs should really leave the root task group,
819 * whether they are isolcpus or were isolated via cpusets, lest
820 * the timer run on a CPU which does not service all runqueues,
821 * potentially leaving other CPUs indefinitely throttled. If
822 * isolation is really required, the user will turn the throttle
823 * off to kill the perturbations it causes anyway. Meanwhile,
824 * this maintains functionality for boot and/or troubleshooting.
825 */
826 if (rt_b == &root_task_group.rt_bandwidth)
827 span = cpu_online_mask;
828 #endif
829 for_each_cpu(i, span) {
830 int enqueue = 0;
831 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
832 struct rq *rq = rq_of_rt_rq(rt_rq);
833
834 raw_spin_lock(&rq->lock);
835 if (rt_rq->rt_time) {
836 u64 runtime;
837
838 raw_spin_lock(&rt_rq->rt_runtime_lock);
839 if (rt_rq->rt_throttled)
840 balance_runtime(rt_rq);
841 runtime = rt_rq->rt_runtime;
842 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
843 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
844 rt_rq->rt_throttled = 0;
845 enqueue = 1;
846
847 /*
848 * When we're idle and a woken (rt) task is
849 * throttled check_preempt_curr() will set
850 * skip_update and the time between the wakeup
851 * and this unthrottle will get accounted as
852 * 'runtime'.
853 */
854 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
855 rq_clock_skip_update(rq, false);
856 }
857 if (rt_rq->rt_time || rt_rq->rt_nr_running)
858 idle = 0;
859 raw_spin_unlock(&rt_rq->rt_runtime_lock);
860 } else if (rt_rq->rt_nr_running) {
861 idle = 0;
862 if (!rt_rq_throttled(rt_rq))
863 enqueue = 1;
864 }
865 if (rt_rq->rt_throttled)
866 throttled = 1;
867
868 if (enqueue)
869 sched_rt_rq_enqueue(rt_rq);
870 raw_spin_unlock(&rq->lock);
871 }
872
873 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
874 return 1;
875
876 return idle;
877 }
878
rt_se_prio(struct sched_rt_entity * rt_se)879 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
880 {
881 #ifdef CONFIG_RT_GROUP_SCHED
882 struct rt_rq *rt_rq = group_rt_rq(rt_se);
883
884 if (rt_rq)
885 return rt_rq->highest_prio.curr;
886 #endif
887
888 return rt_task_of(rt_se)->prio;
889 }
890
dump_throttled_rt_tasks(struct rt_rq * rt_rq)891 static void dump_throttled_rt_tasks(struct rt_rq *rt_rq)
892 {
893 struct rt_prio_array *array = &rt_rq->active;
894 struct sched_rt_entity *rt_se;
895 char buf[500];
896 char *pos = buf;
897 char *end = buf + sizeof(buf);
898 int idx;
899
900 pos += snprintf(pos, sizeof(buf),
901 "sched: RT throttling activated for rt_rq %p (cpu %d)\n",
902 rt_rq, cpu_of(rq_of_rt_rq(rt_rq)));
903
904 if (bitmap_empty(array->bitmap, MAX_RT_PRIO))
905 goto out;
906
907 pos += snprintf(pos, end - pos, "potential CPU hogs:\n");
908 idx = sched_find_first_bit(array->bitmap);
909 while (idx < MAX_RT_PRIO) {
910 list_for_each_entry(rt_se, array->queue + idx, run_list) {
911 struct task_struct *p;
912
913 if (!rt_entity_is_task(rt_se))
914 continue;
915
916 p = rt_task_of(rt_se);
917 if (pos < end)
918 pos += snprintf(pos, end - pos, "\t%s (%d)\n",
919 p->comm, p->pid);
920 }
921 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx + 1);
922 }
923 out:
924 #ifdef CONFIG_PANIC_ON_RT_THROTTLING
925 /*
926 * Use pr_err() in the BUG() case since printk_sched() will
927 * not get flushed and deadlock is not a concern.
928 */
929 pr_err("%s", buf);
930 BUG();
931 #else
932 printk_deferred("%s", buf);
933 #endif
934 }
935
sched_rt_runtime_exceeded(struct rt_rq * rt_rq)936 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
937 {
938 u64 runtime = sched_rt_runtime(rt_rq);
939
940 if (rt_rq->rt_throttled)
941 return rt_rq_throttled(rt_rq);
942
943 if (runtime >= sched_rt_period(rt_rq))
944 return 0;
945
946 balance_runtime(rt_rq);
947 runtime = sched_rt_runtime(rt_rq);
948 if (runtime == RUNTIME_INF)
949 return 0;
950
951 if (rt_rq->rt_time > runtime) {
952 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
953
954 /*
955 * Don't actually throttle groups that have no runtime assigned
956 * but accrue some time due to boosting.
957 */
958 if (likely(rt_b->rt_runtime)) {
959 static bool once = false;
960
961 rt_rq->rt_throttled = 1;
962
963 if (!once) {
964 once = true;
965 dump_throttled_rt_tasks(rt_rq);
966 }
967 } else {
968 /*
969 * In case we did anyway, make it go away,
970 * replenishment is a joke, since it will replenish us
971 * with exactly 0 ns.
972 */
973 rt_rq->rt_time = 0;
974 }
975
976 if (rt_rq_throttled(rt_rq)) {
977 sched_rt_rq_dequeue(rt_rq);
978 return 1;
979 }
980 }
981
982 return 0;
983 }
984
985 /*
986 * Update the current task's runtime statistics. Skip current tasks that
987 * are not in our scheduling class.
988 */
update_curr_rt(struct rq * rq)989 static void update_curr_rt(struct rq *rq)
990 {
991 struct task_struct *curr = rq->curr;
992 struct sched_rt_entity *rt_se = &curr->rt;
993 u64 delta_exec;
994
995 if (curr->sched_class != &rt_sched_class)
996 return;
997
998 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
999 if (unlikely((s64)delta_exec <= 0))
1000 return;
1001
1002 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1003 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_RT);
1004
1005 schedstat_set(curr->se.statistics.exec_max,
1006 max(curr->se.statistics.exec_max, delta_exec));
1007
1008 curr->se.sum_exec_runtime += delta_exec;
1009 account_group_exec_runtime(curr, delta_exec);
1010
1011 curr->se.exec_start = rq_clock_task(rq);
1012 cpuacct_charge(curr, delta_exec);
1013
1014 sched_rt_avg_update(rq, delta_exec);
1015
1016 if (!rt_bandwidth_enabled())
1017 return;
1018
1019 for_each_sched_rt_entity(rt_se) {
1020 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1021
1022 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1023 raw_spin_lock(&rt_rq->rt_runtime_lock);
1024 rt_rq->rt_time += delta_exec;
1025 if (sched_rt_runtime_exceeded(rt_rq))
1026 resched_curr(rq);
1027 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1028 }
1029 }
1030 }
1031
1032 static void
dequeue_top_rt_rq(struct rt_rq * rt_rq)1033 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1034 {
1035 struct rq *rq = rq_of_rt_rq(rt_rq);
1036
1037 BUG_ON(&rq->rt != rt_rq);
1038
1039 if (!rt_rq->rt_queued)
1040 return;
1041
1042 BUG_ON(!rq->nr_running);
1043
1044 sub_nr_running(rq, rt_rq->rt_nr_running);
1045 rt_rq->rt_queued = 0;
1046 }
1047
1048 static void
enqueue_top_rt_rq(struct rt_rq * rt_rq)1049 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1050 {
1051 struct rq *rq = rq_of_rt_rq(rt_rq);
1052
1053 BUG_ON(&rq->rt != rt_rq);
1054
1055 if (rt_rq->rt_queued)
1056 return;
1057 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1058 return;
1059
1060 add_nr_running(rq, rt_rq->rt_nr_running);
1061 rt_rq->rt_queued = 1;
1062 }
1063
1064 #if defined CONFIG_SMP
1065
1066 static void
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1067 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1068 {
1069 struct rq *rq = rq_of_rt_rq(rt_rq);
1070
1071 #ifdef CONFIG_RT_GROUP_SCHED
1072 /*
1073 * Change rq's cpupri only if rt_rq is the top queue.
1074 */
1075 if (&rq->rt != rt_rq)
1076 return;
1077 #endif
1078 if (rq->online && prio < prev_prio)
1079 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1080 }
1081
1082 static void
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1083 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1084 {
1085 struct rq *rq = rq_of_rt_rq(rt_rq);
1086
1087 #ifdef CONFIG_RT_GROUP_SCHED
1088 /*
1089 * Change rq's cpupri only if rt_rq is the top queue.
1090 */
1091 if (&rq->rt != rt_rq)
1092 return;
1093 #endif
1094 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1095 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1096 }
1097
1098 #else /* CONFIG_SMP */
1099
1100 static inline
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1101 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1102 static inline
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1103 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1104
1105 #endif /* CONFIG_SMP */
1106
1107 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1108 static void
inc_rt_prio(struct rt_rq * rt_rq,int prio)1109 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1110 {
1111 int prev_prio = rt_rq->highest_prio.curr;
1112
1113 if (prio < prev_prio)
1114 rt_rq->highest_prio.curr = prio;
1115
1116 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1117 }
1118
1119 static void
dec_rt_prio(struct rt_rq * rt_rq,int prio)1120 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1121 {
1122 int prev_prio = rt_rq->highest_prio.curr;
1123
1124 if (rt_rq->rt_nr_running) {
1125
1126 WARN_ON(prio < prev_prio);
1127
1128 /*
1129 * This may have been our highest task, and therefore
1130 * we may have some recomputation to do
1131 */
1132 if (prio == prev_prio) {
1133 struct rt_prio_array *array = &rt_rq->active;
1134
1135 rt_rq->highest_prio.curr =
1136 sched_find_first_bit(array->bitmap);
1137 }
1138
1139 } else
1140 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1141
1142 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1143 }
1144
1145 #else
1146
inc_rt_prio(struct rt_rq * rt_rq,int prio)1147 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
dec_rt_prio(struct rt_rq * rt_rq,int prio)1148 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1149
1150 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1151
1152 #ifdef CONFIG_RT_GROUP_SCHED
1153
1154 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1155 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1156 {
1157 if (rt_se_boosted(rt_se))
1158 rt_rq->rt_nr_boosted++;
1159
1160 if (rt_rq->tg)
1161 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1162 }
1163
1164 static void
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1165 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1166 {
1167 if (rt_se_boosted(rt_se))
1168 rt_rq->rt_nr_boosted--;
1169
1170 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1171 }
1172
1173 #else /* CONFIG_RT_GROUP_SCHED */
1174
1175 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1176 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1177 {
1178 start_rt_bandwidth(&def_rt_bandwidth);
1179 }
1180
1181 static inline
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1182 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1183
1184 #endif /* CONFIG_RT_GROUP_SCHED */
1185
1186 static inline
rt_se_nr_running(struct sched_rt_entity * rt_se)1187 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1188 {
1189 struct rt_rq *group_rq = group_rt_rq(rt_se);
1190
1191 if (group_rq)
1192 return group_rq->rt_nr_running;
1193 else
1194 return 1;
1195 }
1196
1197 static inline
rt_se_rr_nr_running(struct sched_rt_entity * rt_se)1198 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1199 {
1200 struct rt_rq *group_rq = group_rt_rq(rt_se);
1201 struct task_struct *tsk;
1202
1203 if (group_rq)
1204 return group_rq->rr_nr_running;
1205
1206 tsk = rt_task_of(rt_se);
1207
1208 return (tsk->policy == SCHED_RR) ? 1 : 0;
1209 }
1210
1211 static inline
inc_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1212 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1213 {
1214 int prio = rt_se_prio(rt_se);
1215
1216 WARN_ON(!rt_prio(prio));
1217 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1218 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1219
1220 inc_rt_prio(rt_rq, prio);
1221 inc_rt_migration(rt_se, rt_rq);
1222 inc_rt_group(rt_se, rt_rq);
1223 }
1224
1225 static inline
dec_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1226 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1227 {
1228 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1229 WARN_ON(!rt_rq->rt_nr_running);
1230 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1231 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1232
1233 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1234 dec_rt_migration(rt_se, rt_rq);
1235 dec_rt_group(rt_se, rt_rq);
1236 }
1237
1238 /*
1239 * Change rt_se->run_list location unless SAVE && !MOVE
1240 *
1241 * assumes ENQUEUE/DEQUEUE flags match
1242 */
move_entity(unsigned int flags)1243 static inline bool move_entity(unsigned int flags)
1244 {
1245 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1246 return false;
1247
1248 return true;
1249 }
1250
__delist_rt_entity(struct sched_rt_entity * rt_se,struct rt_prio_array * array)1251 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1252 {
1253 list_del_init(&rt_se->run_list);
1254
1255 if (list_empty(array->queue + rt_se_prio(rt_se)))
1256 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1257
1258 rt_se->on_list = 0;
1259 }
1260
__enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1261 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1262 {
1263 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1264 struct rt_prio_array *array = &rt_rq->active;
1265 struct rt_rq *group_rq = group_rt_rq(rt_se);
1266 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1267
1268 /*
1269 * Don't enqueue the group if its throttled, or when empty.
1270 * The latter is a consequence of the former when a child group
1271 * get throttled and the current group doesn't have any other
1272 * active members.
1273 */
1274 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1275 if (rt_se->on_list)
1276 __delist_rt_entity(rt_se, array);
1277 return;
1278 }
1279
1280 if (move_entity(flags)) {
1281 WARN_ON_ONCE(rt_se->on_list);
1282 if (flags & ENQUEUE_HEAD)
1283 list_add(&rt_se->run_list, queue);
1284 else
1285 list_add_tail(&rt_se->run_list, queue);
1286
1287 __set_bit(rt_se_prio(rt_se), array->bitmap);
1288 rt_se->on_list = 1;
1289 }
1290 rt_se->on_rq = 1;
1291
1292 inc_rt_tasks(rt_se, rt_rq);
1293 }
1294
__dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1295 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1296 {
1297 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1298 struct rt_prio_array *array = &rt_rq->active;
1299
1300 if (move_entity(flags)) {
1301 WARN_ON_ONCE(!rt_se->on_list);
1302 __delist_rt_entity(rt_se, array);
1303 }
1304 rt_se->on_rq = 0;
1305
1306 dec_rt_tasks(rt_se, rt_rq);
1307 }
1308
1309 /*
1310 * Because the prio of an upper entry depends on the lower
1311 * entries, we must remove entries top - down.
1312 */
dequeue_rt_stack(struct sched_rt_entity * rt_se,unsigned int flags)1313 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1314 {
1315 struct sched_rt_entity *back = NULL;
1316
1317 for_each_sched_rt_entity(rt_se) {
1318 rt_se->back = back;
1319 back = rt_se;
1320 }
1321
1322 dequeue_top_rt_rq(rt_rq_of_se(back));
1323
1324 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1325 if (on_rt_rq(rt_se))
1326 __dequeue_rt_entity(rt_se, flags);
1327 }
1328 }
1329
enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1330 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1331 {
1332 struct rq *rq = rq_of_rt_se(rt_se);
1333
1334 dequeue_rt_stack(rt_se, flags);
1335 for_each_sched_rt_entity(rt_se)
1336 __enqueue_rt_entity(rt_se, flags);
1337 enqueue_top_rt_rq(&rq->rt);
1338 }
1339
dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1340 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1341 {
1342 struct rq *rq = rq_of_rt_se(rt_se);
1343
1344 dequeue_rt_stack(rt_se, flags);
1345
1346 for_each_sched_rt_entity(rt_se) {
1347 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1348
1349 if (rt_rq && rt_rq->rt_nr_running)
1350 __enqueue_rt_entity(rt_se, flags);
1351 }
1352 enqueue_top_rt_rq(&rq->rt);
1353 }
1354
1355 /*
1356 * Adding/removing a task to/from a priority array:
1357 */
1358 static void
enqueue_task_rt(struct rq * rq,struct task_struct * p,int flags)1359 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1360 {
1361 struct sched_rt_entity *rt_se = &p->rt;
1362
1363 if (flags & ENQUEUE_WAKEUP)
1364 rt_se->timeout = 0;
1365
1366 enqueue_rt_entity(rt_se, flags);
1367 walt_inc_cumulative_runnable_avg(rq, p);
1368
1369 if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
1370 enqueue_pushable_task(rq, p);
1371 }
1372
dequeue_task_rt(struct rq * rq,struct task_struct * p,int flags)1373 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1374 {
1375 struct sched_rt_entity *rt_se = &p->rt;
1376
1377 update_curr_rt(rq);
1378 dequeue_rt_entity(rt_se, flags);
1379 walt_dec_cumulative_runnable_avg(rq, p);
1380
1381 dequeue_pushable_task(rq, p);
1382 }
1383
1384 /*
1385 * Put task to the head or the end of the run list without the overhead of
1386 * dequeue followed by enqueue.
1387 */
1388 static void
requeue_rt_entity(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int head)1389 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1390 {
1391 if (on_rt_rq(rt_se)) {
1392 struct rt_prio_array *array = &rt_rq->active;
1393 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1394
1395 if (head)
1396 list_move(&rt_se->run_list, queue);
1397 else
1398 list_move_tail(&rt_se->run_list, queue);
1399 }
1400 }
1401
requeue_task_rt(struct rq * rq,struct task_struct * p,int head)1402 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1403 {
1404 struct sched_rt_entity *rt_se = &p->rt;
1405 struct rt_rq *rt_rq;
1406
1407 for_each_sched_rt_entity(rt_se) {
1408 rt_rq = rt_rq_of_se(rt_se);
1409 requeue_rt_entity(rt_rq, rt_se, head);
1410 }
1411 }
1412
yield_task_rt(struct rq * rq)1413 static void yield_task_rt(struct rq *rq)
1414 {
1415 requeue_task_rt(rq, rq->curr, 0);
1416 }
1417
1418 #ifdef CONFIG_SMP
1419 static int find_lowest_rq(struct task_struct *task);
1420
1421 static int
select_task_rq_rt(struct task_struct * p,int cpu,int sd_flag,int flags)1422 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1423 {
1424 struct task_struct *curr;
1425 struct rq *rq;
1426
1427 /* For anything but wake ups, just return the task_cpu */
1428 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1429 goto out;
1430
1431 rq = cpu_rq(cpu);
1432
1433 rcu_read_lock();
1434 curr = READ_ONCE(rq->curr); /* unlocked access */
1435
1436 /*
1437 * If the current task on @p's runqueue is an RT task, then
1438 * try to see if we can wake this RT task up on another
1439 * runqueue. Otherwise simply start this RT task
1440 * on its current runqueue.
1441 *
1442 * We want to avoid overloading runqueues. If the woken
1443 * task is a higher priority, then it will stay on this CPU
1444 * and the lower prio task should be moved to another CPU.
1445 * Even though this will probably make the lower prio task
1446 * lose its cache, we do not want to bounce a higher task
1447 * around just because it gave up its CPU, perhaps for a
1448 * lock?
1449 *
1450 * For equal prio tasks, we just let the scheduler sort it out.
1451 *
1452 * Otherwise, just let it ride on the affined RQ and the
1453 * post-schedule router will push the preempted task away
1454 *
1455 * This test is optimistic, if we get it wrong the load-balancer
1456 * will have to sort it out.
1457 */
1458 if (curr && unlikely(rt_task(curr)) &&
1459 (tsk_nr_cpus_allowed(curr) < 2 ||
1460 curr->prio <= p->prio)) {
1461 int target = find_lowest_rq(p);
1462
1463 /*
1464 * Don't bother moving it if the destination CPU is
1465 * not running a lower priority task.
1466 */
1467 if (target != -1 &&
1468 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1469 cpu = target;
1470 }
1471 rcu_read_unlock();
1472
1473 out:
1474 return cpu;
1475 }
1476
check_preempt_equal_prio(struct rq * rq,struct task_struct * p)1477 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1478 {
1479 /*
1480 * Current can't be migrated, useless to reschedule,
1481 * let's hope p can move out.
1482 */
1483 if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
1484 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1485 return;
1486
1487 /*
1488 * p is migratable, so let's not schedule it and
1489 * see if it is pushed or pulled somewhere else.
1490 */
1491 if (tsk_nr_cpus_allowed(p) != 1
1492 && cpupri_find(&rq->rd->cpupri, p, NULL))
1493 return;
1494
1495 /*
1496 * There appears to be other cpus that can accept
1497 * current and none to run 'p', so lets reschedule
1498 * to try and push current away:
1499 */
1500 requeue_task_rt(rq, p, 1);
1501 resched_curr(rq);
1502 }
1503
1504 #endif /* CONFIG_SMP */
1505
1506 /*
1507 * Preempt the current task with a newly woken task if needed:
1508 */
check_preempt_curr_rt(struct rq * rq,struct task_struct * p,int flags)1509 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1510 {
1511 if (p->prio < rq->curr->prio) {
1512 resched_curr(rq);
1513 return;
1514 }
1515
1516 #ifdef CONFIG_SMP
1517 /*
1518 * If:
1519 *
1520 * - the newly woken task is of equal priority to the current task
1521 * - the newly woken task is non-migratable while current is migratable
1522 * - current will be preempted on the next reschedule
1523 *
1524 * we should check to see if current can readily move to a different
1525 * cpu. If so, we will reschedule to allow the push logic to try
1526 * to move current somewhere else, making room for our non-migratable
1527 * task.
1528 */
1529 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1530 check_preempt_equal_prio(rq, p);
1531 #endif
1532 }
1533
pick_next_rt_entity(struct rq * rq,struct rt_rq * rt_rq)1534 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1535 struct rt_rq *rt_rq)
1536 {
1537 struct rt_prio_array *array = &rt_rq->active;
1538 struct sched_rt_entity *next = NULL;
1539 struct list_head *queue;
1540 int idx;
1541
1542 idx = sched_find_first_bit(array->bitmap);
1543 BUG_ON(idx >= MAX_RT_PRIO);
1544
1545 queue = array->queue + idx;
1546 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1547
1548 return next;
1549 }
1550
_pick_next_task_rt(struct rq * rq)1551 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1552 {
1553 struct sched_rt_entity *rt_se;
1554 struct task_struct *p;
1555 struct rt_rq *rt_rq = &rq->rt;
1556
1557 do {
1558 rt_se = pick_next_rt_entity(rq, rt_rq);
1559 BUG_ON(!rt_se);
1560 rt_rq = group_rt_rq(rt_se);
1561 } while (rt_rq);
1562
1563 p = rt_task_of(rt_se);
1564 p->se.exec_start = rq_clock_task(rq);
1565
1566 return p;
1567 }
1568
1569 static struct task_struct *
pick_next_task_rt(struct rq * rq,struct task_struct * prev,struct pin_cookie cookie)1570 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
1571 {
1572 struct task_struct *p;
1573 struct rt_rq *rt_rq = &rq->rt;
1574
1575 if (need_pull_rt_task(rq, prev)) {
1576 /*
1577 * This is OK, because current is on_cpu, which avoids it being
1578 * picked for load-balance and preemption/IRQs are still
1579 * disabled avoiding further scheduler activity on it and we're
1580 * being very careful to re-start the picking loop.
1581 */
1582 lockdep_unpin_lock(&rq->lock, cookie);
1583 pull_rt_task(rq);
1584 lockdep_repin_lock(&rq->lock, cookie);
1585 /*
1586 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1587 * means a dl or stop task can slip in, in which case we need
1588 * to re-start task selection.
1589 */
1590 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1591 rq->dl.dl_nr_running))
1592 return RETRY_TASK;
1593 }
1594
1595 /*
1596 * We may dequeue prev's rt_rq in put_prev_task().
1597 * So, we update time before rt_nr_running check.
1598 */
1599 if (prev->sched_class == &rt_sched_class)
1600 update_curr_rt(rq);
1601
1602 if (!rt_rq->rt_queued)
1603 return NULL;
1604
1605 put_prev_task(rq, prev);
1606
1607 p = _pick_next_task_rt(rq);
1608
1609 /* The running task is never eligible for pushing */
1610 dequeue_pushable_task(rq, p);
1611
1612 queue_push_tasks(rq);
1613
1614 return p;
1615 }
1616
put_prev_task_rt(struct rq * rq,struct task_struct * p)1617 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1618 {
1619 update_curr_rt(rq);
1620
1621 /*
1622 * The previous task needs to be made eligible for pushing
1623 * if it is still active
1624 */
1625 if (on_rt_rq(&p->rt) && tsk_nr_cpus_allowed(p) > 1)
1626 enqueue_pushable_task(rq, p);
1627 }
1628
1629 #ifdef CONFIG_SMP
1630
1631 /* Only try algorithms three times */
1632 #define RT_MAX_TRIES 3
1633
pick_rt_task(struct rq * rq,struct task_struct * p,int cpu)1634 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1635 {
1636 if (!task_running(rq, p) &&
1637 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1638 return 1;
1639 return 0;
1640 }
1641
1642 /*
1643 * Return the highest pushable rq's task, which is suitable to be executed
1644 * on the cpu, NULL otherwise
1645 */
pick_highest_pushable_task(struct rq * rq,int cpu)1646 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1647 {
1648 struct plist_head *head = &rq->rt.pushable_tasks;
1649 struct task_struct *p;
1650
1651 if (!has_pushable_tasks(rq))
1652 return NULL;
1653
1654 plist_for_each_entry(p, head, pushable_tasks) {
1655 if (pick_rt_task(rq, p, cpu))
1656 return p;
1657 }
1658
1659 return NULL;
1660 }
1661
1662 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1663
find_lowest_rq(struct task_struct * task)1664 static int find_lowest_rq(struct task_struct *task)
1665 {
1666 struct sched_domain *sd;
1667 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1668 int this_cpu = smp_processor_id();
1669 int cpu = task_cpu(task);
1670
1671 /* Make sure the mask is initialized first */
1672 if (unlikely(!lowest_mask))
1673 return -1;
1674
1675 if (tsk_nr_cpus_allowed(task) == 1)
1676 return -1; /* No other targets possible */
1677
1678 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1679 return -1; /* No targets found */
1680
1681 /*
1682 * At this point we have built a mask of cpus representing the
1683 * lowest priority tasks in the system. Now we want to elect
1684 * the best one based on our affinity and topology.
1685 *
1686 * We prioritize the last cpu that the task executed on since
1687 * it is most likely cache-hot in that location.
1688 */
1689 if (cpumask_test_cpu(cpu, lowest_mask))
1690 return cpu;
1691
1692 /*
1693 * Otherwise, we consult the sched_domains span maps to figure
1694 * out which cpu is logically closest to our hot cache data.
1695 */
1696 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1697 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1698
1699 rcu_read_lock();
1700 for_each_domain(cpu, sd) {
1701 if (sd->flags & SD_WAKE_AFFINE) {
1702 int best_cpu;
1703
1704 /*
1705 * "this_cpu" is cheaper to preempt than a
1706 * remote processor.
1707 */
1708 if (this_cpu != -1 &&
1709 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1710 rcu_read_unlock();
1711 return this_cpu;
1712 }
1713
1714 best_cpu = cpumask_first_and(lowest_mask,
1715 sched_domain_span(sd));
1716 if (best_cpu < nr_cpu_ids) {
1717 rcu_read_unlock();
1718 return best_cpu;
1719 }
1720 }
1721 }
1722 rcu_read_unlock();
1723
1724 /*
1725 * And finally, if there were no matches within the domains
1726 * just give the caller *something* to work with from the compatible
1727 * locations.
1728 */
1729 if (this_cpu != -1)
1730 return this_cpu;
1731
1732 cpu = cpumask_any(lowest_mask);
1733 if (cpu < nr_cpu_ids)
1734 return cpu;
1735 return -1;
1736 }
1737
1738 /* Will lock the rq it finds */
find_lock_lowest_rq(struct task_struct * task,struct rq * rq)1739 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1740 {
1741 struct rq *lowest_rq = NULL;
1742 int tries;
1743 int cpu;
1744
1745 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1746 cpu = find_lowest_rq(task);
1747
1748 if ((cpu == -1) || (cpu == rq->cpu))
1749 break;
1750
1751 lowest_rq = cpu_rq(cpu);
1752
1753 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1754 /*
1755 * Target rq has tasks of equal or higher priority,
1756 * retrying does not release any lock and is unlikely
1757 * to yield a different result.
1758 */
1759 lowest_rq = NULL;
1760 break;
1761 }
1762
1763 /* if the prio of this runqueue changed, try again */
1764 if (double_lock_balance(rq, lowest_rq)) {
1765 /*
1766 * We had to unlock the run queue. In
1767 * the mean time, task could have
1768 * migrated already or had its affinity changed.
1769 * Also make sure that it wasn't scheduled on its rq.
1770 */
1771 if (unlikely(task_rq(task) != rq ||
1772 !cpumask_test_cpu(lowest_rq->cpu,
1773 tsk_cpus_allowed(task)) ||
1774 task_running(rq, task) ||
1775 !rt_task(task) ||
1776 !task_on_rq_queued(task))) {
1777
1778 double_unlock_balance(rq, lowest_rq);
1779 lowest_rq = NULL;
1780 break;
1781 }
1782 }
1783
1784 /* If this rq is still suitable use it. */
1785 if (lowest_rq->rt.highest_prio.curr > task->prio)
1786 break;
1787
1788 /* try again */
1789 double_unlock_balance(rq, lowest_rq);
1790 lowest_rq = NULL;
1791 }
1792
1793 return lowest_rq;
1794 }
1795
pick_next_pushable_task(struct rq * rq)1796 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1797 {
1798 struct task_struct *p;
1799
1800 if (!has_pushable_tasks(rq))
1801 return NULL;
1802
1803 p = plist_first_entry(&rq->rt.pushable_tasks,
1804 struct task_struct, pushable_tasks);
1805
1806 BUG_ON(rq->cpu != task_cpu(p));
1807 BUG_ON(task_current(rq, p));
1808 BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
1809
1810 BUG_ON(!task_on_rq_queued(p));
1811 BUG_ON(!rt_task(p));
1812
1813 return p;
1814 }
1815
1816 /*
1817 * If the current CPU has more than one RT task, see if the non
1818 * running task can migrate over to a CPU that is running a task
1819 * of lesser priority.
1820 */
push_rt_task(struct rq * rq)1821 static int push_rt_task(struct rq *rq)
1822 {
1823 struct task_struct *next_task;
1824 struct rq *lowest_rq;
1825 int ret = 0;
1826
1827 if (!rq->rt.overloaded)
1828 return 0;
1829
1830 next_task = pick_next_pushable_task(rq);
1831 if (!next_task)
1832 return 0;
1833
1834 retry:
1835 if (unlikely(next_task == rq->curr)) {
1836 WARN_ON(1);
1837 return 0;
1838 }
1839
1840 /*
1841 * It's possible that the next_task slipped in of
1842 * higher priority than current. If that's the case
1843 * just reschedule current.
1844 */
1845 if (unlikely(next_task->prio < rq->curr->prio)) {
1846 resched_curr(rq);
1847 return 0;
1848 }
1849
1850 /* We might release rq lock */
1851 get_task_struct(next_task);
1852
1853 /* find_lock_lowest_rq locks the rq if found */
1854 lowest_rq = find_lock_lowest_rq(next_task, rq);
1855 if (!lowest_rq) {
1856 struct task_struct *task;
1857 /*
1858 * find_lock_lowest_rq releases rq->lock
1859 * so it is possible that next_task has migrated.
1860 *
1861 * We need to make sure that the task is still on the same
1862 * run-queue and is also still the next task eligible for
1863 * pushing.
1864 */
1865 task = pick_next_pushable_task(rq);
1866 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1867 /*
1868 * The task hasn't migrated, and is still the next
1869 * eligible task, but we failed to find a run-queue
1870 * to push it to. Do not retry in this case, since
1871 * other cpus will pull from us when ready.
1872 */
1873 goto out;
1874 }
1875
1876 if (!task)
1877 /* No more tasks, just exit */
1878 goto out;
1879
1880 /*
1881 * Something has shifted, try again.
1882 */
1883 put_task_struct(next_task);
1884 next_task = task;
1885 goto retry;
1886 }
1887
1888 deactivate_task(rq, next_task, 0);
1889 next_task->on_rq = TASK_ON_RQ_MIGRATING;
1890 set_task_cpu(next_task, lowest_rq->cpu);
1891 next_task->on_rq = TASK_ON_RQ_QUEUED;
1892 activate_task(lowest_rq, next_task, 0);
1893 ret = 1;
1894
1895 resched_curr(lowest_rq);
1896
1897 double_unlock_balance(rq, lowest_rq);
1898
1899 out:
1900 put_task_struct(next_task);
1901
1902 return ret;
1903 }
1904
push_rt_tasks(struct rq * rq)1905 static void push_rt_tasks(struct rq *rq)
1906 {
1907 /* push_rt_task will return true if it moved an RT */
1908 while (push_rt_task(rq))
1909 ;
1910 }
1911
1912 #ifdef HAVE_RT_PUSH_IPI
1913
1914 /*
1915 * When a high priority task schedules out from a CPU and a lower priority
1916 * task is scheduled in, a check is made to see if there's any RT tasks
1917 * on other CPUs that are waiting to run because a higher priority RT task
1918 * is currently running on its CPU. In this case, the CPU with multiple RT
1919 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1920 * up that may be able to run one of its non-running queued RT tasks.
1921 *
1922 * All CPUs with overloaded RT tasks need to be notified as there is currently
1923 * no way to know which of these CPUs have the highest priority task waiting
1924 * to run. Instead of trying to take a spinlock on each of these CPUs,
1925 * which has shown to cause large latency when done on machines with many
1926 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1927 * RT tasks waiting to run.
1928 *
1929 * Just sending an IPI to each of the CPUs is also an issue, as on large
1930 * count CPU machines, this can cause an IPI storm on a CPU, especially
1931 * if its the only CPU with multiple RT tasks queued, and a large number
1932 * of CPUs scheduling a lower priority task at the same time.
1933 *
1934 * Each root domain has its own irq work function that can iterate over
1935 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1936 * tassk must be checked if there's one or many CPUs that are lowering
1937 * their priority, there's a single irq work iterator that will try to
1938 * push off RT tasks that are waiting to run.
1939 *
1940 * When a CPU schedules a lower priority task, it will kick off the
1941 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1942 * As it only takes the first CPU that schedules a lower priority task
1943 * to start the process, the rto_start variable is incremented and if
1944 * the atomic result is one, then that CPU will try to take the rto_lock.
1945 * This prevents high contention on the lock as the process handles all
1946 * CPUs scheduling lower priority tasks.
1947 *
1948 * All CPUs that are scheduling a lower priority task will increment the
1949 * rt_loop_next variable. This will make sure that the irq work iterator
1950 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1951 * priority task, even if the iterator is in the middle of a scan. Incrementing
1952 * the rt_loop_next will cause the iterator to perform another scan.
1953 *
1954 */
rto_next_cpu(struct root_domain * rd)1955 static int rto_next_cpu(struct root_domain *rd)
1956 {
1957 int next;
1958 int cpu;
1959
1960 /*
1961 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1962 * rt_next_cpu() will simply return the first CPU found in
1963 * the rto_mask.
1964 *
1965 * If rto_next_cpu() is called with rto_cpu is a valid cpu, it
1966 * will return the next CPU found in the rto_mask.
1967 *
1968 * If there are no more CPUs left in the rto_mask, then a check is made
1969 * against rto_loop and rto_loop_next. rto_loop is only updated with
1970 * the rto_lock held, but any CPU may increment the rto_loop_next
1971 * without any locking.
1972 */
1973 for (;;) {
1974
1975 /* When rto_cpu is -1 this acts like cpumask_first() */
1976 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1977
1978 rd->rto_cpu = cpu;
1979
1980 if (cpu < nr_cpu_ids)
1981 return cpu;
1982
1983 rd->rto_cpu = -1;
1984
1985 /*
1986 * ACQUIRE ensures we see the @rto_mask changes
1987 * made prior to the @next value observed.
1988 *
1989 * Matches WMB in rt_set_overload().
1990 */
1991 next = atomic_read_acquire(&rd->rto_loop_next);
1992
1993 if (rd->rto_loop == next)
1994 break;
1995
1996 rd->rto_loop = next;
1997 }
1998
1999 return -1;
2000 }
2001
rto_start_trylock(atomic_t * v)2002 static inline bool rto_start_trylock(atomic_t *v)
2003 {
2004 return !atomic_cmpxchg_acquire(v, 0, 1);
2005 }
2006
rto_start_unlock(atomic_t * v)2007 static inline void rto_start_unlock(atomic_t *v)
2008 {
2009 atomic_set_release(v, 0);
2010 }
2011
tell_cpu_to_push(struct rq * rq)2012 static void tell_cpu_to_push(struct rq *rq)
2013 {
2014 int cpu = -1;
2015
2016 /* Keep the loop going if the IPI is currently active */
2017 atomic_inc(&rq->rd->rto_loop_next);
2018
2019 /* Only one CPU can initiate a loop at a time */
2020 if (!rto_start_trylock(&rq->rd->rto_loop_start))
2021 return;
2022
2023 raw_spin_lock(&rq->rd->rto_lock);
2024
2025 /*
2026 * The rto_cpu is updated under the lock, if it has a valid cpu
2027 * then the IPI is still running and will continue due to the
2028 * update to loop_next, and nothing needs to be done here.
2029 * Otherwise it is finishing up and an ipi needs to be sent.
2030 */
2031 if (rq->rd->rto_cpu < 0)
2032 cpu = rto_next_cpu(rq->rd);
2033
2034 raw_spin_unlock(&rq->rd->rto_lock);
2035
2036 rto_start_unlock(&rq->rd->rto_loop_start);
2037
2038 if (cpu >= 0) {
2039 /* Make sure the rd does not get freed while pushing */
2040 sched_get_rd(rq->rd);
2041 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2042 }
2043 }
2044
2045 /* Called from hardirq context */
rto_push_irq_work_func(struct irq_work * work)2046 void rto_push_irq_work_func(struct irq_work *work)
2047 {
2048 struct root_domain *rd =
2049 container_of(work, struct root_domain, rto_push_work);
2050 struct rq *rq;
2051 int cpu;
2052
2053 rq = this_rq();
2054
2055 /*
2056 * We do not need to grab the lock to check for has_pushable_tasks.
2057 * When it gets updated, a check is made if a push is possible.
2058 */
2059 if (has_pushable_tasks(rq)) {
2060 raw_spin_lock(&rq->lock);
2061 push_rt_tasks(rq);
2062 raw_spin_unlock(&rq->lock);
2063 }
2064
2065 raw_spin_lock(&rd->rto_lock);
2066
2067 /* Pass the IPI to the next rt overloaded queue */
2068 cpu = rto_next_cpu(rd);
2069
2070 raw_spin_unlock(&rd->rto_lock);
2071
2072 if (cpu < 0) {
2073 sched_put_rd(rd);
2074 return;
2075 }
2076
2077 /* Try the next RT overloaded CPU */
2078 irq_work_queue_on(&rd->rto_push_work, cpu);
2079 }
2080 #endif /* HAVE_RT_PUSH_IPI */
2081
pull_rt_task(struct rq * this_rq)2082 static void pull_rt_task(struct rq *this_rq)
2083 {
2084 int this_cpu = this_rq->cpu, cpu;
2085 bool resched = false;
2086 struct task_struct *p;
2087 struct rq *src_rq;
2088 int rt_overload_count = rt_overloaded(this_rq);
2089
2090 if (likely(!rt_overload_count))
2091 return;
2092
2093 /*
2094 * Match the barrier from rt_set_overloaded; this guarantees that if we
2095 * see overloaded we must also see the rto_mask bit.
2096 */
2097 smp_rmb();
2098
2099 /* If we are the only overloaded CPU do nothing */
2100 if (rt_overload_count == 1 &&
2101 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2102 return;
2103
2104 #ifdef HAVE_RT_PUSH_IPI
2105 if (sched_feat(RT_PUSH_IPI)) {
2106 tell_cpu_to_push(this_rq);
2107 return;
2108 }
2109 #endif
2110
2111 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2112 if (this_cpu == cpu)
2113 continue;
2114
2115 src_rq = cpu_rq(cpu);
2116
2117 /*
2118 * Don't bother taking the src_rq->lock if the next highest
2119 * task is known to be lower-priority than our current task.
2120 * This may look racy, but if this value is about to go
2121 * logically higher, the src_rq will push this task away.
2122 * And if its going logically lower, we do not care
2123 */
2124 if (src_rq->rt.highest_prio.next >=
2125 this_rq->rt.highest_prio.curr)
2126 continue;
2127
2128 /*
2129 * We can potentially drop this_rq's lock in
2130 * double_lock_balance, and another CPU could
2131 * alter this_rq
2132 */
2133 double_lock_balance(this_rq, src_rq);
2134
2135 /*
2136 * We can pull only a task, which is pushable
2137 * on its rq, and no others.
2138 */
2139 p = pick_highest_pushable_task(src_rq, this_cpu);
2140
2141 /*
2142 * Do we have an RT task that preempts
2143 * the to-be-scheduled task?
2144 */
2145 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2146 WARN_ON(p == src_rq->curr);
2147 WARN_ON(!task_on_rq_queued(p));
2148
2149 /*
2150 * There's a chance that p is higher in priority
2151 * than what's currently running on its cpu.
2152 * This is just that p is wakeing up and hasn't
2153 * had a chance to schedule. We only pull
2154 * p if it is lower in priority than the
2155 * current task on the run queue
2156 */
2157 if (p->prio < src_rq->curr->prio)
2158 goto skip;
2159
2160 resched = true;
2161
2162 deactivate_task(src_rq, p, 0);
2163 p->on_rq = TASK_ON_RQ_MIGRATING;
2164 set_task_cpu(p, this_cpu);
2165 p->on_rq = TASK_ON_RQ_QUEUED;
2166 activate_task(this_rq, p, 0);
2167 /*
2168 * We continue with the search, just in
2169 * case there's an even higher prio task
2170 * in another runqueue. (low likelihood
2171 * but possible)
2172 */
2173 }
2174 skip:
2175 double_unlock_balance(this_rq, src_rq);
2176 }
2177
2178 if (resched)
2179 resched_curr(this_rq);
2180 }
2181
2182 /*
2183 * If we are not running and we are not going to reschedule soon, we should
2184 * try to push tasks away now
2185 */
task_woken_rt(struct rq * rq,struct task_struct * p)2186 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2187 {
2188 if (!task_running(rq, p) &&
2189 !test_tsk_need_resched(rq->curr) &&
2190 tsk_nr_cpus_allowed(p) > 1 &&
2191 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2192 (tsk_nr_cpus_allowed(rq->curr) < 2 ||
2193 rq->curr->prio <= p->prio))
2194 push_rt_tasks(rq);
2195 }
2196
2197 /* Assumes rq->lock is held */
rq_online_rt(struct rq * rq)2198 static void rq_online_rt(struct rq *rq)
2199 {
2200 if (rq->rt.overloaded)
2201 rt_set_overload(rq);
2202
2203 __enable_runtime(rq);
2204
2205 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2206 }
2207
2208 /* Assumes rq->lock is held */
rq_offline_rt(struct rq * rq)2209 static void rq_offline_rt(struct rq *rq)
2210 {
2211 if (rq->rt.overloaded)
2212 rt_clear_overload(rq);
2213
2214 __disable_runtime(rq);
2215
2216 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2217 }
2218
2219 /*
2220 * When switch from the rt queue, we bring ourselves to a position
2221 * that we might want to pull RT tasks from other runqueues.
2222 */
switched_from_rt(struct rq * rq,struct task_struct * p)2223 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2224 {
2225 /*
2226 * If there are other RT tasks then we will reschedule
2227 * and the scheduling of the other RT tasks will handle
2228 * the balancing. But if we are the last RT task
2229 * we may need to handle the pulling of RT tasks
2230 * now.
2231 */
2232 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2233 return;
2234
2235 queue_pull_task(rq);
2236 }
2237
init_sched_rt_class(void)2238 void __init init_sched_rt_class(void)
2239 {
2240 unsigned int i;
2241
2242 for_each_possible_cpu(i) {
2243 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2244 GFP_KERNEL, cpu_to_node(i));
2245 }
2246 }
2247 #endif /* CONFIG_SMP */
2248
2249 /*
2250 * When switching a task to RT, we may overload the runqueue
2251 * with RT tasks. In this case we try to push them off to
2252 * other runqueues.
2253 */
switched_to_rt(struct rq * rq,struct task_struct * p)2254 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2255 {
2256 /*
2257 * If we are already running, then there's nothing
2258 * that needs to be done. But if we are not running
2259 * we may need to preempt the current running task.
2260 * If that current running task is also an RT task
2261 * then see if we can move to another run queue.
2262 */
2263 if (task_on_rq_queued(p) && rq->curr != p) {
2264 #ifdef CONFIG_SMP
2265 if (tsk_nr_cpus_allowed(p) > 1 && rq->rt.overloaded)
2266 queue_push_tasks(rq);
2267 #endif /* CONFIG_SMP */
2268 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2269 resched_curr(rq);
2270 }
2271 }
2272
2273 /*
2274 * Priority of the task has changed. This may cause
2275 * us to initiate a push or pull.
2276 */
2277 static void
prio_changed_rt(struct rq * rq,struct task_struct * p,int oldprio)2278 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2279 {
2280 if (!task_on_rq_queued(p))
2281 return;
2282
2283 if (rq->curr == p) {
2284 #ifdef CONFIG_SMP
2285 /*
2286 * If our priority decreases while running, we
2287 * may need to pull tasks to this runqueue.
2288 */
2289 if (oldprio < p->prio)
2290 queue_pull_task(rq);
2291
2292 /*
2293 * If there's a higher priority task waiting to run
2294 * then reschedule.
2295 */
2296 if (p->prio > rq->rt.highest_prio.curr)
2297 resched_curr(rq);
2298 #else
2299 /* For UP simply resched on drop of prio */
2300 if (oldprio < p->prio)
2301 resched_curr(rq);
2302 #endif /* CONFIG_SMP */
2303 } else {
2304 /*
2305 * This task is not running, but if it is
2306 * greater than the current running task
2307 * then reschedule.
2308 */
2309 if (p->prio < rq->curr->prio)
2310 resched_curr(rq);
2311 }
2312 }
2313
watchdog(struct rq * rq,struct task_struct * p)2314 static void watchdog(struct rq *rq, struct task_struct *p)
2315 {
2316 unsigned long soft, hard;
2317
2318 /* max may change after cur was read, this will be fixed next tick */
2319 soft = task_rlimit(p, RLIMIT_RTTIME);
2320 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2321
2322 if (soft != RLIM_INFINITY) {
2323 unsigned long next;
2324
2325 if (p->rt.watchdog_stamp != jiffies) {
2326 p->rt.timeout++;
2327 p->rt.watchdog_stamp = jiffies;
2328 }
2329
2330 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2331 if (p->rt.timeout > next)
2332 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2333 }
2334 }
2335
task_tick_rt(struct rq * rq,struct task_struct * p,int queued)2336 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2337 {
2338 struct sched_rt_entity *rt_se = &p->rt;
2339
2340 update_curr_rt(rq);
2341
2342 watchdog(rq, p);
2343
2344 /*
2345 * RR tasks need a special form of timeslice management.
2346 * FIFO tasks have no timeslices.
2347 */
2348 if (p->policy != SCHED_RR)
2349 return;
2350
2351 if (--p->rt.time_slice)
2352 return;
2353
2354 p->rt.time_slice = sched_rr_timeslice;
2355
2356 /*
2357 * Requeue to the end of queue if we (and all of our ancestors) are not
2358 * the only element on the queue
2359 */
2360 for_each_sched_rt_entity(rt_se) {
2361 if (rt_se->run_list.prev != rt_se->run_list.next) {
2362 requeue_task_rt(rq, p, 0);
2363 resched_curr(rq);
2364 return;
2365 }
2366 }
2367 }
2368
set_curr_task_rt(struct rq * rq)2369 static void set_curr_task_rt(struct rq *rq)
2370 {
2371 struct task_struct *p = rq->curr;
2372
2373 p->se.exec_start = rq_clock_task(rq);
2374
2375 /* The running task is never eligible for pushing */
2376 dequeue_pushable_task(rq, p);
2377 }
2378
get_rr_interval_rt(struct rq * rq,struct task_struct * task)2379 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2380 {
2381 /*
2382 * Time slice is 0 for SCHED_FIFO tasks
2383 */
2384 if (task->policy == SCHED_RR)
2385 return sched_rr_timeslice;
2386 else
2387 return 0;
2388 }
2389
2390 const struct sched_class rt_sched_class = {
2391 .next = &fair_sched_class,
2392 .enqueue_task = enqueue_task_rt,
2393 .dequeue_task = dequeue_task_rt,
2394 .yield_task = yield_task_rt,
2395
2396 .check_preempt_curr = check_preempt_curr_rt,
2397
2398 .pick_next_task = pick_next_task_rt,
2399 .put_prev_task = put_prev_task_rt,
2400
2401 #ifdef CONFIG_SMP
2402 .select_task_rq = select_task_rq_rt,
2403
2404 .set_cpus_allowed = set_cpus_allowed_common,
2405 .rq_online = rq_online_rt,
2406 .rq_offline = rq_offline_rt,
2407 .task_woken = task_woken_rt,
2408 .switched_from = switched_from_rt,
2409 #endif
2410
2411 .set_curr_task = set_curr_task_rt,
2412 .task_tick = task_tick_rt,
2413
2414 .get_rr_interval = get_rr_interval_rt,
2415
2416 .prio_changed = prio_changed_rt,
2417 .switched_to = switched_to_rt,
2418
2419 .update_curr = update_curr_rt,
2420 };
2421
2422 #ifdef CONFIG_SCHED_DEBUG
2423 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2424
print_rt_stats(struct seq_file * m,int cpu)2425 void print_rt_stats(struct seq_file *m, int cpu)
2426 {
2427 rt_rq_iter_t iter;
2428 struct rt_rq *rt_rq;
2429
2430 rcu_read_lock();
2431 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2432 print_rt_rq(m, cpu, rt_rq);
2433 rcu_read_unlock();
2434 }
2435 #endif /* CONFIG_SCHED_DEBUG */
2436