• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3  *
4  * started by Ingo Molnar and Thomas Gleixner.
5  *
6  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9  *  Copyright (C) 2006 Esben Nielsen
10  *
11  *  See Documentation/locking/rt-mutex-design.txt for details.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/timer.h>
19 
20 #include "rtmutex_common.h"
21 
22 /*
23  * lock->owner state tracking:
24  *
25  * lock->owner holds the task_struct pointer of the owner. Bit 0
26  * is used to keep track of the "lock has waiters" state.
27  *
28  * owner	bit0
29  * NULL		0	lock is free (fast acquire possible)
30  * NULL		1	lock is free and has waiters and the top waiter
31  *				is going to take the lock*
32  * taskpointer	0	lock is held (fast release possible)
33  * taskpointer	1	lock is held and has waiters**
34  *
35  * The fast atomic compare exchange based acquire and release is only
36  * possible when bit 0 of lock->owner is 0.
37  *
38  * (*) It also can be a transitional state when grabbing the lock
39  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40  * we need to set the bit0 before looking at the lock, and the owner may be
41  * NULL in this small time, hence this can be a transitional state.
42  *
43  * (**) There is a small time when bit 0 is set but there are no
44  * waiters. This can happen when grabbing the lock in the slow path.
45  * To prevent a cmpxchg of the owner releasing the lock, we need to
46  * set this bit before looking at the lock.
47  */
48 
49 static void
rt_mutex_set_owner(struct rt_mutex * lock,struct task_struct * owner)50 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51 {
52 	unsigned long val = (unsigned long)owner;
53 
54 	if (rt_mutex_has_waiters(lock))
55 		val |= RT_MUTEX_HAS_WAITERS;
56 
57 	lock->owner = (struct task_struct *)val;
58 }
59 
clear_rt_mutex_waiters(struct rt_mutex * lock)60 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61 {
62 	lock->owner = (struct task_struct *)
63 			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64 }
65 
fixup_rt_mutex_waiters(struct rt_mutex * lock)66 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67 {
68 	unsigned long owner, *p = (unsigned long *) &lock->owner;
69 
70 	if (rt_mutex_has_waiters(lock))
71 		return;
72 
73 	/*
74 	 * The rbtree has no waiters enqueued, now make sure that the
75 	 * lock->owner still has the waiters bit set, otherwise the
76 	 * following can happen:
77 	 *
78 	 * CPU 0	CPU 1		CPU2
79 	 * l->owner=T1
80 	 *		rt_mutex_lock(l)
81 	 *		lock(l->lock)
82 	 *		l->owner = T1 | HAS_WAITERS;
83 	 *		enqueue(T2)
84 	 *		boost()
85 	 *		  unlock(l->lock)
86 	 *		block()
87 	 *
88 	 *				rt_mutex_lock(l)
89 	 *				lock(l->lock)
90 	 *				l->owner = T1 | HAS_WAITERS;
91 	 *				enqueue(T3)
92 	 *				boost()
93 	 *				  unlock(l->lock)
94 	 *				block()
95 	 *		signal(->T2)	signal(->T3)
96 	 *		lock(l->lock)
97 	 *		dequeue(T2)
98 	 *		deboost()
99 	 *		  unlock(l->lock)
100 	 *				lock(l->lock)
101 	 *				dequeue(T3)
102 	 *				 ==> wait list is empty
103 	 *				deboost()
104 	 *				 unlock(l->lock)
105 	 *		lock(l->lock)
106 	 *		fixup_rt_mutex_waiters()
107 	 *		  if (wait_list_empty(l) {
108 	 *		    l->owner = owner
109 	 *		    owner = l->owner & ~HAS_WAITERS;
110 	 *		      ==> l->owner = T1
111 	 *		  }
112 	 *				lock(l->lock)
113 	 * rt_mutex_unlock(l)		fixup_rt_mutex_waiters()
114 	 *				  if (wait_list_empty(l) {
115 	 *				    owner = l->owner & ~HAS_WAITERS;
116 	 * cmpxchg(l->owner, T1, NULL)
117 	 *  ===> Success (l->owner = NULL)
118 	 *
119 	 *				    l->owner = owner
120 	 *				      ==> l->owner = T1
121 	 *				  }
122 	 *
123 	 * With the check for the waiter bit in place T3 on CPU2 will not
124 	 * overwrite. All tasks fiddling with the waiters bit are
125 	 * serialized by l->lock, so nothing else can modify the waiters
126 	 * bit. If the bit is set then nothing can change l->owner either
127 	 * so the simple RMW is safe. The cmpxchg() will simply fail if it
128 	 * happens in the middle of the RMW because the waiters bit is
129 	 * still set.
130 	 */
131 	owner = READ_ONCE(*p);
132 	if (owner & RT_MUTEX_HAS_WAITERS)
133 		WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
134 }
135 
136 /*
137  * We can speed up the acquire/release, if there's no debugging state to be
138  * set up.
139  */
140 #ifndef CONFIG_DEBUG_RT_MUTEXES
141 # define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
142 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
143 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
144 
145 /*
146  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
147  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
148  * relaxed semantics suffice.
149  */
mark_rt_mutex_waiters(struct rt_mutex * lock)150 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
151 {
152 	unsigned long owner, *p = (unsigned long *) &lock->owner;
153 
154 	do {
155 		owner = *p;
156 	} while (cmpxchg_relaxed(p, owner,
157 				 owner | RT_MUTEX_HAS_WAITERS) != owner);
158 }
159 
160 /*
161  * Safe fastpath aware unlock:
162  * 1) Clear the waiters bit
163  * 2) Drop lock->wait_lock
164  * 3) Try to unlock the lock with cmpxchg
165  */
unlock_rt_mutex_safe(struct rt_mutex * lock,unsigned long flags)166 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
167 					unsigned long flags)
168 	__releases(lock->wait_lock)
169 {
170 	struct task_struct *owner = rt_mutex_owner(lock);
171 
172 	clear_rt_mutex_waiters(lock);
173 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
174 	/*
175 	 * If a new waiter comes in between the unlock and the cmpxchg
176 	 * we have two situations:
177 	 *
178 	 * unlock(wait_lock);
179 	 *					lock(wait_lock);
180 	 * cmpxchg(p, owner, 0) == owner
181 	 *					mark_rt_mutex_waiters(lock);
182 	 *					acquire(lock);
183 	 * or:
184 	 *
185 	 * unlock(wait_lock);
186 	 *					lock(wait_lock);
187 	 *					mark_rt_mutex_waiters(lock);
188 	 *
189 	 * cmpxchg(p, owner, 0) != owner
190 	 *					enqueue_waiter();
191 	 *					unlock(wait_lock);
192 	 * lock(wait_lock);
193 	 * wake waiter();
194 	 * unlock(wait_lock);
195 	 *					lock(wait_lock);
196 	 *					acquire(lock);
197 	 */
198 	return rt_mutex_cmpxchg_release(lock, owner, NULL);
199 }
200 
201 #else
202 # define rt_mutex_cmpxchg_relaxed(l,c,n)	(0)
203 # define rt_mutex_cmpxchg_acquire(l,c,n)	(0)
204 # define rt_mutex_cmpxchg_release(l,c,n)	(0)
205 
mark_rt_mutex_waiters(struct rt_mutex * lock)206 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
207 {
208 	lock->owner = (struct task_struct *)
209 			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
210 }
211 
212 /*
213  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
214  */
unlock_rt_mutex_safe(struct rt_mutex * lock,unsigned long flags)215 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
216 					unsigned long flags)
217 	__releases(lock->wait_lock)
218 {
219 	lock->owner = NULL;
220 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
221 	return true;
222 }
223 #endif
224 
225 static inline int
rt_mutex_waiter_less(struct rt_mutex_waiter * left,struct rt_mutex_waiter * right)226 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
227 		     struct rt_mutex_waiter *right)
228 {
229 	if (left->prio < right->prio)
230 		return 1;
231 
232 	/*
233 	 * If both waiters have dl_prio(), we check the deadlines of the
234 	 * associated tasks.
235 	 * If left waiter has a dl_prio(), and we didn't return 1 above,
236 	 * then right waiter has a dl_prio() too.
237 	 */
238 	if (dl_prio(left->prio))
239 		return dl_time_before(left->deadline, right->deadline);
240 
241 	return 0;
242 }
243 
244 static void
rt_mutex_enqueue(struct rt_mutex * lock,struct rt_mutex_waiter * waiter)245 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
246 {
247 	struct rb_node **link = &lock->waiters.rb_node;
248 	struct rb_node *parent = NULL;
249 	struct rt_mutex_waiter *entry;
250 	int leftmost = 1;
251 
252 	while (*link) {
253 		parent = *link;
254 		entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
255 		if (rt_mutex_waiter_less(waiter, entry)) {
256 			link = &parent->rb_left;
257 		} else {
258 			link = &parent->rb_right;
259 			leftmost = 0;
260 		}
261 	}
262 
263 	if (leftmost)
264 		lock->waiters_leftmost = &waiter->tree_entry;
265 
266 	rb_link_node(&waiter->tree_entry, parent, link);
267 	rb_insert_color(&waiter->tree_entry, &lock->waiters);
268 }
269 
270 static void
rt_mutex_dequeue(struct rt_mutex * lock,struct rt_mutex_waiter * waiter)271 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
272 {
273 	if (RB_EMPTY_NODE(&waiter->tree_entry))
274 		return;
275 
276 	if (lock->waiters_leftmost == &waiter->tree_entry)
277 		lock->waiters_leftmost = rb_next(&waiter->tree_entry);
278 
279 	rb_erase(&waiter->tree_entry, &lock->waiters);
280 	RB_CLEAR_NODE(&waiter->tree_entry);
281 }
282 
283 static void
rt_mutex_enqueue_pi(struct task_struct * task,struct rt_mutex_waiter * waiter)284 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
285 {
286 	struct rb_node **link = &task->pi_waiters.rb_node;
287 	struct rb_node *parent = NULL;
288 	struct rt_mutex_waiter *entry;
289 	int leftmost = 1;
290 
291 	while (*link) {
292 		parent = *link;
293 		entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
294 		if (rt_mutex_waiter_less(waiter, entry)) {
295 			link = &parent->rb_left;
296 		} else {
297 			link = &parent->rb_right;
298 			leftmost = 0;
299 		}
300 	}
301 
302 	if (leftmost)
303 		task->pi_waiters_leftmost = &waiter->pi_tree_entry;
304 
305 	rb_link_node(&waiter->pi_tree_entry, parent, link);
306 	rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
307 }
308 
309 static void
rt_mutex_dequeue_pi(struct task_struct * task,struct rt_mutex_waiter * waiter)310 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
311 {
312 	if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
313 		return;
314 
315 	if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
316 		task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
317 
318 	rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
319 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
320 }
321 
322 /*
323  * Calculate task priority from the waiter tree priority
324  *
325  * Return task->normal_prio when the waiter tree is empty or when
326  * the waiter is not allowed to do priority boosting
327  */
rt_mutex_getprio(struct task_struct * task)328 int rt_mutex_getprio(struct task_struct *task)
329 {
330 	if (likely(!task_has_pi_waiters(task)))
331 		return task->normal_prio;
332 
333 	return min(task_top_pi_waiter(task)->prio,
334 		   task->normal_prio);
335 }
336 
rt_mutex_get_top_task(struct task_struct * task)337 struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
338 {
339 	if (likely(!task_has_pi_waiters(task)))
340 		return NULL;
341 
342 	return task_top_pi_waiter(task)->task;
343 }
344 
345 /*
346  * Called by sched_setscheduler() to get the priority which will be
347  * effective after the change.
348  */
rt_mutex_get_effective_prio(struct task_struct * task,int newprio)349 int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
350 {
351 	if (!task_has_pi_waiters(task))
352 		return newprio;
353 
354 	if (task_top_pi_waiter(task)->task->prio <= newprio)
355 		return task_top_pi_waiter(task)->task->prio;
356 	return newprio;
357 }
358 
359 /*
360  * Adjust the priority of a task, after its pi_waiters got modified.
361  *
362  * This can be both boosting and unboosting. task->pi_lock must be held.
363  */
__rt_mutex_adjust_prio(struct task_struct * task)364 static void __rt_mutex_adjust_prio(struct task_struct *task)
365 {
366 	int prio = rt_mutex_getprio(task);
367 
368 	if (task->prio != prio || dl_prio(prio))
369 		rt_mutex_setprio(task, prio);
370 }
371 
372 /*
373  * Adjust task priority (undo boosting). Called from the exit path of
374  * rt_mutex_slowunlock() and rt_mutex_slowlock().
375  *
376  * (Note: We do this outside of the protection of lock->wait_lock to
377  * allow the lock to be taken while or before we readjust the priority
378  * of task. We do not use the spin_xx_mutex() variants here as we are
379  * outside of the debug path.)
380  */
rt_mutex_adjust_prio(struct task_struct * task)381 void rt_mutex_adjust_prio(struct task_struct *task)
382 {
383 	unsigned long flags;
384 
385 	raw_spin_lock_irqsave(&task->pi_lock, flags);
386 	__rt_mutex_adjust_prio(task);
387 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
388 }
389 
390 /*
391  * Deadlock detection is conditional:
392  *
393  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
394  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
395  *
396  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
397  * conducted independent of the detect argument.
398  *
399  * If the waiter argument is NULL this indicates the deboost path and
400  * deadlock detection is disabled independent of the detect argument
401  * and the config settings.
402  */
rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter * waiter,enum rtmutex_chainwalk chwalk)403 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
404 					  enum rtmutex_chainwalk chwalk)
405 {
406 	/*
407 	 * This is just a wrapper function for the following call,
408 	 * because debug_rt_mutex_detect_deadlock() smells like a magic
409 	 * debug feature and I wanted to keep the cond function in the
410 	 * main source file along with the comments instead of having
411 	 * two of the same in the headers.
412 	 */
413 	return debug_rt_mutex_detect_deadlock(waiter, chwalk);
414 }
415 
416 /*
417  * Max number of times we'll walk the boosting chain:
418  */
419 int max_lock_depth = 1024;
420 
task_blocked_on_lock(struct task_struct * p)421 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
422 {
423 	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
424 }
425 
426 /*
427  * Adjust the priority chain. Also used for deadlock detection.
428  * Decreases task's usage by one - may thus free the task.
429  *
430  * @task:	the task owning the mutex (owner) for which a chain walk is
431  *		probably needed
432  * @chwalk:	do we have to carry out deadlock detection?
433  * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
434  *		things for a task that has just got its priority adjusted, and
435  *		is waiting on a mutex)
436  * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
437  *		we dropped its pi_lock. Is never dereferenced, only used for
438  *		comparison to detect lock chain changes.
439  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
440  *		its priority to the mutex owner (can be NULL in the case
441  *		depicted above or if the top waiter is gone away and we are
442  *		actually deboosting the owner)
443  * @top_task:	the current top waiter
444  *
445  * Returns 0 or -EDEADLK.
446  *
447  * Chain walk basics and protection scope
448  *
449  * [R] refcount on task
450  * [P] task->pi_lock held
451  * [L] rtmutex->wait_lock held
452  *
453  * Step	Description				Protected by
454  *	function arguments:
455  *	@task					[R]
456  *	@orig_lock if != NULL			@top_task is blocked on it
457  *	@next_lock				Unprotected. Cannot be
458  *						dereferenced. Only used for
459  *						comparison.
460  *	@orig_waiter if != NULL			@top_task is blocked on it
461  *	@top_task				current, or in case of proxy
462  *						locking protected by calling
463  *						code
464  *	again:
465  *	  loop_sanity_check();
466  *	retry:
467  * [1]	  lock(task->pi_lock);			[R] acquire [P]
468  * [2]	  waiter = task->pi_blocked_on;		[P]
469  * [3]	  check_exit_conditions_1();		[P]
470  * [4]	  lock = waiter->lock;			[P]
471  * [5]	  if (!try_lock(lock->wait_lock)) {	[P] try to acquire [L]
472  *	    unlock(task->pi_lock);		release [P]
473  *	    goto retry;
474  *	  }
475  * [6]	  check_exit_conditions_2();		[P] + [L]
476  * [7]	  requeue_lock_waiter(lock, waiter);	[P] + [L]
477  * [8]	  unlock(task->pi_lock);		release [P]
478  *	  put_task_struct(task);		release [R]
479  * [9]	  check_exit_conditions_3();		[L]
480  * [10]	  task = owner(lock);			[L]
481  *	  get_task_struct(task);		[L] acquire [R]
482  *	  lock(task->pi_lock);			[L] acquire [P]
483  * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
484  * [12]	  check_exit_conditions_4();		[P] + [L]
485  * [13]	  unlock(task->pi_lock);		release [P]
486  *	  unlock(lock->wait_lock);		release [L]
487  *	  goto again;
488  */
rt_mutex_adjust_prio_chain(struct task_struct * task,enum rtmutex_chainwalk chwalk,struct rt_mutex * orig_lock,struct rt_mutex * next_lock,struct rt_mutex_waiter * orig_waiter,struct task_struct * top_task)489 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
490 				      enum rtmutex_chainwalk chwalk,
491 				      struct rt_mutex *orig_lock,
492 				      struct rt_mutex *next_lock,
493 				      struct rt_mutex_waiter *orig_waiter,
494 				      struct task_struct *top_task)
495 {
496 	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
497 	struct rt_mutex_waiter *prerequeue_top_waiter;
498 	int ret = 0, depth = 0;
499 	struct rt_mutex *lock;
500 	bool detect_deadlock;
501 	bool requeue = true;
502 
503 	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
504 
505 	/*
506 	 * The (de)boosting is a step by step approach with a lot of
507 	 * pitfalls. We want this to be preemptible and we want hold a
508 	 * maximum of two locks per step. So we have to check
509 	 * carefully whether things change under us.
510 	 */
511  again:
512 	/*
513 	 * We limit the lock chain length for each invocation.
514 	 */
515 	if (++depth > max_lock_depth) {
516 		static int prev_max;
517 
518 		/*
519 		 * Print this only once. If the admin changes the limit,
520 		 * print a new message when reaching the limit again.
521 		 */
522 		if (prev_max != max_lock_depth) {
523 			prev_max = max_lock_depth;
524 			printk(KERN_WARNING "Maximum lock depth %d reached "
525 			       "task: %s (%d)\n", max_lock_depth,
526 			       top_task->comm, task_pid_nr(top_task));
527 		}
528 		put_task_struct(task);
529 
530 		return -EDEADLK;
531 	}
532 
533 	/*
534 	 * We are fully preemptible here and only hold the refcount on
535 	 * @task. So everything can have changed under us since the
536 	 * caller or our own code below (goto retry/again) dropped all
537 	 * locks.
538 	 */
539  retry:
540 	/*
541 	 * [1] Task cannot go away as we did a get_task() before !
542 	 */
543 	raw_spin_lock_irq(&task->pi_lock);
544 
545 	/*
546 	 * [2] Get the waiter on which @task is blocked on.
547 	 */
548 	waiter = task->pi_blocked_on;
549 
550 	/*
551 	 * [3] check_exit_conditions_1() protected by task->pi_lock.
552 	 */
553 
554 	/*
555 	 * Check whether the end of the boosting chain has been
556 	 * reached or the state of the chain has changed while we
557 	 * dropped the locks.
558 	 */
559 	if (!waiter)
560 		goto out_unlock_pi;
561 
562 	/*
563 	 * Check the orig_waiter state. After we dropped the locks,
564 	 * the previous owner of the lock might have released the lock.
565 	 */
566 	if (orig_waiter && !rt_mutex_owner(orig_lock))
567 		goto out_unlock_pi;
568 
569 	/*
570 	 * We dropped all locks after taking a refcount on @task, so
571 	 * the task might have moved on in the lock chain or even left
572 	 * the chain completely and blocks now on an unrelated lock or
573 	 * on @orig_lock.
574 	 *
575 	 * We stored the lock on which @task was blocked in @next_lock,
576 	 * so we can detect the chain change.
577 	 */
578 	if (next_lock != waiter->lock)
579 		goto out_unlock_pi;
580 
581 	/*
582 	 * Drop out, when the task has no waiters. Note,
583 	 * top_waiter can be NULL, when we are in the deboosting
584 	 * mode!
585 	 */
586 	if (top_waiter) {
587 		if (!task_has_pi_waiters(task))
588 			goto out_unlock_pi;
589 		/*
590 		 * If deadlock detection is off, we stop here if we
591 		 * are not the top pi waiter of the task. If deadlock
592 		 * detection is enabled we continue, but stop the
593 		 * requeueing in the chain walk.
594 		 */
595 		if (top_waiter != task_top_pi_waiter(task)) {
596 			if (!detect_deadlock)
597 				goto out_unlock_pi;
598 			else
599 				requeue = false;
600 		}
601 	}
602 
603 	/*
604 	 * If the waiter priority is the same as the task priority
605 	 * then there is no further priority adjustment necessary.  If
606 	 * deadlock detection is off, we stop the chain walk. If its
607 	 * enabled we continue, but stop the requeueing in the chain
608 	 * walk.
609 	 */
610 	if (waiter->prio == task->prio) {
611 		if (!detect_deadlock)
612 			goto out_unlock_pi;
613 		else
614 			requeue = false;
615 	}
616 
617 	/*
618 	 * [4] Get the next lock
619 	 */
620 	lock = waiter->lock;
621 	/*
622 	 * [5] We need to trylock here as we are holding task->pi_lock,
623 	 * which is the reverse lock order versus the other rtmutex
624 	 * operations.
625 	 */
626 	if (!raw_spin_trylock(&lock->wait_lock)) {
627 		raw_spin_unlock_irq(&task->pi_lock);
628 		cpu_relax();
629 		goto retry;
630 	}
631 
632 	/*
633 	 * [6] check_exit_conditions_2() protected by task->pi_lock and
634 	 * lock->wait_lock.
635 	 *
636 	 * Deadlock detection. If the lock is the same as the original
637 	 * lock which caused us to walk the lock chain or if the
638 	 * current lock is owned by the task which initiated the chain
639 	 * walk, we detected a deadlock.
640 	 */
641 	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
642 		debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
643 		raw_spin_unlock(&lock->wait_lock);
644 		ret = -EDEADLK;
645 		goto out_unlock_pi;
646 	}
647 
648 	/*
649 	 * If we just follow the lock chain for deadlock detection, no
650 	 * need to do all the requeue operations. To avoid a truckload
651 	 * of conditionals around the various places below, just do the
652 	 * minimum chain walk checks.
653 	 */
654 	if (!requeue) {
655 		/*
656 		 * No requeue[7] here. Just release @task [8]
657 		 */
658 		raw_spin_unlock(&task->pi_lock);
659 		put_task_struct(task);
660 
661 		/*
662 		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
663 		 * If there is no owner of the lock, end of chain.
664 		 */
665 		if (!rt_mutex_owner(lock)) {
666 			raw_spin_unlock_irq(&lock->wait_lock);
667 			return 0;
668 		}
669 
670 		/* [10] Grab the next task, i.e. owner of @lock */
671 		task = rt_mutex_owner(lock);
672 		get_task_struct(task);
673 		raw_spin_lock(&task->pi_lock);
674 
675 		/*
676 		 * No requeue [11] here. We just do deadlock detection.
677 		 *
678 		 * [12] Store whether owner is blocked
679 		 * itself. Decision is made after dropping the locks
680 		 */
681 		next_lock = task_blocked_on_lock(task);
682 		/*
683 		 * Get the top waiter for the next iteration
684 		 */
685 		top_waiter = rt_mutex_top_waiter(lock);
686 
687 		/* [13] Drop locks */
688 		raw_spin_unlock(&task->pi_lock);
689 		raw_spin_unlock_irq(&lock->wait_lock);
690 
691 		/* If owner is not blocked, end of chain. */
692 		if (!next_lock)
693 			goto out_put_task;
694 		goto again;
695 	}
696 
697 	/*
698 	 * Store the current top waiter before doing the requeue
699 	 * operation on @lock. We need it for the boost/deboost
700 	 * decision below.
701 	 */
702 	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
703 
704 	/* [7] Requeue the waiter in the lock waiter tree. */
705 	rt_mutex_dequeue(lock, waiter);
706 
707 	/*
708 	 * Update the waiter prio fields now that we're dequeued.
709 	 *
710 	 * These values can have changed through either:
711 	 *
712 	 *   sys_sched_set_scheduler() / sys_sched_setattr()
713 	 *
714 	 * or
715 	 *
716 	 *   DL CBS enforcement advancing the effective deadline.
717 	 *
718 	 * Even though pi_waiters also uses these fields, and that tree is only
719 	 * updated in [11], we can do this here, since we hold [L], which
720 	 * serializes all pi_waiters access and rb_erase() does not care about
721 	 * the values of the node being removed.
722 	 */
723 	waiter->prio = task->prio;
724 	waiter->deadline = task->dl.deadline;
725 
726 	rt_mutex_enqueue(lock, waiter);
727 
728 	/* [8] Release the task */
729 	raw_spin_unlock(&task->pi_lock);
730 	put_task_struct(task);
731 
732 	/*
733 	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
734 	 *
735 	 * We must abort the chain walk if there is no lock owner even
736 	 * in the dead lock detection case, as we have nothing to
737 	 * follow here. This is the end of the chain we are walking.
738 	 */
739 	if (!rt_mutex_owner(lock)) {
740 		/*
741 		 * If the requeue [7] above changed the top waiter,
742 		 * then we need to wake the new top waiter up to try
743 		 * to get the lock.
744 		 */
745 		if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
746 			wake_up_process(rt_mutex_top_waiter(lock)->task);
747 		raw_spin_unlock_irq(&lock->wait_lock);
748 		return 0;
749 	}
750 
751 	/* [10] Grab the next task, i.e. the owner of @lock */
752 	task = rt_mutex_owner(lock);
753 	get_task_struct(task);
754 	raw_spin_lock(&task->pi_lock);
755 
756 	/* [11] requeue the pi waiters if necessary */
757 	if (waiter == rt_mutex_top_waiter(lock)) {
758 		/*
759 		 * The waiter became the new top (highest priority)
760 		 * waiter on the lock. Replace the previous top waiter
761 		 * in the owner tasks pi waiters tree with this waiter
762 		 * and adjust the priority of the owner.
763 		 */
764 		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
765 		rt_mutex_enqueue_pi(task, waiter);
766 		__rt_mutex_adjust_prio(task);
767 
768 	} else if (prerequeue_top_waiter == waiter) {
769 		/*
770 		 * The waiter was the top waiter on the lock, but is
771 		 * no longer the top prority waiter. Replace waiter in
772 		 * the owner tasks pi waiters tree with the new top
773 		 * (highest priority) waiter and adjust the priority
774 		 * of the owner.
775 		 * The new top waiter is stored in @waiter so that
776 		 * @waiter == @top_waiter evaluates to true below and
777 		 * we continue to deboost the rest of the chain.
778 		 */
779 		rt_mutex_dequeue_pi(task, waiter);
780 		waiter = rt_mutex_top_waiter(lock);
781 		rt_mutex_enqueue_pi(task, waiter);
782 		__rt_mutex_adjust_prio(task);
783 	} else {
784 		/*
785 		 * Nothing changed. No need to do any priority
786 		 * adjustment.
787 		 */
788 	}
789 
790 	/*
791 	 * [12] check_exit_conditions_4() protected by task->pi_lock
792 	 * and lock->wait_lock. The actual decisions are made after we
793 	 * dropped the locks.
794 	 *
795 	 * Check whether the task which owns the current lock is pi
796 	 * blocked itself. If yes we store a pointer to the lock for
797 	 * the lock chain change detection above. After we dropped
798 	 * task->pi_lock next_lock cannot be dereferenced anymore.
799 	 */
800 	next_lock = task_blocked_on_lock(task);
801 	/*
802 	 * Store the top waiter of @lock for the end of chain walk
803 	 * decision below.
804 	 */
805 	top_waiter = rt_mutex_top_waiter(lock);
806 
807 	/* [13] Drop the locks */
808 	raw_spin_unlock(&task->pi_lock);
809 	raw_spin_unlock_irq(&lock->wait_lock);
810 
811 	/*
812 	 * Make the actual exit decisions [12], based on the stored
813 	 * values.
814 	 *
815 	 * We reached the end of the lock chain. Stop right here. No
816 	 * point to go back just to figure that out.
817 	 */
818 	if (!next_lock)
819 		goto out_put_task;
820 
821 	/*
822 	 * If the current waiter is not the top waiter on the lock,
823 	 * then we can stop the chain walk here if we are not in full
824 	 * deadlock detection mode.
825 	 */
826 	if (!detect_deadlock && waiter != top_waiter)
827 		goto out_put_task;
828 
829 	goto again;
830 
831  out_unlock_pi:
832 	raw_spin_unlock_irq(&task->pi_lock);
833  out_put_task:
834 	put_task_struct(task);
835 
836 	return ret;
837 }
838 
839 /*
840  * Try to take an rt-mutex
841  *
842  * Must be called with lock->wait_lock held and interrupts disabled
843  *
844  * @lock:   The lock to be acquired.
845  * @task:   The task which wants to acquire the lock
846  * @waiter: The waiter that is queued to the lock's wait tree if the
847  *	    callsite called task_blocked_on_lock(), otherwise NULL
848  */
try_to_take_rt_mutex(struct rt_mutex * lock,struct task_struct * task,struct rt_mutex_waiter * waiter)849 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
850 				struct rt_mutex_waiter *waiter)
851 {
852 	lockdep_assert_held(&lock->wait_lock);
853 
854 	/*
855 	 * Before testing whether we can acquire @lock, we set the
856 	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
857 	 * other tasks which try to modify @lock into the slow path
858 	 * and they serialize on @lock->wait_lock.
859 	 *
860 	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
861 	 * as explained at the top of this file if and only if:
862 	 *
863 	 * - There is a lock owner. The caller must fixup the
864 	 *   transient state if it does a trylock or leaves the lock
865 	 *   function due to a signal or timeout.
866 	 *
867 	 * - @task acquires the lock and there are no other
868 	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
869 	 *   the end of this function.
870 	 */
871 	mark_rt_mutex_waiters(lock);
872 
873 	/*
874 	 * If @lock has an owner, give up.
875 	 */
876 	if (rt_mutex_owner(lock))
877 		return 0;
878 
879 	/*
880 	 * If @waiter != NULL, @task has already enqueued the waiter
881 	 * into @lock waiter tree. If @waiter == NULL then this is a
882 	 * trylock attempt.
883 	 */
884 	if (waiter) {
885 		/*
886 		 * If waiter is not the highest priority waiter of
887 		 * @lock, give up.
888 		 */
889 		if (waiter != rt_mutex_top_waiter(lock))
890 			return 0;
891 
892 		/*
893 		 * We can acquire the lock. Remove the waiter from the
894 		 * lock waiters tree.
895 		 */
896 		rt_mutex_dequeue(lock, waiter);
897 
898 	} else {
899 		/*
900 		 * If the lock has waiters already we check whether @task is
901 		 * eligible to take over the lock.
902 		 *
903 		 * If there are no other waiters, @task can acquire
904 		 * the lock.  @task->pi_blocked_on is NULL, so it does
905 		 * not need to be dequeued.
906 		 */
907 		if (rt_mutex_has_waiters(lock)) {
908 			/*
909 			 * If @task->prio is greater than or equal to
910 			 * the top waiter priority (kernel view),
911 			 * @task lost.
912 			 */
913 			if (task->prio >= rt_mutex_top_waiter(lock)->prio)
914 				return 0;
915 
916 			/*
917 			 * The current top waiter stays enqueued. We
918 			 * don't have to change anything in the lock
919 			 * waiters order.
920 			 */
921 		} else {
922 			/*
923 			 * No waiters. Take the lock without the
924 			 * pi_lock dance.@task->pi_blocked_on is NULL
925 			 * and we have no waiters to enqueue in @task
926 			 * pi waiters tree.
927 			 */
928 			goto takeit;
929 		}
930 	}
931 
932 	/*
933 	 * Clear @task->pi_blocked_on. Requires protection by
934 	 * @task->pi_lock. Redundant operation for the @waiter == NULL
935 	 * case, but conditionals are more expensive than a redundant
936 	 * store.
937 	 */
938 	raw_spin_lock(&task->pi_lock);
939 	task->pi_blocked_on = NULL;
940 	/*
941 	 * Finish the lock acquisition. @task is the new owner. If
942 	 * other waiters exist we have to insert the highest priority
943 	 * waiter into @task->pi_waiters tree.
944 	 */
945 	if (rt_mutex_has_waiters(lock))
946 		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
947 	raw_spin_unlock(&task->pi_lock);
948 
949 takeit:
950 	/* We got the lock. */
951 	debug_rt_mutex_lock(lock);
952 
953 	/*
954 	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
955 	 * are still waiters or clears it.
956 	 */
957 	rt_mutex_set_owner(lock, task);
958 
959 	rt_mutex_deadlock_account_lock(lock, task);
960 
961 	return 1;
962 }
963 
964 /*
965  * Task blocks on lock.
966  *
967  * Prepare waiter and propagate pi chain
968  *
969  * This must be called with lock->wait_lock held and interrupts disabled
970  */
task_blocks_on_rt_mutex(struct rt_mutex * lock,struct rt_mutex_waiter * waiter,struct task_struct * task,enum rtmutex_chainwalk chwalk)971 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
972 				   struct rt_mutex_waiter *waiter,
973 				   struct task_struct *task,
974 				   enum rtmutex_chainwalk chwalk)
975 {
976 	struct task_struct *owner = rt_mutex_owner(lock);
977 	struct rt_mutex_waiter *top_waiter = waiter;
978 	struct rt_mutex *next_lock;
979 	int chain_walk = 0, res;
980 
981 	lockdep_assert_held(&lock->wait_lock);
982 
983 	/*
984 	 * Early deadlock detection. We really don't want the task to
985 	 * enqueue on itself just to untangle the mess later. It's not
986 	 * only an optimization. We drop the locks, so another waiter
987 	 * can come in before the chain walk detects the deadlock. So
988 	 * the other will detect the deadlock and return -EDEADLOCK,
989 	 * which is wrong, as the other waiter is not in a deadlock
990 	 * situation.
991 	 */
992 	if (owner == task)
993 		return -EDEADLK;
994 
995 	raw_spin_lock(&task->pi_lock);
996 	__rt_mutex_adjust_prio(task);
997 	waiter->task = task;
998 	waiter->lock = lock;
999 	waiter->prio = task->prio;
1000 	waiter->deadline = task->dl.deadline;
1001 
1002 	/* Get the top priority waiter on the lock */
1003 	if (rt_mutex_has_waiters(lock))
1004 		top_waiter = rt_mutex_top_waiter(lock);
1005 	rt_mutex_enqueue(lock, waiter);
1006 
1007 	task->pi_blocked_on = waiter;
1008 
1009 	raw_spin_unlock(&task->pi_lock);
1010 
1011 	if (!owner)
1012 		return 0;
1013 
1014 	raw_spin_lock(&owner->pi_lock);
1015 	if (waiter == rt_mutex_top_waiter(lock)) {
1016 		rt_mutex_dequeue_pi(owner, top_waiter);
1017 		rt_mutex_enqueue_pi(owner, waiter);
1018 
1019 		__rt_mutex_adjust_prio(owner);
1020 		if (owner->pi_blocked_on)
1021 			chain_walk = 1;
1022 	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1023 		chain_walk = 1;
1024 	}
1025 
1026 	/* Store the lock on which owner is blocked or NULL */
1027 	next_lock = task_blocked_on_lock(owner);
1028 
1029 	raw_spin_unlock(&owner->pi_lock);
1030 	/*
1031 	 * Even if full deadlock detection is on, if the owner is not
1032 	 * blocked itself, we can avoid finding this out in the chain
1033 	 * walk.
1034 	 */
1035 	if (!chain_walk || !next_lock)
1036 		return 0;
1037 
1038 	/*
1039 	 * The owner can't disappear while holding a lock,
1040 	 * so the owner struct is protected by wait_lock.
1041 	 * Gets dropped in rt_mutex_adjust_prio_chain()!
1042 	 */
1043 	get_task_struct(owner);
1044 
1045 	raw_spin_unlock_irq(&lock->wait_lock);
1046 
1047 	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1048 					 next_lock, waiter, task);
1049 
1050 	raw_spin_lock_irq(&lock->wait_lock);
1051 
1052 	return res;
1053 }
1054 
1055 /*
1056  * Remove the top waiter from the current tasks pi waiter tree and
1057  * queue it up.
1058  *
1059  * Called with lock->wait_lock held and interrupts disabled.
1060  */
mark_wakeup_next_waiter(struct wake_q_head * wake_q,struct rt_mutex * lock)1061 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1062 				    struct rt_mutex *lock)
1063 {
1064 	struct rt_mutex_waiter *waiter;
1065 
1066 	raw_spin_lock(&current->pi_lock);
1067 
1068 	waiter = rt_mutex_top_waiter(lock);
1069 
1070 	/*
1071 	 * Remove it from current->pi_waiters. We do not adjust a
1072 	 * possible priority boost right now. We execute wakeup in the
1073 	 * boosted mode and go back to normal after releasing
1074 	 * lock->wait_lock.
1075 	 */
1076 	rt_mutex_dequeue_pi(current, waiter);
1077 
1078 	/*
1079 	 * As we are waking up the top waiter, and the waiter stays
1080 	 * queued on the lock until it gets the lock, this lock
1081 	 * obviously has waiters. Just set the bit here and this has
1082 	 * the added benefit of forcing all new tasks into the
1083 	 * slow path making sure no task of lower priority than
1084 	 * the top waiter can steal this lock.
1085 	 */
1086 	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1087 
1088 	raw_spin_unlock(&current->pi_lock);
1089 
1090 	wake_q_add(wake_q, waiter->task);
1091 }
1092 
1093 /*
1094  * Remove a waiter from a lock and give up
1095  *
1096  * Must be called with lock->wait_lock held and interrupts disabled. I must
1097  * have just failed to try_to_take_rt_mutex().
1098  */
remove_waiter(struct rt_mutex * lock,struct rt_mutex_waiter * waiter)1099 static void remove_waiter(struct rt_mutex *lock,
1100 			  struct rt_mutex_waiter *waiter)
1101 {
1102 	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1103 	struct task_struct *owner = rt_mutex_owner(lock);
1104 	struct rt_mutex *next_lock;
1105 
1106 	lockdep_assert_held(&lock->wait_lock);
1107 
1108 	raw_spin_lock(&current->pi_lock);
1109 	rt_mutex_dequeue(lock, waiter);
1110 	current->pi_blocked_on = NULL;
1111 	raw_spin_unlock(&current->pi_lock);
1112 
1113 	/*
1114 	 * Only update priority if the waiter was the highest priority
1115 	 * waiter of the lock and there is an owner to update.
1116 	 */
1117 	if (!owner || !is_top_waiter)
1118 		return;
1119 
1120 	raw_spin_lock(&owner->pi_lock);
1121 
1122 	rt_mutex_dequeue_pi(owner, waiter);
1123 
1124 	if (rt_mutex_has_waiters(lock))
1125 		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1126 
1127 	__rt_mutex_adjust_prio(owner);
1128 
1129 	/* Store the lock on which owner is blocked or NULL */
1130 	next_lock = task_blocked_on_lock(owner);
1131 
1132 	raw_spin_unlock(&owner->pi_lock);
1133 
1134 	/*
1135 	 * Don't walk the chain, if the owner task is not blocked
1136 	 * itself.
1137 	 */
1138 	if (!next_lock)
1139 		return;
1140 
1141 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1142 	get_task_struct(owner);
1143 
1144 	raw_spin_unlock_irq(&lock->wait_lock);
1145 
1146 	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1147 				   next_lock, NULL, current);
1148 
1149 	raw_spin_lock_irq(&lock->wait_lock);
1150 }
1151 
1152 /*
1153  * Recheck the pi chain, in case we got a priority setting
1154  *
1155  * Called from sched_setscheduler
1156  */
rt_mutex_adjust_pi(struct task_struct * task)1157 void rt_mutex_adjust_pi(struct task_struct *task)
1158 {
1159 	struct rt_mutex_waiter *waiter;
1160 	struct rt_mutex *next_lock;
1161 	unsigned long flags;
1162 
1163 	raw_spin_lock_irqsave(&task->pi_lock, flags);
1164 
1165 	waiter = task->pi_blocked_on;
1166 	if (!waiter || (waiter->prio == task->prio &&
1167 			!dl_prio(task->prio))) {
1168 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1169 		return;
1170 	}
1171 	next_lock = waiter->lock;
1172 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1173 
1174 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1175 	get_task_struct(task);
1176 
1177 	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1178 				   next_lock, NULL, task);
1179 }
1180 
1181 /**
1182  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1183  * @lock:		 the rt_mutex to take
1184  * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1185  *			 or TASK_UNINTERRUPTIBLE)
1186  * @timeout:		 the pre-initialized and started timer, or NULL for none
1187  * @waiter:		 the pre-initialized rt_mutex_waiter
1188  *
1189  * Must be called with lock->wait_lock held and interrupts disabled
1190  */
1191 static int __sched
__rt_mutex_slowlock(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,struct rt_mutex_waiter * waiter)1192 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1193 		    struct hrtimer_sleeper *timeout,
1194 		    struct rt_mutex_waiter *waiter)
1195 {
1196 	int ret = 0;
1197 
1198 	for (;;) {
1199 		/* Try to acquire the lock: */
1200 		if (try_to_take_rt_mutex(lock, current, waiter))
1201 			break;
1202 
1203 		/*
1204 		 * TASK_INTERRUPTIBLE checks for signals and
1205 		 * timeout. Ignored otherwise.
1206 		 */
1207 		if (unlikely(state == TASK_INTERRUPTIBLE)) {
1208 			/* Signal pending? */
1209 			if (signal_pending(current))
1210 				ret = -EINTR;
1211 			if (timeout && !timeout->task)
1212 				ret = -ETIMEDOUT;
1213 			if (ret)
1214 				break;
1215 		}
1216 
1217 		raw_spin_unlock_irq(&lock->wait_lock);
1218 
1219 		debug_rt_mutex_print_deadlock(waiter);
1220 
1221 		schedule();
1222 
1223 		raw_spin_lock_irq(&lock->wait_lock);
1224 		set_current_state(state);
1225 	}
1226 
1227 	__set_current_state(TASK_RUNNING);
1228 	return ret;
1229 }
1230 
rt_mutex_handle_deadlock(int res,int detect_deadlock,struct rt_mutex_waiter * w)1231 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1232 				     struct rt_mutex_waiter *w)
1233 {
1234 	/*
1235 	 * If the result is not -EDEADLOCK or the caller requested
1236 	 * deadlock detection, nothing to do here.
1237 	 */
1238 	if (res != -EDEADLOCK || detect_deadlock)
1239 		return;
1240 
1241 	/*
1242 	 * Yell lowdly and stop the task right here.
1243 	 */
1244 	rt_mutex_print_deadlock(w);
1245 	while (1) {
1246 		set_current_state(TASK_INTERRUPTIBLE);
1247 		schedule();
1248 	}
1249 }
1250 
1251 /*
1252  * Slow path lock function:
1253  */
1254 static int __sched
rt_mutex_slowlock(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,enum rtmutex_chainwalk chwalk)1255 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1256 		  struct hrtimer_sleeper *timeout,
1257 		  enum rtmutex_chainwalk chwalk)
1258 {
1259 	struct rt_mutex_waiter waiter;
1260 	unsigned long flags;
1261 	int ret = 0;
1262 
1263 	debug_rt_mutex_init_waiter(&waiter);
1264 	RB_CLEAR_NODE(&waiter.pi_tree_entry);
1265 	RB_CLEAR_NODE(&waiter.tree_entry);
1266 
1267 	/*
1268 	 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1269 	 * be called in early boot if the cmpxchg() fast path is disabled
1270 	 * (debug, no architecture support). In this case we will acquire the
1271 	 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1272 	 * enable interrupts in that early boot case. So we need to use the
1273 	 * irqsave/restore variants.
1274 	 */
1275 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1276 
1277 	/* Try to acquire the lock again: */
1278 	if (try_to_take_rt_mutex(lock, current, NULL)) {
1279 		raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1280 		return 0;
1281 	}
1282 
1283 	set_current_state(state);
1284 
1285 	/* Setup the timer, when timeout != NULL */
1286 	if (unlikely(timeout))
1287 		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1288 
1289 	ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1290 
1291 	if (likely(!ret))
1292 		/* sleep on the mutex */
1293 		ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1294 
1295 	if (unlikely(ret)) {
1296 		__set_current_state(TASK_RUNNING);
1297 		if (rt_mutex_has_waiters(lock))
1298 			remove_waiter(lock, &waiter);
1299 		rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1300 	}
1301 
1302 	/*
1303 	 * try_to_take_rt_mutex() sets the waiter bit
1304 	 * unconditionally. We might have to fix that up.
1305 	 */
1306 	fixup_rt_mutex_waiters(lock);
1307 
1308 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1309 
1310 	/* Remove pending timer: */
1311 	if (unlikely(timeout))
1312 		hrtimer_cancel(&timeout->timer);
1313 
1314 	debug_rt_mutex_free_waiter(&waiter);
1315 
1316 	return ret;
1317 }
1318 
1319 /*
1320  * Slow path try-lock function:
1321  */
rt_mutex_slowtrylock(struct rt_mutex * lock)1322 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1323 {
1324 	unsigned long flags;
1325 	int ret;
1326 
1327 	/*
1328 	 * If the lock already has an owner we fail to get the lock.
1329 	 * This can be done without taking the @lock->wait_lock as
1330 	 * it is only being read, and this is a trylock anyway.
1331 	 */
1332 	if (rt_mutex_owner(lock))
1333 		return 0;
1334 
1335 	/*
1336 	 * The mutex has currently no owner. Lock the wait lock and try to
1337 	 * acquire the lock. We use irqsave here to support early boot calls.
1338 	 */
1339 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1340 
1341 	ret = try_to_take_rt_mutex(lock, current, NULL);
1342 
1343 	/*
1344 	 * try_to_take_rt_mutex() sets the lock waiters bit
1345 	 * unconditionally. Clean this up.
1346 	 */
1347 	fixup_rt_mutex_waiters(lock);
1348 
1349 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1350 
1351 	return ret;
1352 }
1353 
1354 /*
1355  * Slow path to release a rt-mutex.
1356  * Return whether the current task needs to undo a potential priority boosting.
1357  */
rt_mutex_slowunlock(struct rt_mutex * lock,struct wake_q_head * wake_q)1358 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1359 					struct wake_q_head *wake_q)
1360 {
1361 	unsigned long flags;
1362 
1363 	/* irqsave required to support early boot calls */
1364 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1365 
1366 	debug_rt_mutex_unlock(lock);
1367 
1368 	rt_mutex_deadlock_account_unlock(current);
1369 
1370 	/*
1371 	 * We must be careful here if the fast path is enabled. If we
1372 	 * have no waiters queued we cannot set owner to NULL here
1373 	 * because of:
1374 	 *
1375 	 * foo->lock->owner = NULL;
1376 	 *			rtmutex_lock(foo->lock);   <- fast path
1377 	 *			free = atomic_dec_and_test(foo->refcnt);
1378 	 *			rtmutex_unlock(foo->lock); <- fast path
1379 	 *			if (free)
1380 	 *				kfree(foo);
1381 	 * raw_spin_unlock(foo->lock->wait_lock);
1382 	 *
1383 	 * So for the fastpath enabled kernel:
1384 	 *
1385 	 * Nothing can set the waiters bit as long as we hold
1386 	 * lock->wait_lock. So we do the following sequence:
1387 	 *
1388 	 *	owner = rt_mutex_owner(lock);
1389 	 *	clear_rt_mutex_waiters(lock);
1390 	 *	raw_spin_unlock(&lock->wait_lock);
1391 	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
1392 	 *		return;
1393 	 *	goto retry;
1394 	 *
1395 	 * The fastpath disabled variant is simple as all access to
1396 	 * lock->owner is serialized by lock->wait_lock:
1397 	 *
1398 	 *	lock->owner = NULL;
1399 	 *	raw_spin_unlock(&lock->wait_lock);
1400 	 */
1401 	while (!rt_mutex_has_waiters(lock)) {
1402 		/* Drops lock->wait_lock ! */
1403 		if (unlock_rt_mutex_safe(lock, flags) == true)
1404 			return false;
1405 		/* Relock the rtmutex and try again */
1406 		raw_spin_lock_irqsave(&lock->wait_lock, flags);
1407 	}
1408 
1409 	/*
1410 	 * The wakeup next waiter path does not suffer from the above
1411 	 * race. See the comments there.
1412 	 *
1413 	 * Queue the next waiter for wakeup once we release the wait_lock.
1414 	 */
1415 	mark_wakeup_next_waiter(wake_q, lock);
1416 
1417 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1418 
1419 	/* check PI boosting */
1420 	return true;
1421 }
1422 
1423 /*
1424  * debug aware fast / slowpath lock,trylock,unlock
1425  *
1426  * The atomic acquire/release ops are compiled away, when either the
1427  * architecture does not support cmpxchg or when debugging is enabled.
1428  */
1429 static inline int
rt_mutex_fastlock(struct rt_mutex * lock,int state,int (* slowfn)(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,enum rtmutex_chainwalk chwalk))1430 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1431 		  int (*slowfn)(struct rt_mutex *lock, int state,
1432 				struct hrtimer_sleeper *timeout,
1433 				enum rtmutex_chainwalk chwalk))
1434 {
1435 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1436 		rt_mutex_deadlock_account_lock(lock, current);
1437 		return 0;
1438 	} else
1439 		return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1440 }
1441 
1442 static inline int
rt_mutex_timed_fastlock(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,enum rtmutex_chainwalk chwalk,int (* slowfn)(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,enum rtmutex_chainwalk chwalk))1443 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1444 			struct hrtimer_sleeper *timeout,
1445 			enum rtmutex_chainwalk chwalk,
1446 			int (*slowfn)(struct rt_mutex *lock, int state,
1447 				      struct hrtimer_sleeper *timeout,
1448 				      enum rtmutex_chainwalk chwalk))
1449 {
1450 	if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1451 	    likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1452 		rt_mutex_deadlock_account_lock(lock, current);
1453 		return 0;
1454 	} else
1455 		return slowfn(lock, state, timeout, chwalk);
1456 }
1457 
1458 static inline int
rt_mutex_fasttrylock(struct rt_mutex * lock,int (* slowfn)(struct rt_mutex * lock))1459 rt_mutex_fasttrylock(struct rt_mutex *lock,
1460 		     int (*slowfn)(struct rt_mutex *lock))
1461 {
1462 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1463 		rt_mutex_deadlock_account_lock(lock, current);
1464 		return 1;
1465 	}
1466 	return slowfn(lock);
1467 }
1468 
1469 static inline void
rt_mutex_fastunlock(struct rt_mutex * lock,bool (* slowfn)(struct rt_mutex * lock,struct wake_q_head * wqh))1470 rt_mutex_fastunlock(struct rt_mutex *lock,
1471 		    bool (*slowfn)(struct rt_mutex *lock,
1472 				   struct wake_q_head *wqh))
1473 {
1474 	WAKE_Q(wake_q);
1475 
1476 	if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
1477 		rt_mutex_deadlock_account_unlock(current);
1478 
1479 	} else {
1480 		bool deboost = slowfn(lock, &wake_q);
1481 
1482 		wake_up_q(&wake_q);
1483 
1484 		/* Undo pi boosting if necessary: */
1485 		if (deboost)
1486 			rt_mutex_adjust_prio(current);
1487 	}
1488 }
1489 
1490 /**
1491  * rt_mutex_lock - lock a rt_mutex
1492  *
1493  * @lock: the rt_mutex to be locked
1494  */
rt_mutex_lock(struct rt_mutex * lock)1495 void __sched rt_mutex_lock(struct rt_mutex *lock)
1496 {
1497 	might_sleep();
1498 
1499 	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1500 }
1501 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1502 
1503 /**
1504  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1505  *
1506  * @lock:		the rt_mutex to be locked
1507  *
1508  * Returns:
1509  *  0		on success
1510  * -EINTR	when interrupted by a signal
1511  */
rt_mutex_lock_interruptible(struct rt_mutex * lock)1512 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1513 {
1514 	might_sleep();
1515 
1516 	return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1517 }
1518 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1519 
1520 /*
1521  * Futex variant with full deadlock detection.
1522  */
rt_mutex_timed_futex_lock(struct rt_mutex * lock,struct hrtimer_sleeper * timeout)1523 int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
1524 			      struct hrtimer_sleeper *timeout)
1525 {
1526 	might_sleep();
1527 
1528 	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1529 				       RT_MUTEX_FULL_CHAINWALK,
1530 				       rt_mutex_slowlock);
1531 }
1532 
1533 /**
1534  * rt_mutex_timed_lock - lock a rt_mutex interruptible
1535  *			the timeout structure is provided
1536  *			by the caller
1537  *
1538  * @lock:		the rt_mutex to be locked
1539  * @timeout:		timeout structure or NULL (no timeout)
1540  *
1541  * Returns:
1542  *  0		on success
1543  * -EINTR	when interrupted by a signal
1544  * -ETIMEDOUT	when the timeout expired
1545  */
1546 int
rt_mutex_timed_lock(struct rt_mutex * lock,struct hrtimer_sleeper * timeout)1547 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1548 {
1549 	might_sleep();
1550 
1551 	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1552 				       RT_MUTEX_MIN_CHAINWALK,
1553 				       rt_mutex_slowlock);
1554 }
1555 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1556 
1557 /**
1558  * rt_mutex_trylock - try to lock a rt_mutex
1559  *
1560  * @lock:	the rt_mutex to be locked
1561  *
1562  * This function can only be called in thread context. It's safe to
1563  * call it from atomic regions, but not from hard interrupt or soft
1564  * interrupt context.
1565  *
1566  * Returns 1 on success and 0 on contention
1567  */
rt_mutex_trylock(struct rt_mutex * lock)1568 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1569 {
1570 	if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1571 		return 0;
1572 
1573 	return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1574 }
1575 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1576 
1577 /**
1578  * rt_mutex_unlock - unlock a rt_mutex
1579  *
1580  * @lock: the rt_mutex to be unlocked
1581  */
rt_mutex_unlock(struct rt_mutex * lock)1582 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1583 {
1584 	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1585 }
1586 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1587 
1588 /**
1589  * rt_mutex_futex_unlock - Futex variant of rt_mutex_unlock
1590  * @lock: the rt_mutex to be unlocked
1591  *
1592  * Returns: true/false indicating whether priority adjustment is
1593  * required or not.
1594  */
rt_mutex_futex_unlock(struct rt_mutex * lock,struct wake_q_head * wqh)1595 bool __sched rt_mutex_futex_unlock(struct rt_mutex *lock,
1596 				   struct wake_q_head *wqh)
1597 {
1598 	if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
1599 		rt_mutex_deadlock_account_unlock(current);
1600 		return false;
1601 	}
1602 	return rt_mutex_slowunlock(lock, wqh);
1603 }
1604 
1605 /**
1606  * rt_mutex_destroy - mark a mutex unusable
1607  * @lock: the mutex to be destroyed
1608  *
1609  * This function marks the mutex uninitialized, and any subsequent
1610  * use of the mutex is forbidden. The mutex must not be locked when
1611  * this function is called.
1612  */
rt_mutex_destroy(struct rt_mutex * lock)1613 void rt_mutex_destroy(struct rt_mutex *lock)
1614 {
1615 	WARN_ON(rt_mutex_is_locked(lock));
1616 #ifdef CONFIG_DEBUG_RT_MUTEXES
1617 	lock->magic = NULL;
1618 #endif
1619 }
1620 
1621 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1622 
1623 /**
1624  * __rt_mutex_init - initialize the rt lock
1625  *
1626  * @lock: the rt lock to be initialized
1627  *
1628  * Initialize the rt lock to unlocked state.
1629  *
1630  * Initializing of a locked rt lock is not allowed
1631  */
__rt_mutex_init(struct rt_mutex * lock,const char * name)1632 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1633 {
1634 	lock->owner = NULL;
1635 	raw_spin_lock_init(&lock->wait_lock);
1636 	lock->waiters = RB_ROOT;
1637 	lock->waiters_leftmost = NULL;
1638 
1639 	debug_rt_mutex_init(lock, name);
1640 }
1641 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1642 
1643 /**
1644  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1645  *				proxy owner
1646  *
1647  * @lock: 	the rt_mutex to be locked
1648  * @proxy_owner:the task to set as owner
1649  *
1650  * No locking. Caller has to do serializing itself
1651  * Special API call for PI-futex support
1652  */
rt_mutex_init_proxy_locked(struct rt_mutex * lock,struct task_struct * proxy_owner)1653 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1654 				struct task_struct *proxy_owner)
1655 {
1656 	__rt_mutex_init(lock, NULL);
1657 	debug_rt_mutex_proxy_lock(lock, proxy_owner);
1658 	rt_mutex_set_owner(lock, proxy_owner);
1659 	rt_mutex_deadlock_account_lock(lock, proxy_owner);
1660 }
1661 
1662 /**
1663  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1664  *
1665  * @lock: 	the rt_mutex to be locked
1666  *
1667  * No locking. Caller has to do serializing itself
1668  * Special API call for PI-futex support
1669  */
rt_mutex_proxy_unlock(struct rt_mutex * lock,struct task_struct * proxy_owner)1670 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1671 			   struct task_struct *proxy_owner)
1672 {
1673 	debug_rt_mutex_proxy_unlock(lock);
1674 	rt_mutex_set_owner(lock, NULL);
1675 	rt_mutex_deadlock_account_unlock(proxy_owner);
1676 }
1677 
1678 /**
1679  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1680  * @lock:		the rt_mutex to take
1681  * @waiter:		the pre-initialized rt_mutex_waiter
1682  * @task:		the task to prepare
1683  *
1684  * Returns:
1685  *  0 - task blocked on lock
1686  *  1 - acquired the lock for task, caller should wake it up
1687  * <0 - error
1688  *
1689  * Special API call for FUTEX_REQUEUE_PI support.
1690  */
rt_mutex_start_proxy_lock(struct rt_mutex * lock,struct rt_mutex_waiter * waiter,struct task_struct * task)1691 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1692 			      struct rt_mutex_waiter *waiter,
1693 			      struct task_struct *task)
1694 {
1695 	int ret;
1696 
1697 	raw_spin_lock_irq(&lock->wait_lock);
1698 
1699 	if (try_to_take_rt_mutex(lock, task, NULL)) {
1700 		raw_spin_unlock_irq(&lock->wait_lock);
1701 		return 1;
1702 	}
1703 
1704 	/* We enforce deadlock detection for futexes */
1705 	ret = task_blocks_on_rt_mutex(lock, waiter, task,
1706 				      RT_MUTEX_FULL_CHAINWALK);
1707 
1708 	if (ret && !rt_mutex_owner(lock)) {
1709 		/*
1710 		 * Reset the return value. We might have
1711 		 * returned with -EDEADLK and the owner
1712 		 * released the lock while we were walking the
1713 		 * pi chain.  Let the waiter sort it out.
1714 		 */
1715 		ret = 0;
1716 	}
1717 
1718 	if (unlikely(ret))
1719 		remove_waiter(lock, waiter);
1720 
1721 	raw_spin_unlock_irq(&lock->wait_lock);
1722 
1723 	debug_rt_mutex_print_deadlock(waiter);
1724 
1725 	return ret;
1726 }
1727 
1728 /**
1729  * rt_mutex_next_owner - return the next owner of the lock
1730  *
1731  * @lock: the rt lock query
1732  *
1733  * Returns the next owner of the lock or NULL
1734  *
1735  * Caller has to serialize against other accessors to the lock
1736  * itself.
1737  *
1738  * Special API call for PI-futex support
1739  */
rt_mutex_next_owner(struct rt_mutex * lock)1740 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1741 {
1742 	if (!rt_mutex_has_waiters(lock))
1743 		return NULL;
1744 
1745 	return rt_mutex_top_waiter(lock)->task;
1746 }
1747 
1748 /**
1749  * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1750  * @lock:		the rt_mutex we were woken on
1751  * @to:			the timeout, null if none. hrtimer should already have
1752  *			been started.
1753  * @waiter:		the pre-initialized rt_mutex_waiter
1754  *
1755  * Complete the lock acquisition started our behalf by another thread.
1756  *
1757  * Returns:
1758  *  0 - success
1759  * <0 - error, one of -EINTR, -ETIMEDOUT
1760  *
1761  * Special API call for PI-futex requeue support
1762  */
rt_mutex_finish_proxy_lock(struct rt_mutex * lock,struct hrtimer_sleeper * to,struct rt_mutex_waiter * waiter)1763 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1764 			       struct hrtimer_sleeper *to,
1765 			       struct rt_mutex_waiter *waiter)
1766 {
1767 	int ret;
1768 
1769 	raw_spin_lock_irq(&lock->wait_lock);
1770 
1771 	set_current_state(TASK_INTERRUPTIBLE);
1772 
1773 	/* sleep on the mutex */
1774 	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1775 
1776 	if (unlikely(ret))
1777 		remove_waiter(lock, waiter);
1778 
1779 	/*
1780 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1781 	 * have to fix that up.
1782 	 */
1783 	fixup_rt_mutex_waiters(lock);
1784 
1785 	raw_spin_unlock_irq(&lock->wait_lock);
1786 
1787 	return ret;
1788 }
1789