1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21 */
22
23 #include <linux/sched.h>
24 #include <linux/latencytop.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33 #include <linux/module.h>
34
35 #include <trace/events/sched.h>
36
37 #include "sched.h"
38 #include "tune.h"
39 #include "walt.h"
40
41 /*
42 * Targeted preemption latency for CPU-bound tasks:
43 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
44 *
45 * NOTE: this latency value is not the same as the concept of
46 * 'timeslice length' - timeslices in CFS are of variable length
47 * and have no persistent notion like in traditional, time-slice
48 * based scheduling concepts.
49 *
50 * (to see the precise effective timeslice length of your workload,
51 * run vmstat and monitor the context-switches (cs) field)
52 */
53 unsigned int sysctl_sched_latency = 6000000ULL;
54 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
55
56 unsigned int sysctl_sched_sync_hint_enable = 1;
57 unsigned int sysctl_sched_cstate_aware = 1;
58
59 #ifdef CONFIG_SCHED_WALT
60 unsigned int sysctl_sched_use_walt_cpu_util = 1;
61 unsigned int sysctl_sched_use_walt_task_util = 1;
62 __read_mostly unsigned int sysctl_sched_walt_cpu_high_irqload =
63 (10 * NSEC_PER_MSEC);
64 #endif
65 /*
66 * The initial- and re-scaling of tunables is configurable
67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68 *
69 * Options are:
70 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
71 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
72 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
73 */
74 enum sched_tunable_scaling sysctl_sched_tunable_scaling
75 = SCHED_TUNABLESCALING_LOG;
76
77 /*
78 * Minimal preemption granularity for CPU-bound tasks:
79 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
80 */
81 unsigned int sysctl_sched_min_granularity = 750000ULL;
82 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
83
84 /*
85 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
86 */
87 static unsigned int sched_nr_latency = 8;
88
89 /*
90 * After fork, child runs first. If set to 0 (default) then
91 * parent will (try to) run first.
92 */
93 unsigned int sysctl_sched_child_runs_first __read_mostly;
94
95 /*
96 * SCHED_OTHER wake-up granularity.
97 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
98 *
99 * This option delays the preemption effects of decoupled workloads
100 * and reduces their over-scheduling. Synchronous workloads will still
101 * have immediate wakeup/sleep latencies.
102 */
103 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
104 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
105
106 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
107
108 /*
109 * The exponential sliding window over which load is averaged for shares
110 * distribution.
111 * (default: 10msec)
112 */
113 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
114
115 #ifdef CONFIG_CFS_BANDWIDTH
116 /*
117 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
118 * each time a cfs_rq requests quota.
119 *
120 * Note: in the case that the slice exceeds the runtime remaining (either due
121 * to consumption or the quota being specified to be smaller than the slice)
122 * we will always only issue the remaining available time.
123 *
124 * default: 5 msec, units: microseconds
125 */
126 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
127 #endif
128
129 /*
130 * The margin used when comparing utilization with CPU capacity:
131 * util * margin < capacity * 1024
132 */
133 unsigned int capacity_margin = 1280; /* ~20% */
134
update_load_add(struct load_weight * lw,unsigned long inc)135 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
136 {
137 lw->weight += inc;
138 lw->inv_weight = 0;
139 }
140
update_load_sub(struct load_weight * lw,unsigned long dec)141 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
142 {
143 lw->weight -= dec;
144 lw->inv_weight = 0;
145 }
146
update_load_set(struct load_weight * lw,unsigned long w)147 static inline void update_load_set(struct load_weight *lw, unsigned long w)
148 {
149 lw->weight = w;
150 lw->inv_weight = 0;
151 }
152
153 /*
154 * Increase the granularity value when there are more CPUs,
155 * because with more CPUs the 'effective latency' as visible
156 * to users decreases. But the relationship is not linear,
157 * so pick a second-best guess by going with the log2 of the
158 * number of CPUs.
159 *
160 * This idea comes from the SD scheduler of Con Kolivas:
161 */
get_update_sysctl_factor(void)162 static unsigned int get_update_sysctl_factor(void)
163 {
164 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
165 unsigned int factor;
166
167 switch (sysctl_sched_tunable_scaling) {
168 case SCHED_TUNABLESCALING_NONE:
169 factor = 1;
170 break;
171 case SCHED_TUNABLESCALING_LINEAR:
172 factor = cpus;
173 break;
174 case SCHED_TUNABLESCALING_LOG:
175 default:
176 factor = 1 + ilog2(cpus);
177 break;
178 }
179
180 return factor;
181 }
182
update_sysctl(void)183 static void update_sysctl(void)
184 {
185 unsigned int factor = get_update_sysctl_factor();
186
187 #define SET_SYSCTL(name) \
188 (sysctl_##name = (factor) * normalized_sysctl_##name)
189 SET_SYSCTL(sched_min_granularity);
190 SET_SYSCTL(sched_latency);
191 SET_SYSCTL(sched_wakeup_granularity);
192 #undef SET_SYSCTL
193 }
194
sched_init_granularity(void)195 void sched_init_granularity(void)
196 {
197 update_sysctl();
198 }
199
200 #define WMULT_CONST (~0U)
201 #define WMULT_SHIFT 32
202
__update_inv_weight(struct load_weight * lw)203 static void __update_inv_weight(struct load_weight *lw)
204 {
205 unsigned long w;
206
207 if (likely(lw->inv_weight))
208 return;
209
210 w = scale_load_down(lw->weight);
211
212 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
213 lw->inv_weight = 1;
214 else if (unlikely(!w))
215 lw->inv_weight = WMULT_CONST;
216 else
217 lw->inv_weight = WMULT_CONST / w;
218 }
219
220 /*
221 * delta_exec * weight / lw.weight
222 * OR
223 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
224 *
225 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
226 * we're guaranteed shift stays positive because inv_weight is guaranteed to
227 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
228 *
229 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
230 * weight/lw.weight <= 1, and therefore our shift will also be positive.
231 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)232 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
233 {
234 u64 fact = scale_load_down(weight);
235 int shift = WMULT_SHIFT;
236
237 __update_inv_weight(lw);
238
239 if (unlikely(fact >> 32)) {
240 while (fact >> 32) {
241 fact >>= 1;
242 shift--;
243 }
244 }
245
246 /* hint to use a 32x32->64 mul */
247 fact = (u64)(u32)fact * lw->inv_weight;
248
249 while (fact >> 32) {
250 fact >>= 1;
251 shift--;
252 }
253
254 return mul_u64_u32_shr(delta_exec, fact, shift);
255 }
256
257
258 const struct sched_class fair_sched_class;
259
260 /**************************************************************
261 * CFS operations on generic schedulable entities:
262 */
263
264 #ifdef CONFIG_FAIR_GROUP_SCHED
265
266 /* cpu runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)267 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
268 {
269 return cfs_rq->rq;
270 }
271
272 /* An entity is a task if it doesn't "own" a runqueue */
273 #define entity_is_task(se) (!se->my_q)
274
task_of(struct sched_entity * se)275 static inline struct task_struct *task_of(struct sched_entity *se)
276 {
277 SCHED_WARN_ON(!entity_is_task(se));
278 return container_of(se, struct task_struct, se);
279 }
280
281 /* Walk up scheduling entities hierarchy */
282 #define for_each_sched_entity(se) \
283 for (; se; se = se->parent)
284
task_cfs_rq(struct task_struct * p)285 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
286 {
287 return p->se.cfs_rq;
288 }
289
290 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(struct sched_entity * se)291 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
292 {
293 return se->cfs_rq;
294 }
295
296 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)297 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
298 {
299 return grp->my_q;
300 }
301
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)302 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
303 {
304 if (!cfs_rq->on_list) {
305 struct rq *rq = rq_of(cfs_rq);
306 int cpu = cpu_of(rq);
307 /*
308 * Ensure we either appear before our parent (if already
309 * enqueued) or force our parent to appear after us when it is
310 * enqueued. The fact that we always enqueue bottom-up
311 * reduces this to two cases and a special case for the root
312 * cfs_rq. Furthermore, it also means that we will always reset
313 * tmp_alone_branch either when the branch is connected
314 * to a tree or when we reach the beg of the tree
315 */
316 if (cfs_rq->tg->parent &&
317 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
318 /*
319 * If parent is already on the list, we add the child
320 * just before. Thanks to circular linked property of
321 * the list, this means to put the child at the tail
322 * of the list that starts by parent.
323 */
324 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
325 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
326 /*
327 * The branch is now connected to its tree so we can
328 * reset tmp_alone_branch to the beginning of the
329 * list.
330 */
331 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
332 } else if (!cfs_rq->tg->parent) {
333 /*
334 * cfs rq without parent should be put
335 * at the tail of the list.
336 */
337 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
338 &rq->leaf_cfs_rq_list);
339 /*
340 * We have reach the beg of a tree so we can reset
341 * tmp_alone_branch to the beginning of the list.
342 */
343 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
344 } else {
345 /*
346 * The parent has not already been added so we want to
347 * make sure that it will be put after us.
348 * tmp_alone_branch points to the beg of the branch
349 * where we will add parent.
350 */
351 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
352 rq->tmp_alone_branch);
353 /*
354 * update tmp_alone_branch to points to the new beg
355 * of the branch
356 */
357 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
358 }
359
360 cfs_rq->on_list = 1;
361 }
362 }
363
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)364 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
365 {
366 if (cfs_rq->on_list) {
367 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
368 cfs_rq->on_list = 0;
369 }
370 }
371
372 /* Iterate thr' all leaf cfs_rq's on a runqueue */
373 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
374 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
375
376 /* Do the two (enqueued) entities belong to the same group ? */
377 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)378 is_same_group(struct sched_entity *se, struct sched_entity *pse)
379 {
380 if (se->cfs_rq == pse->cfs_rq)
381 return se->cfs_rq;
382
383 return NULL;
384 }
385
parent_entity(struct sched_entity * se)386 static inline struct sched_entity *parent_entity(struct sched_entity *se)
387 {
388 return se->parent;
389 }
390
391 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)392 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
393 {
394 int se_depth, pse_depth;
395
396 /*
397 * preemption test can be made between sibling entities who are in the
398 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
399 * both tasks until we find their ancestors who are siblings of common
400 * parent.
401 */
402
403 /* First walk up until both entities are at same depth */
404 se_depth = (*se)->depth;
405 pse_depth = (*pse)->depth;
406
407 while (se_depth > pse_depth) {
408 se_depth--;
409 *se = parent_entity(*se);
410 }
411
412 while (pse_depth > se_depth) {
413 pse_depth--;
414 *pse = parent_entity(*pse);
415 }
416
417 while (!is_same_group(*se, *pse)) {
418 *se = parent_entity(*se);
419 *pse = parent_entity(*pse);
420 }
421 }
422
423 #else /* !CONFIG_FAIR_GROUP_SCHED */
424
task_of(struct sched_entity * se)425 static inline struct task_struct *task_of(struct sched_entity *se)
426 {
427 return container_of(se, struct task_struct, se);
428 }
429
rq_of(struct cfs_rq * cfs_rq)430 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
431 {
432 return container_of(cfs_rq, struct rq, cfs);
433 }
434
435 #define entity_is_task(se) 1
436
437 #define for_each_sched_entity(se) \
438 for (; se; se = NULL)
439
task_cfs_rq(struct task_struct * p)440 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
441 {
442 return &task_rq(p)->cfs;
443 }
444
cfs_rq_of(struct sched_entity * se)445 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
446 {
447 struct task_struct *p = task_of(se);
448 struct rq *rq = task_rq(p);
449
450 return &rq->cfs;
451 }
452
453 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)454 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
455 {
456 return NULL;
457 }
458
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)459 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
460 {
461 }
462
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)463 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
464 {
465 }
466
467 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
468 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
469
parent_entity(struct sched_entity * se)470 static inline struct sched_entity *parent_entity(struct sched_entity *se)
471 {
472 return NULL;
473 }
474
475 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)476 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
477 {
478 }
479
480 #endif /* CONFIG_FAIR_GROUP_SCHED */
481
482 static __always_inline
483 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
484
485 /**************************************************************
486 * Scheduling class tree data structure manipulation methods:
487 */
488
max_vruntime(u64 max_vruntime,u64 vruntime)489 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
490 {
491 s64 delta = (s64)(vruntime - max_vruntime);
492 if (delta > 0)
493 max_vruntime = vruntime;
494
495 return max_vruntime;
496 }
497
min_vruntime(u64 min_vruntime,u64 vruntime)498 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
499 {
500 s64 delta = (s64)(vruntime - min_vruntime);
501 if (delta < 0)
502 min_vruntime = vruntime;
503
504 return min_vruntime;
505 }
506
entity_before(struct sched_entity * a,struct sched_entity * b)507 static inline int entity_before(struct sched_entity *a,
508 struct sched_entity *b)
509 {
510 return (s64)(a->vruntime - b->vruntime) < 0;
511 }
512
update_min_vruntime(struct cfs_rq * cfs_rq)513 static void update_min_vruntime(struct cfs_rq *cfs_rq)
514 {
515 struct sched_entity *curr = cfs_rq->curr;
516
517 u64 vruntime = cfs_rq->min_vruntime;
518
519 if (curr) {
520 if (curr->on_rq)
521 vruntime = curr->vruntime;
522 else
523 curr = NULL;
524 }
525
526 if (cfs_rq->rb_leftmost) {
527 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
528 struct sched_entity,
529 run_node);
530
531 if (!curr)
532 vruntime = se->vruntime;
533 else
534 vruntime = min_vruntime(vruntime, se->vruntime);
535 }
536
537 /* ensure we never gain time by being placed backwards. */
538 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
539 #ifndef CONFIG_64BIT
540 smp_wmb();
541 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
542 #endif
543 }
544
545 /*
546 * Enqueue an entity into the rb-tree:
547 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)548 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
549 {
550 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
551 struct rb_node *parent = NULL;
552 struct sched_entity *entry;
553 int leftmost = 1;
554
555 /*
556 * Find the right place in the rbtree:
557 */
558 while (*link) {
559 parent = *link;
560 entry = rb_entry(parent, struct sched_entity, run_node);
561 /*
562 * We dont care about collisions. Nodes with
563 * the same key stay together.
564 */
565 if (entity_before(se, entry)) {
566 link = &parent->rb_left;
567 } else {
568 link = &parent->rb_right;
569 leftmost = 0;
570 }
571 }
572
573 /*
574 * Maintain a cache of leftmost tree entries (it is frequently
575 * used):
576 */
577 if (leftmost)
578 cfs_rq->rb_leftmost = &se->run_node;
579
580 rb_link_node(&se->run_node, parent, link);
581 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
582 }
583
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)584 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
585 {
586 if (cfs_rq->rb_leftmost == &se->run_node) {
587 struct rb_node *next_node;
588
589 next_node = rb_next(&se->run_node);
590 cfs_rq->rb_leftmost = next_node;
591 }
592
593 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
594 }
595
__pick_first_entity(struct cfs_rq * cfs_rq)596 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
597 {
598 struct rb_node *left = cfs_rq->rb_leftmost;
599
600 if (!left)
601 return NULL;
602
603 return rb_entry(left, struct sched_entity, run_node);
604 }
605
__pick_next_entity(struct sched_entity * se)606 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
607 {
608 struct rb_node *next = rb_next(&se->run_node);
609
610 if (!next)
611 return NULL;
612
613 return rb_entry(next, struct sched_entity, run_node);
614 }
615
616 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)617 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
618 {
619 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
620
621 if (!last)
622 return NULL;
623
624 return rb_entry(last, struct sched_entity, run_node);
625 }
626
627 /**************************************************************
628 * Scheduling class statistics methods:
629 */
630
sched_proc_update_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)631 int sched_proc_update_handler(struct ctl_table *table, int write,
632 void __user *buffer, size_t *lenp,
633 loff_t *ppos)
634 {
635 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
636 unsigned int factor = get_update_sysctl_factor();
637
638 if (ret || !write)
639 return ret;
640
641 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
642 sysctl_sched_min_granularity);
643
644 #define WRT_SYSCTL(name) \
645 (normalized_sysctl_##name = sysctl_##name / (factor))
646 WRT_SYSCTL(sched_min_granularity);
647 WRT_SYSCTL(sched_latency);
648 WRT_SYSCTL(sched_wakeup_granularity);
649 #undef WRT_SYSCTL
650
651 return 0;
652 }
653 #endif
654
655 /*
656 * delta /= w
657 */
calc_delta_fair(u64 delta,struct sched_entity * se)658 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
659 {
660 if (unlikely(se->load.weight != NICE_0_LOAD))
661 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
662
663 return delta;
664 }
665
666 /*
667 * The idea is to set a period in which each task runs once.
668 *
669 * When there are too many tasks (sched_nr_latency) we have to stretch
670 * this period because otherwise the slices get too small.
671 *
672 * p = (nr <= nl) ? l : l*nr/nl
673 */
__sched_period(unsigned long nr_running)674 static u64 __sched_period(unsigned long nr_running)
675 {
676 if (unlikely(nr_running > sched_nr_latency))
677 return nr_running * sysctl_sched_min_granularity;
678 else
679 return sysctl_sched_latency;
680 }
681
682 /*
683 * We calculate the wall-time slice from the period by taking a part
684 * proportional to the weight.
685 *
686 * s = p*P[w/rw]
687 */
sched_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)688 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
689 {
690 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
691
692 for_each_sched_entity(se) {
693 struct load_weight *load;
694 struct load_weight lw;
695
696 cfs_rq = cfs_rq_of(se);
697 load = &cfs_rq->load;
698
699 if (unlikely(!se->on_rq)) {
700 lw = cfs_rq->load;
701
702 update_load_add(&lw, se->load.weight);
703 load = &lw;
704 }
705 slice = __calc_delta(slice, se->load.weight, load);
706 }
707 return slice;
708 }
709
710 /*
711 * We calculate the vruntime slice of a to-be-inserted task.
712 *
713 * vs = s/w
714 */
sched_vslice(struct cfs_rq * cfs_rq,struct sched_entity * se)715 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
716 {
717 return calc_delta_fair(sched_slice(cfs_rq, se), se);
718 }
719
720 #ifdef CONFIG_SMP
721 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
722 static unsigned long task_h_load(struct task_struct *p);
723
724 /*
725 * We choose a half-life close to 1 scheduling period.
726 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
727 * dependent on this value.
728 */
729 #define LOAD_AVG_PERIOD 32
730 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
731 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
732
733 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)734 void init_entity_runnable_average(struct sched_entity *se)
735 {
736 struct sched_avg *sa = &se->avg;
737
738 sa->last_update_time = 0;
739 /*
740 * sched_avg's period_contrib should be strictly less then 1024, so
741 * we give it 1023 to make sure it is almost a period (1024us), and
742 * will definitely be update (after enqueue).
743 */
744 sa->period_contrib = 1023;
745 /*
746 * Tasks are intialized with full load to be seen as heavy tasks until
747 * they get a chance to stabilize to their real load level.
748 * Group entities are intialized with zero load to reflect the fact that
749 * nothing has been attached to the task group yet.
750 */
751 if (entity_is_task(se))
752 sa->load_avg = scale_load_down(se->load.weight);
753 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
754
755 /*
756 * At this point, util_avg won't be used in select_task_rq_fair anyway
757 */
758 sa->util_avg = 0;
759 sa->util_sum = 0;
760 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
761 }
762
763 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
764 static void attach_entity_cfs_rq(struct sched_entity *se);
765
766 /*
767 * With new tasks being created, their initial util_avgs are extrapolated
768 * based on the cfs_rq's current util_avg:
769 *
770 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
771 *
772 * However, in many cases, the above util_avg does not give a desired
773 * value. Moreover, the sum of the util_avgs may be divergent, such
774 * as when the series is a harmonic series.
775 *
776 * To solve this problem, we also cap the util_avg of successive tasks to
777 * only 1/2 of the left utilization budget:
778 *
779 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
780 *
781 * where n denotes the nth task.
782 *
783 * For example, a simplest series from the beginning would be like:
784 *
785 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
786 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
787 *
788 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
789 * if util_avg > util_avg_cap.
790 */
post_init_entity_util_avg(struct sched_entity * se)791 void post_init_entity_util_avg(struct sched_entity *se)
792 {
793 struct cfs_rq *cfs_rq = cfs_rq_of(se);
794 struct sched_avg *sa = &se->avg;
795 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
796
797 if (cap > 0) {
798 if (cfs_rq->avg.util_avg != 0) {
799 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
800 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
801
802 if (sa->util_avg > cap)
803 sa->util_avg = cap;
804 } else {
805 sa->util_avg = cap;
806 }
807 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
808 }
809
810 if (entity_is_task(se)) {
811 struct task_struct *p = task_of(se);
812 if (p->sched_class != &fair_sched_class) {
813 /*
814 * For !fair tasks do:
815 *
816 update_cfs_rq_load_avg(now, cfs_rq, false);
817 attach_entity_load_avg(cfs_rq, se);
818 switched_from_fair(rq, p);
819 *
820 * such that the next switched_to_fair() has the
821 * expected state.
822 */
823 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
824 return;
825 }
826 }
827
828 attach_entity_cfs_rq(se);
829 }
830
831 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)832 void init_entity_runnable_average(struct sched_entity *se)
833 {
834 }
post_init_entity_util_avg(struct sched_entity * se)835 void post_init_entity_util_avg(struct sched_entity *se)
836 {
837 }
update_tg_load_avg(struct cfs_rq * cfs_rq,int force)838 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
839 {
840 }
841 #endif /* CONFIG_SMP */
842
843 /*
844 * Update the current task's runtime statistics.
845 */
update_curr(struct cfs_rq * cfs_rq)846 static void update_curr(struct cfs_rq *cfs_rq)
847 {
848 struct sched_entity *curr = cfs_rq->curr;
849 u64 now = rq_clock_task(rq_of(cfs_rq));
850 u64 delta_exec;
851
852 if (unlikely(!curr))
853 return;
854
855 delta_exec = now - curr->exec_start;
856 if (unlikely((s64)delta_exec <= 0))
857 return;
858
859 curr->exec_start = now;
860
861 schedstat_set(curr->statistics.exec_max,
862 max(delta_exec, curr->statistics.exec_max));
863
864 curr->sum_exec_runtime += delta_exec;
865 schedstat_add(cfs_rq->exec_clock, delta_exec);
866
867 curr->vruntime += calc_delta_fair(delta_exec, curr);
868 update_min_vruntime(cfs_rq);
869
870 if (entity_is_task(curr)) {
871 struct task_struct *curtask = task_of(curr);
872
873 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
874 cpuacct_charge(curtask, delta_exec);
875 account_group_exec_runtime(curtask, delta_exec);
876 }
877
878 account_cfs_rq_runtime(cfs_rq, delta_exec);
879 }
880
update_curr_fair(struct rq * rq)881 static void update_curr_fair(struct rq *rq)
882 {
883 update_curr(cfs_rq_of(&rq->curr->se));
884 }
885
886 static inline void
update_stats_wait_start(struct cfs_rq * cfs_rq,struct sched_entity * se)887 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
888 {
889 u64 wait_start, prev_wait_start;
890
891 if (!schedstat_enabled())
892 return;
893
894 wait_start = rq_clock(rq_of(cfs_rq));
895 prev_wait_start = schedstat_val(se->statistics.wait_start);
896
897 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
898 likely(wait_start > prev_wait_start))
899 wait_start -= prev_wait_start;
900
901 schedstat_set(se->statistics.wait_start, wait_start);
902 }
903
904 static inline void
update_stats_wait_end(struct cfs_rq * cfs_rq,struct sched_entity * se)905 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
906 {
907 struct task_struct *p;
908 u64 delta;
909
910 if (!schedstat_enabled())
911 return;
912
913 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
914
915 if (entity_is_task(se)) {
916 p = task_of(se);
917 if (task_on_rq_migrating(p)) {
918 /*
919 * Preserve migrating task's wait time so wait_start
920 * time stamp can be adjusted to accumulate wait time
921 * prior to migration.
922 */
923 schedstat_set(se->statistics.wait_start, delta);
924 return;
925 }
926 trace_sched_stat_wait(p, delta);
927 }
928
929 schedstat_set(se->statistics.wait_max,
930 max(schedstat_val(se->statistics.wait_max), delta));
931 schedstat_inc(se->statistics.wait_count);
932 schedstat_add(se->statistics.wait_sum, delta);
933 schedstat_set(se->statistics.wait_start, 0);
934 }
935
936 static inline void
update_stats_enqueue_sleeper(struct cfs_rq * cfs_rq,struct sched_entity * se)937 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
938 {
939 struct task_struct *tsk = NULL;
940 u64 sleep_start, block_start;
941
942 if (!schedstat_enabled())
943 return;
944
945 sleep_start = schedstat_val(se->statistics.sleep_start);
946 block_start = schedstat_val(se->statistics.block_start);
947
948 if (entity_is_task(se))
949 tsk = task_of(se);
950
951 if (sleep_start) {
952 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
953
954 if ((s64)delta < 0)
955 delta = 0;
956
957 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
958 schedstat_set(se->statistics.sleep_max, delta);
959
960 schedstat_set(se->statistics.sleep_start, 0);
961 schedstat_add(se->statistics.sum_sleep_runtime, delta);
962
963 if (tsk) {
964 account_scheduler_latency(tsk, delta >> 10, 1);
965 trace_sched_stat_sleep(tsk, delta);
966 }
967 }
968 if (block_start) {
969 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
970
971 if ((s64)delta < 0)
972 delta = 0;
973
974 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
975 schedstat_set(se->statistics.block_max, delta);
976
977 schedstat_set(se->statistics.block_start, 0);
978 schedstat_add(se->statistics.sum_sleep_runtime, delta);
979
980 if (tsk) {
981 if (tsk->in_iowait) {
982 schedstat_add(se->statistics.iowait_sum, delta);
983 schedstat_inc(se->statistics.iowait_count);
984 trace_sched_stat_iowait(tsk, delta);
985 }
986
987 trace_sched_stat_blocked(tsk, delta);
988 trace_sched_blocked_reason(tsk);
989
990 /*
991 * Blocking time is in units of nanosecs, so shift by
992 * 20 to get a milliseconds-range estimation of the
993 * amount of time that the task spent sleeping:
994 */
995 if (unlikely(prof_on == SLEEP_PROFILING)) {
996 profile_hits(SLEEP_PROFILING,
997 (void *)get_wchan(tsk),
998 delta >> 20);
999 }
1000 account_scheduler_latency(tsk, delta >> 10, 0);
1001 }
1002 }
1003 }
1004
1005 /*
1006 * Task is being enqueued - update stats:
1007 */
1008 static inline void
update_stats_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1009 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1010 {
1011 if (!schedstat_enabled())
1012 return;
1013
1014 /*
1015 * Are we enqueueing a waiting task? (for current tasks
1016 * a dequeue/enqueue event is a NOP)
1017 */
1018 if (se != cfs_rq->curr)
1019 update_stats_wait_start(cfs_rq, se);
1020
1021 if (flags & ENQUEUE_WAKEUP)
1022 update_stats_enqueue_sleeper(cfs_rq, se);
1023 }
1024
1025 static inline void
update_stats_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1026 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1027 {
1028
1029 if (!schedstat_enabled())
1030 return;
1031
1032 /*
1033 * Mark the end of the wait period if dequeueing a
1034 * waiting task:
1035 */
1036 if (se != cfs_rq->curr)
1037 update_stats_wait_end(cfs_rq, se);
1038
1039 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1040 struct task_struct *tsk = task_of(se);
1041
1042 if (tsk->state & TASK_INTERRUPTIBLE)
1043 schedstat_set(se->statistics.sleep_start,
1044 rq_clock(rq_of(cfs_rq)));
1045 if (tsk->state & TASK_UNINTERRUPTIBLE)
1046 schedstat_set(se->statistics.block_start,
1047 rq_clock(rq_of(cfs_rq)));
1048 }
1049 }
1050
1051 /*
1052 * We are picking a new current task - update its stats:
1053 */
1054 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1055 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1056 {
1057 /*
1058 * We are starting a new run period:
1059 */
1060 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1061 }
1062
1063 /**************************************************
1064 * Scheduling class queueing methods:
1065 */
1066
1067 #ifdef CONFIG_NUMA_BALANCING
1068 /*
1069 * Approximate time to scan a full NUMA task in ms. The task scan period is
1070 * calculated based on the tasks virtual memory size and
1071 * numa_balancing_scan_size.
1072 */
1073 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1074 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1075
1076 /* Portion of address space to scan in MB */
1077 unsigned int sysctl_numa_balancing_scan_size = 256;
1078
1079 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1080 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1081
task_nr_scan_windows(struct task_struct * p)1082 static unsigned int task_nr_scan_windows(struct task_struct *p)
1083 {
1084 unsigned long rss = 0;
1085 unsigned long nr_scan_pages;
1086
1087 /*
1088 * Calculations based on RSS as non-present and empty pages are skipped
1089 * by the PTE scanner and NUMA hinting faults should be trapped based
1090 * on resident pages
1091 */
1092 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1093 rss = get_mm_rss(p->mm);
1094 if (!rss)
1095 rss = nr_scan_pages;
1096
1097 rss = round_up(rss, nr_scan_pages);
1098 return rss / nr_scan_pages;
1099 }
1100
1101 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1102 #define MAX_SCAN_WINDOW 2560
1103
task_scan_min(struct task_struct * p)1104 static unsigned int task_scan_min(struct task_struct *p)
1105 {
1106 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1107 unsigned int scan, floor;
1108 unsigned int windows = 1;
1109
1110 if (scan_size < MAX_SCAN_WINDOW)
1111 windows = MAX_SCAN_WINDOW / scan_size;
1112 floor = 1000 / windows;
1113
1114 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1115 return max_t(unsigned int, floor, scan);
1116 }
1117
task_scan_max(struct task_struct * p)1118 static unsigned int task_scan_max(struct task_struct *p)
1119 {
1120 unsigned int smin = task_scan_min(p);
1121 unsigned int smax;
1122
1123 /* Watch for min being lower than max due to floor calculations */
1124 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1125 return max(smin, smax);
1126 }
1127
account_numa_enqueue(struct rq * rq,struct task_struct * p)1128 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1129 {
1130 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1131 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1132 }
1133
account_numa_dequeue(struct rq * rq,struct task_struct * p)1134 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1135 {
1136 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1137 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1138 }
1139
1140 struct numa_group {
1141 atomic_t refcount;
1142
1143 spinlock_t lock; /* nr_tasks, tasks */
1144 int nr_tasks;
1145 pid_t gid;
1146 int active_nodes;
1147
1148 struct rcu_head rcu;
1149 unsigned long total_faults;
1150 unsigned long max_faults_cpu;
1151 /*
1152 * Faults_cpu is used to decide whether memory should move
1153 * towards the CPU. As a consequence, these stats are weighted
1154 * more by CPU use than by memory faults.
1155 */
1156 unsigned long *faults_cpu;
1157 unsigned long faults[0];
1158 };
1159
1160 /* Shared or private faults. */
1161 #define NR_NUMA_HINT_FAULT_TYPES 2
1162
1163 /* Memory and CPU locality */
1164 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1165
1166 /* Averaged statistics, and temporary buffers. */
1167 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1168
task_numa_group_id(struct task_struct * p)1169 pid_t task_numa_group_id(struct task_struct *p)
1170 {
1171 return p->numa_group ? p->numa_group->gid : 0;
1172 }
1173
1174 /*
1175 * The averaged statistics, shared & private, memory & cpu,
1176 * occupy the first half of the array. The second half of the
1177 * array is for current counters, which are averaged into the
1178 * first set by task_numa_placement.
1179 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1180 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1181 {
1182 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1183 }
1184
task_faults(struct task_struct * p,int nid)1185 static inline unsigned long task_faults(struct task_struct *p, int nid)
1186 {
1187 if (!p->numa_faults)
1188 return 0;
1189
1190 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1191 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1192 }
1193
group_faults(struct task_struct * p,int nid)1194 static inline unsigned long group_faults(struct task_struct *p, int nid)
1195 {
1196 if (!p->numa_group)
1197 return 0;
1198
1199 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1200 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1201 }
1202
group_faults_cpu(struct numa_group * group,int nid)1203 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1204 {
1205 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1206 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1207 }
1208
1209 /*
1210 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1211 * considered part of a numa group's pseudo-interleaving set. Migrations
1212 * between these nodes are slowed down, to allow things to settle down.
1213 */
1214 #define ACTIVE_NODE_FRACTION 3
1215
numa_is_active_node(int nid,struct numa_group * ng)1216 static bool numa_is_active_node(int nid, struct numa_group *ng)
1217 {
1218 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1219 }
1220
1221 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int maxdist,bool task)1222 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1223 int maxdist, bool task)
1224 {
1225 unsigned long score = 0;
1226 int node;
1227
1228 /*
1229 * All nodes are directly connected, and the same distance
1230 * from each other. No need for fancy placement algorithms.
1231 */
1232 if (sched_numa_topology_type == NUMA_DIRECT)
1233 return 0;
1234
1235 /*
1236 * This code is called for each node, introducing N^2 complexity,
1237 * which should be ok given the number of nodes rarely exceeds 8.
1238 */
1239 for_each_online_node(node) {
1240 unsigned long faults;
1241 int dist = node_distance(nid, node);
1242
1243 /*
1244 * The furthest away nodes in the system are not interesting
1245 * for placement; nid was already counted.
1246 */
1247 if (dist == sched_max_numa_distance || node == nid)
1248 continue;
1249
1250 /*
1251 * On systems with a backplane NUMA topology, compare groups
1252 * of nodes, and move tasks towards the group with the most
1253 * memory accesses. When comparing two nodes at distance
1254 * "hoplimit", only nodes closer by than "hoplimit" are part
1255 * of each group. Skip other nodes.
1256 */
1257 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1258 dist > maxdist)
1259 continue;
1260
1261 /* Add up the faults from nearby nodes. */
1262 if (task)
1263 faults = task_faults(p, node);
1264 else
1265 faults = group_faults(p, node);
1266
1267 /*
1268 * On systems with a glueless mesh NUMA topology, there are
1269 * no fixed "groups of nodes". Instead, nodes that are not
1270 * directly connected bounce traffic through intermediate
1271 * nodes; a numa_group can occupy any set of nodes.
1272 * The further away a node is, the less the faults count.
1273 * This seems to result in good task placement.
1274 */
1275 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1276 faults *= (sched_max_numa_distance - dist);
1277 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1278 }
1279
1280 score += faults;
1281 }
1282
1283 return score;
1284 }
1285
1286 /*
1287 * These return the fraction of accesses done by a particular task, or
1288 * task group, on a particular numa node. The group weight is given a
1289 * larger multiplier, in order to group tasks together that are almost
1290 * evenly spread out between numa nodes.
1291 */
task_weight(struct task_struct * p,int nid,int dist)1292 static inline unsigned long task_weight(struct task_struct *p, int nid,
1293 int dist)
1294 {
1295 unsigned long faults, total_faults;
1296
1297 if (!p->numa_faults)
1298 return 0;
1299
1300 total_faults = p->total_numa_faults;
1301
1302 if (!total_faults)
1303 return 0;
1304
1305 faults = task_faults(p, nid);
1306 faults += score_nearby_nodes(p, nid, dist, true);
1307
1308 return 1000 * faults / total_faults;
1309 }
1310
group_weight(struct task_struct * p,int nid,int dist)1311 static inline unsigned long group_weight(struct task_struct *p, int nid,
1312 int dist)
1313 {
1314 unsigned long faults, total_faults;
1315
1316 if (!p->numa_group)
1317 return 0;
1318
1319 total_faults = p->numa_group->total_faults;
1320
1321 if (!total_faults)
1322 return 0;
1323
1324 faults = group_faults(p, nid);
1325 faults += score_nearby_nodes(p, nid, dist, false);
1326
1327 return 1000 * faults / total_faults;
1328 }
1329
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1330 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1331 int src_nid, int dst_cpu)
1332 {
1333 struct numa_group *ng = p->numa_group;
1334 int dst_nid = cpu_to_node(dst_cpu);
1335 int last_cpupid, this_cpupid;
1336
1337 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1338
1339 /*
1340 * Multi-stage node selection is used in conjunction with a periodic
1341 * migration fault to build a temporal task<->page relation. By using
1342 * a two-stage filter we remove short/unlikely relations.
1343 *
1344 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1345 * a task's usage of a particular page (n_p) per total usage of this
1346 * page (n_t) (in a given time-span) to a probability.
1347 *
1348 * Our periodic faults will sample this probability and getting the
1349 * same result twice in a row, given these samples are fully
1350 * independent, is then given by P(n)^2, provided our sample period
1351 * is sufficiently short compared to the usage pattern.
1352 *
1353 * This quadric squishes small probabilities, making it less likely we
1354 * act on an unlikely task<->page relation.
1355 */
1356 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1357 if (!cpupid_pid_unset(last_cpupid) &&
1358 cpupid_to_nid(last_cpupid) != dst_nid)
1359 return false;
1360
1361 /* Always allow migrate on private faults */
1362 if (cpupid_match_pid(p, last_cpupid))
1363 return true;
1364
1365 /* A shared fault, but p->numa_group has not been set up yet. */
1366 if (!ng)
1367 return true;
1368
1369 /*
1370 * Destination node is much more heavily used than the source
1371 * node? Allow migration.
1372 */
1373 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1374 ACTIVE_NODE_FRACTION)
1375 return true;
1376
1377 /*
1378 * Distribute memory according to CPU & memory use on each node,
1379 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1380 *
1381 * faults_cpu(dst) 3 faults_cpu(src)
1382 * --------------- * - > ---------------
1383 * faults_mem(dst) 4 faults_mem(src)
1384 */
1385 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1386 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1387 }
1388
1389 static unsigned long weighted_cpuload(const int cpu);
1390 static unsigned long source_load(int cpu, int type);
1391 static unsigned long target_load(int cpu, int type);
1392 static unsigned long capacity_of(int cpu);
1393 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1394
1395 /* Cached statistics for all CPUs within a node */
1396 struct numa_stats {
1397 unsigned long nr_running;
1398 unsigned long load;
1399
1400 /* Total compute capacity of CPUs on a node */
1401 unsigned long compute_capacity;
1402
1403 /* Approximate capacity in terms of runnable tasks on a node */
1404 unsigned long task_capacity;
1405 int has_free_capacity;
1406 };
1407
1408 /*
1409 * XXX borrowed from update_sg_lb_stats
1410 */
update_numa_stats(struct numa_stats * ns,int nid)1411 static void update_numa_stats(struct numa_stats *ns, int nid)
1412 {
1413 int smt, cpu, cpus = 0;
1414 unsigned long capacity;
1415
1416 memset(ns, 0, sizeof(*ns));
1417 for_each_cpu(cpu, cpumask_of_node(nid)) {
1418 struct rq *rq = cpu_rq(cpu);
1419
1420 ns->nr_running += rq->nr_running;
1421 ns->load += weighted_cpuload(cpu);
1422 ns->compute_capacity += capacity_of(cpu);
1423
1424 cpus++;
1425 }
1426
1427 /*
1428 * If we raced with hotplug and there are no CPUs left in our mask
1429 * the @ns structure is NULL'ed and task_numa_compare() will
1430 * not find this node attractive.
1431 *
1432 * We'll either bail at !has_free_capacity, or we'll detect a huge
1433 * imbalance and bail there.
1434 */
1435 if (!cpus)
1436 return;
1437
1438 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1439 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1440 capacity = cpus / smt; /* cores */
1441
1442 ns->task_capacity = min_t(unsigned, capacity,
1443 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1444 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1445 }
1446
1447 struct task_numa_env {
1448 struct task_struct *p;
1449
1450 int src_cpu, src_nid;
1451 int dst_cpu, dst_nid;
1452
1453 struct numa_stats src_stats, dst_stats;
1454
1455 int imbalance_pct;
1456 int dist;
1457
1458 struct task_struct *best_task;
1459 long best_imp;
1460 int best_cpu;
1461 };
1462
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)1463 static void task_numa_assign(struct task_numa_env *env,
1464 struct task_struct *p, long imp)
1465 {
1466 if (env->best_task)
1467 put_task_struct(env->best_task);
1468 if (p)
1469 get_task_struct(p);
1470
1471 env->best_task = p;
1472 env->best_imp = imp;
1473 env->best_cpu = env->dst_cpu;
1474 }
1475
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)1476 static bool load_too_imbalanced(long src_load, long dst_load,
1477 struct task_numa_env *env)
1478 {
1479 long imb, old_imb;
1480 long orig_src_load, orig_dst_load;
1481 long src_capacity, dst_capacity;
1482
1483 /*
1484 * The load is corrected for the CPU capacity available on each node.
1485 *
1486 * src_load dst_load
1487 * ------------ vs ---------
1488 * src_capacity dst_capacity
1489 */
1490 src_capacity = env->src_stats.compute_capacity;
1491 dst_capacity = env->dst_stats.compute_capacity;
1492
1493 /* We care about the slope of the imbalance, not the direction. */
1494 if (dst_load < src_load)
1495 swap(dst_load, src_load);
1496
1497 /* Is the difference below the threshold? */
1498 imb = dst_load * src_capacity * 100 -
1499 src_load * dst_capacity * env->imbalance_pct;
1500 if (imb <= 0)
1501 return false;
1502
1503 /*
1504 * The imbalance is above the allowed threshold.
1505 * Compare it with the old imbalance.
1506 */
1507 orig_src_load = env->src_stats.load;
1508 orig_dst_load = env->dst_stats.load;
1509
1510 if (orig_dst_load < orig_src_load)
1511 swap(orig_dst_load, orig_src_load);
1512
1513 old_imb = orig_dst_load * src_capacity * 100 -
1514 orig_src_load * dst_capacity * env->imbalance_pct;
1515
1516 /* Would this change make things worse? */
1517 return (imb > old_imb);
1518 }
1519
1520 /*
1521 * This checks if the overall compute and NUMA accesses of the system would
1522 * be improved if the source tasks was migrated to the target dst_cpu taking
1523 * into account that it might be best if task running on the dst_cpu should
1524 * be exchanged with the source task
1525 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp)1526 static void task_numa_compare(struct task_numa_env *env,
1527 long taskimp, long groupimp)
1528 {
1529 struct rq *src_rq = cpu_rq(env->src_cpu);
1530 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1531 struct task_struct *cur;
1532 long src_load, dst_load;
1533 long load;
1534 long imp = env->p->numa_group ? groupimp : taskimp;
1535 long moveimp = imp;
1536 int dist = env->dist;
1537
1538 rcu_read_lock();
1539 cur = task_rcu_dereference(&dst_rq->curr);
1540 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1541 cur = NULL;
1542
1543 /*
1544 * Because we have preemption enabled we can get migrated around and
1545 * end try selecting ourselves (current == env->p) as a swap candidate.
1546 */
1547 if (cur == env->p)
1548 goto unlock;
1549
1550 /*
1551 * "imp" is the fault differential for the source task between the
1552 * source and destination node. Calculate the total differential for
1553 * the source task and potential destination task. The more negative
1554 * the value is, the more rmeote accesses that would be expected to
1555 * be incurred if the tasks were swapped.
1556 */
1557 if (cur) {
1558 /* Skip this swap candidate if cannot move to the source cpu */
1559 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1560 goto unlock;
1561
1562 /*
1563 * If dst and source tasks are in the same NUMA group, or not
1564 * in any group then look only at task weights.
1565 */
1566 if (cur->numa_group == env->p->numa_group) {
1567 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1568 task_weight(cur, env->dst_nid, dist);
1569 /*
1570 * Add some hysteresis to prevent swapping the
1571 * tasks within a group over tiny differences.
1572 */
1573 if (cur->numa_group)
1574 imp -= imp/16;
1575 } else {
1576 /*
1577 * Compare the group weights. If a task is all by
1578 * itself (not part of a group), use the task weight
1579 * instead.
1580 */
1581 if (cur->numa_group)
1582 imp += group_weight(cur, env->src_nid, dist) -
1583 group_weight(cur, env->dst_nid, dist);
1584 else
1585 imp += task_weight(cur, env->src_nid, dist) -
1586 task_weight(cur, env->dst_nid, dist);
1587 }
1588 }
1589
1590 if (imp <= env->best_imp && moveimp <= env->best_imp)
1591 goto unlock;
1592
1593 if (!cur) {
1594 /* Is there capacity at our destination? */
1595 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1596 !env->dst_stats.has_free_capacity)
1597 goto unlock;
1598
1599 goto balance;
1600 }
1601
1602 /* Balance doesn't matter much if we're running a task per cpu */
1603 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1604 dst_rq->nr_running == 1)
1605 goto assign;
1606
1607 /*
1608 * In the overloaded case, try and keep the load balanced.
1609 */
1610 balance:
1611 load = task_h_load(env->p);
1612 dst_load = env->dst_stats.load + load;
1613 src_load = env->src_stats.load - load;
1614
1615 if (moveimp > imp && moveimp > env->best_imp) {
1616 /*
1617 * If the improvement from just moving env->p direction is
1618 * better than swapping tasks around, check if a move is
1619 * possible. Store a slightly smaller score than moveimp,
1620 * so an actually idle CPU will win.
1621 */
1622 if (!load_too_imbalanced(src_load, dst_load, env)) {
1623 imp = moveimp - 1;
1624 cur = NULL;
1625 goto assign;
1626 }
1627 }
1628
1629 if (imp <= env->best_imp)
1630 goto unlock;
1631
1632 if (cur) {
1633 load = task_h_load(cur);
1634 dst_load -= load;
1635 src_load += load;
1636 }
1637
1638 if (load_too_imbalanced(src_load, dst_load, env))
1639 goto unlock;
1640
1641 /*
1642 * One idle CPU per node is evaluated for a task numa move.
1643 * Call select_idle_sibling to maybe find a better one.
1644 */
1645 if (!cur) {
1646 /*
1647 * select_idle_siblings() uses an per-cpu cpumask that
1648 * can be used from IRQ context.
1649 */
1650 local_irq_disable();
1651 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1652 env->dst_cpu);
1653 local_irq_enable();
1654 }
1655
1656 assign:
1657 task_numa_assign(env, cur, imp);
1658 unlock:
1659 rcu_read_unlock();
1660 }
1661
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)1662 static void task_numa_find_cpu(struct task_numa_env *env,
1663 long taskimp, long groupimp)
1664 {
1665 int cpu;
1666
1667 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1668 /* Skip this CPU if the source task cannot migrate */
1669 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1670 continue;
1671
1672 env->dst_cpu = cpu;
1673 task_numa_compare(env, taskimp, groupimp);
1674 }
1675 }
1676
1677 /* Only move tasks to a NUMA node less busy than the current node. */
numa_has_capacity(struct task_numa_env * env)1678 static bool numa_has_capacity(struct task_numa_env *env)
1679 {
1680 struct numa_stats *src = &env->src_stats;
1681 struct numa_stats *dst = &env->dst_stats;
1682
1683 if (src->has_free_capacity && !dst->has_free_capacity)
1684 return false;
1685
1686 /*
1687 * Only consider a task move if the source has a higher load
1688 * than the destination, corrected for CPU capacity on each node.
1689 *
1690 * src->load dst->load
1691 * --------------------- vs ---------------------
1692 * src->compute_capacity dst->compute_capacity
1693 */
1694 if (src->load * dst->compute_capacity * env->imbalance_pct >
1695
1696 dst->load * src->compute_capacity * 100)
1697 return true;
1698
1699 return false;
1700 }
1701
task_numa_migrate(struct task_struct * p)1702 static int task_numa_migrate(struct task_struct *p)
1703 {
1704 struct task_numa_env env = {
1705 .p = p,
1706
1707 .src_cpu = task_cpu(p),
1708 .src_nid = task_node(p),
1709
1710 .imbalance_pct = 112,
1711
1712 .best_task = NULL,
1713 .best_imp = 0,
1714 .best_cpu = -1,
1715 };
1716 struct sched_domain *sd;
1717 unsigned long taskweight, groupweight;
1718 int nid, ret, dist;
1719 long taskimp, groupimp;
1720
1721 /*
1722 * Pick the lowest SD_NUMA domain, as that would have the smallest
1723 * imbalance and would be the first to start moving tasks about.
1724 *
1725 * And we want to avoid any moving of tasks about, as that would create
1726 * random movement of tasks -- counter the numa conditions we're trying
1727 * to satisfy here.
1728 */
1729 rcu_read_lock();
1730 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1731 if (sd)
1732 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1733 rcu_read_unlock();
1734
1735 /*
1736 * Cpusets can break the scheduler domain tree into smaller
1737 * balance domains, some of which do not cross NUMA boundaries.
1738 * Tasks that are "trapped" in such domains cannot be migrated
1739 * elsewhere, so there is no point in (re)trying.
1740 */
1741 if (unlikely(!sd)) {
1742 p->numa_preferred_nid = task_node(p);
1743 return -EINVAL;
1744 }
1745
1746 env.dst_nid = p->numa_preferred_nid;
1747 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1748 taskweight = task_weight(p, env.src_nid, dist);
1749 groupweight = group_weight(p, env.src_nid, dist);
1750 update_numa_stats(&env.src_stats, env.src_nid);
1751 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1752 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1753 update_numa_stats(&env.dst_stats, env.dst_nid);
1754
1755 /* Try to find a spot on the preferred nid. */
1756 if (numa_has_capacity(&env))
1757 task_numa_find_cpu(&env, taskimp, groupimp);
1758
1759 /*
1760 * Look at other nodes in these cases:
1761 * - there is no space available on the preferred_nid
1762 * - the task is part of a numa_group that is interleaved across
1763 * multiple NUMA nodes; in order to better consolidate the group,
1764 * we need to check other locations.
1765 */
1766 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1767 for_each_online_node(nid) {
1768 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1769 continue;
1770
1771 dist = node_distance(env.src_nid, env.dst_nid);
1772 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1773 dist != env.dist) {
1774 taskweight = task_weight(p, env.src_nid, dist);
1775 groupweight = group_weight(p, env.src_nid, dist);
1776 }
1777
1778 /* Only consider nodes where both task and groups benefit */
1779 taskimp = task_weight(p, nid, dist) - taskweight;
1780 groupimp = group_weight(p, nid, dist) - groupweight;
1781 if (taskimp < 0 && groupimp < 0)
1782 continue;
1783
1784 env.dist = dist;
1785 env.dst_nid = nid;
1786 update_numa_stats(&env.dst_stats, env.dst_nid);
1787 if (numa_has_capacity(&env))
1788 task_numa_find_cpu(&env, taskimp, groupimp);
1789 }
1790 }
1791
1792 /*
1793 * If the task is part of a workload that spans multiple NUMA nodes,
1794 * and is migrating into one of the workload's active nodes, remember
1795 * this node as the task's preferred numa node, so the workload can
1796 * settle down.
1797 * A task that migrated to a second choice node will be better off
1798 * trying for a better one later. Do not set the preferred node here.
1799 */
1800 if (p->numa_group) {
1801 struct numa_group *ng = p->numa_group;
1802
1803 if (env.best_cpu == -1)
1804 nid = env.src_nid;
1805 else
1806 nid = env.dst_nid;
1807
1808 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1809 sched_setnuma(p, env.dst_nid);
1810 }
1811
1812 /* No better CPU than the current one was found. */
1813 if (env.best_cpu == -1)
1814 return -EAGAIN;
1815
1816 /*
1817 * Reset the scan period if the task is being rescheduled on an
1818 * alternative node to recheck if the tasks is now properly placed.
1819 */
1820 p->numa_scan_period = task_scan_min(p);
1821
1822 if (env.best_task == NULL) {
1823 ret = migrate_task_to(p, env.best_cpu);
1824 if (ret != 0)
1825 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1826 return ret;
1827 }
1828
1829 ret = migrate_swap(p, env.best_task);
1830 if (ret != 0)
1831 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1832 put_task_struct(env.best_task);
1833 return ret;
1834 }
1835
1836 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)1837 static void numa_migrate_preferred(struct task_struct *p)
1838 {
1839 unsigned long interval = HZ;
1840
1841 /* This task has no NUMA fault statistics yet */
1842 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1843 return;
1844
1845 /* Periodically retry migrating the task to the preferred node */
1846 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1847 p->numa_migrate_retry = jiffies + interval;
1848
1849 /* Success if task is already running on preferred CPU */
1850 if (task_node(p) == p->numa_preferred_nid)
1851 return;
1852
1853 /* Otherwise, try migrate to a CPU on the preferred node */
1854 task_numa_migrate(p);
1855 }
1856
1857 /*
1858 * Find out how many nodes on the workload is actively running on. Do this by
1859 * tracking the nodes from which NUMA hinting faults are triggered. This can
1860 * be different from the set of nodes where the workload's memory is currently
1861 * located.
1862 */
numa_group_count_active_nodes(struct numa_group * numa_group)1863 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1864 {
1865 unsigned long faults, max_faults = 0;
1866 int nid, active_nodes = 0;
1867
1868 for_each_online_node(nid) {
1869 faults = group_faults_cpu(numa_group, nid);
1870 if (faults > max_faults)
1871 max_faults = faults;
1872 }
1873
1874 for_each_online_node(nid) {
1875 faults = group_faults_cpu(numa_group, nid);
1876 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1877 active_nodes++;
1878 }
1879
1880 numa_group->max_faults_cpu = max_faults;
1881 numa_group->active_nodes = active_nodes;
1882 }
1883
1884 /*
1885 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1886 * increments. The more local the fault statistics are, the higher the scan
1887 * period will be for the next scan window. If local/(local+remote) ratio is
1888 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1889 * the scan period will decrease. Aim for 70% local accesses.
1890 */
1891 #define NUMA_PERIOD_SLOTS 10
1892 #define NUMA_PERIOD_THRESHOLD 7
1893
1894 /*
1895 * Increase the scan period (slow down scanning) if the majority of
1896 * our memory is already on our local node, or if the majority of
1897 * the page accesses are shared with other processes.
1898 * Otherwise, decrease the scan period.
1899 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)1900 static void update_task_scan_period(struct task_struct *p,
1901 unsigned long shared, unsigned long private)
1902 {
1903 unsigned int period_slot;
1904 int ratio;
1905 int diff;
1906
1907 unsigned long remote = p->numa_faults_locality[0];
1908 unsigned long local = p->numa_faults_locality[1];
1909
1910 /*
1911 * If there were no record hinting faults then either the task is
1912 * completely idle or all activity is areas that are not of interest
1913 * to automatic numa balancing. Related to that, if there were failed
1914 * migration then it implies we are migrating too quickly or the local
1915 * node is overloaded. In either case, scan slower
1916 */
1917 if (local + shared == 0 || p->numa_faults_locality[2]) {
1918 p->numa_scan_period = min(p->numa_scan_period_max,
1919 p->numa_scan_period << 1);
1920
1921 p->mm->numa_next_scan = jiffies +
1922 msecs_to_jiffies(p->numa_scan_period);
1923
1924 return;
1925 }
1926
1927 /*
1928 * Prepare to scale scan period relative to the current period.
1929 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1930 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1931 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1932 */
1933 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1934 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1935 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1936 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1937 if (!slot)
1938 slot = 1;
1939 diff = slot * period_slot;
1940 } else {
1941 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1942
1943 /*
1944 * Scale scan rate increases based on sharing. There is an
1945 * inverse relationship between the degree of sharing and
1946 * the adjustment made to the scanning period. Broadly
1947 * speaking the intent is that there is little point
1948 * scanning faster if shared accesses dominate as it may
1949 * simply bounce migrations uselessly
1950 */
1951 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1952 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1953 }
1954
1955 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1956 task_scan_min(p), task_scan_max(p));
1957 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1958 }
1959
1960 /*
1961 * Get the fraction of time the task has been running since the last
1962 * NUMA placement cycle. The scheduler keeps similar statistics, but
1963 * decays those on a 32ms period, which is orders of magnitude off
1964 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1965 * stats only if the task is so new there are no NUMA statistics yet.
1966 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)1967 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1968 {
1969 u64 runtime, delta, now;
1970 /* Use the start of this time slice to avoid calculations. */
1971 now = p->se.exec_start;
1972 runtime = p->se.sum_exec_runtime;
1973
1974 if (p->last_task_numa_placement) {
1975 delta = runtime - p->last_sum_exec_runtime;
1976 *period = now - p->last_task_numa_placement;
1977 } else {
1978 delta = p->se.avg.load_sum / p->se.load.weight;
1979 *period = LOAD_AVG_MAX;
1980 }
1981
1982 p->last_sum_exec_runtime = runtime;
1983 p->last_task_numa_placement = now;
1984
1985 return delta;
1986 }
1987
1988 /*
1989 * Determine the preferred nid for a task in a numa_group. This needs to
1990 * be done in a way that produces consistent results with group_weight,
1991 * otherwise workloads might not converge.
1992 */
preferred_group_nid(struct task_struct * p,int nid)1993 static int preferred_group_nid(struct task_struct *p, int nid)
1994 {
1995 nodemask_t nodes;
1996 int dist;
1997
1998 /* Direct connections between all NUMA nodes. */
1999 if (sched_numa_topology_type == NUMA_DIRECT)
2000 return nid;
2001
2002 /*
2003 * On a system with glueless mesh NUMA topology, group_weight
2004 * scores nodes according to the number of NUMA hinting faults on
2005 * both the node itself, and on nearby nodes.
2006 */
2007 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2008 unsigned long score, max_score = 0;
2009 int node, max_node = nid;
2010
2011 dist = sched_max_numa_distance;
2012
2013 for_each_online_node(node) {
2014 score = group_weight(p, node, dist);
2015 if (score > max_score) {
2016 max_score = score;
2017 max_node = node;
2018 }
2019 }
2020 return max_node;
2021 }
2022
2023 /*
2024 * Finding the preferred nid in a system with NUMA backplane
2025 * interconnect topology is more involved. The goal is to locate
2026 * tasks from numa_groups near each other in the system, and
2027 * untangle workloads from different sides of the system. This requires
2028 * searching down the hierarchy of node groups, recursively searching
2029 * inside the highest scoring group of nodes. The nodemask tricks
2030 * keep the complexity of the search down.
2031 */
2032 nodes = node_online_map;
2033 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2034 unsigned long max_faults = 0;
2035 nodemask_t max_group = NODE_MASK_NONE;
2036 int a, b;
2037
2038 /* Are there nodes at this distance from each other? */
2039 if (!find_numa_distance(dist))
2040 continue;
2041
2042 for_each_node_mask(a, nodes) {
2043 unsigned long faults = 0;
2044 nodemask_t this_group;
2045 nodes_clear(this_group);
2046
2047 /* Sum group's NUMA faults; includes a==b case. */
2048 for_each_node_mask(b, nodes) {
2049 if (node_distance(a, b) < dist) {
2050 faults += group_faults(p, b);
2051 node_set(b, this_group);
2052 node_clear(b, nodes);
2053 }
2054 }
2055
2056 /* Remember the top group. */
2057 if (faults > max_faults) {
2058 max_faults = faults;
2059 max_group = this_group;
2060 /*
2061 * subtle: at the smallest distance there is
2062 * just one node left in each "group", the
2063 * winner is the preferred nid.
2064 */
2065 nid = a;
2066 }
2067 }
2068 /* Next round, evaluate the nodes within max_group. */
2069 if (!max_faults)
2070 break;
2071 nodes = max_group;
2072 }
2073 return nid;
2074 }
2075
task_numa_placement(struct task_struct * p)2076 static void task_numa_placement(struct task_struct *p)
2077 {
2078 int seq, nid, max_nid = -1, max_group_nid = -1;
2079 unsigned long max_faults = 0, max_group_faults = 0;
2080 unsigned long fault_types[2] = { 0, 0 };
2081 unsigned long total_faults;
2082 u64 runtime, period;
2083 spinlock_t *group_lock = NULL;
2084
2085 /*
2086 * The p->mm->numa_scan_seq field gets updated without
2087 * exclusive access. Use READ_ONCE() here to ensure
2088 * that the field is read in a single access:
2089 */
2090 seq = READ_ONCE(p->mm->numa_scan_seq);
2091 if (p->numa_scan_seq == seq)
2092 return;
2093 p->numa_scan_seq = seq;
2094 p->numa_scan_period_max = task_scan_max(p);
2095
2096 total_faults = p->numa_faults_locality[0] +
2097 p->numa_faults_locality[1];
2098 runtime = numa_get_avg_runtime(p, &period);
2099
2100 /* If the task is part of a group prevent parallel updates to group stats */
2101 if (p->numa_group) {
2102 group_lock = &p->numa_group->lock;
2103 spin_lock_irq(group_lock);
2104 }
2105
2106 /* Find the node with the highest number of faults */
2107 for_each_online_node(nid) {
2108 /* Keep track of the offsets in numa_faults array */
2109 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2110 unsigned long faults = 0, group_faults = 0;
2111 int priv;
2112
2113 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2114 long diff, f_diff, f_weight;
2115
2116 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2117 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2118 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2119 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2120
2121 /* Decay existing window, copy faults since last scan */
2122 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2123 fault_types[priv] += p->numa_faults[membuf_idx];
2124 p->numa_faults[membuf_idx] = 0;
2125
2126 /*
2127 * Normalize the faults_from, so all tasks in a group
2128 * count according to CPU use, instead of by the raw
2129 * number of faults. Tasks with little runtime have
2130 * little over-all impact on throughput, and thus their
2131 * faults are less important.
2132 */
2133 f_weight = div64_u64(runtime << 16, period + 1);
2134 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2135 (total_faults + 1);
2136 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2137 p->numa_faults[cpubuf_idx] = 0;
2138
2139 p->numa_faults[mem_idx] += diff;
2140 p->numa_faults[cpu_idx] += f_diff;
2141 faults += p->numa_faults[mem_idx];
2142 p->total_numa_faults += diff;
2143 if (p->numa_group) {
2144 /*
2145 * safe because we can only change our own group
2146 *
2147 * mem_idx represents the offset for a given
2148 * nid and priv in a specific region because it
2149 * is at the beginning of the numa_faults array.
2150 */
2151 p->numa_group->faults[mem_idx] += diff;
2152 p->numa_group->faults_cpu[mem_idx] += f_diff;
2153 p->numa_group->total_faults += diff;
2154 group_faults += p->numa_group->faults[mem_idx];
2155 }
2156 }
2157
2158 if (faults > max_faults) {
2159 max_faults = faults;
2160 max_nid = nid;
2161 }
2162
2163 if (group_faults > max_group_faults) {
2164 max_group_faults = group_faults;
2165 max_group_nid = nid;
2166 }
2167 }
2168
2169 update_task_scan_period(p, fault_types[0], fault_types[1]);
2170
2171 if (p->numa_group) {
2172 numa_group_count_active_nodes(p->numa_group);
2173 spin_unlock_irq(group_lock);
2174 max_nid = preferred_group_nid(p, max_group_nid);
2175 }
2176
2177 if (max_faults) {
2178 /* Set the new preferred node */
2179 if (max_nid != p->numa_preferred_nid)
2180 sched_setnuma(p, max_nid);
2181
2182 if (task_node(p) != p->numa_preferred_nid)
2183 numa_migrate_preferred(p);
2184 }
2185 }
2186
get_numa_group(struct numa_group * grp)2187 static inline int get_numa_group(struct numa_group *grp)
2188 {
2189 return atomic_inc_not_zero(&grp->refcount);
2190 }
2191
put_numa_group(struct numa_group * grp)2192 static inline void put_numa_group(struct numa_group *grp)
2193 {
2194 if (atomic_dec_and_test(&grp->refcount))
2195 kfree_rcu(grp, rcu);
2196 }
2197
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2198 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2199 int *priv)
2200 {
2201 struct numa_group *grp, *my_grp;
2202 struct task_struct *tsk;
2203 bool join = false;
2204 int cpu = cpupid_to_cpu(cpupid);
2205 int i;
2206
2207 if (unlikely(!p->numa_group)) {
2208 unsigned int size = sizeof(struct numa_group) +
2209 4*nr_node_ids*sizeof(unsigned long);
2210
2211 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2212 if (!grp)
2213 return;
2214
2215 atomic_set(&grp->refcount, 1);
2216 grp->active_nodes = 1;
2217 grp->max_faults_cpu = 0;
2218 spin_lock_init(&grp->lock);
2219 grp->gid = p->pid;
2220 /* Second half of the array tracks nids where faults happen */
2221 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2222 nr_node_ids;
2223
2224 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2225 grp->faults[i] = p->numa_faults[i];
2226
2227 grp->total_faults = p->total_numa_faults;
2228
2229 grp->nr_tasks++;
2230 rcu_assign_pointer(p->numa_group, grp);
2231 }
2232
2233 rcu_read_lock();
2234 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2235
2236 if (!cpupid_match_pid(tsk, cpupid))
2237 goto no_join;
2238
2239 grp = rcu_dereference(tsk->numa_group);
2240 if (!grp)
2241 goto no_join;
2242
2243 my_grp = p->numa_group;
2244 if (grp == my_grp)
2245 goto no_join;
2246
2247 /*
2248 * Only join the other group if its bigger; if we're the bigger group,
2249 * the other task will join us.
2250 */
2251 if (my_grp->nr_tasks > grp->nr_tasks)
2252 goto no_join;
2253
2254 /*
2255 * Tie-break on the grp address.
2256 */
2257 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2258 goto no_join;
2259
2260 /* Always join threads in the same process. */
2261 if (tsk->mm == current->mm)
2262 join = true;
2263
2264 /* Simple filter to avoid false positives due to PID collisions */
2265 if (flags & TNF_SHARED)
2266 join = true;
2267
2268 /* Update priv based on whether false sharing was detected */
2269 *priv = !join;
2270
2271 if (join && !get_numa_group(grp))
2272 goto no_join;
2273
2274 rcu_read_unlock();
2275
2276 if (!join)
2277 return;
2278
2279 BUG_ON(irqs_disabled());
2280 double_lock_irq(&my_grp->lock, &grp->lock);
2281
2282 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2283 my_grp->faults[i] -= p->numa_faults[i];
2284 grp->faults[i] += p->numa_faults[i];
2285 }
2286 my_grp->total_faults -= p->total_numa_faults;
2287 grp->total_faults += p->total_numa_faults;
2288
2289 my_grp->nr_tasks--;
2290 grp->nr_tasks++;
2291
2292 spin_unlock(&my_grp->lock);
2293 spin_unlock_irq(&grp->lock);
2294
2295 rcu_assign_pointer(p->numa_group, grp);
2296
2297 put_numa_group(my_grp);
2298 return;
2299
2300 no_join:
2301 rcu_read_unlock();
2302 return;
2303 }
2304
task_numa_free(struct task_struct * p)2305 void task_numa_free(struct task_struct *p)
2306 {
2307 struct numa_group *grp = p->numa_group;
2308 void *numa_faults = p->numa_faults;
2309 unsigned long flags;
2310 int i;
2311
2312 if (grp) {
2313 spin_lock_irqsave(&grp->lock, flags);
2314 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2315 grp->faults[i] -= p->numa_faults[i];
2316 grp->total_faults -= p->total_numa_faults;
2317
2318 grp->nr_tasks--;
2319 spin_unlock_irqrestore(&grp->lock, flags);
2320 RCU_INIT_POINTER(p->numa_group, NULL);
2321 put_numa_group(grp);
2322 }
2323
2324 p->numa_faults = NULL;
2325 kfree(numa_faults);
2326 }
2327
2328 /*
2329 * Got a PROT_NONE fault for a page on @node.
2330 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)2331 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2332 {
2333 struct task_struct *p = current;
2334 bool migrated = flags & TNF_MIGRATED;
2335 int cpu_node = task_node(current);
2336 int local = !!(flags & TNF_FAULT_LOCAL);
2337 struct numa_group *ng;
2338 int priv;
2339
2340 if (!static_branch_likely(&sched_numa_balancing))
2341 return;
2342
2343 /* for example, ksmd faulting in a user's mm */
2344 if (!p->mm)
2345 return;
2346
2347 /* Allocate buffer to track faults on a per-node basis */
2348 if (unlikely(!p->numa_faults)) {
2349 int size = sizeof(*p->numa_faults) *
2350 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2351
2352 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2353 if (!p->numa_faults)
2354 return;
2355
2356 p->total_numa_faults = 0;
2357 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2358 }
2359
2360 /*
2361 * First accesses are treated as private, otherwise consider accesses
2362 * to be private if the accessing pid has not changed
2363 */
2364 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2365 priv = 1;
2366 } else {
2367 priv = cpupid_match_pid(p, last_cpupid);
2368 if (!priv && !(flags & TNF_NO_GROUP))
2369 task_numa_group(p, last_cpupid, flags, &priv);
2370 }
2371
2372 /*
2373 * If a workload spans multiple NUMA nodes, a shared fault that
2374 * occurs wholly within the set of nodes that the workload is
2375 * actively using should be counted as local. This allows the
2376 * scan rate to slow down when a workload has settled down.
2377 */
2378 ng = p->numa_group;
2379 if (!priv && !local && ng && ng->active_nodes > 1 &&
2380 numa_is_active_node(cpu_node, ng) &&
2381 numa_is_active_node(mem_node, ng))
2382 local = 1;
2383
2384 task_numa_placement(p);
2385
2386 /*
2387 * Retry task to preferred node migration periodically, in case it
2388 * case it previously failed, or the scheduler moved us.
2389 */
2390 if (time_after(jiffies, p->numa_migrate_retry))
2391 numa_migrate_preferred(p);
2392
2393 if (migrated)
2394 p->numa_pages_migrated += pages;
2395 if (flags & TNF_MIGRATE_FAIL)
2396 p->numa_faults_locality[2] += pages;
2397
2398 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2399 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2400 p->numa_faults_locality[local] += pages;
2401 }
2402
reset_ptenuma_scan(struct task_struct * p)2403 static void reset_ptenuma_scan(struct task_struct *p)
2404 {
2405 /*
2406 * We only did a read acquisition of the mmap sem, so
2407 * p->mm->numa_scan_seq is written to without exclusive access
2408 * and the update is not guaranteed to be atomic. That's not
2409 * much of an issue though, since this is just used for
2410 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2411 * expensive, to avoid any form of compiler optimizations:
2412 */
2413 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2414 p->mm->numa_scan_offset = 0;
2415 }
2416
2417 /*
2418 * The expensive part of numa migration is done from task_work context.
2419 * Triggered from task_tick_numa().
2420 */
task_numa_work(struct callback_head * work)2421 void task_numa_work(struct callback_head *work)
2422 {
2423 unsigned long migrate, next_scan, now = jiffies;
2424 struct task_struct *p = current;
2425 struct mm_struct *mm = p->mm;
2426 u64 runtime = p->se.sum_exec_runtime;
2427 struct vm_area_struct *vma;
2428 unsigned long start, end;
2429 unsigned long nr_pte_updates = 0;
2430 long pages, virtpages;
2431
2432 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2433
2434 work->next = work; /* protect against double add */
2435 /*
2436 * Who cares about NUMA placement when they're dying.
2437 *
2438 * NOTE: make sure not to dereference p->mm before this check,
2439 * exit_task_work() happens _after_ exit_mm() so we could be called
2440 * without p->mm even though we still had it when we enqueued this
2441 * work.
2442 */
2443 if (p->flags & PF_EXITING)
2444 return;
2445
2446 if (!mm->numa_next_scan) {
2447 mm->numa_next_scan = now +
2448 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2449 }
2450
2451 /*
2452 * Enforce maximal scan/migration frequency..
2453 */
2454 migrate = mm->numa_next_scan;
2455 if (time_before(now, migrate))
2456 return;
2457
2458 if (p->numa_scan_period == 0) {
2459 p->numa_scan_period_max = task_scan_max(p);
2460 p->numa_scan_period = task_scan_min(p);
2461 }
2462
2463 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2464 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2465 return;
2466
2467 /*
2468 * Delay this task enough that another task of this mm will likely win
2469 * the next time around.
2470 */
2471 p->node_stamp += 2 * TICK_NSEC;
2472
2473 start = mm->numa_scan_offset;
2474 pages = sysctl_numa_balancing_scan_size;
2475 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2476 virtpages = pages * 8; /* Scan up to this much virtual space */
2477 if (!pages)
2478 return;
2479
2480
2481 if (!down_read_trylock(&mm->mmap_sem))
2482 return;
2483 vma = find_vma(mm, start);
2484 if (!vma) {
2485 reset_ptenuma_scan(p);
2486 start = 0;
2487 vma = mm->mmap;
2488 }
2489 for (; vma; vma = vma->vm_next) {
2490 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2491 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2492 continue;
2493 }
2494
2495 /*
2496 * Shared library pages mapped by multiple processes are not
2497 * migrated as it is expected they are cache replicated. Avoid
2498 * hinting faults in read-only file-backed mappings or the vdso
2499 * as migrating the pages will be of marginal benefit.
2500 */
2501 if (!vma->vm_mm ||
2502 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2503 continue;
2504
2505 /*
2506 * Skip inaccessible VMAs to avoid any confusion between
2507 * PROT_NONE and NUMA hinting ptes
2508 */
2509 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2510 continue;
2511
2512 do {
2513 start = max(start, vma->vm_start);
2514 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2515 end = min(end, vma->vm_end);
2516 nr_pte_updates = change_prot_numa(vma, start, end);
2517
2518 /*
2519 * Try to scan sysctl_numa_balancing_size worth of
2520 * hpages that have at least one present PTE that
2521 * is not already pte-numa. If the VMA contains
2522 * areas that are unused or already full of prot_numa
2523 * PTEs, scan up to virtpages, to skip through those
2524 * areas faster.
2525 */
2526 if (nr_pte_updates)
2527 pages -= (end - start) >> PAGE_SHIFT;
2528 virtpages -= (end - start) >> PAGE_SHIFT;
2529
2530 start = end;
2531 if (pages <= 0 || virtpages <= 0)
2532 goto out;
2533
2534 cond_resched();
2535 } while (end != vma->vm_end);
2536 }
2537
2538 out:
2539 /*
2540 * It is possible to reach the end of the VMA list but the last few
2541 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2542 * would find the !migratable VMA on the next scan but not reset the
2543 * scanner to the start so check it now.
2544 */
2545 if (vma)
2546 mm->numa_scan_offset = start;
2547 else
2548 reset_ptenuma_scan(p);
2549 up_read(&mm->mmap_sem);
2550
2551 /*
2552 * Make sure tasks use at least 32x as much time to run other code
2553 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2554 * Usually update_task_scan_period slows down scanning enough; on an
2555 * overloaded system we need to limit overhead on a per task basis.
2556 */
2557 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2558 u64 diff = p->se.sum_exec_runtime - runtime;
2559 p->node_stamp += 32 * diff;
2560 }
2561 }
2562
2563 /*
2564 * Drive the periodic memory faults..
2565 */
task_tick_numa(struct rq * rq,struct task_struct * curr)2566 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2567 {
2568 struct callback_head *work = &curr->numa_work;
2569 u64 period, now;
2570
2571 /*
2572 * We don't care about NUMA placement if we don't have memory.
2573 */
2574 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2575 return;
2576
2577 /*
2578 * Using runtime rather than walltime has the dual advantage that
2579 * we (mostly) drive the selection from busy threads and that the
2580 * task needs to have done some actual work before we bother with
2581 * NUMA placement.
2582 */
2583 now = curr->se.sum_exec_runtime;
2584 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2585
2586 if (now > curr->node_stamp + period) {
2587 if (!curr->node_stamp)
2588 curr->numa_scan_period = task_scan_min(curr);
2589 curr->node_stamp += period;
2590
2591 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2592 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2593 task_work_add(curr, work, true);
2594 }
2595 }
2596 }
2597 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)2598 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2599 {
2600 }
2601
account_numa_enqueue(struct rq * rq,struct task_struct * p)2602 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2603 {
2604 }
2605
account_numa_dequeue(struct rq * rq,struct task_struct * p)2606 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2607 {
2608 }
2609 #endif /* CONFIG_NUMA_BALANCING */
2610
2611 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)2612 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2613 {
2614 update_load_add(&cfs_rq->load, se->load.weight);
2615 if (!parent_entity(se))
2616 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2617 #ifdef CONFIG_SMP
2618 if (entity_is_task(se)) {
2619 struct rq *rq = rq_of(cfs_rq);
2620
2621 account_numa_enqueue(rq, task_of(se));
2622 list_add(&se->group_node, &rq->cfs_tasks);
2623 }
2624 #endif
2625 cfs_rq->nr_running++;
2626 }
2627
2628 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)2629 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2630 {
2631 update_load_sub(&cfs_rq->load, se->load.weight);
2632 if (!parent_entity(se))
2633 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2634 #ifdef CONFIG_SMP
2635 if (entity_is_task(se)) {
2636 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2637 list_del_init(&se->group_node);
2638 }
2639 #endif
2640 cfs_rq->nr_running--;
2641 }
2642
2643 #ifdef CONFIG_FAIR_GROUP_SCHED
2644 # ifdef CONFIG_SMP
calc_cfs_shares(struct cfs_rq * cfs_rq,struct task_group * tg)2645 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2646 {
2647 long tg_weight, load, shares;
2648
2649 /*
2650 * This really should be: cfs_rq->avg.load_avg, but instead we use
2651 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2652 * the shares for small weight interactive tasks.
2653 */
2654 load = scale_load_down(cfs_rq->load.weight);
2655
2656 tg_weight = atomic_long_read(&tg->load_avg);
2657
2658 /* Ensure tg_weight >= load */
2659 tg_weight -= cfs_rq->tg_load_avg_contrib;
2660 tg_weight += load;
2661
2662 shares = (tg->shares * load);
2663 if (tg_weight)
2664 shares /= tg_weight;
2665
2666 if (shares < MIN_SHARES)
2667 shares = MIN_SHARES;
2668 if (shares > tg->shares)
2669 shares = tg->shares;
2670
2671 return shares;
2672 }
2673 # else /* CONFIG_SMP */
calc_cfs_shares(struct cfs_rq * cfs_rq,struct task_group * tg)2674 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2675 {
2676 return tg->shares;
2677 }
2678 # endif /* CONFIG_SMP */
2679
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)2680 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2681 unsigned long weight)
2682 {
2683 if (se->on_rq) {
2684 /* commit outstanding execution time */
2685 if (cfs_rq->curr == se)
2686 update_curr(cfs_rq);
2687 account_entity_dequeue(cfs_rq, se);
2688 }
2689
2690 update_load_set(&se->load, weight);
2691
2692 if (se->on_rq)
2693 account_entity_enqueue(cfs_rq, se);
2694 }
2695
2696 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2697
update_cfs_shares(struct sched_entity * se)2698 static void update_cfs_shares(struct sched_entity *se)
2699 {
2700 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2701 struct task_group *tg;
2702 long shares;
2703
2704 if (!cfs_rq)
2705 return;
2706
2707 if (throttled_hierarchy(cfs_rq))
2708 return;
2709
2710 tg = cfs_rq->tg;
2711
2712 #ifndef CONFIG_SMP
2713 if (likely(se->load.weight == tg->shares))
2714 return;
2715 #endif
2716 shares = calc_cfs_shares(cfs_rq, tg);
2717
2718 reweight_entity(cfs_rq_of(se), se, shares);
2719 }
2720
2721 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_shares(struct sched_entity * se)2722 static inline void update_cfs_shares(struct sched_entity *se)
2723 {
2724 }
2725 #endif /* CONFIG_FAIR_GROUP_SCHED */
2726
2727 #ifdef CONFIG_SMP
2728 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2729 static const u32 runnable_avg_yN_inv[] = {
2730 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2731 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2732 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2733 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2734 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2735 0x85aac367, 0x82cd8698,
2736 };
2737
2738 /*
2739 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2740 * over-estimates when re-combining.
2741 */
2742 static const u32 runnable_avg_yN_sum[] = {
2743 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2744 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2745 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2746 };
2747
2748 /*
2749 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2750 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2751 * were generated:
2752 */
2753 static const u32 __accumulated_sum_N32[] = {
2754 0, 23371, 35056, 40899, 43820, 45281,
2755 46011, 46376, 46559, 46650, 46696, 46719,
2756 };
2757
2758 /*
2759 * Approximate:
2760 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2761 */
decay_load(u64 val,u64 n)2762 static __always_inline u64 decay_load(u64 val, u64 n)
2763 {
2764 unsigned int local_n;
2765
2766 if (!n)
2767 return val;
2768 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2769 return 0;
2770
2771 /* after bounds checking we can collapse to 32-bit */
2772 local_n = n;
2773
2774 /*
2775 * As y^PERIOD = 1/2, we can combine
2776 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2777 * With a look-up table which covers y^n (n<PERIOD)
2778 *
2779 * To achieve constant time decay_load.
2780 */
2781 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2782 val >>= local_n / LOAD_AVG_PERIOD;
2783 local_n %= LOAD_AVG_PERIOD;
2784 }
2785
2786 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2787 return val;
2788 }
2789
2790 /*
2791 * For updates fully spanning n periods, the contribution to runnable
2792 * average will be: \Sum 1024*y^n
2793 *
2794 * We can compute this reasonably efficiently by combining:
2795 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2796 */
__compute_runnable_contrib(u64 n)2797 static u32 __compute_runnable_contrib(u64 n)
2798 {
2799 u32 contrib = 0;
2800
2801 if (likely(n <= LOAD_AVG_PERIOD))
2802 return runnable_avg_yN_sum[n];
2803 else if (unlikely(n >= LOAD_AVG_MAX_N))
2804 return LOAD_AVG_MAX;
2805
2806 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2807 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2808 n %= LOAD_AVG_PERIOD;
2809 contrib = decay_load(contrib, n);
2810 return contrib + runnable_avg_yN_sum[n];
2811 }
2812
2813 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2814
2815 /*
2816 * We can represent the historical contribution to runnable average as the
2817 * coefficients of a geometric series. To do this we sub-divide our runnable
2818 * history into segments of approximately 1ms (1024us); label the segment that
2819 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2820 *
2821 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2822 * p0 p1 p2
2823 * (now) (~1ms ago) (~2ms ago)
2824 *
2825 * Let u_i denote the fraction of p_i that the entity was runnable.
2826 *
2827 * We then designate the fractions u_i as our co-efficients, yielding the
2828 * following representation of historical load:
2829 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2830 *
2831 * We choose y based on the with of a reasonably scheduling period, fixing:
2832 * y^32 = 0.5
2833 *
2834 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2835 * approximately half as much as the contribution to load within the last ms
2836 * (u_0).
2837 *
2838 * When a period "rolls over" and we have new u_0`, multiplying the previous
2839 * sum again by y is sufficient to update:
2840 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2841 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2842 */
2843 static __always_inline int
__update_load_avg(u64 now,int cpu,struct sched_avg * sa,unsigned long weight,int running,struct cfs_rq * cfs_rq)2844 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2845 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2846 {
2847 u64 delta, scaled_delta, periods;
2848 u32 contrib;
2849 unsigned int delta_w, scaled_delta_w, decayed = 0;
2850 unsigned long scale_freq, scale_cpu;
2851
2852 delta = now - sa->last_update_time;
2853 /*
2854 * This should only happen when time goes backwards, which it
2855 * unfortunately does during sched clock init when we swap over to TSC.
2856 */
2857 if ((s64)delta < 0) {
2858 sa->last_update_time = now;
2859 return 0;
2860 }
2861
2862 /*
2863 * Use 1024ns as the unit of measurement since it's a reasonable
2864 * approximation of 1us and fast to compute.
2865 */
2866 delta >>= 10;
2867 if (!delta)
2868 return 0;
2869 sa->last_update_time = now;
2870
2871 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2872 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2873 trace_sched_contrib_scale_f(cpu, scale_freq, scale_cpu);
2874
2875 /* delta_w is the amount already accumulated against our next period */
2876 delta_w = sa->period_contrib;
2877 if (delta + delta_w >= 1024) {
2878 decayed = 1;
2879
2880 /* how much left for next period will start over, we don't know yet */
2881 sa->period_contrib = 0;
2882
2883 /*
2884 * Now that we know we're crossing a period boundary, figure
2885 * out how much from delta we need to complete the current
2886 * period and accrue it.
2887 */
2888 delta_w = 1024 - delta_w;
2889 scaled_delta_w = cap_scale(delta_w, scale_freq);
2890 if (weight) {
2891 sa->load_sum += weight * scaled_delta_w;
2892 if (cfs_rq) {
2893 cfs_rq->runnable_load_sum +=
2894 weight * scaled_delta_w;
2895 }
2896 }
2897 if (running)
2898 sa->util_sum += scaled_delta_w * scale_cpu;
2899
2900 delta -= delta_w;
2901
2902 /* Figure out how many additional periods this update spans */
2903 periods = delta / 1024;
2904 delta %= 1024;
2905
2906 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2907 if (cfs_rq) {
2908 cfs_rq->runnable_load_sum =
2909 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2910 }
2911 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2912
2913 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2914 contrib = __compute_runnable_contrib(periods);
2915 contrib = cap_scale(contrib, scale_freq);
2916 if (weight) {
2917 sa->load_sum += weight * contrib;
2918 if (cfs_rq)
2919 cfs_rq->runnable_load_sum += weight * contrib;
2920 }
2921 if (running)
2922 sa->util_sum += contrib * scale_cpu;
2923 }
2924
2925 /* Remainder of delta accrued against u_0` */
2926 scaled_delta = cap_scale(delta, scale_freq);
2927 if (weight) {
2928 sa->load_sum += weight * scaled_delta;
2929 if (cfs_rq)
2930 cfs_rq->runnable_load_sum += weight * scaled_delta;
2931 }
2932 if (running)
2933 sa->util_sum += scaled_delta * scale_cpu;
2934
2935 sa->period_contrib += delta;
2936
2937 if (decayed) {
2938 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2939 if (cfs_rq) {
2940 cfs_rq->runnable_load_avg =
2941 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2942 }
2943 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2944 }
2945
2946 return decayed;
2947 }
2948
2949 /*
2950 * Signed add and clamp on underflow.
2951 *
2952 * Explicitly do a load-store to ensure the intermediate value never hits
2953 * memory. This allows lockless observations without ever seeing the negative
2954 * values.
2955 */
2956 #define add_positive(_ptr, _val) do { \
2957 typeof(_ptr) ptr = (_ptr); \
2958 typeof(_val) val = (_val); \
2959 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2960 \
2961 res = var + val; \
2962 \
2963 if (val < 0 && res > var) \
2964 res = 0; \
2965 \
2966 WRITE_ONCE(*ptr, res); \
2967 } while (0)
2968
2969 #ifdef CONFIG_FAIR_GROUP_SCHED
2970 /**
2971 * update_tg_load_avg - update the tg's load avg
2972 * @cfs_rq: the cfs_rq whose avg changed
2973 * @force: update regardless of how small the difference
2974 *
2975 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2976 * However, because tg->load_avg is a global value there are performance
2977 * considerations.
2978 *
2979 * In order to avoid having to look at the other cfs_rq's, we use a
2980 * differential update where we store the last value we propagated. This in
2981 * turn allows skipping updates if the differential is 'small'.
2982 *
2983 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2984 * done) and effective_load() (which is not done because it is too costly).
2985 */
update_tg_load_avg(struct cfs_rq * cfs_rq,int force)2986 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2987 {
2988 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2989
2990 /*
2991 * No need to update load_avg for root_task_group as it is not used.
2992 */
2993 if (cfs_rq->tg == &root_task_group)
2994 return;
2995
2996 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2997 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2998 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2999 }
3000 }
3001
3002 /*
3003 * Called within set_task_rq() right before setting a task's cpu. The
3004 * caller only guarantees p->pi_lock is held; no other assumptions,
3005 * including the state of rq->lock, should be made.
3006 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)3007 void set_task_rq_fair(struct sched_entity *se,
3008 struct cfs_rq *prev, struct cfs_rq *next)
3009 {
3010 if (!sched_feat(ATTACH_AGE_LOAD))
3011 return;
3012
3013 /*
3014 * We are supposed to update the task to "current" time, then its up to
3015 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3016 * getting what current time is, so simply throw away the out-of-date
3017 * time. This will result in the wakee task is less decayed, but giving
3018 * the wakee more load sounds not bad.
3019 */
3020 if (se->avg.last_update_time && prev) {
3021 u64 p_last_update_time;
3022 u64 n_last_update_time;
3023
3024 #ifndef CONFIG_64BIT
3025 u64 p_last_update_time_copy;
3026 u64 n_last_update_time_copy;
3027
3028 do {
3029 p_last_update_time_copy = prev->load_last_update_time_copy;
3030 n_last_update_time_copy = next->load_last_update_time_copy;
3031
3032 smp_rmb();
3033
3034 p_last_update_time = prev->avg.last_update_time;
3035 n_last_update_time = next->avg.last_update_time;
3036
3037 } while (p_last_update_time != p_last_update_time_copy ||
3038 n_last_update_time != n_last_update_time_copy);
3039 #else
3040 p_last_update_time = prev->avg.last_update_time;
3041 n_last_update_time = next->avg.last_update_time;
3042 #endif
3043 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
3044 &se->avg, 0, 0, NULL);
3045 se->avg.last_update_time = n_last_update_time;
3046 }
3047 }
3048
3049 /* Take into account change of utilization of a child task group */
3050 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se)3051 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3052 {
3053 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3054 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3055
3056 /* Nothing to update */
3057 if (!delta)
3058 return;
3059
3060 /* Set new sched_entity's utilization */
3061 se->avg.util_avg = gcfs_rq->avg.util_avg;
3062 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3063
3064 /* Update parent cfs_rq utilization */
3065 add_positive(&cfs_rq->avg.util_avg, delta);
3066 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3067 }
3068
3069 /* Take into account change of load of a child task group */
3070 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se)3071 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3072 {
3073 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3074 long delta, load = gcfs_rq->avg.load_avg;
3075
3076 /*
3077 * If the load of group cfs_rq is null, the load of the
3078 * sched_entity will also be null so we can skip the formula
3079 */
3080 if (load) {
3081 long tg_load;
3082
3083 /* Get tg's load and ensure tg_load > 0 */
3084 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3085
3086 /* Ensure tg_load >= load and updated with current load*/
3087 tg_load -= gcfs_rq->tg_load_avg_contrib;
3088 tg_load += load;
3089
3090 /*
3091 * We need to compute a correction term in the case that the
3092 * task group is consuming more CPU than a task of equal
3093 * weight. A task with a weight equals to tg->shares will have
3094 * a load less or equal to scale_load_down(tg->shares).
3095 * Similarly, the sched_entities that represent the task group
3096 * at parent level, can't have a load higher than
3097 * scale_load_down(tg->shares). And the Sum of sched_entities'
3098 * load must be <= scale_load_down(tg->shares).
3099 */
3100 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3101 /* scale gcfs_rq's load into tg's shares*/
3102 load *= scale_load_down(gcfs_rq->tg->shares);
3103 load /= tg_load;
3104 }
3105 }
3106
3107 delta = load - se->avg.load_avg;
3108
3109 /* Nothing to update */
3110 if (!delta)
3111 return;
3112
3113 /* Set new sched_entity's load */
3114 se->avg.load_avg = load;
3115 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3116
3117 /* Update parent cfs_rq load */
3118 add_positive(&cfs_rq->avg.load_avg, delta);
3119 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3120
3121 /*
3122 * If the sched_entity is already enqueued, we also have to update the
3123 * runnable load avg.
3124 */
3125 if (se->on_rq) {
3126 /* Update parent cfs_rq runnable_load_avg */
3127 add_positive(&cfs_rq->runnable_load_avg, delta);
3128 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3129 }
3130 }
3131
set_tg_cfs_propagate(struct cfs_rq * cfs_rq)3132 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3133 {
3134 cfs_rq->propagate_avg = 1;
3135 }
3136
test_and_clear_tg_cfs_propagate(struct sched_entity * se)3137 static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3138 {
3139 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3140
3141 if (!cfs_rq->propagate_avg)
3142 return 0;
3143
3144 cfs_rq->propagate_avg = 0;
3145 return 1;
3146 }
3147
3148 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)3149 static inline int propagate_entity_load_avg(struct sched_entity *se)
3150 {
3151 struct cfs_rq *cfs_rq;
3152
3153 if (entity_is_task(se))
3154 return 0;
3155
3156 if (!test_and_clear_tg_cfs_propagate(se))
3157 return 0;
3158
3159 cfs_rq = cfs_rq_of(se);
3160
3161 set_tg_cfs_propagate(cfs_rq);
3162
3163 update_tg_cfs_util(cfs_rq, se);
3164 update_tg_cfs_load(cfs_rq, se);
3165
3166 return 1;
3167 }
3168
3169 /*
3170 * Check if we need to update the load and the utilization of a blocked
3171 * group_entity:
3172 */
skip_blocked_update(struct sched_entity * se)3173 static inline bool skip_blocked_update(struct sched_entity *se)
3174 {
3175 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3176
3177 /*
3178 * If sched_entity still have not zero load or utilization, we have to
3179 * decay it:
3180 */
3181 if (se->avg.load_avg || se->avg.util_avg)
3182 return false;
3183
3184 /*
3185 * If there is a pending propagation, we have to update the load and
3186 * the utilization of the sched_entity:
3187 */
3188 if (gcfs_rq->propagate_avg)
3189 return false;
3190
3191 /*
3192 * Otherwise, the load and the utilization of the sched_entity is
3193 * already zero and there is no pending propagation, so it will be a
3194 * waste of time to try to decay it:
3195 */
3196 return true;
3197 }
3198
3199 #else /* CONFIG_FAIR_GROUP_SCHED */
3200
update_tg_load_avg(struct cfs_rq * cfs_rq,int force)3201 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3202
propagate_entity_load_avg(struct sched_entity * se)3203 static inline int propagate_entity_load_avg(struct sched_entity *se)
3204 {
3205 return 0;
3206 }
3207
set_tg_cfs_propagate(struct cfs_rq * cfs_rq)3208 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3209
3210 #endif /* CONFIG_FAIR_GROUP_SCHED */
3211
cfs_rq_util_change(struct cfs_rq * cfs_rq)3212 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3213 {
3214 if (&this_rq()->cfs == cfs_rq) {
3215 /*
3216 * There are a few boundary cases this might miss but it should
3217 * get called often enough that that should (hopefully) not be
3218 * a real problem -- added to that it only calls on the local
3219 * CPU, so if we enqueue remotely we'll miss an update, but
3220 * the next tick/schedule should update.
3221 *
3222 * It will not get called when we go idle, because the idle
3223 * thread is a different class (!fair), nor will the utilization
3224 * number include things like RT tasks.
3225 *
3226 * As is, the util number is not freq-invariant (we'd have to
3227 * implement arch_scale_freq_capacity() for that).
3228 *
3229 * See cpu_util().
3230 */
3231 cpufreq_update_util(rq_of(cfs_rq), 0);
3232 }
3233 }
3234
3235 /*
3236 * Unsigned subtract and clamp on underflow.
3237 *
3238 * Explicitly do a load-store to ensure the intermediate value never hits
3239 * memory. This allows lockless observations without ever seeing the negative
3240 * values.
3241 */
3242 #define sub_positive(_ptr, _val) do { \
3243 typeof(_ptr) ptr = (_ptr); \
3244 typeof(*ptr) val = (_val); \
3245 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3246 res = var - val; \
3247 if (res > var) \
3248 res = 0; \
3249 WRITE_ONCE(*ptr, res); \
3250 } while (0)
3251
3252 /**
3253 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3254 * @now: current time, as per cfs_rq_clock_task()
3255 * @cfs_rq: cfs_rq to update
3256 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3257 *
3258 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3259 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3260 * post_init_entity_util_avg().
3261 *
3262 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3263 *
3264 * Returns true if the load decayed or we removed load.
3265 *
3266 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3267 * call update_tg_load_avg() when this function returns true.
3268 */
3269 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq,bool update_freq)3270 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3271 {
3272 struct sched_avg *sa = &cfs_rq->avg;
3273 int decayed, removed_load = 0, removed_util = 0;
3274
3275 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3276 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3277 sub_positive(&sa->load_avg, r);
3278 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3279 removed_load = 1;
3280 set_tg_cfs_propagate(cfs_rq);
3281 }
3282
3283 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3284 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3285 sub_positive(&sa->util_avg, r);
3286 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3287 removed_util = 1;
3288 set_tg_cfs_propagate(cfs_rq);
3289 }
3290
3291 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
3292 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
3293
3294 #ifndef CONFIG_64BIT
3295 smp_wmb();
3296 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3297 #endif
3298
3299 if (update_freq && (decayed || removed_util))
3300 cfs_rq_util_change(cfs_rq);
3301
3302 /* Trace CPU load, unless cfs_rq belongs to a non-root task_group */
3303 if (cfs_rq == &rq_of(cfs_rq)->cfs)
3304 trace_sched_load_avg_cpu(cpu_of(rq_of(cfs_rq)), cfs_rq);
3305
3306 return decayed || removed_load;
3307 }
3308
3309 /*
3310 * Optional action to be done while updating the load average
3311 */
3312 #define UPDATE_TG 0x1
3313 #define SKIP_AGE_LOAD 0x2
3314
3315 /* Update task and its cfs_rq load average */
update_load_avg(struct sched_entity * se,int flags)3316 static inline void update_load_avg(struct sched_entity *se, int flags)
3317 {
3318 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3319 u64 now = cfs_rq_clock_task(cfs_rq);
3320 struct rq *rq = rq_of(cfs_rq);
3321 int cpu = cpu_of(rq);
3322 int decayed;
3323 void *ptr = NULL;
3324
3325 /*
3326 * Track task load average for carrying it to new CPU after migrated, and
3327 * track group sched_entity load average for task_h_load calc in migration
3328 */
3329 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) {
3330 __update_load_avg(now, cpu, &se->avg,
3331 se->on_rq * scale_load_down(se->load.weight),
3332 cfs_rq->curr == se, NULL);
3333 }
3334
3335 decayed = update_cfs_rq_load_avg(now, cfs_rq, true);
3336 decayed |= propagate_entity_load_avg(se);
3337
3338 if (decayed && (flags & UPDATE_TG))
3339 update_tg_load_avg(cfs_rq, 0);
3340
3341 if (entity_is_task(se)) {
3342 #ifdef CONFIG_SCHED_WALT
3343 ptr = (void *)&(task_of(se)->ravg);
3344 #endif
3345 trace_sched_load_avg_task(task_of(se), &se->avg, ptr);
3346 }
3347 }
3348
3349 /**
3350 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3351 * @cfs_rq: cfs_rq to attach to
3352 * @se: sched_entity to attach
3353 *
3354 * Must call update_cfs_rq_load_avg() before this, since we rely on
3355 * cfs_rq->avg.last_update_time being current.
3356 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3357 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3358 {
3359 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3360 cfs_rq->avg.load_avg += se->avg.load_avg;
3361 cfs_rq->avg.load_sum += se->avg.load_sum;
3362 cfs_rq->avg.util_avg += se->avg.util_avg;
3363 cfs_rq->avg.util_sum += se->avg.util_sum;
3364 set_tg_cfs_propagate(cfs_rq);
3365
3366 cfs_rq_util_change(cfs_rq);
3367 }
3368
3369 /**
3370 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3371 * @cfs_rq: cfs_rq to detach from
3372 * @se: sched_entity to detach
3373 *
3374 * Must call update_cfs_rq_load_avg() before this, since we rely on
3375 * cfs_rq->avg.last_update_time being current.
3376 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3377 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3378 {
3379
3380 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3381 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3382 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3383 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3384 set_tg_cfs_propagate(cfs_rq);
3385
3386 cfs_rq_util_change(cfs_rq);
3387 }
3388
3389 /* Add the load generated by se into cfs_rq's load average */
3390 static inline void
enqueue_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3391 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3392 {
3393 struct sched_avg *sa = &se->avg;
3394
3395 cfs_rq->runnable_load_avg += sa->load_avg;
3396 cfs_rq->runnable_load_sum += sa->load_sum;
3397
3398 if (!sa->last_update_time) {
3399 attach_entity_load_avg(cfs_rq, se);
3400 update_tg_load_avg(cfs_rq, 0);
3401 }
3402 }
3403
3404 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3405 static inline void
dequeue_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3406 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3407 {
3408 cfs_rq->runnable_load_avg =
3409 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3410 cfs_rq->runnable_load_sum =
3411 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3412 }
3413
3414 #ifndef CONFIG_64BIT
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3415 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3416 {
3417 u64 last_update_time_copy;
3418 u64 last_update_time;
3419
3420 do {
3421 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3422 smp_rmb();
3423 last_update_time = cfs_rq->avg.last_update_time;
3424 } while (last_update_time != last_update_time_copy);
3425
3426 return last_update_time;
3427 }
3428 #else
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3429 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3430 {
3431 return cfs_rq->avg.last_update_time;
3432 }
3433 #endif
3434
3435 /*
3436 * Synchronize entity load avg of dequeued entity without locking
3437 * the previous rq.
3438 */
sync_entity_load_avg(struct sched_entity * se)3439 void sync_entity_load_avg(struct sched_entity *se)
3440 {
3441 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3442 u64 last_update_time;
3443
3444 last_update_time = cfs_rq_last_update_time(cfs_rq);
3445 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
3446 }
3447
3448 /*
3449 * Task first catches up with cfs_rq, and then subtract
3450 * itself from the cfs_rq (task must be off the queue now).
3451 */
remove_entity_load_avg(struct sched_entity * se)3452 void remove_entity_load_avg(struct sched_entity *se)
3453 {
3454 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3455
3456 /*
3457 * tasks cannot exit without having gone through wake_up_new_task() ->
3458 * post_init_entity_util_avg() which will have added things to the
3459 * cfs_rq, so we can remove unconditionally.
3460 *
3461 * Similarly for groups, they will have passed through
3462 * post_init_entity_util_avg() before unregister_sched_fair_group()
3463 * calls this.
3464 */
3465
3466 sync_entity_load_avg(se);
3467 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3468 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3469 }
3470
cfs_rq_runnable_load_avg(struct cfs_rq * cfs_rq)3471 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3472 {
3473 return cfs_rq->runnable_load_avg;
3474 }
3475
cfs_rq_load_avg(struct cfs_rq * cfs_rq)3476 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3477 {
3478 return cfs_rq->avg.load_avg;
3479 }
3480
3481 static int idle_balance(struct rq *this_rq);
3482
3483 #else /* CONFIG_SMP */
3484
3485 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq,bool update_freq)3486 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3487 {
3488 return 0;
3489 }
3490
3491 #define UPDATE_TG 0x0
3492 #define SKIP_AGE_LOAD 0x0
3493
update_load_avg(struct sched_entity * se,int not_used1)3494 static inline void update_load_avg(struct sched_entity *se, int not_used1)
3495 {
3496 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
3497 }
3498
3499 static inline void
enqueue_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3500 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3501 static inline void
dequeue_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3502 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
remove_entity_load_avg(struct sched_entity * se)3503 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3504
3505 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3506 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3507 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3508 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3509
idle_balance(struct rq * rq)3510 static inline int idle_balance(struct rq *rq)
3511 {
3512 return 0;
3513 }
3514
3515 #endif /* CONFIG_SMP */
3516
check_spread(struct cfs_rq * cfs_rq,struct sched_entity * se)3517 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3518 {
3519 #ifdef CONFIG_SCHED_DEBUG
3520 s64 d = se->vruntime - cfs_rq->min_vruntime;
3521
3522 if (d < 0)
3523 d = -d;
3524
3525 if (d > 3*sysctl_sched_latency)
3526 schedstat_inc(cfs_rq->nr_spread_over);
3527 #endif
3528 }
3529
3530 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int initial)3531 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3532 {
3533 u64 vruntime = cfs_rq->min_vruntime;
3534
3535 /*
3536 * The 'current' period is already promised to the current tasks,
3537 * however the extra weight of the new task will slow them down a
3538 * little, place the new task so that it fits in the slot that
3539 * stays open at the end.
3540 */
3541 if (initial && sched_feat(START_DEBIT))
3542 vruntime += sched_vslice(cfs_rq, se);
3543
3544 /* sleeps up to a single latency don't count. */
3545 if (!initial) {
3546 unsigned long thresh = sysctl_sched_latency;
3547
3548 /*
3549 * Halve their sleep time's effect, to allow
3550 * for a gentler effect of sleepers:
3551 */
3552 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3553 thresh >>= 1;
3554
3555 vruntime -= thresh;
3556 }
3557
3558 /* ensure we never gain time by being placed backwards. */
3559 se->vruntime = max_vruntime(se->vruntime, vruntime);
3560 }
3561
3562 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3563
check_schedstat_required(void)3564 static inline void check_schedstat_required(void)
3565 {
3566 #ifdef CONFIG_SCHEDSTATS
3567 if (schedstat_enabled())
3568 return;
3569
3570 /* Force schedstat enabled if a dependent tracepoint is active */
3571 if (trace_sched_stat_wait_enabled() ||
3572 trace_sched_stat_sleep_enabled() ||
3573 trace_sched_stat_iowait_enabled() ||
3574 trace_sched_stat_blocked_enabled() ||
3575 trace_sched_stat_runtime_enabled()) {
3576 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3577 "stat_blocked and stat_runtime require the "
3578 "kernel parameter schedstats=enabled or "
3579 "kernel.sched_schedstats=1\n");
3580 }
3581 #endif
3582 }
3583
3584
3585 /*
3586 * MIGRATION
3587 *
3588 * dequeue
3589 * update_curr()
3590 * update_min_vruntime()
3591 * vruntime -= min_vruntime
3592 *
3593 * enqueue
3594 * update_curr()
3595 * update_min_vruntime()
3596 * vruntime += min_vruntime
3597 *
3598 * this way the vruntime transition between RQs is done when both
3599 * min_vruntime are up-to-date.
3600 *
3601 * WAKEUP (remote)
3602 *
3603 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3604 * vruntime -= min_vruntime
3605 *
3606 * enqueue
3607 * update_curr()
3608 * update_min_vruntime()
3609 * vruntime += min_vruntime
3610 *
3611 * this way we don't have the most up-to-date min_vruntime on the originating
3612 * CPU and an up-to-date min_vruntime on the destination CPU.
3613 */
3614
3615 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)3616 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3617 {
3618 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3619 bool curr = cfs_rq->curr == se;
3620
3621 /*
3622 * If we're the current task, we must renormalise before calling
3623 * update_curr().
3624 */
3625 if (renorm && curr)
3626 se->vruntime += cfs_rq->min_vruntime;
3627
3628 update_curr(cfs_rq);
3629
3630 /*
3631 * Otherwise, renormalise after, such that we're placed at the current
3632 * moment in time, instead of some random moment in the past. Being
3633 * placed in the past could significantly boost this task to the
3634 * fairness detriment of existing tasks.
3635 */
3636 if (renorm && !curr)
3637 se->vruntime += cfs_rq->min_vruntime;
3638
3639 /*
3640 * When enqueuing a sched_entity, we must:
3641 * - Update loads to have both entity and cfs_rq synced with now.
3642 * - Add its load to cfs_rq->runnable_avg
3643 * - For group_entity, update its weight to reflect the new share of
3644 * its group cfs_rq
3645 * - Add its new weight to cfs_rq->load.weight
3646 */
3647 update_load_avg(se, UPDATE_TG);
3648 enqueue_entity_load_avg(cfs_rq, se);
3649 update_cfs_shares(se);
3650 account_entity_enqueue(cfs_rq, se);
3651
3652 if (flags & ENQUEUE_WAKEUP)
3653 place_entity(cfs_rq, se, 0);
3654
3655 check_schedstat_required();
3656 update_stats_enqueue(cfs_rq, se, flags);
3657 check_spread(cfs_rq, se);
3658 if (!curr)
3659 __enqueue_entity(cfs_rq, se);
3660 se->on_rq = 1;
3661
3662 if (cfs_rq->nr_running == 1) {
3663 list_add_leaf_cfs_rq(cfs_rq);
3664 check_enqueue_throttle(cfs_rq);
3665 }
3666 }
3667
__clear_buddies_last(struct sched_entity * se)3668 static void __clear_buddies_last(struct sched_entity *se)
3669 {
3670 for_each_sched_entity(se) {
3671 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3672 if (cfs_rq->last != se)
3673 break;
3674
3675 cfs_rq->last = NULL;
3676 }
3677 }
3678
__clear_buddies_next(struct sched_entity * se)3679 static void __clear_buddies_next(struct sched_entity *se)
3680 {
3681 for_each_sched_entity(se) {
3682 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3683 if (cfs_rq->next != se)
3684 break;
3685
3686 cfs_rq->next = NULL;
3687 }
3688 }
3689
__clear_buddies_skip(struct sched_entity * se)3690 static void __clear_buddies_skip(struct sched_entity *se)
3691 {
3692 for_each_sched_entity(se) {
3693 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3694 if (cfs_rq->skip != se)
3695 break;
3696
3697 cfs_rq->skip = NULL;
3698 }
3699 }
3700
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)3701 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3702 {
3703 if (cfs_rq->last == se)
3704 __clear_buddies_last(se);
3705
3706 if (cfs_rq->next == se)
3707 __clear_buddies_next(se);
3708
3709 if (cfs_rq->skip == se)
3710 __clear_buddies_skip(se);
3711 }
3712
3713 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3714
3715 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)3716 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3717 {
3718 /*
3719 * Update run-time statistics of the 'current'.
3720 */
3721 update_curr(cfs_rq);
3722
3723 /*
3724 * When dequeuing a sched_entity, we must:
3725 * - Update loads to have both entity and cfs_rq synced with now.
3726 * - Substract its load from the cfs_rq->runnable_avg.
3727 * - Substract its previous weight from cfs_rq->load.weight.
3728 * - For group entity, update its weight to reflect the new share
3729 * of its group cfs_rq.
3730 */
3731 update_load_avg(se, UPDATE_TG);
3732 dequeue_entity_load_avg(cfs_rq, se);
3733
3734 update_stats_dequeue(cfs_rq, se, flags);
3735
3736 clear_buddies(cfs_rq, se);
3737
3738 if (se != cfs_rq->curr)
3739 __dequeue_entity(cfs_rq, se);
3740 se->on_rq = 0;
3741 account_entity_dequeue(cfs_rq, se);
3742
3743 /*
3744 * Normalize after update_curr(); which will also have moved
3745 * min_vruntime if @se is the one holding it back. But before doing
3746 * update_min_vruntime() again, which will discount @se's position and
3747 * can move min_vruntime forward still more.
3748 */
3749 if (!(flags & DEQUEUE_SLEEP))
3750 se->vruntime -= cfs_rq->min_vruntime;
3751
3752 /* return excess runtime on last dequeue */
3753 return_cfs_rq_runtime(cfs_rq);
3754
3755 update_cfs_shares(se);
3756
3757 /*
3758 * Now advance min_vruntime if @se was the entity holding it back,
3759 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3760 * put back on, and if we advance min_vruntime, we'll be placed back
3761 * further than we started -- ie. we'll be penalized.
3762 */
3763 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3764 update_min_vruntime(cfs_rq);
3765 }
3766
3767 /*
3768 * Preempt the current task with a newly woken task if needed:
3769 */
3770 static void
check_preempt_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr)3771 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3772 {
3773 unsigned long ideal_runtime, delta_exec;
3774 struct sched_entity *se;
3775 s64 delta;
3776
3777 ideal_runtime = sched_slice(cfs_rq, curr);
3778 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3779 if (delta_exec > ideal_runtime) {
3780 resched_curr(rq_of(cfs_rq));
3781 /*
3782 * The current task ran long enough, ensure it doesn't get
3783 * re-elected due to buddy favours.
3784 */
3785 clear_buddies(cfs_rq, curr);
3786 return;
3787 }
3788
3789 /*
3790 * Ensure that a task that missed wakeup preemption by a
3791 * narrow margin doesn't have to wait for a full slice.
3792 * This also mitigates buddy induced latencies under load.
3793 */
3794 if (delta_exec < sysctl_sched_min_granularity)
3795 return;
3796
3797 se = __pick_first_entity(cfs_rq);
3798 delta = curr->vruntime - se->vruntime;
3799
3800 if (delta < 0)
3801 return;
3802
3803 if (delta > ideal_runtime)
3804 resched_curr(rq_of(cfs_rq));
3805 }
3806
3807 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)3808 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3809 {
3810 /* 'current' is not kept within the tree. */
3811 if (se->on_rq) {
3812 /*
3813 * Any task has to be enqueued before it get to execute on
3814 * a CPU. So account for the time it spent waiting on the
3815 * runqueue.
3816 */
3817 update_stats_wait_end(cfs_rq, se);
3818 __dequeue_entity(cfs_rq, se);
3819 update_load_avg(se, UPDATE_TG);
3820 }
3821
3822 update_stats_curr_start(cfs_rq, se);
3823 cfs_rq->curr = se;
3824
3825 /*
3826 * Track our maximum slice length, if the CPU's load is at
3827 * least twice that of our own weight (i.e. dont track it
3828 * when there are only lesser-weight tasks around):
3829 */
3830 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3831 schedstat_set(se->statistics.slice_max,
3832 max((u64)schedstat_val(se->statistics.slice_max),
3833 se->sum_exec_runtime - se->prev_sum_exec_runtime));
3834 }
3835
3836 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3837 }
3838
3839 static int
3840 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3841
3842 /*
3843 * Pick the next process, keeping these things in mind, in this order:
3844 * 1) keep things fair between processes/task groups
3845 * 2) pick the "next" process, since someone really wants that to run
3846 * 3) pick the "last" process, for cache locality
3847 * 4) do not run the "skip" process, if something else is available
3848 */
3849 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)3850 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3851 {
3852 struct sched_entity *left = __pick_first_entity(cfs_rq);
3853 struct sched_entity *se;
3854
3855 /*
3856 * If curr is set we have to see if its left of the leftmost entity
3857 * still in the tree, provided there was anything in the tree at all.
3858 */
3859 if (!left || (curr && entity_before(curr, left)))
3860 left = curr;
3861
3862 se = left; /* ideally we run the leftmost entity */
3863
3864 /*
3865 * Avoid running the skip buddy, if running something else can
3866 * be done without getting too unfair.
3867 */
3868 if (cfs_rq->skip == se) {
3869 struct sched_entity *second;
3870
3871 if (se == curr) {
3872 second = __pick_first_entity(cfs_rq);
3873 } else {
3874 second = __pick_next_entity(se);
3875 if (!second || (curr && entity_before(curr, second)))
3876 second = curr;
3877 }
3878
3879 if (second && wakeup_preempt_entity(second, left) < 1)
3880 se = second;
3881 }
3882
3883 /*
3884 * Prefer last buddy, try to return the CPU to a preempted task.
3885 */
3886 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3887 se = cfs_rq->last;
3888
3889 /*
3890 * Someone really wants this to run. If it's not unfair, run it.
3891 */
3892 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3893 se = cfs_rq->next;
3894
3895 clear_buddies(cfs_rq, se);
3896
3897 return se;
3898 }
3899
3900 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3901
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)3902 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3903 {
3904 /*
3905 * If still on the runqueue then deactivate_task()
3906 * was not called and update_curr() has to be done:
3907 */
3908 if (prev->on_rq)
3909 update_curr(cfs_rq);
3910
3911 /* throttle cfs_rqs exceeding runtime */
3912 check_cfs_rq_runtime(cfs_rq);
3913
3914 check_spread(cfs_rq, prev);
3915
3916 if (prev->on_rq) {
3917 update_stats_wait_start(cfs_rq, prev);
3918 /* Put 'current' back into the tree. */
3919 __enqueue_entity(cfs_rq, prev);
3920 /* in !on_rq case, update occurred at dequeue */
3921 update_load_avg(prev, 0);
3922 }
3923 cfs_rq->curr = NULL;
3924 }
3925
3926 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)3927 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3928 {
3929 /*
3930 * Update run-time statistics of the 'current'.
3931 */
3932 update_curr(cfs_rq);
3933
3934 /*
3935 * Ensure that runnable average is periodically updated.
3936 */
3937 update_load_avg(curr, UPDATE_TG);
3938 update_cfs_shares(curr);
3939
3940 #ifdef CONFIG_SCHED_HRTICK
3941 /*
3942 * queued ticks are scheduled to match the slice, so don't bother
3943 * validating it and just reschedule.
3944 */
3945 if (queued) {
3946 resched_curr(rq_of(cfs_rq));
3947 return;
3948 }
3949 /*
3950 * don't let the period tick interfere with the hrtick preemption
3951 */
3952 if (!sched_feat(DOUBLE_TICK) &&
3953 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3954 return;
3955 #endif
3956
3957 if (cfs_rq->nr_running > 1)
3958 check_preempt_tick(cfs_rq, curr);
3959 }
3960
3961
3962 /**************************************************
3963 * CFS bandwidth control machinery
3964 */
3965
3966 #ifdef CONFIG_CFS_BANDWIDTH
3967
3968 #ifdef HAVE_JUMP_LABEL
3969 static struct static_key __cfs_bandwidth_used;
3970
cfs_bandwidth_used(void)3971 static inline bool cfs_bandwidth_used(void)
3972 {
3973 return static_key_false(&__cfs_bandwidth_used);
3974 }
3975
cfs_bandwidth_usage_inc(void)3976 void cfs_bandwidth_usage_inc(void)
3977 {
3978 static_key_slow_inc(&__cfs_bandwidth_used);
3979 }
3980
cfs_bandwidth_usage_dec(void)3981 void cfs_bandwidth_usage_dec(void)
3982 {
3983 static_key_slow_dec(&__cfs_bandwidth_used);
3984 }
3985 #else /* HAVE_JUMP_LABEL */
cfs_bandwidth_used(void)3986 static bool cfs_bandwidth_used(void)
3987 {
3988 return true;
3989 }
3990
cfs_bandwidth_usage_inc(void)3991 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)3992 void cfs_bandwidth_usage_dec(void) {}
3993 #endif /* HAVE_JUMP_LABEL */
3994
3995 /*
3996 * default period for cfs group bandwidth.
3997 * default: 0.1s, units: nanoseconds
3998 */
default_cfs_period(void)3999 static inline u64 default_cfs_period(void)
4000 {
4001 return 100000000ULL;
4002 }
4003
sched_cfs_bandwidth_slice(void)4004 static inline u64 sched_cfs_bandwidth_slice(void)
4005 {
4006 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4007 }
4008
4009 /*
4010 * Replenish runtime according to assigned quota and update expiration time.
4011 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4012 * additional synchronization around rq->lock.
4013 *
4014 * requires cfs_b->lock
4015 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)4016 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4017 {
4018 u64 now;
4019
4020 if (cfs_b->quota == RUNTIME_INF)
4021 return;
4022
4023 now = sched_clock_cpu(smp_processor_id());
4024 cfs_b->runtime = cfs_b->quota;
4025 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4026 }
4027
tg_cfs_bandwidth(struct task_group * tg)4028 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4029 {
4030 return &tg->cfs_bandwidth;
4031 }
4032
4033 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
cfs_rq_clock_task(struct cfs_rq * cfs_rq)4034 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4035 {
4036 if (unlikely(cfs_rq->throttle_count))
4037 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4038
4039 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4040 }
4041
4042 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)4043 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4044 {
4045 struct task_group *tg = cfs_rq->tg;
4046 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4047 u64 amount = 0, min_amount, expires;
4048
4049 /* note: this is a positive sum as runtime_remaining <= 0 */
4050 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4051
4052 raw_spin_lock(&cfs_b->lock);
4053 if (cfs_b->quota == RUNTIME_INF)
4054 amount = min_amount;
4055 else {
4056 start_cfs_bandwidth(cfs_b);
4057
4058 if (cfs_b->runtime > 0) {
4059 amount = min(cfs_b->runtime, min_amount);
4060 cfs_b->runtime -= amount;
4061 cfs_b->idle = 0;
4062 }
4063 }
4064 expires = cfs_b->runtime_expires;
4065 raw_spin_unlock(&cfs_b->lock);
4066
4067 cfs_rq->runtime_remaining += amount;
4068 /*
4069 * we may have advanced our local expiration to account for allowed
4070 * spread between our sched_clock and the one on which runtime was
4071 * issued.
4072 */
4073 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4074 cfs_rq->runtime_expires = expires;
4075
4076 return cfs_rq->runtime_remaining > 0;
4077 }
4078
4079 /*
4080 * Note: This depends on the synchronization provided by sched_clock and the
4081 * fact that rq->clock snapshots this value.
4082 */
expire_cfs_rq_runtime(struct cfs_rq * cfs_rq)4083 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4084 {
4085 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4086
4087 /* if the deadline is ahead of our clock, nothing to do */
4088 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4089 return;
4090
4091 if (cfs_rq->runtime_remaining < 0)
4092 return;
4093
4094 /*
4095 * If the local deadline has passed we have to consider the
4096 * possibility that our sched_clock is 'fast' and the global deadline
4097 * has not truly expired.
4098 *
4099 * Fortunately we can check determine whether this the case by checking
4100 * whether the global deadline has advanced. It is valid to compare
4101 * cfs_b->runtime_expires without any locks since we only care about
4102 * exact equality, so a partial write will still work.
4103 */
4104
4105 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
4106 /* extend local deadline, drift is bounded above by 2 ticks */
4107 cfs_rq->runtime_expires += TICK_NSEC;
4108 } else {
4109 /* global deadline is ahead, expiration has passed */
4110 cfs_rq->runtime_remaining = 0;
4111 }
4112 }
4113
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4114 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4115 {
4116 /* dock delta_exec before expiring quota (as it could span periods) */
4117 cfs_rq->runtime_remaining -= delta_exec;
4118 expire_cfs_rq_runtime(cfs_rq);
4119
4120 if (likely(cfs_rq->runtime_remaining > 0))
4121 return;
4122
4123 /*
4124 * if we're unable to extend our runtime we resched so that the active
4125 * hierarchy can be throttled
4126 */
4127 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4128 resched_curr(rq_of(cfs_rq));
4129 }
4130
4131 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4132 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4133 {
4134 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4135 return;
4136
4137 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4138 }
4139
cfs_rq_throttled(struct cfs_rq * cfs_rq)4140 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4141 {
4142 return cfs_bandwidth_used() && cfs_rq->throttled;
4143 }
4144
4145 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)4146 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4147 {
4148 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4149 }
4150
4151 /*
4152 * Ensure that neither of the group entities corresponding to src_cpu or
4153 * dest_cpu are members of a throttled hierarchy when performing group
4154 * load-balance operations.
4155 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)4156 static inline int throttled_lb_pair(struct task_group *tg,
4157 int src_cpu, int dest_cpu)
4158 {
4159 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4160
4161 src_cfs_rq = tg->cfs_rq[src_cpu];
4162 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4163
4164 return throttled_hierarchy(src_cfs_rq) ||
4165 throttled_hierarchy(dest_cfs_rq);
4166 }
4167
4168 /* updated child weight may affect parent so we have to do this bottom up */
tg_unthrottle_up(struct task_group * tg,void * data)4169 static int tg_unthrottle_up(struct task_group *tg, void *data)
4170 {
4171 struct rq *rq = data;
4172 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4173
4174 cfs_rq->throttle_count--;
4175 if (!cfs_rq->throttle_count) {
4176 /* adjust cfs_rq_clock_task() */
4177 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4178 cfs_rq->throttled_clock_task;
4179 }
4180
4181 return 0;
4182 }
4183
tg_throttle_down(struct task_group * tg,void * data)4184 static int tg_throttle_down(struct task_group *tg, void *data)
4185 {
4186 struct rq *rq = data;
4187 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4188
4189 /* group is entering throttled state, stop time */
4190 if (!cfs_rq->throttle_count)
4191 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4192 cfs_rq->throttle_count++;
4193
4194 return 0;
4195 }
4196
throttle_cfs_rq(struct cfs_rq * cfs_rq)4197 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4198 {
4199 struct rq *rq = rq_of(cfs_rq);
4200 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4201 struct sched_entity *se;
4202 long task_delta, dequeue = 1;
4203 bool empty;
4204
4205 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4206
4207 /* freeze hierarchy runnable averages while throttled */
4208 rcu_read_lock();
4209 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4210 rcu_read_unlock();
4211
4212 task_delta = cfs_rq->h_nr_running;
4213 for_each_sched_entity(se) {
4214 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4215 /* throttled entity or throttle-on-deactivate */
4216 if (!se->on_rq)
4217 break;
4218
4219 if (dequeue)
4220 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4221 qcfs_rq->h_nr_running -= task_delta;
4222
4223 if (qcfs_rq->load.weight)
4224 dequeue = 0;
4225 }
4226
4227 if (!se)
4228 sub_nr_running(rq, task_delta);
4229
4230 cfs_rq->throttled = 1;
4231 cfs_rq->throttled_clock = rq_clock(rq);
4232 raw_spin_lock(&cfs_b->lock);
4233 empty = list_empty(&cfs_b->throttled_cfs_rq);
4234
4235 /*
4236 * Add to the _head_ of the list, so that an already-started
4237 * distribute_cfs_runtime will not see us
4238 */
4239 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4240
4241 /*
4242 * If we're the first throttled task, make sure the bandwidth
4243 * timer is running.
4244 */
4245 if (empty)
4246 start_cfs_bandwidth(cfs_b);
4247
4248 raw_spin_unlock(&cfs_b->lock);
4249 }
4250
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)4251 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4252 {
4253 struct rq *rq = rq_of(cfs_rq);
4254 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4255 struct sched_entity *se;
4256 int enqueue = 1;
4257 long task_delta;
4258
4259 se = cfs_rq->tg->se[cpu_of(rq)];
4260
4261 cfs_rq->throttled = 0;
4262
4263 update_rq_clock(rq);
4264
4265 raw_spin_lock(&cfs_b->lock);
4266 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4267 list_del_rcu(&cfs_rq->throttled_list);
4268 raw_spin_unlock(&cfs_b->lock);
4269
4270 /* update hierarchical throttle state */
4271 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4272
4273 if (!cfs_rq->load.weight)
4274 return;
4275
4276 task_delta = cfs_rq->h_nr_running;
4277 for_each_sched_entity(se) {
4278 if (se->on_rq)
4279 enqueue = 0;
4280
4281 cfs_rq = cfs_rq_of(se);
4282 if (enqueue)
4283 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4284 cfs_rq->h_nr_running += task_delta;
4285
4286 if (cfs_rq_throttled(cfs_rq))
4287 break;
4288 }
4289
4290 if (!se)
4291 add_nr_running(rq, task_delta);
4292
4293 /* determine whether we need to wake up potentially idle cpu */
4294 if (rq->curr == rq->idle && rq->cfs.nr_running)
4295 resched_curr(rq);
4296 }
4297
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b,u64 remaining,u64 expires)4298 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4299 u64 remaining, u64 expires)
4300 {
4301 struct cfs_rq *cfs_rq;
4302 u64 runtime;
4303 u64 starting_runtime = remaining;
4304
4305 rcu_read_lock();
4306 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4307 throttled_list) {
4308 struct rq *rq = rq_of(cfs_rq);
4309
4310 raw_spin_lock(&rq->lock);
4311 if (!cfs_rq_throttled(cfs_rq))
4312 goto next;
4313
4314 runtime = -cfs_rq->runtime_remaining + 1;
4315 if (runtime > remaining)
4316 runtime = remaining;
4317 remaining -= runtime;
4318
4319 cfs_rq->runtime_remaining += runtime;
4320 cfs_rq->runtime_expires = expires;
4321
4322 /* we check whether we're throttled above */
4323 if (cfs_rq->runtime_remaining > 0)
4324 unthrottle_cfs_rq(cfs_rq);
4325
4326 next:
4327 raw_spin_unlock(&rq->lock);
4328
4329 if (!remaining)
4330 break;
4331 }
4332 rcu_read_unlock();
4333
4334 return starting_runtime - remaining;
4335 }
4336
4337 /*
4338 * Responsible for refilling a task_group's bandwidth and unthrottling its
4339 * cfs_rqs as appropriate. If there has been no activity within the last
4340 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4341 * used to track this state.
4342 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun)4343 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4344 {
4345 u64 runtime, runtime_expires;
4346 int throttled;
4347
4348 /* no need to continue the timer with no bandwidth constraint */
4349 if (cfs_b->quota == RUNTIME_INF)
4350 goto out_deactivate;
4351
4352 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4353 cfs_b->nr_periods += overrun;
4354
4355 /*
4356 * idle depends on !throttled (for the case of a large deficit), and if
4357 * we're going inactive then everything else can be deferred
4358 */
4359 if (cfs_b->idle && !throttled)
4360 goto out_deactivate;
4361
4362 __refill_cfs_bandwidth_runtime(cfs_b);
4363
4364 if (!throttled) {
4365 /* mark as potentially idle for the upcoming period */
4366 cfs_b->idle = 1;
4367 return 0;
4368 }
4369
4370 /* account preceding periods in which throttling occurred */
4371 cfs_b->nr_throttled += overrun;
4372
4373 runtime_expires = cfs_b->runtime_expires;
4374
4375 /*
4376 * This check is repeated as we are holding onto the new bandwidth while
4377 * we unthrottle. This can potentially race with an unthrottled group
4378 * trying to acquire new bandwidth from the global pool. This can result
4379 * in us over-using our runtime if it is all used during this loop, but
4380 * only by limited amounts in that extreme case.
4381 */
4382 while (throttled && cfs_b->runtime > 0) {
4383 runtime = cfs_b->runtime;
4384 raw_spin_unlock(&cfs_b->lock);
4385 /* we can't nest cfs_b->lock while distributing bandwidth */
4386 runtime = distribute_cfs_runtime(cfs_b, runtime,
4387 runtime_expires);
4388 raw_spin_lock(&cfs_b->lock);
4389
4390 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4391
4392 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4393 }
4394
4395 /*
4396 * While we are ensured activity in the period following an
4397 * unthrottle, this also covers the case in which the new bandwidth is
4398 * insufficient to cover the existing bandwidth deficit. (Forcing the
4399 * timer to remain active while there are any throttled entities.)
4400 */
4401 cfs_b->idle = 0;
4402
4403 return 0;
4404
4405 out_deactivate:
4406 return 1;
4407 }
4408
4409 /* a cfs_rq won't donate quota below this amount */
4410 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4411 /* minimum remaining period time to redistribute slack quota */
4412 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4413 /* how long we wait to gather additional slack before distributing */
4414 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4415
4416 /*
4417 * Are we near the end of the current quota period?
4418 *
4419 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4420 * hrtimer base being cleared by hrtimer_start. In the case of
4421 * migrate_hrtimers, base is never cleared, so we are fine.
4422 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)4423 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4424 {
4425 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4426 u64 remaining;
4427
4428 /* if the call-back is running a quota refresh is already occurring */
4429 if (hrtimer_callback_running(refresh_timer))
4430 return 1;
4431
4432 /* is a quota refresh about to occur? */
4433 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4434 if (remaining < min_expire)
4435 return 1;
4436
4437 return 0;
4438 }
4439
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)4440 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4441 {
4442 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4443
4444 /* if there's a quota refresh soon don't bother with slack */
4445 if (runtime_refresh_within(cfs_b, min_left))
4446 return;
4447
4448 hrtimer_start(&cfs_b->slack_timer,
4449 ns_to_ktime(cfs_bandwidth_slack_period),
4450 HRTIMER_MODE_REL);
4451 }
4452
4453 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)4454 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4455 {
4456 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4457 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4458
4459 if (slack_runtime <= 0)
4460 return;
4461
4462 raw_spin_lock(&cfs_b->lock);
4463 if (cfs_b->quota != RUNTIME_INF &&
4464 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4465 cfs_b->runtime += slack_runtime;
4466
4467 /* we are under rq->lock, defer unthrottling using a timer */
4468 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4469 !list_empty(&cfs_b->throttled_cfs_rq))
4470 start_cfs_slack_bandwidth(cfs_b);
4471 }
4472 raw_spin_unlock(&cfs_b->lock);
4473
4474 /* even if it's not valid for return we don't want to try again */
4475 cfs_rq->runtime_remaining -= slack_runtime;
4476 }
4477
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)4478 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4479 {
4480 if (!cfs_bandwidth_used())
4481 return;
4482
4483 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4484 return;
4485
4486 __return_cfs_rq_runtime(cfs_rq);
4487 }
4488
4489 /*
4490 * This is done with a timer (instead of inline with bandwidth return) since
4491 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4492 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)4493 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4494 {
4495 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4496 u64 expires;
4497
4498 /* confirm we're still not at a refresh boundary */
4499 raw_spin_lock(&cfs_b->lock);
4500 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4501 raw_spin_unlock(&cfs_b->lock);
4502 return;
4503 }
4504
4505 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4506 runtime = cfs_b->runtime;
4507
4508 expires = cfs_b->runtime_expires;
4509 raw_spin_unlock(&cfs_b->lock);
4510
4511 if (!runtime)
4512 return;
4513
4514 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4515
4516 raw_spin_lock(&cfs_b->lock);
4517 if (expires == cfs_b->runtime_expires)
4518 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4519 raw_spin_unlock(&cfs_b->lock);
4520 }
4521
4522 /*
4523 * When a group wakes up we want to make sure that its quota is not already
4524 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4525 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4526 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)4527 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4528 {
4529 if (!cfs_bandwidth_used())
4530 return;
4531
4532 /* an active group must be handled by the update_curr()->put() path */
4533 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4534 return;
4535
4536 /* ensure the group is not already throttled */
4537 if (cfs_rq_throttled(cfs_rq))
4538 return;
4539
4540 /* update runtime allocation */
4541 account_cfs_rq_runtime(cfs_rq, 0);
4542 if (cfs_rq->runtime_remaining <= 0)
4543 throttle_cfs_rq(cfs_rq);
4544 }
4545
sync_throttle(struct task_group * tg,int cpu)4546 static void sync_throttle(struct task_group *tg, int cpu)
4547 {
4548 struct cfs_rq *pcfs_rq, *cfs_rq;
4549
4550 if (!cfs_bandwidth_used())
4551 return;
4552
4553 if (!tg->parent)
4554 return;
4555
4556 cfs_rq = tg->cfs_rq[cpu];
4557 pcfs_rq = tg->parent->cfs_rq[cpu];
4558
4559 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4560 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4561 }
4562
4563 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)4564 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4565 {
4566 if (!cfs_bandwidth_used())
4567 return false;
4568
4569 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4570 return false;
4571
4572 /*
4573 * it's possible for a throttled entity to be forced into a running
4574 * state (e.g. set_curr_task), in this case we're finished.
4575 */
4576 if (cfs_rq_throttled(cfs_rq))
4577 return true;
4578
4579 throttle_cfs_rq(cfs_rq);
4580 return true;
4581 }
4582
sched_cfs_slack_timer(struct hrtimer * timer)4583 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4584 {
4585 struct cfs_bandwidth *cfs_b =
4586 container_of(timer, struct cfs_bandwidth, slack_timer);
4587
4588 do_sched_cfs_slack_timer(cfs_b);
4589
4590 return HRTIMER_NORESTART;
4591 }
4592
sched_cfs_period_timer(struct hrtimer * timer)4593 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4594 {
4595 struct cfs_bandwidth *cfs_b =
4596 container_of(timer, struct cfs_bandwidth, period_timer);
4597 int overrun;
4598 int idle = 0;
4599
4600 raw_spin_lock(&cfs_b->lock);
4601 for (;;) {
4602 overrun = hrtimer_forward_now(timer, cfs_b->period);
4603 if (!overrun)
4604 break;
4605
4606 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4607 }
4608 if (idle)
4609 cfs_b->period_active = 0;
4610 raw_spin_unlock(&cfs_b->lock);
4611
4612 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4613 }
4614
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)4615 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4616 {
4617 raw_spin_lock_init(&cfs_b->lock);
4618 cfs_b->runtime = 0;
4619 cfs_b->quota = RUNTIME_INF;
4620 cfs_b->period = ns_to_ktime(default_cfs_period());
4621
4622 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4623 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4624 cfs_b->period_timer.function = sched_cfs_period_timer;
4625 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4626 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4627 }
4628
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)4629 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4630 {
4631 cfs_rq->runtime_enabled = 0;
4632 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4633 }
4634
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)4635 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4636 {
4637 lockdep_assert_held(&cfs_b->lock);
4638
4639 if (!cfs_b->period_active) {
4640 cfs_b->period_active = 1;
4641 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4642 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4643 }
4644 }
4645
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)4646 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4647 {
4648 /* init_cfs_bandwidth() was not called */
4649 if (!cfs_b->throttled_cfs_rq.next)
4650 return;
4651
4652 hrtimer_cancel(&cfs_b->period_timer);
4653 hrtimer_cancel(&cfs_b->slack_timer);
4654 }
4655
update_runtime_enabled(struct rq * rq)4656 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4657 {
4658 struct cfs_rq *cfs_rq;
4659
4660 for_each_leaf_cfs_rq(rq, cfs_rq) {
4661 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4662
4663 raw_spin_lock(&cfs_b->lock);
4664 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4665 raw_spin_unlock(&cfs_b->lock);
4666 }
4667 }
4668
unthrottle_offline_cfs_rqs(struct rq * rq)4669 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4670 {
4671 struct cfs_rq *cfs_rq;
4672
4673 for_each_leaf_cfs_rq(rq, cfs_rq) {
4674 if (!cfs_rq->runtime_enabled)
4675 continue;
4676
4677 /*
4678 * clock_task is not advancing so we just need to make sure
4679 * there's some valid quota amount
4680 */
4681 cfs_rq->runtime_remaining = 1;
4682 /*
4683 * Offline rq is schedulable till cpu is completely disabled
4684 * in take_cpu_down(), so we prevent new cfs throttling here.
4685 */
4686 cfs_rq->runtime_enabled = 0;
4687
4688 if (cfs_rq_throttled(cfs_rq))
4689 unthrottle_cfs_rq(cfs_rq);
4690 }
4691 }
4692
4693 #else /* CONFIG_CFS_BANDWIDTH */
cfs_rq_clock_task(struct cfs_rq * cfs_rq)4694 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4695 {
4696 return rq_clock_task(rq_of(cfs_rq));
4697 }
4698
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4699 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)4700 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)4701 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)4702 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)4703 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4704
cfs_rq_throttled(struct cfs_rq * cfs_rq)4705 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4706 {
4707 return 0;
4708 }
4709
throttled_hierarchy(struct cfs_rq * cfs_rq)4710 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4711 {
4712 return 0;
4713 }
4714
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)4715 static inline int throttled_lb_pair(struct task_group *tg,
4716 int src_cpu, int dest_cpu)
4717 {
4718 return 0;
4719 }
4720
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)4721 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4722
4723 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)4724 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4725 #endif
4726
tg_cfs_bandwidth(struct task_group * tg)4727 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4728 {
4729 return NULL;
4730 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)4731 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)4732 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)4733 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4734
4735 #endif /* CONFIG_CFS_BANDWIDTH */
4736
4737 /**************************************************
4738 * CFS operations on tasks:
4739 */
4740
4741 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)4742 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4743 {
4744 struct sched_entity *se = &p->se;
4745 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4746
4747 SCHED_WARN_ON(task_rq(p) != rq);
4748
4749 if (rq->cfs.h_nr_running > 1) {
4750 u64 slice = sched_slice(cfs_rq, se);
4751 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4752 s64 delta = slice - ran;
4753
4754 if (delta < 0) {
4755 if (rq->curr == p)
4756 resched_curr(rq);
4757 return;
4758 }
4759 hrtick_start(rq, delta);
4760 }
4761 }
4762
4763 /*
4764 * called from enqueue/dequeue and updates the hrtick when the
4765 * current task is from our class and nr_running is low enough
4766 * to matter.
4767 */
hrtick_update(struct rq * rq)4768 static void hrtick_update(struct rq *rq)
4769 {
4770 struct task_struct *curr = rq->curr;
4771
4772 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4773 return;
4774
4775 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4776 hrtick_start_fair(rq, curr);
4777 }
4778 #else /* !CONFIG_SCHED_HRTICK */
4779 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)4780 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4781 {
4782 }
4783
hrtick_update(struct rq * rq)4784 static inline void hrtick_update(struct rq *rq)
4785 {
4786 }
4787 #endif
4788
4789 #ifdef CONFIG_SMP
4790 static bool __cpu_overutilized(int cpu, int delta);
4791 static bool cpu_overutilized(int cpu);
4792 unsigned long boosted_cpu_util(int cpu);
4793 #else
4794 #define boosted_cpu_util(cpu) cpu_util_freq(cpu)
4795 #endif
4796
4797 /*
4798 * The enqueue_task method is called before nr_running is
4799 * increased. Here we update the fair scheduling stats and
4800 * then put the task into the rbtree:
4801 */
4802 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)4803 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4804 {
4805 struct cfs_rq *cfs_rq;
4806 struct sched_entity *se = &p->se;
4807 #ifdef CONFIG_SMP
4808 int task_new = flags & ENQUEUE_WAKEUP_NEW;
4809 #endif
4810
4811 /*
4812 * If in_iowait is set, the code below may not trigger any cpufreq
4813 * utilization updates, so do it here explicitly with the IOWAIT flag
4814 * passed.
4815 */
4816 if (p->in_iowait)
4817 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4818
4819 for_each_sched_entity(se) {
4820 if (se->on_rq)
4821 break;
4822 cfs_rq = cfs_rq_of(se);
4823 enqueue_entity(cfs_rq, se, flags);
4824
4825 /*
4826 * end evaluation on encountering a throttled cfs_rq
4827 *
4828 * note: in the case of encountering a throttled cfs_rq we will
4829 * post the final h_nr_running increment below.
4830 */
4831 if (cfs_rq_throttled(cfs_rq))
4832 break;
4833 cfs_rq->h_nr_running++;
4834 walt_inc_cfs_cumulative_runnable_avg(cfs_rq, p);
4835
4836 flags = ENQUEUE_WAKEUP;
4837 }
4838
4839 for_each_sched_entity(se) {
4840 cfs_rq = cfs_rq_of(se);
4841 cfs_rq->h_nr_running++;
4842 walt_inc_cfs_cumulative_runnable_avg(cfs_rq, p);
4843
4844 if (cfs_rq_throttled(cfs_rq))
4845 break;
4846
4847 update_load_avg(se, UPDATE_TG);
4848 update_cfs_shares(se);
4849 }
4850
4851 if (!se)
4852 add_nr_running(rq, 1);
4853
4854 #ifdef CONFIG_SMP
4855
4856 /*
4857 * Update SchedTune accounting.
4858 *
4859 * We do it before updating the CPU capacity to ensure the
4860 * boost value of the current task is accounted for in the
4861 * selection of the OPP.
4862 *
4863 * We do it also in the case where we enqueue a throttled task;
4864 * we could argue that a throttled task should not boost a CPU,
4865 * however:
4866 * a) properly implementing CPU boosting considering throttled
4867 * tasks will increase a lot the complexity of the solution
4868 * b) it's not easy to quantify the benefits introduced by
4869 * such a more complex solution.
4870 * Thus, for the time being we go for the simple solution and boost
4871 * also for throttled RQs.
4872 */
4873 schedtune_enqueue_task(p, cpu_of(rq));
4874
4875 if (!se) {
4876 walt_inc_cumulative_runnable_avg(rq, p);
4877 if (!task_new && !rq->rd->overutilized &&
4878 cpu_overutilized(rq->cpu)) {
4879 rq->rd->overutilized = true;
4880 trace_sched_overutilized(true);
4881 }
4882 }
4883
4884 #endif /* CONFIG_SMP */
4885 hrtick_update(rq);
4886 }
4887
4888 static void set_next_buddy(struct sched_entity *se);
4889
4890 /*
4891 * The dequeue_task method is called before nr_running is
4892 * decreased. We remove the task from the rbtree and
4893 * update the fair scheduling stats:
4894 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)4895 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4896 {
4897 struct cfs_rq *cfs_rq;
4898 struct sched_entity *se = &p->se;
4899 int task_sleep = flags & DEQUEUE_SLEEP;
4900
4901 for_each_sched_entity(se) {
4902 cfs_rq = cfs_rq_of(se);
4903 dequeue_entity(cfs_rq, se, flags);
4904
4905 /*
4906 * end evaluation on encountering a throttled cfs_rq
4907 *
4908 * note: in the case of encountering a throttled cfs_rq we will
4909 * post the final h_nr_running decrement below.
4910 */
4911 if (cfs_rq_throttled(cfs_rq))
4912 break;
4913 cfs_rq->h_nr_running--;
4914 walt_dec_cfs_cumulative_runnable_avg(cfs_rq, p);
4915
4916 /* Don't dequeue parent if it has other entities besides us */
4917 if (cfs_rq->load.weight) {
4918 /* Avoid re-evaluating load for this entity: */
4919 se = parent_entity(se);
4920 /*
4921 * Bias pick_next to pick a task from this cfs_rq, as
4922 * p is sleeping when it is within its sched_slice.
4923 */
4924 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4925 set_next_buddy(se);
4926 break;
4927 }
4928 flags |= DEQUEUE_SLEEP;
4929 }
4930
4931 for_each_sched_entity(se) {
4932 cfs_rq = cfs_rq_of(se);
4933 cfs_rq->h_nr_running--;
4934 walt_dec_cfs_cumulative_runnable_avg(cfs_rq, p);
4935
4936 if (cfs_rq_throttled(cfs_rq))
4937 break;
4938
4939 update_load_avg(se, UPDATE_TG);
4940 update_cfs_shares(se);
4941 }
4942
4943 if (!se)
4944 sub_nr_running(rq, 1);
4945
4946 #ifdef CONFIG_SMP
4947
4948 /*
4949 * Update SchedTune accounting
4950 *
4951 * We do it before updating the CPU capacity to ensure the
4952 * boost value of the current task is accounted for in the
4953 * selection of the OPP.
4954 */
4955 schedtune_dequeue_task(p, cpu_of(rq));
4956
4957 if (!se)
4958 walt_dec_cumulative_runnable_avg(rq, p);
4959 #endif /* CONFIG_SMP */
4960
4961 hrtick_update(rq);
4962 }
4963
4964 #ifdef CONFIG_SMP
4965
4966 /* Working cpumask for: load_balance, load_balance_newidle. */
4967 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4968 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4969
4970 #ifdef CONFIG_NO_HZ_COMMON
4971 /*
4972 * per rq 'load' arrray crap; XXX kill this.
4973 */
4974
4975 /*
4976 * The exact cpuload calculated at every tick would be:
4977 *
4978 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4979 *
4980 * If a cpu misses updates for n ticks (as it was idle) and update gets
4981 * called on the n+1-th tick when cpu may be busy, then we have:
4982 *
4983 * load_n = (1 - 1/2^i)^n * load_0
4984 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4985 *
4986 * decay_load_missed() below does efficient calculation of
4987 *
4988 * load' = (1 - 1/2^i)^n * load
4989 *
4990 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4991 * This allows us to precompute the above in said factors, thereby allowing the
4992 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4993 * fixed_power_int())
4994 *
4995 * The calculation is approximated on a 128 point scale.
4996 */
4997 #define DEGRADE_SHIFT 7
4998
4999 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5000 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5001 { 0, 0, 0, 0, 0, 0, 0, 0 },
5002 { 64, 32, 8, 0, 0, 0, 0, 0 },
5003 { 96, 72, 40, 12, 1, 0, 0, 0 },
5004 { 112, 98, 75, 43, 15, 1, 0, 0 },
5005 { 120, 112, 98, 76, 45, 16, 2, 0 }
5006 };
5007
5008 /*
5009 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5010 * would be when CPU is idle and so we just decay the old load without
5011 * adding any new load.
5012 */
5013 static unsigned long
decay_load_missed(unsigned long load,unsigned long missed_updates,int idx)5014 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5015 {
5016 int j = 0;
5017
5018 if (!missed_updates)
5019 return load;
5020
5021 if (missed_updates >= degrade_zero_ticks[idx])
5022 return 0;
5023
5024 if (idx == 1)
5025 return load >> missed_updates;
5026
5027 while (missed_updates) {
5028 if (missed_updates % 2)
5029 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5030
5031 missed_updates >>= 1;
5032 j++;
5033 }
5034 return load;
5035 }
5036 #endif /* CONFIG_NO_HZ_COMMON */
5037
5038 /**
5039 * __cpu_load_update - update the rq->cpu_load[] statistics
5040 * @this_rq: The rq to update statistics for
5041 * @this_load: The current load
5042 * @pending_updates: The number of missed updates
5043 *
5044 * Update rq->cpu_load[] statistics. This function is usually called every
5045 * scheduler tick (TICK_NSEC).
5046 *
5047 * This function computes a decaying average:
5048 *
5049 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5050 *
5051 * Because of NOHZ it might not get called on every tick which gives need for
5052 * the @pending_updates argument.
5053 *
5054 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5055 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5056 * = A * (A * load[i]_n-2 + B) + B
5057 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5058 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5059 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5060 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5061 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5062 *
5063 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5064 * any change in load would have resulted in the tick being turned back on.
5065 *
5066 * For regular NOHZ, this reduces to:
5067 *
5068 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5069 *
5070 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5071 * term.
5072 */
cpu_load_update(struct rq * this_rq,unsigned long this_load,unsigned long pending_updates)5073 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5074 unsigned long pending_updates)
5075 {
5076 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5077 int i, scale;
5078
5079 this_rq->nr_load_updates++;
5080
5081 /* Update our load: */
5082 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5083 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5084 unsigned long old_load, new_load;
5085
5086 /* scale is effectively 1 << i now, and >> i divides by scale */
5087
5088 old_load = this_rq->cpu_load[i];
5089 #ifdef CONFIG_NO_HZ_COMMON
5090 old_load = decay_load_missed(old_load, pending_updates - 1, i);
5091 if (tickless_load) {
5092 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5093 /*
5094 * old_load can never be a negative value because a
5095 * decayed tickless_load cannot be greater than the
5096 * original tickless_load.
5097 */
5098 old_load += tickless_load;
5099 }
5100 #endif
5101 new_load = this_load;
5102 /*
5103 * Round up the averaging division if load is increasing. This
5104 * prevents us from getting stuck on 9 if the load is 10, for
5105 * example.
5106 */
5107 if (new_load > old_load)
5108 new_load += scale - 1;
5109
5110 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5111 }
5112
5113 sched_avg_update(this_rq);
5114 }
5115
5116 /* Used instead of source_load when we know the type == 0 */
weighted_cpuload(const int cpu)5117 static unsigned long weighted_cpuload(const int cpu)
5118 {
5119 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
5120 }
5121
5122 #ifdef CONFIG_NO_HZ_COMMON
5123 /*
5124 * There is no sane way to deal with nohz on smp when using jiffies because the
5125 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5126 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5127 *
5128 * Therefore we need to avoid the delta approach from the regular tick when
5129 * possible since that would seriously skew the load calculation. This is why we
5130 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5131 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5132 * loop exit, nohz_idle_balance, nohz full exit...)
5133 *
5134 * This means we might still be one tick off for nohz periods.
5135 */
5136
cpu_load_update_nohz(struct rq * this_rq,unsigned long curr_jiffies,unsigned long load)5137 static void cpu_load_update_nohz(struct rq *this_rq,
5138 unsigned long curr_jiffies,
5139 unsigned long load)
5140 {
5141 unsigned long pending_updates;
5142
5143 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5144 if (pending_updates) {
5145 this_rq->last_load_update_tick = curr_jiffies;
5146 /*
5147 * In the regular NOHZ case, we were idle, this means load 0.
5148 * In the NOHZ_FULL case, we were non-idle, we should consider
5149 * its weighted load.
5150 */
5151 cpu_load_update(this_rq, load, pending_updates);
5152 }
5153 }
5154
5155 /*
5156 * Called from nohz_idle_balance() to update the load ratings before doing the
5157 * idle balance.
5158 */
cpu_load_update_idle(struct rq * this_rq)5159 static void cpu_load_update_idle(struct rq *this_rq)
5160 {
5161 /*
5162 * bail if there's load or we're actually up-to-date.
5163 */
5164 if (weighted_cpuload(cpu_of(this_rq)))
5165 return;
5166
5167 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5168 }
5169
5170 /*
5171 * Record CPU load on nohz entry so we know the tickless load to account
5172 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5173 * than other cpu_load[idx] but it should be fine as cpu_load readers
5174 * shouldn't rely into synchronized cpu_load[*] updates.
5175 */
cpu_load_update_nohz_start(void)5176 void cpu_load_update_nohz_start(void)
5177 {
5178 struct rq *this_rq = this_rq();
5179
5180 /*
5181 * This is all lockless but should be fine. If weighted_cpuload changes
5182 * concurrently we'll exit nohz. And cpu_load write can race with
5183 * cpu_load_update_idle() but both updater would be writing the same.
5184 */
5185 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
5186 }
5187
5188 /*
5189 * Account the tickless load in the end of a nohz frame.
5190 */
cpu_load_update_nohz_stop(void)5191 void cpu_load_update_nohz_stop(void)
5192 {
5193 unsigned long curr_jiffies = READ_ONCE(jiffies);
5194 struct rq *this_rq = this_rq();
5195 unsigned long load;
5196
5197 if (curr_jiffies == this_rq->last_load_update_tick)
5198 return;
5199
5200 load = weighted_cpuload(cpu_of(this_rq));
5201 raw_spin_lock(&this_rq->lock);
5202 update_rq_clock(this_rq);
5203 cpu_load_update_nohz(this_rq, curr_jiffies, load);
5204 raw_spin_unlock(&this_rq->lock);
5205 }
5206 #else /* !CONFIG_NO_HZ_COMMON */
cpu_load_update_nohz(struct rq * this_rq,unsigned long curr_jiffies,unsigned long load)5207 static inline void cpu_load_update_nohz(struct rq *this_rq,
5208 unsigned long curr_jiffies,
5209 unsigned long load) { }
5210 #endif /* CONFIG_NO_HZ_COMMON */
5211
cpu_load_update_periodic(struct rq * this_rq,unsigned long load)5212 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5213 {
5214 #ifdef CONFIG_NO_HZ_COMMON
5215 /* See the mess around cpu_load_update_nohz(). */
5216 this_rq->last_load_update_tick = READ_ONCE(jiffies);
5217 #endif
5218 cpu_load_update(this_rq, load, 1);
5219 }
5220
5221 /*
5222 * Called from scheduler_tick()
5223 */
cpu_load_update_active(struct rq * this_rq)5224 void cpu_load_update_active(struct rq *this_rq)
5225 {
5226 unsigned long load = weighted_cpuload(cpu_of(this_rq));
5227
5228 if (tick_nohz_tick_stopped())
5229 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5230 else
5231 cpu_load_update_periodic(this_rq, load);
5232 }
5233
5234 /*
5235 * Return a low guess at the load of a migration-source cpu weighted
5236 * according to the scheduling class and "nice" value.
5237 *
5238 * We want to under-estimate the load of migration sources, to
5239 * balance conservatively.
5240 */
source_load(int cpu,int type)5241 static unsigned long source_load(int cpu, int type)
5242 {
5243 struct rq *rq = cpu_rq(cpu);
5244 unsigned long total = weighted_cpuload(cpu);
5245
5246 if (type == 0 || !sched_feat(LB_BIAS))
5247 return total;
5248
5249 return min(rq->cpu_load[type-1], total);
5250 }
5251
5252 /*
5253 * Return a high guess at the load of a migration-target cpu weighted
5254 * according to the scheduling class and "nice" value.
5255 */
target_load(int cpu,int type)5256 static unsigned long target_load(int cpu, int type)
5257 {
5258 struct rq *rq = cpu_rq(cpu);
5259 unsigned long total = weighted_cpuload(cpu);
5260
5261 if (type == 0 || !sched_feat(LB_BIAS))
5262 return total;
5263
5264 return max(rq->cpu_load[type-1], total);
5265 }
5266
5267
cpu_avg_load_per_task(int cpu)5268 static unsigned long cpu_avg_load_per_task(int cpu)
5269 {
5270 struct rq *rq = cpu_rq(cpu);
5271 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5272 unsigned long load_avg = weighted_cpuload(cpu);
5273
5274 if (nr_running)
5275 return load_avg / nr_running;
5276
5277 return 0;
5278 }
5279
5280 #ifdef CONFIG_FAIR_GROUP_SCHED
5281 /*
5282 * effective_load() calculates the load change as seen from the root_task_group
5283 *
5284 * Adding load to a group doesn't make a group heavier, but can cause movement
5285 * of group shares between cpus. Assuming the shares were perfectly aligned one
5286 * can calculate the shift in shares.
5287 *
5288 * Calculate the effective load difference if @wl is added (subtracted) to @tg
5289 * on this @cpu and results in a total addition (subtraction) of @wg to the
5290 * total group weight.
5291 *
5292 * Given a runqueue weight distribution (rw_i) we can compute a shares
5293 * distribution (s_i) using:
5294 *
5295 * s_i = rw_i / \Sum rw_j (1)
5296 *
5297 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
5298 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
5299 * shares distribution (s_i):
5300 *
5301 * rw_i = { 2, 4, 1, 0 }
5302 * s_i = { 2/7, 4/7, 1/7, 0 }
5303 *
5304 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
5305 * task used to run on and the CPU the waker is running on), we need to
5306 * compute the effect of waking a task on either CPU and, in case of a sync
5307 * wakeup, compute the effect of the current task going to sleep.
5308 *
5309 * So for a change of @wl to the local @cpu with an overall group weight change
5310 * of @wl we can compute the new shares distribution (s'_i) using:
5311 *
5312 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
5313 *
5314 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
5315 * differences in waking a task to CPU 0. The additional task changes the
5316 * weight and shares distributions like:
5317 *
5318 * rw'_i = { 3, 4, 1, 0 }
5319 * s'_i = { 3/8, 4/8, 1/8, 0 }
5320 *
5321 * We can then compute the difference in effective weight by using:
5322 *
5323 * dw_i = S * (s'_i - s_i) (3)
5324 *
5325 * Where 'S' is the group weight as seen by its parent.
5326 *
5327 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5328 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5329 * 4/7) times the weight of the group.
5330 */
effective_load(struct task_group * tg,int cpu,long wl,long wg)5331 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5332 {
5333 struct sched_entity *se = tg->se[cpu];
5334
5335 if (!tg->parent) /* the trivial, non-cgroup case */
5336 return wl;
5337
5338 for_each_sched_entity(se) {
5339 struct cfs_rq *cfs_rq = se->my_q;
5340 long W, w = cfs_rq_load_avg(cfs_rq);
5341
5342 tg = cfs_rq->tg;
5343
5344 /*
5345 * W = @wg + \Sum rw_j
5346 */
5347 W = wg + atomic_long_read(&tg->load_avg);
5348
5349 /* Ensure \Sum rw_j >= rw_i */
5350 W -= cfs_rq->tg_load_avg_contrib;
5351 W += w;
5352
5353 /*
5354 * w = rw_i + @wl
5355 */
5356 w += wl;
5357
5358 /*
5359 * wl = S * s'_i; see (2)
5360 */
5361 if (W > 0 && w < W)
5362 wl = (w * (long)scale_load_down(tg->shares)) / W;
5363 else
5364 wl = scale_load_down(tg->shares);
5365
5366 /*
5367 * Per the above, wl is the new se->load.weight value; since
5368 * those are clipped to [MIN_SHARES, ...) do so now. See
5369 * calc_cfs_shares().
5370 */
5371 if (wl < MIN_SHARES)
5372 wl = MIN_SHARES;
5373
5374 /*
5375 * wl = dw_i = S * (s'_i - s_i); see (3)
5376 */
5377 wl -= se->avg.load_avg;
5378
5379 /*
5380 * Recursively apply this logic to all parent groups to compute
5381 * the final effective load change on the root group. Since
5382 * only the @tg group gets extra weight, all parent groups can
5383 * only redistribute existing shares. @wl is the shift in shares
5384 * resulting from this level per the above.
5385 */
5386 wg = 0;
5387 }
5388
5389 return wl;
5390 }
5391 #else
5392
effective_load(struct task_group * tg,int cpu,long wl,long wg)5393 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5394 {
5395 return wl;
5396 }
5397
5398 #endif
5399
record_wakee(struct task_struct * p)5400 static void record_wakee(struct task_struct *p)
5401 {
5402 /*
5403 * Only decay a single time; tasks that have less then 1 wakeup per
5404 * jiffy will not have built up many flips.
5405 */
5406 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5407 current->wakee_flips >>= 1;
5408 current->wakee_flip_decay_ts = jiffies;
5409 }
5410
5411 if (current->last_wakee != p) {
5412 current->last_wakee = p;
5413 current->wakee_flips++;
5414 }
5415 }
5416
5417 /*
5418 * Returns the current capacity of cpu after applying both
5419 * cpu and freq scaling.
5420 */
capacity_curr_of(int cpu)5421 unsigned long capacity_curr_of(int cpu)
5422 {
5423 return cpu_rq(cpu)->cpu_capacity_orig *
5424 arch_scale_freq_capacity(NULL, cpu)
5425 >> SCHED_CAPACITY_SHIFT;
5426 }
5427
5428 /*
5429 * Returns the current capacity of cpu after applying both
5430 * cpu and min freq scaling.
5431 */
capacity_min_of(int cpu)5432 unsigned long capacity_min_of(int cpu)
5433 {
5434 if (!sched_feat(MIN_CAPACITY_CAPPING))
5435 return 0;
5436 return arch_scale_cpu_capacity(NULL, cpu) *
5437 arch_scale_min_freq_capacity(NULL, cpu)
5438 >> SCHED_CAPACITY_SHIFT;
5439 }
5440
5441
energy_aware(void)5442 static inline bool energy_aware(void)
5443 {
5444 return sched_feat(ENERGY_AWARE);
5445 }
5446
5447 /*
5448 * CPU candidates.
5449 *
5450 * These are labels to reference CPU candidates for an energy_diff.
5451 * Currently we support only two possible candidates: the task's previous CPU
5452 * and another candiate CPU.
5453 * More advanced/aggressive EAS selection policies can consider more
5454 * candidates.
5455 */
5456 #define EAS_CPU_PRV 0
5457 #define EAS_CPU_NXT 1
5458 #define EAS_CPU_BKP 2
5459 #define EAS_CPU_CNT 3
5460
5461 /*
5462 * energy_diff - supports the computation of the estimated energy impact in
5463 * moving a "task"'s "util_delta" between different CPU candidates.
5464 */
5465 struct energy_env {
5466 /* Utilization to move */
5467 struct task_struct *p;
5468 int util_delta;
5469
5470 /* Mask of CPUs candidates to evaluate */
5471 cpumask_t cpus_mask;
5472
5473 /* CPU candidates to evaluate */
5474 struct {
5475
5476 /* CPU ID, must be in cpus_mask */
5477 int cpu_id;
5478
5479 /*
5480 * Index (into sched_group_energy::cap_states) of the OPP the
5481 * CPU needs to run at if the task is placed on it.
5482 * This includes the both active and blocked load, due to
5483 * other tasks on this CPU, as well as the task's own
5484 * utilization.
5485 */
5486 int cap_idx;
5487 int cap;
5488
5489 /* Estimated system energy */
5490 unsigned int energy;
5491
5492 /* Estimated energy variation wrt EAS_CPU_PRV */
5493 int nrg_delta;
5494
5495 } cpu[EAS_CPU_CNT];
5496
5497 /*
5498 * Index (into energy_env::cpu) of the morst energy efficient CPU for
5499 * the specified energy_env::task
5500 */
5501 int next_idx;
5502
5503 /* Support data */
5504 struct sched_group *sg_top;
5505 struct sched_group *sg_cap;
5506 struct sched_group *sg;
5507 };
5508
5509 static int cpu_util_wake(int cpu, struct task_struct *p);
5510
5511 /*
5512 * __cpu_norm_util() returns the cpu util relative to a specific capacity,
5513 * i.e. it's busy ratio, in the range [0..SCHED_LOAD_SCALE], which is useful for
5514 * energy calculations.
5515 *
5516 * Since util is a scale-invariant utilization defined as:
5517 *
5518 * util ~ (curr_freq/max_freq)*1024 * capacity_orig/1024 * running_time/time
5519 *
5520 * the normalized util can be found using the specific capacity.
5521 *
5522 * capacity = capacity_orig * curr_freq/max_freq
5523 *
5524 * norm_util = running_time/time ~ util/capacity
5525 */
__cpu_norm_util(unsigned long util,unsigned long capacity)5526 static unsigned long __cpu_norm_util(unsigned long util, unsigned long capacity)
5527 {
5528 if (util >= capacity)
5529 return SCHED_CAPACITY_SCALE;
5530
5531 return (util << SCHED_CAPACITY_SHIFT)/capacity;
5532 }
5533
group_max_util(struct energy_env * eenv,int cpu_idx)5534 static unsigned long group_max_util(struct energy_env *eenv, int cpu_idx)
5535 {
5536 unsigned long max_util = 0;
5537 unsigned long util;
5538 int cpu;
5539
5540 for_each_cpu(cpu, sched_group_cpus(eenv->sg_cap)) {
5541 util = cpu_util_wake(cpu, eenv->p);
5542
5543 /*
5544 * If we are looking at the target CPU specified by the eenv,
5545 * then we should add the (estimated) utilization of the task
5546 * assuming we will wake it up on that CPU.
5547 */
5548 if (unlikely(cpu == eenv->cpu[cpu_idx].cpu_id))
5549 util += eenv->util_delta;
5550
5551 max_util = max(max_util, util);
5552
5553 /*
5554 * Take into account any minimum frequency imposed
5555 * elsewhere which limits the energy states available
5556 * If the MIN_CAPACITY_CAPPING feature is not enabled
5557 * capacity_min_of will return 0 (not capped).
5558 */
5559 max_util = max(max_util, capacity_min_of(cpu));
5560
5561 }
5562
5563 return max_util;
5564 }
5565
5566 /*
5567 * group_norm_util() returns the approximated group util relative to it's
5568 * current capacity (busy ratio), in the range [0..SCHED_LOAD_SCALE], for use
5569 * in energy calculations.
5570 *
5571 * Since task executions may or may not overlap in time in the group the true
5572 * normalized util is between MAX(cpu_norm_util(i)) and SUM(cpu_norm_util(i))
5573 * when iterating over all CPUs in the group.
5574 * The latter estimate is used as it leads to a more pessimistic energy
5575 * estimate (more busy).
5576 */
5577 static unsigned
group_norm_util(struct energy_env * eenv,int cpu_idx)5578 long group_norm_util(struct energy_env *eenv, int cpu_idx)
5579 {
5580 unsigned long capacity = eenv->cpu[cpu_idx].cap;
5581 unsigned long util, util_sum = 0;
5582 int cpu;
5583
5584 for_each_cpu(cpu, sched_group_cpus(eenv->sg)) {
5585 util = cpu_util_wake(cpu, eenv->p);
5586
5587 /*
5588 * If we are looking at the target CPU specified by the eenv,
5589 * then we should add the (estimated) utilization of the task
5590 * assuming we will wake it up on that CPU.
5591 */
5592 if (unlikely(cpu == eenv->cpu[cpu_idx].cpu_id))
5593 util += eenv->util_delta;
5594
5595 util_sum += __cpu_norm_util(util, capacity);
5596 }
5597
5598 return min_t(unsigned long, util_sum, SCHED_CAPACITY_SCALE);
5599 }
5600
find_new_capacity(struct energy_env * eenv,int cpu_idx)5601 static int find_new_capacity(struct energy_env *eenv, int cpu_idx)
5602 {
5603 const struct sched_group_energy *sge = eenv->sg->sge;
5604 int idx, max_idx = sge->nr_cap_states - 1;
5605 unsigned long util = group_max_util(eenv, cpu_idx);
5606
5607 /* default is max_cap if we don't find a match */
5608 eenv->cpu[cpu_idx].cap_idx = max_idx;
5609 eenv->cpu[cpu_idx].cap = sge->cap_states[max_idx].cap;
5610
5611 for (idx = 0; idx < sge->nr_cap_states; idx++) {
5612 if (sge->cap_states[idx].cap >= util) {
5613 /* Keep track of SG's capacity */
5614 eenv->cpu[cpu_idx].cap_idx = idx;
5615 eenv->cpu[cpu_idx].cap = sge->cap_states[idx].cap;
5616 break;
5617 }
5618 }
5619
5620 return eenv->cpu[cpu_idx].cap_idx;
5621 }
5622
group_idle_state(struct energy_env * eenv,int cpu_idx)5623 static int group_idle_state(struct energy_env *eenv, int cpu_idx)
5624 {
5625 struct sched_group *sg = eenv->sg;
5626 int i, state = INT_MAX;
5627 int src_in_grp, dst_in_grp;
5628 long grp_util = 0;
5629
5630 /* Find the shallowest idle state in the sched group. */
5631 for_each_cpu(i, sched_group_cpus(sg))
5632 state = min(state, idle_get_state_idx(cpu_rq(i)));
5633
5634 /* Take non-cpuidle idling into account (active idle/arch_cpu_idle()) */
5635 state++;
5636
5637 src_in_grp = cpumask_test_cpu(eenv->cpu[EAS_CPU_PRV].cpu_id,
5638 sched_group_cpus(sg));
5639 dst_in_grp = cpumask_test_cpu(eenv->cpu[cpu_idx].cpu_id,
5640 sched_group_cpus(sg));
5641 if (src_in_grp == dst_in_grp) {
5642 /* both CPUs under consideration are in the same group or not in
5643 * either group, migration should leave idle state the same.
5644 */
5645 goto end;
5646 }
5647
5648 /*
5649 * Try to estimate if a deeper idle state is
5650 * achievable when we move the task.
5651 */
5652 for_each_cpu(i, sched_group_cpus(sg)) {
5653 grp_util += cpu_util_wake(i, eenv->p);
5654 if (unlikely(i == eenv->cpu[cpu_idx].cpu_id))
5655 grp_util += eenv->util_delta;
5656 }
5657
5658 if (grp_util <=
5659 ((long)sg->sgc->max_capacity * (int)sg->group_weight)) {
5660 /* after moving, this group is at most partly
5661 * occupied, so it should have some idle time.
5662 */
5663 int max_idle_state_idx = sg->sge->nr_idle_states - 2;
5664 int new_state = grp_util * max_idle_state_idx;
5665 if (grp_util <= 0)
5666 /* group will have no util, use lowest state */
5667 new_state = max_idle_state_idx + 1;
5668 else {
5669 /* for partially idle, linearly map util to idle
5670 * states, excluding the lowest one. This does not
5671 * correspond to the state we expect to enter in
5672 * reality, but an indication of what might happen.
5673 */
5674 new_state = min(max_idle_state_idx, (int)
5675 (new_state / sg->sgc->max_capacity));
5676 new_state = max_idle_state_idx - new_state;
5677 }
5678 state = new_state;
5679 } else {
5680 /* After moving, the group will be fully occupied
5681 * so assume it will not be idle at all.
5682 */
5683 state = 0;
5684 }
5685 end:
5686 return state;
5687 }
5688
5689 /*
5690 * calc_sg_energy: compute energy for the eenv's SG (i.e. eenv->sg).
5691 *
5692 * This works in iterations to compute the SG's energy for each CPU
5693 * candidate defined by the energy_env's cpu array.
5694 *
5695 * NOTE: in the following computations for busy_energy and idle_energy we do
5696 * not shift by SCHED_CAPACITY_SHIFT in order to reduce rounding errors.
5697 * The required scaling will be performed just one time, by the calling
5698 * functions, once we accumulated the contributons for all the SGs.
5699 */
calc_sg_energy(struct energy_env * eenv)5700 static void calc_sg_energy(struct energy_env *eenv)
5701 {
5702 struct sched_group *sg = eenv->sg;
5703 int busy_energy, idle_energy;
5704 unsigned int busy_power;
5705 unsigned int idle_power;
5706 unsigned long sg_util;
5707 int cap_idx, idle_idx;
5708 int total_energy = 0;
5709 int cpu_idx;
5710
5711 for (cpu_idx = EAS_CPU_PRV; cpu_idx < EAS_CPU_CNT; ++cpu_idx) {
5712
5713
5714 if (eenv->cpu[cpu_idx].cpu_id == -1)
5715 continue;
5716 /* Compute ACTIVE energy */
5717 cap_idx = find_new_capacity(eenv, cpu_idx);
5718 busy_power = sg->sge->cap_states[cap_idx].power;
5719 /*
5720 * in order to calculate cpu_norm_util, we need to know which
5721 * capacity level the group will be at, so calculate that first
5722 */
5723 sg_util = group_norm_util(eenv, cpu_idx);
5724
5725 busy_energy = sg_util * busy_power;
5726
5727 /* Compute IDLE energy */
5728 idle_idx = group_idle_state(eenv, cpu_idx);
5729 idle_power = sg->sge->idle_states[idle_idx].power;
5730
5731 idle_energy = SCHED_CAPACITY_SCALE - sg_util;
5732 idle_energy *= idle_power;
5733
5734 total_energy = busy_energy + idle_energy;
5735 eenv->cpu[cpu_idx].energy += total_energy;
5736 }
5737 }
5738
5739 /*
5740 * compute_energy() computes the absolute variation in energy consumption by
5741 * moving eenv.util_delta from EAS_CPU_PRV to EAS_CPU_NXT.
5742 *
5743 * NOTE: compute_energy() may fail when racing with sched_domain updates, in
5744 * which case we abort by returning -EINVAL.
5745 */
compute_energy(struct energy_env * eenv)5746 static int compute_energy(struct energy_env *eenv)
5747 {
5748 struct cpumask visit_cpus;
5749 int cpu_count;
5750
5751 WARN_ON(!eenv->sg_top->sge);
5752
5753 cpumask_copy(&visit_cpus, sched_group_cpus(eenv->sg_top));
5754 /* If a cpu is hotplugged in while we are in this function,
5755 * it does not appear in the existing visit_cpus mask
5756 * which came from the sched_group pointer of the
5757 * sched_domain pointed at by sd_ea for either the prev
5758 * or next cpu and was dereferenced in __energy_diff.
5759 * Since we will dereference sd_scs later as we iterate
5760 * through the CPUs we expect to visit, new CPUs can
5761 * be present which are not in the visit_cpus mask.
5762 * Guard this with cpu_count.
5763 */
5764 cpu_count = cpumask_weight(&visit_cpus);
5765
5766 while (!cpumask_empty(&visit_cpus)) {
5767 struct sched_group *sg_shared_cap = NULL;
5768 int cpu = cpumask_first(&visit_cpus);
5769 struct sched_domain *sd;
5770
5771 /*
5772 * Is the group utilization affected by cpus outside this
5773 * sched_group?
5774 * This sd may have groups with cpus which were not present
5775 * when we took visit_cpus.
5776 */
5777 sd = rcu_dereference(per_cpu(sd_scs, cpu));
5778 if (sd && sd->parent)
5779 sg_shared_cap = sd->parent->groups;
5780
5781 for_each_domain(cpu, sd) {
5782 struct sched_group *sg = sd->groups;
5783
5784 /* Has this sched_domain already been visited? */
5785 if (sd->child && group_first_cpu(sg) != cpu)
5786 break;
5787
5788 do {
5789 eenv->sg_cap = sg;
5790 if (sg_shared_cap && sg_shared_cap->group_weight >= sg->group_weight)
5791 eenv->sg_cap = sg_shared_cap;
5792
5793 /*
5794 * Compute the energy for all the candidate
5795 * CPUs in the current visited SG.
5796 */
5797 eenv->sg = sg;
5798 calc_sg_energy(eenv);
5799
5800 if (!sd->child) {
5801 /*
5802 * cpu_count here is the number of
5803 * cpus we expect to visit in this
5804 * calculation. If we race against
5805 * hotplug, we can have extra cpus
5806 * added to the groups we are
5807 * iterating which do not appear in
5808 * the visit_cpus mask. In that case
5809 * we are not able to calculate energy
5810 * without restarting so we will bail
5811 * out and use prev_cpu this time.
5812 */
5813 if (!cpu_count)
5814 return -EINVAL;
5815 cpumask_xor(&visit_cpus, &visit_cpus, sched_group_cpus(sg));
5816 cpu_count--;
5817 }
5818
5819 if (cpumask_equal(sched_group_cpus(sg), sched_group_cpus(eenv->sg_top)))
5820 goto next_cpu;
5821
5822 } while (sg = sg->next, sg != sd->groups);
5823 }
5824
5825 /*
5826 * If we raced with hotplug and got an sd NULL-pointer;
5827 * returning a wrong energy estimation is better than
5828 * entering an infinite loop.
5829 * Specifically: If a cpu is unplugged after we took
5830 * the visit_cpus mask, it no longer has an sd_scs
5831 * pointer, so when we dereference it, we get NULL.
5832 */
5833 if (cpumask_test_cpu(cpu, &visit_cpus))
5834 return -EINVAL;
5835 next_cpu:
5836 cpumask_clear_cpu(cpu, &visit_cpus);
5837 continue;
5838 }
5839
5840 return 0;
5841 }
5842
cpu_in_sg(struct sched_group * sg,int cpu)5843 static inline bool cpu_in_sg(struct sched_group *sg, int cpu)
5844 {
5845 return cpu != -1 && cpumask_test_cpu(cpu, sched_group_cpus(sg));
5846 }
5847
5848 /*
5849 * select_energy_cpu_idx(): estimate the energy impact of changing the
5850 * utilization distribution.
5851 *
5852 * The eenv parameter specifies the changes: utilisation amount and a pair of
5853 * possible CPU candidates (the previous CPU and a different target CPU).
5854 *
5855 * This function returns the index of a CPU candidate specified by the
5856 * energy_env which corresponds to the first CPU saving energy.
5857 * Thus, 0 (EAS_CPU_PRV) means that non of the CPU candidate is more energy
5858 * efficient than running on prev_cpu. This is also the value returned in case
5859 * of abort due to error conditions during the computations.
5860 * A value greater than zero means that the first energy-efficient CPU is the
5861 * one represented by eenv->cpu[eenv->next_idx].cpu_id.
5862 */
select_energy_cpu_idx(struct energy_env * eenv)5863 static inline int select_energy_cpu_idx(struct energy_env *eenv)
5864 {
5865 struct sched_domain *sd;
5866 struct sched_group *sg;
5867 int sd_cpu = -1;
5868 int cpu_idx;
5869 int margin;
5870
5871 sd_cpu = eenv->cpu[EAS_CPU_PRV].cpu_id;
5872 sd = rcu_dereference(per_cpu(sd_ea, sd_cpu));
5873 if (!sd)
5874 return EAS_CPU_PRV;
5875
5876 cpumask_clear(&eenv->cpus_mask);
5877 for (cpu_idx = EAS_CPU_PRV; cpu_idx < EAS_CPU_CNT; ++cpu_idx) {
5878 int cpu = eenv->cpu[cpu_idx].cpu_id;
5879
5880 if (cpu < 0)
5881 continue;
5882 cpumask_set_cpu(cpu, &eenv->cpus_mask);
5883 }
5884
5885 sg = sd->groups;
5886 do {
5887 /* Skip SGs which do not contains a candidate CPU */
5888 if (!cpumask_intersects(&eenv->cpus_mask, sched_group_cpus(sg)))
5889 continue;
5890
5891 eenv->sg_top = sg;
5892 /* energy is unscaled to reduce rounding errors */
5893 if (compute_energy(eenv) == -EINVAL)
5894 return EAS_CPU_PRV;
5895
5896 } while (sg = sg->next, sg != sd->groups);
5897
5898 /* Scale energy before comparisons */
5899 for (cpu_idx = EAS_CPU_PRV; cpu_idx < EAS_CPU_CNT; ++cpu_idx)
5900 eenv->cpu[cpu_idx].energy >>= SCHED_CAPACITY_SHIFT;
5901
5902 /*
5903 * Compute the dead-zone margin used to prevent too many task
5904 * migrations with negligible energy savings.
5905 * An energy saving is considered meaningful if it reduces the energy
5906 * consumption of EAS_CPU_PRV CPU candidate by at least ~1.56%
5907 */
5908 margin = eenv->cpu[EAS_CPU_PRV].energy >> 6;
5909
5910 /*
5911 * By default the EAS_CPU_PRV CPU is considered the most energy
5912 * efficient, with a 0 energy variation.
5913 */
5914 eenv->next_idx = EAS_CPU_PRV;
5915
5916 /*
5917 * Compare the other CPU candidates to find a CPU which can be
5918 * more energy efficient then EAS_CPU_PRV
5919 */
5920 for (cpu_idx = EAS_CPU_NXT; cpu_idx < EAS_CPU_CNT; ++cpu_idx) {
5921 /* Skip not valid scheduled candidates */
5922 if (eenv->cpu[cpu_idx].cpu_id < 0)
5923 continue;
5924 /* Compute energy delta wrt EAS_CPU_PRV */
5925 eenv->cpu[cpu_idx].nrg_delta =
5926 eenv->cpu[cpu_idx].energy -
5927 eenv->cpu[EAS_CPU_PRV].energy;
5928 /* filter energy variations within the dead-zone margin */
5929 if (abs(eenv->cpu[cpu_idx].nrg_delta) < margin)
5930 eenv->cpu[cpu_idx].nrg_delta = 0;
5931 /* update the schedule candidate with min(nrg_delta) */
5932 if (eenv->cpu[cpu_idx].nrg_delta <
5933 eenv->cpu[eenv->next_idx].nrg_delta) {
5934 eenv->next_idx = cpu_idx;
5935 if (sched_feat(FBT_STRICT_ORDER))
5936 break;
5937 }
5938 }
5939
5940 return eenv->next_idx;
5941 }
5942
5943 /*
5944 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5945 *
5946 * A waker of many should wake a different task than the one last awakened
5947 * at a frequency roughly N times higher than one of its wakees.
5948 *
5949 * In order to determine whether we should let the load spread vs consolidating
5950 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5951 * partner, and a factor of lls_size higher frequency in the other.
5952 *
5953 * With both conditions met, we can be relatively sure that the relationship is
5954 * non-monogamous, with partner count exceeding socket size.
5955 *
5956 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5957 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5958 * socket size.
5959 */
wake_wide(struct task_struct * p)5960 static int wake_wide(struct task_struct *p)
5961 {
5962 unsigned int master = current->wakee_flips;
5963 unsigned int slave = p->wakee_flips;
5964 int factor = this_cpu_read(sd_llc_size);
5965
5966 if (master < slave)
5967 swap(master, slave);
5968 if (slave < factor || master < slave * factor)
5969 return 0;
5970 return 1;
5971 }
5972
wake_affine(struct sched_domain * sd,struct task_struct * p,int prev_cpu,int sync)5973 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5974 int prev_cpu, int sync)
5975 {
5976 s64 this_load, load;
5977 s64 this_eff_load, prev_eff_load;
5978 int idx, this_cpu;
5979 struct task_group *tg;
5980 unsigned long weight;
5981 int balanced;
5982
5983 idx = sd->wake_idx;
5984 this_cpu = smp_processor_id();
5985 load = source_load(prev_cpu, idx);
5986 this_load = target_load(this_cpu, idx);
5987
5988 /*
5989 * If sync wakeup then subtract the (maximum possible)
5990 * effect of the currently running task from the load
5991 * of the current CPU:
5992 */
5993 if (sync) {
5994 tg = task_group(current);
5995 weight = current->se.avg.load_avg;
5996
5997 this_load += effective_load(tg, this_cpu, -weight, -weight);
5998 load += effective_load(tg, prev_cpu, 0, -weight);
5999 }
6000
6001 tg = task_group(p);
6002 weight = p->se.avg.load_avg;
6003
6004 /*
6005 * In low-load situations, where prev_cpu is idle and this_cpu is idle
6006 * due to the sync cause above having dropped this_load to 0, we'll
6007 * always have an imbalance, but there's really nothing you can do
6008 * about that, so that's good too.
6009 *
6010 * Otherwise check if either cpus are near enough in load to allow this
6011 * task to be woken on this_cpu.
6012 */
6013 this_eff_load = 100;
6014 this_eff_load *= capacity_of(prev_cpu);
6015
6016 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
6017 prev_eff_load *= capacity_of(this_cpu);
6018
6019 if (this_load > 0) {
6020 this_eff_load *= this_load +
6021 effective_load(tg, this_cpu, weight, weight);
6022
6023 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
6024 }
6025
6026 balanced = this_eff_load <= prev_eff_load;
6027
6028 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
6029
6030 if (!balanced)
6031 return 0;
6032
6033 schedstat_inc(sd->ttwu_move_affine);
6034 schedstat_inc(p->se.statistics.nr_wakeups_affine);
6035
6036 return 1;
6037 }
6038
task_util(struct task_struct * p)6039 static inline unsigned long task_util(struct task_struct *p)
6040 {
6041 #ifdef CONFIG_SCHED_WALT
6042 if (!walt_disabled && sysctl_sched_use_walt_task_util) {
6043 unsigned long demand = p->ravg.demand;
6044 return (demand << SCHED_CAPACITY_SHIFT) / walt_ravg_window;
6045 }
6046 #endif
6047 return p->se.avg.util_avg;
6048 }
6049
6050 static inline unsigned long boosted_task_util(struct task_struct *p);
6051
__task_fits(struct task_struct * p,int cpu,int util)6052 static inline bool __task_fits(struct task_struct *p, int cpu, int util)
6053 {
6054 unsigned long capacity = capacity_of(cpu);
6055
6056 util += boosted_task_util(p);
6057
6058 return (capacity * 1024) > (util * capacity_margin);
6059 }
6060
task_fits_max(struct task_struct * p,int cpu)6061 static inline bool task_fits_max(struct task_struct *p, int cpu)
6062 {
6063 unsigned long capacity = capacity_of(cpu);
6064 unsigned long max_capacity = cpu_rq(cpu)->rd->max_cpu_capacity.val;
6065
6066 if (capacity == max_capacity)
6067 return true;
6068
6069 if (capacity * capacity_margin > max_capacity * 1024)
6070 return true;
6071
6072 return __task_fits(p, cpu, 0);
6073 }
6074
__cpu_overutilized(int cpu,int delta)6075 static bool __cpu_overutilized(int cpu, int delta)
6076 {
6077 return (capacity_of(cpu) * 1024) < ((cpu_util(cpu) + delta) * capacity_margin);
6078 }
6079
cpu_overutilized(int cpu)6080 static bool cpu_overutilized(int cpu)
6081 {
6082 return __cpu_overutilized(cpu, 0);
6083 }
6084
6085 #ifdef CONFIG_SCHED_TUNE
6086
6087 struct reciprocal_value schedtune_spc_rdiv;
6088
6089 static long
schedtune_margin(unsigned long signal,long boost)6090 schedtune_margin(unsigned long signal, long boost)
6091 {
6092 long long margin = 0;
6093
6094 /*
6095 * Signal proportional compensation (SPC)
6096 *
6097 * The Boost (B) value is used to compute a Margin (M) which is
6098 * proportional to the complement of the original Signal (S):
6099 * M = B * (SCHED_CAPACITY_SCALE - S)
6100 * The obtained M could be used by the caller to "boost" S.
6101 */
6102 if (boost >= 0) {
6103 margin = SCHED_CAPACITY_SCALE - signal;
6104 margin *= boost;
6105 } else
6106 margin = -signal * boost;
6107
6108 margin = reciprocal_divide(margin, schedtune_spc_rdiv);
6109
6110 if (boost < 0)
6111 margin *= -1;
6112 return margin;
6113 }
6114
6115 static inline int
schedtune_cpu_margin(unsigned long util,int cpu)6116 schedtune_cpu_margin(unsigned long util, int cpu)
6117 {
6118 int boost = schedtune_cpu_boost(cpu);
6119
6120 if (boost == 0)
6121 return 0;
6122
6123 return schedtune_margin(util, boost);
6124 }
6125
6126 static inline long
schedtune_task_margin(struct task_struct * p)6127 schedtune_task_margin(struct task_struct *p)
6128 {
6129 int boost = schedtune_task_boost(p);
6130 unsigned long util;
6131 long margin;
6132
6133 if (boost == 0)
6134 return 0;
6135
6136 util = task_util(p);
6137 margin = schedtune_margin(util, boost);
6138
6139 return margin;
6140 }
6141
6142 #else /* CONFIG_SCHED_TUNE */
6143
6144 static inline int
schedtune_cpu_margin(unsigned long util,int cpu)6145 schedtune_cpu_margin(unsigned long util, int cpu)
6146 {
6147 return 0;
6148 }
6149
6150 static inline int
schedtune_task_margin(struct task_struct * p)6151 schedtune_task_margin(struct task_struct *p)
6152 {
6153 return 0;
6154 }
6155
6156 #endif /* CONFIG_SCHED_TUNE */
6157
6158 unsigned long
boosted_cpu_util(int cpu)6159 boosted_cpu_util(int cpu)
6160 {
6161 unsigned long util = cpu_util_freq(cpu);
6162 long margin = schedtune_cpu_margin(util, cpu);
6163
6164 trace_sched_boost_cpu(cpu, util, margin);
6165
6166 return util + margin;
6167 }
6168
6169 static inline unsigned long
boosted_task_util(struct task_struct * p)6170 boosted_task_util(struct task_struct *p)
6171 {
6172 unsigned long util = task_util(p);
6173 long margin = schedtune_task_margin(p);
6174
6175 trace_sched_boost_task(p, util, margin);
6176
6177 return util + margin;
6178 }
6179
capacity_spare_wake(int cpu,struct task_struct * p)6180 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
6181 {
6182 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
6183 }
6184
6185 /*
6186 * find_idlest_group finds and returns the least busy CPU group within the
6187 * domain.
6188 *
6189 * Assumes p is allowed on at least one CPU in sd.
6190 */
6191 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu,int sd_flag)6192 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
6193 int this_cpu, int sd_flag)
6194 {
6195 struct sched_group *idlest = NULL, *group = sd->groups;
6196 struct sched_group *most_spare_sg = NULL;
6197 unsigned long min_runnable_load = ULONG_MAX;
6198 unsigned long this_runnable_load = ULONG_MAX;
6199 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
6200 unsigned long most_spare = 0, this_spare = 0;
6201 int load_idx = sd->forkexec_idx;
6202 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
6203 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
6204 (sd->imbalance_pct-100) / 100;
6205
6206 if (sd_flag & SD_BALANCE_WAKE)
6207 load_idx = sd->wake_idx;
6208
6209 do {
6210 unsigned long load, avg_load, runnable_load;
6211 unsigned long spare_cap, max_spare_cap;
6212 int local_group;
6213 int i;
6214
6215 /* Skip over this group if it has no CPUs allowed */
6216 if (!cpumask_intersects(sched_group_cpus(group),
6217 tsk_cpus_allowed(p)))
6218 continue;
6219
6220 local_group = cpumask_test_cpu(this_cpu,
6221 sched_group_cpus(group));
6222
6223 /*
6224 * Tally up the load of all CPUs in the group and find
6225 * the group containing the CPU with most spare capacity.
6226 */
6227 avg_load = 0;
6228 runnable_load = 0;
6229 max_spare_cap = 0;
6230
6231 for_each_cpu(i, sched_group_cpus(group)) {
6232 /* Bias balancing toward cpus of our domain */
6233 if (local_group)
6234 load = source_load(i, load_idx);
6235 else
6236 load = target_load(i, load_idx);
6237
6238 runnable_load += load;
6239
6240 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6241
6242 spare_cap = capacity_spare_wake(i, p);
6243
6244 if (spare_cap > max_spare_cap)
6245 max_spare_cap = spare_cap;
6246 }
6247
6248 /* Adjust by relative CPU capacity of the group */
6249 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
6250 group->sgc->capacity;
6251 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
6252 group->sgc->capacity;
6253
6254 if (local_group) {
6255 this_runnable_load = runnable_load;
6256 this_avg_load = avg_load;
6257 this_spare = max_spare_cap;
6258 } else {
6259 if (min_runnable_load > (runnable_load + imbalance)) {
6260 /*
6261 * The runnable load is significantly smaller
6262 * so we can pick this new cpu
6263 */
6264 min_runnable_load = runnable_load;
6265 min_avg_load = avg_load;
6266 idlest = group;
6267 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
6268 (100*min_avg_load > imbalance_scale*avg_load)) {
6269 /*
6270 * The runnable loads are close so we take
6271 * into account blocked load through avg_load
6272 * which is blocked + runnable load
6273 */
6274 min_avg_load = avg_load;
6275 idlest = group;
6276 }
6277
6278 if (most_spare < max_spare_cap) {
6279 most_spare = max_spare_cap;
6280 most_spare_sg = group;
6281 }
6282 }
6283 } while (group = group->next, group != sd->groups);
6284
6285 /*
6286 * The cross-over point between using spare capacity or least load
6287 * is too conservative for high utilization tasks on partially
6288 * utilized systems if we require spare_capacity > task_util(p),
6289 * so we allow for some task stuffing by using
6290 * spare_capacity > task_util(p)/2.
6291 * spare capacity can't be used for fork because the utilization has
6292 * not been set yet as it need to get a rq to init the utilization
6293 */
6294 if (sd_flag & SD_BALANCE_FORK)
6295 goto skip_spare;
6296
6297 if (this_spare > task_util(p) / 2 &&
6298 imbalance_scale*this_spare > 100*most_spare)
6299 return NULL;
6300 else if (most_spare > task_util(p) / 2)
6301 return most_spare_sg;
6302
6303 skip_spare:
6304 if (!idlest ||
6305 (min_runnable_load > (this_runnable_load + imbalance)) ||
6306 ((this_runnable_load < (min_runnable_load + imbalance)) &&
6307 (100*this_avg_load < imbalance_scale*min_avg_load)))
6308 return NULL;
6309 return idlest;
6310 }
6311
6312 /*
6313 * find_idlest_group_cpu - find the idlest cpu among the cpus in group.
6314 */
6315 static int
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)6316 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6317 {
6318 unsigned long load, min_load = ULONG_MAX;
6319 unsigned int min_exit_latency = UINT_MAX;
6320 u64 latest_idle_timestamp = 0;
6321 int least_loaded_cpu = this_cpu;
6322 int shallowest_idle_cpu = -1;
6323 int i;
6324
6325 /* Check if we have any choice: */
6326 if (group->group_weight == 1)
6327 return cpumask_first(sched_group_cpus(group));
6328
6329 /* Traverse only the allowed CPUs */
6330 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
6331 if (idle_cpu(i)) {
6332 struct rq *rq = cpu_rq(i);
6333 struct cpuidle_state *idle = idle_get_state(rq);
6334 if (idle && idle->exit_latency < min_exit_latency) {
6335 /*
6336 * We give priority to a CPU whose idle state
6337 * has the smallest exit latency irrespective
6338 * of any idle timestamp.
6339 */
6340 min_exit_latency = idle->exit_latency;
6341 latest_idle_timestamp = rq->idle_stamp;
6342 shallowest_idle_cpu = i;
6343 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
6344 rq->idle_stamp > latest_idle_timestamp) {
6345 /*
6346 * If equal or no active idle state, then
6347 * the most recently idled CPU might have
6348 * a warmer cache.
6349 */
6350 latest_idle_timestamp = rq->idle_stamp;
6351 shallowest_idle_cpu = i;
6352 }
6353 } else if (shallowest_idle_cpu == -1) {
6354 load = weighted_cpuload(i);
6355 if (load < min_load || (load == min_load && i == this_cpu)) {
6356 min_load = load;
6357 least_loaded_cpu = i;
6358 }
6359 }
6360 }
6361
6362 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6363 }
6364
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)6365 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6366 int cpu, int prev_cpu, int sd_flag)
6367 {
6368 int wu = sd_flag & SD_BALANCE_WAKE;
6369 int cas_cpu = -1;
6370 int new_cpu = cpu;
6371
6372 if (wu) {
6373 schedstat_inc(p->se.statistics.nr_wakeups_cas_attempts);
6374 schedstat_inc(this_rq()->eas_stats.cas_attempts);
6375 }
6376
6377 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
6378 return prev_cpu;
6379
6380 while (sd) {
6381 struct sched_group *group;
6382 struct sched_domain *tmp;
6383 int weight;
6384
6385 if (wu)
6386 schedstat_inc(sd->eas_stats.cas_attempts);
6387
6388 if (!(sd->flags & sd_flag)) {
6389 sd = sd->child;
6390 continue;
6391 }
6392
6393 group = find_idlest_group(sd, p, cpu, sd_flag);
6394 if (!group) {
6395 sd = sd->child;
6396 continue;
6397 }
6398
6399 new_cpu = find_idlest_group_cpu(group, p, cpu);
6400 if (new_cpu == cpu) {
6401 /* Now try balancing at a lower domain level of cpu */
6402 sd = sd->child;
6403 continue;
6404 }
6405
6406 /* Now try balancing at a lower domain level of new_cpu */
6407 cpu = cas_cpu = new_cpu;
6408 weight = sd->span_weight;
6409 sd = NULL;
6410 for_each_domain(cpu, tmp) {
6411 if (weight <= tmp->span_weight)
6412 break;
6413 if (tmp->flags & sd_flag)
6414 sd = tmp;
6415 }
6416 /* while loop will break here if sd == NULL */
6417 }
6418
6419 if (wu && (cas_cpu >= 0)) {
6420 schedstat_inc(p->se.statistics.nr_wakeups_cas_count);
6421 schedstat_inc(this_rq()->eas_stats.cas_count);
6422 }
6423
6424 return new_cpu;
6425 }
6426
6427 #ifdef CONFIG_SCHED_SMT
6428
set_idle_cores(int cpu,int val)6429 static inline void set_idle_cores(int cpu, int val)
6430 {
6431 struct sched_domain_shared *sds;
6432
6433 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6434 if (sds)
6435 WRITE_ONCE(sds->has_idle_cores, val);
6436 }
6437
test_idle_cores(int cpu,bool def)6438 static inline bool test_idle_cores(int cpu, bool def)
6439 {
6440 struct sched_domain_shared *sds;
6441
6442 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6443 if (sds)
6444 return READ_ONCE(sds->has_idle_cores);
6445
6446 return def;
6447 }
6448
6449 /*
6450 * Scans the local SMT mask to see if the entire core is idle, and records this
6451 * information in sd_llc_shared->has_idle_cores.
6452 *
6453 * Since SMT siblings share all cache levels, inspecting this limited remote
6454 * state should be fairly cheap.
6455 */
update_idle_core(struct rq * rq)6456 void update_idle_core(struct rq *rq)
6457 {
6458 int core = cpu_of(rq);
6459 int cpu;
6460
6461 rcu_read_lock();
6462 if (test_idle_cores(core, true))
6463 goto unlock;
6464
6465 for_each_cpu(cpu, cpu_smt_mask(core)) {
6466 if (cpu == core)
6467 continue;
6468
6469 if (!idle_cpu(cpu))
6470 goto unlock;
6471 }
6472
6473 set_idle_cores(core, 1);
6474 unlock:
6475 rcu_read_unlock();
6476 }
6477
6478 /*
6479 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6480 * there are no idle cores left in the system; tracked through
6481 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6482 */
select_idle_core(struct task_struct * p,struct sched_domain * sd,int target)6483 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6484 {
6485 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6486 int core, cpu;
6487
6488 if (!test_idle_cores(target, false))
6489 return -1;
6490
6491 cpumask_and(cpus, sched_domain_span(sd), tsk_cpus_allowed(p));
6492
6493 for_each_cpu_wrap(core, cpus, target) {
6494 bool idle = true;
6495
6496 for_each_cpu(cpu, cpu_smt_mask(core)) {
6497 cpumask_clear_cpu(cpu, cpus);
6498 if (!idle_cpu(cpu))
6499 idle = false;
6500 }
6501
6502 if (idle)
6503 return core;
6504 }
6505
6506 /*
6507 * Failed to find an idle core; stop looking for one.
6508 */
6509 set_idle_cores(target, 0);
6510
6511 return -1;
6512 }
6513
6514 /*
6515 * Scan the local SMT mask for idle CPUs.
6516 */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)6517 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6518 {
6519 int cpu;
6520
6521 for_each_cpu(cpu, cpu_smt_mask(target)) {
6522 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
6523 continue;
6524 if (idle_cpu(cpu))
6525 return cpu;
6526 }
6527
6528 return -1;
6529 }
6530
6531 #else /* CONFIG_SCHED_SMT */
6532
select_idle_core(struct task_struct * p,struct sched_domain * sd,int target)6533 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6534 {
6535 return -1;
6536 }
6537
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)6538 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6539 {
6540 return -1;
6541 }
6542
6543 #endif /* CONFIG_SCHED_SMT */
6544
6545 /*
6546 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6547 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6548 * average idle time for this rq (as found in rq->avg_idle).
6549 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,int target)6550 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6551 {
6552 struct sched_domain *this_sd;
6553 u64 avg_cost, avg_idle = this_rq()->avg_idle;
6554 u64 time, cost;
6555 s64 delta;
6556 int cpu;
6557
6558 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6559 if (!this_sd)
6560 return -1;
6561
6562 avg_cost = this_sd->avg_scan_cost;
6563
6564 /*
6565 * Due to large variance we need a large fuzz factor; hackbench in
6566 * particularly is sensitive here.
6567 */
6568 if (sched_feat(SIS_AVG_CPU) && (avg_idle / 512) < avg_cost)
6569 return -1;
6570
6571 time = local_clock();
6572
6573 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6574 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
6575 continue;
6576 if (idle_cpu(cpu))
6577 break;
6578 }
6579
6580 time = local_clock() - time;
6581 cost = this_sd->avg_scan_cost;
6582 delta = (s64)(time - cost) / 8;
6583 this_sd->avg_scan_cost += delta;
6584
6585 return cpu;
6586 }
6587
6588 /*
6589 * Try and locate an idle core/thread in the LLC cache domain.
6590 */
select_idle_sibling(struct task_struct * p,int prev,int target)6591 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6592 {
6593 struct sched_domain *sd;
6594 struct sched_group *sg;
6595 int i = task_cpu(p);
6596 int best_idle_cpu = -1;
6597 int best_idle_cstate = INT_MAX;
6598 unsigned long best_idle_capacity = ULONG_MAX;
6599
6600 schedstat_inc(p->se.statistics.nr_wakeups_sis_attempts);
6601 schedstat_inc(this_rq()->eas_stats.sis_attempts);
6602
6603 if (!sysctl_sched_cstate_aware) {
6604 if (idle_cpu(target)) {
6605 schedstat_inc(p->se.statistics.nr_wakeups_sis_idle);
6606 schedstat_inc(this_rq()->eas_stats.sis_idle);
6607 return target;
6608 }
6609
6610 /*
6611 * If the prevous cpu is cache affine and idle, don't be stupid.
6612 */
6613 if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) {
6614 schedstat_inc(p->se.statistics.nr_wakeups_sis_cache_affine);
6615 schedstat_inc(this_rq()->eas_stats.sis_cache_affine);
6616 return i;
6617 }
6618
6619 sd = rcu_dereference(per_cpu(sd_llc, target));
6620 if (!sd)
6621 return target;
6622
6623 i = select_idle_core(p, sd, target);
6624 if ((unsigned)i < nr_cpumask_bits)
6625 return i;
6626
6627 i = select_idle_cpu(p, sd, target);
6628 if ((unsigned)i < nr_cpumask_bits)
6629 return i;
6630
6631 i = select_idle_smt(p, sd, target);
6632 if ((unsigned)i < nr_cpumask_bits)
6633 return i;
6634 }
6635
6636 /*
6637 * Otherwise, iterate the domains and find an elegible idle cpu.
6638 */
6639 sd = rcu_dereference(per_cpu(sd_llc, target));
6640 for_each_lower_domain(sd) {
6641 sg = sd->groups;
6642 do {
6643 if (!cpumask_intersects(sched_group_cpus(sg),
6644 tsk_cpus_allowed(p)))
6645 goto next;
6646
6647
6648 if (sysctl_sched_cstate_aware) {
6649 for_each_cpu_and(i, tsk_cpus_allowed(p), sched_group_cpus(sg)) {
6650 int idle_idx = idle_get_state_idx(cpu_rq(i));
6651 unsigned long new_usage = boosted_task_util(p);
6652 unsigned long capacity_orig = capacity_orig_of(i);
6653
6654 if (new_usage > capacity_orig || !idle_cpu(i))
6655 goto next;
6656
6657 if (i == target && new_usage <= capacity_curr_of(target)) {
6658 schedstat_inc(p->se.statistics.nr_wakeups_sis_suff_cap);
6659 schedstat_inc(this_rq()->eas_stats.sis_suff_cap);
6660 schedstat_inc(sd->eas_stats.sis_suff_cap);
6661 return target;
6662 }
6663
6664 if (idle_idx < best_idle_cstate &&
6665 capacity_orig <= best_idle_capacity) {
6666 best_idle_cpu = i;
6667 best_idle_cstate = idle_idx;
6668 best_idle_capacity = capacity_orig;
6669 }
6670 }
6671 } else {
6672 for_each_cpu(i, sched_group_cpus(sg)) {
6673 if (i == target || !idle_cpu(i))
6674 goto next;
6675 }
6676
6677 target = cpumask_first_and(sched_group_cpus(sg),
6678 tsk_cpus_allowed(p));
6679 schedstat_inc(p->se.statistics.nr_wakeups_sis_idle_cpu);
6680 schedstat_inc(this_rq()->eas_stats.sis_idle_cpu);
6681 schedstat_inc(sd->eas_stats.sis_idle_cpu);
6682 goto done;
6683 }
6684 next:
6685 sg = sg->next;
6686 } while (sg != sd->groups);
6687 }
6688
6689 if (best_idle_cpu >= 0)
6690 target = best_idle_cpu;
6691
6692 done:
6693 schedstat_inc(p->se.statistics.nr_wakeups_sis_count);
6694 schedstat_inc(this_rq()->eas_stats.sis_count);
6695
6696 return target;
6697 }
6698
6699 /*
6700 * cpu_util_wake: Compute cpu utilization with any contributions from
6701 * the waking task p removed. check_for_migration() looks for a better CPU of
6702 * rq->curr. For that case we should return cpu util with contributions from
6703 * currently running task p removed.
6704 */
cpu_util_wake(int cpu,struct task_struct * p)6705 static int cpu_util_wake(int cpu, struct task_struct *p)
6706 {
6707 unsigned long util, capacity;
6708
6709 #ifdef CONFIG_SCHED_WALT
6710 /*
6711 * WALT does not decay idle tasks in the same manner
6712 * as PELT, so it makes little sense to subtract task
6713 * utilization from cpu utilization. Instead just use
6714 * cpu_util for this case.
6715 */
6716 if (!walt_disabled && sysctl_sched_use_walt_cpu_util &&
6717 p->state == TASK_WAKING)
6718 return cpu_util(cpu);
6719 #endif
6720 /* Task has no contribution or is new */
6721 if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
6722 return cpu_util(cpu);
6723
6724 capacity = capacity_orig_of(cpu);
6725 util = max_t(long, cpu_util(cpu) - task_util(p), 0);
6726
6727 return (util >= capacity) ? capacity : util;
6728 }
6729
start_cpu(bool boosted)6730 static int start_cpu(bool boosted)
6731 {
6732 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6733
6734 return boosted ? rd->max_cap_orig_cpu : rd->min_cap_orig_cpu;
6735 }
6736
find_best_target(struct task_struct * p,int * backup_cpu,bool boosted,bool prefer_idle)6737 static inline int find_best_target(struct task_struct *p, int *backup_cpu,
6738 bool boosted, bool prefer_idle)
6739 {
6740 unsigned long best_idle_min_cap_orig = ULONG_MAX;
6741 unsigned long min_util = boosted_task_util(p);
6742 unsigned long target_capacity = ULONG_MAX;
6743 unsigned long min_wake_util = ULONG_MAX;
6744 unsigned long target_max_spare_cap = 0;
6745 unsigned long target_util = ULONG_MAX;
6746 unsigned long best_active_util = ULONG_MAX;
6747 unsigned long target_idle_max_spare_cap = 0;
6748 int best_idle_cstate = INT_MAX;
6749 struct sched_domain *sd;
6750 struct sched_group *sg;
6751 int best_active_cpu = -1;
6752 int best_idle_cpu = -1;
6753 int target_cpu = -1;
6754 int cpu, i;
6755
6756 *backup_cpu = -1;
6757
6758 schedstat_inc(p->se.statistics.nr_wakeups_fbt_attempts);
6759 schedstat_inc(this_rq()->eas_stats.fbt_attempts);
6760
6761 /* Find start CPU based on boost value */
6762 cpu = start_cpu(boosted);
6763 if (cpu < 0) {
6764 schedstat_inc(p->se.statistics.nr_wakeups_fbt_no_cpu);
6765 schedstat_inc(this_rq()->eas_stats.fbt_no_cpu);
6766 return -1;
6767 }
6768
6769 /* Find SD for the start CPU */
6770 sd = rcu_dereference(per_cpu(sd_ea, cpu));
6771 if (!sd) {
6772 schedstat_inc(p->se.statistics.nr_wakeups_fbt_no_sd);
6773 schedstat_inc(this_rq()->eas_stats.fbt_no_sd);
6774 return -1;
6775 }
6776
6777 /* Scan CPUs in all SDs */
6778 sg = sd->groups;
6779 do {
6780 for_each_cpu_and(i, tsk_cpus_allowed(p), sched_group_cpus(sg)) {
6781 unsigned long capacity_curr = capacity_curr_of(i);
6782 unsigned long capacity_orig = capacity_orig_of(i);
6783 unsigned long wake_util, new_util, min_capped_util;
6784
6785 if (!cpu_online(i))
6786 continue;
6787
6788 if (walt_cpu_high_irqload(i))
6789 continue;
6790
6791 /*
6792 * p's blocked utilization is still accounted for on prev_cpu
6793 * so prev_cpu will receive a negative bias due to the double
6794 * accounting. However, the blocked utilization may be zero.
6795 */
6796 wake_util = cpu_util_wake(i, p);
6797 new_util = wake_util + task_util(p);
6798
6799 /*
6800 * Ensure minimum capacity to grant the required boost.
6801 * The target CPU can be already at a capacity level higher
6802 * than the one required to boost the task.
6803 */
6804 new_util = max(min_util, new_util);
6805
6806 /*
6807 * Include minimum capacity constraint:
6808 * new_util contains the required utilization including
6809 * boost. min_capped_util also takes into account a
6810 * minimum capacity cap imposed on the CPU by external
6811 * actors.
6812 */
6813 min_capped_util = max(new_util, capacity_min_of(i));
6814
6815 if (new_util > capacity_orig)
6816 continue;
6817
6818 /*
6819 * Case A) Latency sensitive tasks
6820 *
6821 * Unconditionally favoring tasks that prefer idle CPU to
6822 * improve latency.
6823 *
6824 * Looking for:
6825 * - an idle CPU, whatever its idle_state is, since
6826 * the first CPUs we explore are more likely to be
6827 * reserved for latency sensitive tasks.
6828 * - a non idle CPU where the task fits in its current
6829 * capacity and has the maximum spare capacity.
6830 * - a non idle CPU with lower contention from other
6831 * tasks and running at the lowest possible OPP.
6832 *
6833 * The last two goals tries to favor a non idle CPU
6834 * where the task can run as if it is "almost alone".
6835 * A maximum spare capacity CPU is favoured since
6836 * the task already fits into that CPU's capacity
6837 * without waiting for an OPP chance.
6838 *
6839 * The following code path is the only one in the CPUs
6840 * exploration loop which is always used by
6841 * prefer_idle tasks. It exits the loop with wither a
6842 * best_active_cpu or a target_cpu which should
6843 * represent an optimal choice for latency sensitive
6844 * tasks.
6845 */
6846 if (prefer_idle) {
6847
6848 /*
6849 * Case A.1: IDLE CPU
6850 * Return the first IDLE CPU we find.
6851 */
6852 if (idle_cpu(i)) {
6853 schedstat_inc(p->se.statistics.nr_wakeups_fbt_pref_idle);
6854 schedstat_inc(this_rq()->eas_stats.fbt_pref_idle);
6855
6856 trace_sched_find_best_target(p,
6857 prefer_idle, min_util,
6858 cpu, best_idle_cpu,
6859 best_active_cpu, i);
6860
6861 return i;
6862 }
6863
6864 /*
6865 * Case A.2: Target ACTIVE CPU
6866 * Favor CPUs with max spare capacity.
6867 */
6868 if ((capacity_curr > new_util) &&
6869 (capacity_orig - new_util > target_max_spare_cap)) {
6870 target_max_spare_cap = capacity_orig - new_util;
6871 target_cpu = i;
6872 continue;
6873 }
6874 if (target_cpu != -1)
6875 continue;
6876
6877
6878 /*
6879 * Case A.3: Backup ACTIVE CPU
6880 * Favor CPUs with:
6881 * - lower utilization due to other tasks
6882 * - lower utilization with the task in
6883 */
6884 if (wake_util > min_wake_util)
6885 continue;
6886 if (new_util > best_active_util)
6887 continue;
6888 min_wake_util = wake_util;
6889 best_active_util = new_util;
6890 best_active_cpu = i;
6891 continue;
6892 }
6893
6894 /*
6895 * Enforce EAS mode
6896 *
6897 * For non latency sensitive tasks, skip CPUs that
6898 * will be overutilized by moving the task there.
6899 *
6900 * The goal here is to remain in EAS mode as long as
6901 * possible at least for !prefer_idle tasks.
6902 */
6903 if ((new_util * capacity_margin) >
6904 (capacity_orig * SCHED_CAPACITY_SCALE))
6905 continue;
6906
6907 /*
6908 * Case B) Non latency sensitive tasks on IDLE CPUs.
6909 *
6910 * Find an optimal backup IDLE CPU for non latency
6911 * sensitive tasks.
6912 *
6913 * Looking for:
6914 * - minimizing the capacity_orig,
6915 * i.e. preferring LITTLE CPUs
6916 * - favoring shallowest idle states
6917 * i.e. avoid to wakeup deep-idle CPUs
6918 *
6919 * The following code path is used by non latency
6920 * sensitive tasks if IDLE CPUs are available. If at
6921 * least one of such CPUs are available it sets the
6922 * best_idle_cpu to the most suitable idle CPU to be
6923 * selected.
6924 *
6925 * If idle CPUs are available, favour these CPUs to
6926 * improve performances by spreading tasks.
6927 * Indeed, the energy_diff() computed by the caller
6928 * will take care to ensure the minimization of energy
6929 * consumptions without affecting performance.
6930 */
6931 if (idle_cpu(i)) {
6932 int idle_idx = idle_get_state_idx(cpu_rq(i));
6933
6934 /* Select idle CPU with lower cap_orig */
6935 if (capacity_orig > best_idle_min_cap_orig)
6936 continue;
6937 /* Favor CPUs that won't end up running at a
6938 * high OPP.
6939 */
6940 if ((capacity_orig - min_capped_util) <
6941 target_idle_max_spare_cap)
6942 continue;
6943
6944 /*
6945 * Skip CPUs in deeper idle state, but only
6946 * if they are also less energy efficient.
6947 * IOW, prefer a deep IDLE LITTLE CPU vs a
6948 * shallow idle big CPU.
6949 */
6950 if (sysctl_sched_cstate_aware &&
6951 best_idle_cstate <= idle_idx)
6952 continue;
6953
6954 /* Keep track of best idle CPU */
6955 best_idle_min_cap_orig = capacity_orig;
6956 target_idle_max_spare_cap = capacity_orig -
6957 min_capped_util;
6958 best_idle_cstate = idle_idx;
6959 best_idle_cpu = i;
6960 continue;
6961 }
6962
6963 /*
6964 * Case C) Non latency sensitive tasks on ACTIVE CPUs.
6965 *
6966 * Pack tasks in the most energy efficient capacities.
6967 *
6968 * This task packing strategy prefers more energy
6969 * efficient CPUs (i.e. pack on smaller maximum
6970 * capacity CPUs) while also trying to spread tasks to
6971 * run them all at the lower OPP.
6972 *
6973 * This assumes for example that it's more energy
6974 * efficient to run two tasks on two CPUs at a lower
6975 * OPP than packing both on a single CPU but running
6976 * that CPU at an higher OPP.
6977 *
6978 * Thus, this case keep track of the CPU with the
6979 * smallest maximum capacity and highest spare maximum
6980 * capacity.
6981 */
6982
6983 /* Favor CPUs with smaller capacity */
6984 if (capacity_orig > target_capacity)
6985 continue;
6986
6987 /* Favor CPUs with maximum spare capacity */
6988 if ((capacity_orig - min_capped_util) <
6989 target_max_spare_cap)
6990 continue;
6991
6992 target_max_spare_cap = capacity_orig - min_capped_util;
6993 target_capacity = capacity_orig;
6994 target_util = new_util;
6995 target_cpu = i;
6996 }
6997
6998 } while (sg = sg->next, sg != sd->groups);
6999
7000 /*
7001 * For non latency sensitive tasks, cases B and C in the previous loop,
7002 * we pick the best IDLE CPU only if we was not able to find a target
7003 * ACTIVE CPU.
7004 *
7005 * Policies priorities:
7006 *
7007 * - prefer_idle tasks:
7008 *
7009 * a) IDLE CPU available, we return immediately
7010 * b) ACTIVE CPU where task fits and has the bigger maximum spare
7011 * capacity (i.e. target_cpu)
7012 * c) ACTIVE CPU with less contention due to other tasks
7013 * (i.e. best_active_cpu)
7014 *
7015 * - NON prefer_idle tasks:
7016 *
7017 * a) ACTIVE CPU: target_cpu
7018 * b) IDLE CPU: best_idle_cpu
7019 */
7020 if (target_cpu == -1)
7021 target_cpu = prefer_idle
7022 ? best_active_cpu
7023 : best_idle_cpu;
7024 else
7025 *backup_cpu = prefer_idle
7026 ? best_active_cpu
7027 : best_idle_cpu;
7028
7029 trace_sched_find_best_target(p, prefer_idle, min_util, cpu,
7030 best_idle_cpu, best_active_cpu,
7031 target_cpu);
7032
7033 schedstat_inc(p->se.statistics.nr_wakeups_fbt_count);
7034 schedstat_inc(this_rq()->eas_stats.fbt_count);
7035
7036 return target_cpu;
7037 }
7038
7039 /*
7040 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
7041 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
7042 *
7043 * In that case WAKE_AFFINE doesn't make sense and we'll let
7044 * BALANCE_WAKE sort things out.
7045 */
wake_cap(struct task_struct * p,int cpu,int prev_cpu)7046 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
7047 {
7048 long min_cap, max_cap;
7049 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
7050 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity.val;
7051 /* Minimum capacity is close to max, no need to abort wake_affine */
7052 if (max_cap - min_cap < max_cap >> 3)
7053 return 0;
7054
7055 /* Bring task utilization in sync with prev_cpu */
7056 sync_entity_load_avg(&p->se);
7057
7058 return min_cap * 1024 < task_util(p) * capacity_margin;
7059 }
7060
select_energy_cpu_brute(struct task_struct * p,int prev_cpu,int sync)7061 static int select_energy_cpu_brute(struct task_struct *p, int prev_cpu, int sync)
7062 {
7063 bool boosted, prefer_idle;
7064 struct sched_domain *sd;
7065 int target_cpu;
7066 int backup_cpu;
7067 int next_cpu;
7068
7069 schedstat_inc(p->se.statistics.nr_wakeups_secb_attempts);
7070 schedstat_inc(this_rq()->eas_stats.secb_attempts);
7071
7072 if (sysctl_sched_sync_hint_enable && sync) {
7073 int cpu = smp_processor_id();
7074
7075 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
7076 schedstat_inc(p->se.statistics.nr_wakeups_secb_sync);
7077 schedstat_inc(this_rq()->eas_stats.secb_sync);
7078 return cpu;
7079 }
7080 }
7081
7082 #ifdef CONFIG_CGROUP_SCHEDTUNE
7083 boosted = schedtune_task_boost(p) > 0;
7084 prefer_idle = schedtune_prefer_idle(p) > 0;
7085 #else
7086 boosted = get_sysctl_sched_cfs_boost() > 0;
7087 prefer_idle = 0;
7088 #endif
7089
7090 rcu_read_lock();
7091
7092 sd = rcu_dereference(per_cpu(sd_ea, prev_cpu));
7093 if (!sd) {
7094 target_cpu = prev_cpu;
7095 goto unlock;
7096 }
7097
7098 sync_entity_load_avg(&p->se);
7099
7100 /* Find a cpu with sufficient capacity */
7101 next_cpu = find_best_target(p, &backup_cpu, boosted, prefer_idle);
7102 if (next_cpu == -1) {
7103 target_cpu = prev_cpu;
7104 goto unlock;
7105 }
7106
7107 /* Unconditionally prefer IDLE CPUs for boosted/prefer_idle tasks */
7108 if ((boosted || prefer_idle) && idle_cpu(next_cpu)) {
7109 schedstat_inc(p->se.statistics.nr_wakeups_secb_idle_bt);
7110 schedstat_inc(this_rq()->eas_stats.secb_idle_bt);
7111 target_cpu = next_cpu;
7112 goto unlock;
7113 }
7114
7115 target_cpu = prev_cpu;
7116 if (next_cpu != prev_cpu) {
7117 int delta = 0;
7118 struct energy_env eenv = {
7119 .p = p,
7120 .util_delta = task_util(p),
7121 /* Task's previous CPU candidate */
7122 .cpu[EAS_CPU_PRV] = {
7123 .cpu_id = prev_cpu,
7124 },
7125 /* Main alternative CPU candidate */
7126 .cpu[EAS_CPU_NXT] = {
7127 .cpu_id = next_cpu,
7128 },
7129 /* Backup alternative CPU candidate */
7130 .cpu[EAS_CPU_BKP] = {
7131 .cpu_id = backup_cpu,
7132 },
7133 };
7134
7135
7136 #ifdef CONFIG_SCHED_WALT
7137 if (!walt_disabled && sysctl_sched_use_walt_cpu_util &&
7138 p->state == TASK_WAKING)
7139 delta = task_util(p);
7140 #endif
7141 /* Not enough spare capacity on previous cpu */
7142 if (__cpu_overutilized(prev_cpu, delta)) {
7143 schedstat_inc(p->se.statistics.nr_wakeups_secb_insuff_cap);
7144 schedstat_inc(this_rq()->eas_stats.secb_insuff_cap);
7145 target_cpu = next_cpu;
7146 goto unlock;
7147 }
7148
7149 /* Check if EAS_CPU_NXT is a more energy efficient CPU */
7150 if (select_energy_cpu_idx(&eenv) != EAS_CPU_PRV) {
7151 schedstat_inc(p->se.statistics.nr_wakeups_secb_nrg_sav);
7152 schedstat_inc(this_rq()->eas_stats.secb_nrg_sav);
7153 target_cpu = eenv.cpu[eenv.next_idx].cpu_id;
7154 goto unlock;
7155 }
7156
7157 schedstat_inc(p->se.statistics.nr_wakeups_secb_no_nrg_sav);
7158 schedstat_inc(this_rq()->eas_stats.secb_no_nrg_sav);
7159 target_cpu = prev_cpu;
7160 goto unlock;
7161 }
7162
7163 schedstat_inc(p->se.statistics.nr_wakeups_secb_count);
7164 schedstat_inc(this_rq()->eas_stats.secb_count);
7165
7166 unlock:
7167 rcu_read_unlock();
7168 return target_cpu;
7169 }
7170
7171 /*
7172 * select_task_rq_fair: Select target runqueue for the waking task in domains
7173 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
7174 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
7175 *
7176 * Balances load by selecting the idlest cpu in the idlest group, or under
7177 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
7178 *
7179 * Returns the target cpu number.
7180 *
7181 * preempt must be disabled.
7182 */
7183 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int sd_flag,int wake_flags)7184 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
7185 {
7186 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
7187 int cpu = smp_processor_id();
7188 int new_cpu = prev_cpu;
7189 int want_affine = 0;
7190 int sync = wake_flags & WF_SYNC;
7191
7192 if (sd_flag & SD_BALANCE_WAKE) {
7193 record_wakee(p);
7194 want_affine = (!wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
7195 cpumask_test_cpu(cpu, tsk_cpus_allowed(p)));
7196 }
7197
7198 if (energy_aware() && !(cpu_rq(prev_cpu)->rd->overutilized))
7199 return select_energy_cpu_brute(p, prev_cpu, sync);
7200
7201 rcu_read_lock();
7202 for_each_domain(cpu, tmp) {
7203 if (!(tmp->flags & SD_LOAD_BALANCE))
7204 break;
7205
7206 /*
7207 * If both cpu and prev_cpu are part of this domain,
7208 * cpu is a valid SD_WAKE_AFFINE target.
7209 */
7210 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
7211 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
7212 affine_sd = tmp;
7213 break;
7214 }
7215
7216 if (tmp->flags & sd_flag)
7217 sd = tmp;
7218 else if (!want_affine)
7219 break;
7220 }
7221
7222 if (affine_sd) {
7223 sd = NULL; /* Prefer wake_affine over balance flags */
7224 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
7225 new_cpu = cpu;
7226 }
7227
7228 if (sd && !(sd_flag & SD_BALANCE_FORK)) {
7229 /*
7230 * We're going to need the task's util for capacity_spare_wake
7231 * in find_idlest_group. Sync it up to prev_cpu's
7232 * last_update_time.
7233 */
7234 sync_entity_load_avg(&p->se);
7235 }
7236
7237 if (!sd) {
7238 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
7239 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
7240
7241 } else {
7242 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
7243 }
7244 rcu_read_unlock();
7245
7246 return new_cpu;
7247 }
7248
7249 /*
7250 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
7251 * cfs_rq_of(p) references at time of call are still valid and identify the
7252 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
7253 */
migrate_task_rq_fair(struct task_struct * p)7254 static void migrate_task_rq_fair(struct task_struct *p)
7255 {
7256 /*
7257 * As blocked tasks retain absolute vruntime the migration needs to
7258 * deal with this by subtracting the old and adding the new
7259 * min_vruntime -- the latter is done by enqueue_entity() when placing
7260 * the task on the new runqueue.
7261 */
7262 if (p->state == TASK_WAKING) {
7263 struct sched_entity *se = &p->se;
7264 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7265 u64 min_vruntime;
7266
7267 #ifndef CONFIG_64BIT
7268 u64 min_vruntime_copy;
7269
7270 do {
7271 min_vruntime_copy = cfs_rq->min_vruntime_copy;
7272 smp_rmb();
7273 min_vruntime = cfs_rq->min_vruntime;
7274 } while (min_vruntime != min_vruntime_copy);
7275 #else
7276 min_vruntime = cfs_rq->min_vruntime;
7277 #endif
7278
7279 se->vruntime -= min_vruntime;
7280 }
7281
7282 /*
7283 * We are supposed to update the task to "current" time, then its up to date
7284 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
7285 * what current time is, so simply throw away the out-of-date time. This
7286 * will result in the wakee task is less decayed, but giving the wakee more
7287 * load sounds not bad.
7288 */
7289 remove_entity_load_avg(&p->se);
7290
7291 /* Tell new CPU we are migrated */
7292 p->se.avg.last_update_time = 0;
7293
7294 /* We have migrated, no longer consider this task hot */
7295 p->se.exec_start = 0;
7296 }
7297
task_dead_fair(struct task_struct * p)7298 static void task_dead_fair(struct task_struct *p)
7299 {
7300 remove_entity_load_avg(&p->se);
7301 }
7302 #else
7303 #define task_fits_max(p, cpu) true
7304 #endif /* CONFIG_SMP */
7305
7306 static unsigned long
wakeup_gran(struct sched_entity * curr,struct sched_entity * se)7307 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
7308 {
7309 unsigned long gran = sysctl_sched_wakeup_granularity;
7310
7311 /*
7312 * Since its curr running now, convert the gran from real-time
7313 * to virtual-time in his units.
7314 *
7315 * By using 'se' instead of 'curr' we penalize light tasks, so
7316 * they get preempted easier. That is, if 'se' < 'curr' then
7317 * the resulting gran will be larger, therefore penalizing the
7318 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7319 * be smaller, again penalizing the lighter task.
7320 *
7321 * This is especially important for buddies when the leftmost
7322 * task is higher priority than the buddy.
7323 */
7324 return calc_delta_fair(gran, se);
7325 }
7326
7327 /*
7328 * Should 'se' preempt 'curr'.
7329 *
7330 * |s1
7331 * |s2
7332 * |s3
7333 * g
7334 * |<--->|c
7335 *
7336 * w(c, s1) = -1
7337 * w(c, s2) = 0
7338 * w(c, s3) = 1
7339 *
7340 */
7341 static int
wakeup_preempt_entity(struct sched_entity * curr,struct sched_entity * se)7342 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7343 {
7344 s64 gran, vdiff = curr->vruntime - se->vruntime;
7345
7346 if (vdiff <= 0)
7347 return -1;
7348
7349 gran = wakeup_gran(curr, se);
7350 if (vdiff > gran)
7351 return 1;
7352
7353 return 0;
7354 }
7355
set_last_buddy(struct sched_entity * se)7356 static void set_last_buddy(struct sched_entity *se)
7357 {
7358 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
7359 return;
7360
7361 for_each_sched_entity(se)
7362 cfs_rq_of(se)->last = se;
7363 }
7364
set_next_buddy(struct sched_entity * se)7365 static void set_next_buddy(struct sched_entity *se)
7366 {
7367 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
7368 return;
7369
7370 for_each_sched_entity(se)
7371 cfs_rq_of(se)->next = se;
7372 }
7373
set_skip_buddy(struct sched_entity * se)7374 static void set_skip_buddy(struct sched_entity *se)
7375 {
7376 for_each_sched_entity(se)
7377 cfs_rq_of(se)->skip = se;
7378 }
7379
7380 /*
7381 * Preempt the current task with a newly woken task if needed:
7382 */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)7383 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7384 {
7385 struct task_struct *curr = rq->curr;
7386 struct sched_entity *se = &curr->se, *pse = &p->se;
7387 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7388 int scale = cfs_rq->nr_running >= sched_nr_latency;
7389 int next_buddy_marked = 0;
7390
7391 if (unlikely(se == pse))
7392 return;
7393
7394 /*
7395 * This is possible from callers such as attach_tasks(), in which we
7396 * unconditionally check_prempt_curr() after an enqueue (which may have
7397 * lead to a throttle). This both saves work and prevents false
7398 * next-buddy nomination below.
7399 */
7400 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7401 return;
7402
7403 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7404 set_next_buddy(pse);
7405 next_buddy_marked = 1;
7406 }
7407
7408 /*
7409 * We can come here with TIF_NEED_RESCHED already set from new task
7410 * wake up path.
7411 *
7412 * Note: this also catches the edge-case of curr being in a throttled
7413 * group (e.g. via set_curr_task), since update_curr() (in the
7414 * enqueue of curr) will have resulted in resched being set. This
7415 * prevents us from potentially nominating it as a false LAST_BUDDY
7416 * below.
7417 */
7418 if (test_tsk_need_resched(curr))
7419 return;
7420
7421 /* Idle tasks are by definition preempted by non-idle tasks. */
7422 if (unlikely(curr->policy == SCHED_IDLE) &&
7423 likely(p->policy != SCHED_IDLE))
7424 goto preempt;
7425
7426 /*
7427 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7428 * is driven by the tick):
7429 */
7430 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7431 return;
7432
7433 find_matching_se(&se, &pse);
7434 update_curr(cfs_rq_of(se));
7435 BUG_ON(!pse);
7436 if (wakeup_preempt_entity(se, pse) == 1) {
7437 /*
7438 * Bias pick_next to pick the sched entity that is
7439 * triggering this preemption.
7440 */
7441 if (!next_buddy_marked)
7442 set_next_buddy(pse);
7443 goto preempt;
7444 }
7445
7446 return;
7447
7448 preempt:
7449 resched_curr(rq);
7450 /*
7451 * Only set the backward buddy when the current task is still
7452 * on the rq. This can happen when a wakeup gets interleaved
7453 * with schedule on the ->pre_schedule() or idle_balance()
7454 * point, either of which can * drop the rq lock.
7455 *
7456 * Also, during early boot the idle thread is in the fair class,
7457 * for obvious reasons its a bad idea to schedule back to it.
7458 */
7459 if (unlikely(!se->on_rq || curr == rq->idle))
7460 return;
7461
7462 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7463 set_last_buddy(se);
7464 }
7465
7466 static struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct pin_cookie cookie)7467 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
7468 {
7469 struct cfs_rq *cfs_rq = &rq->cfs;
7470 struct sched_entity *se;
7471 struct task_struct *p;
7472 int new_tasks;
7473
7474 again:
7475 #ifdef CONFIG_FAIR_GROUP_SCHED
7476 if (!cfs_rq->nr_running)
7477 goto idle;
7478
7479 if (prev->sched_class != &fair_sched_class)
7480 goto simple;
7481
7482 /*
7483 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7484 * likely that a next task is from the same cgroup as the current.
7485 *
7486 * Therefore attempt to avoid putting and setting the entire cgroup
7487 * hierarchy, only change the part that actually changes.
7488 */
7489
7490 do {
7491 struct sched_entity *curr = cfs_rq->curr;
7492
7493 /*
7494 * Since we got here without doing put_prev_entity() we also
7495 * have to consider cfs_rq->curr. If it is still a runnable
7496 * entity, update_curr() will update its vruntime, otherwise
7497 * forget we've ever seen it.
7498 */
7499 if (curr) {
7500 if (curr->on_rq)
7501 update_curr(cfs_rq);
7502 else
7503 curr = NULL;
7504
7505 /*
7506 * This call to check_cfs_rq_runtime() will do the
7507 * throttle and dequeue its entity in the parent(s).
7508 * Therefore the 'simple' nr_running test will indeed
7509 * be correct.
7510 */
7511 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7512 goto simple;
7513 }
7514
7515 se = pick_next_entity(cfs_rq, curr);
7516 cfs_rq = group_cfs_rq(se);
7517 } while (cfs_rq);
7518
7519 p = task_of(se);
7520
7521 /*
7522 * Since we haven't yet done put_prev_entity and if the selected task
7523 * is a different task than we started out with, try and touch the
7524 * least amount of cfs_rqs.
7525 */
7526 if (prev != p) {
7527 struct sched_entity *pse = &prev->se;
7528
7529 while (!(cfs_rq = is_same_group(se, pse))) {
7530 int se_depth = se->depth;
7531 int pse_depth = pse->depth;
7532
7533 if (se_depth <= pse_depth) {
7534 put_prev_entity(cfs_rq_of(pse), pse);
7535 pse = parent_entity(pse);
7536 }
7537 if (se_depth >= pse_depth) {
7538 set_next_entity(cfs_rq_of(se), se);
7539 se = parent_entity(se);
7540 }
7541 }
7542
7543 put_prev_entity(cfs_rq, pse);
7544 set_next_entity(cfs_rq, se);
7545 }
7546
7547 if (hrtick_enabled(rq))
7548 hrtick_start_fair(rq, p);
7549
7550 rq->misfit_task = !task_fits_max(p, rq->cpu);
7551
7552 return p;
7553 simple:
7554 cfs_rq = &rq->cfs;
7555 #endif
7556
7557 if (!cfs_rq->nr_running)
7558 goto idle;
7559
7560 put_prev_task(rq, prev);
7561
7562 do {
7563 se = pick_next_entity(cfs_rq, NULL);
7564 set_next_entity(cfs_rq, se);
7565 cfs_rq = group_cfs_rq(se);
7566 } while (cfs_rq);
7567
7568 p = task_of(se);
7569
7570 if (hrtick_enabled(rq))
7571 hrtick_start_fair(rq, p);
7572
7573 rq->misfit_task = !task_fits_max(p, rq->cpu);
7574
7575 return p;
7576
7577 idle:
7578 rq->misfit_task = 0;
7579 /*
7580 * This is OK, because current is on_cpu, which avoids it being picked
7581 * for load-balance and preemption/IRQs are still disabled avoiding
7582 * further scheduler activity on it and we're being very careful to
7583 * re-start the picking loop.
7584 */
7585 lockdep_unpin_lock(&rq->lock, cookie);
7586 new_tasks = idle_balance(rq);
7587 lockdep_repin_lock(&rq->lock, cookie);
7588 /*
7589 * Because idle_balance() releases (and re-acquires) rq->lock, it is
7590 * possible for any higher priority task to appear. In that case we
7591 * must re-start the pick_next_entity() loop.
7592 */
7593 if (new_tasks < 0)
7594 return RETRY_TASK;
7595
7596 if (new_tasks > 0)
7597 goto again;
7598
7599 return NULL;
7600 }
7601
7602 /*
7603 * Account for a descheduled task:
7604 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)7605 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7606 {
7607 struct sched_entity *se = &prev->se;
7608 struct cfs_rq *cfs_rq;
7609
7610 for_each_sched_entity(se) {
7611 cfs_rq = cfs_rq_of(se);
7612 put_prev_entity(cfs_rq, se);
7613 }
7614 }
7615
7616 /*
7617 * sched_yield() is very simple
7618 *
7619 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7620 */
yield_task_fair(struct rq * rq)7621 static void yield_task_fair(struct rq *rq)
7622 {
7623 struct task_struct *curr = rq->curr;
7624 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7625 struct sched_entity *se = &curr->se;
7626
7627 /*
7628 * Are we the only task in the tree?
7629 */
7630 if (unlikely(rq->nr_running == 1))
7631 return;
7632
7633 clear_buddies(cfs_rq, se);
7634
7635 if (curr->policy != SCHED_BATCH) {
7636 update_rq_clock(rq);
7637 /*
7638 * Update run-time statistics of the 'current'.
7639 */
7640 update_curr(cfs_rq);
7641 /*
7642 * Tell update_rq_clock() that we've just updated,
7643 * so we don't do microscopic update in schedule()
7644 * and double the fastpath cost.
7645 */
7646 rq_clock_skip_update(rq, true);
7647 }
7648
7649 set_skip_buddy(se);
7650 }
7651
yield_to_task_fair(struct rq * rq,struct task_struct * p,bool preempt)7652 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7653 {
7654 struct sched_entity *se = &p->se;
7655
7656 /* throttled hierarchies are not runnable */
7657 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7658 return false;
7659
7660 /* Tell the scheduler that we'd really like pse to run next. */
7661 set_next_buddy(se);
7662
7663 yield_task_fair(rq);
7664
7665 return true;
7666 }
7667
7668 #ifdef CONFIG_SMP
7669 /**************************************************
7670 * Fair scheduling class load-balancing methods.
7671 *
7672 * BASICS
7673 *
7674 * The purpose of load-balancing is to achieve the same basic fairness the
7675 * per-cpu scheduler provides, namely provide a proportional amount of compute
7676 * time to each task. This is expressed in the following equation:
7677 *
7678 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7679 *
7680 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
7681 * W_i,0 is defined as:
7682 *
7683 * W_i,0 = \Sum_j w_i,j (2)
7684 *
7685 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
7686 * is derived from the nice value as per sched_prio_to_weight[].
7687 *
7688 * The weight average is an exponential decay average of the instantaneous
7689 * weight:
7690 *
7691 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7692 *
7693 * C_i is the compute capacity of cpu i, typically it is the
7694 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7695 * can also include other factors [XXX].
7696 *
7697 * To achieve this balance we define a measure of imbalance which follows
7698 * directly from (1):
7699 *
7700 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7701 *
7702 * We them move tasks around to minimize the imbalance. In the continuous
7703 * function space it is obvious this converges, in the discrete case we get
7704 * a few fun cases generally called infeasible weight scenarios.
7705 *
7706 * [XXX expand on:
7707 * - infeasible weights;
7708 * - local vs global optima in the discrete case. ]
7709 *
7710 *
7711 * SCHED DOMAINS
7712 *
7713 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7714 * for all i,j solution, we create a tree of cpus that follows the hardware
7715 * topology where each level pairs two lower groups (or better). This results
7716 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
7717 * tree to only the first of the previous level and we decrease the frequency
7718 * of load-balance at each level inv. proportional to the number of cpus in
7719 * the groups.
7720 *
7721 * This yields:
7722 *
7723 * log_2 n 1 n
7724 * \Sum { --- * --- * 2^i } = O(n) (5)
7725 * i = 0 2^i 2^i
7726 * `- size of each group
7727 * | | `- number of cpus doing load-balance
7728 * | `- freq
7729 * `- sum over all levels
7730 *
7731 * Coupled with a limit on how many tasks we can migrate every balance pass,
7732 * this makes (5) the runtime complexity of the balancer.
7733 *
7734 * An important property here is that each CPU is still (indirectly) connected
7735 * to every other cpu in at most O(log n) steps:
7736 *
7737 * The adjacency matrix of the resulting graph is given by:
7738 *
7739 * log_2 n
7740 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7741 * k = 0
7742 *
7743 * And you'll find that:
7744 *
7745 * A^(log_2 n)_i,j != 0 for all i,j (7)
7746 *
7747 * Showing there's indeed a path between every cpu in at most O(log n) steps.
7748 * The task movement gives a factor of O(m), giving a convergence complexity
7749 * of:
7750 *
7751 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7752 *
7753 *
7754 * WORK CONSERVING
7755 *
7756 * In order to avoid CPUs going idle while there's still work to do, new idle
7757 * balancing is more aggressive and has the newly idle cpu iterate up the domain
7758 * tree itself instead of relying on other CPUs to bring it work.
7759 *
7760 * This adds some complexity to both (5) and (8) but it reduces the total idle
7761 * time.
7762 *
7763 * [XXX more?]
7764 *
7765 *
7766 * CGROUPS
7767 *
7768 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7769 *
7770 * s_k,i
7771 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7772 * S_k
7773 *
7774 * Where
7775 *
7776 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7777 *
7778 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
7779 *
7780 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7781 * property.
7782 *
7783 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7784 * rewrite all of this once again.]
7785 */
7786
7787 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7788
7789 enum fbq_type { regular, remote, all };
7790
7791 enum group_type {
7792 group_other = 0,
7793 group_misfit_task,
7794 group_imbalanced,
7795 group_overloaded,
7796 };
7797
7798 #define LBF_ALL_PINNED 0x01
7799 #define LBF_NEED_BREAK 0x02
7800 #define LBF_DST_PINNED 0x04
7801 #define LBF_SOME_PINNED 0x08
7802
7803 struct lb_env {
7804 struct sched_domain *sd;
7805
7806 struct rq *src_rq;
7807 int src_cpu;
7808
7809 int dst_cpu;
7810 struct rq *dst_rq;
7811
7812 struct cpumask *dst_grpmask;
7813 int new_dst_cpu;
7814 enum cpu_idle_type idle;
7815 long imbalance;
7816 unsigned int src_grp_nr_running;
7817 /* The set of CPUs under consideration for load-balancing */
7818 struct cpumask *cpus;
7819
7820 unsigned int flags;
7821
7822 unsigned int loop;
7823 unsigned int loop_break;
7824 unsigned int loop_max;
7825
7826 enum fbq_type fbq_type;
7827 enum group_type busiest_group_type;
7828 struct list_head tasks;
7829 };
7830
7831 /*
7832 * Is this task likely cache-hot:
7833 */
task_hot(struct task_struct * p,struct lb_env * env)7834 static int task_hot(struct task_struct *p, struct lb_env *env)
7835 {
7836 s64 delta;
7837
7838 lockdep_assert_held(&env->src_rq->lock);
7839
7840 if (p->sched_class != &fair_sched_class)
7841 return 0;
7842
7843 if (unlikely(p->policy == SCHED_IDLE))
7844 return 0;
7845
7846 /*
7847 * Buddy candidates are cache hot:
7848 */
7849 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7850 (&p->se == cfs_rq_of(&p->se)->next ||
7851 &p->se == cfs_rq_of(&p->se)->last))
7852 return 1;
7853
7854 if (sysctl_sched_migration_cost == -1)
7855 return 1;
7856 if (sysctl_sched_migration_cost == 0)
7857 return 0;
7858
7859 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7860
7861 return delta < (s64)sysctl_sched_migration_cost;
7862 }
7863
7864 #ifdef CONFIG_NUMA_BALANCING
7865 /*
7866 * Returns 1, if task migration degrades locality
7867 * Returns 0, if task migration improves locality i.e migration preferred.
7868 * Returns -1, if task migration is not affected by locality.
7869 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)7870 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7871 {
7872 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7873 unsigned long src_faults, dst_faults;
7874 int src_nid, dst_nid;
7875
7876 if (!static_branch_likely(&sched_numa_balancing))
7877 return -1;
7878
7879 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7880 return -1;
7881
7882 src_nid = cpu_to_node(env->src_cpu);
7883 dst_nid = cpu_to_node(env->dst_cpu);
7884
7885 if (src_nid == dst_nid)
7886 return -1;
7887
7888 /* Migrating away from the preferred node is always bad. */
7889 if (src_nid == p->numa_preferred_nid) {
7890 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7891 return 1;
7892 else
7893 return -1;
7894 }
7895
7896 /* Encourage migration to the preferred node. */
7897 if (dst_nid == p->numa_preferred_nid)
7898 return 0;
7899
7900 if (numa_group) {
7901 src_faults = group_faults(p, src_nid);
7902 dst_faults = group_faults(p, dst_nid);
7903 } else {
7904 src_faults = task_faults(p, src_nid);
7905 dst_faults = task_faults(p, dst_nid);
7906 }
7907
7908 return dst_faults < src_faults;
7909 }
7910
7911 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)7912 static inline int migrate_degrades_locality(struct task_struct *p,
7913 struct lb_env *env)
7914 {
7915 return -1;
7916 }
7917 #endif
7918
7919 /*
7920 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7921 */
7922 static
can_migrate_task(struct task_struct * p,struct lb_env * env)7923 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7924 {
7925 int tsk_cache_hot;
7926
7927 lockdep_assert_held(&env->src_rq->lock);
7928
7929 /*
7930 * We do not migrate tasks that are:
7931 * 1) throttled_lb_pair, or
7932 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7933 * 3) running (obviously), or
7934 * 4) are cache-hot on their current CPU.
7935 */
7936 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7937 return 0;
7938
7939 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
7940 int cpu;
7941
7942 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7943
7944 env->flags |= LBF_SOME_PINNED;
7945
7946 /*
7947 * Remember if this task can be migrated to any other cpu in
7948 * our sched_group. We may want to revisit it if we couldn't
7949 * meet load balance goals by pulling other tasks on src_cpu.
7950 *
7951 * Also avoid computing new_dst_cpu if we have already computed
7952 * one in current iteration.
7953 */
7954 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
7955 return 0;
7956
7957 /* Prevent to re-select dst_cpu via env's cpus */
7958 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7959 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
7960 env->flags |= LBF_DST_PINNED;
7961 env->new_dst_cpu = cpu;
7962 break;
7963 }
7964 }
7965
7966 return 0;
7967 }
7968
7969 /* Record that we found atleast one task that could run on dst_cpu */
7970 env->flags &= ~LBF_ALL_PINNED;
7971
7972 if (task_running(env->src_rq, p)) {
7973 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7974 return 0;
7975 }
7976
7977 /*
7978 * Aggressive migration if:
7979 * 1) destination numa is preferred
7980 * 2) task is cache cold, or
7981 * 3) too many balance attempts have failed.
7982 */
7983 tsk_cache_hot = migrate_degrades_locality(p, env);
7984 if (tsk_cache_hot == -1)
7985 tsk_cache_hot = task_hot(p, env);
7986
7987 if (tsk_cache_hot <= 0 ||
7988 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7989 if (tsk_cache_hot == 1) {
7990 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7991 schedstat_inc(p->se.statistics.nr_forced_migrations);
7992 }
7993 return 1;
7994 }
7995
7996 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7997 return 0;
7998 }
7999
8000 /*
8001 * detach_task() -- detach the task for the migration specified in env
8002 */
detach_task(struct task_struct * p,struct lb_env * env)8003 static void detach_task(struct task_struct *p, struct lb_env *env)
8004 {
8005 lockdep_assert_held(&env->src_rq->lock);
8006
8007 p->on_rq = TASK_ON_RQ_MIGRATING;
8008 deactivate_task(env->src_rq, p, 0);
8009 double_lock_balance(env->src_rq, env->dst_rq);
8010 set_task_cpu(p, env->dst_cpu);
8011 double_unlock_balance(env->src_rq, env->dst_rq);
8012 }
8013
8014 /*
8015 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8016 * part of active balancing operations within "domain".
8017 *
8018 * Returns a task if successful and NULL otherwise.
8019 */
detach_one_task(struct lb_env * env)8020 static struct task_struct *detach_one_task(struct lb_env *env)
8021 {
8022 struct task_struct *p, *n;
8023
8024 lockdep_assert_held(&env->src_rq->lock);
8025
8026 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
8027 if (!can_migrate_task(p, env))
8028 continue;
8029
8030 detach_task(p, env);
8031
8032 /*
8033 * Right now, this is only the second place where
8034 * lb_gained[env->idle] is updated (other is detach_tasks)
8035 * so we can safely collect stats here rather than
8036 * inside detach_tasks().
8037 */
8038 schedstat_inc(env->sd->lb_gained[env->idle]);
8039 return p;
8040 }
8041 return NULL;
8042 }
8043
8044 static const unsigned int sched_nr_migrate_break = 32;
8045
8046 /*
8047 * detach_tasks() -- tries to detach up to imbalance weighted load from
8048 * busiest_rq, as part of a balancing operation within domain "sd".
8049 *
8050 * Returns number of detached tasks if successful and 0 otherwise.
8051 */
detach_tasks(struct lb_env * env)8052 static int detach_tasks(struct lb_env *env)
8053 {
8054 struct list_head *tasks = &env->src_rq->cfs_tasks;
8055 struct task_struct *p;
8056 unsigned long load;
8057 int detached = 0;
8058
8059 lockdep_assert_held(&env->src_rq->lock);
8060
8061 if (env->imbalance <= 0)
8062 return 0;
8063
8064 while (!list_empty(tasks)) {
8065 /*
8066 * We don't want to steal all, otherwise we may be treated likewise,
8067 * which could at worst lead to a livelock crash.
8068 */
8069 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8070 break;
8071
8072 p = list_first_entry(tasks, struct task_struct, se.group_node);
8073
8074 env->loop++;
8075 /* We've more or less seen every task there is, call it quits */
8076 if (env->loop > env->loop_max)
8077 break;
8078
8079 /* take a breather every nr_migrate tasks */
8080 if (env->loop > env->loop_break) {
8081 env->loop_break += sched_nr_migrate_break;
8082 env->flags |= LBF_NEED_BREAK;
8083 break;
8084 }
8085
8086 if (!can_migrate_task(p, env))
8087 goto next;
8088
8089 load = task_h_load(p);
8090
8091 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
8092 goto next;
8093
8094 if ((load / 2) > env->imbalance)
8095 goto next;
8096
8097 detach_task(p, env);
8098 list_add(&p->se.group_node, &env->tasks);
8099
8100 detached++;
8101 env->imbalance -= load;
8102
8103 #ifdef CONFIG_PREEMPT
8104 /*
8105 * NEWIDLE balancing is a source of latency, so preemptible
8106 * kernels will stop after the first task is detached to minimize
8107 * the critical section.
8108 */
8109 if (env->idle == CPU_NEWLY_IDLE)
8110 break;
8111 #endif
8112
8113 /*
8114 * We only want to steal up to the prescribed amount of
8115 * weighted load.
8116 */
8117 if (env->imbalance <= 0)
8118 break;
8119
8120 continue;
8121 next:
8122 list_move_tail(&p->se.group_node, tasks);
8123 }
8124
8125 /*
8126 * Right now, this is one of only two places we collect this stat
8127 * so we can safely collect detach_one_task() stats here rather
8128 * than inside detach_one_task().
8129 */
8130 schedstat_add(env->sd->lb_gained[env->idle], detached);
8131
8132 return detached;
8133 }
8134
8135 /*
8136 * attach_task() -- attach the task detached by detach_task() to its new rq.
8137 */
attach_task(struct rq * rq,struct task_struct * p)8138 static void attach_task(struct rq *rq, struct task_struct *p)
8139 {
8140 lockdep_assert_held(&rq->lock);
8141
8142 BUG_ON(task_rq(p) != rq);
8143 activate_task(rq, p, 0);
8144 p->on_rq = TASK_ON_RQ_QUEUED;
8145 check_preempt_curr(rq, p, 0);
8146 }
8147
8148 /*
8149 * attach_one_task() -- attaches the task returned from detach_one_task() to
8150 * its new rq.
8151 */
attach_one_task(struct rq * rq,struct task_struct * p)8152 static void attach_one_task(struct rq *rq, struct task_struct *p)
8153 {
8154 raw_spin_lock(&rq->lock);
8155 attach_task(rq, p);
8156 raw_spin_unlock(&rq->lock);
8157 }
8158
8159 /*
8160 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8161 * new rq.
8162 */
attach_tasks(struct lb_env * env)8163 static void attach_tasks(struct lb_env *env)
8164 {
8165 struct list_head *tasks = &env->tasks;
8166 struct task_struct *p;
8167
8168 raw_spin_lock(&env->dst_rq->lock);
8169
8170 while (!list_empty(tasks)) {
8171 p = list_first_entry(tasks, struct task_struct, se.group_node);
8172 list_del_init(&p->se.group_node);
8173
8174 attach_task(env->dst_rq, p);
8175 }
8176
8177 raw_spin_unlock(&env->dst_rq->lock);
8178 }
8179
8180 #ifdef CONFIG_FAIR_GROUP_SCHED
update_blocked_averages(int cpu)8181 static void update_blocked_averages(int cpu)
8182 {
8183 struct rq *rq = cpu_rq(cpu);
8184 struct cfs_rq *cfs_rq;
8185 unsigned long flags;
8186
8187 raw_spin_lock_irqsave(&rq->lock, flags);
8188 update_rq_clock(rq);
8189
8190 /*
8191 * Iterates the task_group tree in a bottom up fashion, see
8192 * list_add_leaf_cfs_rq() for details.
8193 */
8194 for_each_leaf_cfs_rq(rq, cfs_rq) {
8195 struct sched_entity *se;
8196
8197 /* throttled entities do not contribute to load */
8198 if (throttled_hierarchy(cfs_rq))
8199 continue;
8200
8201 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
8202 update_tg_load_avg(cfs_rq, 0);
8203
8204 /* Propagate pending load changes to the parent, if any: */
8205 se = cfs_rq->tg->se[cpu];
8206 if (se && !skip_blocked_update(se))
8207 update_load_avg(se, 0);
8208 }
8209 raw_spin_unlock_irqrestore(&rq->lock, flags);
8210 }
8211
8212 /*
8213 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8214 * This needs to be done in a top-down fashion because the load of a child
8215 * group is a fraction of its parents load.
8216 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)8217 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8218 {
8219 struct rq *rq = rq_of(cfs_rq);
8220 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8221 unsigned long now = jiffies;
8222 unsigned long load;
8223
8224 if (cfs_rq->last_h_load_update == now)
8225 return;
8226
8227 cfs_rq->h_load_next = NULL;
8228 for_each_sched_entity(se) {
8229 cfs_rq = cfs_rq_of(se);
8230 cfs_rq->h_load_next = se;
8231 if (cfs_rq->last_h_load_update == now)
8232 break;
8233 }
8234
8235 if (!se) {
8236 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8237 cfs_rq->last_h_load_update = now;
8238 }
8239
8240 while ((se = cfs_rq->h_load_next) != NULL) {
8241 load = cfs_rq->h_load;
8242 load = div64_ul(load * se->avg.load_avg,
8243 cfs_rq_load_avg(cfs_rq) + 1);
8244 cfs_rq = group_cfs_rq(se);
8245 cfs_rq->h_load = load;
8246 cfs_rq->last_h_load_update = now;
8247 }
8248 }
8249
task_h_load(struct task_struct * p)8250 static unsigned long task_h_load(struct task_struct *p)
8251 {
8252 struct cfs_rq *cfs_rq = task_cfs_rq(p);
8253
8254 update_cfs_rq_h_load(cfs_rq);
8255 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8256 cfs_rq_load_avg(cfs_rq) + 1);
8257 }
8258 #else
update_blocked_averages(int cpu)8259 static inline void update_blocked_averages(int cpu)
8260 {
8261 struct rq *rq = cpu_rq(cpu);
8262 struct cfs_rq *cfs_rq = &rq->cfs;
8263 unsigned long flags;
8264
8265 raw_spin_lock_irqsave(&rq->lock, flags);
8266 update_rq_clock(rq);
8267 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
8268 raw_spin_unlock_irqrestore(&rq->lock, flags);
8269 }
8270
task_h_load(struct task_struct * p)8271 static unsigned long task_h_load(struct task_struct *p)
8272 {
8273 return p->se.avg.load_avg;
8274 }
8275 #endif
8276
8277 /********** Helpers for find_busiest_group ************************/
8278
8279 /*
8280 * sg_lb_stats - stats of a sched_group required for load_balancing
8281 */
8282 struct sg_lb_stats {
8283 unsigned long avg_load; /*Avg load across the CPUs of the group */
8284 unsigned long group_load; /* Total load over the CPUs of the group */
8285 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
8286 unsigned long load_per_task;
8287 unsigned long group_capacity;
8288 unsigned long group_util; /* Total utilization of the group */
8289 unsigned int sum_nr_running; /* Nr tasks running in the group */
8290 unsigned int idle_cpus;
8291 unsigned int group_weight;
8292 enum group_type group_type;
8293 int group_no_capacity;
8294 int group_misfit_task; /* A cpu has a task too big for its capacity */
8295 #ifdef CONFIG_NUMA_BALANCING
8296 unsigned int nr_numa_running;
8297 unsigned int nr_preferred_running;
8298 #endif
8299 };
8300
8301 /*
8302 * sd_lb_stats - Structure to store the statistics of a sched_domain
8303 * during load balancing.
8304 */
8305 struct sd_lb_stats {
8306 struct sched_group *busiest; /* Busiest group in this sd */
8307 struct sched_group *local; /* Local group in this sd */
8308 unsigned long total_load; /* Total load of all groups in sd */
8309 unsigned long total_capacity; /* Total capacity of all groups in sd */
8310 unsigned long avg_load; /* Average load across all groups in sd */
8311
8312 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8313 struct sg_lb_stats local_stat; /* Statistics of the local group */
8314 };
8315
init_sd_lb_stats(struct sd_lb_stats * sds)8316 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8317 {
8318 /*
8319 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8320 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8321 * We must however clear busiest_stat::avg_load because
8322 * update_sd_pick_busiest() reads this before assignment.
8323 */
8324 *sds = (struct sd_lb_stats){
8325 .busiest = NULL,
8326 .local = NULL,
8327 .total_load = 0UL,
8328 .total_capacity = 0UL,
8329 .busiest_stat = {
8330 .avg_load = 0UL,
8331 .sum_nr_running = 0,
8332 .group_type = group_other,
8333 },
8334 };
8335 }
8336
8337 /**
8338 * get_sd_load_idx - Obtain the load index for a given sched domain.
8339 * @sd: The sched_domain whose load_idx is to be obtained.
8340 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
8341 *
8342 * Return: The load index.
8343 */
get_sd_load_idx(struct sched_domain * sd,enum cpu_idle_type idle)8344 static inline int get_sd_load_idx(struct sched_domain *sd,
8345 enum cpu_idle_type idle)
8346 {
8347 int load_idx;
8348
8349 switch (idle) {
8350 case CPU_NOT_IDLE:
8351 load_idx = sd->busy_idx;
8352 break;
8353
8354 case CPU_NEWLY_IDLE:
8355 load_idx = sd->newidle_idx;
8356 break;
8357 default:
8358 load_idx = sd->idle_idx;
8359 break;
8360 }
8361
8362 return load_idx;
8363 }
8364
scale_rt_capacity(int cpu)8365 static unsigned long scale_rt_capacity(int cpu)
8366 {
8367 struct rq *rq = cpu_rq(cpu);
8368 u64 total, used, age_stamp, avg;
8369 s64 delta;
8370
8371 /*
8372 * Since we're reading these variables without serialization make sure
8373 * we read them once before doing sanity checks on them.
8374 */
8375 age_stamp = READ_ONCE(rq->age_stamp);
8376 avg = READ_ONCE(rq->rt_avg);
8377 delta = __rq_clock_broken(rq) - age_stamp;
8378
8379 if (unlikely(delta < 0))
8380 delta = 0;
8381
8382 total = sched_avg_period() + delta;
8383
8384 used = div_u64(avg, total);
8385
8386 if (likely(used < SCHED_CAPACITY_SCALE))
8387 return SCHED_CAPACITY_SCALE - used;
8388
8389 return 1;
8390 }
8391
init_max_cpu_capacity(struct max_cpu_capacity * mcc)8392 void init_max_cpu_capacity(struct max_cpu_capacity *mcc)
8393 {
8394 raw_spin_lock_init(&mcc->lock);
8395 mcc->val = 0;
8396 mcc->cpu = -1;
8397 }
8398
update_cpu_capacity(struct sched_domain * sd,int cpu)8399 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8400 {
8401 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
8402 struct sched_group *sdg = sd->groups;
8403 struct max_cpu_capacity *mcc;
8404 unsigned long max_capacity;
8405 int max_cap_cpu;
8406 unsigned long flags;
8407
8408 cpu_rq(cpu)->cpu_capacity_orig = capacity;
8409
8410 capacity *= arch_scale_max_freq_capacity(sd, cpu);
8411 capacity >>= SCHED_CAPACITY_SHIFT;
8412
8413 mcc = &cpu_rq(cpu)->rd->max_cpu_capacity;
8414
8415 raw_spin_lock_irqsave(&mcc->lock, flags);
8416 max_capacity = mcc->val;
8417 max_cap_cpu = mcc->cpu;
8418
8419 if ((max_capacity > capacity && max_cap_cpu == cpu) ||
8420 (max_capacity < capacity)) {
8421 mcc->val = capacity;
8422 mcc->cpu = cpu;
8423 #ifdef CONFIG_SCHED_DEBUG
8424 raw_spin_unlock_irqrestore(&mcc->lock, flags);
8425 pr_info("CPU%d: update max cpu_capacity %lu\n", cpu, capacity);
8426 goto skip_unlock;
8427 #endif
8428 }
8429 raw_spin_unlock_irqrestore(&mcc->lock, flags);
8430
8431 skip_unlock: __attribute__ ((unused));
8432 capacity *= scale_rt_capacity(cpu);
8433 capacity >>= SCHED_CAPACITY_SHIFT;
8434
8435 if (!capacity)
8436 capacity = 1;
8437
8438 cpu_rq(cpu)->cpu_capacity = capacity;
8439 sdg->sgc->capacity = capacity;
8440 sdg->sgc->max_capacity = capacity;
8441 sdg->sgc->min_capacity = capacity;
8442 }
8443
update_group_capacity(struct sched_domain * sd,int cpu)8444 void update_group_capacity(struct sched_domain *sd, int cpu)
8445 {
8446 struct sched_domain *child = sd->child;
8447 struct sched_group *group, *sdg = sd->groups;
8448 unsigned long capacity, max_capacity, min_capacity;
8449 unsigned long interval;
8450
8451 interval = msecs_to_jiffies(sd->balance_interval);
8452 interval = clamp(interval, 1UL, max_load_balance_interval);
8453 sdg->sgc->next_update = jiffies + interval;
8454
8455 if (!child) {
8456 update_cpu_capacity(sd, cpu);
8457 return;
8458 }
8459
8460 capacity = 0;
8461 max_capacity = 0;
8462 min_capacity = ULONG_MAX;
8463
8464 if (child->flags & SD_OVERLAP) {
8465 /*
8466 * SD_OVERLAP domains cannot assume that child groups
8467 * span the current group.
8468 */
8469
8470 for_each_cpu(cpu, sched_group_cpus(sdg)) {
8471 struct sched_group_capacity *sgc;
8472 struct rq *rq = cpu_rq(cpu);
8473
8474 /*
8475 * build_sched_domains() -> init_sched_groups_capacity()
8476 * gets here before we've attached the domains to the
8477 * runqueues.
8478 *
8479 * Use capacity_of(), which is set irrespective of domains
8480 * in update_cpu_capacity().
8481 *
8482 * This avoids capacity from being 0 and
8483 * causing divide-by-zero issues on boot.
8484 */
8485 if (unlikely(!rq->sd)) {
8486 capacity += capacity_of(cpu);
8487 } else {
8488 sgc = rq->sd->groups->sgc;
8489 capacity += sgc->capacity;
8490 }
8491
8492 max_capacity = max(capacity, max_capacity);
8493 min_capacity = min(capacity, min_capacity);
8494 }
8495 } else {
8496 /*
8497 * !SD_OVERLAP domains can assume that child groups
8498 * span the current group.
8499 */
8500
8501 group = child->groups;
8502 do {
8503 struct sched_group_capacity *sgc = group->sgc;
8504
8505 capacity += sgc->capacity;
8506 max_capacity = max(sgc->max_capacity, max_capacity);
8507 min_capacity = min(sgc->min_capacity, min_capacity);
8508 group = group->next;
8509 } while (group != child->groups);
8510 }
8511
8512 sdg->sgc->capacity = capacity;
8513 sdg->sgc->max_capacity = max_capacity;
8514 sdg->sgc->min_capacity = min_capacity;
8515 }
8516
8517 /*
8518 * Check whether the capacity of the rq has been noticeably reduced by side
8519 * activity. The imbalance_pct is used for the threshold.
8520 * Return true is the capacity is reduced
8521 */
8522 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)8523 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8524 {
8525 return ((rq->cpu_capacity * sd->imbalance_pct) <
8526 (rq->cpu_capacity_orig * 100));
8527 }
8528
8529 /*
8530 * Group imbalance indicates (and tries to solve) the problem where balancing
8531 * groups is inadequate due to tsk_cpus_allowed() constraints.
8532 *
8533 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
8534 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
8535 * Something like:
8536 *
8537 * { 0 1 2 3 } { 4 5 6 7 }
8538 * * * * *
8539 *
8540 * If we were to balance group-wise we'd place two tasks in the first group and
8541 * two tasks in the second group. Clearly this is undesired as it will overload
8542 * cpu 3 and leave one of the cpus in the second group unused.
8543 *
8544 * The current solution to this issue is detecting the skew in the first group
8545 * by noticing the lower domain failed to reach balance and had difficulty
8546 * moving tasks due to affinity constraints.
8547 *
8548 * When this is so detected; this group becomes a candidate for busiest; see
8549 * update_sd_pick_busiest(). And calculate_imbalance() and
8550 * find_busiest_group() avoid some of the usual balance conditions to allow it
8551 * to create an effective group imbalance.
8552 *
8553 * This is a somewhat tricky proposition since the next run might not find the
8554 * group imbalance and decide the groups need to be balanced again. A most
8555 * subtle and fragile situation.
8556 */
8557
sg_imbalanced(struct sched_group * group)8558 static inline int sg_imbalanced(struct sched_group *group)
8559 {
8560 return group->sgc->imbalance;
8561 }
8562
8563 /*
8564 * group_has_capacity returns true if the group has spare capacity that could
8565 * be used by some tasks.
8566 * We consider that a group has spare capacity if the * number of task is
8567 * smaller than the number of CPUs or if the utilization is lower than the
8568 * available capacity for CFS tasks.
8569 * For the latter, we use a threshold to stabilize the state, to take into
8570 * account the variance of the tasks' load and to return true if the available
8571 * capacity in meaningful for the load balancer.
8572 * As an example, an available capacity of 1% can appear but it doesn't make
8573 * any benefit for the load balance.
8574 */
8575 static inline bool
group_has_capacity(struct lb_env * env,struct sg_lb_stats * sgs)8576 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
8577 {
8578 if (sgs->sum_nr_running < sgs->group_weight)
8579 return true;
8580
8581 if ((sgs->group_capacity * 100) >
8582 (sgs->group_util * env->sd->imbalance_pct))
8583 return true;
8584
8585 return false;
8586 }
8587
8588 /*
8589 * group_is_overloaded returns true if the group has more tasks than it can
8590 * handle.
8591 * group_is_overloaded is not equals to !group_has_capacity because a group
8592 * with the exact right number of tasks, has no more spare capacity but is not
8593 * overloaded so both group_has_capacity and group_is_overloaded return
8594 * false.
8595 */
8596 static inline bool
group_is_overloaded(struct lb_env * env,struct sg_lb_stats * sgs)8597 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
8598 {
8599 if (sgs->sum_nr_running <= sgs->group_weight)
8600 return false;
8601
8602 if ((sgs->group_capacity * 100) <
8603 (sgs->group_util * env->sd->imbalance_pct))
8604 return true;
8605
8606 return false;
8607 }
8608
8609 /*
8610 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
8611 * per-cpu capacity than sched_group ref.
8612 */
8613 static inline bool
group_smaller_cpu_capacity(struct sched_group * sg,struct sched_group * ref)8614 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8615 {
8616 return sg->sgc->max_capacity + capacity_margin - SCHED_CAPACITY_SCALE <
8617 ref->sgc->max_capacity;
8618 }
8619
8620 static inline enum
group_classify(struct sched_group * group,struct sg_lb_stats * sgs)8621 group_type group_classify(struct sched_group *group,
8622 struct sg_lb_stats *sgs)
8623 {
8624 if (sgs->group_no_capacity)
8625 return group_overloaded;
8626
8627 if (sg_imbalanced(group))
8628 return group_imbalanced;
8629
8630 if (sgs->group_misfit_task)
8631 return group_misfit_task;
8632
8633 return group_other;
8634 }
8635
8636 #ifdef CONFIG_NO_HZ_COMMON
8637 /*
8638 * idle load balancing data
8639 * - used by the nohz balance, but we want it available here
8640 * so that we can see which CPUs have no tick.
8641 */
8642 static struct {
8643 cpumask_var_t idle_cpus_mask;
8644 atomic_t nr_cpus;
8645 unsigned long next_balance; /* in jiffy units */
8646 } nohz ____cacheline_aligned;
8647
update_cpu_stats_if_tickless(struct rq * rq)8648 static inline void update_cpu_stats_if_tickless(struct rq *rq)
8649 {
8650 /* only called from update_sg_lb_stats when irqs are disabled */
8651 if (cpumask_test_cpu(rq->cpu, nohz.idle_cpus_mask)) {
8652 /* rate limit updates to once-per-jiffie at most */
8653 if (READ_ONCE(jiffies) <= rq->last_load_update_tick)
8654 return;
8655
8656 raw_spin_lock(&rq->lock);
8657 update_rq_clock(rq);
8658 cpu_load_update_idle(rq);
8659 update_cfs_rq_load_avg(rq->clock_task, &rq->cfs, false);
8660 raw_spin_unlock(&rq->lock);
8661 }
8662 }
8663
8664 #else
update_cpu_stats_if_tickless(struct rq * rq)8665 static inline void update_cpu_stats_if_tickless(struct rq *rq) { }
8666 #endif
8667
8668 /**
8669 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8670 * @env: The load balancing environment.
8671 * @group: sched_group whose statistics are to be updated.
8672 * @load_idx: Load index of sched_domain of this_cpu for load calc.
8673 * @local_group: Does group contain this_cpu.
8674 * @sgs: variable to hold the statistics for this group.
8675 * @overload: Indicate more than one runnable task for any CPU.
8676 * @overutilized: Indicate overutilization for any CPU.
8677 */
update_sg_lb_stats(struct lb_env * env,struct sched_group * group,int load_idx,int local_group,struct sg_lb_stats * sgs,bool * overload,bool * overutilized)8678 static inline void update_sg_lb_stats(struct lb_env *env,
8679 struct sched_group *group, int load_idx,
8680 int local_group, struct sg_lb_stats *sgs,
8681 bool *overload, bool *overutilized)
8682 {
8683 unsigned long load;
8684 int i, nr_running;
8685
8686 memset(sgs, 0, sizeof(*sgs));
8687
8688 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
8689 struct rq *rq = cpu_rq(i);
8690
8691 /* if we are entering idle and there are CPUs with
8692 * their tick stopped, do an update for them
8693 */
8694 if (env->idle == CPU_NEWLY_IDLE)
8695 update_cpu_stats_if_tickless(rq);
8696
8697 /* Bias balancing toward cpus of our domain */
8698 if (local_group)
8699 load = target_load(i, load_idx);
8700 else
8701 load = source_load(i, load_idx);
8702
8703 sgs->group_load += load;
8704 sgs->group_util += cpu_util(i);
8705 sgs->sum_nr_running += rq->cfs.h_nr_running;
8706
8707 nr_running = rq->nr_running;
8708 if (nr_running > 1)
8709 *overload = true;
8710
8711 #ifdef CONFIG_NUMA_BALANCING
8712 sgs->nr_numa_running += rq->nr_numa_running;
8713 sgs->nr_preferred_running += rq->nr_preferred_running;
8714 #endif
8715 sgs->sum_weighted_load += weighted_cpuload(i);
8716 /*
8717 * No need to call idle_cpu() if nr_running is not 0
8718 */
8719 if (!nr_running && idle_cpu(i))
8720 sgs->idle_cpus++;
8721
8722 if (cpu_overutilized(i)) {
8723 *overutilized = true;
8724 if (!sgs->group_misfit_task && rq->misfit_task)
8725 sgs->group_misfit_task = capacity_of(i);
8726 }
8727 }
8728
8729 /* Adjust by relative CPU capacity of the group */
8730 sgs->group_capacity = group->sgc->capacity;
8731 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
8732
8733 if (sgs->sum_nr_running)
8734 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
8735
8736 sgs->group_weight = group->group_weight;
8737
8738 sgs->group_no_capacity = group_is_overloaded(env, sgs);
8739 sgs->group_type = group_classify(group, sgs);
8740 }
8741
8742 /**
8743 * update_sd_pick_busiest - return 1 on busiest group
8744 * @env: The load balancing environment.
8745 * @sds: sched_domain statistics
8746 * @sg: sched_group candidate to be checked for being the busiest
8747 * @sgs: sched_group statistics
8748 *
8749 * Determine if @sg is a busier group than the previously selected
8750 * busiest group.
8751 *
8752 * Return: %true if @sg is a busier group than the previously selected
8753 * busiest group. %false otherwise.
8754 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)8755 static bool update_sd_pick_busiest(struct lb_env *env,
8756 struct sd_lb_stats *sds,
8757 struct sched_group *sg,
8758 struct sg_lb_stats *sgs)
8759 {
8760 struct sg_lb_stats *busiest = &sds->busiest_stat;
8761
8762 if (sgs->group_type > busiest->group_type)
8763 return true;
8764
8765 if (sgs->group_type < busiest->group_type)
8766 return false;
8767
8768 /*
8769 * Candidate sg doesn't face any serious load-balance problems
8770 * so don't pick it if the local sg is already filled up.
8771 */
8772 if (sgs->group_type == group_other &&
8773 !group_has_capacity(env, &sds->local_stat))
8774 return false;
8775
8776 if (sgs->avg_load <= busiest->avg_load)
8777 return false;
8778
8779 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8780 goto asym_packing;
8781
8782 /*
8783 * Candidate sg has no more than one task per CPU and
8784 * has higher per-CPU capacity. Migrating tasks to less
8785 * capable CPUs may harm throughput. Maximize throughput,
8786 * power/energy consequences are not considered.
8787 */
8788 if (sgs->sum_nr_running <= sgs->group_weight &&
8789 group_smaller_cpu_capacity(sds->local, sg))
8790 return false;
8791
8792 asym_packing:
8793 /* This is the busiest node in its class. */
8794 if (!(env->sd->flags & SD_ASYM_PACKING))
8795 return true;
8796
8797 /* No ASYM_PACKING if target cpu is already busy */
8798 if (env->idle == CPU_NOT_IDLE)
8799 return true;
8800 /*
8801 * ASYM_PACKING needs to move all the work to the lowest
8802 * numbered CPUs in the group, therefore mark all groups
8803 * higher than ourself as busy.
8804 */
8805 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
8806 if (!sds->busiest)
8807 return true;
8808
8809 /* Prefer to move from highest possible cpu's work */
8810 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
8811 return true;
8812 }
8813
8814 return false;
8815 }
8816
8817 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)8818 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8819 {
8820 if (sgs->sum_nr_running > sgs->nr_numa_running)
8821 return regular;
8822 if (sgs->sum_nr_running > sgs->nr_preferred_running)
8823 return remote;
8824 return all;
8825 }
8826
fbq_classify_rq(struct rq * rq)8827 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8828 {
8829 if (rq->nr_running > rq->nr_numa_running)
8830 return regular;
8831 if (rq->nr_running > rq->nr_preferred_running)
8832 return remote;
8833 return all;
8834 }
8835 #else
fbq_classify_group(struct sg_lb_stats * sgs)8836 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8837 {
8838 return all;
8839 }
8840
fbq_classify_rq(struct rq * rq)8841 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8842 {
8843 return regular;
8844 }
8845 #endif /* CONFIG_NUMA_BALANCING */
8846
8847 #define lb_sd_parent(sd) \
8848 (sd->parent && sd->parent->groups != sd->parent->groups->next)
8849
8850 /**
8851 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8852 * @env: The load balancing environment.
8853 * @sds: variable to hold the statistics for this sched_domain.
8854 */
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)8855 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8856 {
8857 struct sched_domain *child = env->sd->child;
8858 struct sched_group *sg = env->sd->groups;
8859 struct sg_lb_stats tmp_sgs;
8860 int load_idx, prefer_sibling = 0;
8861 bool overload = false, overutilized = false;
8862
8863 if (child && child->flags & SD_PREFER_SIBLING)
8864 prefer_sibling = 1;
8865
8866 load_idx = get_sd_load_idx(env->sd, env->idle);
8867
8868 do {
8869 struct sg_lb_stats *sgs = &tmp_sgs;
8870 int local_group;
8871
8872 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
8873 if (local_group) {
8874 sds->local = sg;
8875 sgs = &sds->local_stat;
8876
8877 if (env->idle != CPU_NEWLY_IDLE ||
8878 time_after_eq(jiffies, sg->sgc->next_update))
8879 update_group_capacity(env->sd, env->dst_cpu);
8880 }
8881
8882 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
8883 &overload, &overutilized);
8884
8885 if (local_group)
8886 goto next_group;
8887
8888 /*
8889 * In case the child domain prefers tasks go to siblings
8890 * first, lower the sg capacity so that we'll try
8891 * and move all the excess tasks away. We lower the capacity
8892 * of a group only if the local group has the capacity to fit
8893 * these excess tasks. The extra check prevents the case where
8894 * you always pull from the heaviest group when it is already
8895 * under-utilized (possible with a large weight task outweighs
8896 * the tasks on the system).
8897 */
8898 if (prefer_sibling && sds->local &&
8899 group_has_capacity(env, &sds->local_stat) &&
8900 (sgs->sum_nr_running > 1)) {
8901 sgs->group_no_capacity = 1;
8902 sgs->group_type = group_classify(sg, sgs);
8903 }
8904
8905 /*
8906 * Ignore task groups with misfit tasks if local group has no
8907 * capacity or if per-cpu capacity isn't higher.
8908 */
8909 if (sgs->group_type == group_misfit_task &&
8910 (!group_has_capacity(env, &sds->local_stat) ||
8911 !group_smaller_cpu_capacity(sg, sds->local)))
8912 sgs->group_type = group_other;
8913
8914 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8915 sds->busiest = sg;
8916 sds->busiest_stat = *sgs;
8917 }
8918
8919 next_group:
8920 /* Now, start updating sd_lb_stats */
8921 sds->total_load += sgs->group_load;
8922 sds->total_capacity += sgs->group_capacity;
8923
8924 sg = sg->next;
8925 } while (sg != env->sd->groups);
8926
8927 if (env->sd->flags & SD_NUMA)
8928 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8929
8930 env->src_grp_nr_running = sds->busiest_stat.sum_nr_running;
8931
8932 if (!lb_sd_parent(env->sd)) {
8933 /* update overload indicator if we are at root domain */
8934 if (env->dst_rq->rd->overload != overload)
8935 env->dst_rq->rd->overload = overload;
8936
8937 /* Update over-utilization (tipping point, U >= 0) indicator */
8938 if (env->dst_rq->rd->overutilized != overutilized) {
8939 env->dst_rq->rd->overutilized = overutilized;
8940 trace_sched_overutilized(overutilized);
8941 }
8942 } else {
8943 if (!env->dst_rq->rd->overutilized && overutilized) {
8944 env->dst_rq->rd->overutilized = true;
8945 trace_sched_overutilized(true);
8946 }
8947 }
8948
8949 }
8950
8951 /**
8952 * check_asym_packing - Check to see if the group is packed into the
8953 * sched doman.
8954 *
8955 * This is primarily intended to used at the sibling level. Some
8956 * cores like POWER7 prefer to use lower numbered SMT threads. In the
8957 * case of POWER7, it can move to lower SMT modes only when higher
8958 * threads are idle. When in lower SMT modes, the threads will
8959 * perform better since they share less core resources. Hence when we
8960 * have idle threads, we want them to be the higher ones.
8961 *
8962 * This packing function is run on idle threads. It checks to see if
8963 * the busiest CPU in this domain (core in the P7 case) has a higher
8964 * CPU number than the packing function is being run on. Here we are
8965 * assuming lower CPU number will be equivalent to lower a SMT thread
8966 * number.
8967 *
8968 * Return: 1 when packing is required and a task should be moved to
8969 * this CPU. The amount of the imbalance is returned in *imbalance.
8970 *
8971 * @env: The load balancing environment.
8972 * @sds: Statistics of the sched_domain which is to be packed
8973 */
check_asym_packing(struct lb_env * env,struct sd_lb_stats * sds)8974 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8975 {
8976 int busiest_cpu;
8977
8978 if (!(env->sd->flags & SD_ASYM_PACKING))
8979 return 0;
8980
8981 if (env->idle == CPU_NOT_IDLE)
8982 return 0;
8983
8984 if (!sds->busiest)
8985 return 0;
8986
8987 busiest_cpu = group_first_cpu(sds->busiest);
8988 if (env->dst_cpu > busiest_cpu)
8989 return 0;
8990
8991 env->imbalance = DIV_ROUND_CLOSEST(
8992 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8993 SCHED_CAPACITY_SCALE);
8994
8995 return 1;
8996 }
8997
8998 /**
8999 * fix_small_imbalance - Calculate the minor imbalance that exists
9000 * amongst the groups of a sched_domain, during
9001 * load balancing.
9002 * @env: The load balancing environment.
9003 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
9004 */
9005 static inline
fix_small_imbalance(struct lb_env * env,struct sd_lb_stats * sds)9006 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9007 {
9008 unsigned long tmp, capa_now = 0, capa_move = 0;
9009 unsigned int imbn = 2;
9010 unsigned long scaled_busy_load_per_task;
9011 struct sg_lb_stats *local, *busiest;
9012
9013 local = &sds->local_stat;
9014 busiest = &sds->busiest_stat;
9015
9016 if (!local->sum_nr_running)
9017 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
9018 else if (busiest->load_per_task > local->load_per_task)
9019 imbn = 1;
9020
9021 scaled_busy_load_per_task =
9022 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
9023 busiest->group_capacity;
9024
9025 if (busiest->avg_load + scaled_busy_load_per_task >=
9026 local->avg_load + (scaled_busy_load_per_task * imbn)) {
9027 env->imbalance = busiest->load_per_task;
9028 return;
9029 }
9030
9031 /*
9032 * OK, we don't have enough imbalance to justify moving tasks,
9033 * however we may be able to increase total CPU capacity used by
9034 * moving them.
9035 */
9036
9037 capa_now += busiest->group_capacity *
9038 min(busiest->load_per_task, busiest->avg_load);
9039 capa_now += local->group_capacity *
9040 min(local->load_per_task, local->avg_load);
9041 capa_now /= SCHED_CAPACITY_SCALE;
9042
9043 /* Amount of load we'd subtract */
9044 if (busiest->avg_load > scaled_busy_load_per_task) {
9045 capa_move += busiest->group_capacity *
9046 min(busiest->load_per_task,
9047 busiest->avg_load - scaled_busy_load_per_task);
9048 }
9049
9050 /* Amount of load we'd add */
9051 if (busiest->avg_load * busiest->group_capacity <
9052 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
9053 tmp = (busiest->avg_load * busiest->group_capacity) /
9054 local->group_capacity;
9055 } else {
9056 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
9057 local->group_capacity;
9058 }
9059 capa_move += local->group_capacity *
9060 min(local->load_per_task, local->avg_load + tmp);
9061 capa_move /= SCHED_CAPACITY_SCALE;
9062
9063 /* Move if we gain throughput */
9064 if (capa_move > capa_now)
9065 env->imbalance = busiest->load_per_task;
9066 }
9067
9068 /**
9069 * calculate_imbalance - Calculate the amount of imbalance present within the
9070 * groups of a given sched_domain during load balance.
9071 * @env: load balance environment
9072 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9073 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)9074 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9075 {
9076 unsigned long max_pull, load_above_capacity = ~0UL;
9077 struct sg_lb_stats *local, *busiest;
9078
9079 local = &sds->local_stat;
9080 busiest = &sds->busiest_stat;
9081
9082 if (busiest->group_type == group_imbalanced) {
9083 /*
9084 * In the group_imb case we cannot rely on group-wide averages
9085 * to ensure cpu-load equilibrium, look at wider averages. XXX
9086 */
9087 busiest->load_per_task =
9088 min(busiest->load_per_task, sds->avg_load);
9089 }
9090
9091 /*
9092 * Avg load of busiest sg can be less and avg load of local sg can
9093 * be greater than avg load across all sgs of sd because avg load
9094 * factors in sg capacity and sgs with smaller group_type are
9095 * skipped when updating the busiest sg:
9096 */
9097 if (busiest->avg_load <= sds->avg_load ||
9098 local->avg_load >= sds->avg_load) {
9099 /* Misfitting tasks should be migrated in any case */
9100 if (busiest->group_type == group_misfit_task) {
9101 env->imbalance = busiest->group_misfit_task;
9102 return;
9103 }
9104
9105 /*
9106 * Busiest group is overloaded, local is not, use the spare
9107 * cycles to maximize throughput
9108 */
9109 if (busiest->group_type == group_overloaded &&
9110 local->group_type <= group_misfit_task) {
9111 env->imbalance = busiest->load_per_task;
9112 return;
9113 }
9114
9115 env->imbalance = 0;
9116 return fix_small_imbalance(env, sds);
9117 }
9118
9119 /*
9120 * If there aren't any idle cpus, avoid creating some.
9121 */
9122 if (busiest->group_type == group_overloaded &&
9123 local->group_type == group_overloaded) {
9124 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
9125 if (load_above_capacity > busiest->group_capacity) {
9126 load_above_capacity -= busiest->group_capacity;
9127 load_above_capacity *= scale_load_down(NICE_0_LOAD);
9128 load_above_capacity /= busiest->group_capacity;
9129 } else
9130 load_above_capacity = ~0UL;
9131 }
9132
9133 /*
9134 * We're trying to get all the cpus to the average_load, so we don't
9135 * want to push ourselves above the average load, nor do we wish to
9136 * reduce the max loaded cpu below the average load. At the same time,
9137 * we also don't want to reduce the group load below the group
9138 * capacity. Thus we look for the minimum possible imbalance.
9139 */
9140 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
9141
9142 /* How much load to actually move to equalise the imbalance */
9143 env->imbalance = min(
9144 max_pull * busiest->group_capacity,
9145 (sds->avg_load - local->avg_load) * local->group_capacity
9146 ) / SCHED_CAPACITY_SCALE;
9147
9148 /* Boost imbalance to allow misfit task to be balanced. */
9149 if (busiest->group_type == group_misfit_task)
9150 env->imbalance = max_t(long, env->imbalance,
9151 busiest->group_misfit_task);
9152
9153 /*
9154 * if *imbalance is less than the average load per runnable task
9155 * there is no guarantee that any tasks will be moved so we'll have
9156 * a think about bumping its value to force at least one task to be
9157 * moved
9158 */
9159 if (env->imbalance < busiest->load_per_task)
9160 return fix_small_imbalance(env, sds);
9161 }
9162
9163 /******* find_busiest_group() helpers end here *********************/
9164
9165 /**
9166 * find_busiest_group - Returns the busiest group within the sched_domain
9167 * if there is an imbalance.
9168 *
9169 * Also calculates the amount of weighted load which should be moved
9170 * to restore balance.
9171 *
9172 * @env: The load balancing environment.
9173 *
9174 * Return: - The busiest group if imbalance exists.
9175 */
find_busiest_group(struct lb_env * env)9176 static struct sched_group *find_busiest_group(struct lb_env *env)
9177 {
9178 struct sg_lb_stats *local, *busiest;
9179 struct sd_lb_stats sds;
9180
9181 init_sd_lb_stats(&sds);
9182
9183 /*
9184 * Compute the various statistics relavent for load balancing at
9185 * this level.
9186 */
9187 update_sd_lb_stats(env, &sds);
9188
9189 if (energy_aware() && !env->dst_rq->rd->overutilized)
9190 goto out_balanced;
9191
9192 local = &sds.local_stat;
9193 busiest = &sds.busiest_stat;
9194
9195 /* ASYM feature bypasses nice load balance check */
9196 if (check_asym_packing(env, &sds))
9197 return sds.busiest;
9198
9199 /* There is no busy sibling group to pull tasks from */
9200 if (!sds.busiest || busiest->sum_nr_running == 0)
9201 goto out_balanced;
9202
9203 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
9204 / sds.total_capacity;
9205
9206 /*
9207 * If the busiest group is imbalanced the below checks don't
9208 * work because they assume all things are equal, which typically
9209 * isn't true due to cpus_allowed constraints and the like.
9210 */
9211 if (busiest->group_type == group_imbalanced)
9212 goto force_balance;
9213
9214 /*
9215 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
9216 * capacities from resulting in underutilization due to avg_load.
9217 */
9218 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
9219 busiest->group_no_capacity)
9220 goto force_balance;
9221
9222 /* Misfitting tasks should be dealt with regardless of the avg load */
9223 if (busiest->group_type == group_misfit_task) {
9224 goto force_balance;
9225 }
9226
9227 /*
9228 * If the local group is busier than the selected busiest group
9229 * don't try and pull any tasks.
9230 */
9231 if (local->avg_load >= busiest->avg_load)
9232 goto out_balanced;
9233
9234 /*
9235 * Don't pull any tasks if this group is already above the domain
9236 * average load.
9237 */
9238 if (local->avg_load >= sds.avg_load)
9239 goto out_balanced;
9240
9241 if (env->idle == CPU_IDLE) {
9242 /*
9243 * This cpu is idle. If the busiest group is not overloaded
9244 * and there is no imbalance between this and busiest group
9245 * wrt idle cpus, it is balanced. The imbalance becomes
9246 * significant if the diff is greater than 1 otherwise we
9247 * might end up to just move the imbalance on another group
9248 */
9249 if ((busiest->group_type != group_overloaded) &&
9250 (local->idle_cpus <= (busiest->idle_cpus + 1)) &&
9251 !group_smaller_cpu_capacity(sds.busiest, sds.local))
9252 goto out_balanced;
9253 } else {
9254 /*
9255 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
9256 * imbalance_pct to be conservative.
9257 */
9258 if (100 * busiest->avg_load <=
9259 env->sd->imbalance_pct * local->avg_load)
9260 goto out_balanced;
9261 }
9262
9263 force_balance:
9264 env->busiest_group_type = busiest->group_type;
9265 /* Looks like there is an imbalance. Compute it */
9266 calculate_imbalance(env, &sds);
9267 return sds.busiest;
9268
9269 out_balanced:
9270 env->imbalance = 0;
9271 return NULL;
9272 }
9273
9274 /*
9275 * find_busiest_queue - find the busiest runqueue among the cpus in group.
9276 */
find_busiest_queue(struct lb_env * env,struct sched_group * group)9277 static struct rq *find_busiest_queue(struct lb_env *env,
9278 struct sched_group *group)
9279 {
9280 struct rq *busiest = NULL, *rq;
9281 unsigned long busiest_load = 0, busiest_capacity = 1;
9282 int i;
9283
9284 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
9285 unsigned long capacity, wl;
9286 enum fbq_type rt;
9287
9288 rq = cpu_rq(i);
9289 rt = fbq_classify_rq(rq);
9290
9291 /*
9292 * We classify groups/runqueues into three groups:
9293 * - regular: there are !numa tasks
9294 * - remote: there are numa tasks that run on the 'wrong' node
9295 * - all: there is no distinction
9296 *
9297 * In order to avoid migrating ideally placed numa tasks,
9298 * ignore those when there's better options.
9299 *
9300 * If we ignore the actual busiest queue to migrate another
9301 * task, the next balance pass can still reduce the busiest
9302 * queue by moving tasks around inside the node.
9303 *
9304 * If we cannot move enough load due to this classification
9305 * the next pass will adjust the group classification and
9306 * allow migration of more tasks.
9307 *
9308 * Both cases only affect the total convergence complexity.
9309 */
9310 if (rt > env->fbq_type)
9311 continue;
9312
9313 capacity = capacity_of(i);
9314
9315 wl = weighted_cpuload(i);
9316
9317 /*
9318 * When comparing with imbalance, use weighted_cpuload()
9319 * which is not scaled with the cpu capacity.
9320 */
9321
9322 if (rq->nr_running == 1 && wl > env->imbalance &&
9323 !check_cpu_capacity(rq, env->sd) &&
9324 env->busiest_group_type != group_misfit_task)
9325 continue;
9326
9327 /*
9328 * For the load comparisons with the other cpu's, consider
9329 * the weighted_cpuload() scaled with the cpu capacity, so
9330 * that the load can be moved away from the cpu that is
9331 * potentially running at a lower capacity.
9332 *
9333 * Thus we're looking for max(wl_i / capacity_i), crosswise
9334 * multiplication to rid ourselves of the division works out
9335 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
9336 * our previous maximum.
9337 */
9338 if (wl * busiest_capacity > busiest_load * capacity) {
9339 busiest_load = wl;
9340 busiest_capacity = capacity;
9341 busiest = rq;
9342 }
9343 }
9344
9345 return busiest;
9346 }
9347
9348 /*
9349 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9350 * so long as it is large enough.
9351 */
9352 #define MAX_PINNED_INTERVAL 512
9353
need_active_balance(struct lb_env * env)9354 static int need_active_balance(struct lb_env *env)
9355 {
9356 struct sched_domain *sd = env->sd;
9357
9358 if (env->idle == CPU_NEWLY_IDLE) {
9359
9360 /*
9361 * ASYM_PACKING needs to force migrate tasks from busy but
9362 * higher numbered CPUs in order to pack all tasks in the
9363 * lowest numbered CPUs.
9364 */
9365 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
9366 return 1;
9367 }
9368
9369 /*
9370 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9371 * It's worth migrating the task if the src_cpu's capacity is reduced
9372 * because of other sched_class or IRQs if more capacity stays
9373 * available on dst_cpu.
9374 */
9375 if ((env->idle != CPU_NOT_IDLE) &&
9376 (env->src_rq->cfs.h_nr_running == 1)) {
9377 if ((check_cpu_capacity(env->src_rq, sd)) &&
9378 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9379 return 1;
9380 }
9381
9382 if ((capacity_of(env->src_cpu) < capacity_of(env->dst_cpu)) &&
9383 ((capacity_orig_of(env->src_cpu) < capacity_orig_of(env->dst_cpu))) &&
9384 env->src_rq->cfs.h_nr_running == 1 &&
9385 cpu_overutilized(env->src_cpu) &&
9386 !cpu_overutilized(env->dst_cpu)) {
9387 return 1;
9388 }
9389
9390 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9391 }
9392
9393 static int active_load_balance_cpu_stop(void *data);
9394
should_we_balance(struct lb_env * env)9395 static int should_we_balance(struct lb_env *env)
9396 {
9397 struct sched_group *sg = env->sd->groups;
9398 struct cpumask *sg_cpus, *sg_mask;
9399 int cpu, balance_cpu = -1;
9400
9401 /*
9402 * In the newly idle case, we will allow all the cpu's
9403 * to do the newly idle load balance.
9404 */
9405 if (env->idle == CPU_NEWLY_IDLE)
9406 return 1;
9407
9408 sg_cpus = sched_group_cpus(sg);
9409 sg_mask = sched_group_mask(sg);
9410 /* Try to find first idle cpu */
9411 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
9412 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
9413 continue;
9414
9415 balance_cpu = cpu;
9416 break;
9417 }
9418
9419 if (balance_cpu == -1)
9420 balance_cpu = group_balance_cpu(sg);
9421
9422 /*
9423 * First idle cpu or the first cpu(busiest) in this sched group
9424 * is eligible for doing load balancing at this and above domains.
9425 */
9426 return balance_cpu == env->dst_cpu;
9427 }
9428
9429 /*
9430 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9431 * tasks if there is an imbalance.
9432 */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)9433 static int load_balance(int this_cpu, struct rq *this_rq,
9434 struct sched_domain *sd, enum cpu_idle_type idle,
9435 int *continue_balancing)
9436 {
9437 int ld_moved, cur_ld_moved, active_balance = 0;
9438 struct sched_domain *sd_parent = lb_sd_parent(sd) ? sd->parent : NULL;
9439 struct sched_group *group;
9440 struct rq *busiest;
9441 unsigned long flags;
9442 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9443
9444 struct lb_env env = {
9445 .sd = sd,
9446 .dst_cpu = this_cpu,
9447 .dst_rq = this_rq,
9448 .dst_grpmask = sched_group_cpus(sd->groups),
9449 .idle = idle,
9450 .loop_break = sched_nr_migrate_break,
9451 .cpus = cpus,
9452 .fbq_type = all,
9453 .tasks = LIST_HEAD_INIT(env.tasks),
9454 };
9455
9456 /*
9457 * For NEWLY_IDLE load_balancing, we don't need to consider
9458 * other cpus in our group
9459 */
9460 if (idle == CPU_NEWLY_IDLE)
9461 env.dst_grpmask = NULL;
9462
9463 cpumask_copy(cpus, cpu_active_mask);
9464
9465 schedstat_inc(sd->lb_count[idle]);
9466
9467 redo:
9468 if (!should_we_balance(&env)) {
9469 *continue_balancing = 0;
9470 goto out_balanced;
9471 }
9472
9473 group = find_busiest_group(&env);
9474 if (!group) {
9475 schedstat_inc(sd->lb_nobusyg[idle]);
9476 goto out_balanced;
9477 }
9478
9479 busiest = find_busiest_queue(&env, group);
9480 if (!busiest) {
9481 schedstat_inc(sd->lb_nobusyq[idle]);
9482 goto out_balanced;
9483 }
9484
9485 BUG_ON(busiest == env.dst_rq);
9486
9487 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9488
9489 env.src_cpu = busiest->cpu;
9490 env.src_rq = busiest;
9491
9492 ld_moved = 0;
9493 if (busiest->nr_running > 1) {
9494 /*
9495 * Attempt to move tasks. If find_busiest_group has found
9496 * an imbalance but busiest->nr_running <= 1, the group is
9497 * still unbalanced. ld_moved simply stays zero, so it is
9498 * correctly treated as an imbalance.
9499 */
9500 env.flags |= LBF_ALL_PINNED;
9501 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
9502
9503 more_balance:
9504 raw_spin_lock_irqsave(&busiest->lock, flags);
9505 update_rq_clock(busiest);
9506
9507 /*
9508 * cur_ld_moved - load moved in current iteration
9509 * ld_moved - cumulative load moved across iterations
9510 */
9511 cur_ld_moved = detach_tasks(&env);
9512
9513 /*
9514 * We've detached some tasks from busiest_rq. Every
9515 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9516 * unlock busiest->lock, and we are able to be sure
9517 * that nobody can manipulate the tasks in parallel.
9518 * See task_rq_lock() family for the details.
9519 */
9520
9521 raw_spin_unlock(&busiest->lock);
9522
9523 if (cur_ld_moved) {
9524 attach_tasks(&env);
9525 ld_moved += cur_ld_moved;
9526 }
9527
9528 local_irq_restore(flags);
9529
9530 if (env.flags & LBF_NEED_BREAK) {
9531 env.flags &= ~LBF_NEED_BREAK;
9532 goto more_balance;
9533 }
9534
9535 /*
9536 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9537 * us and move them to an alternate dst_cpu in our sched_group
9538 * where they can run. The upper limit on how many times we
9539 * iterate on same src_cpu is dependent on number of cpus in our
9540 * sched_group.
9541 *
9542 * This changes load balance semantics a bit on who can move
9543 * load to a given_cpu. In addition to the given_cpu itself
9544 * (or a ilb_cpu acting on its behalf where given_cpu is
9545 * nohz-idle), we now have balance_cpu in a position to move
9546 * load to given_cpu. In rare situations, this may cause
9547 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9548 * _independently_ and at _same_ time to move some load to
9549 * given_cpu) causing exceess load to be moved to given_cpu.
9550 * This however should not happen so much in practice and
9551 * moreover subsequent load balance cycles should correct the
9552 * excess load moved.
9553 */
9554 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9555
9556 /* Prevent to re-select dst_cpu via env's cpus */
9557 cpumask_clear_cpu(env.dst_cpu, env.cpus);
9558
9559 env.dst_rq = cpu_rq(env.new_dst_cpu);
9560 env.dst_cpu = env.new_dst_cpu;
9561 env.flags &= ~LBF_DST_PINNED;
9562 env.loop = 0;
9563 env.loop_break = sched_nr_migrate_break;
9564
9565 /*
9566 * Go back to "more_balance" rather than "redo" since we
9567 * need to continue with same src_cpu.
9568 */
9569 goto more_balance;
9570 }
9571
9572 /*
9573 * We failed to reach balance because of affinity.
9574 */
9575 if (sd_parent) {
9576 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9577
9578 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9579 *group_imbalance = 1;
9580 }
9581
9582 /* All tasks on this runqueue were pinned by CPU affinity */
9583 if (unlikely(env.flags & LBF_ALL_PINNED)) {
9584 cpumask_clear_cpu(cpu_of(busiest), cpus);
9585 if (!cpumask_empty(cpus)) {
9586 env.loop = 0;
9587 env.loop_break = sched_nr_migrate_break;
9588 goto redo;
9589 }
9590 goto out_all_pinned;
9591 }
9592 }
9593
9594 if (!ld_moved) {
9595 schedstat_inc(sd->lb_failed[idle]);
9596 /*
9597 * Increment the failure counter only on periodic balance.
9598 * We do not want newidle balance, which can be very
9599 * frequent, pollute the failure counter causing
9600 * excessive cache_hot migrations and active balances.
9601 */
9602 if (idle != CPU_NEWLY_IDLE)
9603 if (env.src_grp_nr_running > 1)
9604 sd->nr_balance_failed++;
9605
9606 if (need_active_balance(&env)) {
9607 raw_spin_lock_irqsave(&busiest->lock, flags);
9608
9609 /* don't kick the active_load_balance_cpu_stop,
9610 * if the curr task on busiest cpu can't be
9611 * moved to this_cpu
9612 */
9613 if (!cpumask_test_cpu(this_cpu,
9614 tsk_cpus_allowed(busiest->curr))) {
9615 raw_spin_unlock_irqrestore(&busiest->lock,
9616 flags);
9617 env.flags |= LBF_ALL_PINNED;
9618 goto out_one_pinned;
9619 }
9620
9621 /*
9622 * ->active_balance synchronizes accesses to
9623 * ->active_balance_work. Once set, it's cleared
9624 * only after active load balance is finished.
9625 */
9626 if (!busiest->active_balance) {
9627 busiest->active_balance = 1;
9628 busiest->push_cpu = this_cpu;
9629 active_balance = 1;
9630 }
9631 raw_spin_unlock_irqrestore(&busiest->lock, flags);
9632
9633 if (active_balance) {
9634 stop_one_cpu_nowait(cpu_of(busiest),
9635 active_load_balance_cpu_stop, busiest,
9636 &busiest->active_balance_work);
9637 }
9638
9639 /* We've kicked active balancing, force task migration. */
9640 sd->nr_balance_failed = sd->cache_nice_tries+1;
9641 }
9642 } else
9643 sd->nr_balance_failed = 0;
9644
9645 if (likely(!active_balance)) {
9646 /* We were unbalanced, so reset the balancing interval */
9647 sd->balance_interval = sd->min_interval;
9648 } else {
9649 /*
9650 * If we've begun active balancing, start to back off. This
9651 * case may not be covered by the all_pinned logic if there
9652 * is only 1 task on the busy runqueue (because we don't call
9653 * detach_tasks).
9654 */
9655 if (sd->balance_interval < sd->max_interval)
9656 sd->balance_interval *= 2;
9657 }
9658
9659 goto out;
9660
9661 out_balanced:
9662 /*
9663 * We reach balance although we may have faced some affinity
9664 * constraints. Clear the imbalance flag if it was set.
9665 */
9666 if (sd_parent) {
9667 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9668
9669 if (*group_imbalance)
9670 *group_imbalance = 0;
9671 }
9672
9673 out_all_pinned:
9674 /*
9675 * We reach balance because all tasks are pinned at this level so
9676 * we can't migrate them. Let the imbalance flag set so parent level
9677 * can try to migrate them.
9678 */
9679 schedstat_inc(sd->lb_balanced[idle]);
9680
9681 sd->nr_balance_failed = 0;
9682
9683 out_one_pinned:
9684 /* tune up the balancing interval */
9685 if (((env.flags & LBF_ALL_PINNED) &&
9686 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9687 (sd->balance_interval < sd->max_interval))
9688 sd->balance_interval *= 2;
9689
9690 ld_moved = 0;
9691 out:
9692 return ld_moved;
9693 }
9694
9695 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)9696 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9697 {
9698 unsigned long interval = sd->balance_interval;
9699
9700 if (cpu_busy)
9701 interval *= sd->busy_factor;
9702
9703 /* scale ms to jiffies */
9704 interval = msecs_to_jiffies(interval);
9705 interval = clamp(interval, 1UL, max_load_balance_interval);
9706
9707 return interval;
9708 }
9709
9710 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)9711 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9712 {
9713 unsigned long interval, next;
9714
9715 /* used by idle balance, so cpu_busy = 0 */
9716 interval = get_sd_balance_interval(sd, 0);
9717 next = sd->last_balance + interval;
9718
9719 if (time_after(*next_balance, next))
9720 *next_balance = next;
9721 }
9722
9723 /*
9724 * idle_balance is called by schedule() if this_cpu is about to become
9725 * idle. Attempts to pull tasks from other CPUs.
9726 */
idle_balance(struct rq * this_rq)9727 static int idle_balance(struct rq *this_rq)
9728 {
9729 unsigned long next_balance = jiffies + HZ;
9730 int this_cpu = this_rq->cpu;
9731 struct sched_domain *sd;
9732 int pulled_task = 0;
9733 u64 curr_cost = 0;
9734
9735 /*
9736 * We must set idle_stamp _before_ calling idle_balance(), such that we
9737 * measure the duration of idle_balance() as idle time.
9738 */
9739 this_rq->idle_stamp = rq_clock(this_rq);
9740
9741 if (!energy_aware() &&
9742 (this_rq->avg_idle < sysctl_sched_migration_cost ||
9743 !this_rq->rd->overload)) {
9744 rcu_read_lock();
9745 sd = rcu_dereference_check_sched_domain(this_rq->sd);
9746 if (sd)
9747 update_next_balance(sd, &next_balance);
9748 rcu_read_unlock();
9749
9750 goto out;
9751 }
9752
9753 raw_spin_unlock(&this_rq->lock);
9754
9755 update_blocked_averages(this_cpu);
9756 rcu_read_lock();
9757 for_each_domain(this_cpu, sd) {
9758 int continue_balancing = 1;
9759 u64 t0, domain_cost;
9760
9761 if (!(sd->flags & SD_LOAD_BALANCE))
9762 continue;
9763
9764 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9765 update_next_balance(sd, &next_balance);
9766 break;
9767 }
9768
9769 if (sd->flags & SD_BALANCE_NEWIDLE) {
9770 t0 = sched_clock_cpu(this_cpu);
9771
9772 pulled_task = load_balance(this_cpu, this_rq,
9773 sd, CPU_NEWLY_IDLE,
9774 &continue_balancing);
9775
9776 domain_cost = sched_clock_cpu(this_cpu) - t0;
9777 if (domain_cost > sd->max_newidle_lb_cost)
9778 sd->max_newidle_lb_cost = domain_cost;
9779
9780 curr_cost += domain_cost;
9781 }
9782
9783 update_next_balance(sd, &next_balance);
9784
9785 /*
9786 * Stop searching for tasks to pull if there are
9787 * now runnable tasks on this rq.
9788 */
9789 if (pulled_task || this_rq->nr_running > 0)
9790 break;
9791 }
9792 rcu_read_unlock();
9793
9794 raw_spin_lock(&this_rq->lock);
9795
9796 if (curr_cost > this_rq->max_idle_balance_cost)
9797 this_rq->max_idle_balance_cost = curr_cost;
9798
9799 /*
9800 * While browsing the domains, we released the rq lock, a task could
9801 * have been enqueued in the meantime. Since we're not going idle,
9802 * pretend we pulled a task.
9803 */
9804 if (this_rq->cfs.h_nr_running && !pulled_task)
9805 pulled_task = 1;
9806
9807 out:
9808 /* Move the next balance forward */
9809 if (time_after(this_rq->next_balance, next_balance))
9810 this_rq->next_balance = next_balance;
9811
9812 /* Is there a task of a high priority class? */
9813 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9814 pulled_task = -1;
9815
9816 if (pulled_task)
9817 this_rq->idle_stamp = 0;
9818
9819 return pulled_task;
9820 }
9821
9822 /*
9823 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
9824 * running tasks off the busiest CPU onto idle CPUs. It requires at
9825 * least 1 task to be running on each physical CPU where possible, and
9826 * avoids physical / logical imbalances.
9827 */
active_load_balance_cpu_stop(void * data)9828 static int active_load_balance_cpu_stop(void *data)
9829 {
9830 struct rq *busiest_rq = data;
9831 int busiest_cpu = cpu_of(busiest_rq);
9832 int target_cpu = busiest_rq->push_cpu;
9833 struct rq *target_rq = cpu_rq(target_cpu);
9834 struct sched_domain *sd = NULL;
9835 struct task_struct *p = NULL;
9836 struct task_struct *push_task = NULL;
9837 int push_task_detached = 0;
9838 struct lb_env env = {
9839 .sd = sd,
9840 .dst_cpu = target_cpu,
9841 .dst_rq = target_rq,
9842 .src_cpu = busiest_rq->cpu,
9843 .src_rq = busiest_rq,
9844 .idle = CPU_IDLE,
9845 };
9846
9847 raw_spin_lock_irq(&busiest_rq->lock);
9848
9849 /* make sure the requested cpu hasn't gone down in the meantime */
9850 if (unlikely(busiest_cpu != smp_processor_id() ||
9851 !busiest_rq->active_balance))
9852 goto out_unlock;
9853
9854 /* Is there any task to move? */
9855 if (busiest_rq->nr_running <= 1)
9856 goto out_unlock;
9857
9858 /*
9859 * This condition is "impossible", if it occurs
9860 * we need to fix it. Originally reported by
9861 * Bjorn Helgaas on a 128-cpu setup.
9862 */
9863 BUG_ON(busiest_rq == target_rq);
9864
9865 push_task = busiest_rq->push_task;
9866 if (push_task) {
9867 if (task_on_rq_queued(push_task) &&
9868 task_cpu(push_task) == busiest_cpu &&
9869 cpu_online(target_cpu)) {
9870 detach_task(push_task, &env);
9871 push_task_detached = 1;
9872 }
9873 goto out_unlock;
9874 }
9875
9876 /* Search for an sd spanning us and the target CPU. */
9877 rcu_read_lock();
9878 for_each_domain(target_cpu, sd) {
9879 if ((sd->flags & SD_LOAD_BALANCE) &&
9880 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9881 break;
9882 }
9883
9884 if (likely(sd)) {
9885 env.sd = sd;
9886 schedstat_inc(sd->alb_count);
9887 update_rq_clock(busiest_rq);
9888
9889 p = detach_one_task(&env);
9890 if (p) {
9891 schedstat_inc(sd->alb_pushed);
9892 /* Active balancing done, reset the failure counter. */
9893 sd->nr_balance_failed = 0;
9894 } else {
9895 schedstat_inc(sd->alb_failed);
9896 }
9897 }
9898 rcu_read_unlock();
9899 out_unlock:
9900 busiest_rq->active_balance = 0;
9901
9902 if (push_task)
9903 busiest_rq->push_task = NULL;
9904
9905 raw_spin_unlock(&busiest_rq->lock);
9906
9907 if (push_task) {
9908 if (push_task_detached)
9909 attach_one_task(target_rq, push_task);
9910 put_task_struct(push_task);
9911 }
9912
9913 if (p)
9914 attach_one_task(target_rq, p);
9915
9916 local_irq_enable();
9917
9918 return 0;
9919 }
9920
on_null_domain(struct rq * rq)9921 static inline int on_null_domain(struct rq *rq)
9922 {
9923 return unlikely(!rcu_dereference_sched(rq->sd));
9924 }
9925
9926 #ifdef CONFIG_NO_HZ_COMMON
9927 /*
9928 * idle load balancing details
9929 * - When one of the busy CPUs notice that there may be an idle rebalancing
9930 * needed, they will kick the idle load balancer, which then does idle
9931 * load balancing for all the idle CPUs.
9932 */
find_new_ilb(void)9933 static inline int find_new_ilb(void)
9934 {
9935 int ilb = cpumask_first(nohz.idle_cpus_mask);
9936
9937 if (ilb < nr_cpu_ids && idle_cpu(ilb))
9938 return ilb;
9939
9940 return nr_cpu_ids;
9941 }
9942
9943 /*
9944 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9945 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9946 * CPU (if there is one).
9947 */
nohz_balancer_kick(void)9948 static void nohz_balancer_kick(void)
9949 {
9950 int ilb_cpu;
9951
9952 nohz.next_balance++;
9953
9954 ilb_cpu = find_new_ilb();
9955
9956 if (ilb_cpu >= nr_cpu_ids)
9957 return;
9958
9959 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
9960 return;
9961 /*
9962 * Use smp_send_reschedule() instead of resched_cpu().
9963 * This way we generate a sched IPI on the target cpu which
9964 * is idle. And the softirq performing nohz idle load balance
9965 * will be run before returning from the IPI.
9966 */
9967 smp_send_reschedule(ilb_cpu);
9968 return;
9969 }
9970
nohz_balance_exit_idle(unsigned int cpu)9971 void nohz_balance_exit_idle(unsigned int cpu)
9972 {
9973 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
9974 /*
9975 * Completely isolated CPUs don't ever set, so we must test.
9976 */
9977 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
9978 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
9979 atomic_dec(&nohz.nr_cpus);
9980 }
9981 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
9982 }
9983 }
9984
set_cpu_sd_state_busy(void)9985 static inline void set_cpu_sd_state_busy(void)
9986 {
9987 struct sched_domain *sd;
9988 int cpu = smp_processor_id();
9989
9990 rcu_read_lock();
9991 sd = rcu_dereference(per_cpu(sd_llc, cpu));
9992
9993 if (!sd || !sd->nohz_idle)
9994 goto unlock;
9995 sd->nohz_idle = 0;
9996
9997 atomic_inc(&sd->shared->nr_busy_cpus);
9998 unlock:
9999 rcu_read_unlock();
10000 }
10001
set_cpu_sd_state_idle(void)10002 void set_cpu_sd_state_idle(void)
10003 {
10004 struct sched_domain *sd;
10005 int cpu = smp_processor_id();
10006
10007 rcu_read_lock();
10008 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10009
10010 if (!sd || sd->nohz_idle)
10011 goto unlock;
10012 sd->nohz_idle = 1;
10013
10014 atomic_dec(&sd->shared->nr_busy_cpus);
10015 unlock:
10016 rcu_read_unlock();
10017 }
10018
10019 /*
10020 * This routine will record that the cpu is going idle with tick stopped.
10021 * This info will be used in performing idle load balancing in the future.
10022 */
nohz_balance_enter_idle(int cpu)10023 void nohz_balance_enter_idle(int cpu)
10024 {
10025 /*
10026 * If this cpu is going down, then nothing needs to be done.
10027 */
10028 if (!cpu_active(cpu))
10029 return;
10030
10031 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
10032 return;
10033
10034 /*
10035 * If we're a completely isolated CPU, we don't play.
10036 */
10037 if (on_null_domain(cpu_rq(cpu)))
10038 return;
10039
10040 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10041 atomic_inc(&nohz.nr_cpus);
10042 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
10043 }
10044 #endif
10045
10046 static DEFINE_SPINLOCK(balancing);
10047
10048 /*
10049 * Scale the max load_balance interval with the number of CPUs in the system.
10050 * This trades load-balance latency on larger machines for less cross talk.
10051 */
update_max_interval(void)10052 void update_max_interval(void)
10053 {
10054 max_load_balance_interval = HZ*num_online_cpus()/10;
10055 }
10056
10057 /*
10058 * It checks each scheduling domain to see if it is due to be balanced,
10059 * and initiates a balancing operation if so.
10060 *
10061 * Balancing parameters are set up in init_sched_domains.
10062 */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)10063 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10064 {
10065 int continue_balancing = 1;
10066 int cpu = rq->cpu;
10067 unsigned long interval;
10068 struct sched_domain *sd;
10069 /* Earliest time when we have to do rebalance again */
10070 unsigned long next_balance = jiffies + 60*HZ;
10071 int update_next_balance = 0;
10072 int need_serialize, need_decay = 0;
10073 u64 max_cost = 0;
10074
10075 update_blocked_averages(cpu);
10076
10077 rcu_read_lock();
10078 for_each_domain(cpu, sd) {
10079 /*
10080 * Decay the newidle max times here because this is a regular
10081 * visit to all the domains. Decay ~1% per second.
10082 */
10083 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10084 sd->max_newidle_lb_cost =
10085 (sd->max_newidle_lb_cost * 253) / 256;
10086 sd->next_decay_max_lb_cost = jiffies + HZ;
10087 need_decay = 1;
10088 }
10089 max_cost += sd->max_newidle_lb_cost;
10090
10091 if (!(sd->flags & SD_LOAD_BALANCE))
10092 continue;
10093
10094 /*
10095 * Stop the load balance at this level. There is another
10096 * CPU in our sched group which is doing load balancing more
10097 * actively.
10098 */
10099 if (!continue_balancing) {
10100 if (need_decay)
10101 continue;
10102 break;
10103 }
10104
10105 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
10106
10107 need_serialize = sd->flags & SD_SERIALIZE;
10108 if (need_serialize) {
10109 if (!spin_trylock(&balancing))
10110 goto out;
10111 }
10112
10113 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10114 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10115 /*
10116 * The LBF_DST_PINNED logic could have changed
10117 * env->dst_cpu, so we can't know our idle
10118 * state even if we migrated tasks. Update it.
10119 */
10120 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10121 }
10122 sd->last_balance = jiffies;
10123 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
10124 }
10125 if (need_serialize)
10126 spin_unlock(&balancing);
10127 out:
10128 if (time_after(next_balance, sd->last_balance + interval)) {
10129 next_balance = sd->last_balance + interval;
10130 update_next_balance = 1;
10131 }
10132 }
10133 if (need_decay) {
10134 /*
10135 * Ensure the rq-wide value also decays but keep it at a
10136 * reasonable floor to avoid funnies with rq->avg_idle.
10137 */
10138 rq->max_idle_balance_cost =
10139 max((u64)sysctl_sched_migration_cost, max_cost);
10140 }
10141 rcu_read_unlock();
10142
10143 /*
10144 * next_balance will be updated only when there is a need.
10145 * When the cpu is attached to null domain for ex, it will not be
10146 * updated.
10147 */
10148 if (likely(update_next_balance)) {
10149 rq->next_balance = next_balance;
10150
10151 #ifdef CONFIG_NO_HZ_COMMON
10152 /*
10153 * If this CPU has been elected to perform the nohz idle
10154 * balance. Other idle CPUs have already rebalanced with
10155 * nohz_idle_balance() and nohz.next_balance has been
10156 * updated accordingly. This CPU is now running the idle load
10157 * balance for itself and we need to update the
10158 * nohz.next_balance accordingly.
10159 */
10160 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
10161 nohz.next_balance = rq->next_balance;
10162 #endif
10163 }
10164 }
10165
10166 #ifdef CONFIG_NO_HZ_COMMON
10167 /*
10168 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10169 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10170 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)10171 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10172 {
10173 int this_cpu = this_rq->cpu;
10174 struct rq *rq;
10175 int balance_cpu;
10176 /* Earliest time when we have to do rebalance again */
10177 unsigned long next_balance = jiffies + 60*HZ;
10178 int update_next_balance = 0;
10179
10180 if (idle != CPU_IDLE ||
10181 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
10182 goto end;
10183
10184 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
10185 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
10186 continue;
10187
10188 /*
10189 * If this cpu gets work to do, stop the load balancing
10190 * work being done for other cpus. Next load
10191 * balancing owner will pick it up.
10192 */
10193 if (need_resched())
10194 break;
10195
10196 rq = cpu_rq(balance_cpu);
10197
10198 /*
10199 * If time for next balance is due,
10200 * do the balance.
10201 */
10202 if (time_after_eq(jiffies, rq->next_balance)) {
10203 raw_spin_lock_irq(&rq->lock);
10204 update_rq_clock(rq);
10205 cpu_load_update_idle(rq);
10206 raw_spin_unlock_irq(&rq->lock);
10207 rebalance_domains(rq, CPU_IDLE);
10208 }
10209
10210 if (time_after(next_balance, rq->next_balance)) {
10211 next_balance = rq->next_balance;
10212 update_next_balance = 1;
10213 }
10214 }
10215
10216 /*
10217 * next_balance will be updated only when there is a need.
10218 * When the CPU is attached to null domain for ex, it will not be
10219 * updated.
10220 */
10221 if (likely(update_next_balance))
10222 nohz.next_balance = next_balance;
10223 end:
10224 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
10225 }
10226
10227 /*
10228 * Current heuristic for kicking the idle load balancer in the presence
10229 * of an idle cpu in the system.
10230 * - This rq has more than one task.
10231 * - This rq has at least one CFS task and the capacity of the CPU is
10232 * significantly reduced because of RT tasks or IRQs.
10233 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
10234 * multiple busy cpu.
10235 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
10236 * domain span are idle.
10237 */
nohz_kick_needed(struct rq * rq)10238 static inline bool nohz_kick_needed(struct rq *rq)
10239 {
10240 unsigned long now = jiffies;
10241 struct sched_domain_shared *sds;
10242 struct sched_domain *sd;
10243 int nr_busy, cpu = rq->cpu;
10244 bool kick = false;
10245
10246 if (unlikely(rq->idle_balance))
10247 return false;
10248
10249 /*
10250 * We may be recently in ticked or tickless idle mode. At the first
10251 * busy tick after returning from idle, we will update the busy stats.
10252 */
10253 set_cpu_sd_state_busy();
10254 nohz_balance_exit_idle(cpu);
10255
10256 /*
10257 * None are in tickless mode and hence no need for NOHZ idle load
10258 * balancing.
10259 */
10260 if (likely(!atomic_read(&nohz.nr_cpus)))
10261 return false;
10262
10263 if (time_before(now, nohz.next_balance))
10264 return false;
10265
10266 if (rq->nr_running >= 2 &&
10267 (!energy_aware() || cpu_overutilized(cpu)))
10268 return true;
10269
10270 /* Do idle load balance if there have misfit task */
10271 if (energy_aware())
10272 return rq->misfit_task;
10273
10274 rcu_read_lock();
10275 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10276 if (sds) {
10277 /*
10278 * XXX: write a coherent comment on why we do this.
10279 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
10280 */
10281 nr_busy = atomic_read(&sds->nr_busy_cpus);
10282 if (nr_busy > 1) {
10283 kick = true;
10284 goto unlock;
10285 }
10286
10287 }
10288
10289 sd = rcu_dereference(rq->sd);
10290 if (sd) {
10291 if ((rq->cfs.h_nr_running >= 1) &&
10292 check_cpu_capacity(rq, sd)) {
10293 kick = true;
10294 goto unlock;
10295 }
10296 }
10297
10298 sd = rcu_dereference(per_cpu(sd_asym, cpu));
10299 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
10300 sched_domain_span(sd)) < cpu)) {
10301 kick = true;
10302 goto unlock;
10303 }
10304
10305 unlock:
10306 rcu_read_unlock();
10307 return kick;
10308 }
10309 #else
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)10310 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
10311 #endif
10312
10313 /*
10314 * run_rebalance_domains is triggered when needed from the scheduler tick.
10315 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10316 */
run_rebalance_domains(struct softirq_action * h)10317 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10318 {
10319 struct rq *this_rq = this_rq();
10320 enum cpu_idle_type idle = this_rq->idle_balance ?
10321 CPU_IDLE : CPU_NOT_IDLE;
10322
10323 /*
10324 * If this cpu has a pending nohz_balance_kick, then do the
10325 * balancing on behalf of the other idle cpus whose ticks are
10326 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10327 * give the idle cpus a chance to load balance. Else we may
10328 * load balance only within the local sched_domain hierarchy
10329 * and abort nohz_idle_balance altogether if we pull some load.
10330 */
10331 nohz_idle_balance(this_rq, idle);
10332 rebalance_domains(this_rq, idle);
10333 }
10334
10335 /*
10336 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10337 */
trigger_load_balance(struct rq * rq)10338 void trigger_load_balance(struct rq *rq)
10339 {
10340 /* Don't need to rebalance while attached to NULL domain */
10341 if (unlikely(on_null_domain(rq)))
10342 return;
10343
10344 if (time_after_eq(jiffies, rq->next_balance))
10345 raise_softirq(SCHED_SOFTIRQ);
10346 #ifdef CONFIG_NO_HZ_COMMON
10347 if (nohz_kick_needed(rq))
10348 nohz_balancer_kick();
10349 #endif
10350 }
10351
rq_online_fair(struct rq * rq)10352 static void rq_online_fair(struct rq *rq)
10353 {
10354 update_sysctl();
10355
10356 update_runtime_enabled(rq);
10357 }
10358
rq_offline_fair(struct rq * rq)10359 static void rq_offline_fair(struct rq *rq)
10360 {
10361 update_sysctl();
10362
10363 /* Ensure any throttled groups are reachable by pick_next_task */
10364 unthrottle_offline_cfs_rqs(rq);
10365 }
10366
10367 static inline int
kick_active_balance(struct rq * rq,struct task_struct * p,int new_cpu)10368 kick_active_balance(struct rq *rq, struct task_struct *p, int new_cpu)
10369 {
10370 int rc = 0;
10371
10372 /* Invoke active balance to force migrate currently running task */
10373 raw_spin_lock(&rq->lock);
10374 if (!rq->active_balance) {
10375 rq->active_balance = 1;
10376 rq->push_cpu = new_cpu;
10377 get_task_struct(p);
10378 rq->push_task = p;
10379 rc = 1;
10380 }
10381 raw_spin_unlock(&rq->lock);
10382
10383 return rc;
10384 }
10385
check_for_migration(struct rq * rq,struct task_struct * p)10386 void check_for_migration(struct rq *rq, struct task_struct *p)
10387 {
10388 int new_cpu;
10389 int active_balance;
10390 int cpu = task_cpu(p);
10391
10392 if (energy_aware() && rq->misfit_task) {
10393 if (rq->curr->state != TASK_RUNNING ||
10394 rq->curr->nr_cpus_allowed == 1)
10395 return;
10396
10397 new_cpu = select_energy_cpu_brute(p, cpu, 0);
10398 if (capacity_orig_of(new_cpu) > capacity_orig_of(cpu)) {
10399 active_balance = kick_active_balance(rq, p, new_cpu);
10400 if (active_balance)
10401 stop_one_cpu_nowait(cpu,
10402 active_load_balance_cpu_stop,
10403 rq, &rq->active_balance_work);
10404 }
10405 }
10406 }
10407
10408 #endif /* CONFIG_SMP */
10409
10410 /*
10411 * scheduler tick hitting a task of our scheduling class:
10412 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)10413 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10414 {
10415 struct cfs_rq *cfs_rq;
10416 struct sched_entity *se = &curr->se;
10417
10418 for_each_sched_entity(se) {
10419 cfs_rq = cfs_rq_of(se);
10420 entity_tick(cfs_rq, se, queued);
10421 }
10422
10423 if (static_branch_unlikely(&sched_numa_balancing))
10424 task_tick_numa(rq, curr);
10425
10426 #ifdef CONFIG_SMP
10427 if (!rq->rd->overutilized && cpu_overutilized(task_cpu(curr))) {
10428 rq->rd->overutilized = true;
10429 trace_sched_overutilized(true);
10430 }
10431
10432 rq->misfit_task = !task_fits_max(curr, rq->cpu);
10433 #endif
10434
10435 }
10436
10437 /*
10438 * called on fork with the child task as argument from the parent's context
10439 * - child not yet on the tasklist
10440 * - preemption disabled
10441 */
task_fork_fair(struct task_struct * p)10442 static void task_fork_fair(struct task_struct *p)
10443 {
10444 struct cfs_rq *cfs_rq;
10445 struct sched_entity *se = &p->se, *curr;
10446 struct rq *rq = this_rq();
10447
10448 raw_spin_lock(&rq->lock);
10449 update_rq_clock(rq);
10450
10451 cfs_rq = task_cfs_rq(current);
10452 curr = cfs_rq->curr;
10453 if (curr) {
10454 update_curr(cfs_rq);
10455 se->vruntime = curr->vruntime;
10456 }
10457 place_entity(cfs_rq, se, 1);
10458
10459 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10460 /*
10461 * Upon rescheduling, sched_class::put_prev_task() will place
10462 * 'current' within the tree based on its new key value.
10463 */
10464 swap(curr->vruntime, se->vruntime);
10465 resched_curr(rq);
10466 }
10467
10468 se->vruntime -= cfs_rq->min_vruntime;
10469 raw_spin_unlock(&rq->lock);
10470 }
10471
10472 /*
10473 * Priority of the task has changed. Check to see if we preempt
10474 * the current task.
10475 */
10476 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)10477 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10478 {
10479 if (!task_on_rq_queued(p))
10480 return;
10481
10482 /*
10483 * Reschedule if we are currently running on this runqueue and
10484 * our priority decreased, or if we are not currently running on
10485 * this runqueue and our priority is higher than the current's
10486 */
10487 if (rq->curr == p) {
10488 if (p->prio > oldprio)
10489 resched_curr(rq);
10490 } else
10491 check_preempt_curr(rq, p, 0);
10492 }
10493
vruntime_normalized(struct task_struct * p)10494 static inline bool vruntime_normalized(struct task_struct *p)
10495 {
10496 struct sched_entity *se = &p->se;
10497
10498 /*
10499 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10500 * the dequeue_entity(.flags=0) will already have normalized the
10501 * vruntime.
10502 */
10503 if (p->on_rq)
10504 return true;
10505
10506 /*
10507 * When !on_rq, vruntime of the task has usually NOT been normalized.
10508 * But there are some cases where it has already been normalized:
10509 *
10510 * - A forked child which is waiting for being woken up by
10511 * wake_up_new_task().
10512 * - A task which has been woken up by try_to_wake_up() and
10513 * waiting for actually being woken up by sched_ttwu_pending().
10514 */
10515 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
10516 return true;
10517
10518 return false;
10519 }
10520
10521 #ifdef CONFIG_FAIR_GROUP_SCHED
10522 /*
10523 * Propagate the changes of the sched_entity across the tg tree to make it
10524 * visible to the root
10525 */
propagate_entity_cfs_rq(struct sched_entity * se)10526 static void propagate_entity_cfs_rq(struct sched_entity *se)
10527 {
10528 struct cfs_rq *cfs_rq;
10529
10530 /* Start to propagate at parent */
10531 se = se->parent;
10532
10533 for_each_sched_entity(se) {
10534 cfs_rq = cfs_rq_of(se);
10535
10536 if (cfs_rq_throttled(cfs_rq))
10537 break;
10538
10539 update_load_avg(se, UPDATE_TG);
10540 }
10541 }
10542 #else
propagate_entity_cfs_rq(struct sched_entity * se)10543 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10544 #endif
10545
detach_entity_cfs_rq(struct sched_entity * se)10546 static void detach_entity_cfs_rq(struct sched_entity *se)
10547 {
10548 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10549
10550 /* Catch up with the cfs_rq and remove our load when we leave */
10551 update_load_avg(se, 0);
10552 detach_entity_load_avg(cfs_rq, se);
10553 update_tg_load_avg(cfs_rq, false);
10554 propagate_entity_cfs_rq(se);
10555 }
10556
attach_entity_cfs_rq(struct sched_entity * se)10557 static void attach_entity_cfs_rq(struct sched_entity *se)
10558 {
10559 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10560
10561 #ifdef CONFIG_FAIR_GROUP_SCHED
10562 /*
10563 * Since the real-depth could have been changed (only FAIR
10564 * class maintain depth value), reset depth properly.
10565 */
10566 se->depth = se->parent ? se->parent->depth + 1 : 0;
10567 #endif
10568
10569 /* Synchronize entity with its cfs_rq */
10570 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10571 attach_entity_load_avg(cfs_rq, se);
10572 update_tg_load_avg(cfs_rq, false);
10573 propagate_entity_cfs_rq(se);
10574 }
10575
detach_task_cfs_rq(struct task_struct * p)10576 static void detach_task_cfs_rq(struct task_struct *p)
10577 {
10578 struct sched_entity *se = &p->se;
10579 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10580
10581 if (!vruntime_normalized(p)) {
10582 /*
10583 * Fix up our vruntime so that the current sleep doesn't
10584 * cause 'unlimited' sleep bonus.
10585 */
10586 place_entity(cfs_rq, se, 0);
10587 se->vruntime -= cfs_rq->min_vruntime;
10588 }
10589
10590 detach_entity_cfs_rq(se);
10591 }
10592
attach_task_cfs_rq(struct task_struct * p)10593 static void attach_task_cfs_rq(struct task_struct *p)
10594 {
10595 struct sched_entity *se = &p->se;
10596 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10597
10598 attach_entity_cfs_rq(se);
10599
10600 if (!vruntime_normalized(p))
10601 se->vruntime += cfs_rq->min_vruntime;
10602 }
10603
switched_from_fair(struct rq * rq,struct task_struct * p)10604 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10605 {
10606 detach_task_cfs_rq(p);
10607 }
10608
switched_to_fair(struct rq * rq,struct task_struct * p)10609 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10610 {
10611 attach_task_cfs_rq(p);
10612
10613 if (task_on_rq_queued(p)) {
10614 /*
10615 * We were most likely switched from sched_rt, so
10616 * kick off the schedule if running, otherwise just see
10617 * if we can still preempt the current task.
10618 */
10619 if (rq->curr == p)
10620 resched_curr(rq);
10621 else
10622 check_preempt_curr(rq, p, 0);
10623 }
10624 }
10625
10626 /* Account for a task changing its policy or group.
10627 *
10628 * This routine is mostly called to set cfs_rq->curr field when a task
10629 * migrates between groups/classes.
10630 */
set_curr_task_fair(struct rq * rq)10631 static void set_curr_task_fair(struct rq *rq)
10632 {
10633 struct sched_entity *se = &rq->curr->se;
10634
10635 for_each_sched_entity(se) {
10636 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10637
10638 set_next_entity(cfs_rq, se);
10639 /* ensure bandwidth has been allocated on our new cfs_rq */
10640 account_cfs_rq_runtime(cfs_rq, 0);
10641 }
10642 }
10643
init_cfs_rq(struct cfs_rq * cfs_rq)10644 void init_cfs_rq(struct cfs_rq *cfs_rq)
10645 {
10646 cfs_rq->tasks_timeline = RB_ROOT;
10647 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10648 #ifndef CONFIG_64BIT
10649 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10650 #endif
10651 #ifdef CONFIG_SMP
10652 #ifdef CONFIG_FAIR_GROUP_SCHED
10653 cfs_rq->propagate_avg = 0;
10654 #endif
10655 atomic_long_set(&cfs_rq->removed_load_avg, 0);
10656 atomic_long_set(&cfs_rq->removed_util_avg, 0);
10657 #endif
10658 }
10659
10660 #ifdef CONFIG_FAIR_GROUP_SCHED
task_set_group_fair(struct task_struct * p)10661 static void task_set_group_fair(struct task_struct *p)
10662 {
10663 struct sched_entity *se = &p->se;
10664
10665 set_task_rq(p, task_cpu(p));
10666 se->depth = se->parent ? se->parent->depth + 1 : 0;
10667 }
10668
task_move_group_fair(struct task_struct * p)10669 static void task_move_group_fair(struct task_struct *p)
10670 {
10671 detach_task_cfs_rq(p);
10672 set_task_rq(p, task_cpu(p));
10673
10674 #ifdef CONFIG_SMP
10675 /* Tell se's cfs_rq has been changed -- migrated */
10676 p->se.avg.last_update_time = 0;
10677 #endif
10678 attach_task_cfs_rq(p);
10679 }
10680
task_change_group_fair(struct task_struct * p,int type)10681 static void task_change_group_fair(struct task_struct *p, int type)
10682 {
10683 switch (type) {
10684 case TASK_SET_GROUP:
10685 task_set_group_fair(p);
10686 break;
10687
10688 case TASK_MOVE_GROUP:
10689 task_move_group_fair(p);
10690 break;
10691 }
10692 }
10693
free_fair_sched_group(struct task_group * tg)10694 void free_fair_sched_group(struct task_group *tg)
10695 {
10696 int i;
10697
10698 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10699
10700 for_each_possible_cpu(i) {
10701 if (tg->cfs_rq)
10702 kfree(tg->cfs_rq[i]);
10703 if (tg->se)
10704 kfree(tg->se[i]);
10705 }
10706
10707 kfree(tg->cfs_rq);
10708 kfree(tg->se);
10709 }
10710
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)10711 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10712 {
10713 struct sched_entity *se;
10714 struct cfs_rq *cfs_rq;
10715 int i;
10716
10717 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
10718 if (!tg->cfs_rq)
10719 goto err;
10720 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
10721 if (!tg->se)
10722 goto err;
10723
10724 tg->shares = NICE_0_LOAD;
10725
10726 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10727
10728 for_each_possible_cpu(i) {
10729 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10730 GFP_KERNEL, cpu_to_node(i));
10731 if (!cfs_rq)
10732 goto err;
10733
10734 se = kzalloc_node(sizeof(struct sched_entity),
10735 GFP_KERNEL, cpu_to_node(i));
10736 if (!se)
10737 goto err_free_rq;
10738
10739 init_cfs_rq(cfs_rq);
10740 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10741 init_entity_runnable_average(se);
10742 }
10743
10744 return 1;
10745
10746 err_free_rq:
10747 kfree(cfs_rq);
10748 err:
10749 return 0;
10750 }
10751
online_fair_sched_group(struct task_group * tg)10752 void online_fair_sched_group(struct task_group *tg)
10753 {
10754 struct sched_entity *se;
10755 struct rq *rq;
10756 int i;
10757
10758 for_each_possible_cpu(i) {
10759 rq = cpu_rq(i);
10760 se = tg->se[i];
10761
10762 raw_spin_lock_irq(&rq->lock);
10763 update_rq_clock(rq);
10764 attach_entity_cfs_rq(se);
10765 sync_throttle(tg, i);
10766 raw_spin_unlock_irq(&rq->lock);
10767 }
10768 }
10769
unregister_fair_sched_group(struct task_group * tg)10770 void unregister_fair_sched_group(struct task_group *tg)
10771 {
10772 unsigned long flags;
10773 struct rq *rq;
10774 int cpu;
10775
10776 for_each_possible_cpu(cpu) {
10777 if (tg->se[cpu])
10778 remove_entity_load_avg(tg->se[cpu]);
10779
10780 /*
10781 * Only empty task groups can be destroyed; so we can speculatively
10782 * check on_list without danger of it being re-added.
10783 */
10784 if (!tg->cfs_rq[cpu]->on_list)
10785 continue;
10786
10787 rq = cpu_rq(cpu);
10788
10789 raw_spin_lock_irqsave(&rq->lock, flags);
10790 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10791 raw_spin_unlock_irqrestore(&rq->lock, flags);
10792 }
10793 }
10794
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)10795 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10796 struct sched_entity *se, int cpu,
10797 struct sched_entity *parent)
10798 {
10799 struct rq *rq = cpu_rq(cpu);
10800
10801 cfs_rq->tg = tg;
10802 cfs_rq->rq = rq;
10803 init_cfs_rq_runtime(cfs_rq);
10804
10805 tg->cfs_rq[cpu] = cfs_rq;
10806 tg->se[cpu] = se;
10807
10808 /* se could be NULL for root_task_group */
10809 if (!se)
10810 return;
10811
10812 if (!parent) {
10813 se->cfs_rq = &rq->cfs;
10814 se->depth = 0;
10815 } else {
10816 se->cfs_rq = parent->my_q;
10817 se->depth = parent->depth + 1;
10818 }
10819
10820 se->my_q = cfs_rq;
10821 /* guarantee group entities always have weight */
10822 update_load_set(&se->load, NICE_0_LOAD);
10823 se->parent = parent;
10824 }
10825
10826 static DEFINE_MUTEX(shares_mutex);
10827
sched_group_set_shares(struct task_group * tg,unsigned long shares)10828 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10829 {
10830 int i;
10831 unsigned long flags;
10832
10833 /*
10834 * We can't change the weight of the root cgroup.
10835 */
10836 if (!tg->se[0])
10837 return -EINVAL;
10838
10839 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10840
10841 mutex_lock(&shares_mutex);
10842 if (tg->shares == shares)
10843 goto done;
10844
10845 tg->shares = shares;
10846 for_each_possible_cpu(i) {
10847 struct rq *rq = cpu_rq(i);
10848 struct sched_entity *se;
10849
10850 se = tg->se[i];
10851 /* Propagate contribution to hierarchy */
10852 raw_spin_lock_irqsave(&rq->lock, flags);
10853
10854 /* Possible calls to update_curr() need rq clock */
10855 update_rq_clock(rq);
10856 for_each_sched_entity(se) {
10857 update_load_avg(se, UPDATE_TG);
10858 update_cfs_shares(se);
10859 }
10860 raw_spin_unlock_irqrestore(&rq->lock, flags);
10861 }
10862
10863 done:
10864 mutex_unlock(&shares_mutex);
10865 return 0;
10866 }
10867 #else /* CONFIG_FAIR_GROUP_SCHED */
10868
free_fair_sched_group(struct task_group * tg)10869 void free_fair_sched_group(struct task_group *tg) { }
10870
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)10871 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10872 {
10873 return 1;
10874 }
10875
online_fair_sched_group(struct task_group * tg)10876 void online_fair_sched_group(struct task_group *tg) { }
10877
unregister_fair_sched_group(struct task_group * tg)10878 void unregister_fair_sched_group(struct task_group *tg) { }
10879
10880 #endif /* CONFIG_FAIR_GROUP_SCHED */
10881
10882
get_rr_interval_fair(struct rq * rq,struct task_struct * task)10883 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10884 {
10885 struct sched_entity *se = &task->se;
10886 unsigned int rr_interval = 0;
10887
10888 /*
10889 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10890 * idle runqueue:
10891 */
10892 if (rq->cfs.load.weight)
10893 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10894
10895 return rr_interval;
10896 }
10897
10898 /*
10899 * All the scheduling class methods:
10900 */
10901 const struct sched_class fair_sched_class = {
10902 .next = &idle_sched_class,
10903 .enqueue_task = enqueue_task_fair,
10904 .dequeue_task = dequeue_task_fair,
10905 .yield_task = yield_task_fair,
10906 .yield_to_task = yield_to_task_fair,
10907
10908 .check_preempt_curr = check_preempt_wakeup,
10909
10910 .pick_next_task = pick_next_task_fair,
10911 .put_prev_task = put_prev_task_fair,
10912
10913 #ifdef CONFIG_SMP
10914 .select_task_rq = select_task_rq_fair,
10915 .migrate_task_rq = migrate_task_rq_fair,
10916
10917 .rq_online = rq_online_fair,
10918 .rq_offline = rq_offline_fair,
10919
10920 .task_dead = task_dead_fair,
10921 .set_cpus_allowed = set_cpus_allowed_common,
10922 #endif
10923
10924 .set_curr_task = set_curr_task_fair,
10925 .task_tick = task_tick_fair,
10926 .task_fork = task_fork_fair,
10927
10928 .prio_changed = prio_changed_fair,
10929 .switched_from = switched_from_fair,
10930 .switched_to = switched_to_fair,
10931
10932 .get_rr_interval = get_rr_interval_fair,
10933
10934 .update_curr = update_curr_fair,
10935
10936 #ifdef CONFIG_FAIR_GROUP_SCHED
10937 .task_change_group = task_change_group_fair,
10938 #endif
10939 };
10940
10941 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)10942 void print_cfs_stats(struct seq_file *m, int cpu)
10943 {
10944 struct cfs_rq *cfs_rq;
10945
10946 rcu_read_lock();
10947 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
10948 print_cfs_rq(m, cpu, cfs_rq);
10949 rcu_read_unlock();
10950 }
10951
10952 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)10953 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10954 {
10955 int node;
10956 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10957
10958 for_each_online_node(node) {
10959 if (p->numa_faults) {
10960 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10961 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10962 }
10963 if (p->numa_group) {
10964 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10965 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10966 }
10967 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10968 }
10969 }
10970 #endif /* CONFIG_NUMA_BALANCING */
10971 #endif /* CONFIG_SCHED_DEBUG */
10972
init_sched_fair_class(void)10973 __init void init_sched_fair_class(void)
10974 {
10975 #ifdef CONFIG_SMP
10976 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10977
10978 #ifdef CONFIG_NO_HZ_COMMON
10979 nohz.next_balance = jiffies;
10980 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10981 #endif
10982 #endif /* SMP */
10983
10984 }
10985