• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * Copyright (c) 2012 Red Hat, Inc.
4  * All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it would be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write the Free Software Foundation,
17  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18  */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_shared.h"
22 #include "xfs_format.h"
23 #include "xfs_log_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_bit.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_defer.h"
29 #include "xfs_inode.h"
30 #include "xfs_btree.h"
31 #include "xfs_trans.h"
32 #include "xfs_extfree_item.h"
33 #include "xfs_alloc.h"
34 #include "xfs_bmap.h"
35 #include "xfs_bmap_util.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_rtalloc.h"
38 #include "xfs_error.h"
39 #include "xfs_quota.h"
40 #include "xfs_trans_space.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_log.h"
44 #include "xfs_rmap_btree.h"
45 #include "xfs_iomap.h"
46 #include "xfs_reflink.h"
47 #include "xfs_refcount.h"
48 
49 /* Kernel only BMAP related definitions and functions */
50 
51 /*
52  * Convert the given file system block to a disk block.  We have to treat it
53  * differently based on whether the file is a real time file or not, because the
54  * bmap code does.
55  */
56 xfs_daddr_t
xfs_fsb_to_db(struct xfs_inode * ip,xfs_fsblock_t fsb)57 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb)
58 {
59 	return (XFS_IS_REALTIME_INODE(ip) ? \
60 		 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \
61 		 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb)));
62 }
63 
64 /*
65  * Routine to zero an extent on disk allocated to the specific inode.
66  *
67  * The VFS functions take a linearised filesystem block offset, so we have to
68  * convert the sparse xfs fsb to the right format first.
69  * VFS types are real funky, too.
70  */
71 int
xfs_zero_extent(struct xfs_inode * ip,xfs_fsblock_t start_fsb,xfs_off_t count_fsb)72 xfs_zero_extent(
73 	struct xfs_inode *ip,
74 	xfs_fsblock_t	start_fsb,
75 	xfs_off_t	count_fsb)
76 {
77 	struct xfs_mount *mp = ip->i_mount;
78 	xfs_daddr_t	sector = xfs_fsb_to_db(ip, start_fsb);
79 	sector_t	block = XFS_BB_TO_FSBT(mp, sector);
80 
81 	return blkdev_issue_zeroout(xfs_find_bdev_for_inode(VFS_I(ip)),
82 		block << (mp->m_super->s_blocksize_bits - 9),
83 		count_fsb << (mp->m_super->s_blocksize_bits - 9),
84 		GFP_NOFS, true);
85 }
86 
87 #ifdef CONFIG_XFS_RT
88 int
xfs_bmap_rtalloc(struct xfs_bmalloca * ap)89 xfs_bmap_rtalloc(
90 	struct xfs_bmalloca	*ap)	/* bmap alloc argument struct */
91 {
92 	xfs_alloctype_t	atype = 0;	/* type for allocation routines */
93 	int		error;		/* error return value */
94 	xfs_mount_t	*mp;		/* mount point structure */
95 	xfs_extlen_t	prod = 0;	/* product factor for allocators */
96 	xfs_extlen_t	ralen = 0;	/* realtime allocation length */
97 	xfs_extlen_t	align;		/* minimum allocation alignment */
98 	xfs_rtblock_t	rtb;
99 
100 	mp = ap->ip->i_mount;
101 	align = xfs_get_extsz_hint(ap->ip);
102 	prod = align / mp->m_sb.sb_rextsize;
103 	error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev,
104 					align, 1, ap->eof, 0,
105 					ap->conv, &ap->offset, &ap->length);
106 	if (error)
107 		return error;
108 	ASSERT(ap->length);
109 	ASSERT(ap->length % mp->m_sb.sb_rextsize == 0);
110 
111 	/*
112 	 * If the offset & length are not perfectly aligned
113 	 * then kill prod, it will just get us in trouble.
114 	 */
115 	if (do_mod(ap->offset, align) || ap->length % align)
116 		prod = 1;
117 	/*
118 	 * Set ralen to be the actual requested length in rtextents.
119 	 */
120 	ralen = ap->length / mp->m_sb.sb_rextsize;
121 	/*
122 	 * If the old value was close enough to MAXEXTLEN that
123 	 * we rounded up to it, cut it back so it's valid again.
124 	 * Note that if it's a really large request (bigger than
125 	 * MAXEXTLEN), we don't hear about that number, and can't
126 	 * adjust the starting point to match it.
127 	 */
128 	if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN)
129 		ralen = MAXEXTLEN / mp->m_sb.sb_rextsize;
130 
131 	/*
132 	 * Lock out modifications to both the RT bitmap and summary inodes
133 	 */
134 	xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL|XFS_ILOCK_RTBITMAP);
135 	xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL);
136 	xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL|XFS_ILOCK_RTSUM);
137 	xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL);
138 
139 	/*
140 	 * If it's an allocation to an empty file at offset 0,
141 	 * pick an extent that will space things out in the rt area.
142 	 */
143 	if (ap->eof && ap->offset == 0) {
144 		xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */
145 
146 		error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx);
147 		if (error)
148 			return error;
149 		ap->blkno = rtx * mp->m_sb.sb_rextsize;
150 	} else {
151 		ap->blkno = 0;
152 	}
153 
154 	xfs_bmap_adjacent(ap);
155 
156 	/*
157 	 * Realtime allocation, done through xfs_rtallocate_extent.
158 	 */
159 	atype = ap->blkno == 0 ?  XFS_ALLOCTYPE_ANY_AG : XFS_ALLOCTYPE_NEAR_BNO;
160 	do_div(ap->blkno, mp->m_sb.sb_rextsize);
161 	rtb = ap->blkno;
162 	ap->length = ralen;
163 	if ((error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length,
164 				&ralen, atype, ap->wasdel, prod, &rtb)))
165 		return error;
166 	if (rtb == NULLFSBLOCK && prod > 1 &&
167 	    (error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1,
168 					   ap->length, &ralen, atype,
169 					   ap->wasdel, 1, &rtb)))
170 		return error;
171 	ap->blkno = rtb;
172 	if (ap->blkno != NULLFSBLOCK) {
173 		ap->blkno *= mp->m_sb.sb_rextsize;
174 		ralen *= mp->m_sb.sb_rextsize;
175 		ap->length = ralen;
176 		ap->ip->i_d.di_nblocks += ralen;
177 		xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE);
178 		if (ap->wasdel)
179 			ap->ip->i_delayed_blks -= ralen;
180 		/*
181 		 * Adjust the disk quota also. This was reserved
182 		 * earlier.
183 		 */
184 		xfs_trans_mod_dquot_byino(ap->tp, ap->ip,
185 			ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT :
186 					XFS_TRANS_DQ_RTBCOUNT, (long) ralen);
187 
188 		/* Zero the extent if we were asked to do so */
189 		if (ap->datatype & XFS_ALLOC_USERDATA_ZERO) {
190 			error = xfs_zero_extent(ap->ip, ap->blkno, ap->length);
191 			if (error)
192 				return error;
193 		}
194 	} else {
195 		ap->length = 0;
196 	}
197 	return 0;
198 }
199 #endif /* CONFIG_XFS_RT */
200 
201 /*
202  * Check if the endoff is outside the last extent. If so the caller will grow
203  * the allocation to a stripe unit boundary.  All offsets are considered outside
204  * the end of file for an empty fork, so 1 is returned in *eof in that case.
205  */
206 int
xfs_bmap_eof(struct xfs_inode * ip,xfs_fileoff_t endoff,int whichfork,int * eof)207 xfs_bmap_eof(
208 	struct xfs_inode	*ip,
209 	xfs_fileoff_t		endoff,
210 	int			whichfork,
211 	int			*eof)
212 {
213 	struct xfs_bmbt_irec	rec;
214 	int			error;
215 
216 	error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof);
217 	if (error || *eof)
218 		return error;
219 
220 	*eof = endoff >= rec.br_startoff + rec.br_blockcount;
221 	return 0;
222 }
223 
224 /*
225  * Extent tree block counting routines.
226  */
227 
228 /*
229  * Count leaf blocks given a range of extent records.
230  */
231 STATIC void
xfs_bmap_count_leaves(xfs_ifork_t * ifp,xfs_extnum_t idx,int numrecs,int * count)232 xfs_bmap_count_leaves(
233 	xfs_ifork_t		*ifp,
234 	xfs_extnum_t		idx,
235 	int			numrecs,
236 	int			*count)
237 {
238 	int		b;
239 
240 	for (b = 0; b < numrecs; b++) {
241 		xfs_bmbt_rec_host_t *frp = xfs_iext_get_ext(ifp, idx + b);
242 		*count += xfs_bmbt_get_blockcount(frp);
243 	}
244 }
245 
246 /*
247  * Count leaf blocks given a range of extent records originally
248  * in btree format.
249  */
250 STATIC void
xfs_bmap_disk_count_leaves(struct xfs_mount * mp,struct xfs_btree_block * block,int numrecs,int * count)251 xfs_bmap_disk_count_leaves(
252 	struct xfs_mount	*mp,
253 	struct xfs_btree_block	*block,
254 	int			numrecs,
255 	int			*count)
256 {
257 	int		b;
258 	xfs_bmbt_rec_t	*frp;
259 
260 	for (b = 1; b <= numrecs; b++) {
261 		frp = XFS_BMBT_REC_ADDR(mp, block, b);
262 		*count += xfs_bmbt_disk_get_blockcount(frp);
263 	}
264 }
265 
266 /*
267  * Recursively walks each level of a btree
268  * to count total fsblocks in use.
269  */
270 STATIC int                                     /* error */
xfs_bmap_count_tree(xfs_mount_t * mp,xfs_trans_t * tp,xfs_ifork_t * ifp,xfs_fsblock_t blockno,int levelin,int * count)271 xfs_bmap_count_tree(
272 	xfs_mount_t     *mp,            /* file system mount point */
273 	xfs_trans_t     *tp,            /* transaction pointer */
274 	xfs_ifork_t	*ifp,		/* inode fork pointer */
275 	xfs_fsblock_t   blockno,	/* file system block number */
276 	int             levelin,	/* level in btree */
277 	int		*count)		/* Count of blocks */
278 {
279 	int			error;
280 	xfs_buf_t		*bp, *nbp;
281 	int			level = levelin;
282 	__be64			*pp;
283 	xfs_fsblock_t           bno = blockno;
284 	xfs_fsblock_t		nextbno;
285 	struct xfs_btree_block	*block, *nextblock;
286 	int			numrecs;
287 
288 	error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF,
289 						&xfs_bmbt_buf_ops);
290 	if (error)
291 		return error;
292 	*count += 1;
293 	block = XFS_BUF_TO_BLOCK(bp);
294 
295 	if (--level) {
296 		/* Not at node above leaves, count this level of nodes */
297 		nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
298 		while (nextbno != NULLFSBLOCK) {
299 			error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp,
300 						XFS_BMAP_BTREE_REF,
301 						&xfs_bmbt_buf_ops);
302 			if (error)
303 				return error;
304 			*count += 1;
305 			nextblock = XFS_BUF_TO_BLOCK(nbp);
306 			nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib);
307 			xfs_trans_brelse(tp, nbp);
308 		}
309 
310 		/* Dive to the next level */
311 		pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]);
312 		bno = be64_to_cpu(*pp);
313 		if (unlikely((error =
314 		     xfs_bmap_count_tree(mp, tp, ifp, bno, level, count)) < 0)) {
315 			xfs_trans_brelse(tp, bp);
316 			XFS_ERROR_REPORT("xfs_bmap_count_tree(1)",
317 					 XFS_ERRLEVEL_LOW, mp);
318 			return -EFSCORRUPTED;
319 		}
320 		xfs_trans_brelse(tp, bp);
321 	} else {
322 		/* count all level 1 nodes and their leaves */
323 		for (;;) {
324 			nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
325 			numrecs = be16_to_cpu(block->bb_numrecs);
326 			xfs_bmap_disk_count_leaves(mp, block, numrecs, count);
327 			xfs_trans_brelse(tp, bp);
328 			if (nextbno == NULLFSBLOCK)
329 				break;
330 			bno = nextbno;
331 			error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp,
332 						XFS_BMAP_BTREE_REF,
333 						&xfs_bmbt_buf_ops);
334 			if (error)
335 				return error;
336 			*count += 1;
337 			block = XFS_BUF_TO_BLOCK(bp);
338 		}
339 	}
340 	return 0;
341 }
342 
343 /*
344  * Count fsblocks of the given fork.
345  */
346 static int					/* error */
xfs_bmap_count_blocks(xfs_trans_t * tp,xfs_inode_t * ip,int whichfork,int * count)347 xfs_bmap_count_blocks(
348 	xfs_trans_t		*tp,		/* transaction pointer */
349 	xfs_inode_t		*ip,		/* incore inode */
350 	int			whichfork,	/* data or attr fork */
351 	int			*count)		/* out: count of blocks */
352 {
353 	struct xfs_btree_block	*block;	/* current btree block */
354 	xfs_fsblock_t		bno;	/* block # of "block" */
355 	xfs_ifork_t		*ifp;	/* fork structure */
356 	int			level;	/* btree level, for checking */
357 	xfs_mount_t		*mp;	/* file system mount structure */
358 	__be64			*pp;	/* pointer to block address */
359 
360 	bno = NULLFSBLOCK;
361 	mp = ip->i_mount;
362 	ifp = XFS_IFORK_PTR(ip, whichfork);
363 	if ( XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_EXTENTS ) {
364 		xfs_bmap_count_leaves(ifp, 0, xfs_iext_count(ifp), count);
365 		return 0;
366 	}
367 
368 	/*
369 	 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out.
370 	 */
371 	block = ifp->if_broot;
372 	level = be16_to_cpu(block->bb_level);
373 	ASSERT(level > 0);
374 	pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes);
375 	bno = be64_to_cpu(*pp);
376 	ASSERT(bno != NULLFSBLOCK);
377 	ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount);
378 	ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks);
379 
380 	if (unlikely(xfs_bmap_count_tree(mp, tp, ifp, bno, level, count) < 0)) {
381 		XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", XFS_ERRLEVEL_LOW,
382 				 mp);
383 		return -EFSCORRUPTED;
384 	}
385 
386 	return 0;
387 }
388 
389 /*
390  * returns 1 for success, 0 if we failed to map the extent.
391  */
392 STATIC int
xfs_getbmapx_fix_eof_hole(xfs_inode_t * ip,int whichfork,struct getbmapx * out,int prealloced,__int64_t end,xfs_fsblock_t startblock,bool moretocome)393 xfs_getbmapx_fix_eof_hole(
394 	xfs_inode_t		*ip,		/* xfs incore inode pointer */
395 	int			whichfork,
396 	struct getbmapx		*out,		/* output structure */
397 	int			prealloced,	/* this is a file with
398 						 * preallocated data space */
399 	__int64_t		end,		/* last block requested */
400 	xfs_fsblock_t		startblock,
401 	bool			moretocome)
402 {
403 	__int64_t		fixlen;
404 	xfs_mount_t		*mp;		/* file system mount point */
405 	xfs_ifork_t		*ifp;		/* inode fork pointer */
406 	xfs_extnum_t		lastx;		/* last extent pointer */
407 	xfs_fileoff_t		fileblock;
408 
409 	if (startblock == HOLESTARTBLOCK) {
410 		mp = ip->i_mount;
411 		out->bmv_block = -1;
412 		fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, XFS_ISIZE(ip)));
413 		fixlen -= out->bmv_offset;
414 		if (prealloced && out->bmv_offset + out->bmv_length == end) {
415 			/* Came to hole at EOF. Trim it. */
416 			if (fixlen <= 0)
417 				return 0;
418 			out->bmv_length = fixlen;
419 		}
420 	} else {
421 		if (startblock == DELAYSTARTBLOCK)
422 			out->bmv_block = -2;
423 		else
424 			out->bmv_block = xfs_fsb_to_db(ip, startblock);
425 		fileblock = XFS_BB_TO_FSB(ip->i_mount, out->bmv_offset);
426 		ifp = XFS_IFORK_PTR(ip, whichfork);
427 		if (!moretocome &&
428 		    xfs_iext_bno_to_ext(ifp, fileblock, &lastx) &&
429 		   (lastx == xfs_iext_count(ifp) - 1))
430 			out->bmv_oflags |= BMV_OF_LAST;
431 	}
432 
433 	return 1;
434 }
435 
436 /* Adjust the reported bmap around shared/unshared extent transitions. */
437 STATIC int
xfs_getbmap_adjust_shared(struct xfs_inode * ip,int whichfork,struct xfs_bmbt_irec * map,struct getbmapx * out,struct xfs_bmbt_irec * next_map)438 xfs_getbmap_adjust_shared(
439 	struct xfs_inode		*ip,
440 	int				whichfork,
441 	struct xfs_bmbt_irec		*map,
442 	struct getbmapx			*out,
443 	struct xfs_bmbt_irec		*next_map)
444 {
445 	struct xfs_mount		*mp = ip->i_mount;
446 	xfs_agnumber_t			agno;
447 	xfs_agblock_t			agbno;
448 	xfs_agblock_t			ebno;
449 	xfs_extlen_t			elen;
450 	xfs_extlen_t			nlen;
451 	int				error;
452 
453 	next_map->br_startblock = NULLFSBLOCK;
454 	next_map->br_startoff = NULLFILEOFF;
455 	next_map->br_blockcount = 0;
456 
457 	/* Only written data blocks can be shared. */
458 	if (!xfs_is_reflink_inode(ip) || whichfork != XFS_DATA_FORK ||
459 	    map->br_startblock == DELAYSTARTBLOCK ||
460 	    map->br_startblock == HOLESTARTBLOCK ||
461 	    ISUNWRITTEN(map))
462 		return 0;
463 
464 	agno = XFS_FSB_TO_AGNO(mp, map->br_startblock);
465 	agbno = XFS_FSB_TO_AGBNO(mp, map->br_startblock);
466 	error = xfs_reflink_find_shared(mp, agno, agbno, map->br_blockcount,
467 			&ebno, &elen, true);
468 	if (error)
469 		return error;
470 
471 	if (ebno == NULLAGBLOCK) {
472 		/* No shared blocks at all. */
473 		return 0;
474 	} else if (agbno == ebno) {
475 		/*
476 		 * Shared extent at (agbno, elen).  Shrink the reported
477 		 * extent length and prepare to move the start of map[i]
478 		 * to agbno+elen, with the aim of (re)formatting the new
479 		 * map[i] the next time through the inner loop.
480 		 */
481 		out->bmv_length = XFS_FSB_TO_BB(mp, elen);
482 		out->bmv_oflags |= BMV_OF_SHARED;
483 		if (elen != map->br_blockcount) {
484 			*next_map = *map;
485 			next_map->br_startblock += elen;
486 			next_map->br_startoff += elen;
487 			next_map->br_blockcount -= elen;
488 		}
489 		map->br_blockcount -= elen;
490 	} else {
491 		/*
492 		 * There's an unshared extent (agbno, ebno - agbno)
493 		 * followed by shared extent at (ebno, elen).  Shrink
494 		 * the reported extent length to cover only the unshared
495 		 * extent and prepare to move up the start of map[i] to
496 		 * ebno, with the aim of (re)formatting the new map[i]
497 		 * the next time through the inner loop.
498 		 */
499 		*next_map = *map;
500 		nlen = ebno - agbno;
501 		out->bmv_length = XFS_FSB_TO_BB(mp, nlen);
502 		next_map->br_startblock += nlen;
503 		next_map->br_startoff += nlen;
504 		next_map->br_blockcount -= nlen;
505 		map->br_blockcount -= nlen;
506 	}
507 
508 	return 0;
509 }
510 
511 /*
512  * Get inode's extents as described in bmv, and format for output.
513  * Calls formatter to fill the user's buffer until all extents
514  * are mapped, until the passed-in bmv->bmv_count slots have
515  * been filled, or until the formatter short-circuits the loop,
516  * if it is tracking filled-in extents on its own.
517  */
518 int						/* error code */
xfs_getbmap(xfs_inode_t * ip,struct getbmapx * bmv,xfs_bmap_format_t formatter,void * arg)519 xfs_getbmap(
520 	xfs_inode_t		*ip,
521 	struct getbmapx		*bmv,		/* user bmap structure */
522 	xfs_bmap_format_t	formatter,	/* format to user */
523 	void			*arg)		/* formatter arg */
524 {
525 	__int64_t		bmvend;		/* last block requested */
526 	int			error = 0;	/* return value */
527 	__int64_t		fixlen;		/* length for -1 case */
528 	int			i;		/* extent number */
529 	int			lock;		/* lock state */
530 	xfs_bmbt_irec_t		*map;		/* buffer for user's data */
531 	xfs_mount_t		*mp;		/* file system mount point */
532 	int			nex;		/* # of user extents can do */
533 	int			subnex;		/* # of bmapi's can do */
534 	int			nmap;		/* number of map entries */
535 	struct getbmapx		*out;		/* output structure */
536 	int			whichfork;	/* data or attr fork */
537 	int			prealloced;	/* this is a file with
538 						 * preallocated data space */
539 	int			iflags;		/* interface flags */
540 	int			bmapi_flags;	/* flags for xfs_bmapi */
541 	int			cur_ext = 0;
542 	struct xfs_bmbt_irec	inject_map;
543 
544 	mp = ip->i_mount;
545 	iflags = bmv->bmv_iflags;
546 
547 #ifndef DEBUG
548 	/* Only allow CoW fork queries if we're debugging. */
549 	if (iflags & BMV_IF_COWFORK)
550 		return -EINVAL;
551 #endif
552 	if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK))
553 		return -EINVAL;
554 
555 	if (iflags & BMV_IF_ATTRFORK)
556 		whichfork = XFS_ATTR_FORK;
557 	else if (iflags & BMV_IF_COWFORK)
558 		whichfork = XFS_COW_FORK;
559 	else
560 		whichfork = XFS_DATA_FORK;
561 
562 	switch (whichfork) {
563 	case XFS_ATTR_FORK:
564 		if (XFS_IFORK_Q(ip)) {
565 			if (ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS &&
566 			    ip->i_d.di_aformat != XFS_DINODE_FMT_BTREE &&
567 			    ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)
568 				return -EINVAL;
569 		} else if (unlikely(
570 			   ip->i_d.di_aformat != 0 &&
571 			   ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS)) {
572 			XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW,
573 					 ip->i_mount);
574 			return -EFSCORRUPTED;
575 		}
576 
577 		prealloced = 0;
578 		fixlen = 1LL << 32;
579 		break;
580 	case XFS_COW_FORK:
581 		if (ip->i_cformat != XFS_DINODE_FMT_EXTENTS)
582 			return -EINVAL;
583 
584 		if (xfs_get_cowextsz_hint(ip)) {
585 			prealloced = 1;
586 			fixlen = mp->m_super->s_maxbytes;
587 		} else {
588 			prealloced = 0;
589 			fixlen = XFS_ISIZE(ip);
590 		}
591 		break;
592 	default:
593 		/* Local format data forks report no extents. */
594 		if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL) {
595 			bmv->bmv_entries = 0;
596 			return 0;
597 		}
598 		if (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS &&
599 		    ip->i_d.di_format != XFS_DINODE_FMT_BTREE)
600 			return -EINVAL;
601 
602 		if (xfs_get_extsz_hint(ip) ||
603 		    ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC|XFS_DIFLAG_APPEND)){
604 			prealloced = 1;
605 			fixlen = mp->m_super->s_maxbytes;
606 		} else {
607 			prealloced = 0;
608 			fixlen = XFS_ISIZE(ip);
609 		}
610 		break;
611 	}
612 
613 	if (bmv->bmv_length == -1) {
614 		fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, fixlen));
615 		bmv->bmv_length =
616 			max_t(__int64_t, fixlen - bmv->bmv_offset, 0);
617 	} else if (bmv->bmv_length == 0) {
618 		bmv->bmv_entries = 0;
619 		return 0;
620 	} else if (bmv->bmv_length < 0) {
621 		return -EINVAL;
622 	}
623 
624 	nex = bmv->bmv_count - 1;
625 	if (nex <= 0)
626 		return -EINVAL;
627 	bmvend = bmv->bmv_offset + bmv->bmv_length;
628 
629 
630 	if (bmv->bmv_count > ULONG_MAX / sizeof(struct getbmapx))
631 		return -ENOMEM;
632 	out = kmem_zalloc_large(bmv->bmv_count * sizeof(struct getbmapx), 0);
633 	if (!out)
634 		return -ENOMEM;
635 
636 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
637 	switch (whichfork) {
638 	case XFS_DATA_FORK:
639 		if (!(iflags & BMV_IF_DELALLOC) &&
640 		    (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) {
641 			error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
642 			if (error)
643 				goto out_unlock_iolock;
644 
645 			/*
646 			 * Even after flushing the inode, there can still be
647 			 * delalloc blocks on the inode beyond EOF due to
648 			 * speculative preallocation.  These are not removed
649 			 * until the release function is called or the inode
650 			 * is inactivated.  Hence we cannot assert here that
651 			 * ip->i_delayed_blks == 0.
652 			 */
653 		}
654 
655 		lock = xfs_ilock_data_map_shared(ip);
656 		break;
657 	case XFS_COW_FORK:
658 		lock = XFS_ILOCK_SHARED;
659 		xfs_ilock(ip, lock);
660 		break;
661 	case XFS_ATTR_FORK:
662 		lock = xfs_ilock_attr_map_shared(ip);
663 		break;
664 	}
665 
666 	/*
667 	 * Don't let nex be bigger than the number of extents
668 	 * we can have assuming alternating holes and real extents.
669 	 */
670 	if (nex > XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1)
671 		nex = XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1;
672 
673 	bmapi_flags = xfs_bmapi_aflag(whichfork);
674 	if (!(iflags & BMV_IF_PREALLOC))
675 		bmapi_flags |= XFS_BMAPI_IGSTATE;
676 
677 	/*
678 	 * Allocate enough space to handle "subnex" maps at a time.
679 	 */
680 	error = -ENOMEM;
681 	subnex = 16;
682 	map = kmem_alloc(subnex * sizeof(*map), KM_MAYFAIL | KM_NOFS);
683 	if (!map)
684 		goto out_unlock_ilock;
685 
686 	bmv->bmv_entries = 0;
687 
688 	if (XFS_IFORK_NEXTENTS(ip, whichfork) == 0 &&
689 	    (whichfork == XFS_ATTR_FORK || !(iflags & BMV_IF_DELALLOC))) {
690 		error = 0;
691 		goto out_free_map;
692 	}
693 
694 	do {
695 		nmap = (nex> subnex) ? subnex : nex;
696 		error = xfs_bmapi_read(ip, XFS_BB_TO_FSBT(mp, bmv->bmv_offset),
697 				       XFS_BB_TO_FSB(mp, bmv->bmv_length),
698 				       map, &nmap, bmapi_flags);
699 		if (error)
700 			goto out_free_map;
701 		ASSERT(nmap <= subnex);
702 
703 		for (i = 0; i < nmap && bmv->bmv_length &&
704 				cur_ext < bmv->bmv_count - 1; i++) {
705 			out[cur_ext].bmv_oflags = 0;
706 			if (map[i].br_state == XFS_EXT_UNWRITTEN)
707 				out[cur_ext].bmv_oflags |= BMV_OF_PREALLOC;
708 			else if (map[i].br_startblock == DELAYSTARTBLOCK)
709 				out[cur_ext].bmv_oflags |= BMV_OF_DELALLOC;
710 			out[cur_ext].bmv_offset =
711 				XFS_FSB_TO_BB(mp, map[i].br_startoff);
712 			out[cur_ext].bmv_length =
713 				XFS_FSB_TO_BB(mp, map[i].br_blockcount);
714 			out[cur_ext].bmv_unused1 = 0;
715 			out[cur_ext].bmv_unused2 = 0;
716 
717 			/*
718 			 * delayed allocation extents that start beyond EOF can
719 			 * occur due to speculative EOF allocation when the
720 			 * delalloc extent is larger than the largest freespace
721 			 * extent at conversion time. These extents cannot be
722 			 * converted by data writeback, so can exist here even
723 			 * if we are not supposed to be finding delalloc
724 			 * extents.
725 			 */
726 			if (map[i].br_startblock == DELAYSTARTBLOCK &&
727 			    map[i].br_startoff < XFS_B_TO_FSB(mp, XFS_ISIZE(ip)))
728 				ASSERT((iflags & BMV_IF_DELALLOC) != 0);
729 
730                         if (map[i].br_startblock == HOLESTARTBLOCK &&
731 			    whichfork == XFS_ATTR_FORK) {
732 				/* came to the end of attribute fork */
733 				out[cur_ext].bmv_oflags |= BMV_OF_LAST;
734 				goto out_free_map;
735 			}
736 
737 			/* Is this a shared block? */
738 			error = xfs_getbmap_adjust_shared(ip, whichfork,
739 					&map[i], &out[cur_ext], &inject_map);
740 			if (error)
741 				goto out_free_map;
742 
743 			if (!xfs_getbmapx_fix_eof_hole(ip, whichfork,
744 					&out[cur_ext], prealloced, bmvend,
745 					map[i].br_startblock,
746 					inject_map.br_startblock != NULLFSBLOCK))
747 				goto out_free_map;
748 
749 			bmv->bmv_offset =
750 				out[cur_ext].bmv_offset +
751 				out[cur_ext].bmv_length;
752 			bmv->bmv_length =
753 				max_t(__int64_t, 0, bmvend - bmv->bmv_offset);
754 
755 			/*
756 			 * In case we don't want to return the hole,
757 			 * don't increase cur_ext so that we can reuse
758 			 * it in the next loop.
759 			 */
760 			if ((iflags & BMV_IF_NO_HOLES) &&
761 			    map[i].br_startblock == HOLESTARTBLOCK) {
762 				memset(&out[cur_ext], 0, sizeof(out[cur_ext]));
763 				continue;
764 			}
765 
766 			/*
767 			 * In order to report shared extents accurately,
768 			 * we report each distinct shared/unshared part
769 			 * of a single bmbt record using multiple bmap
770 			 * extents.  To make that happen, we iterate the
771 			 * same map array item multiple times, each
772 			 * time trimming out the subextent that we just
773 			 * reported.
774 			 *
775 			 * Because of this, we must check the out array
776 			 * index (cur_ext) directly against bmv_count-1
777 			 * to avoid overflows.
778 			 */
779 			if (inject_map.br_startblock != NULLFSBLOCK) {
780 				map[i] = inject_map;
781 				i--;
782 			}
783 			bmv->bmv_entries++;
784 			cur_ext++;
785 		}
786 	} while (nmap && bmv->bmv_length && cur_ext < bmv->bmv_count - 1);
787 
788  out_free_map:
789 	kmem_free(map);
790  out_unlock_ilock:
791 	xfs_iunlock(ip, lock);
792  out_unlock_iolock:
793 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
794 
795 	for (i = 0; i < cur_ext; i++) {
796 		int full = 0;	/* user array is full */
797 
798 		/* format results & advance arg */
799 		error = formatter(&arg, &out[i], &full);
800 		if (error || full)
801 			break;
802 	}
803 
804 	kmem_free(out);
805 	return error;
806 }
807 
808 /*
809  * dead simple method of punching delalyed allocation blocks from a range in
810  * the inode. Walks a block at a time so will be slow, but is only executed in
811  * rare error cases so the overhead is not critical. This will always punch out
812  * both the start and end blocks, even if the ranges only partially overlap
813  * them, so it is up to the caller to ensure that partial blocks are not
814  * passed in.
815  */
816 int
xfs_bmap_punch_delalloc_range(struct xfs_inode * ip,xfs_fileoff_t start_fsb,xfs_fileoff_t length)817 xfs_bmap_punch_delalloc_range(
818 	struct xfs_inode	*ip,
819 	xfs_fileoff_t		start_fsb,
820 	xfs_fileoff_t		length)
821 {
822 	xfs_fileoff_t		remaining = length;
823 	int			error = 0;
824 
825 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
826 
827 	do {
828 		int		done;
829 		xfs_bmbt_irec_t	imap;
830 		int		nimaps = 1;
831 		xfs_fsblock_t	firstblock;
832 		struct xfs_defer_ops dfops;
833 
834 		/*
835 		 * Map the range first and check that it is a delalloc extent
836 		 * before trying to unmap the range. Otherwise we will be
837 		 * trying to remove a real extent (which requires a
838 		 * transaction) or a hole, which is probably a bad idea...
839 		 */
840 		error = xfs_bmapi_read(ip, start_fsb, 1, &imap, &nimaps,
841 				       XFS_BMAPI_ENTIRE);
842 
843 		if (error) {
844 			/* something screwed, just bail */
845 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
846 				xfs_alert(ip->i_mount,
847 			"Failed delalloc mapping lookup ino %lld fsb %lld.",
848 						ip->i_ino, start_fsb);
849 			}
850 			break;
851 		}
852 		if (!nimaps) {
853 			/* nothing there */
854 			goto next_block;
855 		}
856 		if (imap.br_startblock != DELAYSTARTBLOCK) {
857 			/* been converted, ignore */
858 			goto next_block;
859 		}
860 		WARN_ON(imap.br_blockcount == 0);
861 
862 		/*
863 		 * Note: while we initialise the firstblock/dfops pair, they
864 		 * should never be used because blocks should never be
865 		 * allocated or freed for a delalloc extent and hence we need
866 		 * don't cancel or finish them after the xfs_bunmapi() call.
867 		 */
868 		xfs_defer_init(&dfops, &firstblock);
869 		error = xfs_bunmapi(NULL, ip, start_fsb, 1, 0, 1, &firstblock,
870 					&dfops, &done);
871 		if (error)
872 			break;
873 
874 		ASSERT(!xfs_defer_has_unfinished_work(&dfops));
875 next_block:
876 		start_fsb++;
877 		remaining--;
878 	} while(remaining > 0);
879 
880 	return error;
881 }
882 
883 /*
884  * Test whether it is appropriate to check an inode for and free post EOF
885  * blocks. The 'force' parameter determines whether we should also consider
886  * regular files that are marked preallocated or append-only.
887  */
888 bool
xfs_can_free_eofblocks(struct xfs_inode * ip,bool force)889 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
890 {
891 	/* prealloc/delalloc exists only on regular files */
892 	if (!S_ISREG(VFS_I(ip)->i_mode))
893 		return false;
894 
895 	/*
896 	 * Zero sized files with no cached pages and delalloc blocks will not
897 	 * have speculative prealloc/delalloc blocks to remove.
898 	 */
899 	if (VFS_I(ip)->i_size == 0 &&
900 	    VFS_I(ip)->i_mapping->nrpages == 0 &&
901 	    ip->i_delayed_blks == 0)
902 		return false;
903 
904 	/* If we haven't read in the extent list, then don't do it now. */
905 	if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
906 		return false;
907 
908 	/*
909 	 * Do not free real preallocated or append-only files unless the file
910 	 * has delalloc blocks and we are forced to remove them.
911 	 */
912 	if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
913 		if (!force || ip->i_delayed_blks == 0)
914 			return false;
915 
916 	return true;
917 }
918 
919 /*
920  * This is called to free any blocks beyond eof. The caller must hold
921  * IOLOCK_EXCL unless we are in the inode reclaim path and have the only
922  * reference to the inode.
923  */
924 int
xfs_free_eofblocks(struct xfs_inode * ip)925 xfs_free_eofblocks(
926 	struct xfs_inode	*ip)
927 {
928 	struct xfs_trans	*tp;
929 	int			error;
930 	xfs_fileoff_t		end_fsb;
931 	xfs_fileoff_t		last_fsb;
932 	xfs_filblks_t		map_len;
933 	int			nimaps;
934 	struct xfs_bmbt_irec	imap;
935 	struct xfs_mount	*mp = ip->i_mount;
936 
937 	/*
938 	 * Figure out if there are any blocks beyond the end
939 	 * of the file.  If not, then there is nothing to do.
940 	 */
941 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip));
942 	last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
943 	if (last_fsb <= end_fsb)
944 		return 0;
945 	map_len = last_fsb - end_fsb;
946 
947 	nimaps = 1;
948 	xfs_ilock(ip, XFS_ILOCK_SHARED);
949 	error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0);
950 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
951 
952 	/*
953 	 * If there are blocks after the end of file, truncate the file to its
954 	 * current size to free them up.
955 	 */
956 	if (!error && (nimaps != 0) &&
957 	    (imap.br_startblock != HOLESTARTBLOCK ||
958 	     ip->i_delayed_blks)) {
959 		/*
960 		 * Attach the dquots to the inode up front.
961 		 */
962 		error = xfs_qm_dqattach(ip, 0);
963 		if (error)
964 			return error;
965 
966 		/* wait on dio to ensure i_size has settled */
967 		inode_dio_wait(VFS_I(ip));
968 
969 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0,
970 				&tp);
971 		if (error) {
972 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
973 			return error;
974 		}
975 
976 		xfs_ilock(ip, XFS_ILOCK_EXCL);
977 		xfs_trans_ijoin(tp, ip, 0);
978 
979 		/*
980 		 * Do not update the on-disk file size.  If we update the
981 		 * on-disk file size and then the system crashes before the
982 		 * contents of the file are flushed to disk then the files
983 		 * may be full of holes (ie NULL files bug).
984 		 */
985 		error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK,
986 					      XFS_ISIZE(ip));
987 		if (error) {
988 			/*
989 			 * If we get an error at this point we simply don't
990 			 * bother truncating the file.
991 			 */
992 			xfs_trans_cancel(tp);
993 		} else {
994 			error = xfs_trans_commit(tp);
995 			if (!error)
996 				xfs_inode_clear_eofblocks_tag(ip);
997 		}
998 
999 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1000 	}
1001 	return error;
1002 }
1003 
1004 int
xfs_alloc_file_space(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len,int alloc_type)1005 xfs_alloc_file_space(
1006 	struct xfs_inode	*ip,
1007 	xfs_off_t		offset,
1008 	xfs_off_t		len,
1009 	int			alloc_type)
1010 {
1011 	xfs_mount_t		*mp = ip->i_mount;
1012 	xfs_off_t		count;
1013 	xfs_filblks_t		allocated_fsb;
1014 	xfs_filblks_t		allocatesize_fsb;
1015 	xfs_extlen_t		extsz, temp;
1016 	xfs_fileoff_t		startoffset_fsb;
1017 	xfs_fsblock_t		firstfsb;
1018 	int			nimaps;
1019 	int			quota_flag;
1020 	int			rt;
1021 	xfs_trans_t		*tp;
1022 	xfs_bmbt_irec_t		imaps[1], *imapp;
1023 	struct xfs_defer_ops	dfops;
1024 	uint			qblocks, resblks, resrtextents;
1025 	int			error;
1026 
1027 	trace_xfs_alloc_file_space(ip);
1028 
1029 	if (XFS_FORCED_SHUTDOWN(mp))
1030 		return -EIO;
1031 
1032 	error = xfs_qm_dqattach(ip, 0);
1033 	if (error)
1034 		return error;
1035 
1036 	if (len <= 0)
1037 		return -EINVAL;
1038 
1039 	rt = XFS_IS_REALTIME_INODE(ip);
1040 	extsz = xfs_get_extsz_hint(ip);
1041 
1042 	count = len;
1043 	imapp = &imaps[0];
1044 	nimaps = 1;
1045 	startoffset_fsb	= XFS_B_TO_FSBT(mp, offset);
1046 	allocatesize_fsb = XFS_B_TO_FSB(mp, count);
1047 
1048 	/*
1049 	 * Allocate file space until done or until there is an error
1050 	 */
1051 	while (allocatesize_fsb && !error) {
1052 		xfs_fileoff_t	s, e;
1053 
1054 		/*
1055 		 * Determine space reservations for data/realtime.
1056 		 */
1057 		if (unlikely(extsz)) {
1058 			s = startoffset_fsb;
1059 			do_div(s, extsz);
1060 			s *= extsz;
1061 			e = startoffset_fsb + allocatesize_fsb;
1062 			if ((temp = do_mod(startoffset_fsb, extsz)))
1063 				e += temp;
1064 			if ((temp = do_mod(e, extsz)))
1065 				e += extsz - temp;
1066 		} else {
1067 			s = 0;
1068 			e = allocatesize_fsb;
1069 		}
1070 
1071 		/*
1072 		 * The transaction reservation is limited to a 32-bit block
1073 		 * count, hence we need to limit the number of blocks we are
1074 		 * trying to reserve to avoid an overflow. We can't allocate
1075 		 * more than @nimaps extents, and an extent is limited on disk
1076 		 * to MAXEXTLEN (21 bits), so use that to enforce the limit.
1077 		 */
1078 		resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps));
1079 		if (unlikely(rt)) {
1080 			resrtextents = qblocks = resblks;
1081 			resrtextents /= mp->m_sb.sb_rextsize;
1082 			resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1083 			quota_flag = XFS_QMOPT_RES_RTBLKS;
1084 		} else {
1085 			resrtextents = 0;
1086 			resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks);
1087 			quota_flag = XFS_QMOPT_RES_REGBLKS;
1088 		}
1089 
1090 		/*
1091 		 * Allocate and setup the transaction.
1092 		 */
1093 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks,
1094 				resrtextents, 0, &tp);
1095 
1096 		/*
1097 		 * Check for running out of space
1098 		 */
1099 		if (error) {
1100 			/*
1101 			 * Free the transaction structure.
1102 			 */
1103 			ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1104 			break;
1105 		}
1106 		xfs_ilock(ip, XFS_ILOCK_EXCL);
1107 		error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks,
1108 						      0, quota_flag);
1109 		if (error)
1110 			goto error1;
1111 
1112 		xfs_trans_ijoin(tp, ip, 0);
1113 
1114 		xfs_defer_init(&dfops, &firstfsb);
1115 		error = xfs_bmapi_write(tp, ip, startoffset_fsb,
1116 					allocatesize_fsb, alloc_type, &firstfsb,
1117 					resblks, imapp, &nimaps, &dfops);
1118 		if (error)
1119 			goto error0;
1120 
1121 		/*
1122 		 * Complete the transaction
1123 		 */
1124 		error = xfs_defer_finish(&tp, &dfops, NULL);
1125 		if (error)
1126 			goto error0;
1127 
1128 		error = xfs_trans_commit(tp);
1129 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1130 		if (error)
1131 			break;
1132 
1133 		allocated_fsb = imapp->br_blockcount;
1134 
1135 		if (nimaps == 0) {
1136 			error = -ENOSPC;
1137 			break;
1138 		}
1139 
1140 		startoffset_fsb += allocated_fsb;
1141 		allocatesize_fsb -= allocated_fsb;
1142 	}
1143 
1144 	return error;
1145 
1146 error0:	/* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */
1147 	xfs_defer_cancel(&dfops);
1148 	xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag);
1149 
1150 error1:	/* Just cancel transaction */
1151 	xfs_trans_cancel(tp);
1152 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1153 	return error;
1154 }
1155 
1156 static int
xfs_unmap_extent(struct xfs_inode * ip,xfs_fileoff_t startoffset_fsb,xfs_filblks_t len_fsb,int * done)1157 xfs_unmap_extent(
1158 	struct xfs_inode	*ip,
1159 	xfs_fileoff_t		startoffset_fsb,
1160 	xfs_filblks_t		len_fsb,
1161 	int			*done)
1162 {
1163 	struct xfs_mount	*mp = ip->i_mount;
1164 	struct xfs_trans	*tp;
1165 	struct xfs_defer_ops	dfops;
1166 	xfs_fsblock_t		firstfsb;
1167 	uint			resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1168 	int			error;
1169 
1170 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1171 	if (error) {
1172 		ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1173 		return error;
1174 	}
1175 
1176 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1177 	error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot,
1178 			ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS);
1179 	if (error)
1180 		goto out_trans_cancel;
1181 
1182 	xfs_trans_ijoin(tp, ip, 0);
1183 
1184 	xfs_defer_init(&dfops, &firstfsb);
1185 	error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, &firstfsb,
1186 			&dfops, done);
1187 	if (error)
1188 		goto out_bmap_cancel;
1189 
1190 	error = xfs_defer_finish(&tp, &dfops, ip);
1191 	if (error)
1192 		goto out_bmap_cancel;
1193 
1194 	error = xfs_trans_commit(tp);
1195 out_unlock:
1196 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1197 	return error;
1198 
1199 out_bmap_cancel:
1200 	xfs_defer_cancel(&dfops);
1201 out_trans_cancel:
1202 	xfs_trans_cancel(tp);
1203 	goto out_unlock;
1204 }
1205 
1206 static int
xfs_adjust_extent_unmap_boundaries(struct xfs_inode * ip,xfs_fileoff_t * startoffset_fsb,xfs_fileoff_t * endoffset_fsb)1207 xfs_adjust_extent_unmap_boundaries(
1208 	struct xfs_inode	*ip,
1209 	xfs_fileoff_t		*startoffset_fsb,
1210 	xfs_fileoff_t		*endoffset_fsb)
1211 {
1212 	struct xfs_mount	*mp = ip->i_mount;
1213 	struct xfs_bmbt_irec	imap;
1214 	int			nimap, error;
1215 	xfs_extlen_t		mod = 0;
1216 
1217 	nimap = 1;
1218 	error = xfs_bmapi_read(ip, *startoffset_fsb, 1, &imap, &nimap, 0);
1219 	if (error)
1220 		return error;
1221 
1222 	if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1223 		xfs_daddr_t	block;
1224 
1225 		ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1226 		block = imap.br_startblock;
1227 		mod = do_div(block, mp->m_sb.sb_rextsize);
1228 		if (mod)
1229 			*startoffset_fsb += mp->m_sb.sb_rextsize - mod;
1230 	}
1231 
1232 	nimap = 1;
1233 	error = xfs_bmapi_read(ip, *endoffset_fsb - 1, 1, &imap, &nimap, 0);
1234 	if (error)
1235 		return error;
1236 
1237 	if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1238 		ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1239 		mod++;
1240 		if (mod && mod != mp->m_sb.sb_rextsize)
1241 			*endoffset_fsb -= mod;
1242 	}
1243 
1244 	return 0;
1245 }
1246 
1247 static int
xfs_flush_unmap_range(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len)1248 xfs_flush_unmap_range(
1249 	struct xfs_inode	*ip,
1250 	xfs_off_t		offset,
1251 	xfs_off_t		len)
1252 {
1253 	struct xfs_mount	*mp = ip->i_mount;
1254 	struct inode		*inode = VFS_I(ip);
1255 	xfs_off_t		rounding, start, end;
1256 	int			error;
1257 
1258 	/* wait for the completion of any pending DIOs */
1259 	inode_dio_wait(inode);
1260 
1261 	rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE);
1262 	start = round_down(offset, rounding);
1263 	end = round_up(offset + len, rounding) - 1;
1264 
1265 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
1266 	if (error)
1267 		return error;
1268 	truncate_pagecache_range(inode, start, end);
1269 	return 0;
1270 }
1271 
1272 int
xfs_free_file_space(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len)1273 xfs_free_file_space(
1274 	struct xfs_inode	*ip,
1275 	xfs_off_t		offset,
1276 	xfs_off_t		len)
1277 {
1278 	struct xfs_mount	*mp = ip->i_mount;
1279 	xfs_fileoff_t		startoffset_fsb;
1280 	xfs_fileoff_t		endoffset_fsb;
1281 	int			done = 0, error;
1282 
1283 	trace_xfs_free_file_space(ip);
1284 
1285 	error = xfs_qm_dqattach(ip, 0);
1286 	if (error)
1287 		return error;
1288 
1289 	if (len <= 0)	/* if nothing being freed */
1290 		return 0;
1291 
1292 	error = xfs_flush_unmap_range(ip, offset, len);
1293 	if (error)
1294 		return error;
1295 
1296 	startoffset_fsb = XFS_B_TO_FSB(mp, offset);
1297 	endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len);
1298 
1299 	/*
1300 	 * Need to zero the stuff we're not freeing, on disk.  If it's a RT file
1301 	 * and we can't use unwritten extents then we actually need to ensure
1302 	 * to zero the whole extent, otherwise we just need to take of block
1303 	 * boundaries, and xfs_bunmapi will handle the rest.
1304 	 */
1305 	if (XFS_IS_REALTIME_INODE(ip) &&
1306 	    !xfs_sb_version_hasextflgbit(&mp->m_sb)) {
1307 		error = xfs_adjust_extent_unmap_boundaries(ip, &startoffset_fsb,
1308 				&endoffset_fsb);
1309 		if (error)
1310 			return error;
1311 	}
1312 
1313 	if (endoffset_fsb > startoffset_fsb) {
1314 		while (!done) {
1315 			error = xfs_unmap_extent(ip, startoffset_fsb,
1316 					endoffset_fsb - startoffset_fsb, &done);
1317 			if (error)
1318 				return error;
1319 		}
1320 	}
1321 
1322 	/*
1323 	 * Now that we've unmap all full blocks we'll have to zero out any
1324 	 * partial block at the beginning and/or end.  xfs_zero_range is
1325 	 * smart enough to skip any holes, including those we just created,
1326 	 * but we must take care not to zero beyond EOF and enlarge i_size.
1327 	 */
1328 
1329 	if (offset >= XFS_ISIZE(ip))
1330 		return 0;
1331 
1332 	if (offset + len > XFS_ISIZE(ip))
1333 		len = XFS_ISIZE(ip) - offset;
1334 
1335 	return xfs_zero_range(ip, offset, len, NULL);
1336 }
1337 
1338 /*
1339  * Preallocate and zero a range of a file. This mechanism has the allocation
1340  * semantics of fallocate and in addition converts data in the range to zeroes.
1341  */
1342 int
xfs_zero_file_space(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len)1343 xfs_zero_file_space(
1344 	struct xfs_inode	*ip,
1345 	xfs_off_t		offset,
1346 	xfs_off_t		len)
1347 {
1348 	struct xfs_mount	*mp = ip->i_mount;
1349 	uint			blksize;
1350 	int			error;
1351 
1352 	trace_xfs_zero_file_space(ip);
1353 
1354 	blksize = 1 << mp->m_sb.sb_blocklog;
1355 
1356 	/*
1357 	 * Punch a hole and prealloc the range. We use hole punch rather than
1358 	 * unwritten extent conversion for two reasons:
1359 	 *
1360 	 * 1.) Hole punch handles partial block zeroing for us.
1361 	 *
1362 	 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued
1363 	 * by virtue of the hole punch.
1364 	 */
1365 	error = xfs_free_file_space(ip, offset, len);
1366 	if (error)
1367 		goto out;
1368 
1369 	error = xfs_alloc_file_space(ip, round_down(offset, blksize),
1370 				     round_up(offset + len, blksize) -
1371 				     round_down(offset, blksize),
1372 				     XFS_BMAPI_PREALLOC);
1373 out:
1374 	return error;
1375 
1376 }
1377 
1378 /*
1379  * @next_fsb will keep track of the extent currently undergoing shift.
1380  * @stop_fsb will keep track of the extent at which we have to stop.
1381  * If we are shifting left, we will start with block (offset + len) and
1382  * shift each extent till last extent.
1383  * If we are shifting right, we will start with last extent inside file space
1384  * and continue until we reach the block corresponding to offset.
1385  */
1386 static int
xfs_shift_file_space(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len,enum shift_direction direction)1387 xfs_shift_file_space(
1388 	struct xfs_inode        *ip,
1389 	xfs_off_t               offset,
1390 	xfs_off_t               len,
1391 	enum shift_direction	direction)
1392 {
1393 	int			done = 0;
1394 	struct xfs_mount	*mp = ip->i_mount;
1395 	struct xfs_trans	*tp;
1396 	int			error;
1397 	struct xfs_defer_ops	dfops;
1398 	xfs_fsblock_t		first_block;
1399 	xfs_fileoff_t		stop_fsb;
1400 	xfs_fileoff_t		next_fsb;
1401 	xfs_fileoff_t		shift_fsb;
1402 	uint			resblks;
1403 
1404 	ASSERT(direction == SHIFT_LEFT || direction == SHIFT_RIGHT);
1405 
1406 	if (direction == SHIFT_LEFT) {
1407 		/*
1408 		 * Reserve blocks to cover potential extent merges after left
1409 		 * shift operations.
1410 		 */
1411 		resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1412 		next_fsb = XFS_B_TO_FSB(mp, offset + len);
1413 		stop_fsb = XFS_B_TO_FSB(mp, VFS_I(ip)->i_size);
1414 	} else {
1415 		/*
1416 		 * If right shift, delegate the work of initialization of
1417 		 * next_fsb to xfs_bmap_shift_extent as it has ilock held.
1418 		 */
1419 		resblks = 0;
1420 		next_fsb = NULLFSBLOCK;
1421 		stop_fsb = XFS_B_TO_FSB(mp, offset);
1422 	}
1423 
1424 	shift_fsb = XFS_B_TO_FSB(mp, len);
1425 
1426 	/*
1427 	 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation
1428 	 * into the accessible region of the file.
1429 	 */
1430 	if (xfs_can_free_eofblocks(ip, true)) {
1431 		error = xfs_free_eofblocks(ip);
1432 		if (error)
1433 			return error;
1434 	}
1435 
1436 	/*
1437 	 * Writeback and invalidate cache for the remainder of the file as we're
1438 	 * about to shift down every extent from offset to EOF.
1439 	 */
1440 	error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
1441 					     offset, -1);
1442 	if (error)
1443 		return error;
1444 	error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
1445 					offset >> PAGE_SHIFT, -1);
1446 	if (error)
1447 		return error;
1448 
1449 	/*
1450 	 * Clean out anything hanging around in the cow fork now that
1451 	 * we've flushed all the dirty data out to disk to avoid having
1452 	 * CoW extents at the wrong offsets.
1453 	 */
1454 	if (xfs_is_reflink_inode(ip)) {
1455 		error = xfs_reflink_cancel_cow_range(ip, offset, NULLFILEOFF,
1456 				true);
1457 		if (error)
1458 			return error;
1459 	}
1460 
1461 	/*
1462 	 * The extent shifting code works on extent granularity. So, if
1463 	 * stop_fsb is not the starting block of extent, we need to split
1464 	 * the extent at stop_fsb.
1465 	 */
1466 	if (direction == SHIFT_RIGHT) {
1467 		error = xfs_bmap_split_extent(ip, stop_fsb);
1468 		if (error)
1469 			return error;
1470 	}
1471 
1472 	while (!error && !done) {
1473 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0,
1474 					&tp);
1475 		if (error)
1476 			break;
1477 
1478 		xfs_ilock(ip, XFS_ILOCK_EXCL);
1479 		error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot,
1480 				ip->i_gdquot, ip->i_pdquot, resblks, 0,
1481 				XFS_QMOPT_RES_REGBLKS);
1482 		if (error)
1483 			goto out_trans_cancel;
1484 
1485 		xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1486 
1487 		xfs_defer_init(&dfops, &first_block);
1488 
1489 		/*
1490 		 * We are using the write transaction in which max 2 bmbt
1491 		 * updates are allowed
1492 		 */
1493 		error = xfs_bmap_shift_extents(tp, ip, &next_fsb, shift_fsb,
1494 				&done, stop_fsb, &first_block, &dfops,
1495 				direction, XFS_BMAP_MAX_SHIFT_EXTENTS);
1496 		if (error)
1497 			goto out_bmap_cancel;
1498 
1499 		error = xfs_defer_finish(&tp, &dfops, NULL);
1500 		if (error)
1501 			goto out_bmap_cancel;
1502 
1503 		error = xfs_trans_commit(tp);
1504 	}
1505 
1506 	return error;
1507 
1508 out_bmap_cancel:
1509 	xfs_defer_cancel(&dfops);
1510 out_trans_cancel:
1511 	xfs_trans_cancel(tp);
1512 	return error;
1513 }
1514 
1515 /*
1516  * xfs_collapse_file_space()
1517  *	This routine frees disk space and shift extent for the given file.
1518  *	The first thing we do is to free data blocks in the specified range
1519  *	by calling xfs_free_file_space(). It would also sync dirty data
1520  *	and invalidate page cache over the region on which collapse range
1521  *	is working. And Shift extent records to the left to cover a hole.
1522  * RETURNS:
1523  *	0 on success
1524  *	errno on error
1525  *
1526  */
1527 int
xfs_collapse_file_space(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len)1528 xfs_collapse_file_space(
1529 	struct xfs_inode	*ip,
1530 	xfs_off_t		offset,
1531 	xfs_off_t		len)
1532 {
1533 	int error;
1534 
1535 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1536 	trace_xfs_collapse_file_space(ip);
1537 
1538 	error = xfs_free_file_space(ip, offset, len);
1539 	if (error)
1540 		return error;
1541 
1542 	return xfs_shift_file_space(ip, offset, len, SHIFT_LEFT);
1543 }
1544 
1545 /*
1546  * xfs_insert_file_space()
1547  *	This routine create hole space by shifting extents for the given file.
1548  *	The first thing we do is to sync dirty data and invalidate page cache
1549  *	over the region on which insert range is working. And split an extent
1550  *	to two extents at given offset by calling xfs_bmap_split_extent.
1551  *	And shift all extent records which are laying between [offset,
1552  *	last allocated extent] to the right to reserve hole range.
1553  * RETURNS:
1554  *	0 on success
1555  *	errno on error
1556  */
1557 int
xfs_insert_file_space(struct xfs_inode * ip,loff_t offset,loff_t len)1558 xfs_insert_file_space(
1559 	struct xfs_inode	*ip,
1560 	loff_t			offset,
1561 	loff_t			len)
1562 {
1563 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1564 	trace_xfs_insert_file_space(ip);
1565 
1566 	return xfs_shift_file_space(ip, offset, len, SHIFT_RIGHT);
1567 }
1568 
1569 /*
1570  * We need to check that the format of the data fork in the temporary inode is
1571  * valid for the target inode before doing the swap. This is not a problem with
1572  * attr1 because of the fixed fork offset, but attr2 has a dynamically sized
1573  * data fork depending on the space the attribute fork is taking so we can get
1574  * invalid formats on the target inode.
1575  *
1576  * E.g. target has space for 7 extents in extent format, temp inode only has
1577  * space for 6.  If we defragment down to 7 extents, then the tmp format is a
1578  * btree, but when swapped it needs to be in extent format. Hence we can't just
1579  * blindly swap data forks on attr2 filesystems.
1580  *
1581  * Note that we check the swap in both directions so that we don't end up with
1582  * a corrupt temporary inode, either.
1583  *
1584  * Note that fixing the way xfs_fsr sets up the attribute fork in the source
1585  * inode will prevent this situation from occurring, so all we do here is
1586  * reject and log the attempt. basically we are putting the responsibility on
1587  * userspace to get this right.
1588  */
1589 static int
xfs_swap_extents_check_format(struct xfs_inode * ip,struct xfs_inode * tip)1590 xfs_swap_extents_check_format(
1591 	struct xfs_inode	*ip,	/* target inode */
1592 	struct xfs_inode	*tip)	/* tmp inode */
1593 {
1594 
1595 	/* Should never get a local format */
1596 	if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL ||
1597 	    tip->i_d.di_format == XFS_DINODE_FMT_LOCAL)
1598 		return -EINVAL;
1599 
1600 	/*
1601 	 * if the target inode has less extents that then temporary inode then
1602 	 * why did userspace call us?
1603 	 */
1604 	if (ip->i_d.di_nextents < tip->i_d.di_nextents)
1605 		return -EINVAL;
1606 
1607 	/*
1608 	 * If we have to use the (expensive) rmap swap method, we can
1609 	 * handle any number of extents and any format.
1610 	 */
1611 	if (xfs_sb_version_hasrmapbt(&ip->i_mount->m_sb))
1612 		return 0;
1613 
1614 	/*
1615 	 * if the target inode is in extent form and the temp inode is in btree
1616 	 * form then we will end up with the target inode in the wrong format
1617 	 * as we already know there are less extents in the temp inode.
1618 	 */
1619 	if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1620 	    tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1621 		return -EINVAL;
1622 
1623 	/* Check temp in extent form to max in target */
1624 	if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1625 	    XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) >
1626 			XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1627 		return -EINVAL;
1628 
1629 	/* Check target in extent form to max in temp */
1630 	if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1631 	    XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) >
1632 			XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1633 		return -EINVAL;
1634 
1635 	/*
1636 	 * If we are in a btree format, check that the temp root block will fit
1637 	 * in the target and that it has enough extents to be in btree format
1638 	 * in the target.
1639 	 *
1640 	 * Note that we have to be careful to allow btree->extent conversions
1641 	 * (a common defrag case) which will occur when the temp inode is in
1642 	 * extent format...
1643 	 */
1644 	if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1645 		if (XFS_IFORK_BOFF(ip) &&
1646 		    XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip))
1647 			return -EINVAL;
1648 		if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <=
1649 		    XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1650 			return -EINVAL;
1651 	}
1652 
1653 	/* Reciprocal target->temp btree format checks */
1654 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1655 		if (XFS_IFORK_BOFF(tip) &&
1656 		    XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip))
1657 			return -EINVAL;
1658 		if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <=
1659 		    XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1660 			return -EINVAL;
1661 	}
1662 
1663 	return 0;
1664 }
1665 
1666 static int
xfs_swap_extent_flush(struct xfs_inode * ip)1667 xfs_swap_extent_flush(
1668 	struct xfs_inode	*ip)
1669 {
1670 	int	error;
1671 
1672 	error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1673 	if (error)
1674 		return error;
1675 	truncate_pagecache_range(VFS_I(ip), 0, -1);
1676 
1677 	/* Verify O_DIRECT for ftmp */
1678 	if (VFS_I(ip)->i_mapping->nrpages)
1679 		return -EINVAL;
1680 	return 0;
1681 }
1682 
1683 /*
1684  * Move extents from one file to another, when rmap is enabled.
1685  */
1686 STATIC int
xfs_swap_extent_rmap(struct xfs_trans ** tpp,struct xfs_inode * ip,struct xfs_inode * tip)1687 xfs_swap_extent_rmap(
1688 	struct xfs_trans		**tpp,
1689 	struct xfs_inode		*ip,
1690 	struct xfs_inode		*tip)
1691 {
1692 	struct xfs_bmbt_irec		irec;
1693 	struct xfs_bmbt_irec		uirec;
1694 	struct xfs_bmbt_irec		tirec;
1695 	xfs_fileoff_t			offset_fsb;
1696 	xfs_fileoff_t			end_fsb;
1697 	xfs_filblks_t			count_fsb;
1698 	xfs_fsblock_t			firstfsb;
1699 	struct xfs_defer_ops		dfops;
1700 	int				error;
1701 	xfs_filblks_t			ilen;
1702 	xfs_filblks_t			rlen;
1703 	int				nimaps;
1704 	__uint64_t			tip_flags2;
1705 
1706 	/*
1707 	 * If the source file has shared blocks, we must flag the donor
1708 	 * file as having shared blocks so that we get the shared-block
1709 	 * rmap functions when we go to fix up the rmaps.  The flags
1710 	 * will be switch for reals later.
1711 	 */
1712 	tip_flags2 = tip->i_d.di_flags2;
1713 	if (ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)
1714 		tip->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
1715 
1716 	offset_fsb = 0;
1717 	end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip)));
1718 	count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb);
1719 
1720 	while (count_fsb) {
1721 		/* Read extent from the donor file */
1722 		nimaps = 1;
1723 		error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec,
1724 				&nimaps, 0);
1725 		if (error)
1726 			goto out;
1727 		ASSERT(nimaps == 1);
1728 		ASSERT(tirec.br_startblock != DELAYSTARTBLOCK);
1729 
1730 		trace_xfs_swap_extent_rmap_remap(tip, &tirec);
1731 		ilen = tirec.br_blockcount;
1732 
1733 		/* Unmap the old blocks in the source file. */
1734 		while (tirec.br_blockcount) {
1735 			xfs_defer_init(&dfops, &firstfsb);
1736 			trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec);
1737 
1738 			/* Read extent from the source file */
1739 			nimaps = 1;
1740 			error = xfs_bmapi_read(ip, tirec.br_startoff,
1741 					tirec.br_blockcount, &irec,
1742 					&nimaps, 0);
1743 			if (error)
1744 				goto out_defer;
1745 			ASSERT(nimaps == 1);
1746 			ASSERT(tirec.br_startoff == irec.br_startoff);
1747 			trace_xfs_swap_extent_rmap_remap_piece(ip, &irec);
1748 
1749 			/* Trim the extent. */
1750 			uirec = tirec;
1751 			uirec.br_blockcount = rlen = min_t(xfs_filblks_t,
1752 					tirec.br_blockcount,
1753 					irec.br_blockcount);
1754 			trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec);
1755 
1756 			/* Remove the mapping from the donor file. */
1757 			error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops,
1758 					tip, &uirec);
1759 			if (error)
1760 				goto out_defer;
1761 
1762 			/* Remove the mapping from the source file. */
1763 			error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops,
1764 					ip, &irec);
1765 			if (error)
1766 				goto out_defer;
1767 
1768 			/* Map the donor file's blocks into the source file. */
1769 			error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops,
1770 					ip, &uirec);
1771 			if (error)
1772 				goto out_defer;
1773 
1774 			/* Map the source file's blocks into the donor file. */
1775 			error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops,
1776 					tip, &irec);
1777 			if (error)
1778 				goto out_defer;
1779 
1780 			error = xfs_defer_finish(tpp, &dfops, ip);
1781 			if (error)
1782 				goto out_defer;
1783 
1784 			tirec.br_startoff += rlen;
1785 			if (tirec.br_startblock != HOLESTARTBLOCK &&
1786 			    tirec.br_startblock != DELAYSTARTBLOCK)
1787 				tirec.br_startblock += rlen;
1788 			tirec.br_blockcount -= rlen;
1789 		}
1790 
1791 		/* Roll on... */
1792 		count_fsb -= ilen;
1793 		offset_fsb += ilen;
1794 	}
1795 
1796 	tip->i_d.di_flags2 = tip_flags2;
1797 	return 0;
1798 
1799 out_defer:
1800 	xfs_defer_cancel(&dfops);
1801 out:
1802 	trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_);
1803 	tip->i_d.di_flags2 = tip_flags2;
1804 	return error;
1805 }
1806 
1807 /* Swap the extents of two files by swapping data forks. */
1808 STATIC int
xfs_swap_extent_forks(struct xfs_trans * tp,struct xfs_inode * ip,struct xfs_inode * tip,int * src_log_flags,int * target_log_flags)1809 xfs_swap_extent_forks(
1810 	struct xfs_trans	*tp,
1811 	struct xfs_inode	*ip,
1812 	struct xfs_inode	*tip,
1813 	int			*src_log_flags,
1814 	int			*target_log_flags)
1815 {
1816 	struct xfs_ifork	tempifp, *ifp, *tifp;
1817 	int			aforkblks = 0;
1818 	int			taforkblks = 0;
1819 	xfs_extnum_t		nextents;
1820 	__uint64_t		tmp;
1821 	int			error;
1822 
1823 	/*
1824 	 * Count the number of extended attribute blocks
1825 	 */
1826 	if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) &&
1827 	     (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1828 		error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK,
1829 				&aforkblks);
1830 		if (error)
1831 			return error;
1832 	}
1833 	if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) &&
1834 	     (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1835 		error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK,
1836 				&taforkblks);
1837 		if (error)
1838 			return error;
1839 	}
1840 
1841 	/*
1842 	 * Btree format (v3) inodes have the inode number stamped in the bmbt
1843 	 * block headers. We can't start changing the bmbt blocks until the
1844 	 * inode owner change is logged so recovery does the right thing in the
1845 	 * event of a crash. Set the owner change log flags now and leave the
1846 	 * bmbt scan as the last step.
1847 	 */
1848 	if (ip->i_d.di_version == 3 &&
1849 	    ip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1850 		(*target_log_flags) |= XFS_ILOG_DOWNER;
1851 	if (tip->i_d.di_version == 3 &&
1852 	    tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1853 		(*src_log_flags) |= XFS_ILOG_DOWNER;
1854 
1855 	/*
1856 	 * Swap the data forks of the inodes
1857 	 */
1858 	ifp = &ip->i_df;
1859 	tifp = &tip->i_df;
1860 	tempifp = *ifp;		/* struct copy */
1861 	*ifp = *tifp;		/* struct copy */
1862 	*tifp = tempifp;	/* struct copy */
1863 
1864 	/*
1865 	 * Fix the on-disk inode values
1866 	 */
1867 	tmp = (__uint64_t)ip->i_d.di_nblocks;
1868 	ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks;
1869 	tip->i_d.di_nblocks = tmp + taforkblks - aforkblks;
1870 
1871 	tmp = (__uint64_t) ip->i_d.di_nextents;
1872 	ip->i_d.di_nextents = tip->i_d.di_nextents;
1873 	tip->i_d.di_nextents = tmp;
1874 
1875 	tmp = (__uint64_t) ip->i_d.di_format;
1876 	ip->i_d.di_format = tip->i_d.di_format;
1877 	tip->i_d.di_format = tmp;
1878 
1879 	/*
1880 	 * The extents in the source inode could still contain speculative
1881 	 * preallocation beyond EOF (e.g. the file is open but not modified
1882 	 * while defrag is in progress). In that case, we need to copy over the
1883 	 * number of delalloc blocks the data fork in the source inode is
1884 	 * tracking beyond EOF so that when the fork is truncated away when the
1885 	 * temporary inode is unlinked we don't underrun the i_delayed_blks
1886 	 * counter on that inode.
1887 	 */
1888 	ASSERT(tip->i_delayed_blks == 0);
1889 	tip->i_delayed_blks = ip->i_delayed_blks;
1890 	ip->i_delayed_blks = 0;
1891 
1892 	switch (ip->i_d.di_format) {
1893 	case XFS_DINODE_FMT_EXTENTS:
1894 		/*
1895 		 * If the extents fit in the inode, fix the pointer.  Otherwise
1896 		 * it's already NULL or pointing to the extent.
1897 		 */
1898 		nextents = xfs_iext_count(&ip->i_df);
1899 		if (nextents <= XFS_INLINE_EXTS)
1900 			ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
1901 		(*src_log_flags) |= XFS_ILOG_DEXT;
1902 		break;
1903 	case XFS_DINODE_FMT_BTREE:
1904 		ASSERT(ip->i_d.di_version < 3 ||
1905 		       (*src_log_flags & XFS_ILOG_DOWNER));
1906 		(*src_log_flags) |= XFS_ILOG_DBROOT;
1907 		break;
1908 	}
1909 
1910 	switch (tip->i_d.di_format) {
1911 	case XFS_DINODE_FMT_EXTENTS:
1912 		/*
1913 		 * If the extents fit in the inode, fix the pointer.  Otherwise
1914 		 * it's already NULL or pointing to the extent.
1915 		 */
1916 		nextents = xfs_iext_count(&tip->i_df);
1917 		if (nextents <= XFS_INLINE_EXTS)
1918 			tifp->if_u1.if_extents = tifp->if_u2.if_inline_ext;
1919 		(*target_log_flags) |= XFS_ILOG_DEXT;
1920 		break;
1921 	case XFS_DINODE_FMT_BTREE:
1922 		(*target_log_flags) |= XFS_ILOG_DBROOT;
1923 		ASSERT(tip->i_d.di_version < 3 ||
1924 		       (*target_log_flags & XFS_ILOG_DOWNER));
1925 		break;
1926 	}
1927 
1928 	return 0;
1929 }
1930 
1931 /*
1932  * Fix up the owners of the bmbt blocks to refer to the current inode. The
1933  * change owner scan attempts to order all modified buffers in the current
1934  * transaction. In the event of ordered buffer failure, the offending buffer is
1935  * physically logged as a fallback and the scan returns -EAGAIN. We must roll
1936  * the transaction in this case to replenish the fallback log reservation and
1937  * restart the scan. This process repeats until the scan completes.
1938  */
1939 static int
xfs_swap_change_owner(struct xfs_trans ** tpp,struct xfs_inode * ip,struct xfs_inode * tmpip)1940 xfs_swap_change_owner(
1941 	struct xfs_trans	**tpp,
1942 	struct xfs_inode	*ip,
1943 	struct xfs_inode	*tmpip)
1944 {
1945 	int			error;
1946 	struct xfs_trans	*tp = *tpp;
1947 
1948 	do {
1949 		error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, ip->i_ino,
1950 					      NULL);
1951 		/* success or fatal error */
1952 		if (error != -EAGAIN)
1953 			break;
1954 
1955 		error = xfs_trans_roll(tpp, NULL);
1956 		if (error)
1957 			break;
1958 		tp = *tpp;
1959 
1960 		/*
1961 		 * Redirty both inodes so they can relog and keep the log tail
1962 		 * moving forward.
1963 		 */
1964 		xfs_trans_ijoin(tp, ip, 0);
1965 		xfs_trans_ijoin(tp, tmpip, 0);
1966 		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1967 		xfs_trans_log_inode(tp, tmpip, XFS_ILOG_CORE);
1968 	} while (true);
1969 
1970 	return error;
1971 }
1972 
1973 int
xfs_swap_extents(struct xfs_inode * ip,struct xfs_inode * tip,struct xfs_swapext * sxp)1974 xfs_swap_extents(
1975 	struct xfs_inode	*ip,	/* target inode */
1976 	struct xfs_inode	*tip,	/* tmp inode */
1977 	struct xfs_swapext	*sxp)
1978 {
1979 	struct xfs_mount	*mp = ip->i_mount;
1980 	struct xfs_trans	*tp;
1981 	struct xfs_bstat	*sbp = &sxp->sx_stat;
1982 	int			src_log_flags, target_log_flags;
1983 	int			error = 0;
1984 	int			lock_flags;
1985 	struct xfs_ifork	*cowfp;
1986 	uint64_t		f;
1987 	int			resblks = 0;
1988 
1989 	/*
1990 	 * Lock the inodes against other IO, page faults and truncate to
1991 	 * begin with.  Then we can ensure the inodes are flushed and have no
1992 	 * page cache safely. Once we have done this we can take the ilocks and
1993 	 * do the rest of the checks.
1994 	 */
1995 	lock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1996 	xfs_lock_two_inodes(ip, tip, XFS_IOLOCK_EXCL);
1997 	xfs_lock_two_inodes(ip, tip, XFS_MMAPLOCK_EXCL);
1998 
1999 	/* Verify that both files have the same format */
2000 	if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) {
2001 		error = -EINVAL;
2002 		goto out_unlock;
2003 	}
2004 
2005 	/* Verify both files are either real-time or non-realtime */
2006 	if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) {
2007 		error = -EINVAL;
2008 		goto out_unlock;
2009 	}
2010 
2011 	error = xfs_swap_extent_flush(ip);
2012 	if (error)
2013 		goto out_unlock;
2014 	error = xfs_swap_extent_flush(tip);
2015 	if (error)
2016 		goto out_unlock;
2017 
2018 	/*
2019 	 * Extent "swapping" with rmap requires a permanent reservation and
2020 	 * a block reservation because it's really just a remap operation
2021 	 * performed with log redo items!
2022 	 */
2023 	if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
2024 		/*
2025 		 * Conceptually this shouldn't affect the shape of either
2026 		 * bmbt, but since we atomically move extents one by one,
2027 		 * we reserve enough space to rebuild both trees.
2028 		 */
2029 		resblks = XFS_SWAP_RMAP_SPACE_RES(mp,
2030 				XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK),
2031 				XFS_DATA_FORK) +
2032 			  XFS_SWAP_RMAP_SPACE_RES(mp,
2033 				XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK),
2034 				XFS_DATA_FORK);
2035 	}
2036 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
2037 	if (error)
2038 		goto out_unlock;
2039 
2040 	/*
2041 	 * Lock and join the inodes to the tansaction so that transaction commit
2042 	 * or cancel will unlock the inodes from this point onwards.
2043 	 */
2044 	xfs_lock_two_inodes(ip, tip, XFS_ILOCK_EXCL);
2045 	lock_flags |= XFS_ILOCK_EXCL;
2046 	xfs_trans_ijoin(tp, ip, 0);
2047 	xfs_trans_ijoin(tp, tip, 0);
2048 
2049 
2050 	/* Verify all data are being swapped */
2051 	if (sxp->sx_offset != 0 ||
2052 	    sxp->sx_length != ip->i_d.di_size ||
2053 	    sxp->sx_length != tip->i_d.di_size) {
2054 		error = -EFAULT;
2055 		goto out_trans_cancel;
2056 	}
2057 
2058 	trace_xfs_swap_extent_before(ip, 0);
2059 	trace_xfs_swap_extent_before(tip, 1);
2060 
2061 	/* check inode formats now that data is flushed */
2062 	error = xfs_swap_extents_check_format(ip, tip);
2063 	if (error) {
2064 		xfs_notice(mp,
2065 		    "%s: inode 0x%llx format is incompatible for exchanging.",
2066 				__func__, ip->i_ino);
2067 		goto out_trans_cancel;
2068 	}
2069 
2070 	/*
2071 	 * Compare the current change & modify times with that
2072 	 * passed in.  If they differ, we abort this swap.
2073 	 * This is the mechanism used to ensure the calling
2074 	 * process that the file was not changed out from
2075 	 * under it.
2076 	 */
2077 	if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) ||
2078 	    (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) ||
2079 	    (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) ||
2080 	    (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) {
2081 		error = -EBUSY;
2082 		goto out_trans_cancel;
2083 	}
2084 
2085 	/*
2086 	 * Note the trickiness in setting the log flags - we set the owner log
2087 	 * flag on the opposite inode (i.e. the inode we are setting the new
2088 	 * owner to be) because once we swap the forks and log that, log
2089 	 * recovery is going to see the fork as owned by the swapped inode,
2090 	 * not the pre-swapped inodes.
2091 	 */
2092 	src_log_flags = XFS_ILOG_CORE;
2093 	target_log_flags = XFS_ILOG_CORE;
2094 
2095 	if (xfs_sb_version_hasrmapbt(&mp->m_sb))
2096 		error = xfs_swap_extent_rmap(&tp, ip, tip);
2097 	else
2098 		error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags,
2099 				&target_log_flags);
2100 	if (error)
2101 		goto out_trans_cancel;
2102 
2103 	/* Do we have to swap reflink flags? */
2104 	if ((ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) ^
2105 	    (tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)) {
2106 		f = ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK;
2107 		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
2108 		ip->i_d.di_flags2 |= tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK;
2109 		tip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
2110 		tip->i_d.di_flags2 |= f & XFS_DIFLAG2_REFLINK;
2111 	}
2112 
2113 	/* Swap the cow forks. */
2114 	if (xfs_sb_version_hasreflink(&mp->m_sb)) {
2115 		xfs_extnum_t	extnum;
2116 
2117 		ASSERT(ip->i_cformat == XFS_DINODE_FMT_EXTENTS);
2118 		ASSERT(tip->i_cformat == XFS_DINODE_FMT_EXTENTS);
2119 
2120 		extnum = ip->i_cnextents;
2121 		ip->i_cnextents = tip->i_cnextents;
2122 		tip->i_cnextents = extnum;
2123 
2124 		cowfp = ip->i_cowfp;
2125 		ip->i_cowfp = tip->i_cowfp;
2126 		tip->i_cowfp = cowfp;
2127 
2128 		if (ip->i_cowfp && ip->i_cnextents)
2129 			xfs_inode_set_cowblocks_tag(ip);
2130 		else
2131 			xfs_inode_clear_cowblocks_tag(ip);
2132 		if (tip->i_cowfp && tip->i_cnextents)
2133 			xfs_inode_set_cowblocks_tag(tip);
2134 		else
2135 			xfs_inode_clear_cowblocks_tag(tip);
2136 	}
2137 
2138 	xfs_trans_log_inode(tp, ip,  src_log_flags);
2139 	xfs_trans_log_inode(tp, tip, target_log_flags);
2140 
2141 	/*
2142 	 * The extent forks have been swapped, but crc=1,rmapbt=0 filesystems
2143 	 * have inode number owner values in the bmbt blocks that still refer to
2144 	 * the old inode. Scan each bmbt to fix up the owner values with the
2145 	 * inode number of the current inode.
2146 	 */
2147 	if (src_log_flags & XFS_ILOG_DOWNER) {
2148 		error = xfs_swap_change_owner(&tp, ip, tip);
2149 		if (error)
2150 			goto out_trans_cancel;
2151 	}
2152 	if (target_log_flags & XFS_ILOG_DOWNER) {
2153 		error = xfs_swap_change_owner(&tp, tip, ip);
2154 		if (error)
2155 			goto out_trans_cancel;
2156 	}
2157 
2158 	/*
2159 	 * If this is a synchronous mount, make sure that the
2160 	 * transaction goes to disk before returning to the user.
2161 	 */
2162 	if (mp->m_flags & XFS_MOUNT_WSYNC)
2163 		xfs_trans_set_sync(tp);
2164 
2165 	error = xfs_trans_commit(tp);
2166 
2167 	trace_xfs_swap_extent_after(ip, 0);
2168 	trace_xfs_swap_extent_after(tip, 1);
2169 
2170 	xfs_iunlock(ip, lock_flags);
2171 	xfs_iunlock(tip, lock_flags);
2172 	return error;
2173 
2174 out_trans_cancel:
2175 	xfs_trans_cancel(tp);
2176 
2177 out_unlock:
2178 	xfs_iunlock(ip, lock_flags);
2179 	xfs_iunlock(tip, lock_flags);
2180 	return error;
2181 }
2182