• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
40 #include "xfs_iomap.h"
41 #include "xfs_reflink.h"
42 
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
46 #include <linux/backing-dev.h>
47 
48 static const struct vm_operations_struct xfs_file_vm_ops;
49 
50 /*
51  * Locking primitives for read and write IO paths to ensure we consistently use
52  * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
53  */
54 static inline void
xfs_rw_ilock(struct xfs_inode * ip,int type)55 xfs_rw_ilock(
56 	struct xfs_inode	*ip,
57 	int			type)
58 {
59 	if (type & XFS_IOLOCK_EXCL)
60 		inode_lock(VFS_I(ip));
61 	xfs_ilock(ip, type);
62 }
63 
64 static inline void
xfs_rw_iunlock(struct xfs_inode * ip,int type)65 xfs_rw_iunlock(
66 	struct xfs_inode	*ip,
67 	int			type)
68 {
69 	xfs_iunlock(ip, type);
70 	if (type & XFS_IOLOCK_EXCL)
71 		inode_unlock(VFS_I(ip));
72 }
73 
74 static inline void
xfs_rw_ilock_demote(struct xfs_inode * ip,int type)75 xfs_rw_ilock_demote(
76 	struct xfs_inode	*ip,
77 	int			type)
78 {
79 	xfs_ilock_demote(ip, type);
80 	if (type & XFS_IOLOCK_EXCL)
81 		inode_unlock(VFS_I(ip));
82 }
83 
84 /*
85  * Clear the specified ranges to zero through either the pagecache or DAX.
86  * Holes and unwritten extents will be left as-is as they already are zeroed.
87  */
88 int
xfs_zero_range(struct xfs_inode * ip,xfs_off_t pos,xfs_off_t count,bool * did_zero)89 xfs_zero_range(
90 	struct xfs_inode	*ip,
91 	xfs_off_t		pos,
92 	xfs_off_t		count,
93 	bool			*did_zero)
94 {
95 	return iomap_zero_range(VFS_I(ip), pos, count, did_zero, &xfs_iomap_ops);
96 }
97 
98 int
xfs_update_prealloc_flags(struct xfs_inode * ip,enum xfs_prealloc_flags flags)99 xfs_update_prealloc_flags(
100 	struct xfs_inode	*ip,
101 	enum xfs_prealloc_flags	flags)
102 {
103 	struct xfs_trans	*tp;
104 	int			error;
105 
106 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
107 			0, 0, 0, &tp);
108 	if (error)
109 		return error;
110 
111 	xfs_ilock(ip, XFS_ILOCK_EXCL);
112 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
113 
114 	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
115 		VFS_I(ip)->i_mode &= ~S_ISUID;
116 		if (VFS_I(ip)->i_mode & S_IXGRP)
117 			VFS_I(ip)->i_mode &= ~S_ISGID;
118 		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
119 	}
120 
121 	if (flags & XFS_PREALLOC_SET)
122 		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
123 	if (flags & XFS_PREALLOC_CLEAR)
124 		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
125 
126 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
127 	if (flags & XFS_PREALLOC_SYNC)
128 		xfs_trans_set_sync(tp);
129 	return xfs_trans_commit(tp);
130 }
131 
132 /*
133  * Fsync operations on directories are much simpler than on regular files,
134  * as there is no file data to flush, and thus also no need for explicit
135  * cache flush operations, and there are no non-transaction metadata updates
136  * on directories either.
137  */
138 STATIC int
xfs_dir_fsync(struct file * file,loff_t start,loff_t end,int datasync)139 xfs_dir_fsync(
140 	struct file		*file,
141 	loff_t			start,
142 	loff_t			end,
143 	int			datasync)
144 {
145 	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
146 	struct xfs_mount	*mp = ip->i_mount;
147 	xfs_lsn_t		lsn = 0;
148 
149 	trace_xfs_dir_fsync(ip);
150 
151 	xfs_ilock(ip, XFS_ILOCK_SHARED);
152 	if (xfs_ipincount(ip))
153 		lsn = ip->i_itemp->ili_last_lsn;
154 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
155 
156 	if (!lsn)
157 		return 0;
158 	return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
159 }
160 
161 STATIC int
xfs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)162 xfs_file_fsync(
163 	struct file		*file,
164 	loff_t			start,
165 	loff_t			end,
166 	int			datasync)
167 {
168 	struct inode		*inode = file->f_mapping->host;
169 	struct xfs_inode	*ip = XFS_I(inode);
170 	struct xfs_mount	*mp = ip->i_mount;
171 	int			error = 0;
172 	int			log_flushed = 0;
173 	xfs_lsn_t		lsn = 0;
174 
175 	trace_xfs_file_fsync(ip);
176 
177 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
178 	if (error)
179 		return error;
180 
181 	if (XFS_FORCED_SHUTDOWN(mp))
182 		return -EIO;
183 
184 	xfs_iflags_clear(ip, XFS_ITRUNCATED);
185 
186 	if (mp->m_flags & XFS_MOUNT_BARRIER) {
187 		/*
188 		 * If we have an RT and/or log subvolume we need to make sure
189 		 * to flush the write cache the device used for file data
190 		 * first.  This is to ensure newly written file data make
191 		 * it to disk before logging the new inode size in case of
192 		 * an extending write.
193 		 */
194 		if (XFS_IS_REALTIME_INODE(ip))
195 			xfs_blkdev_issue_flush(mp->m_rtdev_targp);
196 		else if (mp->m_logdev_targp != mp->m_ddev_targp)
197 			xfs_blkdev_issue_flush(mp->m_ddev_targp);
198 	}
199 
200 	/*
201 	 * All metadata updates are logged, which means that we just have to
202 	 * flush the log up to the latest LSN that touched the inode. If we have
203 	 * concurrent fsync/fdatasync() calls, we need them to all block on the
204 	 * log force before we clear the ili_fsync_fields field. This ensures
205 	 * that we don't get a racing sync operation that does not wait for the
206 	 * metadata to hit the journal before returning. If we race with
207 	 * clearing the ili_fsync_fields, then all that will happen is the log
208 	 * force will do nothing as the lsn will already be on disk. We can't
209 	 * race with setting ili_fsync_fields because that is done under
210 	 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
211 	 * until after the ili_fsync_fields is cleared.
212 	 */
213 	xfs_ilock(ip, XFS_ILOCK_SHARED);
214 	if (xfs_ipincount(ip)) {
215 		if (!datasync ||
216 		    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
217 			lsn = ip->i_itemp->ili_last_lsn;
218 	}
219 
220 	if (lsn) {
221 		error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
222 		ip->i_itemp->ili_fsync_fields = 0;
223 	}
224 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
225 
226 	/*
227 	 * If we only have a single device, and the log force about was
228 	 * a no-op we might have to flush the data device cache here.
229 	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
230 	 * an already allocated file and thus do not have any metadata to
231 	 * commit.
232 	 */
233 	if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
234 	    mp->m_logdev_targp == mp->m_ddev_targp &&
235 	    !XFS_IS_REALTIME_INODE(ip) &&
236 	    !log_flushed)
237 		xfs_blkdev_issue_flush(mp->m_ddev_targp);
238 
239 	return error;
240 }
241 
242 STATIC ssize_t
xfs_file_dio_aio_read(struct kiocb * iocb,struct iov_iter * to)243 xfs_file_dio_aio_read(
244 	struct kiocb		*iocb,
245 	struct iov_iter		*to)
246 {
247 	struct address_space	*mapping = iocb->ki_filp->f_mapping;
248 	struct inode		*inode = mapping->host;
249 	struct xfs_inode	*ip = XFS_I(inode);
250 	loff_t			isize = i_size_read(inode);
251 	size_t			count = iov_iter_count(to);
252 	loff_t			end = iocb->ki_pos + count - 1;
253 	struct iov_iter		data;
254 	struct xfs_buftarg	*target;
255 	ssize_t			ret = 0;
256 
257 	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
258 
259 	if (!count)
260 		return 0; /* skip atime */
261 
262 	if (XFS_IS_REALTIME_INODE(ip))
263 		target = ip->i_mount->m_rtdev_targp;
264 	else
265 		target = ip->i_mount->m_ddev_targp;
266 
267 	/* DIO must be aligned to device logical sector size */
268 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
269 		if (iocb->ki_pos == isize)
270 			return 0;
271 		return -EINVAL;
272 	}
273 
274 	file_accessed(iocb->ki_filp);
275 
276 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
277 	if (mapping->nrpages) {
278 		ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, end);
279 		if (ret)
280 			goto out_unlock;
281 
282 		/*
283 		 * Invalidate whole pages. This can return an error if we fail
284 		 * to invalidate a page, but this should never happen on XFS.
285 		 * Warn if it does fail.
286 		 */
287 		ret = invalidate_inode_pages2_range(mapping,
288 				iocb->ki_pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
289 		WARN_ON_ONCE(ret);
290 		ret = 0;
291 	}
292 
293 	data = *to;
294 	ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
295 			xfs_get_blocks_direct, NULL, NULL, 0);
296 	if (ret >= 0) {
297 		iocb->ki_pos += ret;
298 		iov_iter_advance(to, ret);
299 	}
300 
301 out_unlock:
302 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
303 	return ret;
304 }
305 
306 static noinline ssize_t
xfs_file_dax_read(struct kiocb * iocb,struct iov_iter * to)307 xfs_file_dax_read(
308 	struct kiocb		*iocb,
309 	struct iov_iter		*to)
310 {
311 	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
312 	size_t			count = iov_iter_count(to);
313 	ssize_t			ret = 0;
314 
315 	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
316 
317 	if (!count)
318 		return 0; /* skip atime */
319 
320 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
321 	ret = iomap_dax_rw(iocb, to, &xfs_iomap_ops);
322 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
323 
324 	file_accessed(iocb->ki_filp);
325 	return ret;
326 }
327 
328 STATIC ssize_t
xfs_file_buffered_aio_read(struct kiocb * iocb,struct iov_iter * to)329 xfs_file_buffered_aio_read(
330 	struct kiocb		*iocb,
331 	struct iov_iter		*to)
332 {
333 	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
334 	ssize_t			ret;
335 
336 	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
337 
338 	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
339 	ret = generic_file_read_iter(iocb, to);
340 	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
341 
342 	return ret;
343 }
344 
345 STATIC ssize_t
xfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)346 xfs_file_read_iter(
347 	struct kiocb		*iocb,
348 	struct iov_iter		*to)
349 {
350 	struct inode		*inode = file_inode(iocb->ki_filp);
351 	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
352 	ssize_t			ret = 0;
353 
354 	XFS_STATS_INC(mp, xs_read_calls);
355 
356 	if (XFS_FORCED_SHUTDOWN(mp))
357 		return -EIO;
358 
359 	if (IS_DAX(inode))
360 		ret = xfs_file_dax_read(iocb, to);
361 	else if (iocb->ki_flags & IOCB_DIRECT)
362 		ret = xfs_file_dio_aio_read(iocb, to);
363 	else
364 		ret = xfs_file_buffered_aio_read(iocb, to);
365 
366 	if (ret > 0)
367 		XFS_STATS_ADD(mp, xs_read_bytes, ret);
368 	return ret;
369 }
370 
371 /*
372  * Zero any on disk space between the current EOF and the new, larger EOF.
373  *
374  * This handles the normal case of zeroing the remainder of the last block in
375  * the file and the unusual case of zeroing blocks out beyond the size of the
376  * file.  This second case only happens with fixed size extents and when the
377  * system crashes before the inode size was updated but after blocks were
378  * allocated.
379  *
380  * Expects the iolock to be held exclusive, and will take the ilock internally.
381  */
382 int					/* error (positive) */
xfs_zero_eof(struct xfs_inode * ip,xfs_off_t offset,xfs_fsize_t isize,bool * did_zeroing)383 xfs_zero_eof(
384 	struct xfs_inode	*ip,
385 	xfs_off_t		offset,		/* starting I/O offset */
386 	xfs_fsize_t		isize,		/* current inode size */
387 	bool			*did_zeroing)
388 {
389 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
390 	ASSERT(offset > isize);
391 
392 	trace_xfs_zero_eof(ip, isize, offset - isize);
393 	return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
394 }
395 
396 /*
397  * Common pre-write limit and setup checks.
398  *
399  * Called with the iolocked held either shared and exclusive according to
400  * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
401  * if called for a direct write beyond i_size.
402  */
403 STATIC ssize_t
xfs_file_aio_write_checks(struct kiocb * iocb,struct iov_iter * from,int * iolock)404 xfs_file_aio_write_checks(
405 	struct kiocb		*iocb,
406 	struct iov_iter		*from,
407 	int			*iolock)
408 {
409 	struct file		*file = iocb->ki_filp;
410 	struct inode		*inode = file->f_mapping->host;
411 	struct xfs_inode	*ip = XFS_I(inode);
412 	ssize_t			error = 0;
413 	size_t			count = iov_iter_count(from);
414 	bool			drained_dio = false;
415 
416 restart:
417 	error = generic_write_checks(iocb, from);
418 	if (error <= 0)
419 		return error;
420 
421 	error = xfs_break_layouts(inode, iolock, true);
422 	if (error)
423 		return error;
424 
425 	/* For changing security info in file_remove_privs() we need i_mutex */
426 	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
427 		xfs_rw_iunlock(ip, *iolock);
428 		*iolock = XFS_IOLOCK_EXCL;
429 		xfs_rw_ilock(ip, *iolock);
430 		goto restart;
431 	}
432 	/*
433 	 * If the offset is beyond the size of the file, we need to zero any
434 	 * blocks that fall between the existing EOF and the start of this
435 	 * write.  If zeroing is needed and we are currently holding the
436 	 * iolock shared, we need to update it to exclusive which implies
437 	 * having to redo all checks before.
438 	 *
439 	 * We need to serialise against EOF updates that occur in IO
440 	 * completions here. We want to make sure that nobody is changing the
441 	 * size while we do this check until we have placed an IO barrier (i.e.
442 	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
443 	 * The spinlock effectively forms a memory barrier once we have the
444 	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
445 	 * and hence be able to correctly determine if we need to run zeroing.
446 	 */
447 	spin_lock(&ip->i_flags_lock);
448 	if (iocb->ki_pos > i_size_read(inode)) {
449 		bool	zero = false;
450 
451 		spin_unlock(&ip->i_flags_lock);
452 		if (!drained_dio) {
453 			if (*iolock == XFS_IOLOCK_SHARED) {
454 				xfs_rw_iunlock(ip, *iolock);
455 				*iolock = XFS_IOLOCK_EXCL;
456 				xfs_rw_ilock(ip, *iolock);
457 				iov_iter_reexpand(from, count);
458 			}
459 			/*
460 			 * We now have an IO submission barrier in place, but
461 			 * AIO can do EOF updates during IO completion and hence
462 			 * we now need to wait for all of them to drain. Non-AIO
463 			 * DIO will have drained before we are given the
464 			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
465 			 * no-op.
466 			 */
467 			inode_dio_wait(inode);
468 			drained_dio = true;
469 			goto restart;
470 		}
471 		error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
472 		if (error)
473 			return error;
474 	} else
475 		spin_unlock(&ip->i_flags_lock);
476 
477 	/*
478 	 * Updating the timestamps will grab the ilock again from
479 	 * xfs_fs_dirty_inode, so we have to call it after dropping the
480 	 * lock above.  Eventually we should look into a way to avoid
481 	 * the pointless lock roundtrip.
482 	 */
483 	if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
484 		error = file_update_time(file);
485 		if (error)
486 			return error;
487 	}
488 
489 	/*
490 	 * If we're writing the file then make sure to clear the setuid and
491 	 * setgid bits if the process is not being run by root.  This keeps
492 	 * people from modifying setuid and setgid binaries.
493 	 */
494 	if (!IS_NOSEC(inode))
495 		return file_remove_privs(file);
496 	return 0;
497 }
498 
499 /*
500  * xfs_file_dio_aio_write - handle direct IO writes
501  *
502  * Lock the inode appropriately to prepare for and issue a direct IO write.
503  * By separating it from the buffered write path we remove all the tricky to
504  * follow locking changes and looping.
505  *
506  * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
507  * until we're sure the bytes at the new EOF have been zeroed and/or the cached
508  * pages are flushed out.
509  *
510  * In most cases the direct IO writes will be done holding IOLOCK_SHARED
511  * allowing them to be done in parallel with reads and other direct IO writes.
512  * However, if the IO is not aligned to filesystem blocks, the direct IO layer
513  * needs to do sub-block zeroing and that requires serialisation against other
514  * direct IOs to the same block. In this case we need to serialise the
515  * submission of the unaligned IOs so that we don't get racing block zeroing in
516  * the dio layer.  To avoid the problem with aio, we also need to wait for
517  * outstanding IOs to complete so that unwritten extent conversion is completed
518  * before we try to map the overlapping block. This is currently implemented by
519  * hitting it with a big hammer (i.e. inode_dio_wait()).
520  *
521  * Returns with locks held indicated by @iolock and errors indicated by
522  * negative return values.
523  */
524 STATIC ssize_t
xfs_file_dio_aio_write(struct kiocb * iocb,struct iov_iter * from)525 xfs_file_dio_aio_write(
526 	struct kiocb		*iocb,
527 	struct iov_iter		*from)
528 {
529 	struct file		*file = iocb->ki_filp;
530 	struct address_space	*mapping = file->f_mapping;
531 	struct inode		*inode = mapping->host;
532 	struct xfs_inode	*ip = XFS_I(inode);
533 	struct xfs_mount	*mp = ip->i_mount;
534 	ssize_t			ret = 0;
535 	int			unaligned_io = 0;
536 	int			iolock;
537 	size_t			count = iov_iter_count(from);
538 	loff_t			end;
539 	struct iov_iter		data;
540 	struct xfs_buftarg	*target = XFS_IS_REALTIME_INODE(ip) ?
541 					mp->m_rtdev_targp : mp->m_ddev_targp;
542 
543 	/* DIO must be aligned to device logical sector size */
544 	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
545 		return -EINVAL;
546 
547 	/*
548 	 * Don't take the exclusive iolock here unless the I/O is unaligned to
549 	 * the file system block size.  We don't need to consider the EOF
550 	 * extension case here because xfs_file_aio_write_checks() will relock
551 	 * the inode as necessary for EOF zeroing cases and fill out the new
552 	 * inode size as appropriate.
553 	 */
554 	if ((iocb->ki_pos & mp->m_blockmask) ||
555 	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
556 		unaligned_io = 1;
557 
558 		/*
559 		 * We can't properly handle unaligned direct I/O to reflink
560 		 * files yet, as we can't unshare a partial block.
561 		 */
562 		if (xfs_is_reflink_inode(ip)) {
563 			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
564 			return -EREMCHG;
565 		}
566 		iolock = XFS_IOLOCK_EXCL;
567 	} else {
568 		iolock = XFS_IOLOCK_SHARED;
569 	}
570 
571 	xfs_rw_ilock(ip, iolock);
572 
573 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
574 	if (ret)
575 		goto out;
576 	count = iov_iter_count(from);
577 	end = iocb->ki_pos + count - 1;
578 
579 	if (mapping->nrpages) {
580 		ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, end);
581 		if (ret)
582 			goto out;
583 
584 		/*
585 		 * Invalidate whole pages. This can return an error if we fail
586 		 * to invalidate a page, but this should never happen on XFS.
587 		 * Warn if it does fail.
588 		 */
589 		ret = invalidate_inode_pages2_range(mapping,
590 				iocb->ki_pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
591 		WARN_ON_ONCE(ret);
592 		ret = 0;
593 	}
594 
595 	/*
596 	 * If we are doing unaligned IO, wait for all other IO to drain,
597 	 * otherwise demote the lock if we had to take the exclusive lock
598 	 * for other reasons in xfs_file_aio_write_checks.
599 	 */
600 	if (unaligned_io)
601 		inode_dio_wait(inode);
602 	else if (iolock == XFS_IOLOCK_EXCL) {
603 		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
604 		iolock = XFS_IOLOCK_SHARED;
605 	}
606 
607 	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
608 
609 	/* If this is a block-aligned directio CoW, remap immediately. */
610 	if (xfs_is_reflink_inode(ip) && !unaligned_io) {
611 		ret = xfs_reflink_allocate_cow_range(ip, iocb->ki_pos, count);
612 		if (ret)
613 			goto out;
614 	}
615 
616 	data = *from;
617 	ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
618 			xfs_get_blocks_direct, xfs_end_io_direct_write,
619 			NULL, DIO_ASYNC_EXTEND);
620 
621 	/* see generic_file_direct_write() for why this is necessary */
622 	if (mapping->nrpages) {
623 		invalidate_inode_pages2_range(mapping,
624 					      iocb->ki_pos >> PAGE_SHIFT,
625 					      end >> PAGE_SHIFT);
626 	}
627 
628 	if (ret > 0) {
629 		iocb->ki_pos += ret;
630 		iov_iter_advance(from, ret);
631 	}
632 out:
633 	xfs_rw_iunlock(ip, iolock);
634 
635 	/*
636 	 * No fallback to buffered IO on errors for XFS, direct IO will either
637 	 * complete fully or fail.
638 	 */
639 	ASSERT(ret < 0 || ret == count);
640 	return ret;
641 }
642 
643 static noinline ssize_t
xfs_file_dax_write(struct kiocb * iocb,struct iov_iter * from)644 xfs_file_dax_write(
645 	struct kiocb		*iocb,
646 	struct iov_iter		*from)
647 {
648 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
649 	struct xfs_inode	*ip = XFS_I(inode);
650 	int			iolock = XFS_IOLOCK_EXCL;
651 	ssize_t			ret, error = 0;
652 	size_t			count;
653 	loff_t			pos;
654 
655 	xfs_rw_ilock(ip, iolock);
656 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
657 	if (ret)
658 		goto out;
659 
660 	pos = iocb->ki_pos;
661 	count = iov_iter_count(from);
662 
663 	trace_xfs_file_dax_write(ip, count, pos);
664 
665 	ret = iomap_dax_rw(iocb, from, &xfs_iomap_ops);
666 	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
667 		i_size_write(inode, iocb->ki_pos);
668 		error = xfs_setfilesize(ip, pos, ret);
669 	}
670 
671 out:
672 	xfs_rw_iunlock(ip, iolock);
673 	return error ? error : ret;
674 }
675 
676 STATIC ssize_t
xfs_file_buffered_aio_write(struct kiocb * iocb,struct iov_iter * from)677 xfs_file_buffered_aio_write(
678 	struct kiocb		*iocb,
679 	struct iov_iter		*from)
680 {
681 	struct file		*file = iocb->ki_filp;
682 	struct address_space	*mapping = file->f_mapping;
683 	struct inode		*inode = mapping->host;
684 	struct xfs_inode	*ip = XFS_I(inode);
685 	ssize_t			ret;
686 	int			enospc = 0;
687 	int			iolock;
688 
689 write_retry:
690 	iolock = XFS_IOLOCK_EXCL;
691 	xfs_rw_ilock(ip, iolock);
692 
693 	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
694 	if (ret)
695 		goto out;
696 
697 	/* We can write back this queue in page reclaim */
698 	current->backing_dev_info = inode_to_bdi(inode);
699 
700 	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
701 	ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
702 	if (likely(ret >= 0))
703 		iocb->ki_pos += ret;
704 
705 	/*
706 	 * If we hit a space limit, try to free up some lingering preallocated
707 	 * space before returning an error. In the case of ENOSPC, first try to
708 	 * write back all dirty inodes to free up some of the excess reserved
709 	 * metadata space. This reduces the chances that the eofblocks scan
710 	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
711 	 * also behaves as a filter to prevent too many eofblocks scans from
712 	 * running at the same time.
713 	 */
714 	if (ret == -EDQUOT && !enospc) {
715 		xfs_rw_iunlock(ip, iolock);
716 		enospc = xfs_inode_free_quota_eofblocks(ip);
717 		if (enospc)
718 			goto write_retry;
719 		enospc = xfs_inode_free_quota_cowblocks(ip);
720 		if (enospc)
721 			goto write_retry;
722 		iolock = 0;
723 	} else if (ret == -ENOSPC && !enospc) {
724 		struct xfs_eofblocks eofb = {0};
725 
726 		enospc = 1;
727 		xfs_flush_inodes(ip->i_mount);
728 
729 		xfs_rw_iunlock(ip, iolock);
730 		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
731 		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
732 		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
733 		goto write_retry;
734 	}
735 
736 	current->backing_dev_info = NULL;
737 out:
738 	if (iolock)
739 		xfs_rw_iunlock(ip, iolock);
740 	return ret;
741 }
742 
743 STATIC ssize_t
xfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)744 xfs_file_write_iter(
745 	struct kiocb		*iocb,
746 	struct iov_iter		*from)
747 {
748 	struct file		*file = iocb->ki_filp;
749 	struct address_space	*mapping = file->f_mapping;
750 	struct inode		*inode = mapping->host;
751 	struct xfs_inode	*ip = XFS_I(inode);
752 	ssize_t			ret;
753 	size_t			ocount = iov_iter_count(from);
754 
755 	XFS_STATS_INC(ip->i_mount, xs_write_calls);
756 
757 	if (ocount == 0)
758 		return 0;
759 
760 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
761 		return -EIO;
762 
763 	if (IS_DAX(inode))
764 		ret = xfs_file_dax_write(iocb, from);
765 	else if (iocb->ki_flags & IOCB_DIRECT) {
766 		/*
767 		 * Allow a directio write to fall back to a buffered
768 		 * write *only* in the case that we're doing a reflink
769 		 * CoW.  In all other directio scenarios we do not
770 		 * allow an operation to fall back to buffered mode.
771 		 */
772 		ret = xfs_file_dio_aio_write(iocb, from);
773 		if (ret == -EREMCHG)
774 			goto buffered;
775 	} else {
776 buffered:
777 		ret = xfs_file_buffered_aio_write(iocb, from);
778 	}
779 
780 	if (ret > 0) {
781 		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
782 
783 		/* Handle various SYNC-type writes */
784 		ret = generic_write_sync(iocb, ret);
785 	}
786 	return ret;
787 }
788 
789 #define	XFS_FALLOC_FL_SUPPORTED						\
790 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
791 		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
792 		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
793 
794 STATIC long
xfs_file_fallocate(struct file * file,int mode,loff_t offset,loff_t len)795 xfs_file_fallocate(
796 	struct file		*file,
797 	int			mode,
798 	loff_t			offset,
799 	loff_t			len)
800 {
801 	struct inode		*inode = file_inode(file);
802 	struct xfs_inode	*ip = XFS_I(inode);
803 	long			error;
804 	enum xfs_prealloc_flags	flags = 0;
805 	uint			iolock = XFS_IOLOCK_EXCL;
806 	loff_t			new_size = 0;
807 	bool			do_file_insert = 0;
808 
809 	if (!S_ISREG(inode->i_mode))
810 		return -EINVAL;
811 	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
812 		return -EOPNOTSUPP;
813 
814 	xfs_ilock(ip, iolock);
815 	error = xfs_break_layouts(inode, &iolock, false);
816 	if (error)
817 		goto out_unlock;
818 
819 	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
820 	iolock |= XFS_MMAPLOCK_EXCL;
821 
822 	if (mode & FALLOC_FL_PUNCH_HOLE) {
823 		error = xfs_free_file_space(ip, offset, len);
824 		if (error)
825 			goto out_unlock;
826 	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
827 		unsigned int blksize_mask = i_blocksize(inode) - 1;
828 
829 		if (offset & blksize_mask || len & blksize_mask) {
830 			error = -EINVAL;
831 			goto out_unlock;
832 		}
833 
834 		/*
835 		 * There is no need to overlap collapse range with EOF,
836 		 * in which case it is effectively a truncate operation
837 		 */
838 		if (offset + len >= i_size_read(inode)) {
839 			error = -EINVAL;
840 			goto out_unlock;
841 		}
842 
843 		new_size = i_size_read(inode) - len;
844 
845 		error = xfs_collapse_file_space(ip, offset, len);
846 		if (error)
847 			goto out_unlock;
848 	} else if (mode & FALLOC_FL_INSERT_RANGE) {
849 		unsigned int blksize_mask = i_blocksize(inode) - 1;
850 
851 		new_size = i_size_read(inode) + len;
852 		if (offset & blksize_mask || len & blksize_mask) {
853 			error = -EINVAL;
854 			goto out_unlock;
855 		}
856 
857 		/* check the new inode size does not wrap through zero */
858 		if (new_size > inode->i_sb->s_maxbytes) {
859 			error = -EFBIG;
860 			goto out_unlock;
861 		}
862 
863 		/* Offset should be less than i_size */
864 		if (offset >= i_size_read(inode)) {
865 			error = -EINVAL;
866 			goto out_unlock;
867 		}
868 		do_file_insert = 1;
869 	} else {
870 		flags |= XFS_PREALLOC_SET;
871 
872 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
873 		    offset + len > i_size_read(inode)) {
874 			new_size = offset + len;
875 			error = inode_newsize_ok(inode, new_size);
876 			if (error)
877 				goto out_unlock;
878 		}
879 
880 		if (mode & FALLOC_FL_ZERO_RANGE)
881 			error = xfs_zero_file_space(ip, offset, len);
882 		else {
883 			if (mode & FALLOC_FL_UNSHARE_RANGE) {
884 				error = xfs_reflink_unshare(ip, offset, len);
885 				if (error)
886 					goto out_unlock;
887 			}
888 			error = xfs_alloc_file_space(ip, offset, len,
889 						     XFS_BMAPI_PREALLOC);
890 		}
891 		if (error)
892 			goto out_unlock;
893 	}
894 
895 	if (file->f_flags & O_DSYNC)
896 		flags |= XFS_PREALLOC_SYNC;
897 
898 	error = xfs_update_prealloc_flags(ip, flags);
899 	if (error)
900 		goto out_unlock;
901 
902 	/* Change file size if needed */
903 	if (new_size) {
904 		struct iattr iattr;
905 
906 		iattr.ia_valid = ATTR_SIZE;
907 		iattr.ia_size = new_size;
908 		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
909 		if (error)
910 			goto out_unlock;
911 	}
912 
913 	/*
914 	 * Perform hole insertion now that the file size has been
915 	 * updated so that if we crash during the operation we don't
916 	 * leave shifted extents past EOF and hence losing access to
917 	 * the data that is contained within them.
918 	 */
919 	if (do_file_insert)
920 		error = xfs_insert_file_space(ip, offset, len);
921 
922 out_unlock:
923 	xfs_iunlock(ip, iolock);
924 	return error;
925 }
926 
927 STATIC ssize_t
xfs_file_copy_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len,unsigned int flags)928 xfs_file_copy_range(
929 	struct file	*file_in,
930 	loff_t		pos_in,
931 	struct file	*file_out,
932 	loff_t		pos_out,
933 	size_t		len,
934 	unsigned int	flags)
935 {
936 	int		error;
937 
938 	error = xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
939 				     len, false);
940 	if (error)
941 		return error;
942 	return len;
943 }
944 
945 STATIC int
xfs_file_clone_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,u64 len)946 xfs_file_clone_range(
947 	struct file	*file_in,
948 	loff_t		pos_in,
949 	struct file	*file_out,
950 	loff_t		pos_out,
951 	u64		len)
952 {
953 	return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
954 				     len, false);
955 }
956 
957 STATIC ssize_t
xfs_file_dedupe_range(struct file * src_file,u64 loff,u64 len,struct file * dst_file,u64 dst_loff)958 xfs_file_dedupe_range(
959 	struct file	*src_file,
960 	u64		loff,
961 	u64		len,
962 	struct file	*dst_file,
963 	u64		dst_loff)
964 {
965 	int		error;
966 
967 	error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
968 				     len, true);
969 	if (error)
970 		return error;
971 	return len;
972 }
973 
974 STATIC int
xfs_file_open(struct inode * inode,struct file * file)975 xfs_file_open(
976 	struct inode	*inode,
977 	struct file	*file)
978 {
979 	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
980 		return -EFBIG;
981 	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
982 		return -EIO;
983 	return 0;
984 }
985 
986 STATIC int
xfs_dir_open(struct inode * inode,struct file * file)987 xfs_dir_open(
988 	struct inode	*inode,
989 	struct file	*file)
990 {
991 	struct xfs_inode *ip = XFS_I(inode);
992 	int		mode;
993 	int		error;
994 
995 	error = xfs_file_open(inode, file);
996 	if (error)
997 		return error;
998 
999 	/*
1000 	 * If there are any blocks, read-ahead block 0 as we're almost
1001 	 * certain to have the next operation be a read there.
1002 	 */
1003 	mode = xfs_ilock_data_map_shared(ip);
1004 	if (ip->i_d.di_nextents > 0)
1005 		error = xfs_dir3_data_readahead(ip, 0, -1);
1006 	xfs_iunlock(ip, mode);
1007 	return error;
1008 }
1009 
1010 STATIC int
xfs_file_release(struct inode * inode,struct file * filp)1011 xfs_file_release(
1012 	struct inode	*inode,
1013 	struct file	*filp)
1014 {
1015 	return xfs_release(XFS_I(inode));
1016 }
1017 
1018 STATIC int
xfs_file_readdir(struct file * file,struct dir_context * ctx)1019 xfs_file_readdir(
1020 	struct file	*file,
1021 	struct dir_context *ctx)
1022 {
1023 	struct inode	*inode = file_inode(file);
1024 	xfs_inode_t	*ip = XFS_I(inode);
1025 	size_t		bufsize;
1026 
1027 	/*
1028 	 * The Linux API doesn't pass down the total size of the buffer
1029 	 * we read into down to the filesystem.  With the filldir concept
1030 	 * it's not needed for correct information, but the XFS dir2 leaf
1031 	 * code wants an estimate of the buffer size to calculate it's
1032 	 * readahead window and size the buffers used for mapping to
1033 	 * physical blocks.
1034 	 *
1035 	 * Try to give it an estimate that's good enough, maybe at some
1036 	 * point we can change the ->readdir prototype to include the
1037 	 * buffer size.  For now we use the current glibc buffer size.
1038 	 */
1039 	bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1040 
1041 	return xfs_readdir(ip, ctx, bufsize);
1042 }
1043 
1044 /*
1045  * This type is designed to indicate the type of offset we would like
1046  * to search from page cache for xfs_seek_hole_data().
1047  */
1048 enum {
1049 	HOLE_OFF = 0,
1050 	DATA_OFF,
1051 };
1052 
1053 /*
1054  * Lookup the desired type of offset from the given page.
1055  *
1056  * On success, return true and the offset argument will point to the
1057  * start of the region that was found.  Otherwise this function will
1058  * return false and keep the offset argument unchanged.
1059  */
1060 STATIC bool
xfs_lookup_buffer_offset(struct page * page,loff_t * offset,unsigned int type)1061 xfs_lookup_buffer_offset(
1062 	struct page		*page,
1063 	loff_t			*offset,
1064 	unsigned int		type)
1065 {
1066 	loff_t			lastoff = page_offset(page);
1067 	bool			found = false;
1068 	struct buffer_head	*bh, *head;
1069 
1070 	bh = head = page_buffers(page);
1071 	do {
1072 		/*
1073 		 * Unwritten extents that have data in the page
1074 		 * cache covering them can be identified by the
1075 		 * BH_Unwritten state flag.  Pages with multiple
1076 		 * buffers might have a mix of holes, data and
1077 		 * unwritten extents - any buffer with valid
1078 		 * data in it should have BH_Uptodate flag set
1079 		 * on it.
1080 		 */
1081 		if (buffer_unwritten(bh) ||
1082 		    buffer_uptodate(bh)) {
1083 			if (type == DATA_OFF)
1084 				found = true;
1085 		} else {
1086 			if (type == HOLE_OFF)
1087 				found = true;
1088 		}
1089 
1090 		if (found) {
1091 			*offset = lastoff;
1092 			break;
1093 		}
1094 		lastoff += bh->b_size;
1095 	} while ((bh = bh->b_this_page) != head);
1096 
1097 	return found;
1098 }
1099 
1100 /*
1101  * This routine is called to find out and return a data or hole offset
1102  * from the page cache for unwritten extents according to the desired
1103  * type for xfs_seek_hole_data().
1104  *
1105  * The argument offset is used to tell where we start to search from the
1106  * page cache.  Map is used to figure out the end points of the range to
1107  * lookup pages.
1108  *
1109  * Return true if the desired type of offset was found, and the argument
1110  * offset is filled with that address.  Otherwise, return false and keep
1111  * offset unchanged.
1112  */
1113 STATIC bool
xfs_find_get_desired_pgoff(struct inode * inode,struct xfs_bmbt_irec * map,unsigned int type,loff_t * offset)1114 xfs_find_get_desired_pgoff(
1115 	struct inode		*inode,
1116 	struct xfs_bmbt_irec	*map,
1117 	unsigned int		type,
1118 	loff_t			*offset)
1119 {
1120 	struct xfs_inode	*ip = XFS_I(inode);
1121 	struct xfs_mount	*mp = ip->i_mount;
1122 	struct pagevec		pvec;
1123 	pgoff_t			index;
1124 	pgoff_t			end;
1125 	loff_t			endoff;
1126 	loff_t			startoff = *offset;
1127 	loff_t			lastoff = startoff;
1128 	bool			found = false;
1129 
1130 	pagevec_init(&pvec, 0);
1131 
1132 	index = startoff >> PAGE_SHIFT;
1133 	endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1134 	end = (endoff - 1) >> PAGE_SHIFT;
1135 	do {
1136 		int		want;
1137 		unsigned	nr_pages;
1138 		unsigned int	i;
1139 
1140 		want = min_t(pgoff_t, end - index, PAGEVEC_SIZE - 1) + 1;
1141 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1142 					  want);
1143 		if (nr_pages == 0)
1144 			break;
1145 
1146 		for (i = 0; i < nr_pages; i++) {
1147 			struct page	*page = pvec.pages[i];
1148 			loff_t		b_offset;
1149 
1150 			/*
1151 			 * At this point, the page may be truncated or
1152 			 * invalidated (changing page->mapping to NULL),
1153 			 * or even swizzled back from swapper_space to tmpfs
1154 			 * file mapping. However, page->index will not change
1155 			 * because we have a reference on the page.
1156 			 *
1157 			 * If current page offset is beyond where we've ended,
1158 			 * we've found a hole.
1159 			 */
1160 			if (type == HOLE_OFF && lastoff < endoff &&
1161 			    lastoff < page_offset(pvec.pages[i])) {
1162 				found = true;
1163 				*offset = lastoff;
1164 				goto out;
1165 			}
1166 			/* Searching done if the page index is out of range. */
1167 			if (page->index > end)
1168 				goto out;
1169 
1170 			lock_page(page);
1171 			/*
1172 			 * Page truncated or invalidated(page->mapping == NULL).
1173 			 * We can freely skip it and proceed to check the next
1174 			 * page.
1175 			 */
1176 			if (unlikely(page->mapping != inode->i_mapping)) {
1177 				unlock_page(page);
1178 				continue;
1179 			}
1180 
1181 			if (!page_has_buffers(page)) {
1182 				unlock_page(page);
1183 				continue;
1184 			}
1185 
1186 			found = xfs_lookup_buffer_offset(page, &b_offset, type);
1187 			if (found) {
1188 				/*
1189 				 * The found offset may be less than the start
1190 				 * point to search if this is the first time to
1191 				 * come here.
1192 				 */
1193 				*offset = max_t(loff_t, startoff, b_offset);
1194 				unlock_page(page);
1195 				goto out;
1196 			}
1197 
1198 			/*
1199 			 * We either searching data but nothing was found, or
1200 			 * searching hole but found a data buffer.  In either
1201 			 * case, probably the next page contains the desired
1202 			 * things, update the last offset to it so.
1203 			 */
1204 			lastoff = page_offset(page) + PAGE_SIZE;
1205 			unlock_page(page);
1206 		}
1207 
1208 		/*
1209 		 * The number of returned pages less than our desired, search
1210 		 * done.
1211 		 */
1212 		if (nr_pages < want)
1213 			break;
1214 
1215 		index = pvec.pages[i - 1]->index + 1;
1216 		pagevec_release(&pvec);
1217 	} while (index <= end);
1218 
1219 	/* No page at lastoff and we are not done - we found a hole. */
1220 	if (type == HOLE_OFF && lastoff < endoff) {
1221 		*offset = lastoff;
1222 		found = true;
1223 	}
1224 out:
1225 	pagevec_release(&pvec);
1226 	return found;
1227 }
1228 
1229 /*
1230  * caller must lock inode with xfs_ilock_data_map_shared,
1231  * can we craft an appropriate ASSERT?
1232  *
1233  * end is because the VFS-level lseek interface is defined such that any
1234  * offset past i_size shall return -ENXIO, but we use this for quota code
1235  * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1236  */
1237 loff_t
__xfs_seek_hole_data(struct inode * inode,loff_t start,loff_t end,int whence)1238 __xfs_seek_hole_data(
1239 	struct inode		*inode,
1240 	loff_t			start,
1241 	loff_t			end,
1242 	int			whence)
1243 {
1244 	struct xfs_inode	*ip = XFS_I(inode);
1245 	struct xfs_mount	*mp = ip->i_mount;
1246 	loff_t			uninitialized_var(offset);
1247 	xfs_fileoff_t		fsbno;
1248 	xfs_filblks_t		lastbno;
1249 	int			error;
1250 
1251 	if (start >= end) {
1252 		error = -ENXIO;
1253 		goto out_error;
1254 	}
1255 
1256 	/*
1257 	 * Try to read extents from the first block indicated
1258 	 * by fsbno to the end block of the file.
1259 	 */
1260 	fsbno = XFS_B_TO_FSBT(mp, start);
1261 	lastbno = XFS_B_TO_FSB(mp, end);
1262 
1263 	for (;;) {
1264 		struct xfs_bmbt_irec	map[2];
1265 		int			nmap = 2;
1266 		unsigned int		i;
1267 
1268 		error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1269 				       XFS_BMAPI_ENTIRE);
1270 		if (error)
1271 			goto out_error;
1272 
1273 		/* No extents at given offset, must be beyond EOF */
1274 		if (nmap == 0) {
1275 			error = -ENXIO;
1276 			goto out_error;
1277 		}
1278 
1279 		for (i = 0; i < nmap; i++) {
1280 			offset = max_t(loff_t, start,
1281 				       XFS_FSB_TO_B(mp, map[i].br_startoff));
1282 
1283 			/* Landed in the hole we wanted? */
1284 			if (whence == SEEK_HOLE &&
1285 			    map[i].br_startblock == HOLESTARTBLOCK)
1286 				goto out;
1287 
1288 			/* Landed in the data extent we wanted? */
1289 			if (whence == SEEK_DATA &&
1290 			    (map[i].br_startblock == DELAYSTARTBLOCK ||
1291 			     (map[i].br_state == XFS_EXT_NORM &&
1292 			      !isnullstartblock(map[i].br_startblock))))
1293 				goto out;
1294 
1295 			/*
1296 			 * Landed in an unwritten extent, try to search
1297 			 * for hole or data from page cache.
1298 			 */
1299 			if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1300 				if (xfs_find_get_desired_pgoff(inode, &map[i],
1301 				      whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1302 							&offset))
1303 					goto out;
1304 			}
1305 		}
1306 
1307 		/*
1308 		 * We only received one extent out of the two requested. This
1309 		 * means we've hit EOF and didn't find what we are looking for.
1310 		 */
1311 		if (nmap == 1) {
1312 			/*
1313 			 * If we were looking for a hole, set offset to
1314 			 * the end of the file (i.e., there is an implicit
1315 			 * hole at the end of any file).
1316 		 	 */
1317 			if (whence == SEEK_HOLE) {
1318 				offset = end;
1319 				break;
1320 			}
1321 			/*
1322 			 * If we were looking for data, it's nowhere to be found
1323 			 */
1324 			ASSERT(whence == SEEK_DATA);
1325 			error = -ENXIO;
1326 			goto out_error;
1327 		}
1328 
1329 		ASSERT(i > 1);
1330 
1331 		/*
1332 		 * Nothing was found, proceed to the next round of search
1333 		 * if the next reading offset is not at or beyond EOF.
1334 		 */
1335 		fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1336 		start = XFS_FSB_TO_B(mp, fsbno);
1337 		if (start >= end) {
1338 			if (whence == SEEK_HOLE) {
1339 				offset = end;
1340 				break;
1341 			}
1342 			ASSERT(whence == SEEK_DATA);
1343 			error = -ENXIO;
1344 			goto out_error;
1345 		}
1346 	}
1347 
1348 out:
1349 	/*
1350 	 * If at this point we have found the hole we wanted, the returned
1351 	 * offset may be bigger than the file size as it may be aligned to
1352 	 * page boundary for unwritten extents.  We need to deal with this
1353 	 * situation in particular.
1354 	 */
1355 	if (whence == SEEK_HOLE)
1356 		offset = min_t(loff_t, offset, end);
1357 
1358 	return offset;
1359 
1360 out_error:
1361 	return error;
1362 }
1363 
1364 STATIC loff_t
xfs_seek_hole_data(struct file * file,loff_t start,int whence)1365 xfs_seek_hole_data(
1366 	struct file		*file,
1367 	loff_t			start,
1368 	int			whence)
1369 {
1370 	struct inode		*inode = file->f_mapping->host;
1371 	struct xfs_inode	*ip = XFS_I(inode);
1372 	struct xfs_mount	*mp = ip->i_mount;
1373 	uint			lock;
1374 	loff_t			offset, end;
1375 	int			error = 0;
1376 
1377 	if (XFS_FORCED_SHUTDOWN(mp))
1378 		return -EIO;
1379 
1380 	lock = xfs_ilock_data_map_shared(ip);
1381 
1382 	end = i_size_read(inode);
1383 	offset = __xfs_seek_hole_data(inode, start, end, whence);
1384 	if (offset < 0) {
1385 		error = offset;
1386 		goto out_unlock;
1387 	}
1388 
1389 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1390 
1391 out_unlock:
1392 	xfs_iunlock(ip, lock);
1393 
1394 	if (error)
1395 		return error;
1396 	return offset;
1397 }
1398 
1399 STATIC loff_t
xfs_file_llseek(struct file * file,loff_t offset,int whence)1400 xfs_file_llseek(
1401 	struct file	*file,
1402 	loff_t		offset,
1403 	int		whence)
1404 {
1405 	switch (whence) {
1406 	case SEEK_END:
1407 	case SEEK_CUR:
1408 	case SEEK_SET:
1409 		return generic_file_llseek(file, offset, whence);
1410 	case SEEK_HOLE:
1411 	case SEEK_DATA:
1412 		return xfs_seek_hole_data(file, offset, whence);
1413 	default:
1414 		return -EINVAL;
1415 	}
1416 }
1417 
1418 /*
1419  * Locking for serialisation of IO during page faults. This results in a lock
1420  * ordering of:
1421  *
1422  * mmap_sem (MM)
1423  *   sb_start_pagefault(vfs, freeze)
1424  *     i_mmaplock (XFS - truncate serialisation)
1425  *       page_lock (MM)
1426  *         i_lock (XFS - extent map serialisation)
1427  */
1428 
1429 /*
1430  * mmap()d file has taken write protection fault and is being made writable. We
1431  * can set the page state up correctly for a writable page, which means we can
1432  * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1433  * mapping.
1434  */
1435 STATIC int
xfs_filemap_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)1436 xfs_filemap_page_mkwrite(
1437 	struct vm_area_struct	*vma,
1438 	struct vm_fault		*vmf)
1439 {
1440 	struct inode		*inode = file_inode(vma->vm_file);
1441 	int			ret;
1442 
1443 	trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1444 
1445 	sb_start_pagefault(inode->i_sb);
1446 	file_update_time(vma->vm_file);
1447 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1448 
1449 	if (IS_DAX(inode)) {
1450 		ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
1451 	} else {
1452 		ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
1453 		ret = block_page_mkwrite_return(ret);
1454 	}
1455 
1456 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1457 	sb_end_pagefault(inode->i_sb);
1458 
1459 	return ret;
1460 }
1461 
1462 STATIC int
xfs_filemap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1463 xfs_filemap_fault(
1464 	struct vm_area_struct	*vma,
1465 	struct vm_fault		*vmf)
1466 {
1467 	struct inode		*inode = file_inode(vma->vm_file);
1468 	int			ret;
1469 
1470 	trace_xfs_filemap_fault(XFS_I(inode));
1471 
1472 	/* DAX can shortcut the normal fault path on write faults! */
1473 	if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1474 		return xfs_filemap_page_mkwrite(vma, vmf);
1475 
1476 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1477 	if (IS_DAX(inode)) {
1478 		/*
1479 		 * we do not want to trigger unwritten extent conversion on read
1480 		 * faults - that is unnecessary overhead and would also require
1481 		 * changes to xfs_get_blocks_direct() to map unwritten extent
1482 		 * ioend for conversion on read-only mappings.
1483 		 */
1484 		ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
1485 	} else
1486 		ret = filemap_fault(vma, vmf);
1487 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1488 
1489 	return ret;
1490 }
1491 
1492 /*
1493  * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1494  * both read and write faults. Hence we need to handle both cases. There is no
1495  * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1496  * handle both cases here. @flags carries the information on the type of fault
1497  * occuring.
1498  */
1499 STATIC int
xfs_filemap_pmd_fault(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags)1500 xfs_filemap_pmd_fault(
1501 	struct vm_area_struct	*vma,
1502 	unsigned long		addr,
1503 	pmd_t			*pmd,
1504 	unsigned int		flags)
1505 {
1506 	struct inode		*inode = file_inode(vma->vm_file);
1507 	struct xfs_inode	*ip = XFS_I(inode);
1508 	int			ret;
1509 
1510 	if (!IS_DAX(inode))
1511 		return VM_FAULT_FALLBACK;
1512 
1513 	trace_xfs_filemap_pmd_fault(ip);
1514 
1515 	if (flags & FAULT_FLAG_WRITE) {
1516 		sb_start_pagefault(inode->i_sb);
1517 		file_update_time(vma->vm_file);
1518 	}
1519 
1520 	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1521 	ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
1522 	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1523 
1524 	if (flags & FAULT_FLAG_WRITE)
1525 		sb_end_pagefault(inode->i_sb);
1526 
1527 	return ret;
1528 }
1529 
1530 /*
1531  * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1532  * updates on write faults. In reality, it's need to serialise against
1533  * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1534  * to ensure we serialise the fault barrier in place.
1535  */
1536 static int
xfs_filemap_pfn_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)1537 xfs_filemap_pfn_mkwrite(
1538 	struct vm_area_struct	*vma,
1539 	struct vm_fault		*vmf)
1540 {
1541 
1542 	struct inode		*inode = file_inode(vma->vm_file);
1543 	struct xfs_inode	*ip = XFS_I(inode);
1544 	int			ret = VM_FAULT_NOPAGE;
1545 	loff_t			size;
1546 
1547 	trace_xfs_filemap_pfn_mkwrite(ip);
1548 
1549 	sb_start_pagefault(inode->i_sb);
1550 	file_update_time(vma->vm_file);
1551 
1552 	/* check if the faulting page hasn't raced with truncate */
1553 	xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1554 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1555 	if (vmf->pgoff >= size)
1556 		ret = VM_FAULT_SIGBUS;
1557 	else if (IS_DAX(inode))
1558 		ret = dax_pfn_mkwrite(vma, vmf);
1559 	xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1560 	sb_end_pagefault(inode->i_sb);
1561 	return ret;
1562 
1563 }
1564 
1565 static const struct vm_operations_struct xfs_file_vm_ops = {
1566 	.fault		= xfs_filemap_fault,
1567 	.pmd_fault	= xfs_filemap_pmd_fault,
1568 	.map_pages	= filemap_map_pages,
1569 	.page_mkwrite	= xfs_filemap_page_mkwrite,
1570 	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1571 };
1572 
1573 STATIC int
xfs_file_mmap(struct file * filp,struct vm_area_struct * vma)1574 xfs_file_mmap(
1575 	struct file	*filp,
1576 	struct vm_area_struct *vma)
1577 {
1578 	file_accessed(filp);
1579 	vma->vm_ops = &xfs_file_vm_ops;
1580 	if (IS_DAX(file_inode(filp)))
1581 		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1582 	return 0;
1583 }
1584 
1585 const struct file_operations xfs_file_operations = {
1586 	.llseek		= xfs_file_llseek,
1587 	.read_iter	= xfs_file_read_iter,
1588 	.write_iter	= xfs_file_write_iter,
1589 	.splice_read	= generic_file_splice_read,
1590 	.splice_write	= iter_file_splice_write,
1591 	.unlocked_ioctl	= xfs_file_ioctl,
1592 #ifdef CONFIG_COMPAT
1593 	.compat_ioctl	= xfs_file_compat_ioctl,
1594 #endif
1595 	.mmap		= xfs_file_mmap,
1596 	.open		= xfs_file_open,
1597 	.release	= xfs_file_release,
1598 	.fsync		= xfs_file_fsync,
1599 	.get_unmapped_area = thp_get_unmapped_area,
1600 	.fallocate	= xfs_file_fallocate,
1601 	.copy_file_range = xfs_file_copy_range,
1602 	.clone_file_range = xfs_file_clone_range,
1603 	.dedupe_file_range = xfs_file_dedupe_range,
1604 };
1605 
1606 const struct file_operations xfs_dir_file_operations = {
1607 	.open		= xfs_dir_open,
1608 	.read		= generic_read_dir,
1609 	.iterate_shared	= xfs_file_readdir,
1610 	.llseek		= generic_file_llseek,
1611 	.unlocked_ioctl	= xfs_file_ioctl,
1612 #ifdef CONFIG_COMPAT
1613 	.compat_ioctl	= xfs_file_compat_ioctl,
1614 #endif
1615 	.fsync		= xfs_dir_fsync,
1616 };
1617