1 /*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
13
14 /*
15 * The Linux memory management assumes a three-level page table setup.
16 * For s390 64 bit we use up to four of the five levels the hardware
17 * provides (region first tables are not used).
18 *
19 * The "pgd_xxx()" functions are trivial for a folded two-level
20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
21 * into the pgd entry)
22 *
23 * This file contains the functions and defines necessary to modify and use
24 * the S390 page table tree.
25 */
26 #ifndef __ASSEMBLY__
27 #include <linux/sched.h>
28 #include <linux/mm_types.h>
29 #include <linux/page-flags.h>
30 #include <linux/radix-tree.h>
31 #include <linux/atomic.h>
32 #include <asm/bug.h>
33 #include <asm/page.h>
34
35 extern pgd_t swapper_pg_dir[];
36 extern void paging_init(void);
37 extern void vmem_map_init(void);
38 pmd_t *vmem_pmd_alloc(void);
39 pte_t *vmem_pte_alloc(void);
40
41 enum {
42 PG_DIRECT_MAP_4K = 0,
43 PG_DIRECT_MAP_1M,
44 PG_DIRECT_MAP_2G,
45 PG_DIRECT_MAP_MAX
46 };
47
48 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
49
update_page_count(int level,long count)50 static inline void update_page_count(int level, long count)
51 {
52 if (IS_ENABLED(CONFIG_PROC_FS))
53 atomic_long_add(count, &direct_pages_count[level]);
54 }
55
56 struct seq_file;
57 void arch_report_meminfo(struct seq_file *m);
58
59 /*
60 * The S390 doesn't have any external MMU info: the kernel page
61 * tables contain all the necessary information.
62 */
63 #define update_mmu_cache(vma, address, ptep) do { } while (0)
64 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
65
66 /*
67 * ZERO_PAGE is a global shared page that is always zero; used
68 * for zero-mapped memory areas etc..
69 */
70
71 extern unsigned long empty_zero_page;
72 extern unsigned long zero_page_mask;
73
74 #define ZERO_PAGE(vaddr) \
75 (virt_to_page((void *)(empty_zero_page + \
76 (((unsigned long)(vaddr)) &zero_page_mask))))
77 #define __HAVE_COLOR_ZERO_PAGE
78
79 /* TODO: s390 cannot support io_remap_pfn_range... */
80 #endif /* !__ASSEMBLY__ */
81
82 /*
83 * PMD_SHIFT determines the size of the area a second-level page
84 * table can map
85 * PGDIR_SHIFT determines what a third-level page table entry can map
86 */
87 #define PMD_SHIFT 20
88 #define PUD_SHIFT 31
89 #define PGDIR_SHIFT 42
90
91 #define PMD_SIZE (1UL << PMD_SHIFT)
92 #define PMD_MASK (~(PMD_SIZE-1))
93 #define PUD_SIZE (1UL << PUD_SHIFT)
94 #define PUD_MASK (~(PUD_SIZE-1))
95 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
96 #define PGDIR_MASK (~(PGDIR_SIZE-1))
97
98 /*
99 * entries per page directory level: the S390 is two-level, so
100 * we don't really have any PMD directory physically.
101 * for S390 segment-table entries are combined to one PGD
102 * that leads to 1024 pte per pgd
103 */
104 #define PTRS_PER_PTE 256
105 #define PTRS_PER_PMD 2048
106 #define PTRS_PER_PUD 2048
107 #define PTRS_PER_PGD 2048
108
109 #define FIRST_USER_ADDRESS 0UL
110
111 #define pte_ERROR(e) \
112 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
113 #define pmd_ERROR(e) \
114 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
115 #define pud_ERROR(e) \
116 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
117 #define pgd_ERROR(e) \
118 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
119
120 #ifndef __ASSEMBLY__
121 /*
122 * The vmalloc and module area will always be on the topmost area of the
123 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
124 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
125 * modules will reside. That makes sure that inter module branches always
126 * happen without trampolines and in addition the placement within a 2GB frame
127 * is branch prediction unit friendly.
128 */
129 extern unsigned long VMALLOC_START;
130 extern unsigned long VMALLOC_END;
131 extern struct page *vmemmap;
132
133 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
134
135 extern unsigned long MODULES_VADDR;
136 extern unsigned long MODULES_END;
137 #define MODULES_VADDR MODULES_VADDR
138 #define MODULES_END MODULES_END
139 #define MODULES_LEN (1UL << 31)
140
is_module_addr(void * addr)141 static inline int is_module_addr(void *addr)
142 {
143 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
144 if (addr < (void *)MODULES_VADDR)
145 return 0;
146 if (addr > (void *)MODULES_END)
147 return 0;
148 return 1;
149 }
150
151 /*
152 * A 64 bit pagetable entry of S390 has following format:
153 * | PFRA |0IPC| OS |
154 * 0000000000111111111122222222223333333333444444444455555555556666
155 * 0123456789012345678901234567890123456789012345678901234567890123
156 *
157 * I Page-Invalid Bit: Page is not available for address-translation
158 * P Page-Protection Bit: Store access not possible for page
159 * C Change-bit override: HW is not required to set change bit
160 *
161 * A 64 bit segmenttable entry of S390 has following format:
162 * | P-table origin | TT
163 * 0000000000111111111122222222223333333333444444444455555555556666
164 * 0123456789012345678901234567890123456789012345678901234567890123
165 *
166 * I Segment-Invalid Bit: Segment is not available for address-translation
167 * C Common-Segment Bit: Segment is not private (PoP 3-30)
168 * P Page-Protection Bit: Store access not possible for page
169 * TT Type 00
170 *
171 * A 64 bit region table entry of S390 has following format:
172 * | S-table origin | TF TTTL
173 * 0000000000111111111122222222223333333333444444444455555555556666
174 * 0123456789012345678901234567890123456789012345678901234567890123
175 *
176 * I Segment-Invalid Bit: Segment is not available for address-translation
177 * TT Type 01
178 * TF
179 * TL Table length
180 *
181 * The 64 bit regiontable origin of S390 has following format:
182 * | region table origon | DTTL
183 * 0000000000111111111122222222223333333333444444444455555555556666
184 * 0123456789012345678901234567890123456789012345678901234567890123
185 *
186 * X Space-Switch event:
187 * G Segment-Invalid Bit:
188 * P Private-Space Bit:
189 * S Storage-Alteration:
190 * R Real space
191 * TL Table-Length:
192 *
193 * A storage key has the following format:
194 * | ACC |F|R|C|0|
195 * 0 3 4 5 6 7
196 * ACC: access key
197 * F : fetch protection bit
198 * R : referenced bit
199 * C : changed bit
200 */
201
202 /* Hardware bits in the page table entry */
203 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
204 #define _PAGE_INVALID 0x400 /* HW invalid bit */
205 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
206
207 /* Software bits in the page table entry */
208 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
209 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
210 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
211 #define _PAGE_READ 0x010 /* SW pte read bit */
212 #define _PAGE_WRITE 0x020 /* SW pte write bit */
213 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
214 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
215 #define __HAVE_ARCH_PTE_SPECIAL
216
217 #ifdef CONFIG_MEM_SOFT_DIRTY
218 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
219 #else
220 #define _PAGE_SOFT_DIRTY 0x000
221 #endif
222
223 /* Set of bits not changed in pte_modify */
224 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
225 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
226
227 /*
228 * handle_pte_fault uses pte_present and pte_none to find out the pte type
229 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
230 * distinguish present from not-present ptes. It is changed only with the page
231 * table lock held.
232 *
233 * The following table gives the different possible bit combinations for
234 * the pte hardware and software bits in the last 12 bits of a pte
235 * (. unassigned bit, x don't care, t swap type):
236 *
237 * 842100000000
238 * 000084210000
239 * 000000008421
240 * .IR.uswrdy.p
241 * empty .10.00000000
242 * swap .11..ttttt.0
243 * prot-none, clean, old .11.xx0000.1
244 * prot-none, clean, young .11.xx0001.1
245 * prot-none, dirty, old .11.xx0010.1
246 * prot-none, dirty, young .11.xx0011.1
247 * read-only, clean, old .11.xx0100.1
248 * read-only, clean, young .01.xx0101.1
249 * read-only, dirty, old .11.xx0110.1
250 * read-only, dirty, young .01.xx0111.1
251 * read-write, clean, old .11.xx1100.1
252 * read-write, clean, young .01.xx1101.1
253 * read-write, dirty, old .10.xx1110.1
254 * read-write, dirty, young .00.xx1111.1
255 * HW-bits: R read-only, I invalid
256 * SW-bits: p present, y young, d dirty, r read, w write, s special,
257 * u unused, l large
258 *
259 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
260 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
261 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
262 */
263
264 /* Bits in the segment/region table address-space-control-element */
265 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
266 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
267 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
268 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
269 #define _ASCE_REAL_SPACE 0x20 /* real space control */
270 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
271 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
272 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
273 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
274 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
275 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
276
277 /* Bits in the region table entry */
278 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
279 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
280 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
281 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
282 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
283 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
284 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
285 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
286 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
287
288 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
289 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
290 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
291 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
292 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
293 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
294
295 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
296 #define _REGION3_ENTRY_ORIGIN ~0x7ffUL/* region third table origin */
297
298 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
299 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
300 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
301 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
302 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
303
304 #ifdef CONFIG_MEM_SOFT_DIRTY
305 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
306 #else
307 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
308 #endif
309
310 #define _REGION_ENTRY_BITS 0xfffffffffffff227UL
311 #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe27UL
312
313 /* Bits in the segment table entry */
314 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
315 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
316 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
317 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
318 #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
319 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
320
321 #define _SEGMENT_ENTRY (0)
322 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
323
324 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
325 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
326 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
327 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
328 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
329
330 #ifdef CONFIG_MEM_SOFT_DIRTY
331 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
332 #else
333 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
334 #endif
335
336 /*
337 * Segment table and region3 table entry encoding
338 * (R = read-only, I = invalid, y = young bit):
339 * dy..R...I...wr
340 * prot-none, clean, old 00..1...1...00
341 * prot-none, clean, young 01..1...1...00
342 * prot-none, dirty, old 10..1...1...00
343 * prot-none, dirty, young 11..1...1...00
344 * read-only, clean, old 00..1...1...01
345 * read-only, clean, young 01..1...0...01
346 * read-only, dirty, old 10..1...1...01
347 * read-only, dirty, young 11..1...0...01
348 * read-write, clean, old 00..1...1...11
349 * read-write, clean, young 01..1...0...11
350 * read-write, dirty, old 10..0...1...11
351 * read-write, dirty, young 11..0...0...11
352 * The segment table origin is used to distinguish empty (origin==0) from
353 * read-write, old segment table entries (origin!=0)
354 * HW-bits: R read-only, I invalid
355 * SW-bits: y young, d dirty, r read, w write
356 */
357
358 /* Page status table bits for virtualization */
359 #define PGSTE_ACC_BITS 0xf000000000000000UL
360 #define PGSTE_FP_BIT 0x0800000000000000UL
361 #define PGSTE_PCL_BIT 0x0080000000000000UL
362 #define PGSTE_HR_BIT 0x0040000000000000UL
363 #define PGSTE_HC_BIT 0x0020000000000000UL
364 #define PGSTE_GR_BIT 0x0004000000000000UL
365 #define PGSTE_GC_BIT 0x0002000000000000UL
366 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
367 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
368 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
369
370 /* Guest Page State used for virtualization */
371 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
372 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
373 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
374 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
375
376 /*
377 * A user page table pointer has the space-switch-event bit, the
378 * private-space-control bit and the storage-alteration-event-control
379 * bit set. A kernel page table pointer doesn't need them.
380 */
381 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
382 _ASCE_ALT_EVENT)
383
384 /*
385 * Page protection definitions.
386 */
387 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
388 #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
389 _PAGE_INVALID | _PAGE_PROTECT)
390 #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
391 _PAGE_INVALID | _PAGE_PROTECT)
392
393 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
394 _PAGE_YOUNG | _PAGE_DIRTY)
395 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
396 _PAGE_YOUNG | _PAGE_DIRTY)
397 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
398 _PAGE_PROTECT)
399
400 /*
401 * On s390 the page table entry has an invalid bit and a read-only bit.
402 * Read permission implies execute permission and write permission
403 * implies read permission.
404 */
405 /*xwr*/
406 #define __P000 PAGE_NONE
407 #define __P001 PAGE_READ
408 #define __P010 PAGE_READ
409 #define __P011 PAGE_READ
410 #define __P100 PAGE_READ
411 #define __P101 PAGE_READ
412 #define __P110 PAGE_READ
413 #define __P111 PAGE_READ
414
415 #define __S000 PAGE_NONE
416 #define __S001 PAGE_READ
417 #define __S010 PAGE_WRITE
418 #define __S011 PAGE_WRITE
419 #define __S100 PAGE_READ
420 #define __S101 PAGE_READ
421 #define __S110 PAGE_WRITE
422 #define __S111 PAGE_WRITE
423
424 /*
425 * Segment entry (large page) protection definitions.
426 */
427 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
428 _SEGMENT_ENTRY_PROTECT)
429 #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
430 _SEGMENT_ENTRY_READ)
431 #define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
432 _SEGMENT_ENTRY_WRITE)
433 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
434 _SEGMENT_ENTRY_LARGE | \
435 _SEGMENT_ENTRY_READ | \
436 _SEGMENT_ENTRY_WRITE | \
437 _SEGMENT_ENTRY_YOUNG | \
438 _SEGMENT_ENTRY_DIRTY)
439 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
440 _SEGMENT_ENTRY_LARGE | \
441 _SEGMENT_ENTRY_READ | \
442 _SEGMENT_ENTRY_YOUNG | \
443 _SEGMENT_ENTRY_PROTECT)
444
445 /*
446 * Region3 entry (large page) protection definitions.
447 */
448
449 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
450 _REGION3_ENTRY_LARGE | \
451 _REGION3_ENTRY_READ | \
452 _REGION3_ENTRY_WRITE | \
453 _REGION3_ENTRY_YOUNG | \
454 _REGION3_ENTRY_DIRTY)
455 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
456 _REGION3_ENTRY_LARGE | \
457 _REGION3_ENTRY_READ | \
458 _REGION3_ENTRY_YOUNG | \
459 _REGION_ENTRY_PROTECT)
460
mm_has_pgste(struct mm_struct * mm)461 static inline int mm_has_pgste(struct mm_struct *mm)
462 {
463 #ifdef CONFIG_PGSTE
464 if (unlikely(mm->context.has_pgste))
465 return 1;
466 #endif
467 return 0;
468 }
469
mm_alloc_pgste(struct mm_struct * mm)470 static inline int mm_alloc_pgste(struct mm_struct *mm)
471 {
472 #ifdef CONFIG_PGSTE
473 if (unlikely(mm->context.alloc_pgste))
474 return 1;
475 #endif
476 return 0;
477 }
478
479 /*
480 * In the case that a guest uses storage keys
481 * faults should no longer be backed by zero pages
482 */
483 #define mm_forbids_zeropage mm_has_pgste
mm_use_skey(struct mm_struct * mm)484 static inline int mm_use_skey(struct mm_struct *mm)
485 {
486 #ifdef CONFIG_PGSTE
487 if (mm->context.use_skey)
488 return 1;
489 #endif
490 return 0;
491 }
492
csp(unsigned int * ptr,unsigned int old,unsigned int new)493 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
494 {
495 register unsigned long reg2 asm("2") = old;
496 register unsigned long reg3 asm("3") = new;
497 unsigned long address = (unsigned long)ptr | 1;
498
499 asm volatile(
500 " csp %0,%3"
501 : "+d" (reg2), "+m" (*ptr)
502 : "d" (reg3), "d" (address)
503 : "cc");
504 }
505
cspg(unsigned long * ptr,unsigned long old,unsigned long new)506 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
507 {
508 register unsigned long reg2 asm("2") = old;
509 register unsigned long reg3 asm("3") = new;
510 unsigned long address = (unsigned long)ptr | 1;
511
512 asm volatile(
513 " .insn rre,0xb98a0000,%0,%3"
514 : "+d" (reg2), "+m" (*ptr)
515 : "d" (reg3), "d" (address)
516 : "cc");
517 }
518
519 #define CRDTE_DTT_PAGE 0x00UL
520 #define CRDTE_DTT_SEGMENT 0x10UL
521 #define CRDTE_DTT_REGION3 0x14UL
522 #define CRDTE_DTT_REGION2 0x18UL
523 #define CRDTE_DTT_REGION1 0x1cUL
524
crdte(unsigned long old,unsigned long new,unsigned long table,unsigned long dtt,unsigned long address,unsigned long asce)525 static inline void crdte(unsigned long old, unsigned long new,
526 unsigned long table, unsigned long dtt,
527 unsigned long address, unsigned long asce)
528 {
529 register unsigned long reg2 asm("2") = old;
530 register unsigned long reg3 asm("3") = new;
531 register unsigned long reg4 asm("4") = table | dtt;
532 register unsigned long reg5 asm("5") = address;
533
534 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
535 : "+d" (reg2)
536 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
537 : "memory", "cc");
538 }
539
540 /*
541 * pgd/pmd/pte query functions
542 */
pgd_present(pgd_t pgd)543 static inline int pgd_present(pgd_t pgd)
544 {
545 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
546 return 1;
547 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
548 }
549
pgd_none(pgd_t pgd)550 static inline int pgd_none(pgd_t pgd)
551 {
552 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
553 return 0;
554 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
555 }
556
pgd_bad(pgd_t pgd)557 static inline int pgd_bad(pgd_t pgd)
558 {
559 /*
560 * With dynamic page table levels the pgd can be a region table
561 * entry or a segment table entry. Check for the bit that are
562 * invalid for either table entry.
563 */
564 unsigned long mask =
565 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
566 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
567 return (pgd_val(pgd) & mask) != 0;
568 }
569
pud_present(pud_t pud)570 static inline int pud_present(pud_t pud)
571 {
572 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
573 return 1;
574 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
575 }
576
pud_none(pud_t pud)577 static inline int pud_none(pud_t pud)
578 {
579 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
580 return 0;
581 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
582 }
583
pud_large(pud_t pud)584 static inline int pud_large(pud_t pud)
585 {
586 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
587 return 0;
588 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
589 }
590
pud_pfn(pud_t pud)591 static inline unsigned long pud_pfn(pud_t pud)
592 {
593 unsigned long origin_mask;
594
595 origin_mask = _REGION3_ENTRY_ORIGIN;
596 if (pud_large(pud))
597 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
598 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
599 }
600
pmd_large(pmd_t pmd)601 static inline int pmd_large(pmd_t pmd)
602 {
603 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
604 }
605
pmd_bad(pmd_t pmd)606 static inline int pmd_bad(pmd_t pmd)
607 {
608 if (pmd_large(pmd))
609 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
610 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
611 }
612
pud_bad(pud_t pud)613 static inline int pud_bad(pud_t pud)
614 {
615 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
616 return pmd_bad(__pmd(pud_val(pud)));
617 if (pud_large(pud))
618 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
619 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
620 }
621
pmd_present(pmd_t pmd)622 static inline int pmd_present(pmd_t pmd)
623 {
624 return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
625 }
626
pmd_none(pmd_t pmd)627 static inline int pmd_none(pmd_t pmd)
628 {
629 return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
630 }
631
pmd_pfn(pmd_t pmd)632 static inline unsigned long pmd_pfn(pmd_t pmd)
633 {
634 unsigned long origin_mask;
635
636 origin_mask = _SEGMENT_ENTRY_ORIGIN;
637 if (pmd_large(pmd))
638 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
639 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
640 }
641
642 #define __HAVE_ARCH_PMD_WRITE
pmd_write(pmd_t pmd)643 static inline int pmd_write(pmd_t pmd)
644 {
645 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
646 }
647
pmd_dirty(pmd_t pmd)648 static inline int pmd_dirty(pmd_t pmd)
649 {
650 int dirty = 1;
651 if (pmd_large(pmd))
652 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
653 return dirty;
654 }
655
pmd_young(pmd_t pmd)656 static inline int pmd_young(pmd_t pmd)
657 {
658 int young = 1;
659 if (pmd_large(pmd))
660 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
661 return young;
662 }
663
pte_present(pte_t pte)664 static inline int pte_present(pte_t pte)
665 {
666 /* Bit pattern: (pte & 0x001) == 0x001 */
667 return (pte_val(pte) & _PAGE_PRESENT) != 0;
668 }
669
pte_none(pte_t pte)670 static inline int pte_none(pte_t pte)
671 {
672 /* Bit pattern: pte == 0x400 */
673 return pte_val(pte) == _PAGE_INVALID;
674 }
675
pte_swap(pte_t pte)676 static inline int pte_swap(pte_t pte)
677 {
678 /* Bit pattern: (pte & 0x201) == 0x200 */
679 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
680 == _PAGE_PROTECT;
681 }
682
pte_special(pte_t pte)683 static inline int pte_special(pte_t pte)
684 {
685 return (pte_val(pte) & _PAGE_SPECIAL);
686 }
687
688 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)689 static inline int pte_same(pte_t a, pte_t b)
690 {
691 return pte_val(a) == pte_val(b);
692 }
693
694 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)695 static inline int pte_protnone(pte_t pte)
696 {
697 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
698 }
699
pmd_protnone(pmd_t pmd)700 static inline int pmd_protnone(pmd_t pmd)
701 {
702 /* pmd_large(pmd) implies pmd_present(pmd) */
703 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
704 }
705 #endif
706
pte_soft_dirty(pte_t pte)707 static inline int pte_soft_dirty(pte_t pte)
708 {
709 return pte_val(pte) & _PAGE_SOFT_DIRTY;
710 }
711 #define pte_swp_soft_dirty pte_soft_dirty
712
pte_mksoft_dirty(pte_t pte)713 static inline pte_t pte_mksoft_dirty(pte_t pte)
714 {
715 pte_val(pte) |= _PAGE_SOFT_DIRTY;
716 return pte;
717 }
718 #define pte_swp_mksoft_dirty pte_mksoft_dirty
719
pte_clear_soft_dirty(pte_t pte)720 static inline pte_t pte_clear_soft_dirty(pte_t pte)
721 {
722 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
723 return pte;
724 }
725 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
726
pmd_soft_dirty(pmd_t pmd)727 static inline int pmd_soft_dirty(pmd_t pmd)
728 {
729 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
730 }
731
pmd_mksoft_dirty(pmd_t pmd)732 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
733 {
734 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
735 return pmd;
736 }
737
pmd_clear_soft_dirty(pmd_t pmd)738 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
739 {
740 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
741 return pmd;
742 }
743
744 /*
745 * query functions pte_write/pte_dirty/pte_young only work if
746 * pte_present() is true. Undefined behaviour if not..
747 */
pte_write(pte_t pte)748 static inline int pte_write(pte_t pte)
749 {
750 return (pte_val(pte) & _PAGE_WRITE) != 0;
751 }
752
pte_dirty(pte_t pte)753 static inline int pte_dirty(pte_t pte)
754 {
755 return (pte_val(pte) & _PAGE_DIRTY) != 0;
756 }
757
pte_young(pte_t pte)758 static inline int pte_young(pte_t pte)
759 {
760 return (pte_val(pte) & _PAGE_YOUNG) != 0;
761 }
762
763 #define __HAVE_ARCH_PTE_UNUSED
pte_unused(pte_t pte)764 static inline int pte_unused(pte_t pte)
765 {
766 return pte_val(pte) & _PAGE_UNUSED;
767 }
768
769 /*
770 * pgd/pmd/pte modification functions
771 */
772
pgd_clear(pgd_t * pgd)773 static inline void pgd_clear(pgd_t *pgd)
774 {
775 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
776 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
777 }
778
pud_clear(pud_t * pud)779 static inline void pud_clear(pud_t *pud)
780 {
781 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
782 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
783 }
784
pmd_clear(pmd_t * pmdp)785 static inline void pmd_clear(pmd_t *pmdp)
786 {
787 pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
788 }
789
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)790 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
791 {
792 pte_val(*ptep) = _PAGE_INVALID;
793 }
794
795 /*
796 * The following pte modification functions only work if
797 * pte_present() is true. Undefined behaviour if not..
798 */
pte_modify(pte_t pte,pgprot_t newprot)799 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
800 {
801 pte_val(pte) &= _PAGE_CHG_MASK;
802 pte_val(pte) |= pgprot_val(newprot);
803 /*
804 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
805 * invalid bit set, clear it again for readable, young pages
806 */
807 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
808 pte_val(pte) &= ~_PAGE_INVALID;
809 /*
810 * newprot for PAGE_READ and PAGE_WRITE has the page protection
811 * bit set, clear it again for writable, dirty pages
812 */
813 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
814 pte_val(pte) &= ~_PAGE_PROTECT;
815 return pte;
816 }
817
pte_wrprotect(pte_t pte)818 static inline pte_t pte_wrprotect(pte_t pte)
819 {
820 pte_val(pte) &= ~_PAGE_WRITE;
821 pte_val(pte) |= _PAGE_PROTECT;
822 return pte;
823 }
824
pte_mkwrite(pte_t pte)825 static inline pte_t pte_mkwrite(pte_t pte)
826 {
827 pte_val(pte) |= _PAGE_WRITE;
828 if (pte_val(pte) & _PAGE_DIRTY)
829 pte_val(pte) &= ~_PAGE_PROTECT;
830 return pte;
831 }
832
pte_mkclean(pte_t pte)833 static inline pte_t pte_mkclean(pte_t pte)
834 {
835 pte_val(pte) &= ~_PAGE_DIRTY;
836 pte_val(pte) |= _PAGE_PROTECT;
837 return pte;
838 }
839
pte_mkdirty(pte_t pte)840 static inline pte_t pte_mkdirty(pte_t pte)
841 {
842 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
843 if (pte_val(pte) & _PAGE_WRITE)
844 pte_val(pte) &= ~_PAGE_PROTECT;
845 return pte;
846 }
847
pte_mkold(pte_t pte)848 static inline pte_t pte_mkold(pte_t pte)
849 {
850 pte_val(pte) &= ~_PAGE_YOUNG;
851 pte_val(pte) |= _PAGE_INVALID;
852 return pte;
853 }
854
pte_mkyoung(pte_t pte)855 static inline pte_t pte_mkyoung(pte_t pte)
856 {
857 pte_val(pte) |= _PAGE_YOUNG;
858 if (pte_val(pte) & _PAGE_READ)
859 pte_val(pte) &= ~_PAGE_INVALID;
860 return pte;
861 }
862
pte_mkspecial(pte_t pte)863 static inline pte_t pte_mkspecial(pte_t pte)
864 {
865 pte_val(pte) |= _PAGE_SPECIAL;
866 return pte;
867 }
868
869 #ifdef CONFIG_HUGETLB_PAGE
pte_mkhuge(pte_t pte)870 static inline pte_t pte_mkhuge(pte_t pte)
871 {
872 pte_val(pte) |= _PAGE_LARGE;
873 return pte;
874 }
875 #endif
876
877 #define IPTE_GLOBAL 0
878 #define IPTE_LOCAL 1
879
__ptep_ipte(unsigned long address,pte_t * ptep,int local)880 static inline void __ptep_ipte(unsigned long address, pte_t *ptep, int local)
881 {
882 unsigned long pto = (unsigned long) ptep;
883
884 /* Invalidation + TLB flush for the pte */
885 asm volatile(
886 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
887 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
888 [m4] "i" (local));
889 }
890
__ptep_ipte_range(unsigned long address,int nr,pte_t * ptep,int local)891 static inline void __ptep_ipte_range(unsigned long address, int nr,
892 pte_t *ptep, int local)
893 {
894 unsigned long pto = (unsigned long) ptep;
895
896 /* Invalidate a range of ptes + TLB flush of the ptes */
897 do {
898 asm volatile(
899 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
900 : [r2] "+a" (address), [r3] "+a" (nr)
901 : [r1] "a" (pto), [m4] "i" (local) : "memory");
902 } while (nr != 255);
903 }
904
905 /*
906 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
907 * both clear the TLB for the unmapped pte. The reason is that
908 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
909 * to modify an active pte. The sequence is
910 * 1) ptep_get_and_clear
911 * 2) set_pte_at
912 * 3) flush_tlb_range
913 * On s390 the tlb needs to get flushed with the modification of the pte
914 * if the pte is active. The only way how this can be implemented is to
915 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
916 * is a nop.
917 */
918 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
919 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
920
921 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)922 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
923 unsigned long addr, pte_t *ptep)
924 {
925 pte_t pte = *ptep;
926
927 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
928 return pte_young(pte);
929 }
930
931 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)932 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
933 unsigned long address, pte_t *ptep)
934 {
935 return ptep_test_and_clear_young(vma, address, ptep);
936 }
937
938 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)939 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
940 unsigned long addr, pte_t *ptep)
941 {
942 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
943 }
944
945 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
946 pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
947 void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
948
949 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
ptep_clear_flush(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)950 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
951 unsigned long addr, pte_t *ptep)
952 {
953 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
954 }
955
956 /*
957 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
958 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
959 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
960 * cannot be accessed while the batched unmap is running. In this case
961 * full==1 and a simple pte_clear is enough. See tlb.h.
962 */
963 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)964 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
965 unsigned long addr,
966 pte_t *ptep, int full)
967 {
968 if (full) {
969 pte_t pte = *ptep;
970 *ptep = __pte(_PAGE_INVALID);
971 return pte;
972 }
973 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
974 }
975
976 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)977 static inline void ptep_set_wrprotect(struct mm_struct *mm,
978 unsigned long addr, pte_t *ptep)
979 {
980 pte_t pte = *ptep;
981
982 if (pte_write(pte))
983 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
984 }
985
986 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)987 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
988 unsigned long addr, pte_t *ptep,
989 pte_t entry, int dirty)
990 {
991 if (pte_same(*ptep, entry))
992 return 0;
993 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
994 return 1;
995 }
996
997 /*
998 * Additional functions to handle KVM guest page tables
999 */
1000 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1001 pte_t *ptep, pte_t entry);
1002 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1003 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1004 pte_t *ptep, unsigned long bits);
1005 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1006 pte_t *ptep, int prot, unsigned long bit);
1007 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1008 pte_t *ptep , int reset);
1009 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1010 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1011 pte_t *sptep, pte_t *tptep, pte_t pte);
1012 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1013
1014 bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
1015 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1016 unsigned char key, bool nq);
1017 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1018 unsigned char key, unsigned char *oldkey,
1019 bool nq, bool mr, bool mc);
1020 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1021 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1022 unsigned char *key);
1023
1024 /*
1025 * Certain architectures need to do special things when PTEs
1026 * within a page table are directly modified. Thus, the following
1027 * hook is made available.
1028 */
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry)1029 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1030 pte_t *ptep, pte_t entry)
1031 {
1032 if (pte_present(entry))
1033 pte_val(entry) &= ~_PAGE_UNUSED;
1034 if (mm_has_pgste(mm))
1035 ptep_set_pte_at(mm, addr, ptep, entry);
1036 else
1037 *ptep = entry;
1038 }
1039
1040 /*
1041 * Conversion functions: convert a page and protection to a page entry,
1042 * and a page entry and page directory to the page they refer to.
1043 */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)1044 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1045 {
1046 pte_t __pte;
1047 pte_val(__pte) = physpage + pgprot_val(pgprot);
1048 return pte_mkyoung(__pte);
1049 }
1050
mk_pte(struct page * page,pgprot_t pgprot)1051 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1052 {
1053 unsigned long physpage = page_to_phys(page);
1054 pte_t __pte = mk_pte_phys(physpage, pgprot);
1055
1056 if (pte_write(__pte) && PageDirty(page))
1057 __pte = pte_mkdirty(__pte);
1058 return __pte;
1059 }
1060
1061 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1062 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1063 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1064 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1065
1066 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1067 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1068
1069 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1070 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1071 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1072
pud_offset(pgd_t * pgd,unsigned long address)1073 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1074 {
1075 pud_t *pud = (pud_t *) pgd;
1076 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1077 pud = (pud_t *) pgd_deref(*pgd);
1078 return pud + pud_index(address);
1079 }
1080
pmd_offset(pud_t * pud,unsigned long address)1081 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1082 {
1083 pmd_t *pmd = (pmd_t *) pud;
1084 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1085 pmd = (pmd_t *) pud_deref(*pud);
1086 return pmd + pmd_index(address);
1087 }
1088
1089 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1090 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1091 #define pte_page(x) pfn_to_page(pte_pfn(x))
1092
1093 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1094 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1095
1096 /* Find an entry in the lowest level page table.. */
1097 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1098 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1099 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1100 #define pte_unmap(pte) do { } while (0)
1101
pmd_wrprotect(pmd_t pmd)1102 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1103 {
1104 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1105 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1106 return pmd;
1107 }
1108
pmd_mkwrite(pmd_t pmd)1109 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1110 {
1111 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1112 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1113 return pmd;
1114 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1115 return pmd;
1116 }
1117
pmd_mkclean(pmd_t pmd)1118 static inline pmd_t pmd_mkclean(pmd_t pmd)
1119 {
1120 if (pmd_large(pmd)) {
1121 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1122 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1123 }
1124 return pmd;
1125 }
1126
pmd_mkdirty(pmd_t pmd)1127 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1128 {
1129 if (pmd_large(pmd)) {
1130 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1131 _SEGMENT_ENTRY_SOFT_DIRTY;
1132 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1133 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1134 }
1135 return pmd;
1136 }
1137
pud_wrprotect(pud_t pud)1138 static inline pud_t pud_wrprotect(pud_t pud)
1139 {
1140 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1141 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1142 return pud;
1143 }
1144
pud_mkwrite(pud_t pud)1145 static inline pud_t pud_mkwrite(pud_t pud)
1146 {
1147 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1148 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1149 return pud;
1150 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1151 return pud;
1152 }
1153
pud_mkclean(pud_t pud)1154 static inline pud_t pud_mkclean(pud_t pud)
1155 {
1156 if (pud_large(pud)) {
1157 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1158 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1159 }
1160 return pud;
1161 }
1162
pud_mkdirty(pud_t pud)1163 static inline pud_t pud_mkdirty(pud_t pud)
1164 {
1165 if (pud_large(pud)) {
1166 pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1167 _REGION3_ENTRY_SOFT_DIRTY;
1168 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1169 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1170 }
1171 return pud;
1172 }
1173
1174 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
massage_pgprot_pmd(pgprot_t pgprot)1175 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1176 {
1177 /*
1178 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1179 * Convert to segment table entry format.
1180 */
1181 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1182 return pgprot_val(SEGMENT_NONE);
1183 if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1184 return pgprot_val(SEGMENT_READ);
1185 return pgprot_val(SEGMENT_WRITE);
1186 }
1187
pmd_mkyoung(pmd_t pmd)1188 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1189 {
1190 if (pmd_large(pmd)) {
1191 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1192 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1193 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1194 }
1195 return pmd;
1196 }
1197
pmd_mkold(pmd_t pmd)1198 static inline pmd_t pmd_mkold(pmd_t pmd)
1199 {
1200 if (pmd_large(pmd)) {
1201 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1202 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1203 }
1204 return pmd;
1205 }
1206
pmd_modify(pmd_t pmd,pgprot_t newprot)1207 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1208 {
1209 if (pmd_large(pmd)) {
1210 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1211 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1212 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1213 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1214 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1215 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1216 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1217 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1218 return pmd;
1219 }
1220 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1221 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1222 return pmd;
1223 }
1224
mk_pmd_phys(unsigned long physpage,pgprot_t pgprot)1225 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1226 {
1227 pmd_t __pmd;
1228 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1229 return __pmd;
1230 }
1231
1232 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1233
__pmdp_csp(pmd_t * pmdp)1234 static inline void __pmdp_csp(pmd_t *pmdp)
1235 {
1236 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1237 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1238 }
1239
1240 #define IDTE_GLOBAL 0
1241 #define IDTE_LOCAL 1
1242
__pmdp_idte(unsigned long address,pmd_t * pmdp,int local)1243 static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp, int local)
1244 {
1245 unsigned long sto;
1246
1247 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1248 asm volatile(
1249 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1250 : "+m" (*pmdp)
1251 : [r1] "a" (sto), [r2] "a" ((address & HPAGE_MASK)),
1252 [m4] "i" (local)
1253 : "cc" );
1254 }
1255
__pudp_idte(unsigned long address,pud_t * pudp,int local)1256 static inline void __pudp_idte(unsigned long address, pud_t *pudp, int local)
1257 {
1258 unsigned long r3o;
1259
1260 r3o = (unsigned long) pudp - pud_index(address) * sizeof(pud_t);
1261 r3o |= _ASCE_TYPE_REGION3;
1262 asm volatile(
1263 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1264 : "+m" (*pudp)
1265 : [r1] "a" (r3o), [r2] "a" ((address & PUD_MASK)),
1266 [m4] "i" (local)
1267 : "cc");
1268 }
1269
1270 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1271 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1272 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1273
1274 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1275
1276 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1277 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1278 pgtable_t pgtable);
1279
1280 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1281 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1282
1283 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,pmd_t entry,int dirty)1284 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1285 unsigned long addr, pmd_t *pmdp,
1286 pmd_t entry, int dirty)
1287 {
1288 VM_BUG_ON(addr & ~HPAGE_MASK);
1289
1290 entry = pmd_mkyoung(entry);
1291 if (dirty)
1292 entry = pmd_mkdirty(entry);
1293 if (pmd_val(*pmdp) == pmd_val(entry))
1294 return 0;
1295 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1296 return 1;
1297 }
1298
1299 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1300 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1301 unsigned long addr, pmd_t *pmdp)
1302 {
1303 pmd_t pmd = *pmdp;
1304
1305 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1306 return pmd_young(pmd);
1307 }
1308
1309 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1310 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1311 unsigned long addr, pmd_t *pmdp)
1312 {
1313 VM_BUG_ON(addr & ~HPAGE_MASK);
1314 return pmdp_test_and_clear_young(vma, addr, pmdp);
1315 }
1316
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t entry)1317 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1318 pmd_t *pmdp, pmd_t entry)
1319 {
1320 *pmdp = entry;
1321 }
1322
pmd_mkhuge(pmd_t pmd)1323 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1324 {
1325 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1326 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1327 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1328 return pmd;
1329 }
1330
1331 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1332 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1333 unsigned long addr, pmd_t *pmdp)
1334 {
1335 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1336 }
1337
1338 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,int full)1339 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1340 unsigned long addr,
1341 pmd_t *pmdp, int full)
1342 {
1343 if (full) {
1344 pmd_t pmd = *pmdp;
1345 *pmdp = __pmd(_SEGMENT_ENTRY_INVALID);
1346 return pmd;
1347 }
1348 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1349 }
1350
1351 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
pmdp_huge_clear_flush(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1352 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1353 unsigned long addr, pmd_t *pmdp)
1354 {
1355 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1356 }
1357
1358 #define __HAVE_ARCH_PMDP_INVALIDATE
pmdp_invalidate(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1359 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1360 unsigned long addr, pmd_t *pmdp)
1361 {
1362 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1363
1364 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1365 }
1366
1367 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1368 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1369 unsigned long addr, pmd_t *pmdp)
1370 {
1371 pmd_t pmd = *pmdp;
1372
1373 if (pmd_write(pmd))
1374 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1375 }
1376
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1377 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1378 unsigned long address,
1379 pmd_t *pmdp)
1380 {
1381 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1382 }
1383 #define pmdp_collapse_flush pmdp_collapse_flush
1384
1385 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1386 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1387
pmd_trans_huge(pmd_t pmd)1388 static inline int pmd_trans_huge(pmd_t pmd)
1389 {
1390 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1391 }
1392
1393 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)1394 static inline int has_transparent_hugepage(void)
1395 {
1396 return MACHINE_HAS_HPAGE ? 1 : 0;
1397 }
1398 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1399
1400 /*
1401 * 64 bit swap entry format:
1402 * A page-table entry has some bits we have to treat in a special way.
1403 * Bits 52 and bit 55 have to be zero, otherwise a specification
1404 * exception will occur instead of a page translation exception. The
1405 * specification exception has the bad habit not to store necessary
1406 * information in the lowcore.
1407 * Bits 54 and 63 are used to indicate the page type.
1408 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1409 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1410 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1411 * for the offset.
1412 * | offset |01100|type |00|
1413 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1414 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1415 */
1416
1417 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1418 #define __SWP_OFFSET_SHIFT 12
1419 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1420 #define __SWP_TYPE_SHIFT 2
1421
mk_swap_pte(unsigned long type,unsigned long offset)1422 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1423 {
1424 pte_t pte;
1425
1426 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1427 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1428 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1429 return pte;
1430 }
1431
__swp_type(swp_entry_t entry)1432 static inline unsigned long __swp_type(swp_entry_t entry)
1433 {
1434 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1435 }
1436
__swp_offset(swp_entry_t entry)1437 static inline unsigned long __swp_offset(swp_entry_t entry)
1438 {
1439 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1440 }
1441
__swp_entry(unsigned long type,unsigned long offset)1442 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1443 {
1444 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1445 }
1446
1447 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1448 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1449
1450 #endif /* !__ASSEMBLY__ */
1451
1452 #define kern_addr_valid(addr) (1)
1453
1454 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1455 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1456 extern int s390_enable_sie(void);
1457 extern int s390_enable_skey(void);
1458 extern void s390_reset_cmma(struct mm_struct *mm);
1459
1460 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1461 #define HAVE_ARCH_UNMAPPED_AREA
1462 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1463
1464 /*
1465 * No page table caches to initialise
1466 */
pgtable_cache_init(void)1467 static inline void pgtable_cache_init(void) { }
check_pgt_cache(void)1468 static inline void check_pgt_cache(void) { }
1469
1470 #include <asm-generic/pgtable.h>
1471
1472 #endif /* _S390_PAGE_H */
1473