• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014-2016 Linaro Ltd. <ard.biesheuvel@linaro.org>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/elf.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/sort.h>
13 
14 struct plt_entry {
15 	/*
16 	 * A program that conforms to the AArch64 Procedure Call Standard
17 	 * (AAPCS64) must assume that a veneer that alters IP0 (x16) and/or
18 	 * IP1 (x17) may be inserted at any branch instruction that is
19 	 * exposed to a relocation that supports long branches. Since that
20 	 * is exactly what we are dealing with here, we are free to use x16
21 	 * as a scratch register in the PLT veneers.
22 	 */
23 	__le32	mov0;	/* movn	x16, #0x....			*/
24 	__le32	mov1;	/* movk	x16, #0x...., lsl #16		*/
25 	__le32	mov2;	/* movk	x16, #0x...., lsl #32		*/
26 	__le32	br;	/* br	x16				*/
27 };
28 
module_emit_plt_entry(struct module * mod,const Elf64_Rela * rela,Elf64_Sym * sym)29 u64 module_emit_plt_entry(struct module *mod, const Elf64_Rela *rela,
30 			  Elf64_Sym *sym)
31 {
32 	struct plt_entry *plt = (struct plt_entry *)mod->arch.plt->sh_addr;
33 	int i = mod->arch.plt_num_entries;
34 	u64 val = sym->st_value + rela->r_addend;
35 
36 	/*
37 	 * We only emit PLT entries against undefined (SHN_UNDEF) symbols,
38 	 * which are listed in the ELF symtab section, but without a type
39 	 * or a size.
40 	 * So, similar to how the module loader uses the Elf64_Sym::st_value
41 	 * field to store the resolved addresses of undefined symbols, let's
42 	 * borrow the Elf64_Sym::st_size field (whose value is never used by
43 	 * the module loader, even for symbols that are defined) to record
44 	 * the address of a symbol's associated PLT entry as we emit it for a
45 	 * zero addend relocation (which is the only kind we have to deal with
46 	 * in practice). This allows us to find duplicates without having to
47 	 * go through the table every time.
48 	 */
49 	if (rela->r_addend == 0 && sym->st_size != 0) {
50 		BUG_ON(sym->st_size < (u64)plt || sym->st_size >= (u64)&plt[i]);
51 		return sym->st_size;
52 	}
53 
54 	mod->arch.plt_num_entries++;
55 	BUG_ON(mod->arch.plt_num_entries > mod->arch.plt_max_entries);
56 
57 	/*
58 	 * MOVK/MOVN/MOVZ opcode:
59 	 * +--------+------------+--------+-----------+-------------+---------+
60 	 * | sf[31] | opc[30:29] | 100101 | hw[22:21] | imm16[20:5] | Rd[4:0] |
61 	 * +--------+------------+--------+-----------+-------------+---------+
62 	 *
63 	 * Rd     := 0x10 (x16)
64 	 * hw     := 0b00 (no shift), 0b01 (lsl #16), 0b10 (lsl #32)
65 	 * opc    := 0b11 (MOVK), 0b00 (MOVN), 0b10 (MOVZ)
66 	 * sf     := 1 (64-bit variant)
67 	 */
68 	plt[i] = (struct plt_entry){
69 		cpu_to_le32(0x92800010 | (((~val      ) & 0xffff)) << 5),
70 		cpu_to_le32(0xf2a00010 | ((( val >> 16) & 0xffff)) << 5),
71 		cpu_to_le32(0xf2c00010 | ((( val >> 32) & 0xffff)) << 5),
72 		cpu_to_le32(0xd61f0200)
73 	};
74 
75 	if (rela->r_addend == 0)
76 		sym->st_size = (u64)&plt[i];
77 
78 	return (u64)&plt[i];
79 }
80 
81 #define cmp_3way(a,b)	((a) < (b) ? -1 : (a) > (b))
82 
cmp_rela(const void * a,const void * b)83 static int cmp_rela(const void *a, const void *b)
84 {
85 	const Elf64_Rela *x = a, *y = b;
86 	int i;
87 
88 	/* sort by type, symbol index and addend */
89 	i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
90 	if (i == 0)
91 		i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
92 	if (i == 0)
93 		i = cmp_3way(x->r_addend, y->r_addend);
94 	return i;
95 }
96 
duplicate_rel(const Elf64_Rela * rela,int num)97 static bool duplicate_rel(const Elf64_Rela *rela, int num)
98 {
99 	/*
100 	 * Entries are sorted by type, symbol index and addend. That means
101 	 * that, if a duplicate entry exists, it must be in the preceding
102 	 * slot.
103 	 */
104 	return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
105 }
106 
count_plts(Elf64_Sym * syms,Elf64_Rela * rela,int num)107 static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num)
108 {
109 	unsigned int ret = 0;
110 	Elf64_Sym *s;
111 	int i;
112 
113 	for (i = 0; i < num; i++) {
114 		switch (ELF64_R_TYPE(rela[i].r_info)) {
115 		case R_AARCH64_JUMP26:
116 		case R_AARCH64_CALL26:
117 			/*
118 			 * We only have to consider branch targets that resolve
119 			 * to undefined symbols. This is not simply a heuristic,
120 			 * it is a fundamental limitation, since the PLT itself
121 			 * is part of the module, and needs to be within 128 MB
122 			 * as well, so modules can never grow beyond that limit.
123 			 */
124 			s = syms + ELF64_R_SYM(rela[i].r_info);
125 			if (s->st_shndx != SHN_UNDEF)
126 				break;
127 
128 			/*
129 			 * Jump relocations with non-zero addends against
130 			 * undefined symbols are supported by the ELF spec, but
131 			 * do not occur in practice (e.g., 'jump n bytes past
132 			 * the entry point of undefined function symbol f').
133 			 * So we need to support them, but there is no need to
134 			 * take them into consideration when trying to optimize
135 			 * this code. So let's only check for duplicates when
136 			 * the addend is zero: this allows us to record the PLT
137 			 * entry address in the symbol table itself, rather than
138 			 * having to search the list for duplicates each time we
139 			 * emit one.
140 			 */
141 			if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
142 				ret++;
143 			break;
144 		}
145 	}
146 	return ret;
147 }
148 
module_frob_arch_sections(Elf_Ehdr * ehdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)149 int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
150 			      char *secstrings, struct module *mod)
151 {
152 	unsigned long plt_max_entries = 0;
153 	Elf64_Sym *syms = NULL;
154 	int i;
155 
156 	/*
157 	 * Find the empty .plt section so we can expand it to store the PLT
158 	 * entries. Record the symtab address as well.
159 	 */
160 	for (i = 0; i < ehdr->e_shnum; i++) {
161 		if (strcmp(".plt", secstrings + sechdrs[i].sh_name) == 0)
162 			mod->arch.plt = sechdrs + i;
163 		else if (sechdrs[i].sh_type == SHT_SYMTAB)
164 			syms = (Elf64_Sym *)sechdrs[i].sh_addr;
165 	}
166 
167 	if (!mod->arch.plt) {
168 		pr_err("%s: module PLT section missing\n", mod->name);
169 		return -ENOEXEC;
170 	}
171 	if (!syms) {
172 		pr_err("%s: module symtab section missing\n", mod->name);
173 		return -ENOEXEC;
174 	}
175 
176 	for (i = 0; i < ehdr->e_shnum; i++) {
177 		Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
178 		int numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
179 		Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
180 
181 		if (sechdrs[i].sh_type != SHT_RELA)
182 			continue;
183 
184 		/* ignore relocations that operate on non-exec sections */
185 		if (!(dstsec->sh_flags & SHF_EXECINSTR))
186 			continue;
187 
188 		/* sort by type, symbol index and addend */
189 		sort(rels, numrels, sizeof(Elf64_Rela), cmp_rela, NULL);
190 
191 		plt_max_entries += count_plts(syms, rels, numrels);
192 	}
193 
194 	mod->arch.plt->sh_type = SHT_NOBITS;
195 	mod->arch.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
196 	mod->arch.plt->sh_addralign = L1_CACHE_BYTES;
197 	mod->arch.plt->sh_size = plt_max_entries * sizeof(struct plt_entry);
198 	mod->arch.plt_num_entries = 0;
199 	mod->arch.plt_max_entries = plt_max_entries;
200 	return 0;
201 }
202