• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright(c) 2015 - 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 
57 #include "hfi.h"
58 #include "common.h"
59 #include "device.h"
60 #include "trace.h"
61 #include "qp.h"
62 #include "verbs_txreq.h"
63 
64 static unsigned int hfi1_lkey_table_size = 16;
65 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
66 		   S_IRUGO);
67 MODULE_PARM_DESC(lkey_table_size,
68 		 "LKEY table size in bits (2^n, 1 <= n <= 23)");
69 
70 static unsigned int hfi1_max_pds = 0xFFFF;
71 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
72 MODULE_PARM_DESC(max_pds,
73 		 "Maximum number of protection domains to support");
74 
75 static unsigned int hfi1_max_ahs = 0xFFFF;
76 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
77 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
78 
79 unsigned int hfi1_max_cqes = 0x2FFFFF;
80 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
81 MODULE_PARM_DESC(max_cqes,
82 		 "Maximum number of completion queue entries to support");
83 
84 unsigned int hfi1_max_cqs = 0x1FFFF;
85 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
86 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
87 
88 unsigned int hfi1_max_qp_wrs = 0x3FFF;
89 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
90 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
91 
92 unsigned int hfi1_max_qps = 32768;
93 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
94 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
95 
96 unsigned int hfi1_max_sges = 0x60;
97 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
98 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
99 
100 unsigned int hfi1_max_mcast_grps = 16384;
101 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
102 MODULE_PARM_DESC(max_mcast_grps,
103 		 "Maximum number of multicast groups to support");
104 
105 unsigned int hfi1_max_mcast_qp_attached = 16;
106 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
107 		   uint, S_IRUGO);
108 MODULE_PARM_DESC(max_mcast_qp_attached,
109 		 "Maximum number of attached QPs to support");
110 
111 unsigned int hfi1_max_srqs = 1024;
112 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
113 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
114 
115 unsigned int hfi1_max_srq_sges = 128;
116 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
117 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
118 
119 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
120 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
121 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
122 
123 unsigned short piothreshold = 256;
124 module_param(piothreshold, ushort, S_IRUGO);
125 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
126 
127 #define COPY_CACHELESS 1
128 #define COPY_ADAPTIVE  2
129 static unsigned int sge_copy_mode;
130 module_param(sge_copy_mode, uint, S_IRUGO);
131 MODULE_PARM_DESC(sge_copy_mode,
132 		 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
133 
134 static void verbs_sdma_complete(
135 	struct sdma_txreq *cookie,
136 	int status);
137 
138 static int pio_wait(struct rvt_qp *qp,
139 		    struct send_context *sc,
140 		    struct hfi1_pkt_state *ps,
141 		    u32 flag);
142 
143 /* Length of buffer to create verbs txreq cache name */
144 #define TXREQ_NAME_LEN 24
145 
146 static uint wss_threshold;
147 module_param(wss_threshold, uint, S_IRUGO);
148 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
149 static uint wss_clean_period = 256;
150 module_param(wss_clean_period, uint, S_IRUGO);
151 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
152 
153 /* memory working set size */
154 struct hfi1_wss {
155 	unsigned long *entries;
156 	atomic_t total_count;
157 	atomic_t clean_counter;
158 	atomic_t clean_entry;
159 
160 	int threshold;
161 	int num_entries;
162 	long pages_mask;
163 };
164 
165 static struct hfi1_wss wss;
166 
hfi1_wss_init(void)167 int hfi1_wss_init(void)
168 {
169 	long llc_size;
170 	long llc_bits;
171 	long table_size;
172 	long table_bits;
173 
174 	/* check for a valid percent range - default to 80 if none or invalid */
175 	if (wss_threshold < 1 || wss_threshold > 100)
176 		wss_threshold = 80;
177 	/* reject a wildly large period */
178 	if (wss_clean_period > 1000000)
179 		wss_clean_period = 256;
180 	/* reject a zero period */
181 	if (wss_clean_period == 0)
182 		wss_clean_period = 1;
183 
184 	/*
185 	 * Calculate the table size - the next power of 2 larger than the
186 	 * LLC size.  LLC size is in KiB.
187 	 */
188 	llc_size = wss_llc_size() * 1024;
189 	table_size = roundup_pow_of_two(llc_size);
190 
191 	/* one bit per page in rounded up table */
192 	llc_bits = llc_size / PAGE_SIZE;
193 	table_bits = table_size / PAGE_SIZE;
194 	wss.pages_mask = table_bits - 1;
195 	wss.num_entries = table_bits / BITS_PER_LONG;
196 
197 	wss.threshold = (llc_bits * wss_threshold) / 100;
198 	if (wss.threshold == 0)
199 		wss.threshold = 1;
200 
201 	atomic_set(&wss.clean_counter, wss_clean_period);
202 
203 	wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
204 			      GFP_KERNEL);
205 	if (!wss.entries) {
206 		hfi1_wss_exit();
207 		return -ENOMEM;
208 	}
209 
210 	return 0;
211 }
212 
hfi1_wss_exit(void)213 void hfi1_wss_exit(void)
214 {
215 	/* coded to handle partially initialized and repeat callers */
216 	kfree(wss.entries);
217 	wss.entries = NULL;
218 }
219 
220 /*
221  * Advance the clean counter.  When the clean period has expired,
222  * clean an entry.
223  *
224  * This is implemented in atomics to avoid locking.  Because multiple
225  * variables are involved, it can be racy which can lead to slightly
226  * inaccurate information.  Since this is only a heuristic, this is
227  * OK.  Any innaccuracies will clean themselves out as the counter
228  * advances.  That said, it is unlikely the entry clean operation will
229  * race - the next possible racer will not start until the next clean
230  * period.
231  *
232  * The clean counter is implemented as a decrement to zero.  When zero
233  * is reached an entry is cleaned.
234  */
wss_advance_clean_counter(void)235 static void wss_advance_clean_counter(void)
236 {
237 	int entry;
238 	int weight;
239 	unsigned long bits;
240 
241 	/* become the cleaner if we decrement the counter to zero */
242 	if (atomic_dec_and_test(&wss.clean_counter)) {
243 		/*
244 		 * Set, not add, the clean period.  This avoids an issue
245 		 * where the counter could decrement below the clean period.
246 		 * Doing a set can result in lost decrements, slowing the
247 		 * clean advance.  Since this a heuristic, this possible
248 		 * slowdown is OK.
249 		 *
250 		 * An alternative is to loop, advancing the counter by a
251 		 * clean period until the result is > 0. However, this could
252 		 * lead to several threads keeping another in the clean loop.
253 		 * This could be mitigated by limiting the number of times
254 		 * we stay in the loop.
255 		 */
256 		atomic_set(&wss.clean_counter, wss_clean_period);
257 
258 		/*
259 		 * Uniquely grab the entry to clean and move to next.
260 		 * The current entry is always the lower bits of
261 		 * wss.clean_entry.  The table size, wss.num_entries,
262 		 * is always a power-of-2.
263 		 */
264 		entry = (atomic_inc_return(&wss.clean_entry) - 1)
265 			& (wss.num_entries - 1);
266 
267 		/* clear the entry and count the bits */
268 		bits = xchg(&wss.entries[entry], 0);
269 		weight = hweight64((u64)bits);
270 		/* only adjust the contended total count if needed */
271 		if (weight)
272 			atomic_sub(weight, &wss.total_count);
273 	}
274 }
275 
276 /*
277  * Insert the given address into the working set array.
278  */
wss_insert(void * address)279 static void wss_insert(void *address)
280 {
281 	u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
282 	u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
283 	u32 nr = page & (BITS_PER_LONG - 1);
284 
285 	if (!test_and_set_bit(nr, &wss.entries[entry]))
286 		atomic_inc(&wss.total_count);
287 
288 	wss_advance_clean_counter();
289 }
290 
291 /*
292  * Is the working set larger than the threshold?
293  */
wss_exceeds_threshold(void)294 static inline int wss_exceeds_threshold(void)
295 {
296 	return atomic_read(&wss.total_count) >= wss.threshold;
297 }
298 
299 /*
300  * Translate ib_wr_opcode into ib_wc_opcode.
301  */
302 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
303 	[IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
304 	[IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
305 	[IB_WR_SEND] = IB_WC_SEND,
306 	[IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
307 	[IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
308 	[IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
309 	[IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
310 	[IB_WR_SEND_WITH_INV] = IB_WC_SEND,
311 	[IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
312 	[IB_WR_REG_MR] = IB_WC_REG_MR
313 };
314 
315 /*
316  * Length of header by opcode, 0 --> not supported
317  */
318 const u8 hdr_len_by_opcode[256] = {
319 	/* RC */
320 	[IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
321 	[IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
322 	[IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
323 	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
324 	[IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
325 	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
326 	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
327 	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
328 	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
329 	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
330 	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
331 	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
332 	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
333 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
334 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
335 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
336 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
337 	[IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
338 	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
339 	[IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
340 	[IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
341 	[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
342 	[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
343 	/* UC */
344 	[IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
345 	[IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
346 	[IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
347 	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
348 	[IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
349 	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
350 	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
351 	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
352 	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
353 	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
354 	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
355 	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
356 	/* UD */
357 	[IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
358 	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
359 };
360 
361 static const opcode_handler opcode_handler_tbl[256] = {
362 	/* RC */
363 	[IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
364 	[IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
365 	[IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
366 	[IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
367 	[IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
368 	[IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
369 	[IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
370 	[IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
371 	[IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
372 	[IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
373 	[IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
374 	[IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
375 	[IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
376 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
377 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
378 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
379 	[IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
380 	[IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
381 	[IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
382 	[IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
383 	[IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
384 	[IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
385 	[IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
386 	/* UC */
387 	[IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
388 	[IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
389 	[IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
390 	[IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
391 	[IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
392 	[IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
393 	[IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
394 	[IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
395 	[IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
396 	[IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
397 	[IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
398 	[IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
399 	/* UD */
400 	[IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
401 	[IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
402 	/* CNP */
403 	[IB_OPCODE_CNP]				      = &hfi1_cnp_rcv
404 };
405 
406 #define OPMASK 0x1f
407 
408 static const u32 pio_opmask[BIT(3)] = {
409 	/* RC */
410 	[IB_OPCODE_RC >> 5] =
411 		BIT(RC_OP(SEND_ONLY) & OPMASK) |
412 		BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
413 		BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
414 		BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
415 		BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
416 		BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
417 		BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
418 		BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
419 		BIT(RC_OP(FETCH_ADD) & OPMASK),
420 	/* UC */
421 	[IB_OPCODE_UC >> 5] =
422 		BIT(UC_OP(SEND_ONLY) & OPMASK) |
423 		BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
424 		BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
425 		BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
426 };
427 
428 /*
429  * System image GUID.
430  */
431 __be64 ib_hfi1_sys_image_guid;
432 
433 /**
434  * hfi1_copy_sge - copy data to SGE memory
435  * @ss: the SGE state
436  * @data: the data to copy
437  * @length: the length of the data
438  * @copy_last: do a separate copy of the last 8 bytes
439  */
hfi1_copy_sge(struct rvt_sge_state * ss,void * data,u32 length,int release,int copy_last)440 void hfi1_copy_sge(
441 	struct rvt_sge_state *ss,
442 	void *data, u32 length,
443 	int release,
444 	int copy_last)
445 {
446 	struct rvt_sge *sge = &ss->sge;
447 	int in_last = 0;
448 	int i;
449 	int cacheless_copy = 0;
450 
451 	if (sge_copy_mode == COPY_CACHELESS) {
452 		cacheless_copy = length >= PAGE_SIZE;
453 	} else if (sge_copy_mode == COPY_ADAPTIVE) {
454 		if (length >= PAGE_SIZE) {
455 			/*
456 			 * NOTE: this *assumes*:
457 			 * o The first vaddr is the dest.
458 			 * o If multiple pages, then vaddr is sequential.
459 			 */
460 			wss_insert(sge->vaddr);
461 			if (length >= (2 * PAGE_SIZE))
462 				wss_insert(sge->vaddr + PAGE_SIZE);
463 
464 			cacheless_copy = wss_exceeds_threshold();
465 		} else {
466 			wss_advance_clean_counter();
467 		}
468 	}
469 	if (copy_last) {
470 		if (length > 8) {
471 			length -= 8;
472 		} else {
473 			copy_last = 0;
474 			in_last = 1;
475 		}
476 	}
477 
478 again:
479 	while (length) {
480 		u32 len = sge->length;
481 
482 		if (len > length)
483 			len = length;
484 		if (len > sge->sge_length)
485 			len = sge->sge_length;
486 		WARN_ON_ONCE(len == 0);
487 		if (unlikely(in_last)) {
488 			/* enforce byte transfer ordering */
489 			for (i = 0; i < len; i++)
490 				((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
491 		} else if (cacheless_copy) {
492 			cacheless_memcpy(sge->vaddr, data, len);
493 		} else {
494 			memcpy(sge->vaddr, data, len);
495 		}
496 		sge->vaddr += len;
497 		sge->length -= len;
498 		sge->sge_length -= len;
499 		if (sge->sge_length == 0) {
500 			if (release)
501 				rvt_put_mr(sge->mr);
502 			if (--ss->num_sge)
503 				*sge = *ss->sg_list++;
504 		} else if (sge->length == 0 && sge->mr->lkey) {
505 			if (++sge->n >= RVT_SEGSZ) {
506 				if (++sge->m >= sge->mr->mapsz)
507 					break;
508 				sge->n = 0;
509 			}
510 			sge->vaddr =
511 				sge->mr->map[sge->m]->segs[sge->n].vaddr;
512 			sge->length =
513 				sge->mr->map[sge->m]->segs[sge->n].length;
514 		}
515 		data += len;
516 		length -= len;
517 	}
518 
519 	if (copy_last) {
520 		copy_last = 0;
521 		in_last = 1;
522 		length = 8;
523 		goto again;
524 	}
525 }
526 
527 /**
528  * hfi1_skip_sge - skip over SGE memory
529  * @ss: the SGE state
530  * @length: the number of bytes to skip
531  */
hfi1_skip_sge(struct rvt_sge_state * ss,u32 length,int release)532 void hfi1_skip_sge(struct rvt_sge_state *ss, u32 length, int release)
533 {
534 	struct rvt_sge *sge = &ss->sge;
535 
536 	while (length) {
537 		u32 len = sge->length;
538 
539 		if (len > length)
540 			len = length;
541 		if (len > sge->sge_length)
542 			len = sge->sge_length;
543 		WARN_ON_ONCE(len == 0);
544 		sge->vaddr += len;
545 		sge->length -= len;
546 		sge->sge_length -= len;
547 		if (sge->sge_length == 0) {
548 			if (release)
549 				rvt_put_mr(sge->mr);
550 			if (--ss->num_sge)
551 				*sge = *ss->sg_list++;
552 		} else if (sge->length == 0 && sge->mr->lkey) {
553 			if (++sge->n >= RVT_SEGSZ) {
554 				if (++sge->m >= sge->mr->mapsz)
555 					break;
556 				sge->n = 0;
557 			}
558 			sge->vaddr =
559 				sge->mr->map[sge->m]->segs[sge->n].vaddr;
560 			sge->length =
561 				sge->mr->map[sge->m]->segs[sge->n].length;
562 		}
563 		length -= len;
564 	}
565 }
566 
567 /*
568  * Make sure the QP is ready and able to accept the given opcode.
569  */
qp_ok(int opcode,struct hfi1_packet * packet)570 static inline opcode_handler qp_ok(int opcode, struct hfi1_packet *packet)
571 {
572 	if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
573 		return NULL;
574 	if (((opcode & RVT_OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
575 	    (opcode == IB_OPCODE_CNP))
576 		return opcode_handler_tbl[opcode];
577 
578 	return NULL;
579 }
580 
581 /**
582  * hfi1_ib_rcv - process an incoming packet
583  * @packet: data packet information
584  *
585  * This is called to process an incoming packet at interrupt level.
586  *
587  * Tlen is the length of the header + data + CRC in bytes.
588  */
hfi1_ib_rcv(struct hfi1_packet * packet)589 void hfi1_ib_rcv(struct hfi1_packet *packet)
590 {
591 	struct hfi1_ctxtdata *rcd = packet->rcd;
592 	struct ib_header *hdr = packet->hdr;
593 	u32 tlen = packet->tlen;
594 	struct hfi1_pportdata *ppd = rcd->ppd;
595 	struct hfi1_ibport *ibp = &ppd->ibport_data;
596 	struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
597 	opcode_handler packet_handler;
598 	unsigned long flags;
599 	u32 qp_num;
600 	int lnh;
601 	u8 opcode;
602 	u16 lid;
603 
604 	/* Check for GRH */
605 	lnh = be16_to_cpu(hdr->lrh[0]) & 3;
606 	if (lnh == HFI1_LRH_BTH) {
607 		packet->ohdr = &hdr->u.oth;
608 	} else if (lnh == HFI1_LRH_GRH) {
609 		u32 vtf;
610 
611 		packet->ohdr = &hdr->u.l.oth;
612 		if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
613 			goto drop;
614 		vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
615 		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
616 			goto drop;
617 		packet->rcv_flags |= HFI1_HAS_GRH;
618 	} else {
619 		goto drop;
620 	}
621 
622 	trace_input_ibhdr(rcd->dd, hdr);
623 
624 	opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
625 	inc_opstats(tlen, &rcd->opstats->stats[opcode]);
626 
627 	/* Get the destination QP number. */
628 	qp_num = be32_to_cpu(packet->ohdr->bth[1]) & RVT_QPN_MASK;
629 	lid = be16_to_cpu(hdr->lrh[1]);
630 	if (unlikely((lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
631 		     (lid != be16_to_cpu(IB_LID_PERMISSIVE)))) {
632 		struct rvt_mcast *mcast;
633 		struct rvt_mcast_qp *p;
634 
635 		if (lnh != HFI1_LRH_GRH)
636 			goto drop;
637 		mcast = rvt_mcast_find(&ibp->rvp, &hdr->u.l.grh.dgid);
638 		if (!mcast)
639 			goto drop;
640 		list_for_each_entry_rcu(p, &mcast->qp_list, list) {
641 			packet->qp = p->qp;
642 			spin_lock_irqsave(&packet->qp->r_lock, flags);
643 			packet_handler = qp_ok(opcode, packet);
644 			if (likely(packet_handler))
645 				packet_handler(packet);
646 			else
647 				ibp->rvp.n_pkt_drops++;
648 			spin_unlock_irqrestore(&packet->qp->r_lock, flags);
649 		}
650 		/*
651 		 * Notify rvt_multicast_detach() if it is waiting for us
652 		 * to finish.
653 		 */
654 		if (atomic_dec_return(&mcast->refcount) <= 1)
655 			wake_up(&mcast->wait);
656 	} else {
657 		rcu_read_lock();
658 		packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
659 		if (!packet->qp) {
660 			rcu_read_unlock();
661 			goto drop;
662 		}
663 		spin_lock_irqsave(&packet->qp->r_lock, flags);
664 		packet_handler = qp_ok(opcode, packet);
665 		if (likely(packet_handler))
666 			packet_handler(packet);
667 		else
668 			ibp->rvp.n_pkt_drops++;
669 		spin_unlock_irqrestore(&packet->qp->r_lock, flags);
670 		rcu_read_unlock();
671 	}
672 	return;
673 
674 drop:
675 	ibp->rvp.n_pkt_drops++;
676 }
677 
678 /*
679  * This is called from a timer to check for QPs
680  * which need kernel memory in order to send a packet.
681  */
mem_timer(unsigned long data)682 static void mem_timer(unsigned long data)
683 {
684 	struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
685 	struct list_head *list = &dev->memwait;
686 	struct rvt_qp *qp = NULL;
687 	struct iowait *wait;
688 	unsigned long flags;
689 	struct hfi1_qp_priv *priv;
690 
691 	write_seqlock_irqsave(&dev->iowait_lock, flags);
692 	if (!list_empty(list)) {
693 		wait = list_first_entry(list, struct iowait, list);
694 		qp = iowait_to_qp(wait);
695 		priv = qp->priv;
696 		list_del_init(&priv->s_iowait.list);
697 		/* refcount held until actual wake up */
698 		if (!list_empty(list))
699 			mod_timer(&dev->mem_timer, jiffies + 1);
700 	}
701 	write_sequnlock_irqrestore(&dev->iowait_lock, flags);
702 
703 	if (qp)
704 		hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
705 }
706 
update_sge(struct rvt_sge_state * ss,u32 length)707 void update_sge(struct rvt_sge_state *ss, u32 length)
708 {
709 	struct rvt_sge *sge = &ss->sge;
710 
711 	sge->vaddr += length;
712 	sge->length -= length;
713 	sge->sge_length -= length;
714 	if (sge->sge_length == 0) {
715 		if (--ss->num_sge)
716 			*sge = *ss->sg_list++;
717 	} else if (sge->length == 0 && sge->mr->lkey) {
718 		if (++sge->n >= RVT_SEGSZ) {
719 			if (++sge->m >= sge->mr->mapsz)
720 				return;
721 			sge->n = 0;
722 		}
723 		sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
724 		sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
725 	}
726 }
727 
728 /*
729  * This is called with progress side lock held.
730  */
731 /* New API */
verbs_sdma_complete(struct sdma_txreq * cookie,int status)732 static void verbs_sdma_complete(
733 	struct sdma_txreq *cookie,
734 	int status)
735 {
736 	struct verbs_txreq *tx =
737 		container_of(cookie, struct verbs_txreq, txreq);
738 	struct rvt_qp *qp = tx->qp;
739 
740 	spin_lock(&qp->s_lock);
741 	if (tx->wqe) {
742 		hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
743 	} else if (qp->ibqp.qp_type == IB_QPT_RC) {
744 		struct ib_header *hdr;
745 
746 		hdr = &tx->phdr.hdr;
747 		hfi1_rc_send_complete(qp, hdr);
748 	}
749 	spin_unlock(&qp->s_lock);
750 
751 	hfi1_put_txreq(tx);
752 }
753 
wait_kmem(struct hfi1_ibdev * dev,struct rvt_qp * qp,struct hfi1_pkt_state * ps)754 static int wait_kmem(struct hfi1_ibdev *dev,
755 		     struct rvt_qp *qp,
756 		     struct hfi1_pkt_state *ps)
757 {
758 	struct hfi1_qp_priv *priv = qp->priv;
759 	unsigned long flags;
760 	int ret = 0;
761 
762 	spin_lock_irqsave(&qp->s_lock, flags);
763 	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
764 		write_seqlock(&dev->iowait_lock);
765 		list_add_tail(&ps->s_txreq->txreq.list,
766 			      &priv->s_iowait.tx_head);
767 		if (list_empty(&priv->s_iowait.list)) {
768 			if (list_empty(&dev->memwait))
769 				mod_timer(&dev->mem_timer, jiffies + 1);
770 			qp->s_flags |= RVT_S_WAIT_KMEM;
771 			list_add_tail(&priv->s_iowait.list, &dev->memwait);
772 			trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
773 			rvt_get_qp(qp);
774 		}
775 		write_sequnlock(&dev->iowait_lock);
776 		qp->s_flags &= ~RVT_S_BUSY;
777 		ret = -EBUSY;
778 	}
779 	spin_unlock_irqrestore(&qp->s_lock, flags);
780 
781 	return ret;
782 }
783 
784 /*
785  * This routine calls txadds for each sg entry.
786  *
787  * Add failures will revert the sge cursor
788  */
build_verbs_ulp_payload(struct sdma_engine * sde,struct rvt_sge_state * ss,u32 length,struct verbs_txreq * tx)789 static noinline int build_verbs_ulp_payload(
790 	struct sdma_engine *sde,
791 	struct rvt_sge_state *ss,
792 	u32 length,
793 	struct verbs_txreq *tx)
794 {
795 	struct rvt_sge *sg_list = ss->sg_list;
796 	struct rvt_sge sge = ss->sge;
797 	u8 num_sge = ss->num_sge;
798 	u32 len;
799 	int ret = 0;
800 
801 	while (length) {
802 		len = ss->sge.length;
803 		if (len > length)
804 			len = length;
805 		if (len > ss->sge.sge_length)
806 			len = ss->sge.sge_length;
807 		WARN_ON_ONCE(len == 0);
808 		ret = sdma_txadd_kvaddr(
809 			sde->dd,
810 			&tx->txreq,
811 			ss->sge.vaddr,
812 			len);
813 		if (ret)
814 			goto bail_txadd;
815 		update_sge(ss, len);
816 		length -= len;
817 	}
818 	return ret;
819 bail_txadd:
820 	/* unwind cursor */
821 	ss->sge = sge;
822 	ss->num_sge = num_sge;
823 	ss->sg_list = sg_list;
824 	return ret;
825 }
826 
827 /*
828  * Build the number of DMA descriptors needed to send length bytes of data.
829  *
830  * NOTE: DMA mapping is held in the tx until completed in the ring or
831  *       the tx desc is freed without having been submitted to the ring
832  *
833  * This routine ensures all the helper routine calls succeed.
834  */
835 /* New API */
build_verbs_tx_desc(struct sdma_engine * sde,struct rvt_sge_state * ss,u32 length,struct verbs_txreq * tx,struct hfi1_ahg_info * ahg_info,u64 pbc)836 static int build_verbs_tx_desc(
837 	struct sdma_engine *sde,
838 	struct rvt_sge_state *ss,
839 	u32 length,
840 	struct verbs_txreq *tx,
841 	struct hfi1_ahg_info *ahg_info,
842 	u64 pbc)
843 {
844 	int ret = 0;
845 	struct hfi1_sdma_header *phdr = &tx->phdr;
846 	u16 hdrbytes = tx->hdr_dwords << 2;
847 
848 	if (!ahg_info->ahgcount) {
849 		ret = sdma_txinit_ahg(
850 			&tx->txreq,
851 			ahg_info->tx_flags,
852 			hdrbytes + length,
853 			ahg_info->ahgidx,
854 			0,
855 			NULL,
856 			0,
857 			verbs_sdma_complete);
858 		if (ret)
859 			goto bail_txadd;
860 		phdr->pbc = cpu_to_le64(pbc);
861 		ret = sdma_txadd_kvaddr(
862 			sde->dd,
863 			&tx->txreq,
864 			phdr,
865 			hdrbytes);
866 		if (ret)
867 			goto bail_txadd;
868 	} else {
869 		ret = sdma_txinit_ahg(
870 			&tx->txreq,
871 			ahg_info->tx_flags,
872 			length,
873 			ahg_info->ahgidx,
874 			ahg_info->ahgcount,
875 			ahg_info->ahgdesc,
876 			hdrbytes,
877 			verbs_sdma_complete);
878 		if (ret)
879 			goto bail_txadd;
880 	}
881 
882 	/* add the ulp payload - if any.  ss can be NULL for acks */
883 	if (ss)
884 		ret = build_verbs_ulp_payload(sde, ss, length, tx);
885 bail_txadd:
886 	return ret;
887 }
888 
hfi1_verbs_send_dma(struct rvt_qp * qp,struct hfi1_pkt_state * ps,u64 pbc)889 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
890 			u64 pbc)
891 {
892 	struct hfi1_qp_priv *priv = qp->priv;
893 	struct hfi1_ahg_info *ahg_info = priv->s_ahg;
894 	u32 hdrwords = qp->s_hdrwords;
895 	struct rvt_sge_state *ss = qp->s_cur_sge;
896 	u32 len = qp->s_cur_size;
897 	u32 plen = hdrwords + ((len + 3) >> 2) + 2; /* includes pbc */
898 	struct hfi1_ibdev *dev = ps->dev;
899 	struct hfi1_pportdata *ppd = ps->ppd;
900 	struct verbs_txreq *tx;
901 	u64 pbc_flags = 0;
902 	u8 sc5 = priv->s_sc;
903 
904 	int ret;
905 
906 	tx = ps->s_txreq;
907 	if (!sdma_txreq_built(&tx->txreq)) {
908 		if (likely(pbc == 0)) {
909 			u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
910 			/* No vl15 here */
911 			/* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
912 			pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
913 
914 			pbc = create_pbc(ppd,
915 					 pbc_flags,
916 					 qp->srate_mbps,
917 					 vl,
918 					 plen);
919 		}
920 		tx->wqe = qp->s_wqe;
921 		ret = build_verbs_tx_desc(tx->sde, ss, len, tx, ahg_info, pbc);
922 		if (unlikely(ret))
923 			goto bail_build;
924 	}
925 	ret =  sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq);
926 	if (unlikely(ret < 0)) {
927 		if (ret == -ECOMM)
928 			goto bail_ecomm;
929 		return ret;
930 	}
931 	trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
932 				&ps->s_txreq->phdr.hdr);
933 	return ret;
934 
935 bail_ecomm:
936 	/* The current one got "sent" */
937 	return 0;
938 bail_build:
939 	ret = wait_kmem(dev, qp, ps);
940 	if (!ret) {
941 		/* free txreq - bad state */
942 		hfi1_put_txreq(ps->s_txreq);
943 		ps->s_txreq = NULL;
944 	}
945 	return ret;
946 }
947 
948 /*
949  * If we are now in the error state, return zero to flush the
950  * send work request.
951  */
pio_wait(struct rvt_qp * qp,struct send_context * sc,struct hfi1_pkt_state * ps,u32 flag)952 static int pio_wait(struct rvt_qp *qp,
953 		    struct send_context *sc,
954 		    struct hfi1_pkt_state *ps,
955 		    u32 flag)
956 {
957 	struct hfi1_qp_priv *priv = qp->priv;
958 	struct hfi1_devdata *dd = sc->dd;
959 	struct hfi1_ibdev *dev = &dd->verbs_dev;
960 	unsigned long flags;
961 	int ret = 0;
962 
963 	/*
964 	 * Note that as soon as want_buffer() is called and
965 	 * possibly before it returns, sc_piobufavail()
966 	 * could be called. Therefore, put QP on the I/O wait list before
967 	 * enabling the PIO avail interrupt.
968 	 */
969 	spin_lock_irqsave(&qp->s_lock, flags);
970 	if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
971 		write_seqlock(&dev->iowait_lock);
972 		list_add_tail(&ps->s_txreq->txreq.list,
973 			      &priv->s_iowait.tx_head);
974 		if (list_empty(&priv->s_iowait.list)) {
975 			struct hfi1_ibdev *dev = &dd->verbs_dev;
976 			int was_empty;
977 
978 			dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
979 			dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
980 			qp->s_flags |= flag;
981 			was_empty = list_empty(&sc->piowait);
982 			list_add_tail(&priv->s_iowait.list, &sc->piowait);
983 			trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
984 			rvt_get_qp(qp);
985 			/* counting: only call wantpiobuf_intr if first user */
986 			if (was_empty)
987 				hfi1_sc_wantpiobuf_intr(sc, 1);
988 		}
989 		write_sequnlock(&dev->iowait_lock);
990 		qp->s_flags &= ~RVT_S_BUSY;
991 		ret = -EBUSY;
992 	}
993 	spin_unlock_irqrestore(&qp->s_lock, flags);
994 	return ret;
995 }
996 
verbs_pio_complete(void * arg,int code)997 static void verbs_pio_complete(void *arg, int code)
998 {
999 	struct rvt_qp *qp = (struct rvt_qp *)arg;
1000 	struct hfi1_qp_priv *priv = qp->priv;
1001 
1002 	if (iowait_pio_dec(&priv->s_iowait))
1003 		iowait_drain_wakeup(&priv->s_iowait);
1004 }
1005 
hfi1_verbs_send_pio(struct rvt_qp * qp,struct hfi1_pkt_state * ps,u64 pbc)1006 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
1007 			u64 pbc)
1008 {
1009 	struct hfi1_qp_priv *priv = qp->priv;
1010 	u32 hdrwords = qp->s_hdrwords;
1011 	struct rvt_sge_state *ss = qp->s_cur_sge;
1012 	u32 len = qp->s_cur_size;
1013 	u32 dwords = (len + 3) >> 2;
1014 	u32 plen = hdrwords + dwords + 2; /* includes pbc */
1015 	struct hfi1_pportdata *ppd = ps->ppd;
1016 	u32 *hdr = (u32 *)&ps->s_txreq->phdr.hdr;
1017 	u64 pbc_flags = 0;
1018 	u8 sc5;
1019 	unsigned long flags = 0;
1020 	struct send_context *sc;
1021 	struct pio_buf *pbuf;
1022 	int wc_status = IB_WC_SUCCESS;
1023 	int ret = 0;
1024 	pio_release_cb cb = NULL;
1025 
1026 	/* only RC/UC use complete */
1027 	switch (qp->ibqp.qp_type) {
1028 	case IB_QPT_RC:
1029 	case IB_QPT_UC:
1030 		cb = verbs_pio_complete;
1031 		break;
1032 	default:
1033 		break;
1034 	}
1035 
1036 	/* vl15 special case taken care of in ud.c */
1037 	sc5 = priv->s_sc;
1038 	sc = ps->s_txreq->psc;
1039 
1040 	if (likely(pbc == 0)) {
1041 		u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1042 		/* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1043 		pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1044 		pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
1045 	}
1046 	if (cb)
1047 		iowait_pio_inc(&priv->s_iowait);
1048 	pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1049 	if (unlikely(!pbuf)) {
1050 		if (cb)
1051 			verbs_pio_complete(qp, 0);
1052 		if (ppd->host_link_state != HLS_UP_ACTIVE) {
1053 			/*
1054 			 * If we have filled the PIO buffers to capacity and are
1055 			 * not in an active state this request is not going to
1056 			 * go out to so just complete it with an error or else a
1057 			 * ULP or the core may be stuck waiting.
1058 			 */
1059 			hfi1_cdbg(
1060 				PIO,
1061 				"alloc failed. state not active, completing");
1062 			wc_status = IB_WC_GENERAL_ERR;
1063 			goto pio_bail;
1064 		} else {
1065 			/*
1066 			 * This is a normal occurrence. The PIO buffs are full
1067 			 * up but we are still happily sending, well we could be
1068 			 * so lets continue to queue the request.
1069 			 */
1070 			hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1071 			ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1072 			if (!ret)
1073 				/* txreq not queued - free */
1074 				goto bail;
1075 			/* tx consumed in wait */
1076 			return ret;
1077 		}
1078 	}
1079 
1080 	if (len == 0) {
1081 		pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1082 	} else {
1083 		if (ss) {
1084 			seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4);
1085 			while (len) {
1086 				void *addr = ss->sge.vaddr;
1087 				u32 slen = ss->sge.length;
1088 
1089 				if (slen > len)
1090 					slen = len;
1091 				update_sge(ss, slen);
1092 				seg_pio_copy_mid(pbuf, addr, slen);
1093 				len -= slen;
1094 			}
1095 			seg_pio_copy_end(pbuf);
1096 		}
1097 	}
1098 
1099 	trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1100 			       &ps->s_txreq->phdr.hdr);
1101 
1102 pio_bail:
1103 	if (qp->s_wqe) {
1104 		spin_lock_irqsave(&qp->s_lock, flags);
1105 		hfi1_send_complete(qp, qp->s_wqe, wc_status);
1106 		spin_unlock_irqrestore(&qp->s_lock, flags);
1107 	} else if (qp->ibqp.qp_type == IB_QPT_RC) {
1108 		spin_lock_irqsave(&qp->s_lock, flags);
1109 		hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1110 		spin_unlock_irqrestore(&qp->s_lock, flags);
1111 	}
1112 
1113 	ret = 0;
1114 
1115 bail:
1116 	hfi1_put_txreq(ps->s_txreq);
1117 	return ret;
1118 }
1119 
1120 /*
1121  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1122  * being an entry from the partition key table), return 0
1123  * otherwise. Use the matching criteria for egress partition keys
1124  * specified in the OPAv1 spec., section 9.1l.7.
1125  */
egress_pkey_matches_entry(u16 pkey,u16 ent)1126 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1127 {
1128 	u16 mkey = pkey & PKEY_LOW_15_MASK;
1129 	u16 mentry = ent & PKEY_LOW_15_MASK;
1130 
1131 	if (mkey == mentry) {
1132 		/*
1133 		 * If pkey[15] is set (full partition member),
1134 		 * is bit 15 in the corresponding table element
1135 		 * clear (limited member)?
1136 		 */
1137 		if (pkey & PKEY_MEMBER_MASK)
1138 			return !!(ent & PKEY_MEMBER_MASK);
1139 		return 1;
1140 	}
1141 	return 0;
1142 }
1143 
1144 /**
1145  * egress_pkey_check - check P_KEY of a packet
1146  * @ppd:    Physical IB port data
1147  * @lrh: Local route header
1148  * @bth: Base transport header
1149  * @sc5:    SC for packet
1150  * @s_pkey_index: It will be used for look up optimization for kernel contexts
1151  * only. If it is negative value, then it means user contexts is calling this
1152  * function.
1153  *
1154  * It checks if hdr's pkey is valid.
1155  *
1156  * Return: 0 on success, otherwise, 1
1157  */
egress_pkey_check(struct hfi1_pportdata * ppd,__be16 * lrh,__be32 * bth,u8 sc5,int8_t s_pkey_index)1158 int egress_pkey_check(struct hfi1_pportdata *ppd, __be16 *lrh, __be32 *bth,
1159 		      u8 sc5, int8_t s_pkey_index)
1160 {
1161 	struct hfi1_devdata *dd;
1162 	int i;
1163 	u16 pkey;
1164 	int is_user_ctxt_mechanism = (s_pkey_index < 0);
1165 
1166 	if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1167 		return 0;
1168 
1169 	pkey = (u16)be32_to_cpu(bth[0]);
1170 
1171 	/* If SC15, pkey[0:14] must be 0x7fff */
1172 	if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1173 		goto bad;
1174 
1175 	/* Is the pkey = 0x0, or 0x8000? */
1176 	if ((pkey & PKEY_LOW_15_MASK) == 0)
1177 		goto bad;
1178 
1179 	/*
1180 	 * For the kernel contexts only, if a qp is passed into the function,
1181 	 * the most likely matching pkey has index qp->s_pkey_index
1182 	 */
1183 	if (!is_user_ctxt_mechanism &&
1184 	    egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1185 		return 0;
1186 	}
1187 
1188 	for (i = 0; i < MAX_PKEY_VALUES; i++) {
1189 		if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1190 			return 0;
1191 	}
1192 bad:
1193 	/*
1194 	 * For the user-context mechanism, the P_KEY check would only happen
1195 	 * once per SDMA request, not once per packet.  Therefore, there's no
1196 	 * need to increment the counter for the user-context mechanism.
1197 	 */
1198 	if (!is_user_ctxt_mechanism) {
1199 		incr_cntr64(&ppd->port_xmit_constraint_errors);
1200 		dd = ppd->dd;
1201 		if (!(dd->err_info_xmit_constraint.status &
1202 		      OPA_EI_STATUS_SMASK)) {
1203 			u16 slid = be16_to_cpu(lrh[3]);
1204 
1205 			dd->err_info_xmit_constraint.status |=
1206 				OPA_EI_STATUS_SMASK;
1207 			dd->err_info_xmit_constraint.slid = slid;
1208 			dd->err_info_xmit_constraint.pkey = pkey;
1209 		}
1210 	}
1211 	return 1;
1212 }
1213 
1214 /**
1215  * get_send_routine - choose an egress routine
1216  *
1217  * Choose an egress routine based on QP type
1218  * and size
1219  */
get_send_routine(struct rvt_qp * qp,struct verbs_txreq * tx)1220 static inline send_routine get_send_routine(struct rvt_qp *qp,
1221 					    struct verbs_txreq *tx)
1222 {
1223 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1224 	struct hfi1_qp_priv *priv = qp->priv;
1225 	struct ib_header *h = &tx->phdr.hdr;
1226 
1227 	if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1228 		return dd->process_pio_send;
1229 	switch (qp->ibqp.qp_type) {
1230 	case IB_QPT_SMI:
1231 		return dd->process_pio_send;
1232 	case IB_QPT_GSI:
1233 	case IB_QPT_UD:
1234 		break;
1235 	case IB_QPT_UC:
1236 	case IB_QPT_RC: {
1237 		u8 op = get_opcode(h);
1238 
1239 		if (piothreshold &&
1240 		    qp->s_cur_size <= min(piothreshold, qp->pmtu) &&
1241 		    (BIT(op & OPMASK) & pio_opmask[op >> 5]) &&
1242 		    iowait_sdma_pending(&priv->s_iowait) == 0 &&
1243 		    !sdma_txreq_built(&tx->txreq))
1244 			return dd->process_pio_send;
1245 		break;
1246 	}
1247 	default:
1248 		break;
1249 	}
1250 	return dd->process_dma_send;
1251 }
1252 
1253 /**
1254  * hfi1_verbs_send - send a packet
1255  * @qp: the QP to send on
1256  * @ps: the state of the packet to send
1257  *
1258  * Return zero if packet is sent or queued OK.
1259  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1260  */
hfi1_verbs_send(struct rvt_qp * qp,struct hfi1_pkt_state * ps)1261 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1262 {
1263 	struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1264 	struct hfi1_qp_priv *priv = qp->priv;
1265 	struct ib_other_headers *ohdr;
1266 	struct ib_header *hdr;
1267 	send_routine sr;
1268 	int ret;
1269 	u8 lnh;
1270 
1271 	hdr = &ps->s_txreq->phdr.hdr;
1272 	/* locate the pkey within the headers */
1273 	lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1274 	if (lnh == HFI1_LRH_GRH)
1275 		ohdr = &hdr->u.l.oth;
1276 	else
1277 		ohdr = &hdr->u.oth;
1278 
1279 	sr = get_send_routine(qp, ps->s_txreq);
1280 	ret = egress_pkey_check(dd->pport,
1281 				hdr->lrh,
1282 				ohdr->bth,
1283 				priv->s_sc,
1284 				qp->s_pkey_index);
1285 	if (unlikely(ret)) {
1286 		/*
1287 		 * The value we are returning here does not get propagated to
1288 		 * the verbs caller. Thus we need to complete the request with
1289 		 * error otherwise the caller could be sitting waiting on the
1290 		 * completion event. Only do this for PIO. SDMA has its own
1291 		 * mechanism for handling the errors. So for SDMA we can just
1292 		 * return.
1293 		 */
1294 		if (sr == dd->process_pio_send) {
1295 			unsigned long flags;
1296 
1297 			hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1298 				  __func__);
1299 			spin_lock_irqsave(&qp->s_lock, flags);
1300 			hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1301 			spin_unlock_irqrestore(&qp->s_lock, flags);
1302 		}
1303 		return -EINVAL;
1304 	}
1305 	if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1306 		return pio_wait(qp,
1307 				ps->s_txreq->psc,
1308 				ps,
1309 				RVT_S_WAIT_PIO_DRAIN);
1310 	return sr(qp, ps, 0);
1311 }
1312 
1313 /**
1314  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1315  * @dd: the device data structure
1316  */
hfi1_fill_device_attr(struct hfi1_devdata * dd)1317 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1318 {
1319 	struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1320 	u16 ver = dd->dc8051_ver;
1321 
1322 	memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1323 
1324 	rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 16) |
1325 				    (u64)dc8051_ver_min(ver);
1326 	rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1327 			IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1328 			IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1329 			IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1330 			IB_DEVICE_MEM_MGT_EXTENSIONS;
1331 	rdi->dparms.props.page_size_cap = PAGE_SIZE;
1332 	rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1333 	rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1334 	rdi->dparms.props.hw_ver = dd->minrev;
1335 	rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1336 	rdi->dparms.props.max_mr_size = U64_MAX;
1337 	rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1338 	rdi->dparms.props.max_qp = hfi1_max_qps;
1339 	rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1340 	rdi->dparms.props.max_sge = hfi1_max_sges;
1341 	rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1342 	rdi->dparms.props.max_cq = hfi1_max_cqs;
1343 	rdi->dparms.props.max_ah = hfi1_max_ahs;
1344 	rdi->dparms.props.max_cqe = hfi1_max_cqes;
1345 	rdi->dparms.props.max_mr = rdi->lkey_table.max;
1346 	rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1347 	rdi->dparms.props.max_map_per_fmr = 32767;
1348 	rdi->dparms.props.max_pd = hfi1_max_pds;
1349 	rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1350 	rdi->dparms.props.max_qp_init_rd_atom = 255;
1351 	rdi->dparms.props.max_srq = hfi1_max_srqs;
1352 	rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1353 	rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1354 	rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1355 	rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1356 	rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1357 	rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1358 	rdi->dparms.props.max_total_mcast_qp_attach =
1359 					rdi->dparms.props.max_mcast_qp_attach *
1360 					rdi->dparms.props.max_mcast_grp;
1361 }
1362 
opa_speed_to_ib(u16 in)1363 static inline u16 opa_speed_to_ib(u16 in)
1364 {
1365 	u16 out = 0;
1366 
1367 	if (in & OPA_LINK_SPEED_25G)
1368 		out |= IB_SPEED_EDR;
1369 	if (in & OPA_LINK_SPEED_12_5G)
1370 		out |= IB_SPEED_FDR;
1371 
1372 	return out;
1373 }
1374 
1375 /*
1376  * Convert a single OPA link width (no multiple flags) to an IB value.
1377  * A zero OPA link width means link down, which means the IB width value
1378  * is a don't care.
1379  */
opa_width_to_ib(u16 in)1380 static inline u16 opa_width_to_ib(u16 in)
1381 {
1382 	switch (in) {
1383 	case OPA_LINK_WIDTH_1X:
1384 	/* map 2x and 3x to 1x as they don't exist in IB */
1385 	case OPA_LINK_WIDTH_2X:
1386 	case OPA_LINK_WIDTH_3X:
1387 		return IB_WIDTH_1X;
1388 	default: /* link down or unknown, return our largest width */
1389 	case OPA_LINK_WIDTH_4X:
1390 		return IB_WIDTH_4X;
1391 	}
1392 }
1393 
query_port(struct rvt_dev_info * rdi,u8 port_num,struct ib_port_attr * props)1394 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1395 		      struct ib_port_attr *props)
1396 {
1397 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1398 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1399 	struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1400 	u16 lid = ppd->lid;
1401 
1402 	props->lid = lid ? lid : 0;
1403 	props->lmc = ppd->lmc;
1404 	/* OPA logical states match IB logical states */
1405 	props->state = driver_lstate(ppd);
1406 	props->phys_state = hfi1_ibphys_portstate(ppd);
1407 	props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1408 	props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1409 	/* see rate_show() in ib core/sysfs.c */
1410 	props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1411 	props->max_vl_num = ppd->vls_supported;
1412 
1413 	/* Once we are a "first class" citizen and have added the OPA MTUs to
1414 	 * the core we can advertise the larger MTU enum to the ULPs, for now
1415 	 * advertise only 4K.
1416 	 *
1417 	 * Those applications which are either OPA aware or pass the MTU enum
1418 	 * from the Path Records to us will get the new 8k MTU.  Those that
1419 	 * attempt to process the MTU enum may fail in various ways.
1420 	 */
1421 	props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1422 				      4096 : hfi1_max_mtu), IB_MTU_4096);
1423 	props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1424 		mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1425 
1426 	return 0;
1427 }
1428 
modify_device(struct ib_device * device,int device_modify_mask,struct ib_device_modify * device_modify)1429 static int modify_device(struct ib_device *device,
1430 			 int device_modify_mask,
1431 			 struct ib_device_modify *device_modify)
1432 {
1433 	struct hfi1_devdata *dd = dd_from_ibdev(device);
1434 	unsigned i;
1435 	int ret;
1436 
1437 	if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1438 				   IB_DEVICE_MODIFY_NODE_DESC)) {
1439 		ret = -EOPNOTSUPP;
1440 		goto bail;
1441 	}
1442 
1443 	if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1444 		memcpy(device->node_desc, device_modify->node_desc,
1445 		       IB_DEVICE_NODE_DESC_MAX);
1446 		for (i = 0; i < dd->num_pports; i++) {
1447 			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1448 
1449 			hfi1_node_desc_chg(ibp);
1450 		}
1451 	}
1452 
1453 	if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1454 		ib_hfi1_sys_image_guid =
1455 			cpu_to_be64(device_modify->sys_image_guid);
1456 		for (i = 0; i < dd->num_pports; i++) {
1457 			struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1458 
1459 			hfi1_sys_guid_chg(ibp);
1460 		}
1461 	}
1462 
1463 	ret = 0;
1464 
1465 bail:
1466 	return ret;
1467 }
1468 
shut_down_port(struct rvt_dev_info * rdi,u8 port_num)1469 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1470 {
1471 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1472 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1473 	struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1474 	int ret;
1475 
1476 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1477 			     OPA_LINKDOWN_REASON_UNKNOWN);
1478 	ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1479 	return ret;
1480 }
1481 
hfi1_get_guid_be(struct rvt_dev_info * rdi,struct rvt_ibport * rvp,int guid_index,__be64 * guid)1482 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1483 			    int guid_index, __be64 *guid)
1484 {
1485 	struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1486 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1487 
1488 	if (guid_index == 0)
1489 		*guid = cpu_to_be64(ppd->guid);
1490 	else if (guid_index < HFI1_GUIDS_PER_PORT)
1491 		*guid = ibp->guids[guid_index - 1];
1492 	else
1493 		return -EINVAL;
1494 
1495 	return 0;
1496 }
1497 
1498 /*
1499  * convert ah port,sl to sc
1500  */
ah_to_sc(struct ib_device * ibdev,struct ib_ah_attr * ah)1501 u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
1502 {
1503 	struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
1504 
1505 	return ibp->sl_to_sc[ah->sl];
1506 }
1507 
hfi1_check_ah(struct ib_device * ibdev,struct ib_ah_attr * ah_attr)1508 static int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
1509 {
1510 	struct hfi1_ibport *ibp;
1511 	struct hfi1_pportdata *ppd;
1512 	struct hfi1_devdata *dd;
1513 	u8 sc5;
1514 
1515 	/* test the mapping for validity */
1516 	ibp = to_iport(ibdev, ah_attr->port_num);
1517 	ppd = ppd_from_ibp(ibp);
1518 	sc5 = ibp->sl_to_sc[ah_attr->sl];
1519 	dd = dd_from_ppd(ppd);
1520 	if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1521 		return -EINVAL;
1522 	return 0;
1523 }
1524 
hfi1_notify_new_ah(struct ib_device * ibdev,struct ib_ah_attr * ah_attr,struct rvt_ah * ah)1525 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1526 			       struct ib_ah_attr *ah_attr,
1527 			       struct rvt_ah *ah)
1528 {
1529 	struct hfi1_ibport *ibp;
1530 	struct hfi1_pportdata *ppd;
1531 	struct hfi1_devdata *dd;
1532 	u8 sc5;
1533 
1534 	/*
1535 	 * Do not trust reading anything from rvt_ah at this point as it is not
1536 	 * done being setup. We can however modify things which we need to set.
1537 	 */
1538 
1539 	ibp = to_iport(ibdev, ah_attr->port_num);
1540 	ppd = ppd_from_ibp(ibp);
1541 	sc5 = ibp->sl_to_sc[ah->attr.sl];
1542 	dd = dd_from_ppd(ppd);
1543 	ah->vl = sc_to_vlt(dd, sc5);
1544 	if (ah->vl < num_vls || ah->vl == 15)
1545 		ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1546 }
1547 
hfi1_create_qp0_ah(struct hfi1_ibport * ibp,u16 dlid)1548 struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1549 {
1550 	struct ib_ah_attr attr;
1551 	struct ib_ah *ah = ERR_PTR(-EINVAL);
1552 	struct rvt_qp *qp0;
1553 
1554 	memset(&attr, 0, sizeof(attr));
1555 	attr.dlid = dlid;
1556 	attr.port_num = ppd_from_ibp(ibp)->port;
1557 	rcu_read_lock();
1558 	qp0 = rcu_dereference(ibp->rvp.qp[0]);
1559 	if (qp0)
1560 		ah = ib_create_ah(qp0->ibqp.pd, &attr);
1561 	rcu_read_unlock();
1562 	return ah;
1563 }
1564 
1565 /**
1566  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1567  * @dd: the hfi1_ib device
1568  */
hfi1_get_npkeys(struct hfi1_devdata * dd)1569 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1570 {
1571 	return ARRAY_SIZE(dd->pport[0].pkeys);
1572 }
1573 
init_ibport(struct hfi1_pportdata * ppd)1574 static void init_ibport(struct hfi1_pportdata *ppd)
1575 {
1576 	struct hfi1_ibport *ibp = &ppd->ibport_data;
1577 	size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1578 	int i;
1579 
1580 	for (i = 0; i < sz; i++) {
1581 		ibp->sl_to_sc[i] = i;
1582 		ibp->sc_to_sl[i] = i;
1583 	}
1584 
1585 	spin_lock_init(&ibp->rvp.lock);
1586 	/* Set the prefix to the default value (see ch. 4.1.1) */
1587 	ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1588 	ibp->rvp.sm_lid = 0;
1589 	/* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1590 	ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1591 		IB_PORT_CAP_MASK_NOTICE_SUP;
1592 	ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1593 	ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1594 	ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1595 	ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1596 	ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1597 
1598 	RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1599 	RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1600 }
1601 
hfi1_get_dev_fw_str(struct ib_device * ibdev,char * str,size_t str_len)1602 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str,
1603 				size_t str_len)
1604 {
1605 	struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1606 	struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1607 	u16 ver = dd_from_dev(dev)->dc8051_ver;
1608 
1609 	snprintf(str, str_len, "%u.%u", dc8051_ver_maj(ver),
1610 		 dc8051_ver_min(ver));
1611 }
1612 
1613 /**
1614  * hfi1_register_ib_device - register our device with the infiniband core
1615  * @dd: the device data structure
1616  * Return 0 if successful, errno if unsuccessful.
1617  */
hfi1_register_ib_device(struct hfi1_devdata * dd)1618 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1619 {
1620 	struct hfi1_ibdev *dev = &dd->verbs_dev;
1621 	struct ib_device *ibdev = &dev->rdi.ibdev;
1622 	struct hfi1_pportdata *ppd = dd->pport;
1623 	unsigned i;
1624 	int ret;
1625 	size_t lcpysz = IB_DEVICE_NAME_MAX;
1626 
1627 	for (i = 0; i < dd->num_pports; i++)
1628 		init_ibport(ppd + i);
1629 
1630 	/* Only need to initialize non-zero fields. */
1631 
1632 	setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev);
1633 
1634 	seqlock_init(&dev->iowait_lock);
1635 	INIT_LIST_HEAD(&dev->txwait);
1636 	INIT_LIST_HEAD(&dev->memwait);
1637 
1638 	ret = verbs_txreq_init(dev);
1639 	if (ret)
1640 		goto err_verbs_txreq;
1641 
1642 	/*
1643 	 * The system image GUID is supposed to be the same for all
1644 	 * HFIs in a single system but since there can be other
1645 	 * device types in the system, we can't be sure this is unique.
1646 	 */
1647 	if (!ib_hfi1_sys_image_guid)
1648 		ib_hfi1_sys_image_guid = cpu_to_be64(ppd->guid);
1649 	lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1650 	strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1651 	ibdev->owner = THIS_MODULE;
1652 	ibdev->node_guid = cpu_to_be64(ppd->guid);
1653 	ibdev->phys_port_cnt = dd->num_pports;
1654 	ibdev->dma_device = &dd->pcidev->dev;
1655 	ibdev->modify_device = modify_device;
1656 
1657 	/* keep process mad in the driver */
1658 	ibdev->process_mad = hfi1_process_mad;
1659 	ibdev->get_dev_fw_str = hfi1_get_dev_fw_str;
1660 
1661 	strncpy(ibdev->node_desc, init_utsname()->nodename,
1662 		sizeof(ibdev->node_desc));
1663 
1664 	/*
1665 	 * Fill in rvt info object.
1666 	 */
1667 	dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1668 	dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name;
1669 	dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1670 	dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1671 	dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1672 	dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1673 	dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1674 	dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1675 	dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1676 	/*
1677 	 * Fill in rvt info device attributes.
1678 	 */
1679 	hfi1_fill_device_attr(dd);
1680 
1681 	/* queue pair */
1682 	dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1683 	dd->verbs_dev.rdi.dparms.qpn_start = 0;
1684 	dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1685 	dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1686 	dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1687 	dd->verbs_dev.rdi.dparms.qpn_res_end =
1688 	dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1689 	dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1690 	dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1691 	dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1692 	dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1693 	dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1694 	dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1695 
1696 	dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1697 	dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1698 	dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1699 	dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1700 	dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1701 	dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1702 	dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1703 	dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1704 	dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1705 	dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1706 	dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1707 	dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1708 	dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1709 	dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1710 	dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1711 	dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1712 	dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1713 	dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1714 
1715 	/* completeion queue */
1716 	snprintf(dd->verbs_dev.rdi.dparms.cq_name,
1717 		 sizeof(dd->verbs_dev.rdi.dparms.cq_name),
1718 		 "hfi1_cq%d", dd->unit);
1719 	dd->verbs_dev.rdi.dparms.node = dd->node;
1720 
1721 	/* misc settings */
1722 	dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1723 	dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1724 	dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1725 	dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1726 
1727 	/* post send table */
1728 	dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1729 
1730 	ppd = dd->pport;
1731 	for (i = 0; i < dd->num_pports; i++, ppd++)
1732 		rvt_init_port(&dd->verbs_dev.rdi,
1733 			      &ppd->ibport_data.rvp,
1734 			      i,
1735 			      ppd->pkeys);
1736 
1737 	ret = rvt_register_device(&dd->verbs_dev.rdi);
1738 	if (ret)
1739 		goto err_verbs_txreq;
1740 
1741 	ret = hfi1_verbs_register_sysfs(dd);
1742 	if (ret)
1743 		goto err_class;
1744 
1745 	return ret;
1746 
1747 err_class:
1748 	rvt_unregister_device(&dd->verbs_dev.rdi);
1749 err_verbs_txreq:
1750 	verbs_txreq_exit(dev);
1751 	dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1752 	return ret;
1753 }
1754 
hfi1_unregister_ib_device(struct hfi1_devdata * dd)1755 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1756 {
1757 	struct hfi1_ibdev *dev = &dd->verbs_dev;
1758 
1759 	hfi1_verbs_unregister_sysfs(dd);
1760 
1761 	rvt_unregister_device(&dd->verbs_dev.rdi);
1762 
1763 	if (!list_empty(&dev->txwait))
1764 		dd_dev_err(dd, "txwait list not empty!\n");
1765 	if (!list_empty(&dev->memwait))
1766 		dd_dev_err(dd, "memwait list not empty!\n");
1767 
1768 	del_timer_sync(&dev->mem_timer);
1769 	verbs_txreq_exit(dev);
1770 }
1771 
hfi1_cnp_rcv(struct hfi1_packet * packet)1772 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1773 {
1774 	struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
1775 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1776 	struct ib_header *hdr = packet->hdr;
1777 	struct rvt_qp *qp = packet->qp;
1778 	u32 lqpn, rqpn = 0;
1779 	u16 rlid = 0;
1780 	u8 sl, sc5, svc_type;
1781 
1782 	switch (packet->qp->ibqp.qp_type) {
1783 	case IB_QPT_UC:
1784 		rlid = qp->remote_ah_attr.dlid;
1785 		rqpn = qp->remote_qpn;
1786 		svc_type = IB_CC_SVCTYPE_UC;
1787 		break;
1788 	case IB_QPT_RC:
1789 		rlid = qp->remote_ah_attr.dlid;
1790 		rqpn = qp->remote_qpn;
1791 		svc_type = IB_CC_SVCTYPE_RC;
1792 		break;
1793 	case IB_QPT_SMI:
1794 	case IB_QPT_GSI:
1795 	case IB_QPT_UD:
1796 		svc_type = IB_CC_SVCTYPE_UD;
1797 		break;
1798 	default:
1799 		ibp->rvp.n_pkt_drops++;
1800 		return;
1801 	}
1802 
1803 	sc5 = hdr2sc(hdr, packet->rhf);
1804 	sl = ibp->sc_to_sl[sc5];
1805 	lqpn = qp->ibqp.qp_num;
1806 
1807 	process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1808 }
1809