• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/percpu-defs.h - basic definitions for percpu areas
3  *
4  * DO NOT INCLUDE DIRECTLY OUTSIDE PERCPU IMPLEMENTATION PROPER.
5  *
6  * This file is separate from linux/percpu.h to avoid cyclic inclusion
7  * dependency from arch header files.  Only to be included from
8  * asm/percpu.h.
9  *
10  * This file includes macros necessary to declare percpu sections and
11  * variables, and definitions of percpu accessors and operations.  It
12  * should provide enough percpu features to arch header files even when
13  * they can only include asm/percpu.h to avoid cyclic inclusion dependency.
14  */
15 
16 #ifndef _LINUX_PERCPU_DEFS_H
17 #define _LINUX_PERCPU_DEFS_H
18 
19 #ifdef CONFIG_SMP
20 
21 #ifdef MODULE
22 #define PER_CPU_SHARED_ALIGNED_SECTION ""
23 #define PER_CPU_ALIGNED_SECTION ""
24 #else
25 #define PER_CPU_SHARED_ALIGNED_SECTION "..shared_aligned"
26 #define PER_CPU_ALIGNED_SECTION "..shared_aligned"
27 #endif
28 #define PER_CPU_FIRST_SECTION "..first"
29 
30 #else
31 
32 #define PER_CPU_SHARED_ALIGNED_SECTION ""
33 #define PER_CPU_ALIGNED_SECTION "..shared_aligned"
34 #define PER_CPU_FIRST_SECTION ""
35 
36 #endif
37 
38 #ifdef CONFIG_PAGE_TABLE_ISOLATION
39 #define USER_MAPPED_SECTION "..user_mapped"
40 #else
41 #define USER_MAPPED_SECTION ""
42 #endif
43 
44 /*
45  * Base implementations of per-CPU variable declarations and definitions, where
46  * the section in which the variable is to be placed is provided by the
47  * 'sec' argument.  This may be used to affect the parameters governing the
48  * variable's storage.
49  *
50  * NOTE!  The sections for the DECLARE and for the DEFINE must match, lest
51  * linkage errors occur due the compiler generating the wrong code to access
52  * that section.
53  */
54 #define __PCPU_ATTRS(sec)						\
55 	__percpu __attribute__((section(PER_CPU_BASE_SECTION sec)))	\
56 	PER_CPU_ATTRIBUTES
57 
58 #define __PCPU_DUMMY_ATTRS						\
59 	__attribute__((section(".discard"), unused))
60 
61 /*
62  * s390 and alpha modules require percpu variables to be defined as
63  * weak to force the compiler to generate GOT based external
64  * references for them.  This is necessary because percpu sections
65  * will be located outside of the usually addressable area.
66  *
67  * This definition puts the following two extra restrictions when
68  * defining percpu variables.
69  *
70  * 1. The symbol must be globally unique, even the static ones.
71  * 2. Static percpu variables cannot be defined inside a function.
72  *
73  * Archs which need weak percpu definitions should define
74  * ARCH_NEEDS_WEAK_PER_CPU in asm/percpu.h when necessary.
75  *
76  * To ensure that the generic code observes the above two
77  * restrictions, if CONFIG_DEBUG_FORCE_WEAK_PER_CPU is set weak
78  * definition is used for all cases.
79  */
80 #if defined(ARCH_NEEDS_WEAK_PER_CPU) || defined(CONFIG_DEBUG_FORCE_WEAK_PER_CPU)
81 /*
82  * __pcpu_scope_* dummy variable is used to enforce scope.  It
83  * receives the static modifier when it's used in front of
84  * DEFINE_PER_CPU() and will trigger build failure if
85  * DECLARE_PER_CPU() is used for the same variable.
86  *
87  * __pcpu_unique_* dummy variable is used to enforce symbol uniqueness
88  * such that hidden weak symbol collision, which will cause unrelated
89  * variables to share the same address, can be detected during build.
90  */
91 #define DECLARE_PER_CPU_SECTION(type, name, sec)			\
92 	extern __PCPU_DUMMY_ATTRS char __pcpu_scope_##name;		\
93 	extern __PCPU_ATTRS(sec) __typeof__(type) name
94 
95 #define DEFINE_PER_CPU_SECTION(type, name, sec)				\
96 	__PCPU_DUMMY_ATTRS char __pcpu_scope_##name;			\
97 	extern __PCPU_DUMMY_ATTRS char __pcpu_unique_##name;		\
98 	__PCPU_DUMMY_ATTRS char __pcpu_unique_##name;			\
99 	extern __PCPU_ATTRS(sec) __typeof__(type) name;			\
100 	__PCPU_ATTRS(sec) PER_CPU_DEF_ATTRIBUTES __weak			\
101 	__typeof__(type) name
102 #else
103 /*
104  * Normal declaration and definition macros.
105  */
106 #define DECLARE_PER_CPU_SECTION(type, name, sec)			\
107 	extern __PCPU_ATTRS(sec) __typeof__(type) name
108 
109 #define DEFINE_PER_CPU_SECTION(type, name, sec)				\
110 	__PCPU_ATTRS(sec) PER_CPU_DEF_ATTRIBUTES			\
111 	__typeof__(type) name
112 #endif
113 
114 /*
115  * Variant on the per-CPU variable declaration/definition theme used for
116  * ordinary per-CPU variables.
117  */
118 #define DECLARE_PER_CPU(type, name)					\
119 	DECLARE_PER_CPU_SECTION(type, name, "")
120 
121 #define DEFINE_PER_CPU(type, name)					\
122 	DEFINE_PER_CPU_SECTION(type, name, "")
123 
124 #define DECLARE_PER_CPU_USER_MAPPED(type, name)				\
125 	DECLARE_PER_CPU_SECTION(type, name, USER_MAPPED_SECTION)
126 
127 #define DEFINE_PER_CPU_USER_MAPPED(type, name)				\
128 	DEFINE_PER_CPU_SECTION(type, name, USER_MAPPED_SECTION)
129 
130 /*
131  * Declaration/definition used for per-CPU variables that must come first in
132  * the set of variables.
133  */
134 #define DECLARE_PER_CPU_FIRST(type, name)				\
135 	DECLARE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION)
136 
137 #define DEFINE_PER_CPU_FIRST(type, name)				\
138 	DEFINE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION)
139 
140 /*
141  * Declaration/definition used for per-CPU variables that must be cacheline
142  * aligned under SMP conditions so that, whilst a particular instance of the
143  * data corresponds to a particular CPU, inefficiencies due to direct access by
144  * other CPUs are reduced by preventing the data from unnecessarily spanning
145  * cachelines.
146  *
147  * An example of this would be statistical data, where each CPU's set of data
148  * is updated by that CPU alone, but the data from across all CPUs is collated
149  * by a CPU processing a read from a proc file.
150  */
151 #define DECLARE_PER_CPU_SHARED_ALIGNED(type, name)			\
152 	DECLARE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \
153 	____cacheline_aligned_in_smp
154 
155 #define DEFINE_PER_CPU_SHARED_ALIGNED(type, name)			\
156 	DEFINE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \
157 	____cacheline_aligned_in_smp
158 
159 #define DECLARE_PER_CPU_SHARED_ALIGNED_USER_MAPPED(type, name)		\
160 	DECLARE_PER_CPU_SECTION(type, name, USER_MAPPED_SECTION PER_CPU_SHARED_ALIGNED_SECTION) \
161 	____cacheline_aligned_in_smp
162 
163 #define DEFINE_PER_CPU_SHARED_ALIGNED_USER_MAPPED(type, name)		\
164 	DEFINE_PER_CPU_SECTION(type, name, USER_MAPPED_SECTION PER_CPU_SHARED_ALIGNED_SECTION) \
165 	____cacheline_aligned_in_smp
166 
167 #define DECLARE_PER_CPU_ALIGNED(type, name)				\
168 	DECLARE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION)	\
169 	____cacheline_aligned
170 
171 #define DEFINE_PER_CPU_ALIGNED(type, name)				\
172 	DEFINE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION)	\
173 	____cacheline_aligned
174 
175 /*
176  * Declaration/definition used for per-CPU variables that must be page aligned.
177  */
178 #define DECLARE_PER_CPU_PAGE_ALIGNED(type, name)			\
179 	DECLARE_PER_CPU_SECTION(type, name, "..page_aligned")		\
180 	__aligned(PAGE_SIZE)
181 
182 #define DEFINE_PER_CPU_PAGE_ALIGNED(type, name)				\
183 	DEFINE_PER_CPU_SECTION(type, name, "..page_aligned")		\
184 	__aligned(PAGE_SIZE)
185 /*
186  * Declaration/definition used for per-CPU variables that must be page aligned and need to be mapped in user mode.
187  */
188 #define DECLARE_PER_CPU_PAGE_ALIGNED_USER_MAPPED(type, name)		\
189 	DECLARE_PER_CPU_SECTION(type, name, USER_MAPPED_SECTION"..page_aligned") \
190 	__aligned(PAGE_SIZE)
191 
192 #define DEFINE_PER_CPU_PAGE_ALIGNED_USER_MAPPED(type, name)		\
193 	DEFINE_PER_CPU_SECTION(type, name, USER_MAPPED_SECTION"..page_aligned") \
194 	__aligned(PAGE_SIZE)
195 
196 /*
197  * Declaration/definition used for per-CPU variables that must be read mostly.
198  */
199 #define DECLARE_PER_CPU_READ_MOSTLY(type, name)				\
200 	DECLARE_PER_CPU_SECTION(type, name, "..read_mostly")
201 
202 #define DEFINE_PER_CPU_READ_MOSTLY(type, name)				\
203 	DEFINE_PER_CPU_SECTION(type, name, "..read_mostly")
204 
205 /*
206  * Intermodule exports for per-CPU variables.  sparse forgets about
207  * address space across EXPORT_SYMBOL(), change EXPORT_SYMBOL() to
208  * noop if __CHECKER__.
209  */
210 #ifndef __CHECKER__
211 #define EXPORT_PER_CPU_SYMBOL(var) EXPORT_SYMBOL(var)
212 #define EXPORT_PER_CPU_SYMBOL_GPL(var) EXPORT_SYMBOL_GPL(var)
213 #else
214 #define EXPORT_PER_CPU_SYMBOL(var)
215 #define EXPORT_PER_CPU_SYMBOL_GPL(var)
216 #endif
217 
218 /*
219  * Accessors and operations.
220  */
221 #ifndef __ASSEMBLY__
222 
223 /*
224  * __verify_pcpu_ptr() verifies @ptr is a percpu pointer without evaluating
225  * @ptr and is invoked once before a percpu area is accessed by all
226  * accessors and operations.  This is performed in the generic part of
227  * percpu and arch overrides don't need to worry about it; however, if an
228  * arch wants to implement an arch-specific percpu accessor or operation,
229  * it may use __verify_pcpu_ptr() to verify the parameters.
230  *
231  * + 0 is required in order to convert the pointer type from a
232  * potential array type to a pointer to a single item of the array.
233  */
234 #define __verify_pcpu_ptr(ptr)						\
235 do {									\
236 	const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL;	\
237 	(void)__vpp_verify;						\
238 } while (0)
239 
240 #ifdef CONFIG_SMP
241 
242 /*
243  * Add an offset to a pointer but keep the pointer as-is.  Use RELOC_HIDE()
244  * to prevent the compiler from making incorrect assumptions about the
245  * pointer value.  The weird cast keeps both GCC and sparse happy.
246  */
247 #define SHIFT_PERCPU_PTR(__p, __offset)					\
248 	RELOC_HIDE((typeof(*(__p)) __kernel __force *)(__p), (__offset))
249 
250 #define per_cpu_ptr(ptr, cpu)						\
251 ({									\
252 	__verify_pcpu_ptr(ptr);						\
253 	SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)));			\
254 })
255 
256 #define raw_cpu_ptr(ptr)						\
257 ({									\
258 	__verify_pcpu_ptr(ptr);						\
259 	arch_raw_cpu_ptr(ptr);						\
260 })
261 
262 #ifdef CONFIG_DEBUG_PREEMPT
263 #define this_cpu_ptr(ptr)						\
264 ({									\
265 	__verify_pcpu_ptr(ptr);						\
266 	SHIFT_PERCPU_PTR(ptr, my_cpu_offset);				\
267 })
268 #else
269 #define this_cpu_ptr(ptr) raw_cpu_ptr(ptr)
270 #endif
271 
272 #else	/* CONFIG_SMP */
273 
274 #define VERIFY_PERCPU_PTR(__p)						\
275 ({									\
276 	__verify_pcpu_ptr(__p);						\
277 	(typeof(*(__p)) __kernel __force *)(__p);			\
278 })
279 
280 #define per_cpu_ptr(ptr, cpu)	({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
281 #define raw_cpu_ptr(ptr)	per_cpu_ptr(ptr, 0)
282 #define this_cpu_ptr(ptr)	raw_cpu_ptr(ptr)
283 
284 #endif	/* CONFIG_SMP */
285 
286 #define per_cpu(var, cpu)	(*per_cpu_ptr(&(var), cpu))
287 
288 /*
289  * Must be an lvalue. Since @var must be a simple identifier,
290  * we force a syntax error here if it isn't.
291  */
292 #define get_cpu_var(var)						\
293 (*({									\
294 	preempt_disable();						\
295 	this_cpu_ptr(&var);						\
296 }))
297 
298 /*
299  * The weird & is necessary because sparse considers (void)(var) to be
300  * a direct dereference of percpu variable (var).
301  */
302 #define put_cpu_var(var)						\
303 do {									\
304 	(void)&(var);							\
305 	preempt_enable();						\
306 } while (0)
307 
308 #define get_cpu_ptr(var)						\
309 ({									\
310 	preempt_disable();						\
311 	this_cpu_ptr(var);						\
312 })
313 
314 #define put_cpu_ptr(var)						\
315 do {									\
316 	(void)(var);							\
317 	preempt_enable();						\
318 } while (0)
319 
320 /*
321  * Branching function to split up a function into a set of functions that
322  * are called for different scalar sizes of the objects handled.
323  */
324 
325 extern void __bad_size_call_parameter(void);
326 
327 #ifdef CONFIG_DEBUG_PREEMPT
328 extern void __this_cpu_preempt_check(const char *op);
329 #else
__this_cpu_preempt_check(const char * op)330 static inline void __this_cpu_preempt_check(const char *op) { }
331 #endif
332 
333 #define __pcpu_size_call_return(stem, variable)				\
334 ({									\
335 	typeof(variable) pscr_ret__;					\
336 	__verify_pcpu_ptr(&(variable));					\
337 	switch(sizeof(variable)) {					\
338 	case 1: pscr_ret__ = stem##1(variable); break;			\
339 	case 2: pscr_ret__ = stem##2(variable); break;			\
340 	case 4: pscr_ret__ = stem##4(variable); break;			\
341 	case 8: pscr_ret__ = stem##8(variable); break;			\
342 	default:							\
343 		__bad_size_call_parameter(); break;			\
344 	}								\
345 	pscr_ret__;							\
346 })
347 
348 #define __pcpu_size_call_return2(stem, variable, ...)			\
349 ({									\
350 	typeof(variable) pscr2_ret__;					\
351 	__verify_pcpu_ptr(&(variable));					\
352 	switch(sizeof(variable)) {					\
353 	case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break;	\
354 	case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break;	\
355 	case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break;	\
356 	case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break;	\
357 	default:							\
358 		__bad_size_call_parameter(); break;			\
359 	}								\
360 	pscr2_ret__;							\
361 })
362 
363 /*
364  * Special handling for cmpxchg_double.  cmpxchg_double is passed two
365  * percpu variables.  The first has to be aligned to a double word
366  * boundary and the second has to follow directly thereafter.
367  * We enforce this on all architectures even if they don't support
368  * a double cmpxchg instruction, since it's a cheap requirement, and it
369  * avoids breaking the requirement for architectures with the instruction.
370  */
371 #define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...)		\
372 ({									\
373 	bool pdcrb_ret__;						\
374 	__verify_pcpu_ptr(&(pcp1));					\
375 	BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2));			\
376 	VM_BUG_ON((unsigned long)(&(pcp1)) % (2 * sizeof(pcp1)));	\
377 	VM_BUG_ON((unsigned long)(&(pcp2)) !=				\
378 		  (unsigned long)(&(pcp1)) + sizeof(pcp1));		\
379 	switch(sizeof(pcp1)) {						\
380 	case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break;	\
381 	case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break;	\
382 	case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break;	\
383 	case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break;	\
384 	default:							\
385 		__bad_size_call_parameter(); break;			\
386 	}								\
387 	pdcrb_ret__;							\
388 })
389 
390 #define __pcpu_size_call(stem, variable, ...)				\
391 do {									\
392 	__verify_pcpu_ptr(&(variable));					\
393 	switch(sizeof(variable)) {					\
394 		case 1: stem##1(variable, __VA_ARGS__);break;		\
395 		case 2: stem##2(variable, __VA_ARGS__);break;		\
396 		case 4: stem##4(variable, __VA_ARGS__);break;		\
397 		case 8: stem##8(variable, __VA_ARGS__);break;		\
398 		default: 						\
399 			__bad_size_call_parameter();break;		\
400 	}								\
401 } while (0)
402 
403 /*
404  * this_cpu operations (C) 2008-2013 Christoph Lameter <cl@linux.com>
405  *
406  * Optimized manipulation for memory allocated through the per cpu
407  * allocator or for addresses of per cpu variables.
408  *
409  * These operation guarantee exclusivity of access for other operations
410  * on the *same* processor. The assumption is that per cpu data is only
411  * accessed by a single processor instance (the current one).
412  *
413  * The arch code can provide optimized implementation by defining macros
414  * for certain scalar sizes. F.e. provide this_cpu_add_2() to provide per
415  * cpu atomic operations for 2 byte sized RMW actions. If arch code does
416  * not provide operations for a scalar size then the fallback in the
417  * generic code will be used.
418  *
419  * cmpxchg_double replaces two adjacent scalars at once.  The first two
420  * parameters are per cpu variables which have to be of the same size.  A
421  * truth value is returned to indicate success or failure (since a double
422  * register result is difficult to handle).  There is very limited hardware
423  * support for these operations, so only certain sizes may work.
424  */
425 
426 /*
427  * Operations for contexts where we do not want to do any checks for
428  * preemptions.  Unless strictly necessary, always use [__]this_cpu_*()
429  * instead.
430  *
431  * If there is no other protection through preempt disable and/or disabling
432  * interupts then one of these RMW operations can show unexpected behavior
433  * because the execution thread was rescheduled on another processor or an
434  * interrupt occurred and the same percpu variable was modified from the
435  * interrupt context.
436  */
437 #define raw_cpu_read(pcp)		__pcpu_size_call_return(raw_cpu_read_, pcp)
438 #define raw_cpu_write(pcp, val)		__pcpu_size_call(raw_cpu_write_, pcp, val)
439 #define raw_cpu_add(pcp, val)		__pcpu_size_call(raw_cpu_add_, pcp, val)
440 #define raw_cpu_and(pcp, val)		__pcpu_size_call(raw_cpu_and_, pcp, val)
441 #define raw_cpu_or(pcp, val)		__pcpu_size_call(raw_cpu_or_, pcp, val)
442 #define raw_cpu_add_return(pcp, val)	__pcpu_size_call_return2(raw_cpu_add_return_, pcp, val)
443 #define raw_cpu_xchg(pcp, nval)		__pcpu_size_call_return2(raw_cpu_xchg_, pcp, nval)
444 #define raw_cpu_cmpxchg(pcp, oval, nval) \
445 	__pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval)
446 #define raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
447 	__pcpu_double_call_return_bool(raw_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2)
448 
449 #define raw_cpu_sub(pcp, val)		raw_cpu_add(pcp, -(val))
450 #define raw_cpu_inc(pcp)		raw_cpu_add(pcp, 1)
451 #define raw_cpu_dec(pcp)		raw_cpu_sub(pcp, 1)
452 #define raw_cpu_sub_return(pcp, val)	raw_cpu_add_return(pcp, -(typeof(pcp))(val))
453 #define raw_cpu_inc_return(pcp)		raw_cpu_add_return(pcp, 1)
454 #define raw_cpu_dec_return(pcp)		raw_cpu_add_return(pcp, -1)
455 
456 /*
457  * Operations for contexts that are safe from preemption/interrupts.  These
458  * operations verify that preemption is disabled.
459  */
460 #define __this_cpu_read(pcp)						\
461 ({									\
462 	__this_cpu_preempt_check("read");				\
463 	raw_cpu_read(pcp);						\
464 })
465 
466 #define __this_cpu_write(pcp, val)					\
467 ({									\
468 	__this_cpu_preempt_check("write");				\
469 	raw_cpu_write(pcp, val);					\
470 })
471 
472 #define __this_cpu_add(pcp, val)					\
473 ({									\
474 	__this_cpu_preempt_check("add");				\
475 	raw_cpu_add(pcp, val);						\
476 })
477 
478 #define __this_cpu_and(pcp, val)					\
479 ({									\
480 	__this_cpu_preempt_check("and");				\
481 	raw_cpu_and(pcp, val);						\
482 })
483 
484 #define __this_cpu_or(pcp, val)						\
485 ({									\
486 	__this_cpu_preempt_check("or");					\
487 	raw_cpu_or(pcp, val);						\
488 })
489 
490 #define __this_cpu_add_return(pcp, val)					\
491 ({									\
492 	__this_cpu_preempt_check("add_return");				\
493 	raw_cpu_add_return(pcp, val);					\
494 })
495 
496 #define __this_cpu_xchg(pcp, nval)					\
497 ({									\
498 	__this_cpu_preempt_check("xchg");				\
499 	raw_cpu_xchg(pcp, nval);					\
500 })
501 
502 #define __this_cpu_cmpxchg(pcp, oval, nval)				\
503 ({									\
504 	__this_cpu_preempt_check("cmpxchg");				\
505 	raw_cpu_cmpxchg(pcp, oval, nval);				\
506 })
507 
508 #define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
509 ({	__this_cpu_preempt_check("cmpxchg_double");			\
510 	raw_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2);	\
511 })
512 
513 #define __this_cpu_sub(pcp, val)	__this_cpu_add(pcp, -(typeof(pcp))(val))
514 #define __this_cpu_inc(pcp)		__this_cpu_add(pcp, 1)
515 #define __this_cpu_dec(pcp)		__this_cpu_sub(pcp, 1)
516 #define __this_cpu_sub_return(pcp, val)	__this_cpu_add_return(pcp, -(typeof(pcp))(val))
517 #define __this_cpu_inc_return(pcp)	__this_cpu_add_return(pcp, 1)
518 #define __this_cpu_dec_return(pcp)	__this_cpu_add_return(pcp, -1)
519 
520 /*
521  * Operations with implied preemption/interrupt protection.  These
522  * operations can be used without worrying about preemption or interrupt.
523  */
524 #define this_cpu_read(pcp)		__pcpu_size_call_return(this_cpu_read_, pcp)
525 #define this_cpu_write(pcp, val)	__pcpu_size_call(this_cpu_write_, pcp, val)
526 #define this_cpu_add(pcp, val)		__pcpu_size_call(this_cpu_add_, pcp, val)
527 #define this_cpu_and(pcp, val)		__pcpu_size_call(this_cpu_and_, pcp, val)
528 #define this_cpu_or(pcp, val)		__pcpu_size_call(this_cpu_or_, pcp, val)
529 #define this_cpu_add_return(pcp, val)	__pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
530 #define this_cpu_xchg(pcp, nval)	__pcpu_size_call_return2(this_cpu_xchg_, pcp, nval)
531 #define this_cpu_cmpxchg(pcp, oval, nval) \
532 	__pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
533 #define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
534 	__pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, pcp1, pcp2, oval1, oval2, nval1, nval2)
535 
536 #define this_cpu_sub(pcp, val)		this_cpu_add(pcp, -(typeof(pcp))(val))
537 #define this_cpu_inc(pcp)		this_cpu_add(pcp, 1)
538 #define this_cpu_dec(pcp)		this_cpu_sub(pcp, 1)
539 #define this_cpu_sub_return(pcp, val)	this_cpu_add_return(pcp, -(typeof(pcp))(val))
540 #define this_cpu_inc_return(pcp)	this_cpu_add_return(pcp, 1)
541 #define this_cpu_dec_return(pcp)	this_cpu_add_return(pcp, -1)
542 
543 #endif /* __ASSEMBLY__ */
544 #endif /* _LINUX_PERCPU_DEFS_H */
545