1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
16 */
17 #ifndef LINUX_DMAENGINE_H
18 #define LINUX_DMAENGINE_H
19
20 #include <linux/device.h>
21 #include <linux/err.h>
22 #include <linux/uio.h>
23 #include <linux/bug.h>
24 #include <linux/scatterlist.h>
25 #include <linux/bitmap.h>
26 #include <linux/types.h>
27 #include <asm/page.h>
28
29 /**
30 * typedef dma_cookie_t - an opaque DMA cookie
31 *
32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
33 */
34 typedef s32 dma_cookie_t;
35 #define DMA_MIN_COOKIE 1
36
dma_submit_error(dma_cookie_t cookie)37 static inline int dma_submit_error(dma_cookie_t cookie)
38 {
39 return cookie < 0 ? cookie : 0;
40 }
41
42 /**
43 * enum dma_status - DMA transaction status
44 * @DMA_COMPLETE: transaction completed
45 * @DMA_IN_PROGRESS: transaction not yet processed
46 * @DMA_PAUSED: transaction is paused
47 * @DMA_ERROR: transaction failed
48 */
49 enum dma_status {
50 DMA_COMPLETE,
51 DMA_IN_PROGRESS,
52 DMA_PAUSED,
53 DMA_ERROR,
54 };
55
56 /**
57 * enum dma_transaction_type - DMA transaction types/indexes
58 *
59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
60 * automatically set as dma devices are registered.
61 */
62 enum dma_transaction_type {
63 DMA_MEMCPY,
64 DMA_XOR,
65 DMA_PQ,
66 DMA_XOR_VAL,
67 DMA_PQ_VAL,
68 DMA_MEMSET,
69 DMA_MEMSET_SG,
70 DMA_INTERRUPT,
71 DMA_SG,
72 DMA_PRIVATE,
73 DMA_ASYNC_TX,
74 DMA_SLAVE,
75 DMA_CYCLIC,
76 DMA_INTERLEAVE,
77 /* last transaction type for creation of the capabilities mask */
78 DMA_TX_TYPE_END,
79 };
80
81 /**
82 * enum dma_transfer_direction - dma transfer mode and direction indicator
83 * @DMA_MEM_TO_MEM: Async/Memcpy mode
84 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
85 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
86 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
87 */
88 enum dma_transfer_direction {
89 DMA_MEM_TO_MEM,
90 DMA_MEM_TO_DEV,
91 DMA_DEV_TO_MEM,
92 DMA_DEV_TO_DEV,
93 DMA_TRANS_NONE,
94 };
95
96 /**
97 * Interleaved Transfer Request
98 * ----------------------------
99 * A chunk is collection of contiguous bytes to be transfered.
100 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
101 * ICGs may or maynot change between chunks.
102 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
103 * that when repeated an integral number of times, specifies the transfer.
104 * A transfer template is specification of a Frame, the number of times
105 * it is to be repeated and other per-transfer attributes.
106 *
107 * Practically, a client driver would have ready a template for each
108 * type of transfer it is going to need during its lifetime and
109 * set only 'src_start' and 'dst_start' before submitting the requests.
110 *
111 *
112 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
113 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
114 *
115 * == Chunk size
116 * ... ICG
117 */
118
119 /**
120 * struct data_chunk - Element of scatter-gather list that makes a frame.
121 * @size: Number of bytes to read from source.
122 * size_dst := fn(op, size_src), so doesn't mean much for destination.
123 * @icg: Number of bytes to jump after last src/dst address of this
124 * chunk and before first src/dst address for next chunk.
125 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
126 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
127 * @dst_icg: Number of bytes to jump after last dst address of this
128 * chunk and before the first dst address for next chunk.
129 * Ignored if dst_inc is true and dst_sgl is false.
130 * @src_icg: Number of bytes to jump after last src address of this
131 * chunk and before the first src address for next chunk.
132 * Ignored if src_inc is true and src_sgl is false.
133 */
134 struct data_chunk {
135 size_t size;
136 size_t icg;
137 size_t dst_icg;
138 size_t src_icg;
139 };
140
141 /**
142 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
143 * and attributes.
144 * @src_start: Bus address of source for the first chunk.
145 * @dst_start: Bus address of destination for the first chunk.
146 * @dir: Specifies the type of Source and Destination.
147 * @src_inc: If the source address increments after reading from it.
148 * @dst_inc: If the destination address increments after writing to it.
149 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
150 * Otherwise, source is read contiguously (icg ignored).
151 * Ignored if src_inc is false.
152 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
153 * Otherwise, destination is filled contiguously (icg ignored).
154 * Ignored if dst_inc is false.
155 * @numf: Number of frames in this template.
156 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
157 * @sgl: Array of {chunk,icg} pairs that make up a frame.
158 */
159 struct dma_interleaved_template {
160 dma_addr_t src_start;
161 dma_addr_t dst_start;
162 enum dma_transfer_direction dir;
163 bool src_inc;
164 bool dst_inc;
165 bool src_sgl;
166 bool dst_sgl;
167 size_t numf;
168 size_t frame_size;
169 struct data_chunk sgl[0];
170 };
171
172 /**
173 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
174 * control completion, and communicate status.
175 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
176 * this transaction
177 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
178 * acknowledges receipt, i.e. has has a chance to establish any dependency
179 * chains
180 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
181 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
182 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
183 * sources that were the result of a previous operation, in the case of a PQ
184 * operation it continues the calculation with new sources
185 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
186 * on the result of this operation
187 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
188 * cleared or freed
189 */
190 enum dma_ctrl_flags {
191 DMA_PREP_INTERRUPT = (1 << 0),
192 DMA_CTRL_ACK = (1 << 1),
193 DMA_PREP_PQ_DISABLE_P = (1 << 2),
194 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
195 DMA_PREP_CONTINUE = (1 << 4),
196 DMA_PREP_FENCE = (1 << 5),
197 DMA_CTRL_REUSE = (1 << 6),
198 };
199
200 /**
201 * enum sum_check_bits - bit position of pq_check_flags
202 */
203 enum sum_check_bits {
204 SUM_CHECK_P = 0,
205 SUM_CHECK_Q = 1,
206 };
207
208 /**
209 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
210 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
211 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
212 */
213 enum sum_check_flags {
214 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
215 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
216 };
217
218
219 /**
220 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
221 * See linux/cpumask.h
222 */
223 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
224
225 /**
226 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
227 * @memcpy_count: transaction counter
228 * @bytes_transferred: byte counter
229 */
230
231 struct dma_chan_percpu {
232 /* stats */
233 unsigned long memcpy_count;
234 unsigned long bytes_transferred;
235 };
236
237 /**
238 * struct dma_router - DMA router structure
239 * @dev: pointer to the DMA router device
240 * @route_free: function to be called when the route can be disconnected
241 */
242 struct dma_router {
243 struct device *dev;
244 void (*route_free)(struct device *dev, void *route_data);
245 };
246
247 /**
248 * struct dma_chan - devices supply DMA channels, clients use them
249 * @device: ptr to the dma device who supplies this channel, always !%NULL
250 * @cookie: last cookie value returned to client
251 * @completed_cookie: last completed cookie for this channel
252 * @chan_id: channel ID for sysfs
253 * @dev: class device for sysfs
254 * @device_node: used to add this to the device chan list
255 * @local: per-cpu pointer to a struct dma_chan_percpu
256 * @client_count: how many clients are using this channel
257 * @table_count: number of appearances in the mem-to-mem allocation table
258 * @router: pointer to the DMA router structure
259 * @route_data: channel specific data for the router
260 * @private: private data for certain client-channel associations
261 */
262 struct dma_chan {
263 struct dma_device *device;
264 dma_cookie_t cookie;
265 dma_cookie_t completed_cookie;
266
267 /* sysfs */
268 int chan_id;
269 struct dma_chan_dev *dev;
270
271 struct list_head device_node;
272 struct dma_chan_percpu __percpu *local;
273 int client_count;
274 int table_count;
275
276 /* DMA router */
277 struct dma_router *router;
278 void *route_data;
279
280 void *private;
281 };
282
283 /**
284 * struct dma_chan_dev - relate sysfs device node to backing channel device
285 * @chan: driver channel device
286 * @device: sysfs device
287 * @dev_id: parent dma_device dev_id
288 * @idr_ref: reference count to gate release of dma_device dev_id
289 */
290 struct dma_chan_dev {
291 struct dma_chan *chan;
292 struct device device;
293 int dev_id;
294 atomic_t *idr_ref;
295 };
296
297 /**
298 * enum dma_slave_buswidth - defines bus width of the DMA slave
299 * device, source or target buses
300 */
301 enum dma_slave_buswidth {
302 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
303 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
304 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
305 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
306 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
307 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
308 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
309 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
310 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
311 };
312
313 /**
314 * struct dma_slave_config - dma slave channel runtime config
315 * @direction: whether the data shall go in or out on this slave
316 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
317 * legal values. DEPRECATED, drivers should use the direction argument
318 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
319 * the dir field in the dma_interleaved_template structure.
320 * @src_addr: this is the physical address where DMA slave data
321 * should be read (RX), if the source is memory this argument is
322 * ignored.
323 * @dst_addr: this is the physical address where DMA slave data
324 * should be written (TX), if the source is memory this argument
325 * is ignored.
326 * @src_addr_width: this is the width in bytes of the source (RX)
327 * register where DMA data shall be read. If the source
328 * is memory this may be ignored depending on architecture.
329 * Legal values: 1, 2, 4, 8.
330 * @dst_addr_width: same as src_addr_width but for destination
331 * target (TX) mutatis mutandis.
332 * @src_maxburst: the maximum number of words (note: words, as in
333 * units of the src_addr_width member, not bytes) that can be sent
334 * in one burst to the device. Typically something like half the
335 * FIFO depth on I/O peripherals so you don't overflow it. This
336 * may or may not be applicable on memory sources.
337 * @dst_maxburst: same as src_maxburst but for destination target
338 * mutatis mutandis.
339 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
340 * with 'true' if peripheral should be flow controller. Direction will be
341 * selected at Runtime.
342 * @slave_id: Slave requester id. Only valid for slave channels. The dma
343 * slave peripheral will have unique id as dma requester which need to be
344 * pass as slave config.
345 *
346 * This struct is passed in as configuration data to a DMA engine
347 * in order to set up a certain channel for DMA transport at runtime.
348 * The DMA device/engine has to provide support for an additional
349 * callback in the dma_device structure, device_config and this struct
350 * will then be passed in as an argument to the function.
351 *
352 * The rationale for adding configuration information to this struct is as
353 * follows: if it is likely that more than one DMA slave controllers in
354 * the world will support the configuration option, then make it generic.
355 * If not: if it is fixed so that it be sent in static from the platform
356 * data, then prefer to do that.
357 */
358 struct dma_slave_config {
359 enum dma_transfer_direction direction;
360 phys_addr_t src_addr;
361 phys_addr_t dst_addr;
362 enum dma_slave_buswidth src_addr_width;
363 enum dma_slave_buswidth dst_addr_width;
364 u32 src_maxburst;
365 u32 dst_maxburst;
366 bool device_fc;
367 unsigned int slave_id;
368 };
369
370 /**
371 * enum dma_residue_granularity - Granularity of the reported transfer residue
372 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
373 * DMA channel is only able to tell whether a descriptor has been completed or
374 * not, which means residue reporting is not supported by this channel. The
375 * residue field of the dma_tx_state field will always be 0.
376 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
377 * completed segment of the transfer (For cyclic transfers this is after each
378 * period). This is typically implemented by having the hardware generate an
379 * interrupt after each transferred segment and then the drivers updates the
380 * outstanding residue by the size of the segment. Another possibility is if
381 * the hardware supports scatter-gather and the segment descriptor has a field
382 * which gets set after the segment has been completed. The driver then counts
383 * the number of segments without the flag set to compute the residue.
384 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
385 * burst. This is typically only supported if the hardware has a progress
386 * register of some sort (E.g. a register with the current read/write address
387 * or a register with the amount of bursts/beats/bytes that have been
388 * transferred or still need to be transferred).
389 */
390 enum dma_residue_granularity {
391 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
392 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
393 DMA_RESIDUE_GRANULARITY_BURST = 2,
394 };
395
396 /* struct dma_slave_caps - expose capabilities of a slave channel only
397 *
398 * @src_addr_widths: bit mask of src addr widths the channel supports
399 * @dst_addr_widths: bit mask of dstn addr widths the channel supports
400 * @directions: bit mask of slave direction the channel supported
401 * since the enum dma_transfer_direction is not defined as bits for each
402 * type of direction, the dma controller should fill (1 << <TYPE>) and same
403 * should be checked by controller as well
404 * @max_burst: max burst capability per-transfer
405 * @cmd_pause: true, if pause and thereby resume is supported
406 * @cmd_terminate: true, if terminate cmd is supported
407 * @residue_granularity: granularity of the reported transfer residue
408 * @descriptor_reuse: if a descriptor can be reused by client and
409 * resubmitted multiple times
410 */
411 struct dma_slave_caps {
412 u32 src_addr_widths;
413 u32 dst_addr_widths;
414 u32 directions;
415 u32 max_burst;
416 bool cmd_pause;
417 bool cmd_terminate;
418 enum dma_residue_granularity residue_granularity;
419 bool descriptor_reuse;
420 };
421
dma_chan_name(struct dma_chan * chan)422 static inline const char *dma_chan_name(struct dma_chan *chan)
423 {
424 return dev_name(&chan->dev->device);
425 }
426
427 void dma_chan_cleanup(struct kref *kref);
428
429 /**
430 * typedef dma_filter_fn - callback filter for dma_request_channel
431 * @chan: channel to be reviewed
432 * @filter_param: opaque parameter passed through dma_request_channel
433 *
434 * When this optional parameter is specified in a call to dma_request_channel a
435 * suitable channel is passed to this routine for further dispositioning before
436 * being returned. Where 'suitable' indicates a non-busy channel that
437 * satisfies the given capability mask. It returns 'true' to indicate that the
438 * channel is suitable.
439 */
440 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
441
442 typedef void (*dma_async_tx_callback)(void *dma_async_param);
443
444 enum dmaengine_tx_result {
445 DMA_TRANS_NOERROR = 0, /* SUCCESS */
446 DMA_TRANS_READ_FAILED, /* Source DMA read failed */
447 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */
448 DMA_TRANS_ABORTED, /* Op never submitted / aborted */
449 };
450
451 struct dmaengine_result {
452 enum dmaengine_tx_result result;
453 u32 residue;
454 };
455
456 typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
457 const struct dmaengine_result *result);
458
459 struct dmaengine_unmap_data {
460 u8 map_cnt;
461 u8 to_cnt;
462 u8 from_cnt;
463 u8 bidi_cnt;
464 struct device *dev;
465 struct kref kref;
466 size_t len;
467 dma_addr_t addr[0];
468 };
469
470 /**
471 * struct dma_async_tx_descriptor - async transaction descriptor
472 * ---dma generic offload fields---
473 * @cookie: tracking cookie for this transaction, set to -EBUSY if
474 * this tx is sitting on a dependency list
475 * @flags: flags to augment operation preparation, control completion, and
476 * communicate status
477 * @phys: physical address of the descriptor
478 * @chan: target channel for this operation
479 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
480 * descriptor pending. To be pushed on .issue_pending() call
481 * @callback: routine to call after this operation is complete
482 * @callback_param: general parameter to pass to the callback routine
483 * ---async_tx api specific fields---
484 * @next: at completion submit this descriptor
485 * @parent: pointer to the next level up in the dependency chain
486 * @lock: protect the parent and next pointers
487 */
488 struct dma_async_tx_descriptor {
489 dma_cookie_t cookie;
490 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
491 dma_addr_t phys;
492 struct dma_chan *chan;
493 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
494 int (*desc_free)(struct dma_async_tx_descriptor *tx);
495 dma_async_tx_callback callback;
496 dma_async_tx_callback_result callback_result;
497 void *callback_param;
498 struct dmaengine_unmap_data *unmap;
499 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
500 struct dma_async_tx_descriptor *next;
501 struct dma_async_tx_descriptor *parent;
502 spinlock_t lock;
503 #endif
504 };
505
506 #ifdef CONFIG_DMA_ENGINE
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)507 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
508 struct dmaengine_unmap_data *unmap)
509 {
510 kref_get(&unmap->kref);
511 tx->unmap = unmap;
512 }
513
514 struct dmaengine_unmap_data *
515 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
516 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
517 #else
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)518 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
519 struct dmaengine_unmap_data *unmap)
520 {
521 }
522 static inline struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)523 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
524 {
525 return NULL;
526 }
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)527 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
528 {
529 }
530 #endif
531
dma_descriptor_unmap(struct dma_async_tx_descriptor * tx)532 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
533 {
534 if (tx->unmap) {
535 dmaengine_unmap_put(tx->unmap);
536 tx->unmap = NULL;
537 }
538 }
539
540 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
txd_lock(struct dma_async_tx_descriptor * txd)541 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
542 {
543 }
txd_unlock(struct dma_async_tx_descriptor * txd)544 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
545 {
546 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)547 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
548 {
549 BUG();
550 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)551 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
552 {
553 }
txd_clear_next(struct dma_async_tx_descriptor * txd)554 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
555 {
556 }
txd_next(struct dma_async_tx_descriptor * txd)557 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
558 {
559 return NULL;
560 }
txd_parent(struct dma_async_tx_descriptor * txd)561 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
562 {
563 return NULL;
564 }
565
566 #else
txd_lock(struct dma_async_tx_descriptor * txd)567 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
568 {
569 spin_lock_bh(&txd->lock);
570 }
txd_unlock(struct dma_async_tx_descriptor * txd)571 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
572 {
573 spin_unlock_bh(&txd->lock);
574 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)575 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
576 {
577 txd->next = next;
578 next->parent = txd;
579 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)580 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
581 {
582 txd->parent = NULL;
583 }
txd_clear_next(struct dma_async_tx_descriptor * txd)584 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
585 {
586 txd->next = NULL;
587 }
txd_parent(struct dma_async_tx_descriptor * txd)588 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
589 {
590 return txd->parent;
591 }
txd_next(struct dma_async_tx_descriptor * txd)592 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
593 {
594 return txd->next;
595 }
596 #endif
597
598 /**
599 * struct dma_tx_state - filled in to report the status of
600 * a transfer.
601 * @last: last completed DMA cookie
602 * @used: last issued DMA cookie (i.e. the one in progress)
603 * @residue: the remaining number of bytes left to transmit
604 * on the selected transfer for states DMA_IN_PROGRESS and
605 * DMA_PAUSED if this is implemented in the driver, else 0
606 */
607 struct dma_tx_state {
608 dma_cookie_t last;
609 dma_cookie_t used;
610 u32 residue;
611 };
612
613 /**
614 * enum dmaengine_alignment - defines alignment of the DMA async tx
615 * buffers
616 */
617 enum dmaengine_alignment {
618 DMAENGINE_ALIGN_1_BYTE = 0,
619 DMAENGINE_ALIGN_2_BYTES = 1,
620 DMAENGINE_ALIGN_4_BYTES = 2,
621 DMAENGINE_ALIGN_8_BYTES = 3,
622 DMAENGINE_ALIGN_16_BYTES = 4,
623 DMAENGINE_ALIGN_32_BYTES = 5,
624 DMAENGINE_ALIGN_64_BYTES = 6,
625 };
626
627 /**
628 * struct dma_slave_map - associates slave device and it's slave channel with
629 * parameter to be used by a filter function
630 * @devname: name of the device
631 * @slave: slave channel name
632 * @param: opaque parameter to pass to struct dma_filter.fn
633 */
634 struct dma_slave_map {
635 const char *devname;
636 const char *slave;
637 void *param;
638 };
639
640 /**
641 * struct dma_filter - information for slave device/channel to filter_fn/param
642 * mapping
643 * @fn: filter function callback
644 * @mapcnt: number of slave device/channel in the map
645 * @map: array of channel to filter mapping data
646 */
647 struct dma_filter {
648 dma_filter_fn fn;
649 int mapcnt;
650 const struct dma_slave_map *map;
651 };
652
653 /**
654 * struct dma_device - info on the entity supplying DMA services
655 * @chancnt: how many DMA channels are supported
656 * @privatecnt: how many DMA channels are requested by dma_request_channel
657 * @channels: the list of struct dma_chan
658 * @global_node: list_head for global dma_device_list
659 * @filter: information for device/slave to filter function/param mapping
660 * @cap_mask: one or more dma_capability flags
661 * @max_xor: maximum number of xor sources, 0 if no capability
662 * @max_pq: maximum number of PQ sources and PQ-continue capability
663 * @copy_align: alignment shift for memcpy operations
664 * @xor_align: alignment shift for xor operations
665 * @pq_align: alignment shift for pq operations
666 * @fill_align: alignment shift for memset operations
667 * @dev_id: unique device ID
668 * @dev: struct device reference for dma mapping api
669 * @src_addr_widths: bit mask of src addr widths the device supports
670 * @dst_addr_widths: bit mask of dst addr widths the device supports
671 * @directions: bit mask of slave direction the device supports since
672 * the enum dma_transfer_direction is not defined as bits for
673 * each type of direction, the dma controller should fill (1 <<
674 * <TYPE>) and same should be checked by controller as well
675 * @max_burst: max burst capability per-transfer
676 * @residue_granularity: granularity of the transfer residue reported
677 * by tx_status
678 * @device_alloc_chan_resources: allocate resources and return the
679 * number of allocated descriptors
680 * @device_free_chan_resources: release DMA channel's resources
681 * @device_prep_dma_memcpy: prepares a memcpy operation
682 * @device_prep_dma_xor: prepares a xor operation
683 * @device_prep_dma_xor_val: prepares a xor validation operation
684 * @device_prep_dma_pq: prepares a pq operation
685 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
686 * @device_prep_dma_memset: prepares a memset operation
687 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
688 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
689 * @device_prep_slave_sg: prepares a slave dma operation
690 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
691 * The function takes a buffer of size buf_len. The callback function will
692 * be called after period_len bytes have been transferred.
693 * @device_prep_interleaved_dma: Transfer expression in a generic way.
694 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
695 * @device_config: Pushes a new configuration to a channel, return 0 or an error
696 * code
697 * @device_pause: Pauses any transfer happening on a channel. Returns
698 * 0 or an error code
699 * @device_resume: Resumes any transfer on a channel previously
700 * paused. Returns 0 or an error code
701 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
702 * or an error code
703 * @device_synchronize: Synchronizes the termination of a transfers to the
704 * current context.
705 * @device_tx_status: poll for transaction completion, the optional
706 * txstate parameter can be supplied with a pointer to get a
707 * struct with auxiliary transfer status information, otherwise the call
708 * will just return a simple status code
709 * @device_issue_pending: push pending transactions to hardware
710 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
711 */
712 struct dma_device {
713
714 unsigned int chancnt;
715 unsigned int privatecnt;
716 struct list_head channels;
717 struct list_head global_node;
718 struct dma_filter filter;
719 dma_cap_mask_t cap_mask;
720 unsigned short max_xor;
721 unsigned short max_pq;
722 enum dmaengine_alignment copy_align;
723 enum dmaengine_alignment xor_align;
724 enum dmaengine_alignment pq_align;
725 enum dmaengine_alignment fill_align;
726 #define DMA_HAS_PQ_CONTINUE (1 << 15)
727
728 int dev_id;
729 struct device *dev;
730
731 u32 src_addr_widths;
732 u32 dst_addr_widths;
733 u32 directions;
734 u32 max_burst;
735 bool descriptor_reuse;
736 enum dma_residue_granularity residue_granularity;
737
738 int (*device_alloc_chan_resources)(struct dma_chan *chan);
739 void (*device_free_chan_resources)(struct dma_chan *chan);
740
741 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
742 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
743 size_t len, unsigned long flags);
744 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
745 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
746 unsigned int src_cnt, size_t len, unsigned long flags);
747 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
748 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
749 size_t len, enum sum_check_flags *result, unsigned long flags);
750 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
751 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
752 unsigned int src_cnt, const unsigned char *scf,
753 size_t len, unsigned long flags);
754 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
755 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
756 unsigned int src_cnt, const unsigned char *scf, size_t len,
757 enum sum_check_flags *pqres, unsigned long flags);
758 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
759 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
760 unsigned long flags);
761 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
762 struct dma_chan *chan, struct scatterlist *sg,
763 unsigned int nents, int value, unsigned long flags);
764 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
765 struct dma_chan *chan, unsigned long flags);
766 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
767 struct dma_chan *chan,
768 struct scatterlist *dst_sg, unsigned int dst_nents,
769 struct scatterlist *src_sg, unsigned int src_nents,
770 unsigned long flags);
771
772 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
773 struct dma_chan *chan, struct scatterlist *sgl,
774 unsigned int sg_len, enum dma_transfer_direction direction,
775 unsigned long flags, void *context);
776 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
777 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
778 size_t period_len, enum dma_transfer_direction direction,
779 unsigned long flags);
780 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
781 struct dma_chan *chan, struct dma_interleaved_template *xt,
782 unsigned long flags);
783 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
784 struct dma_chan *chan, dma_addr_t dst, u64 data,
785 unsigned long flags);
786
787 int (*device_config)(struct dma_chan *chan,
788 struct dma_slave_config *config);
789 int (*device_pause)(struct dma_chan *chan);
790 int (*device_resume)(struct dma_chan *chan);
791 int (*device_terminate_all)(struct dma_chan *chan);
792 void (*device_synchronize)(struct dma_chan *chan);
793
794 enum dma_status (*device_tx_status)(struct dma_chan *chan,
795 dma_cookie_t cookie,
796 struct dma_tx_state *txstate);
797 void (*device_issue_pending)(struct dma_chan *chan);
798 };
799
dmaengine_slave_config(struct dma_chan * chan,struct dma_slave_config * config)800 static inline int dmaengine_slave_config(struct dma_chan *chan,
801 struct dma_slave_config *config)
802 {
803 if (chan->device->device_config)
804 return chan->device->device_config(chan, config);
805
806 return -ENOSYS;
807 }
808
is_slave_direction(enum dma_transfer_direction direction)809 static inline bool is_slave_direction(enum dma_transfer_direction direction)
810 {
811 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
812 }
813
dmaengine_prep_slave_single(struct dma_chan * chan,dma_addr_t buf,size_t len,enum dma_transfer_direction dir,unsigned long flags)814 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
815 struct dma_chan *chan, dma_addr_t buf, size_t len,
816 enum dma_transfer_direction dir, unsigned long flags)
817 {
818 struct scatterlist sg;
819 sg_init_table(&sg, 1);
820 sg_dma_address(&sg) = buf;
821 sg_dma_len(&sg) = len;
822
823 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
824 return NULL;
825
826 return chan->device->device_prep_slave_sg(chan, &sg, 1,
827 dir, flags, NULL);
828 }
829
dmaengine_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags)830 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
831 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
832 enum dma_transfer_direction dir, unsigned long flags)
833 {
834 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
835 return NULL;
836
837 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
838 dir, flags, NULL);
839 }
840
841 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
842 struct rio_dma_ext;
dmaengine_prep_rio_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,struct rio_dma_ext * rio_ext)843 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
844 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
845 enum dma_transfer_direction dir, unsigned long flags,
846 struct rio_dma_ext *rio_ext)
847 {
848 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
849 return NULL;
850
851 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
852 dir, flags, rio_ext);
853 }
854 #endif
855
dmaengine_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)856 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
857 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
858 size_t period_len, enum dma_transfer_direction dir,
859 unsigned long flags)
860 {
861 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
862 return NULL;
863
864 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
865 period_len, dir, flags);
866 }
867
dmaengine_prep_interleaved_dma(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)868 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
869 struct dma_chan *chan, struct dma_interleaved_template *xt,
870 unsigned long flags)
871 {
872 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
873 return NULL;
874
875 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
876 }
877
dmaengine_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)878 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
879 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
880 unsigned long flags)
881 {
882 if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
883 return NULL;
884
885 return chan->device->device_prep_dma_memset(chan, dest, value,
886 len, flags);
887 }
888
dmaengine_prep_dma_sg(struct dma_chan * chan,struct scatterlist * dst_sg,unsigned int dst_nents,struct scatterlist * src_sg,unsigned int src_nents,unsigned long flags)889 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
890 struct dma_chan *chan,
891 struct scatterlist *dst_sg, unsigned int dst_nents,
892 struct scatterlist *src_sg, unsigned int src_nents,
893 unsigned long flags)
894 {
895 if (!chan || !chan->device || !chan->device->device_prep_dma_sg)
896 return NULL;
897
898 return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
899 src_sg, src_nents, flags);
900 }
901
902 /**
903 * dmaengine_terminate_all() - Terminate all active DMA transfers
904 * @chan: The channel for which to terminate the transfers
905 *
906 * This function is DEPRECATED use either dmaengine_terminate_sync() or
907 * dmaengine_terminate_async() instead.
908 */
dmaengine_terminate_all(struct dma_chan * chan)909 static inline int dmaengine_terminate_all(struct dma_chan *chan)
910 {
911 if (chan->device->device_terminate_all)
912 return chan->device->device_terminate_all(chan);
913
914 return -ENOSYS;
915 }
916
917 /**
918 * dmaengine_terminate_async() - Terminate all active DMA transfers
919 * @chan: The channel for which to terminate the transfers
920 *
921 * Calling this function will terminate all active and pending descriptors
922 * that have previously been submitted to the channel. It is not guaranteed
923 * though that the transfer for the active descriptor has stopped when the
924 * function returns. Furthermore it is possible the complete callback of a
925 * submitted transfer is still running when this function returns.
926 *
927 * dmaengine_synchronize() needs to be called before it is safe to free
928 * any memory that is accessed by previously submitted descriptors or before
929 * freeing any resources accessed from within the completion callback of any
930 * perviously submitted descriptors.
931 *
932 * This function can be called from atomic context as well as from within a
933 * complete callback of a descriptor submitted on the same channel.
934 *
935 * If none of the two conditions above apply consider using
936 * dmaengine_terminate_sync() instead.
937 */
dmaengine_terminate_async(struct dma_chan * chan)938 static inline int dmaengine_terminate_async(struct dma_chan *chan)
939 {
940 if (chan->device->device_terminate_all)
941 return chan->device->device_terminate_all(chan);
942
943 return -EINVAL;
944 }
945
946 /**
947 * dmaengine_synchronize() - Synchronize DMA channel termination
948 * @chan: The channel to synchronize
949 *
950 * Synchronizes to the DMA channel termination to the current context. When this
951 * function returns it is guaranteed that all transfers for previously issued
952 * descriptors have stopped and and it is safe to free the memory assoicated
953 * with them. Furthermore it is guaranteed that all complete callback functions
954 * for a previously submitted descriptor have finished running and it is safe to
955 * free resources accessed from within the complete callbacks.
956 *
957 * The behavior of this function is undefined if dma_async_issue_pending() has
958 * been called between dmaengine_terminate_async() and this function.
959 *
960 * This function must only be called from non-atomic context and must not be
961 * called from within a complete callback of a descriptor submitted on the same
962 * channel.
963 */
dmaengine_synchronize(struct dma_chan * chan)964 static inline void dmaengine_synchronize(struct dma_chan *chan)
965 {
966 might_sleep();
967
968 if (chan->device->device_synchronize)
969 chan->device->device_synchronize(chan);
970 }
971
972 /**
973 * dmaengine_terminate_sync() - Terminate all active DMA transfers
974 * @chan: The channel for which to terminate the transfers
975 *
976 * Calling this function will terminate all active and pending transfers
977 * that have previously been submitted to the channel. It is similar to
978 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
979 * stopped and that all complete callbacks have finished running when the
980 * function returns.
981 *
982 * This function must only be called from non-atomic context and must not be
983 * called from within a complete callback of a descriptor submitted on the same
984 * channel.
985 */
dmaengine_terminate_sync(struct dma_chan * chan)986 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
987 {
988 int ret;
989
990 ret = dmaengine_terminate_async(chan);
991 if (ret)
992 return ret;
993
994 dmaengine_synchronize(chan);
995
996 return 0;
997 }
998
dmaengine_pause(struct dma_chan * chan)999 static inline int dmaengine_pause(struct dma_chan *chan)
1000 {
1001 if (chan->device->device_pause)
1002 return chan->device->device_pause(chan);
1003
1004 return -ENOSYS;
1005 }
1006
dmaengine_resume(struct dma_chan * chan)1007 static inline int dmaengine_resume(struct dma_chan *chan)
1008 {
1009 if (chan->device->device_resume)
1010 return chan->device->device_resume(chan);
1011
1012 return -ENOSYS;
1013 }
1014
dmaengine_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)1015 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1016 dma_cookie_t cookie, struct dma_tx_state *state)
1017 {
1018 return chan->device->device_tx_status(chan, cookie, state);
1019 }
1020
dmaengine_submit(struct dma_async_tx_descriptor * desc)1021 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1022 {
1023 return desc->tx_submit(desc);
1024 }
1025
dmaengine_check_align(enum dmaengine_alignment align,size_t off1,size_t off2,size_t len)1026 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1027 size_t off1, size_t off2, size_t len)
1028 {
1029 size_t mask;
1030
1031 if (!align)
1032 return true;
1033 mask = (1 << align) - 1;
1034 if (mask & (off1 | off2 | len))
1035 return false;
1036 return true;
1037 }
1038
is_dma_copy_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1039 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1040 size_t off2, size_t len)
1041 {
1042 return dmaengine_check_align(dev->copy_align, off1, off2, len);
1043 }
1044
is_dma_xor_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1045 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1046 size_t off2, size_t len)
1047 {
1048 return dmaengine_check_align(dev->xor_align, off1, off2, len);
1049 }
1050
is_dma_pq_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1051 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1052 size_t off2, size_t len)
1053 {
1054 return dmaengine_check_align(dev->pq_align, off1, off2, len);
1055 }
1056
is_dma_fill_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1057 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1058 size_t off2, size_t len)
1059 {
1060 return dmaengine_check_align(dev->fill_align, off1, off2, len);
1061 }
1062
1063 static inline void
dma_set_maxpq(struct dma_device * dma,int maxpq,int has_pq_continue)1064 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1065 {
1066 dma->max_pq = maxpq;
1067 if (has_pq_continue)
1068 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1069 }
1070
dmaf_continue(enum dma_ctrl_flags flags)1071 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1072 {
1073 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1074 }
1075
dmaf_p_disabled_continue(enum dma_ctrl_flags flags)1076 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1077 {
1078 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1079
1080 return (flags & mask) == mask;
1081 }
1082
dma_dev_has_pq_continue(struct dma_device * dma)1083 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1084 {
1085 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1086 }
1087
dma_dev_to_maxpq(struct dma_device * dma)1088 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1089 {
1090 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1091 }
1092
1093 /* dma_maxpq - reduce maxpq in the face of continued operations
1094 * @dma - dma device with PQ capability
1095 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1096 *
1097 * When an engine does not support native continuation we need 3 extra
1098 * source slots to reuse P and Q with the following coefficients:
1099 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1100 * 2/ {01} * Q : use Q to continue Q' calculation
1101 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1102 *
1103 * In the case where P is disabled we only need 1 extra source:
1104 * 1/ {01} * Q : use Q to continue Q' calculation
1105 */
dma_maxpq(struct dma_device * dma,enum dma_ctrl_flags flags)1106 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1107 {
1108 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1109 return dma_dev_to_maxpq(dma);
1110 else if (dmaf_p_disabled_continue(flags))
1111 return dma_dev_to_maxpq(dma) - 1;
1112 else if (dmaf_continue(flags))
1113 return dma_dev_to_maxpq(dma) - 3;
1114 BUG();
1115 }
1116
dmaengine_get_icg(bool inc,bool sgl,size_t icg,size_t dir_icg)1117 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1118 size_t dir_icg)
1119 {
1120 if (inc) {
1121 if (dir_icg)
1122 return dir_icg;
1123 else if (sgl)
1124 return icg;
1125 }
1126
1127 return 0;
1128 }
1129
dmaengine_get_dst_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1130 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1131 struct data_chunk *chunk)
1132 {
1133 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1134 chunk->icg, chunk->dst_icg);
1135 }
1136
dmaengine_get_src_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1137 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1138 struct data_chunk *chunk)
1139 {
1140 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1141 chunk->icg, chunk->src_icg);
1142 }
1143
1144 /* --- public DMA engine API --- */
1145
1146 #ifdef CONFIG_DMA_ENGINE
1147 void dmaengine_get(void);
1148 void dmaengine_put(void);
1149 #else
dmaengine_get(void)1150 static inline void dmaengine_get(void)
1151 {
1152 }
dmaengine_put(void)1153 static inline void dmaengine_put(void)
1154 {
1155 }
1156 #endif
1157
1158 #ifdef CONFIG_ASYNC_TX_DMA
1159 #define async_dmaengine_get() dmaengine_get()
1160 #define async_dmaengine_put() dmaengine_put()
1161 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1162 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1163 #else
1164 #define async_dma_find_channel(type) dma_find_channel(type)
1165 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1166 #else
async_dmaengine_get(void)1167 static inline void async_dmaengine_get(void)
1168 {
1169 }
async_dmaengine_put(void)1170 static inline void async_dmaengine_put(void)
1171 {
1172 }
1173 static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)1174 async_dma_find_channel(enum dma_transaction_type type)
1175 {
1176 return NULL;
1177 }
1178 #endif /* CONFIG_ASYNC_TX_DMA */
1179 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1180 struct dma_chan *chan);
1181
async_tx_ack(struct dma_async_tx_descriptor * tx)1182 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1183 {
1184 tx->flags |= DMA_CTRL_ACK;
1185 }
1186
async_tx_clear_ack(struct dma_async_tx_descriptor * tx)1187 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1188 {
1189 tx->flags &= ~DMA_CTRL_ACK;
1190 }
1191
async_tx_test_ack(struct dma_async_tx_descriptor * tx)1192 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1193 {
1194 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1195 }
1196
1197 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1198 static inline void
__dma_cap_set(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1199 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1200 {
1201 set_bit(tx_type, dstp->bits);
1202 }
1203
1204 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1205 static inline void
__dma_cap_clear(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1206 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1207 {
1208 clear_bit(tx_type, dstp->bits);
1209 }
1210
1211 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
__dma_cap_zero(dma_cap_mask_t * dstp)1212 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1213 {
1214 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1215 }
1216
1217 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1218 static inline int
__dma_has_cap(enum dma_transaction_type tx_type,dma_cap_mask_t * srcp)1219 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1220 {
1221 return test_bit(tx_type, srcp->bits);
1222 }
1223
1224 #define for_each_dma_cap_mask(cap, mask) \
1225 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1226
1227 /**
1228 * dma_async_issue_pending - flush pending transactions to HW
1229 * @chan: target DMA channel
1230 *
1231 * This allows drivers to push copies to HW in batches,
1232 * reducing MMIO writes where possible.
1233 */
dma_async_issue_pending(struct dma_chan * chan)1234 static inline void dma_async_issue_pending(struct dma_chan *chan)
1235 {
1236 chan->device->device_issue_pending(chan);
1237 }
1238
1239 /**
1240 * dma_async_is_tx_complete - poll for transaction completion
1241 * @chan: DMA channel
1242 * @cookie: transaction identifier to check status of
1243 * @last: returns last completed cookie, can be NULL
1244 * @used: returns last issued cookie, can be NULL
1245 *
1246 * If @last and @used are passed in, upon return they reflect the driver
1247 * internal state and can be used with dma_async_is_complete() to check
1248 * the status of multiple cookies without re-checking hardware state.
1249 */
dma_async_is_tx_complete(struct dma_chan * chan,dma_cookie_t cookie,dma_cookie_t * last,dma_cookie_t * used)1250 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1251 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1252 {
1253 struct dma_tx_state state;
1254 enum dma_status status;
1255
1256 status = chan->device->device_tx_status(chan, cookie, &state);
1257 if (last)
1258 *last = state.last;
1259 if (used)
1260 *used = state.used;
1261 return status;
1262 }
1263
1264 /**
1265 * dma_async_is_complete - test a cookie against chan state
1266 * @cookie: transaction identifier to test status of
1267 * @last_complete: last know completed transaction
1268 * @last_used: last cookie value handed out
1269 *
1270 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1271 * the test logic is separated for lightweight testing of multiple cookies
1272 */
dma_async_is_complete(dma_cookie_t cookie,dma_cookie_t last_complete,dma_cookie_t last_used)1273 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1274 dma_cookie_t last_complete, dma_cookie_t last_used)
1275 {
1276 if (last_complete <= last_used) {
1277 if ((cookie <= last_complete) || (cookie > last_used))
1278 return DMA_COMPLETE;
1279 } else {
1280 if ((cookie <= last_complete) && (cookie > last_used))
1281 return DMA_COMPLETE;
1282 }
1283 return DMA_IN_PROGRESS;
1284 }
1285
1286 static inline void
dma_set_tx_state(struct dma_tx_state * st,dma_cookie_t last,dma_cookie_t used,u32 residue)1287 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1288 {
1289 if (st) {
1290 st->last = last;
1291 st->used = used;
1292 st->residue = residue;
1293 }
1294 }
1295
1296 #ifdef CONFIG_DMA_ENGINE
1297 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1298 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1299 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1300 void dma_issue_pending_all(void);
1301 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1302 dma_filter_fn fn, void *fn_param);
1303 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1304
1305 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1306 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1307
1308 void dma_release_channel(struct dma_chan *chan);
1309 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1310 #else
dma_find_channel(enum dma_transaction_type tx_type)1311 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1312 {
1313 return NULL;
1314 }
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)1315 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1316 {
1317 return DMA_COMPLETE;
1318 }
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1319 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1320 {
1321 return DMA_COMPLETE;
1322 }
dma_issue_pending_all(void)1323 static inline void dma_issue_pending_all(void)
1324 {
1325 }
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param)1326 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1327 dma_filter_fn fn, void *fn_param)
1328 {
1329 return NULL;
1330 }
dma_request_slave_channel(struct device * dev,const char * name)1331 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1332 const char *name)
1333 {
1334 return NULL;
1335 }
dma_request_chan(struct device * dev,const char * name)1336 static inline struct dma_chan *dma_request_chan(struct device *dev,
1337 const char *name)
1338 {
1339 return ERR_PTR(-ENODEV);
1340 }
dma_request_chan_by_mask(const dma_cap_mask_t * mask)1341 static inline struct dma_chan *dma_request_chan_by_mask(
1342 const dma_cap_mask_t *mask)
1343 {
1344 return ERR_PTR(-ENODEV);
1345 }
dma_release_channel(struct dma_chan * chan)1346 static inline void dma_release_channel(struct dma_chan *chan)
1347 {
1348 }
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)1349 static inline int dma_get_slave_caps(struct dma_chan *chan,
1350 struct dma_slave_caps *caps)
1351 {
1352 return -ENXIO;
1353 }
1354 #endif
1355
1356 #define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
1357
dmaengine_desc_set_reuse(struct dma_async_tx_descriptor * tx)1358 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1359 {
1360 struct dma_slave_caps caps;
1361
1362 dma_get_slave_caps(tx->chan, &caps);
1363
1364 if (caps.descriptor_reuse) {
1365 tx->flags |= DMA_CTRL_REUSE;
1366 return 0;
1367 } else {
1368 return -EPERM;
1369 }
1370 }
1371
dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor * tx)1372 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1373 {
1374 tx->flags &= ~DMA_CTRL_REUSE;
1375 }
1376
dmaengine_desc_test_reuse(struct dma_async_tx_descriptor * tx)1377 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1378 {
1379 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1380 }
1381
dmaengine_desc_free(struct dma_async_tx_descriptor * desc)1382 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1383 {
1384 /* this is supported for reusable desc, so check that */
1385 if (dmaengine_desc_test_reuse(desc))
1386 return desc->desc_free(desc);
1387 else
1388 return -EPERM;
1389 }
1390
1391 /* --- DMA device --- */
1392
1393 int dma_async_device_register(struct dma_device *device);
1394 void dma_async_device_unregister(struct dma_device *device);
1395 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1396 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1397 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1398 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1399 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1400 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1401
1402 static inline struct dma_chan
__dma_request_slave_channel_compat(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device * dev,const char * name)1403 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1404 dma_filter_fn fn, void *fn_param,
1405 struct device *dev, const char *name)
1406 {
1407 struct dma_chan *chan;
1408
1409 chan = dma_request_slave_channel(dev, name);
1410 if (chan)
1411 return chan;
1412
1413 if (!fn || !fn_param)
1414 return NULL;
1415
1416 return __dma_request_channel(mask, fn, fn_param);
1417 }
1418 #endif /* DMAENGINE_H */
1419