1 /*
2 * Macros for manipulating and testing page->flags
3 */
4
5 #ifndef PAGE_FLAGS_H
6 #define PAGE_FLAGS_H
7
8 #include <linux/types.h>
9 #include <linux/bug.h>
10 #include <linux/mmdebug.h>
11 #ifndef __GENERATING_BOUNDS_H
12 #include <linux/mm_types.h>
13 #include <generated/bounds.h>
14 #endif /* !__GENERATING_BOUNDS_H */
15
16 /*
17 * Various page->flags bits:
18 *
19 * PG_reserved is set for special pages, which can never be swapped out. Some
20 * of them might not even exist (eg empty_bad_page)...
21 *
22 * The PG_private bitflag is set on pagecache pages if they contain filesystem
23 * specific data (which is normally at page->private). It can be used by
24 * private allocations for its own usage.
25 *
26 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
27 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
28 * is set before writeback starts and cleared when it finishes.
29 *
30 * PG_locked also pins a page in pagecache, and blocks truncation of the file
31 * while it is held.
32 *
33 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
34 * to become unlocked.
35 *
36 * PG_uptodate tells whether the page's contents is valid. When a read
37 * completes, the page becomes uptodate, unless a disk I/O error happened.
38 *
39 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
40 * file-backed pagecache (see mm/vmscan.c).
41 *
42 * PG_error is set to indicate that an I/O error occurred on this page.
43 *
44 * PG_arch_1 is an architecture specific page state bit. The generic code
45 * guarantees that this bit is cleared for a page when it first is entered into
46 * the page cache.
47 *
48 * PG_highmem pages are not permanently mapped into the kernel virtual address
49 * space, they need to be kmapped separately for doing IO on the pages. The
50 * struct page (these bits with information) are always mapped into kernel
51 * address space...
52 *
53 * PG_hwpoison indicates that a page got corrupted in hardware and contains
54 * data with incorrect ECC bits that triggered a machine check. Accessing is
55 * not safe since it may cause another machine check. Don't touch!
56 */
57
58 /*
59 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break
60 * locked- and dirty-page accounting.
61 *
62 * The page flags field is split into two parts, the main flags area
63 * which extends from the low bits upwards, and the fields area which
64 * extends from the high bits downwards.
65 *
66 * | FIELD | ... | FLAGS |
67 * N-1 ^ 0
68 * (NR_PAGEFLAGS)
69 *
70 * The fields area is reserved for fields mapping zone, node (for NUMA) and
71 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
72 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
73 */
74 enum pageflags {
75 PG_locked, /* Page is locked. Don't touch. */
76 PG_error,
77 PG_referenced,
78 PG_uptodate,
79 PG_dirty,
80 PG_lru,
81 PG_active,
82 PG_slab,
83 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
84 PG_arch_1,
85 PG_reserved,
86 PG_private, /* If pagecache, has fs-private data */
87 PG_private_2, /* If pagecache, has fs aux data */
88 PG_writeback, /* Page is under writeback */
89 PG_head, /* A head page */
90 PG_swapcache, /* Swap page: swp_entry_t in private */
91 PG_mappedtodisk, /* Has blocks allocated on-disk */
92 PG_reclaim, /* To be reclaimed asap */
93 PG_swapbacked, /* Page is backed by RAM/swap */
94 PG_unevictable, /* Page is "unevictable" */
95 #ifdef CONFIG_MMU
96 PG_mlocked, /* Page is vma mlocked */
97 #endif
98 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
99 PG_uncached, /* Page has been mapped as uncached */
100 #endif
101 #ifdef CONFIG_MEMORY_FAILURE
102 PG_hwpoison, /* hardware poisoned page. Don't touch */
103 #endif
104 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
105 PG_young,
106 PG_idle,
107 #endif
108 __NR_PAGEFLAGS,
109
110 /* Filesystems */
111 PG_checked = PG_owner_priv_1,
112
113 /* Two page bits are conscripted by FS-Cache to maintain local caching
114 * state. These bits are set on pages belonging to the netfs's inodes
115 * when those inodes are being locally cached.
116 */
117 PG_fscache = PG_private_2, /* page backed by cache */
118
119 /* XEN */
120 /* Pinned in Xen as a read-only pagetable page. */
121 PG_pinned = PG_owner_priv_1,
122 /* Pinned as part of domain save (see xen_mm_pin_all()). */
123 PG_savepinned = PG_dirty,
124 /* Has a grant mapping of another (foreign) domain's page. */
125 PG_foreign = PG_owner_priv_1,
126
127 /* SLOB */
128 PG_slob_free = PG_private,
129
130 /* Compound pages. Stored in first tail page's flags */
131 PG_double_map = PG_private_2,
132
133 /* non-lru isolated movable page */
134 PG_isolated = PG_reclaim,
135 };
136
137 #ifndef __GENERATING_BOUNDS_H
138
139 struct page; /* forward declaration */
140
compound_head(struct page * page)141 static inline struct page *compound_head(struct page *page)
142 {
143 unsigned long head = READ_ONCE(page->compound_head);
144
145 if (unlikely(head & 1))
146 return (struct page *) (head - 1);
147 return page;
148 }
149
PageTail(struct page * page)150 static __always_inline int PageTail(struct page *page)
151 {
152 return READ_ONCE(page->compound_head) & 1;
153 }
154
PageCompound(struct page * page)155 static __always_inline int PageCompound(struct page *page)
156 {
157 return test_bit(PG_head, &page->flags) || PageTail(page);
158 }
159
160 /*
161 * Page flags policies wrt compound pages
162 *
163 * PF_ANY:
164 * the page flag is relevant for small, head and tail pages.
165 *
166 * PF_HEAD:
167 * for compound page all operations related to the page flag applied to
168 * head page.
169 *
170 * PF_NO_TAIL:
171 * modifications of the page flag must be done on small or head pages,
172 * checks can be done on tail pages too.
173 *
174 * PF_NO_COMPOUND:
175 * the page flag is not relevant for compound pages.
176 */
177 #define PF_ANY(page, enforce) page
178 #define PF_HEAD(page, enforce) compound_head(page)
179 #define PF_NO_TAIL(page, enforce) ({ \
180 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \
181 compound_head(page);})
182 #define PF_NO_COMPOUND(page, enforce) ({ \
183 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
184 page;})
185
186 /*
187 * Macros to create function definitions for page flags
188 */
189 #define TESTPAGEFLAG(uname, lname, policy) \
190 static __always_inline int Page##uname(struct page *page) \
191 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
192
193 #define SETPAGEFLAG(uname, lname, policy) \
194 static __always_inline void SetPage##uname(struct page *page) \
195 { set_bit(PG_##lname, &policy(page, 1)->flags); }
196
197 #define CLEARPAGEFLAG(uname, lname, policy) \
198 static __always_inline void ClearPage##uname(struct page *page) \
199 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
200
201 #define __SETPAGEFLAG(uname, lname, policy) \
202 static __always_inline void __SetPage##uname(struct page *page) \
203 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
204
205 #define __CLEARPAGEFLAG(uname, lname, policy) \
206 static __always_inline void __ClearPage##uname(struct page *page) \
207 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
208
209 #define TESTSETFLAG(uname, lname, policy) \
210 static __always_inline int TestSetPage##uname(struct page *page) \
211 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
212
213 #define TESTCLEARFLAG(uname, lname, policy) \
214 static __always_inline int TestClearPage##uname(struct page *page) \
215 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
216
217 #define PAGEFLAG(uname, lname, policy) \
218 TESTPAGEFLAG(uname, lname, policy) \
219 SETPAGEFLAG(uname, lname, policy) \
220 CLEARPAGEFLAG(uname, lname, policy)
221
222 #define __PAGEFLAG(uname, lname, policy) \
223 TESTPAGEFLAG(uname, lname, policy) \
224 __SETPAGEFLAG(uname, lname, policy) \
225 __CLEARPAGEFLAG(uname, lname, policy)
226
227 #define TESTSCFLAG(uname, lname, policy) \
228 TESTSETFLAG(uname, lname, policy) \
229 TESTCLEARFLAG(uname, lname, policy)
230
231 #define TESTPAGEFLAG_FALSE(uname) \
232 static inline int Page##uname(const struct page *page) { return 0; }
233
234 #define SETPAGEFLAG_NOOP(uname) \
235 static inline void SetPage##uname(struct page *page) { }
236
237 #define CLEARPAGEFLAG_NOOP(uname) \
238 static inline void ClearPage##uname(struct page *page) { }
239
240 #define __CLEARPAGEFLAG_NOOP(uname) \
241 static inline void __ClearPage##uname(struct page *page) { }
242
243 #define TESTSETFLAG_FALSE(uname) \
244 static inline int TestSetPage##uname(struct page *page) { return 0; }
245
246 #define TESTCLEARFLAG_FALSE(uname) \
247 static inline int TestClearPage##uname(struct page *page) { return 0; }
248
249 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \
250 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
251
252 #define TESTSCFLAG_FALSE(uname) \
253 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
254
255 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
256 PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND)
257 PAGEFLAG(Referenced, referenced, PF_HEAD)
258 TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
259 __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
260 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
261 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
262 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
263 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
264 TESTCLEARFLAG(Active, active, PF_HEAD)
265 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
266 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
267 PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */
268
269 /* Xen */
270 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
271 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
272 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
273 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
274
PAGEFLAG(Reserved,reserved,PF_NO_COMPOUND)275 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
276 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
277 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
278 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
279 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
280
281 /*
282 * Private page markings that may be used by the filesystem that owns the page
283 * for its own purposes.
284 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
285 */
286 PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
287 __CLEARPAGEFLAG(Private, private, PF_ANY)
288 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
289 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
290 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
291
292 /*
293 * Only test-and-set exist for PG_writeback. The unconditional operators are
294 * risky: they bypass page accounting.
295 */
296 TESTPAGEFLAG(Writeback, writeback, PF_NO_COMPOUND)
297 TESTSCFLAG(Writeback, writeback, PF_NO_COMPOUND)
298 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
299
300 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
301 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
302 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
303 PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
304 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
305
306 #ifdef CONFIG_HIGHMEM
307 /*
308 * Must use a macro here due to header dependency issues. page_zone() is not
309 * available at this point.
310 */
311 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
312 #else
313 PAGEFLAG_FALSE(HighMem)
314 #endif
315
316 #ifdef CONFIG_SWAP
317 PAGEFLAG(SwapCache, swapcache, PF_NO_COMPOUND)
318 #else
319 PAGEFLAG_FALSE(SwapCache)
320 #endif
321
322 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
323 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
324 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
325
326 #ifdef CONFIG_MMU
327 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
328 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
329 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
330 #else
331 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
332 TESTSCFLAG_FALSE(Mlocked)
333 #endif
334
335 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
336 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
337 #else
338 PAGEFLAG_FALSE(Uncached)
339 #endif
340
341 #ifdef CONFIG_MEMORY_FAILURE
342 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
343 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
344 #define __PG_HWPOISON (1UL << PG_hwpoison)
345 #else
346 PAGEFLAG_FALSE(HWPoison)
347 #define __PG_HWPOISON 0
348 #endif
349
350 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
351 TESTPAGEFLAG(Young, young, PF_ANY)
352 SETPAGEFLAG(Young, young, PF_ANY)
353 TESTCLEARFLAG(Young, young, PF_ANY)
354 PAGEFLAG(Idle, idle, PF_ANY)
355 #endif
356
357 /*
358 * On an anonymous page mapped into a user virtual memory area,
359 * page->mapping points to its anon_vma, not to a struct address_space;
360 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
361 *
362 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
363 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
364 * bit; and then page->mapping points, not to an anon_vma, but to a private
365 * structure which KSM associates with that merged page. See ksm.h.
366 *
367 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
368 * page and then page->mapping points a struct address_space.
369 *
370 * Please note that, confusingly, "page_mapping" refers to the inode
371 * address_space which maps the page from disk; whereas "page_mapped"
372 * refers to user virtual address space into which the page is mapped.
373 */
374 #define PAGE_MAPPING_ANON 0x1
375 #define PAGE_MAPPING_MOVABLE 0x2
376 #define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
377 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
378
379 static __always_inline int PageMappingFlags(struct page *page)
380 {
381 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
382 }
383
PageAnon(struct page * page)384 static __always_inline int PageAnon(struct page *page)
385 {
386 page = compound_head(page);
387 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
388 }
389
__PageMovable(struct page * page)390 static __always_inline int __PageMovable(struct page *page)
391 {
392 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
393 PAGE_MAPPING_MOVABLE;
394 }
395
396 #ifdef CONFIG_KSM
397 /*
398 * A KSM page is one of those write-protected "shared pages" or "merged pages"
399 * which KSM maps into multiple mms, wherever identical anonymous page content
400 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any
401 * anon_vma, but to that page's node of the stable tree.
402 */
PageKsm(struct page * page)403 static __always_inline int PageKsm(struct page *page)
404 {
405 page = compound_head(page);
406 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
407 PAGE_MAPPING_KSM;
408 }
409 #else
410 TESTPAGEFLAG_FALSE(Ksm)
411 #endif
412
413 u64 stable_page_flags(struct page *page);
414
PageUptodate(struct page * page)415 static inline int PageUptodate(struct page *page)
416 {
417 int ret;
418 page = compound_head(page);
419 ret = test_bit(PG_uptodate, &(page)->flags);
420 /*
421 * Must ensure that the data we read out of the page is loaded
422 * _after_ we've loaded page->flags to check for PageUptodate.
423 * We can skip the barrier if the page is not uptodate, because
424 * we wouldn't be reading anything from it.
425 *
426 * See SetPageUptodate() for the other side of the story.
427 */
428 if (ret)
429 smp_rmb();
430
431 return ret;
432 }
433
__SetPageUptodate(struct page * page)434 static __always_inline void __SetPageUptodate(struct page *page)
435 {
436 VM_BUG_ON_PAGE(PageTail(page), page);
437 smp_wmb();
438 __set_bit(PG_uptodate, &page->flags);
439 }
440
SetPageUptodate(struct page * page)441 static __always_inline void SetPageUptodate(struct page *page)
442 {
443 VM_BUG_ON_PAGE(PageTail(page), page);
444 /*
445 * Memory barrier must be issued before setting the PG_uptodate bit,
446 * so that all previous stores issued in order to bring the page
447 * uptodate are actually visible before PageUptodate becomes true.
448 */
449 smp_wmb();
450 set_bit(PG_uptodate, &page->flags);
451 }
452
453 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
454
455 int test_clear_page_writeback(struct page *page);
456 int __test_set_page_writeback(struct page *page, bool keep_write);
457
458 #define test_set_page_writeback(page) \
459 __test_set_page_writeback(page, false)
460 #define test_set_page_writeback_keepwrite(page) \
461 __test_set_page_writeback(page, true)
462
set_page_writeback(struct page * page)463 static inline void set_page_writeback(struct page *page)
464 {
465 test_set_page_writeback(page);
466 }
467
set_page_writeback_keepwrite(struct page * page)468 static inline void set_page_writeback_keepwrite(struct page *page)
469 {
470 test_set_page_writeback_keepwrite(page);
471 }
472
__PAGEFLAG(Head,head,PF_ANY)473 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
474
475 static __always_inline void set_compound_head(struct page *page, struct page *head)
476 {
477 WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
478 }
479
clear_compound_head(struct page * page)480 static __always_inline void clear_compound_head(struct page *page)
481 {
482 WRITE_ONCE(page->compound_head, 0);
483 }
484
485 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
ClearPageCompound(struct page * page)486 static inline void ClearPageCompound(struct page *page)
487 {
488 BUG_ON(!PageHead(page));
489 ClearPageHead(page);
490 }
491 #endif
492
493 #define PG_head_mask ((1UL << PG_head))
494
495 #ifdef CONFIG_HUGETLB_PAGE
496 int PageHuge(struct page *page);
497 int PageHeadHuge(struct page *page);
498 bool page_huge_active(struct page *page);
499 #else
500 TESTPAGEFLAG_FALSE(Huge)
TESTPAGEFLAG_FALSE(HeadHuge)501 TESTPAGEFLAG_FALSE(HeadHuge)
502
503 static inline bool page_huge_active(struct page *page)
504 {
505 return 0;
506 }
507 #endif
508
509
510 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
511 /*
512 * PageHuge() only returns true for hugetlbfs pages, but not for
513 * normal or transparent huge pages.
514 *
515 * PageTransHuge() returns true for both transparent huge and
516 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
517 * called only in the core VM paths where hugetlbfs pages can't exist.
518 */
PageTransHuge(struct page * page)519 static inline int PageTransHuge(struct page *page)
520 {
521 VM_BUG_ON_PAGE(PageTail(page), page);
522 return PageHead(page);
523 }
524
525 /*
526 * PageTransCompound returns true for both transparent huge pages
527 * and hugetlbfs pages, so it should only be called when it's known
528 * that hugetlbfs pages aren't involved.
529 */
PageTransCompound(struct page * page)530 static inline int PageTransCompound(struct page *page)
531 {
532 return PageCompound(page);
533 }
534
535 /*
536 * PageTransCompoundMap is the same as PageTransCompound, but it also
537 * guarantees the primary MMU has the entire compound page mapped
538 * through pmd_trans_huge, which in turn guarantees the secondary MMUs
539 * can also map the entire compound page. This allows the secondary
540 * MMUs to call get_user_pages() only once for each compound page and
541 * to immediately map the entire compound page with a single secondary
542 * MMU fault. If there will be a pmd split later, the secondary MMUs
543 * will get an update through the MMU notifier invalidation through
544 * split_huge_pmd().
545 *
546 * Unlike PageTransCompound, this is safe to be called only while
547 * split_huge_pmd() cannot run from under us, like if protected by the
548 * MMU notifier, otherwise it may result in page->_mapcount < 0 false
549 * positives.
550 */
PageTransCompoundMap(struct page * page)551 static inline int PageTransCompoundMap(struct page *page)
552 {
553 return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0;
554 }
555
556 /*
557 * PageTransTail returns true for both transparent huge pages
558 * and hugetlbfs pages, so it should only be called when it's known
559 * that hugetlbfs pages aren't involved.
560 */
PageTransTail(struct page * page)561 static inline int PageTransTail(struct page *page)
562 {
563 return PageTail(page);
564 }
565
566 /*
567 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
568 * as PMDs.
569 *
570 * This is required for optimization of rmap operations for THP: we can postpone
571 * per small page mapcount accounting (and its overhead from atomic operations)
572 * until the first PMD split.
573 *
574 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
575 * by one. This reference will go away with last compound_mapcount.
576 *
577 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
578 */
PageDoubleMap(struct page * page)579 static inline int PageDoubleMap(struct page *page)
580 {
581 return PageHead(page) && test_bit(PG_double_map, &page[1].flags);
582 }
583
SetPageDoubleMap(struct page * page)584 static inline void SetPageDoubleMap(struct page *page)
585 {
586 VM_BUG_ON_PAGE(!PageHead(page), page);
587 set_bit(PG_double_map, &page[1].flags);
588 }
589
ClearPageDoubleMap(struct page * page)590 static inline void ClearPageDoubleMap(struct page *page)
591 {
592 VM_BUG_ON_PAGE(!PageHead(page), page);
593 clear_bit(PG_double_map, &page[1].flags);
594 }
TestSetPageDoubleMap(struct page * page)595 static inline int TestSetPageDoubleMap(struct page *page)
596 {
597 VM_BUG_ON_PAGE(!PageHead(page), page);
598 return test_and_set_bit(PG_double_map, &page[1].flags);
599 }
600
TestClearPageDoubleMap(struct page * page)601 static inline int TestClearPageDoubleMap(struct page *page)
602 {
603 VM_BUG_ON_PAGE(!PageHead(page), page);
604 return test_and_clear_bit(PG_double_map, &page[1].flags);
605 }
606
607 #else
608 TESTPAGEFLAG_FALSE(TransHuge)
609 TESTPAGEFLAG_FALSE(TransCompound)
610 TESTPAGEFLAG_FALSE(TransCompoundMap)
611 TESTPAGEFLAG_FALSE(TransTail)
612 PAGEFLAG_FALSE(DoubleMap)
613 TESTSETFLAG_FALSE(DoubleMap)
614 TESTCLEARFLAG_FALSE(DoubleMap)
615 #endif
616
617 /*
618 * For pages that are never mapped to userspace, page->mapcount may be
619 * used for storing extra information about page type. Any value used
620 * for this purpose must be <= -2, but it's better start not too close
621 * to -2 so that an underflow of the page_mapcount() won't be mistaken
622 * for a special page.
623 */
624 #define PAGE_MAPCOUNT_OPS(uname, lname) \
625 static __always_inline int Page##uname(struct page *page) \
626 { \
627 return atomic_read(&page->_mapcount) == \
628 PAGE_##lname##_MAPCOUNT_VALUE; \
629 } \
630 static __always_inline void __SetPage##uname(struct page *page) \
631 { \
632 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); \
633 atomic_set(&page->_mapcount, PAGE_##lname##_MAPCOUNT_VALUE); \
634 } \
635 static __always_inline void __ClearPage##uname(struct page *page) \
636 { \
637 VM_BUG_ON_PAGE(!Page##uname(page), page); \
638 atomic_set(&page->_mapcount, -1); \
639 }
640
641 /*
642 * PageBuddy() indicate that the page is free and in the buddy system
643 * (see mm/page_alloc.c).
644 */
645 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
646 PAGE_MAPCOUNT_OPS(Buddy, BUDDY)
647
648 /*
649 * PageBalloon() is set on pages that are on the balloon page list
650 * (see mm/balloon_compaction.c).
651 */
652 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
653 PAGE_MAPCOUNT_OPS(Balloon, BALLOON)
654
655 /*
656 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
657 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
658 */
659 #define PAGE_KMEMCG_MAPCOUNT_VALUE (-512)
660 PAGE_MAPCOUNT_OPS(Kmemcg, KMEMCG)
661
662 extern bool is_free_buddy_page(struct page *page);
663
664 __PAGEFLAG(Isolated, isolated, PF_ANY);
665
666 /*
667 * If network-based swap is enabled, sl*b must keep track of whether pages
668 * were allocated from pfmemalloc reserves.
669 */
PageSlabPfmemalloc(struct page * page)670 static inline int PageSlabPfmemalloc(struct page *page)
671 {
672 VM_BUG_ON_PAGE(!PageSlab(page), page);
673 return PageActive(page);
674 }
675
SetPageSlabPfmemalloc(struct page * page)676 static inline void SetPageSlabPfmemalloc(struct page *page)
677 {
678 VM_BUG_ON_PAGE(!PageSlab(page), page);
679 SetPageActive(page);
680 }
681
__ClearPageSlabPfmemalloc(struct page * page)682 static inline void __ClearPageSlabPfmemalloc(struct page *page)
683 {
684 VM_BUG_ON_PAGE(!PageSlab(page), page);
685 __ClearPageActive(page);
686 }
687
ClearPageSlabPfmemalloc(struct page * page)688 static inline void ClearPageSlabPfmemalloc(struct page *page)
689 {
690 VM_BUG_ON_PAGE(!PageSlab(page), page);
691 ClearPageActive(page);
692 }
693
694 #ifdef CONFIG_MMU
695 #define __PG_MLOCKED (1UL << PG_mlocked)
696 #else
697 #define __PG_MLOCKED 0
698 #endif
699
700 /*
701 * Flags checked when a page is freed. Pages being freed should not have
702 * these flags set. It they are, there is a problem.
703 */
704 #define PAGE_FLAGS_CHECK_AT_FREE \
705 (1UL << PG_lru | 1UL << PG_locked | \
706 1UL << PG_private | 1UL << PG_private_2 | \
707 1UL << PG_writeback | 1UL << PG_reserved | \
708 1UL << PG_slab | 1UL << PG_swapcache | 1UL << PG_active | \
709 1UL << PG_unevictable | __PG_MLOCKED)
710
711 /*
712 * Flags checked when a page is prepped for return by the page allocator.
713 * Pages being prepped should not have these flags set. It they are set,
714 * there has been a kernel bug or struct page corruption.
715 *
716 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
717 * alloc-free cycle to prevent from reusing the page.
718 */
719 #define PAGE_FLAGS_CHECK_AT_PREP \
720 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
721
722 #define PAGE_FLAGS_PRIVATE \
723 (1UL << PG_private | 1UL << PG_private_2)
724 /**
725 * page_has_private - Determine if page has private stuff
726 * @page: The page to be checked
727 *
728 * Determine if a page has private stuff, indicating that release routines
729 * should be invoked upon it.
730 */
page_has_private(struct page * page)731 static inline int page_has_private(struct page *page)
732 {
733 return !!(page->flags & PAGE_FLAGS_PRIVATE);
734 }
735
736 #undef PF_ANY
737 #undef PF_HEAD
738 #undef PF_NO_TAIL
739 #undef PF_NO_COMPOUND
740 #endif /* !__GENERATING_BOUNDS_H */
741
742 #endif /* PAGE_FLAGS_H */
743