1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2001
19 *
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
21 *
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
24 * Papers:
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
27 *
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
30 *
31 */
32
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
35
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
47 #include <linux/ktime.h>
48 #include <linux/irqflags.h>
49
50 #include <asm/barrier.h>
51
52 #ifndef CONFIG_TINY_RCU
53 extern int rcu_expedited; /* for sysctl */
54 extern int rcu_normal; /* also for sysctl */
55 #endif /* #ifndef CONFIG_TINY_RCU */
56
57 #ifdef CONFIG_TINY_RCU
58 /* Tiny RCU doesn't expedite, as its purpose in life is instead to be tiny. */
rcu_gp_is_normal(void)59 static inline bool rcu_gp_is_normal(void) /* Internal RCU use. */
60 {
61 return true;
62 }
rcu_gp_is_expedited(void)63 static inline bool rcu_gp_is_expedited(void) /* Internal RCU use. */
64 {
65 return false;
66 }
67
rcu_expedite_gp(void)68 static inline void rcu_expedite_gp(void)
69 {
70 }
71
rcu_unexpedite_gp(void)72 static inline void rcu_unexpedite_gp(void)
73 {
74 }
75 #else /* #ifdef CONFIG_TINY_RCU */
76 bool rcu_gp_is_normal(void); /* Internal RCU use. */
77 bool rcu_gp_is_expedited(void); /* Internal RCU use. */
78 void rcu_expedite_gp(void);
79 void rcu_unexpedite_gp(void);
80 #endif /* #else #ifdef CONFIG_TINY_RCU */
81
82 enum rcutorture_type {
83 RCU_FLAVOR,
84 RCU_BH_FLAVOR,
85 RCU_SCHED_FLAVOR,
86 RCU_TASKS_FLAVOR,
87 SRCU_FLAVOR,
88 INVALID_RCU_FLAVOR
89 };
90
91 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
92 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
93 unsigned long *gpnum, unsigned long *completed);
94 void rcutorture_record_test_transition(void);
95 void rcutorture_record_progress(unsigned long vernum);
96 void do_trace_rcu_torture_read(const char *rcutorturename,
97 struct rcu_head *rhp,
98 unsigned long secs,
99 unsigned long c_old,
100 unsigned long c);
101 #else
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gpnum,unsigned long * completed)102 static inline void rcutorture_get_gp_data(enum rcutorture_type test_type,
103 int *flags,
104 unsigned long *gpnum,
105 unsigned long *completed)
106 {
107 *flags = 0;
108 *gpnum = 0;
109 *completed = 0;
110 }
rcutorture_record_test_transition(void)111 static inline void rcutorture_record_test_transition(void)
112 {
113 }
rcutorture_record_progress(unsigned long vernum)114 static inline void rcutorture_record_progress(unsigned long vernum)
115 {
116 }
117 #ifdef CONFIG_RCU_TRACE
118 void do_trace_rcu_torture_read(const char *rcutorturename,
119 struct rcu_head *rhp,
120 unsigned long secs,
121 unsigned long c_old,
122 unsigned long c);
123 #else
124 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
125 do { } while (0)
126 #endif
127 #endif
128
129 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
130 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
131 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
132 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
133 #define ulong2long(a) (*(long *)(&(a)))
134
135 /* Exported common interfaces */
136
137 #ifdef CONFIG_PREEMPT_RCU
138
139 /**
140 * call_rcu() - Queue an RCU callback for invocation after a grace period.
141 * @head: structure to be used for queueing the RCU updates.
142 * @func: actual callback function to be invoked after the grace period
143 *
144 * The callback function will be invoked some time after a full grace
145 * period elapses, in other words after all pre-existing RCU read-side
146 * critical sections have completed. However, the callback function
147 * might well execute concurrently with RCU read-side critical sections
148 * that started after call_rcu() was invoked. RCU read-side critical
149 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
150 * and may be nested.
151 *
152 * Note that all CPUs must agree that the grace period extended beyond
153 * all pre-existing RCU read-side critical section. On systems with more
154 * than one CPU, this means that when "func()" is invoked, each CPU is
155 * guaranteed to have executed a full memory barrier since the end of its
156 * last RCU read-side critical section whose beginning preceded the call
157 * to call_rcu(). It also means that each CPU executing an RCU read-side
158 * critical section that continues beyond the start of "func()" must have
159 * executed a memory barrier after the call_rcu() but before the beginning
160 * of that RCU read-side critical section. Note that these guarantees
161 * include CPUs that are offline, idle, or executing in user mode, as
162 * well as CPUs that are executing in the kernel.
163 *
164 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
165 * resulting RCU callback function "func()", then both CPU A and CPU B are
166 * guaranteed to execute a full memory barrier during the time interval
167 * between the call to call_rcu() and the invocation of "func()" -- even
168 * if CPU A and CPU B are the same CPU (but again only if the system has
169 * more than one CPU).
170 */
171 void call_rcu(struct rcu_head *head,
172 rcu_callback_t func);
173
174 #else /* #ifdef CONFIG_PREEMPT_RCU */
175
176 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
177 #define call_rcu call_rcu_sched
178
179 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
180
181 /**
182 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
183 * @head: structure to be used for queueing the RCU updates.
184 * @func: actual callback function to be invoked after the grace period
185 *
186 * The callback function will be invoked some time after a full grace
187 * period elapses, in other words after all currently executing RCU
188 * read-side critical sections have completed. call_rcu_bh() assumes
189 * that the read-side critical sections end on completion of a softirq
190 * handler. This means that read-side critical sections in process
191 * context must not be interrupted by softirqs. This interface is to be
192 * used when most of the read-side critical sections are in softirq context.
193 * RCU read-side critical sections are delimited by :
194 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
195 * OR
196 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
197 * These may be nested.
198 *
199 * See the description of call_rcu() for more detailed information on
200 * memory ordering guarantees.
201 */
202 void call_rcu_bh(struct rcu_head *head,
203 rcu_callback_t func);
204
205 /**
206 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
207 * @head: structure to be used for queueing the RCU updates.
208 * @func: actual callback function to be invoked after the grace period
209 *
210 * The callback function will be invoked some time after a full grace
211 * period elapses, in other words after all currently executing RCU
212 * read-side critical sections have completed. call_rcu_sched() assumes
213 * that the read-side critical sections end on enabling of preemption
214 * or on voluntary preemption.
215 * RCU read-side critical sections are delimited by :
216 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
217 * OR
218 * anything that disables preemption.
219 * These may be nested.
220 *
221 * See the description of call_rcu() for more detailed information on
222 * memory ordering guarantees.
223 */
224 void call_rcu_sched(struct rcu_head *head,
225 rcu_callback_t func);
226
227 void synchronize_sched(void);
228
229 /*
230 * Structure allowing asynchronous waiting on RCU.
231 */
232 struct rcu_synchronize {
233 struct rcu_head head;
234 struct completion completion;
235 };
236 void wakeme_after_rcu(struct rcu_head *head);
237
238 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
239 struct rcu_synchronize *rs_array);
240
241 #define _wait_rcu_gp(checktiny, ...) \
242 do { \
243 call_rcu_func_t __crcu_array[] = { __VA_ARGS__ }; \
244 struct rcu_synchronize __rs_array[ARRAY_SIZE(__crcu_array)]; \
245 __wait_rcu_gp(checktiny, ARRAY_SIZE(__crcu_array), \
246 __crcu_array, __rs_array); \
247 } while (0)
248
249 #define wait_rcu_gp(...) _wait_rcu_gp(false, __VA_ARGS__)
250
251 /**
252 * synchronize_rcu_mult - Wait concurrently for multiple grace periods
253 * @...: List of call_rcu() functions for the flavors to wait on.
254 *
255 * This macro waits concurrently for multiple flavors of RCU grace periods.
256 * For example, synchronize_rcu_mult(call_rcu, call_rcu_bh) would wait
257 * on concurrent RCU and RCU-bh grace periods. Waiting on a give SRCU
258 * domain requires you to write a wrapper function for that SRCU domain's
259 * call_srcu() function, supplying the corresponding srcu_struct.
260 *
261 * If Tiny RCU, tell _wait_rcu_gp() not to bother waiting for RCU
262 * or RCU-bh, given that anywhere synchronize_rcu_mult() can be called
263 * is automatically a grace period.
264 */
265 #define synchronize_rcu_mult(...) \
266 _wait_rcu_gp(IS_ENABLED(CONFIG_TINY_RCU), __VA_ARGS__)
267
268 /**
269 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
270 * @head: structure to be used for queueing the RCU updates.
271 * @func: actual callback function to be invoked after the grace period
272 *
273 * The callback function will be invoked some time after a full grace
274 * period elapses, in other words after all currently executing RCU
275 * read-side critical sections have completed. call_rcu_tasks() assumes
276 * that the read-side critical sections end at a voluntary context
277 * switch (not a preemption!), entry into idle, or transition to usermode
278 * execution. As such, there are no read-side primitives analogous to
279 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
280 * to determine that all tasks have passed through a safe state, not so
281 * much for data-strcuture synchronization.
282 *
283 * See the description of call_rcu() for more detailed information on
284 * memory ordering guarantees.
285 */
286 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
287 void synchronize_rcu_tasks(void);
288 void rcu_barrier_tasks(void);
289
290 #ifdef CONFIG_PREEMPT_RCU
291
292 void __rcu_read_lock(void);
293 void __rcu_read_unlock(void);
294 void rcu_read_unlock_special(struct task_struct *t);
295 void synchronize_rcu(void);
296
297 /*
298 * Defined as a macro as it is a very low level header included from
299 * areas that don't even know about current. This gives the rcu_read_lock()
300 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
301 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
302 */
303 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
304
305 #else /* #ifdef CONFIG_PREEMPT_RCU */
306
__rcu_read_lock(void)307 static inline void __rcu_read_lock(void)
308 {
309 if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
310 preempt_disable();
311 }
312
__rcu_read_unlock(void)313 static inline void __rcu_read_unlock(void)
314 {
315 if (IS_ENABLED(CONFIG_PREEMPT_COUNT))
316 preempt_enable();
317 }
318
synchronize_rcu(void)319 static inline void synchronize_rcu(void)
320 {
321 synchronize_sched();
322 }
323
rcu_preempt_depth(void)324 static inline int rcu_preempt_depth(void)
325 {
326 return 0;
327 }
328
329 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
330
331 /* Internal to kernel */
332 void rcu_init(void);
333 void rcu_sched_qs(void);
334 void rcu_bh_qs(void);
335 void rcu_check_callbacks(int user);
336 void rcu_report_dead(unsigned int cpu);
337 void rcu_cpu_starting(unsigned int cpu);
338
339 #ifndef CONFIG_TINY_RCU
340 void rcu_end_inkernel_boot(void);
341 #else /* #ifndef CONFIG_TINY_RCU */
rcu_end_inkernel_boot(void)342 static inline void rcu_end_inkernel_boot(void) { }
343 #endif /* #ifndef CONFIG_TINY_RCU */
344
345 #ifdef CONFIG_RCU_STALL_COMMON
346 void rcu_sysrq_start(void);
347 void rcu_sysrq_end(void);
348 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)349 static inline void rcu_sysrq_start(void)
350 {
351 }
rcu_sysrq_end(void)352 static inline void rcu_sysrq_end(void)
353 {
354 }
355 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
356
357 #ifdef CONFIG_NO_HZ_FULL
358 void rcu_user_enter(void);
359 void rcu_user_exit(void);
360 #else
rcu_user_enter(void)361 static inline void rcu_user_enter(void) { }
rcu_user_exit(void)362 static inline void rcu_user_exit(void) { }
363 #endif /* CONFIG_NO_HZ_FULL */
364
365 #ifdef CONFIG_RCU_NOCB_CPU
366 void rcu_init_nohz(void);
367 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)368 static inline void rcu_init_nohz(void)
369 {
370 }
371 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
372
373 /**
374 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
375 * @a: Code that RCU needs to pay attention to.
376 *
377 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
378 * in the inner idle loop, that is, between the rcu_idle_enter() and
379 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
380 * critical sections. However, things like powertop need tracepoints
381 * in the inner idle loop.
382 *
383 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
384 * will tell RCU that it needs to pay attention, invoke its argument
385 * (in this example, calling the do_something_with_RCU() function),
386 * and then tell RCU to go back to ignoring this CPU. It is permissible
387 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
388 * on the order of a million or so, even on 32-bit systems). It is
389 * not legal to block within RCU_NONIDLE(), nor is it permissible to
390 * transfer control either into or out of RCU_NONIDLE()'s statement.
391 */
392 #define RCU_NONIDLE(a) \
393 do { \
394 rcu_irq_enter_irqson(); \
395 do { a; } while (0); \
396 rcu_irq_exit_irqson(); \
397 } while (0)
398
399 /*
400 * Note a voluntary context switch for RCU-tasks benefit. This is a
401 * macro rather than an inline function to avoid #include hell.
402 */
403 #ifdef CONFIG_TASKS_RCU
404 #define TASKS_RCU(x) x
405 extern struct srcu_struct tasks_rcu_exit_srcu;
406 #define rcu_note_voluntary_context_switch(t) \
407 do { \
408 rcu_all_qs(); \
409 if (READ_ONCE((t)->rcu_tasks_holdout)) \
410 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
411 } while (0)
412 #else /* #ifdef CONFIG_TASKS_RCU */
413 #define TASKS_RCU(x) do { } while (0)
414 #define rcu_note_voluntary_context_switch(t) rcu_all_qs()
415 #endif /* #else #ifdef CONFIG_TASKS_RCU */
416
417 /**
418 * cond_resched_rcu_qs - Report potential quiescent states to RCU
419 *
420 * This macro resembles cond_resched(), except that it is defined to
421 * report potential quiescent states to RCU-tasks even if the cond_resched()
422 * machinery were to be shut off, as some advocate for PREEMPT kernels.
423 */
424 #define cond_resched_rcu_qs() \
425 do { \
426 if (!cond_resched()) \
427 rcu_note_voluntary_context_switch(current); \
428 } while (0)
429
430 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP)
431 bool __rcu_is_watching(void);
432 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */
433
434 /*
435 * Infrastructure to implement the synchronize_() primitives in
436 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
437 */
438
439 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
440 #include <linux/rcutree.h>
441 #elif defined(CONFIG_TINY_RCU)
442 #include <linux/rcutiny.h>
443 #else
444 #error "Unknown RCU implementation specified to kernel configuration"
445 #endif
446
447 #define RCU_SCHEDULER_INACTIVE 0
448 #define RCU_SCHEDULER_INIT 1
449 #define RCU_SCHEDULER_RUNNING 2
450
451 /*
452 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
453 * initialization and destruction of rcu_head on the stack. rcu_head structures
454 * allocated dynamically in the heap or defined statically don't need any
455 * initialization.
456 */
457 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
458 void init_rcu_head(struct rcu_head *head);
459 void destroy_rcu_head(struct rcu_head *head);
460 void init_rcu_head_on_stack(struct rcu_head *head);
461 void destroy_rcu_head_on_stack(struct rcu_head *head);
462 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)463 static inline void init_rcu_head(struct rcu_head *head)
464 {
465 }
466
destroy_rcu_head(struct rcu_head * head)467 static inline void destroy_rcu_head(struct rcu_head *head)
468 {
469 }
470
init_rcu_head_on_stack(struct rcu_head * head)471 static inline void init_rcu_head_on_stack(struct rcu_head *head)
472 {
473 }
474
destroy_rcu_head_on_stack(struct rcu_head * head)475 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
476 {
477 }
478 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
479
480 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
481 bool rcu_lockdep_current_cpu_online(void);
482 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)483 static inline bool rcu_lockdep_current_cpu_online(void)
484 {
485 return true;
486 }
487 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
488
489 #ifdef CONFIG_DEBUG_LOCK_ALLOC
490
rcu_lock_acquire(struct lockdep_map * map)491 static inline void rcu_lock_acquire(struct lockdep_map *map)
492 {
493 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
494 }
495
rcu_lock_release(struct lockdep_map * map)496 static inline void rcu_lock_release(struct lockdep_map *map)
497 {
498 lock_release(map, 1, _THIS_IP_);
499 }
500
501 extern struct lockdep_map rcu_lock_map;
502 extern struct lockdep_map rcu_bh_lock_map;
503 extern struct lockdep_map rcu_sched_lock_map;
504 extern struct lockdep_map rcu_callback_map;
505 int debug_lockdep_rcu_enabled(void);
506
507 int rcu_read_lock_held(void);
508 int rcu_read_lock_bh_held(void);
509
510 /**
511 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
512 *
513 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
514 * RCU-sched read-side critical section. In absence of
515 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
516 * critical section unless it can prove otherwise.
517 */
518 int rcu_read_lock_sched_held(void);
519
520 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
521
522 # define rcu_lock_acquire(a) do { } while (0)
523 # define rcu_lock_release(a) do { } while (0)
524
rcu_read_lock_held(void)525 static inline int rcu_read_lock_held(void)
526 {
527 return 1;
528 }
529
rcu_read_lock_bh_held(void)530 static inline int rcu_read_lock_bh_held(void)
531 {
532 return 1;
533 }
534
rcu_read_lock_sched_held(void)535 static inline int rcu_read_lock_sched_held(void)
536 {
537 return !preemptible();
538 }
539 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
540
541 #ifdef CONFIG_PROVE_RCU
542
543 /**
544 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
545 * @c: condition to check
546 * @s: informative message
547 */
548 #define RCU_LOCKDEP_WARN(c, s) \
549 do { \
550 static bool __section(.data.unlikely) __warned; \
551 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \
552 __warned = true; \
553 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
554 } \
555 } while (0)
556
557 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)558 static inline void rcu_preempt_sleep_check(void)
559 {
560 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
561 "Illegal context switch in RCU read-side critical section");
562 }
563 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)564 static inline void rcu_preempt_sleep_check(void)
565 {
566 }
567 #endif /* #else #ifdef CONFIG_PROVE_RCU */
568
569 #define rcu_sleep_check() \
570 do { \
571 rcu_preempt_sleep_check(); \
572 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
573 "Illegal context switch in RCU-bh read-side critical section"); \
574 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
575 "Illegal context switch in RCU-sched read-side critical section"); \
576 } while (0)
577
578 #else /* #ifdef CONFIG_PROVE_RCU */
579
580 #define RCU_LOCKDEP_WARN(c, s) do { } while (0)
581 #define rcu_sleep_check() do { } while (0)
582
583 #endif /* #else #ifdef CONFIG_PROVE_RCU */
584
585 /*
586 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
587 * and rcu_assign_pointer(). Some of these could be folded into their
588 * callers, but they are left separate in order to ease introduction of
589 * multiple flavors of pointers to match the multiple flavors of RCU
590 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
591 * the future.
592 */
593
594 #ifdef __CHECKER__
595 #define rcu_dereference_sparse(p, space) \
596 ((void)(((typeof(*p) space *)p) == p))
597 #else /* #ifdef __CHECKER__ */
598 #define rcu_dereference_sparse(p, space)
599 #endif /* #else #ifdef __CHECKER__ */
600
601 #define __rcu_access_pointer(p, space) \
602 ({ \
603 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
604 rcu_dereference_sparse(p, space); \
605 ((typeof(*p) __force __kernel *)(_________p1)); \
606 })
607 #define __rcu_dereference_check(p, c, space) \
608 ({ \
609 /* Dependency order vs. p above. */ \
610 typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
611 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
612 rcu_dereference_sparse(p, space); \
613 ((typeof(*p) __force __kernel *)(________p1)); \
614 })
615 #define __rcu_dereference_protected(p, c, space) \
616 ({ \
617 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
618 rcu_dereference_sparse(p, space); \
619 ((typeof(*p) __force __kernel *)(p)); \
620 })
621 #define rcu_dereference_raw(p) \
622 ({ \
623 /* Dependency order vs. p above. */ \
624 typeof(p) ________p1 = lockless_dereference(p); \
625 ((typeof(*p) __force __kernel *)(________p1)); \
626 })
627
628 /**
629 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
630 * @v: The value to statically initialize with.
631 */
632 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
633
634 /**
635 * rcu_assign_pointer() - assign to RCU-protected pointer
636 * @p: pointer to assign to
637 * @v: value to assign (publish)
638 *
639 * Assigns the specified value to the specified RCU-protected
640 * pointer, ensuring that any concurrent RCU readers will see
641 * any prior initialization.
642 *
643 * Inserts memory barriers on architectures that require them
644 * (which is most of them), and also prevents the compiler from
645 * reordering the code that initializes the structure after the pointer
646 * assignment. More importantly, this call documents which pointers
647 * will be dereferenced by RCU read-side code.
648 *
649 * In some special cases, you may use RCU_INIT_POINTER() instead
650 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
651 * to the fact that it does not constrain either the CPU or the compiler.
652 * That said, using RCU_INIT_POINTER() when you should have used
653 * rcu_assign_pointer() is a very bad thing that results in
654 * impossible-to-diagnose memory corruption. So please be careful.
655 * See the RCU_INIT_POINTER() comment header for details.
656 *
657 * Note that rcu_assign_pointer() evaluates each of its arguments only
658 * once, appearances notwithstanding. One of the "extra" evaluations
659 * is in typeof() and the other visible only to sparse (__CHECKER__),
660 * neither of which actually execute the argument. As with most cpp
661 * macros, this execute-arguments-only-once property is important, so
662 * please be careful when making changes to rcu_assign_pointer() and the
663 * other macros that it invokes.
664 */
665 #define rcu_assign_pointer(p, v) \
666 ({ \
667 uintptr_t _r_a_p__v = (uintptr_t)(v); \
668 \
669 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
670 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
671 else \
672 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
673 _r_a_p__v; \
674 })
675
676 /**
677 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
678 * @p: The pointer to read
679 *
680 * Return the value of the specified RCU-protected pointer, but omit the
681 * smp_read_barrier_depends() and keep the READ_ONCE(). This is useful
682 * when the value of this pointer is accessed, but the pointer is not
683 * dereferenced, for example, when testing an RCU-protected pointer against
684 * NULL. Although rcu_access_pointer() may also be used in cases where
685 * update-side locks prevent the value of the pointer from changing, you
686 * should instead use rcu_dereference_protected() for this use case.
687 *
688 * It is also permissible to use rcu_access_pointer() when read-side
689 * access to the pointer was removed at least one grace period ago, as
690 * is the case in the context of the RCU callback that is freeing up
691 * the data, or after a synchronize_rcu() returns. This can be useful
692 * when tearing down multi-linked structures after a grace period
693 * has elapsed.
694 */
695 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
696
697 /**
698 * rcu_dereference_check() - rcu_dereference with debug checking
699 * @p: The pointer to read, prior to dereferencing
700 * @c: The conditions under which the dereference will take place
701 *
702 * Do an rcu_dereference(), but check that the conditions under which the
703 * dereference will take place are correct. Typically the conditions
704 * indicate the various locking conditions that should be held at that
705 * point. The check should return true if the conditions are satisfied.
706 * An implicit check for being in an RCU read-side critical section
707 * (rcu_read_lock()) is included.
708 *
709 * For example:
710 *
711 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
712 *
713 * could be used to indicate to lockdep that foo->bar may only be dereferenced
714 * if either rcu_read_lock() is held, or that the lock required to replace
715 * the bar struct at foo->bar is held.
716 *
717 * Note that the list of conditions may also include indications of when a lock
718 * need not be held, for example during initialisation or destruction of the
719 * target struct:
720 *
721 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
722 * atomic_read(&foo->usage) == 0);
723 *
724 * Inserts memory barriers on architectures that require them
725 * (currently only the Alpha), prevents the compiler from refetching
726 * (and from merging fetches), and, more importantly, documents exactly
727 * which pointers are protected by RCU and checks that the pointer is
728 * annotated as __rcu.
729 */
730 #define rcu_dereference_check(p, c) \
731 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
732
733 /**
734 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
735 * @p: The pointer to read, prior to dereferencing
736 * @c: The conditions under which the dereference will take place
737 *
738 * This is the RCU-bh counterpart to rcu_dereference_check().
739 */
740 #define rcu_dereference_bh_check(p, c) \
741 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
742
743 /**
744 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
745 * @p: The pointer to read, prior to dereferencing
746 * @c: The conditions under which the dereference will take place
747 *
748 * This is the RCU-sched counterpart to rcu_dereference_check().
749 */
750 #define rcu_dereference_sched_check(p, c) \
751 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
752 __rcu)
753
754 /*
755 * The tracing infrastructure traces RCU (we want that), but unfortunately
756 * some of the RCU checks causes tracing to lock up the system.
757 *
758 * The no-tracing version of rcu_dereference_raw() must not call
759 * rcu_read_lock_held().
760 */
761 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
762
763 /**
764 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
765 * @p: The pointer to read, prior to dereferencing
766 * @c: The conditions under which the dereference will take place
767 *
768 * Return the value of the specified RCU-protected pointer, but omit
769 * both the smp_read_barrier_depends() and the READ_ONCE(). This
770 * is useful in cases where update-side locks prevent the value of the
771 * pointer from changing. Please note that this primitive does -not-
772 * prevent the compiler from repeating this reference or combining it
773 * with other references, so it should not be used without protection
774 * of appropriate locks.
775 *
776 * This function is only for update-side use. Using this function
777 * when protected only by rcu_read_lock() will result in infrequent
778 * but very ugly failures.
779 */
780 #define rcu_dereference_protected(p, c) \
781 __rcu_dereference_protected((p), (c), __rcu)
782
783
784 /**
785 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
786 * @p: The pointer to read, prior to dereferencing
787 *
788 * This is a simple wrapper around rcu_dereference_check().
789 */
790 #define rcu_dereference(p) rcu_dereference_check(p, 0)
791
792 /**
793 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
794 * @p: The pointer to read, prior to dereferencing
795 *
796 * Makes rcu_dereference_check() do the dirty work.
797 */
798 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
799
800 /**
801 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
802 * @p: The pointer to read, prior to dereferencing
803 *
804 * Makes rcu_dereference_check() do the dirty work.
805 */
806 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
807
808 /**
809 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
810 * @p: The pointer to hand off
811 *
812 * This is simply an identity function, but it documents where a pointer
813 * is handed off from RCU to some other synchronization mechanism, for
814 * example, reference counting or locking. In C11, it would map to
815 * kill_dependency(). It could be used as follows:
816 *
817 * rcu_read_lock();
818 * p = rcu_dereference(gp);
819 * long_lived = is_long_lived(p);
820 * if (long_lived) {
821 * if (!atomic_inc_not_zero(p->refcnt))
822 * long_lived = false;
823 * else
824 * p = rcu_pointer_handoff(p);
825 * }
826 * rcu_read_unlock();
827 */
828 #define rcu_pointer_handoff(p) (p)
829
830 /**
831 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
832 *
833 * When synchronize_rcu() is invoked on one CPU while other CPUs
834 * are within RCU read-side critical sections, then the
835 * synchronize_rcu() is guaranteed to block until after all the other
836 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
837 * on one CPU while other CPUs are within RCU read-side critical
838 * sections, invocation of the corresponding RCU callback is deferred
839 * until after the all the other CPUs exit their critical sections.
840 *
841 * Note, however, that RCU callbacks are permitted to run concurrently
842 * with new RCU read-side critical sections. One way that this can happen
843 * is via the following sequence of events: (1) CPU 0 enters an RCU
844 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
845 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
846 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
847 * callback is invoked. This is legal, because the RCU read-side critical
848 * section that was running concurrently with the call_rcu() (and which
849 * therefore might be referencing something that the corresponding RCU
850 * callback would free up) has completed before the corresponding
851 * RCU callback is invoked.
852 *
853 * RCU read-side critical sections may be nested. Any deferred actions
854 * will be deferred until the outermost RCU read-side critical section
855 * completes.
856 *
857 * You can avoid reading and understanding the next paragraph by
858 * following this rule: don't put anything in an rcu_read_lock() RCU
859 * read-side critical section that would block in a !PREEMPT kernel.
860 * But if you want the full story, read on!
861 *
862 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
863 * it is illegal to block while in an RCU read-side critical section.
864 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT
865 * kernel builds, RCU read-side critical sections may be preempted,
866 * but explicit blocking is illegal. Finally, in preemptible RCU
867 * implementations in real-time (with -rt patchset) kernel builds, RCU
868 * read-side critical sections may be preempted and they may also block, but
869 * only when acquiring spinlocks that are subject to priority inheritance.
870 */
rcu_read_lock(void)871 static inline void rcu_read_lock(void)
872 {
873 __rcu_read_lock();
874 __acquire(RCU);
875 rcu_lock_acquire(&rcu_lock_map);
876 RCU_LOCKDEP_WARN(!rcu_is_watching(),
877 "rcu_read_lock() used illegally while idle");
878 }
879
880 /*
881 * So where is rcu_write_lock()? It does not exist, as there is no
882 * way for writers to lock out RCU readers. This is a feature, not
883 * a bug -- this property is what provides RCU's performance benefits.
884 * Of course, writers must coordinate with each other. The normal
885 * spinlock primitives work well for this, but any other technique may be
886 * used as well. RCU does not care how the writers keep out of each
887 * others' way, as long as they do so.
888 */
889
890 /**
891 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
892 *
893 * In most situations, rcu_read_unlock() is immune from deadlock.
894 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
895 * is responsible for deboosting, which it does via rt_mutex_unlock().
896 * Unfortunately, this function acquires the scheduler's runqueue and
897 * priority-inheritance spinlocks. This means that deadlock could result
898 * if the caller of rcu_read_unlock() already holds one of these locks or
899 * any lock that is ever acquired while holding them; or any lock which
900 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock()
901 * does not disable irqs while taking ->wait_lock.
902 *
903 * That said, RCU readers are never priority boosted unless they were
904 * preempted. Therefore, one way to avoid deadlock is to make sure
905 * that preemption never happens within any RCU read-side critical
906 * section whose outermost rcu_read_unlock() is called with one of
907 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
908 * a number of ways, for example, by invoking preempt_disable() before
909 * critical section's outermost rcu_read_lock().
910 *
911 * Given that the set of locks acquired by rt_mutex_unlock() might change
912 * at any time, a somewhat more future-proofed approach is to make sure
913 * that that preemption never happens within any RCU read-side critical
914 * section whose outermost rcu_read_unlock() is called with irqs disabled.
915 * This approach relies on the fact that rt_mutex_unlock() currently only
916 * acquires irq-disabled locks.
917 *
918 * The second of these two approaches is best in most situations,
919 * however, the first approach can also be useful, at least to those
920 * developers willing to keep abreast of the set of locks acquired by
921 * rt_mutex_unlock().
922 *
923 * See rcu_read_lock() for more information.
924 */
rcu_read_unlock(void)925 static inline void rcu_read_unlock(void)
926 {
927 RCU_LOCKDEP_WARN(!rcu_is_watching(),
928 "rcu_read_unlock() used illegally while idle");
929 __release(RCU);
930 __rcu_read_unlock();
931 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
932 }
933
934 /**
935 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
936 *
937 * This is equivalent of rcu_read_lock(), but to be used when updates
938 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
939 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
940 * softirq handler to be a quiescent state, a process in RCU read-side
941 * critical section must be protected by disabling softirqs. Read-side
942 * critical sections in interrupt context can use just rcu_read_lock(),
943 * though this should at least be commented to avoid confusing people
944 * reading the code.
945 *
946 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
947 * must occur in the same context, for example, it is illegal to invoke
948 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
949 * was invoked from some other task.
950 */
rcu_read_lock_bh(void)951 static inline void rcu_read_lock_bh(void)
952 {
953 local_bh_disable();
954 __acquire(RCU_BH);
955 rcu_lock_acquire(&rcu_bh_lock_map);
956 RCU_LOCKDEP_WARN(!rcu_is_watching(),
957 "rcu_read_lock_bh() used illegally while idle");
958 }
959
960 /*
961 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
962 *
963 * See rcu_read_lock_bh() for more information.
964 */
rcu_read_unlock_bh(void)965 static inline void rcu_read_unlock_bh(void)
966 {
967 RCU_LOCKDEP_WARN(!rcu_is_watching(),
968 "rcu_read_unlock_bh() used illegally while idle");
969 rcu_lock_release(&rcu_bh_lock_map);
970 __release(RCU_BH);
971 local_bh_enable();
972 }
973
974 /**
975 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
976 *
977 * This is equivalent of rcu_read_lock(), but to be used when updates
978 * are being done using call_rcu_sched() or synchronize_rcu_sched().
979 * Read-side critical sections can also be introduced by anything that
980 * disables preemption, including local_irq_disable() and friends.
981 *
982 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
983 * must occur in the same context, for example, it is illegal to invoke
984 * rcu_read_unlock_sched() from process context if the matching
985 * rcu_read_lock_sched() was invoked from an NMI handler.
986 */
rcu_read_lock_sched(void)987 static inline void rcu_read_lock_sched(void)
988 {
989 preempt_disable();
990 __acquire(RCU_SCHED);
991 rcu_lock_acquire(&rcu_sched_lock_map);
992 RCU_LOCKDEP_WARN(!rcu_is_watching(),
993 "rcu_read_lock_sched() used illegally while idle");
994 }
995
996 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)997 static inline notrace void rcu_read_lock_sched_notrace(void)
998 {
999 preempt_disable_notrace();
1000 __acquire(RCU_SCHED);
1001 }
1002
1003 /*
1004 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
1005 *
1006 * See rcu_read_lock_sched for more information.
1007 */
rcu_read_unlock_sched(void)1008 static inline void rcu_read_unlock_sched(void)
1009 {
1010 RCU_LOCKDEP_WARN(!rcu_is_watching(),
1011 "rcu_read_unlock_sched() used illegally while idle");
1012 rcu_lock_release(&rcu_sched_lock_map);
1013 __release(RCU_SCHED);
1014 preempt_enable();
1015 }
1016
1017 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)1018 static inline notrace void rcu_read_unlock_sched_notrace(void)
1019 {
1020 __release(RCU_SCHED);
1021 preempt_enable_notrace();
1022 }
1023
1024 /**
1025 * RCU_INIT_POINTER() - initialize an RCU protected pointer
1026 *
1027 * Initialize an RCU-protected pointer in special cases where readers
1028 * do not need ordering constraints on the CPU or the compiler. These
1029 * special cases are:
1030 *
1031 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
1032 * 2. The caller has taken whatever steps are required to prevent
1033 * RCU readers from concurrently accessing this pointer -or-
1034 * 3. The referenced data structure has already been exposed to
1035 * readers either at compile time or via rcu_assign_pointer() -and-
1036 * a. You have not made -any- reader-visible changes to
1037 * this structure since then -or-
1038 * b. It is OK for readers accessing this structure from its
1039 * new location to see the old state of the structure. (For
1040 * example, the changes were to statistical counters or to
1041 * other state where exact synchronization is not required.)
1042 *
1043 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
1044 * result in impossible-to-diagnose memory corruption. As in the structures
1045 * will look OK in crash dumps, but any concurrent RCU readers might
1046 * see pre-initialized values of the referenced data structure. So
1047 * please be very careful how you use RCU_INIT_POINTER()!!!
1048 *
1049 * If you are creating an RCU-protected linked structure that is accessed
1050 * by a single external-to-structure RCU-protected pointer, then you may
1051 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
1052 * pointers, but you must use rcu_assign_pointer() to initialize the
1053 * external-to-structure pointer -after- you have completely initialized
1054 * the reader-accessible portions of the linked structure.
1055 *
1056 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1057 * ordering guarantees for either the CPU or the compiler.
1058 */
1059 #define RCU_INIT_POINTER(p, v) \
1060 do { \
1061 rcu_dereference_sparse(p, __rcu); \
1062 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
1063 } while (0)
1064
1065 /**
1066 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1067 *
1068 * GCC-style initialization for an RCU-protected pointer in a structure field.
1069 */
1070 #define RCU_POINTER_INITIALIZER(p, v) \
1071 .p = RCU_INITIALIZER(v)
1072
1073 /*
1074 * Does the specified offset indicate that the corresponding rcu_head
1075 * structure can be handled by kfree_rcu()?
1076 */
1077 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
1078
1079 /*
1080 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
1081 */
1082 #define __kfree_rcu(head, offset) \
1083 do { \
1084 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
1085 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
1086 } while (0)
1087
1088 /**
1089 * kfree_rcu() - kfree an object after a grace period.
1090 * @ptr: pointer to kfree
1091 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
1092 *
1093 * Many rcu callbacks functions just call kfree() on the base structure.
1094 * These functions are trivial, but their size adds up, and furthermore
1095 * when they are used in a kernel module, that module must invoke the
1096 * high-latency rcu_barrier() function at module-unload time.
1097 *
1098 * The kfree_rcu() function handles this issue. Rather than encoding a
1099 * function address in the embedded rcu_head structure, kfree_rcu() instead
1100 * encodes the offset of the rcu_head structure within the base structure.
1101 * Because the functions are not allowed in the low-order 4096 bytes of
1102 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
1103 * If the offset is larger than 4095 bytes, a compile-time error will
1104 * be generated in __kfree_rcu(). If this error is triggered, you can
1105 * either fall back to use of call_rcu() or rearrange the structure to
1106 * position the rcu_head structure into the first 4096 bytes.
1107 *
1108 * Note that the allowable offset might decrease in the future, for example,
1109 * to allow something like kmem_cache_free_rcu().
1110 *
1111 * The BUILD_BUG_ON check must not involve any function calls, hence the
1112 * checks are done in macros here.
1113 */
1114 #define kfree_rcu(ptr, rcu_head) \
1115 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1116
1117 #ifdef CONFIG_TINY_RCU
rcu_needs_cpu(u64 basemono,u64 * nextevt)1118 static inline int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1119 {
1120 *nextevt = KTIME_MAX;
1121 return 0;
1122 }
1123 #endif /* #ifdef CONFIG_TINY_RCU */
1124
1125 #if defined(CONFIG_RCU_NOCB_CPU_ALL)
rcu_is_nocb_cpu(int cpu)1126 static inline bool rcu_is_nocb_cpu(int cpu) { return true; }
1127 #elif defined(CONFIG_RCU_NOCB_CPU)
1128 bool rcu_is_nocb_cpu(int cpu);
1129 #else
rcu_is_nocb_cpu(int cpu)1130 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1131 #endif
1132
1133
1134 /* Only for use by adaptive-ticks code. */
1135 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1136 bool rcu_sys_is_idle(void);
1137 void rcu_sysidle_force_exit(void);
1138 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1139
rcu_sys_is_idle(void)1140 static inline bool rcu_sys_is_idle(void)
1141 {
1142 return false;
1143 }
1144
rcu_sysidle_force_exit(void)1145 static inline void rcu_sysidle_force_exit(void)
1146 {
1147 }
1148
1149 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1150
1151
1152 /*
1153 * Dump the ftrace buffer, but only one time per callsite per boot.
1154 */
1155 #define rcu_ftrace_dump(oops_dump_mode) \
1156 do { \
1157 static atomic_t ___rfd_beenhere = ATOMIC_INIT(0); \
1158 \
1159 if (!atomic_read(&___rfd_beenhere) && \
1160 !atomic_xchg(&___rfd_beenhere, 1)) \
1161 ftrace_dump(oops_dump_mode); \
1162 } while (0)
1163
1164
1165 #endif /* __LINUX_RCUPDATE_H */
1166