• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the AF_INET socket handler.
7  *
8  * Version:	@(#)sock.h	1.0.4	05/13/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche <flla@stud.uni-sb.de>
14  *
15  * Fixes:
16  *		Alan Cox	:	Volatiles in skbuff pointers. See
17  *					skbuff comments. May be overdone,
18  *					better to prove they can be removed
19  *					than the reverse.
20  *		Alan Cox	:	Added a zapped field for tcp to note
21  *					a socket is reset and must stay shut up
22  *		Alan Cox	:	New fields for options
23  *	Pauline Middelink	:	identd support
24  *		Alan Cox	:	Eliminate low level recv/recvfrom
25  *		David S. Miller	:	New socket lookup architecture.
26  *              Steve Whitehouse:       Default routines for sock_ops
27  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
28  *              			protinfo be just a void pointer, as the
29  *              			protocol specific parts were moved to
30  *              			respective headers and ipv4/v6, etc now
31  *              			use private slabcaches for its socks
32  *              Pedro Hortas	:	New flags field for socket options
33  *
34  *
35  *		This program is free software; you can redistribute it and/or
36  *		modify it under the terms of the GNU General Public License
37  *		as published by the Free Software Foundation; either version
38  *		2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h>	/* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/page_counter.h>
58 #include <linux/memcontrol.h>
59 #include <linux/static_key.h>
60 #include <linux/sched.h>
61 #include <linux/wait.h>
62 #include <linux/cgroup-defs.h>
63 
64 #include <linux/filter.h>
65 #include <linux/rculist_nulls.h>
66 #include <linux/poll.h>
67 
68 #include <linux/atomic.h>
69 #include <net/dst.h>
70 #include <net/checksum.h>
71 #include <net/tcp_states.h>
72 #include <linux/net_tstamp.h>
73 
74 /*
75  * This structure really needs to be cleaned up.
76  * Most of it is for TCP, and not used by any of
77  * the other protocols.
78  */
79 
80 /* Define this to get the SOCK_DBG debugging facility. */
81 #define SOCK_DEBUGGING
82 #ifdef SOCK_DEBUGGING
83 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
84 					printk(KERN_DEBUG msg); } while (0)
85 #else
86 /* Validate arguments and do nothing */
87 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)88 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
89 {
90 }
91 #endif
92 
93 /* This is the per-socket lock.  The spinlock provides a synchronization
94  * between user contexts and software interrupt processing, whereas the
95  * mini-semaphore synchronizes multiple users amongst themselves.
96  */
97 typedef struct {
98 	spinlock_t		slock;
99 	int			owned;
100 	wait_queue_head_t	wq;
101 	/*
102 	 * We express the mutex-alike socket_lock semantics
103 	 * to the lock validator by explicitly managing
104 	 * the slock as a lock variant (in addition to
105 	 * the slock itself):
106 	 */
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 	struct lockdep_map dep_map;
109 #endif
110 } socket_lock_t;
111 
112 struct sock;
113 struct proto;
114 struct net;
115 
116 typedef __u32 __bitwise __portpair;
117 typedef __u64 __bitwise __addrpair;
118 
119 /**
120  *	struct sock_common - minimal network layer representation of sockets
121  *	@skc_daddr: Foreign IPv4 addr
122  *	@skc_rcv_saddr: Bound local IPv4 addr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_family: network address family
128  *	@skc_state: Connection state
129  *	@skc_reuse: %SO_REUSEADDR setting
130  *	@skc_reuseport: %SO_REUSEPORT setting
131  *	@skc_bound_dev_if: bound device index if != 0
132  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
133  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
134  *	@skc_prot: protocol handlers inside a network family
135  *	@skc_net: reference to the network namespace of this socket
136  *	@skc_node: main hash linkage for various protocol lookup tables
137  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
138  *	@skc_tx_queue_mapping: tx queue number for this connection
139  *	@skc_flags: place holder for sk_flags
140  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
141  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
142  *	@skc_incoming_cpu: record/match cpu processing incoming packets
143  *	@skc_refcnt: reference count
144  *
145  *	This is the minimal network layer representation of sockets, the header
146  *	for struct sock and struct inet_timewait_sock.
147  */
148 struct sock_common {
149 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
150 	 * address on 64bit arches : cf INET_MATCH()
151 	 */
152 	union {
153 		__addrpair	skc_addrpair;
154 		struct {
155 			__be32	skc_daddr;
156 			__be32	skc_rcv_saddr;
157 		};
158 	};
159 	union  {
160 		unsigned int	skc_hash;
161 		__u16		skc_u16hashes[2];
162 	};
163 	/* skc_dport && skc_num must be grouped as well */
164 	union {
165 		__portpair	skc_portpair;
166 		struct {
167 			__be16	skc_dport;
168 			__u16	skc_num;
169 		};
170 	};
171 
172 	unsigned short		skc_family;
173 	volatile unsigned char	skc_state;
174 	unsigned char		skc_reuse:4;
175 	unsigned char		skc_reuseport:1;
176 	unsigned char		skc_ipv6only:1;
177 	unsigned char		skc_net_refcnt:1;
178 	int			skc_bound_dev_if;
179 	union {
180 		struct hlist_node	skc_bind_node;
181 		struct hlist_node	skc_portaddr_node;
182 	};
183 	struct proto		*skc_prot;
184 	possible_net_t		skc_net;
185 
186 #if IS_ENABLED(CONFIG_IPV6)
187 	struct in6_addr		skc_v6_daddr;
188 	struct in6_addr		skc_v6_rcv_saddr;
189 #endif
190 
191 	atomic64_t		skc_cookie;
192 
193 	/* following fields are padding to force
194 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
195 	 * assuming IPV6 is enabled. We use this padding differently
196 	 * for different kind of 'sockets'
197 	 */
198 	union {
199 		unsigned long	skc_flags;
200 		struct sock	*skc_listener; /* request_sock */
201 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
202 	};
203 	/*
204 	 * fields between dontcopy_begin/dontcopy_end
205 	 * are not copied in sock_copy()
206 	 */
207 	/* private: */
208 	int			skc_dontcopy_begin[0];
209 	/* public: */
210 	union {
211 		struct hlist_node	skc_node;
212 		struct hlist_nulls_node skc_nulls_node;
213 	};
214 	int			skc_tx_queue_mapping;
215 	union {
216 		int		skc_incoming_cpu;
217 		u32		skc_rcv_wnd;
218 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
219 	};
220 
221 	atomic_t		skc_refcnt;
222 	/* private: */
223 	int                     skc_dontcopy_end[0];
224 	union {
225 		u32		skc_rxhash;
226 		u32		skc_window_clamp;
227 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
228 	};
229 	/* public: */
230 };
231 
232 /**
233   *	struct sock - network layer representation of sockets
234   *	@__sk_common: shared layout with inet_timewait_sock
235   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
236   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
237   *	@sk_lock:	synchronizer
238   *	@sk_rcvbuf: size of receive buffer in bytes
239   *	@sk_wq: sock wait queue and async head
240   *	@sk_rx_dst: receive input route used by early demux
241   *	@sk_dst_cache: destination cache
242   *	@sk_policy: flow policy
243   *	@sk_receive_queue: incoming packets
244   *	@sk_wmem_alloc: transmit queue bytes committed
245   *	@sk_write_queue: Packet sending queue
246   *	@sk_omem_alloc: "o" is "option" or "other"
247   *	@sk_wmem_queued: persistent queue size
248   *	@sk_forward_alloc: space allocated forward
249   *	@sk_napi_id: id of the last napi context to receive data for sk
250   *	@sk_ll_usec: usecs to busypoll when there is no data
251   *	@sk_allocation: allocation mode
252   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
253   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
254   *	@sk_sndbuf: size of send buffer in bytes
255   *	@sk_padding: unused element for alignment
256   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
257   *	@sk_no_check_rx: allow zero checksum in RX packets
258   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
259   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
260   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
261   *	@sk_gso_max_size: Maximum GSO segment size to build
262   *	@sk_gso_max_segs: Maximum number of GSO segments
263   *	@sk_lingertime: %SO_LINGER l_linger setting
264   *	@sk_backlog: always used with the per-socket spinlock held
265   *	@sk_callback_lock: used with the callbacks in the end of this struct
266   *	@sk_error_queue: rarely used
267   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
268   *			  IPV6_ADDRFORM for instance)
269   *	@sk_err: last error
270   *	@sk_err_soft: errors that don't cause failure but are the cause of a
271   *		      persistent failure not just 'timed out'
272   *	@sk_drops: raw/udp drops counter
273   *	@sk_ack_backlog: current listen backlog
274   *	@sk_max_ack_backlog: listen backlog set in listen()
275   *	@sk_priority: %SO_PRIORITY setting
276   *	@sk_type: socket type (%SOCK_STREAM, etc)
277   *	@sk_protocol: which protocol this socket belongs in this network family
278   *	@sk_peer_pid: &struct pid for this socket's peer
279   *	@sk_peer_cred: %SO_PEERCRED setting
280   *	@sk_rcvlowat: %SO_RCVLOWAT setting
281   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
282   *	@sk_sndtimeo: %SO_SNDTIMEO setting
283   *	@sk_txhash: computed flow hash for use on transmit
284   *	@sk_filter: socket filtering instructions
285   *	@sk_timer: sock cleanup timer
286   *	@sk_stamp: time stamp of last packet received
287   *	@sk_tsflags: SO_TIMESTAMPING socket options
288   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
289   *	@sk_socket: Identd and reporting IO signals
290   *	@sk_user_data: RPC layer private data
291   *	@sk_frag: cached page frag
292   *	@sk_peek_off: current peek_offset value
293   *	@sk_send_head: front of stuff to transmit
294   *	@sk_security: used by security modules
295   *	@sk_mark: generic packet mark
296   *	@sk_cgrp_data: cgroup data for this cgroup
297   *	@sk_memcg: this socket's memory cgroup association
298   *	@sk_write_pending: a write to stream socket waits to start
299   *	@sk_state_change: callback to indicate change in the state of the sock
300   *	@sk_data_ready: callback to indicate there is data to be processed
301   *	@sk_write_space: callback to indicate there is bf sending space available
302   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
303   *	@sk_backlog_rcv: callback to process the backlog
304   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
305   *	@sk_reuseport_cb: reuseport group container
306   *	@sk_rcu: used during RCU grace period
307   */
308 struct sock {
309 	/*
310 	 * Now struct inet_timewait_sock also uses sock_common, so please just
311 	 * don't add nothing before this first member (__sk_common) --acme
312 	 */
313 	struct sock_common	__sk_common;
314 #define sk_node			__sk_common.skc_node
315 #define sk_nulls_node		__sk_common.skc_nulls_node
316 #define sk_refcnt		__sk_common.skc_refcnt
317 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
318 
319 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
320 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
321 #define sk_hash			__sk_common.skc_hash
322 #define sk_portpair		__sk_common.skc_portpair
323 #define sk_num			__sk_common.skc_num
324 #define sk_dport		__sk_common.skc_dport
325 #define sk_addrpair		__sk_common.skc_addrpair
326 #define sk_daddr		__sk_common.skc_daddr
327 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
328 #define sk_family		__sk_common.skc_family
329 #define sk_state		__sk_common.skc_state
330 #define sk_reuse		__sk_common.skc_reuse
331 #define sk_reuseport		__sk_common.skc_reuseport
332 #define sk_ipv6only		__sk_common.skc_ipv6only
333 #define sk_net_refcnt		__sk_common.skc_net_refcnt
334 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
335 #define sk_bind_node		__sk_common.skc_bind_node
336 #define sk_prot			__sk_common.skc_prot
337 #define sk_net			__sk_common.skc_net
338 #define sk_v6_daddr		__sk_common.skc_v6_daddr
339 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
340 #define sk_cookie		__sk_common.skc_cookie
341 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
342 #define sk_flags		__sk_common.skc_flags
343 #define sk_rxhash		__sk_common.skc_rxhash
344 
345 	socket_lock_t		sk_lock;
346 	struct sk_buff_head	sk_receive_queue;
347 	/*
348 	 * The backlog queue is special, it is always used with
349 	 * the per-socket spinlock held and requires low latency
350 	 * access. Therefore we special case it's implementation.
351 	 * Note : rmem_alloc is in this structure to fill a hole
352 	 * on 64bit arches, not because its logically part of
353 	 * backlog.
354 	 */
355 	struct {
356 		atomic_t	rmem_alloc;
357 		int		len;
358 		struct sk_buff	*head;
359 		struct sk_buff	*tail;
360 	} sk_backlog;
361 #define sk_rmem_alloc sk_backlog.rmem_alloc
362 	int			sk_forward_alloc;
363 
364 	__u32			sk_txhash;
365 #ifdef CONFIG_NET_RX_BUSY_POLL
366 	unsigned int		sk_napi_id;
367 	unsigned int		sk_ll_usec;
368 #endif
369 	atomic_t		sk_drops;
370 	int			sk_rcvbuf;
371 
372 	struct sk_filter __rcu	*sk_filter;
373 	union {
374 		struct socket_wq __rcu	*sk_wq;
375 		struct socket_wq	*sk_wq_raw;
376 	};
377 #ifdef CONFIG_XFRM
378 	struct xfrm_policy __rcu *sk_policy[2];
379 #endif
380 	struct dst_entry	*sk_rx_dst;
381 	struct dst_entry __rcu	*sk_dst_cache;
382 	/* Note: 32bit hole on 64bit arches */
383 	atomic_t		sk_wmem_alloc;
384 	atomic_t		sk_omem_alloc;
385 	int			sk_sndbuf;
386 	struct sk_buff_head	sk_write_queue;
387 
388 	/*
389 	 * Because of non atomicity rules, all
390 	 * changes are protected by socket lock.
391 	 */
392 	kmemcheck_bitfield_begin(flags);
393 	unsigned int		sk_padding : 2,
394 				sk_no_check_tx : 1,
395 				sk_no_check_rx : 1,
396 				sk_userlocks : 4,
397 				sk_protocol  : 8,
398 				sk_type      : 16;
399 #define SK_PROTOCOL_MAX U8_MAX
400 	kmemcheck_bitfield_end(flags);
401 
402 	int			sk_wmem_queued;
403 	gfp_t			sk_allocation;
404 	u32			sk_pacing_rate; /* bytes per second */
405 	u32			sk_max_pacing_rate;
406 	netdev_features_t	sk_route_caps;
407 	netdev_features_t	sk_route_nocaps;
408 	int			sk_gso_type;
409 	unsigned int		sk_gso_max_size;
410 	u16			sk_gso_max_segs;
411 	int			sk_rcvlowat;
412 	unsigned long	        sk_lingertime;
413 	struct sk_buff_head	sk_error_queue;
414 	struct proto		*sk_prot_creator;
415 	rwlock_t		sk_callback_lock;
416 	int			sk_err,
417 				sk_err_soft;
418 	u32			sk_ack_backlog;
419 	u32			sk_max_ack_backlog;
420 	__u32			sk_priority;
421 	__u32			sk_mark;
422 	kuid_t			sk_uid;
423 	struct pid		*sk_peer_pid;
424 	const struct cred	*sk_peer_cred;
425 	long			sk_rcvtimeo;
426 	long			sk_sndtimeo;
427 	struct timer_list	sk_timer;
428 	ktime_t			sk_stamp;
429 	u16			sk_tsflags;
430 	u8			sk_shutdown;
431 	u32			sk_tskey;
432 	struct socket		*sk_socket;
433 	void			*sk_user_data;
434 	struct page_frag	sk_frag;
435 	struct sk_buff		*sk_send_head;
436 	__s32			sk_peek_off;
437 	int			sk_write_pending;
438 #ifdef CONFIG_SECURITY
439 	void			*sk_security;
440 #endif
441 	struct sock_cgroup_data	sk_cgrp_data;
442 	struct mem_cgroup	*sk_memcg;
443 	void			(*sk_state_change)(struct sock *sk);
444 	void			(*sk_data_ready)(struct sock *sk);
445 	void			(*sk_write_space)(struct sock *sk);
446 	void			(*sk_error_report)(struct sock *sk);
447 	int			(*sk_backlog_rcv)(struct sock *sk,
448 						  struct sk_buff *skb);
449 	void                    (*sk_destruct)(struct sock *sk);
450 	struct sock_reuseport __rcu	*sk_reuseport_cb;
451 	struct rcu_head		sk_rcu;
452 };
453 
454 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
455 
456 #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
457 #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
458 
459 /*
460  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
461  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
462  * on a socket means that the socket will reuse everybody else's port
463  * without looking at the other's sk_reuse value.
464  */
465 
466 #define SK_NO_REUSE	0
467 #define SK_CAN_REUSE	1
468 #define SK_FORCE_REUSE	2
469 
470 int sk_set_peek_off(struct sock *sk, int val);
471 
sk_peek_offset(struct sock * sk,int flags)472 static inline int sk_peek_offset(struct sock *sk, int flags)
473 {
474 	if (unlikely(flags & MSG_PEEK)) {
475 		s32 off = READ_ONCE(sk->sk_peek_off);
476 		if (off >= 0)
477 			return off;
478 	}
479 
480 	return 0;
481 }
482 
sk_peek_offset_bwd(struct sock * sk,int val)483 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
484 {
485 	s32 off = READ_ONCE(sk->sk_peek_off);
486 
487 	if (unlikely(off >= 0)) {
488 		off = max_t(s32, off - val, 0);
489 		WRITE_ONCE(sk->sk_peek_off, off);
490 	}
491 }
492 
sk_peek_offset_fwd(struct sock * sk,int val)493 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
494 {
495 	sk_peek_offset_bwd(sk, -val);
496 }
497 
498 /*
499  * Hashed lists helper routines
500  */
sk_entry(const struct hlist_node * node)501 static inline struct sock *sk_entry(const struct hlist_node *node)
502 {
503 	return hlist_entry(node, struct sock, sk_node);
504 }
505 
__sk_head(const struct hlist_head * head)506 static inline struct sock *__sk_head(const struct hlist_head *head)
507 {
508 	return hlist_entry(head->first, struct sock, sk_node);
509 }
510 
sk_head(const struct hlist_head * head)511 static inline struct sock *sk_head(const struct hlist_head *head)
512 {
513 	return hlist_empty(head) ? NULL : __sk_head(head);
514 }
515 
__sk_nulls_head(const struct hlist_nulls_head * head)516 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
517 {
518 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
519 }
520 
sk_nulls_head(const struct hlist_nulls_head * head)521 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
522 {
523 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
524 }
525 
sk_next(const struct sock * sk)526 static inline struct sock *sk_next(const struct sock *sk)
527 {
528 	return sk->sk_node.next ?
529 		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
530 }
531 
sk_nulls_next(const struct sock * sk)532 static inline struct sock *sk_nulls_next(const struct sock *sk)
533 {
534 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
535 		hlist_nulls_entry(sk->sk_nulls_node.next,
536 				  struct sock, sk_nulls_node) :
537 		NULL;
538 }
539 
sk_unhashed(const struct sock * sk)540 static inline bool sk_unhashed(const struct sock *sk)
541 {
542 	return hlist_unhashed(&sk->sk_node);
543 }
544 
sk_hashed(const struct sock * sk)545 static inline bool sk_hashed(const struct sock *sk)
546 {
547 	return !sk_unhashed(sk);
548 }
549 
sk_node_init(struct hlist_node * node)550 static inline void sk_node_init(struct hlist_node *node)
551 {
552 	node->pprev = NULL;
553 }
554 
sk_nulls_node_init(struct hlist_nulls_node * node)555 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
556 {
557 	node->pprev = NULL;
558 }
559 
__sk_del_node(struct sock * sk)560 static inline void __sk_del_node(struct sock *sk)
561 {
562 	__hlist_del(&sk->sk_node);
563 }
564 
565 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)566 static inline bool __sk_del_node_init(struct sock *sk)
567 {
568 	if (sk_hashed(sk)) {
569 		__sk_del_node(sk);
570 		sk_node_init(&sk->sk_node);
571 		return true;
572 	}
573 	return false;
574 }
575 
576 /* Grab socket reference count. This operation is valid only
577    when sk is ALREADY grabbed f.e. it is found in hash table
578    or a list and the lookup is made under lock preventing hash table
579    modifications.
580  */
581 
sock_hold(struct sock * sk)582 static __always_inline void sock_hold(struct sock *sk)
583 {
584 	atomic_inc(&sk->sk_refcnt);
585 }
586 
587 /* Ungrab socket in the context, which assumes that socket refcnt
588    cannot hit zero, f.e. it is true in context of any socketcall.
589  */
__sock_put(struct sock * sk)590 static __always_inline void __sock_put(struct sock *sk)
591 {
592 	atomic_dec(&sk->sk_refcnt);
593 }
594 
sk_del_node_init(struct sock * sk)595 static inline bool sk_del_node_init(struct sock *sk)
596 {
597 	bool rc = __sk_del_node_init(sk);
598 
599 	if (rc) {
600 		/* paranoid for a while -acme */
601 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
602 		__sock_put(sk);
603 	}
604 	return rc;
605 }
606 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
607 
__sk_nulls_del_node_init_rcu(struct sock * sk)608 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
609 {
610 	if (sk_hashed(sk)) {
611 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
612 		return true;
613 	}
614 	return false;
615 }
616 
sk_nulls_del_node_init_rcu(struct sock * sk)617 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
618 {
619 	bool rc = __sk_nulls_del_node_init_rcu(sk);
620 
621 	if (rc) {
622 		/* paranoid for a while -acme */
623 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
624 		__sock_put(sk);
625 	}
626 	return rc;
627 }
628 
__sk_add_node(struct sock * sk,struct hlist_head * list)629 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
630 {
631 	hlist_add_head(&sk->sk_node, list);
632 }
633 
sk_add_node(struct sock * sk,struct hlist_head * list)634 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
635 {
636 	sock_hold(sk);
637 	__sk_add_node(sk, list);
638 }
639 
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)640 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
641 {
642 	sock_hold(sk);
643 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
644 	    sk->sk_family == AF_INET6)
645 		hlist_add_tail_rcu(&sk->sk_node, list);
646 	else
647 		hlist_add_head_rcu(&sk->sk_node, list);
648 }
649 
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)650 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
651 {
652 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
653 }
654 
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)655 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
656 {
657 	sock_hold(sk);
658 	__sk_nulls_add_node_rcu(sk, list);
659 }
660 
__sk_del_bind_node(struct sock * sk)661 static inline void __sk_del_bind_node(struct sock *sk)
662 {
663 	__hlist_del(&sk->sk_bind_node);
664 }
665 
sk_add_bind_node(struct sock * sk,struct hlist_head * list)666 static inline void sk_add_bind_node(struct sock *sk,
667 					struct hlist_head *list)
668 {
669 	hlist_add_head(&sk->sk_bind_node, list);
670 }
671 
672 #define sk_for_each(__sk, list) \
673 	hlist_for_each_entry(__sk, list, sk_node)
674 #define sk_for_each_rcu(__sk, list) \
675 	hlist_for_each_entry_rcu(__sk, list, sk_node)
676 #define sk_nulls_for_each(__sk, node, list) \
677 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
678 #define sk_nulls_for_each_rcu(__sk, node, list) \
679 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
680 #define sk_for_each_from(__sk) \
681 	hlist_for_each_entry_from(__sk, sk_node)
682 #define sk_nulls_for_each_from(__sk, node) \
683 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
684 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
685 #define sk_for_each_safe(__sk, tmp, list) \
686 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
687 #define sk_for_each_bound(__sk, list) \
688 	hlist_for_each_entry(__sk, list, sk_bind_node)
689 
690 /**
691  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
692  * @tpos:	the type * to use as a loop cursor.
693  * @pos:	the &struct hlist_node to use as a loop cursor.
694  * @head:	the head for your list.
695  * @offset:	offset of hlist_node within the struct.
696  *
697  */
698 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
699 	for (pos = rcu_dereference((head)->first);			       \
700 	     pos != NULL &&						       \
701 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
702 	     pos = rcu_dereference(pos->next))
703 
sk_user_ns(struct sock * sk)704 static inline struct user_namespace *sk_user_ns(struct sock *sk)
705 {
706 	/* Careful only use this in a context where these parameters
707 	 * can not change and must all be valid, such as recvmsg from
708 	 * userspace.
709 	 */
710 	return sk->sk_socket->file->f_cred->user_ns;
711 }
712 
713 /* Sock flags */
714 enum sock_flags {
715 	SOCK_DEAD,
716 	SOCK_DONE,
717 	SOCK_URGINLINE,
718 	SOCK_KEEPOPEN,
719 	SOCK_LINGER,
720 	SOCK_DESTROY,
721 	SOCK_BROADCAST,
722 	SOCK_TIMESTAMP,
723 	SOCK_ZAPPED,
724 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
725 	SOCK_DBG, /* %SO_DEBUG setting */
726 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
727 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
728 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
729 	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
730 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
731 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
732 	SOCK_FASYNC, /* fasync() active */
733 	SOCK_RXQ_OVFL,
734 	SOCK_ZEROCOPY, /* buffers from userspace */
735 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
736 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
737 		     * Will use last 4 bytes of packet sent from
738 		     * user-space instead.
739 		     */
740 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
741 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
742 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
743 };
744 
745 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
746 
sock_copy_flags(struct sock * nsk,struct sock * osk)747 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
748 {
749 	nsk->sk_flags = osk->sk_flags;
750 }
751 
sock_set_flag(struct sock * sk,enum sock_flags flag)752 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
753 {
754 	__set_bit(flag, &sk->sk_flags);
755 }
756 
sock_reset_flag(struct sock * sk,enum sock_flags flag)757 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
758 {
759 	__clear_bit(flag, &sk->sk_flags);
760 }
761 
sock_flag(const struct sock * sk,enum sock_flags flag)762 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
763 {
764 	return test_bit(flag, &sk->sk_flags);
765 }
766 
767 #ifdef CONFIG_NET
768 extern struct static_key memalloc_socks;
sk_memalloc_socks(void)769 static inline int sk_memalloc_socks(void)
770 {
771 	return static_key_false(&memalloc_socks);
772 }
773 #else
774 
sk_memalloc_socks(void)775 static inline int sk_memalloc_socks(void)
776 {
777 	return 0;
778 }
779 
780 #endif
781 
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)782 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
783 {
784 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
785 }
786 
sk_acceptq_removed(struct sock * sk)787 static inline void sk_acceptq_removed(struct sock *sk)
788 {
789 	sk->sk_ack_backlog--;
790 }
791 
sk_acceptq_added(struct sock * sk)792 static inline void sk_acceptq_added(struct sock *sk)
793 {
794 	sk->sk_ack_backlog++;
795 }
796 
sk_acceptq_is_full(const struct sock * sk)797 static inline bool sk_acceptq_is_full(const struct sock *sk)
798 {
799 	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
800 }
801 
802 /*
803  * Compute minimal free write space needed to queue new packets.
804  */
sk_stream_min_wspace(const struct sock * sk)805 static inline int sk_stream_min_wspace(const struct sock *sk)
806 {
807 	return sk->sk_wmem_queued >> 1;
808 }
809 
sk_stream_wspace(const struct sock * sk)810 static inline int sk_stream_wspace(const struct sock *sk)
811 {
812 	return sk->sk_sndbuf - sk->sk_wmem_queued;
813 }
814 
815 void sk_stream_write_space(struct sock *sk);
816 
817 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)818 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
819 {
820 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
821 	skb_dst_force_safe(skb);
822 
823 	if (!sk->sk_backlog.tail)
824 		sk->sk_backlog.head = skb;
825 	else
826 		sk->sk_backlog.tail->next = skb;
827 
828 	sk->sk_backlog.tail = skb;
829 	skb->next = NULL;
830 }
831 
832 /*
833  * Take into account size of receive queue and backlog queue
834  * Do not take into account this skb truesize,
835  * to allow even a single big packet to come.
836  */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)837 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
838 {
839 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
840 
841 	return qsize > limit;
842 }
843 
844 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)845 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
846 					      unsigned int limit)
847 {
848 	if (sk_rcvqueues_full(sk, limit))
849 		return -ENOBUFS;
850 
851 	/*
852 	 * If the skb was allocated from pfmemalloc reserves, only
853 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
854 	 * helping free memory
855 	 */
856 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
857 		return -ENOMEM;
858 
859 	__sk_add_backlog(sk, skb);
860 	sk->sk_backlog.len += skb->truesize;
861 	return 0;
862 }
863 
864 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
865 
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)866 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
867 {
868 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
869 		return __sk_backlog_rcv(sk, skb);
870 
871 	return sk->sk_backlog_rcv(sk, skb);
872 }
873 
sk_incoming_cpu_update(struct sock * sk)874 static inline void sk_incoming_cpu_update(struct sock *sk)
875 {
876 	sk->sk_incoming_cpu = raw_smp_processor_id();
877 }
878 
sock_rps_record_flow_hash(__u32 hash)879 static inline void sock_rps_record_flow_hash(__u32 hash)
880 {
881 #ifdef CONFIG_RPS
882 	struct rps_sock_flow_table *sock_flow_table;
883 
884 	rcu_read_lock();
885 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
886 	rps_record_sock_flow(sock_flow_table, hash);
887 	rcu_read_unlock();
888 #endif
889 }
890 
sock_rps_record_flow(const struct sock * sk)891 static inline void sock_rps_record_flow(const struct sock *sk)
892 {
893 #ifdef CONFIG_RPS
894 	sock_rps_record_flow_hash(sk->sk_rxhash);
895 #endif
896 }
897 
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)898 static inline void sock_rps_save_rxhash(struct sock *sk,
899 					const struct sk_buff *skb)
900 {
901 #ifdef CONFIG_RPS
902 	if (unlikely(sk->sk_rxhash != skb->hash))
903 		sk->sk_rxhash = skb->hash;
904 #endif
905 }
906 
sock_rps_reset_rxhash(struct sock * sk)907 static inline void sock_rps_reset_rxhash(struct sock *sk)
908 {
909 #ifdef CONFIG_RPS
910 	sk->sk_rxhash = 0;
911 #endif
912 }
913 
914 #define sk_wait_event(__sk, __timeo, __condition)			\
915 	({	int __rc;						\
916 		release_sock(__sk);					\
917 		__rc = __condition;					\
918 		if (!__rc) {						\
919 			*(__timeo) = schedule_timeout(*(__timeo));	\
920 		}							\
921 		sched_annotate_sleep();						\
922 		lock_sock(__sk);					\
923 		__rc = __condition;					\
924 		__rc;							\
925 	})
926 
927 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
928 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
929 void sk_stream_wait_close(struct sock *sk, long timeo_p);
930 int sk_stream_error(struct sock *sk, int flags, int err);
931 void sk_stream_kill_queues(struct sock *sk);
932 void sk_set_memalloc(struct sock *sk);
933 void sk_clear_memalloc(struct sock *sk);
934 
935 void __sk_flush_backlog(struct sock *sk);
936 
sk_flush_backlog(struct sock * sk)937 static inline bool sk_flush_backlog(struct sock *sk)
938 {
939 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
940 		__sk_flush_backlog(sk);
941 		return true;
942 	}
943 	return false;
944 }
945 
946 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
947 
948 struct request_sock_ops;
949 struct timewait_sock_ops;
950 struct inet_hashinfo;
951 struct raw_hashinfo;
952 struct module;
953 
954 /*
955  * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
956  * un-modified. Special care is taken when initializing object to zero.
957  */
sk_prot_clear_nulls(struct sock * sk,int size)958 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
959 {
960 	if (offsetof(struct sock, sk_node.next) != 0)
961 		memset(sk, 0, offsetof(struct sock, sk_node.next));
962 	memset(&sk->sk_node.pprev, 0,
963 	       size - offsetof(struct sock, sk_node.pprev));
964 }
965 
966 /* Networking protocol blocks we attach to sockets.
967  * socket layer -> transport layer interface
968  */
969 struct proto {
970 	void			(*close)(struct sock *sk,
971 					long timeout);
972 	int			(*connect)(struct sock *sk,
973 					struct sockaddr *uaddr,
974 					int addr_len);
975 	int			(*disconnect)(struct sock *sk, int flags);
976 
977 	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
978 
979 	int			(*ioctl)(struct sock *sk, int cmd,
980 					 unsigned long arg);
981 	int			(*init)(struct sock *sk);
982 	void			(*destroy)(struct sock *sk);
983 	void			(*shutdown)(struct sock *sk, int how);
984 	int			(*setsockopt)(struct sock *sk, int level,
985 					int optname, char __user *optval,
986 					unsigned int optlen);
987 	int			(*getsockopt)(struct sock *sk, int level,
988 					int optname, char __user *optval,
989 					int __user *option);
990 #ifdef CONFIG_COMPAT
991 	int			(*compat_setsockopt)(struct sock *sk,
992 					int level,
993 					int optname, char __user *optval,
994 					unsigned int optlen);
995 	int			(*compat_getsockopt)(struct sock *sk,
996 					int level,
997 					int optname, char __user *optval,
998 					int __user *option);
999 	int			(*compat_ioctl)(struct sock *sk,
1000 					unsigned int cmd, unsigned long arg);
1001 #endif
1002 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1003 					   size_t len);
1004 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1005 					   size_t len, int noblock, int flags,
1006 					   int *addr_len);
1007 	int			(*sendpage)(struct sock *sk, struct page *page,
1008 					int offset, size_t size, int flags);
1009 	int			(*bind)(struct sock *sk,
1010 					struct sockaddr *uaddr, int addr_len);
1011 
1012 	int			(*backlog_rcv) (struct sock *sk,
1013 						struct sk_buff *skb);
1014 
1015 	void		(*release_cb)(struct sock *sk);
1016 
1017 	/* Keeping track of sk's, looking them up, and port selection methods. */
1018 	int			(*hash)(struct sock *sk);
1019 	void			(*unhash)(struct sock *sk);
1020 	void			(*rehash)(struct sock *sk);
1021 	int			(*get_port)(struct sock *sk, unsigned short snum);
1022 
1023 	/* Keeping track of sockets in use */
1024 #ifdef CONFIG_PROC_FS
1025 	unsigned int		inuse_idx;
1026 #endif
1027 
1028 	bool			(*stream_memory_free)(const struct sock *sk);
1029 	/* Memory pressure */
1030 	void			(*enter_memory_pressure)(struct sock *sk);
1031 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1032 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1033 	/*
1034 	 * Pressure flag: try to collapse.
1035 	 * Technical note: it is used by multiple contexts non atomically.
1036 	 * All the __sk_mem_schedule() is of this nature: accounting
1037 	 * is strict, actions are advisory and have some latency.
1038 	 */
1039 	int			*memory_pressure;
1040 	long			*sysctl_mem;
1041 	int			*sysctl_wmem;
1042 	int			*sysctl_rmem;
1043 	int			max_header;
1044 	bool			no_autobind;
1045 
1046 	struct kmem_cache	*slab;
1047 	unsigned int		obj_size;
1048 	int			slab_flags;
1049 
1050 	struct percpu_counter	*orphan_count;
1051 
1052 	struct request_sock_ops	*rsk_prot;
1053 	struct timewait_sock_ops *twsk_prot;
1054 
1055 	union {
1056 		struct inet_hashinfo	*hashinfo;
1057 		struct udp_table	*udp_table;
1058 		struct raw_hashinfo	*raw_hash;
1059 	} h;
1060 
1061 	struct module		*owner;
1062 
1063 	char			name[32];
1064 
1065 	struct list_head	node;
1066 #ifdef SOCK_REFCNT_DEBUG
1067 	atomic_t		socks;
1068 #endif
1069 	int			(*diag_destroy)(struct sock *sk, int err);
1070 };
1071 
1072 int proto_register(struct proto *prot, int alloc_slab);
1073 void proto_unregister(struct proto *prot);
1074 
1075 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1076 static inline void sk_refcnt_debug_inc(struct sock *sk)
1077 {
1078 	atomic_inc(&sk->sk_prot->socks);
1079 }
1080 
sk_refcnt_debug_dec(struct sock * sk)1081 static inline void sk_refcnt_debug_dec(struct sock *sk)
1082 {
1083 	atomic_dec(&sk->sk_prot->socks);
1084 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1085 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1086 }
1087 
sk_refcnt_debug_release(const struct sock * sk)1088 static inline void sk_refcnt_debug_release(const struct sock *sk)
1089 {
1090 	if (atomic_read(&sk->sk_refcnt) != 1)
1091 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1092 		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1093 }
1094 #else /* SOCK_REFCNT_DEBUG */
1095 #define sk_refcnt_debug_inc(sk) do { } while (0)
1096 #define sk_refcnt_debug_dec(sk) do { } while (0)
1097 #define sk_refcnt_debug_release(sk) do { } while (0)
1098 #endif /* SOCK_REFCNT_DEBUG */
1099 
sk_stream_memory_free(const struct sock * sk)1100 static inline bool sk_stream_memory_free(const struct sock *sk)
1101 {
1102 	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1103 		return false;
1104 
1105 	return sk->sk_prot->stream_memory_free ?
1106 		sk->sk_prot->stream_memory_free(sk) : true;
1107 }
1108 
sk_stream_is_writeable(const struct sock * sk)1109 static inline bool sk_stream_is_writeable(const struct sock *sk)
1110 {
1111 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1112 	       sk_stream_memory_free(sk);
1113 }
1114 
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1115 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1116 					    struct cgroup *ancestor)
1117 {
1118 #ifdef CONFIG_SOCK_CGROUP_DATA
1119 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1120 				    ancestor);
1121 #else
1122 	return -ENOTSUPP;
1123 #endif
1124 }
1125 
sk_has_memory_pressure(const struct sock * sk)1126 static inline bool sk_has_memory_pressure(const struct sock *sk)
1127 {
1128 	return sk->sk_prot->memory_pressure != NULL;
1129 }
1130 
sk_under_memory_pressure(const struct sock * sk)1131 static inline bool sk_under_memory_pressure(const struct sock *sk)
1132 {
1133 	if (!sk->sk_prot->memory_pressure)
1134 		return false;
1135 
1136 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1137 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1138 		return true;
1139 
1140 	return !!*sk->sk_prot->memory_pressure;
1141 }
1142 
sk_leave_memory_pressure(struct sock * sk)1143 static inline void sk_leave_memory_pressure(struct sock *sk)
1144 {
1145 	int *memory_pressure = sk->sk_prot->memory_pressure;
1146 
1147 	if (!memory_pressure)
1148 		return;
1149 
1150 	if (*memory_pressure)
1151 		*memory_pressure = 0;
1152 }
1153 
sk_enter_memory_pressure(struct sock * sk)1154 static inline void sk_enter_memory_pressure(struct sock *sk)
1155 {
1156 	if (!sk->sk_prot->enter_memory_pressure)
1157 		return;
1158 
1159 	sk->sk_prot->enter_memory_pressure(sk);
1160 }
1161 
sk_prot_mem_limits(const struct sock * sk,int index)1162 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1163 {
1164 	return sk->sk_prot->sysctl_mem[index];
1165 }
1166 
1167 static inline long
sk_memory_allocated(const struct sock * sk)1168 sk_memory_allocated(const struct sock *sk)
1169 {
1170 	return atomic_long_read(sk->sk_prot->memory_allocated);
1171 }
1172 
1173 static inline long
sk_memory_allocated_add(struct sock * sk,int amt)1174 sk_memory_allocated_add(struct sock *sk, int amt)
1175 {
1176 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1177 }
1178 
1179 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1180 sk_memory_allocated_sub(struct sock *sk, int amt)
1181 {
1182 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1183 }
1184 
sk_sockets_allocated_dec(struct sock * sk)1185 static inline void sk_sockets_allocated_dec(struct sock *sk)
1186 {
1187 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1188 }
1189 
sk_sockets_allocated_inc(struct sock * sk)1190 static inline void sk_sockets_allocated_inc(struct sock *sk)
1191 {
1192 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1193 }
1194 
1195 static inline int
sk_sockets_allocated_read_positive(struct sock * sk)1196 sk_sockets_allocated_read_positive(struct sock *sk)
1197 {
1198 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1199 }
1200 
1201 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1202 proto_sockets_allocated_sum_positive(struct proto *prot)
1203 {
1204 	return percpu_counter_sum_positive(prot->sockets_allocated);
1205 }
1206 
1207 static inline long
proto_memory_allocated(struct proto * prot)1208 proto_memory_allocated(struct proto *prot)
1209 {
1210 	return atomic_long_read(prot->memory_allocated);
1211 }
1212 
1213 static inline bool
proto_memory_pressure(struct proto * prot)1214 proto_memory_pressure(struct proto *prot)
1215 {
1216 	if (!prot->memory_pressure)
1217 		return false;
1218 	return !!*prot->memory_pressure;
1219 }
1220 
1221 
1222 #ifdef CONFIG_PROC_FS
1223 /* Called with local bh disabled */
1224 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1225 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1226 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)1227 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1228 		int inc)
1229 {
1230 }
1231 #endif
1232 
1233 
1234 /* With per-bucket locks this operation is not-atomic, so that
1235  * this version is not worse.
1236  */
__sk_prot_rehash(struct sock * sk)1237 static inline int __sk_prot_rehash(struct sock *sk)
1238 {
1239 	sk->sk_prot->unhash(sk);
1240 	return sk->sk_prot->hash(sk);
1241 }
1242 
1243 /* About 10 seconds */
1244 #define SOCK_DESTROY_TIME (10*HZ)
1245 
1246 /* Sockets 0-1023 can't be bound to unless you are superuser */
1247 #define PROT_SOCK	1024
1248 
1249 #define SHUTDOWN_MASK	3
1250 #define RCV_SHUTDOWN	1
1251 #define SEND_SHUTDOWN	2
1252 
1253 #define SOCK_SNDBUF_LOCK	1
1254 #define SOCK_RCVBUF_LOCK	2
1255 #define SOCK_BINDADDR_LOCK	4
1256 #define SOCK_BINDPORT_LOCK	8
1257 
1258 struct socket_alloc {
1259 	struct socket socket;
1260 	struct inode vfs_inode;
1261 };
1262 
SOCKET_I(struct inode * inode)1263 static inline struct socket *SOCKET_I(struct inode *inode)
1264 {
1265 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1266 }
1267 
SOCK_INODE(struct socket * socket)1268 static inline struct inode *SOCK_INODE(struct socket *socket)
1269 {
1270 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1271 }
1272 
1273 /*
1274  * Functions for memory accounting
1275  */
1276 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1277 void __sk_mem_reclaim(struct sock *sk, int amount);
1278 
1279 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1280 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1281 #define SK_MEM_SEND	0
1282 #define SK_MEM_RECV	1
1283 
sk_mem_pages(int amt)1284 static inline int sk_mem_pages(int amt)
1285 {
1286 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1287 }
1288 
sk_has_account(struct sock * sk)1289 static inline bool sk_has_account(struct sock *sk)
1290 {
1291 	/* return true if protocol supports memory accounting */
1292 	return !!sk->sk_prot->memory_allocated;
1293 }
1294 
sk_wmem_schedule(struct sock * sk,int size)1295 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1296 {
1297 	if (!sk_has_account(sk))
1298 		return true;
1299 	return size <= sk->sk_forward_alloc ||
1300 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1301 }
1302 
1303 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1304 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1305 {
1306 	if (!sk_has_account(sk))
1307 		return true;
1308 	return size<= sk->sk_forward_alloc ||
1309 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1310 		skb_pfmemalloc(skb);
1311 }
1312 
sk_mem_reclaim(struct sock * sk)1313 static inline void sk_mem_reclaim(struct sock *sk)
1314 {
1315 	if (!sk_has_account(sk))
1316 		return;
1317 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1318 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1319 }
1320 
sk_mem_reclaim_partial(struct sock * sk)1321 static inline void sk_mem_reclaim_partial(struct sock *sk)
1322 {
1323 	if (!sk_has_account(sk))
1324 		return;
1325 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1326 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1327 }
1328 
sk_mem_charge(struct sock * sk,int size)1329 static inline void sk_mem_charge(struct sock *sk, int size)
1330 {
1331 	if (!sk_has_account(sk))
1332 		return;
1333 	sk->sk_forward_alloc -= size;
1334 }
1335 
sk_mem_uncharge(struct sock * sk,int size)1336 static inline void sk_mem_uncharge(struct sock *sk, int size)
1337 {
1338 	if (!sk_has_account(sk))
1339 		return;
1340 	sk->sk_forward_alloc += size;
1341 
1342 	/* Avoid a possible overflow.
1343 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1344 	 * is not called and more than 2 GBytes are released at once.
1345 	 *
1346 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1347 	 * no need to hold that much forward allocation anyway.
1348 	 */
1349 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1350 		__sk_mem_reclaim(sk, 1 << 20);
1351 }
1352 
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)1353 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1354 {
1355 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1356 	sk->sk_wmem_queued -= skb->truesize;
1357 	sk_mem_uncharge(sk, skb->truesize);
1358 	__kfree_skb(skb);
1359 }
1360 
sock_release_ownership(struct sock * sk)1361 static inline void sock_release_ownership(struct sock *sk)
1362 {
1363 	if (sk->sk_lock.owned) {
1364 		sk->sk_lock.owned = 0;
1365 
1366 		/* The sk_lock has mutex_unlock() semantics: */
1367 		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1368 	}
1369 }
1370 
1371 /*
1372  * Macro so as to not evaluate some arguments when
1373  * lockdep is not enabled.
1374  *
1375  * Mark both the sk_lock and the sk_lock.slock as a
1376  * per-address-family lock class.
1377  */
1378 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1379 do {									\
1380 	sk->sk_lock.owned = 0;						\
1381 	init_waitqueue_head(&sk->sk_lock.wq);				\
1382 	spin_lock_init(&(sk)->sk_lock.slock);				\
1383 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1384 			sizeof((sk)->sk_lock));				\
1385 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1386 				(skey), (sname));				\
1387 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1388 } while (0)
1389 
1390 #ifdef CONFIG_LOCKDEP
lockdep_sock_is_held(const struct sock * csk)1391 static inline bool lockdep_sock_is_held(const struct sock *csk)
1392 {
1393 	struct sock *sk = (struct sock *)csk;
1394 
1395 	return lockdep_is_held(&sk->sk_lock) ||
1396 	       lockdep_is_held(&sk->sk_lock.slock);
1397 }
1398 #endif
1399 
1400 void lock_sock_nested(struct sock *sk, int subclass);
1401 
lock_sock(struct sock * sk)1402 static inline void lock_sock(struct sock *sk)
1403 {
1404 	lock_sock_nested(sk, 0);
1405 }
1406 
1407 void release_sock(struct sock *sk);
1408 
1409 /* BH context may only use the following locking interface. */
1410 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1411 #define bh_lock_sock_nested(__sk) \
1412 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1413 				SINGLE_DEPTH_NESTING)
1414 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1415 
1416 bool lock_sock_fast(struct sock *sk);
1417 /**
1418  * unlock_sock_fast - complement of lock_sock_fast
1419  * @sk: socket
1420  * @slow: slow mode
1421  *
1422  * fast unlock socket for user context.
1423  * If slow mode is on, we call regular release_sock()
1424  */
unlock_sock_fast(struct sock * sk,bool slow)1425 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1426 {
1427 	if (slow)
1428 		release_sock(sk);
1429 	else
1430 		spin_unlock_bh(&sk->sk_lock.slock);
1431 }
1432 
1433 /* Used by processes to "lock" a socket state, so that
1434  * interrupts and bottom half handlers won't change it
1435  * from under us. It essentially blocks any incoming
1436  * packets, so that we won't get any new data or any
1437  * packets that change the state of the socket.
1438  *
1439  * While locked, BH processing will add new packets to
1440  * the backlog queue.  This queue is processed by the
1441  * owner of the socket lock right before it is released.
1442  *
1443  * Since ~2.3.5 it is also exclusive sleep lock serializing
1444  * accesses from user process context.
1445  */
1446 
sock_owned_by_me(const struct sock * sk)1447 static inline void sock_owned_by_me(const struct sock *sk)
1448 {
1449 #ifdef CONFIG_LOCKDEP
1450 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1451 #endif
1452 }
1453 
sock_owned_by_user(const struct sock * sk)1454 static inline bool sock_owned_by_user(const struct sock *sk)
1455 {
1456 	sock_owned_by_me(sk);
1457 	return sk->sk_lock.owned;
1458 }
1459 
1460 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1461 static inline bool sock_allow_reclassification(const struct sock *csk)
1462 {
1463 	struct sock *sk = (struct sock *)csk;
1464 
1465 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1466 }
1467 
1468 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1469 		      struct proto *prot, int kern);
1470 void sk_free(struct sock *sk);
1471 void sk_destruct(struct sock *sk);
1472 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1473 
1474 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1475 			     gfp_t priority);
1476 void __sock_wfree(struct sk_buff *skb);
1477 void sock_wfree(struct sk_buff *skb);
1478 void skb_orphan_partial(struct sk_buff *skb);
1479 void sock_rfree(struct sk_buff *skb);
1480 void sock_efree(struct sk_buff *skb);
1481 #ifdef CONFIG_INET
1482 void sock_edemux(struct sk_buff *skb);
1483 #else
1484 #define sock_edemux(skb) sock_efree(skb)
1485 #endif
1486 
1487 int sock_setsockopt(struct socket *sock, int level, int op,
1488 		    char __user *optval, unsigned int optlen);
1489 
1490 int sock_getsockopt(struct socket *sock, int level, int op,
1491 		    char __user *optval, int __user *optlen);
1492 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1493 				    int noblock, int *errcode);
1494 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1495 				     unsigned long data_len, int noblock,
1496 				     int *errcode, int max_page_order);
1497 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1498 void sock_kfree_s(struct sock *sk, void *mem, int size);
1499 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1500 void sk_send_sigurg(struct sock *sk);
1501 
1502 struct sockcm_cookie {
1503 	u32 mark;
1504 	u16 tsflags;
1505 };
1506 
1507 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1508 		     struct sockcm_cookie *sockc);
1509 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1510 		   struct sockcm_cookie *sockc);
1511 
1512 /*
1513  * Functions to fill in entries in struct proto_ops when a protocol
1514  * does not implement a particular function.
1515  */
1516 int sock_no_bind(struct socket *, struct sockaddr *, int);
1517 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1518 int sock_no_socketpair(struct socket *, struct socket *);
1519 int sock_no_accept(struct socket *, struct socket *, int);
1520 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1521 unsigned int sock_no_poll(struct file *, struct socket *,
1522 			  struct poll_table_struct *);
1523 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1524 int sock_no_listen(struct socket *, int);
1525 int sock_no_shutdown(struct socket *, int);
1526 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1527 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1528 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1529 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1530 int sock_no_mmap(struct file *file, struct socket *sock,
1531 		 struct vm_area_struct *vma);
1532 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1533 			 size_t size, int flags);
1534 
1535 /*
1536  * Functions to fill in entries in struct proto_ops when a protocol
1537  * uses the inet style.
1538  */
1539 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1540 				  char __user *optval, int __user *optlen);
1541 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1542 			int flags);
1543 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1544 				  char __user *optval, unsigned int optlen);
1545 int compat_sock_common_getsockopt(struct socket *sock, int level,
1546 		int optname, char __user *optval, int __user *optlen);
1547 int compat_sock_common_setsockopt(struct socket *sock, int level,
1548 		int optname, char __user *optval, unsigned int optlen);
1549 
1550 void sk_common_release(struct sock *sk);
1551 
1552 /*
1553  *	Default socket callbacks and setup code
1554  */
1555 
1556 /* Initialise core socket variables */
1557 void sock_init_data(struct socket *sock, struct sock *sk);
1558 
1559 /*
1560  * Socket reference counting postulates.
1561  *
1562  * * Each user of socket SHOULD hold a reference count.
1563  * * Each access point to socket (an hash table bucket, reference from a list,
1564  *   running timer, skb in flight MUST hold a reference count.
1565  * * When reference count hits 0, it means it will never increase back.
1566  * * When reference count hits 0, it means that no references from
1567  *   outside exist to this socket and current process on current CPU
1568  *   is last user and may/should destroy this socket.
1569  * * sk_free is called from any context: process, BH, IRQ. When
1570  *   it is called, socket has no references from outside -> sk_free
1571  *   may release descendant resources allocated by the socket, but
1572  *   to the time when it is called, socket is NOT referenced by any
1573  *   hash tables, lists etc.
1574  * * Packets, delivered from outside (from network or from another process)
1575  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1576  *   when they sit in queue. Otherwise, packets will leak to hole, when
1577  *   socket is looked up by one cpu and unhasing is made by another CPU.
1578  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1579  *   (leak to backlog). Packet socket does all the processing inside
1580  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1581  *   use separate SMP lock, so that they are prone too.
1582  */
1583 
1584 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1585 static inline void sock_put(struct sock *sk)
1586 {
1587 	if (atomic_dec_and_test(&sk->sk_refcnt))
1588 		sk_free(sk);
1589 }
1590 /* Generic version of sock_put(), dealing with all sockets
1591  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1592  */
1593 void sock_gen_put(struct sock *sk);
1594 
1595 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1596 		     unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1597 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1598 				 const int nested)
1599 {
1600 	return __sk_receive_skb(sk, skb, nested, 1, true);
1601 }
1602 
sk_tx_queue_set(struct sock * sk,int tx_queue)1603 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1604 {
1605 	sk->sk_tx_queue_mapping = tx_queue;
1606 }
1607 
sk_tx_queue_clear(struct sock * sk)1608 static inline void sk_tx_queue_clear(struct sock *sk)
1609 {
1610 	sk->sk_tx_queue_mapping = -1;
1611 }
1612 
sk_tx_queue_get(const struct sock * sk)1613 static inline int sk_tx_queue_get(const struct sock *sk)
1614 {
1615 	return sk ? sk->sk_tx_queue_mapping : -1;
1616 }
1617 
sk_set_socket(struct sock * sk,struct socket * sock)1618 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1619 {
1620 	sk_tx_queue_clear(sk);
1621 	sk->sk_socket = sock;
1622 }
1623 
sk_sleep(struct sock * sk)1624 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1625 {
1626 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1627 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1628 }
1629 /* Detach socket from process context.
1630  * Announce socket dead, detach it from wait queue and inode.
1631  * Note that parent inode held reference count on this struct sock,
1632  * we do not release it in this function, because protocol
1633  * probably wants some additional cleanups or even continuing
1634  * to work with this socket (TCP).
1635  */
sock_orphan(struct sock * sk)1636 static inline void sock_orphan(struct sock *sk)
1637 {
1638 	write_lock_bh(&sk->sk_callback_lock);
1639 	sock_set_flag(sk, SOCK_DEAD);
1640 	sk_set_socket(sk, NULL);
1641 	sk->sk_wq  = NULL;
1642 	write_unlock_bh(&sk->sk_callback_lock);
1643 }
1644 
sock_graft(struct sock * sk,struct socket * parent)1645 static inline void sock_graft(struct sock *sk, struct socket *parent)
1646 {
1647 	write_lock_bh(&sk->sk_callback_lock);
1648 	sk->sk_wq = parent->wq;
1649 	parent->sk = sk;
1650 	sk_set_socket(sk, parent);
1651 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1652 	security_sock_graft(sk, parent);
1653 	write_unlock_bh(&sk->sk_callback_lock);
1654 }
1655 
1656 kuid_t sock_i_uid(struct sock *sk);
1657 unsigned long sock_i_ino(struct sock *sk);
1658 
sock_net_uid(const struct net * net,const struct sock * sk)1659 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1660 {
1661 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1662 }
1663 
net_tx_rndhash(void)1664 static inline u32 net_tx_rndhash(void)
1665 {
1666 	u32 v = prandom_u32();
1667 
1668 	return v ?: 1;
1669 }
1670 
sk_set_txhash(struct sock * sk)1671 static inline void sk_set_txhash(struct sock *sk)
1672 {
1673 	sk->sk_txhash = net_tx_rndhash();
1674 }
1675 
sk_rethink_txhash(struct sock * sk)1676 static inline void sk_rethink_txhash(struct sock *sk)
1677 {
1678 	if (sk->sk_txhash)
1679 		sk_set_txhash(sk);
1680 }
1681 
1682 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)1683 __sk_dst_get(struct sock *sk)
1684 {
1685 	return rcu_dereference_check(sk->sk_dst_cache,
1686 				     lockdep_sock_is_held(sk));
1687 }
1688 
1689 static inline struct dst_entry *
sk_dst_get(struct sock * sk)1690 sk_dst_get(struct sock *sk)
1691 {
1692 	struct dst_entry *dst;
1693 
1694 	rcu_read_lock();
1695 	dst = rcu_dereference(sk->sk_dst_cache);
1696 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1697 		dst = NULL;
1698 	rcu_read_unlock();
1699 	return dst;
1700 }
1701 
dst_negative_advice(struct sock * sk)1702 static inline void dst_negative_advice(struct sock *sk)
1703 {
1704 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1705 
1706 	sk_rethink_txhash(sk);
1707 
1708 	if (dst && dst->ops->negative_advice) {
1709 		ndst = dst->ops->negative_advice(dst);
1710 
1711 		if (ndst != dst) {
1712 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
1713 			sk_tx_queue_clear(sk);
1714 		}
1715 	}
1716 }
1717 
1718 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)1719 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1720 {
1721 	struct dst_entry *old_dst;
1722 
1723 	sk_tx_queue_clear(sk);
1724 	/*
1725 	 * This can be called while sk is owned by the caller only,
1726 	 * with no state that can be checked in a rcu_dereference_check() cond
1727 	 */
1728 	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1729 	rcu_assign_pointer(sk->sk_dst_cache, dst);
1730 	dst_release(old_dst);
1731 }
1732 
1733 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)1734 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1735 {
1736 	struct dst_entry *old_dst;
1737 
1738 	sk_tx_queue_clear(sk);
1739 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1740 	dst_release(old_dst);
1741 }
1742 
1743 static inline void
__sk_dst_reset(struct sock * sk)1744 __sk_dst_reset(struct sock *sk)
1745 {
1746 	__sk_dst_set(sk, NULL);
1747 }
1748 
1749 static inline void
sk_dst_reset(struct sock * sk)1750 sk_dst_reset(struct sock *sk)
1751 {
1752 	sk_dst_set(sk, NULL);
1753 }
1754 
1755 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1756 
1757 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1758 
1759 bool sk_mc_loop(struct sock *sk);
1760 
sk_can_gso(const struct sock * sk)1761 static inline bool sk_can_gso(const struct sock *sk)
1762 {
1763 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1764 }
1765 
1766 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1767 
sk_nocaps_add(struct sock * sk,netdev_features_t flags)1768 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1769 {
1770 	sk->sk_route_nocaps |= flags;
1771 	sk->sk_route_caps &= ~flags;
1772 }
1773 
sk_check_csum_caps(struct sock * sk)1774 static inline bool sk_check_csum_caps(struct sock *sk)
1775 {
1776 	return (sk->sk_route_caps & NETIF_F_HW_CSUM) ||
1777 	       (sk->sk_family == PF_INET &&
1778 		(sk->sk_route_caps & NETIF_F_IP_CSUM)) ||
1779 	       (sk->sk_family == PF_INET6 &&
1780 		(sk->sk_route_caps & NETIF_F_IPV6_CSUM));
1781 }
1782 
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)1783 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1784 					   struct iov_iter *from, char *to,
1785 					   int copy, int offset)
1786 {
1787 	if (skb->ip_summed == CHECKSUM_NONE) {
1788 		__wsum csum = 0;
1789 		if (csum_and_copy_from_iter(to, copy, &csum, from) != copy)
1790 			return -EFAULT;
1791 		skb->csum = csum_block_add(skb->csum, csum, offset);
1792 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1793 		if (copy_from_iter_nocache(to, copy, from) != copy)
1794 			return -EFAULT;
1795 	} else if (copy_from_iter(to, copy, from) != copy)
1796 		return -EFAULT;
1797 
1798 	return 0;
1799 }
1800 
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)1801 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1802 				       struct iov_iter *from, int copy)
1803 {
1804 	int err, offset = skb->len;
1805 
1806 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1807 				       copy, offset);
1808 	if (err)
1809 		__skb_trim(skb, offset);
1810 
1811 	return err;
1812 }
1813 
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)1814 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1815 					   struct sk_buff *skb,
1816 					   struct page *page,
1817 					   int off, int copy)
1818 {
1819 	int err;
1820 
1821 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1822 				       copy, skb->len);
1823 	if (err)
1824 		return err;
1825 
1826 	skb->len	     += copy;
1827 	skb->data_len	     += copy;
1828 	skb->truesize	     += copy;
1829 	sk->sk_wmem_queued   += copy;
1830 	sk_mem_charge(sk, copy);
1831 	return 0;
1832 }
1833 
1834 /**
1835  * sk_wmem_alloc_get - returns write allocations
1836  * @sk: socket
1837  *
1838  * Returns sk_wmem_alloc minus initial offset of one
1839  */
sk_wmem_alloc_get(const struct sock * sk)1840 static inline int sk_wmem_alloc_get(const struct sock *sk)
1841 {
1842 	return atomic_read(&sk->sk_wmem_alloc) - 1;
1843 }
1844 
1845 /**
1846  * sk_rmem_alloc_get - returns read allocations
1847  * @sk: socket
1848  *
1849  * Returns sk_rmem_alloc
1850  */
sk_rmem_alloc_get(const struct sock * sk)1851 static inline int sk_rmem_alloc_get(const struct sock *sk)
1852 {
1853 	return atomic_read(&sk->sk_rmem_alloc);
1854 }
1855 
1856 /**
1857  * sk_has_allocations - check if allocations are outstanding
1858  * @sk: socket
1859  *
1860  * Returns true if socket has write or read allocations
1861  */
sk_has_allocations(const struct sock * sk)1862 static inline bool sk_has_allocations(const struct sock *sk)
1863 {
1864 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1865 }
1866 
1867 /**
1868  * skwq_has_sleeper - check if there are any waiting processes
1869  * @wq: struct socket_wq
1870  *
1871  * Returns true if socket_wq has waiting processes
1872  *
1873  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
1874  * barrier call. They were added due to the race found within the tcp code.
1875  *
1876  * Consider following tcp code paths:
1877  *
1878  * CPU1                  CPU2
1879  *
1880  * sys_select            receive packet
1881  *   ...                 ...
1882  *   __add_wait_queue    update tp->rcv_nxt
1883  *   ...                 ...
1884  *   tp->rcv_nxt check   sock_def_readable
1885  *   ...                 {
1886  *   schedule               rcu_read_lock();
1887  *                          wq = rcu_dereference(sk->sk_wq);
1888  *                          if (wq && waitqueue_active(&wq->wait))
1889  *                              wake_up_interruptible(&wq->wait)
1890  *                          ...
1891  *                       }
1892  *
1893  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1894  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
1895  * could then endup calling schedule and sleep forever if there are no more
1896  * data on the socket.
1897  *
1898  */
skwq_has_sleeper(struct socket_wq * wq)1899 static inline bool skwq_has_sleeper(struct socket_wq *wq)
1900 {
1901 	return wq && wq_has_sleeper(&wq->wait);
1902 }
1903 
1904 /**
1905  * sock_poll_wait - place memory barrier behind the poll_wait call.
1906  * @filp:           file
1907  * @wait_address:   socket wait queue
1908  * @p:              poll_table
1909  *
1910  * See the comments in the wq_has_sleeper function.
1911  */
sock_poll_wait(struct file * filp,wait_queue_head_t * wait_address,poll_table * p)1912 static inline void sock_poll_wait(struct file *filp,
1913 		wait_queue_head_t *wait_address, poll_table *p)
1914 {
1915 	if (!poll_does_not_wait(p) && wait_address) {
1916 		poll_wait(filp, wait_address, p);
1917 		/* We need to be sure we are in sync with the
1918 		 * socket flags modification.
1919 		 *
1920 		 * This memory barrier is paired in the wq_has_sleeper.
1921 		 */
1922 		smp_mb();
1923 	}
1924 }
1925 
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)1926 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
1927 {
1928 	if (sk->sk_txhash) {
1929 		skb->l4_hash = 1;
1930 		skb->hash = sk->sk_txhash;
1931 	}
1932 }
1933 
1934 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
1935 
1936 /*
1937  *	Queue a received datagram if it will fit. Stream and sequenced
1938  *	protocols can't normally use this as they need to fit buffers in
1939  *	and play with them.
1940  *
1941  *	Inlined as it's very short and called for pretty much every
1942  *	packet ever received.
1943  */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)1944 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1945 {
1946 	skb_orphan(skb);
1947 	skb->sk = sk;
1948 	skb->destructor = sock_rfree;
1949 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1950 	sk_mem_charge(sk, skb->truesize);
1951 }
1952 
1953 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1954 		    unsigned long expires);
1955 
1956 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1957 
1958 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1959 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1960 
1961 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1962 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
1963 
1964 /*
1965  *	Recover an error report and clear atomically
1966  */
1967 
sock_error(struct sock * sk)1968 static inline int sock_error(struct sock *sk)
1969 {
1970 	int err;
1971 	if (likely(!sk->sk_err))
1972 		return 0;
1973 	err = xchg(&sk->sk_err, 0);
1974 	return -err;
1975 }
1976 
sock_wspace(struct sock * sk)1977 static inline unsigned long sock_wspace(struct sock *sk)
1978 {
1979 	int amt = 0;
1980 
1981 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1982 		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1983 		if (amt < 0)
1984 			amt = 0;
1985 	}
1986 	return amt;
1987 }
1988 
1989 /* Note:
1990  *  We use sk->sk_wq_raw, from contexts knowing this
1991  *  pointer is not NULL and cannot disappear/change.
1992  */
sk_set_bit(int nr,struct sock * sk)1993 static inline void sk_set_bit(int nr, struct sock *sk)
1994 {
1995 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
1996 	    !sock_flag(sk, SOCK_FASYNC))
1997 		return;
1998 
1999 	set_bit(nr, &sk->sk_wq_raw->flags);
2000 }
2001 
sk_clear_bit(int nr,struct sock * sk)2002 static inline void sk_clear_bit(int nr, struct sock *sk)
2003 {
2004 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2005 	    !sock_flag(sk, SOCK_FASYNC))
2006 		return;
2007 
2008 	clear_bit(nr, &sk->sk_wq_raw->flags);
2009 }
2010 
sk_wake_async(const struct sock * sk,int how,int band)2011 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2012 {
2013 	if (sock_flag(sk, SOCK_FASYNC)) {
2014 		rcu_read_lock();
2015 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2016 		rcu_read_unlock();
2017 	}
2018 }
2019 
2020 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2021  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2022  * Note: for send buffers, TCP works better if we can build two skbs at
2023  * minimum.
2024  */
2025 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2026 
2027 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2028 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2029 
sk_stream_moderate_sndbuf(struct sock * sk)2030 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2031 {
2032 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2033 		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2034 		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2035 	}
2036 }
2037 
2038 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2039 				    bool force_schedule);
2040 
2041 /**
2042  * sk_page_frag - return an appropriate page_frag
2043  * @sk: socket
2044  *
2045  * If socket allocation mode allows current thread to sleep, it means its
2046  * safe to use the per task page_frag instead of the per socket one.
2047  */
sk_page_frag(struct sock * sk)2048 static inline struct page_frag *sk_page_frag(struct sock *sk)
2049 {
2050 	if (gfpflags_allow_blocking(sk->sk_allocation))
2051 		return &current->task_frag;
2052 
2053 	return &sk->sk_frag;
2054 }
2055 
2056 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2057 
2058 /*
2059  *	Default write policy as shown to user space via poll/select/SIGIO
2060  */
sock_writeable(const struct sock * sk)2061 static inline bool sock_writeable(const struct sock *sk)
2062 {
2063 	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2064 }
2065 
gfp_any(void)2066 static inline gfp_t gfp_any(void)
2067 {
2068 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2069 }
2070 
sock_rcvtimeo(const struct sock * sk,bool noblock)2071 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2072 {
2073 	return noblock ? 0 : sk->sk_rcvtimeo;
2074 }
2075 
sock_sndtimeo(const struct sock * sk,bool noblock)2076 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2077 {
2078 	return noblock ? 0 : sk->sk_sndtimeo;
2079 }
2080 
sock_rcvlowat(const struct sock * sk,int waitall,int len)2081 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2082 {
2083 	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2084 }
2085 
2086 /* Alas, with timeout socket operations are not restartable.
2087  * Compare this to poll().
2088  */
sock_intr_errno(long timeo)2089 static inline int sock_intr_errno(long timeo)
2090 {
2091 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2092 }
2093 
2094 struct sock_skb_cb {
2095 	u32 dropcount;
2096 };
2097 
2098 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2099  * using skb->cb[] would keep using it directly and utilize its
2100  * alignement guarantee.
2101  */
2102 #define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2103 			    sizeof(struct sock_skb_cb)))
2104 
2105 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2106 			    SOCK_SKB_CB_OFFSET))
2107 
2108 #define sock_skb_cb_check_size(size) \
2109 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2110 
2111 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2112 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2113 {
2114 	SOCK_SKB_CB(skb)->dropcount = atomic_read(&sk->sk_drops);
2115 }
2116 
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2117 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2118 {
2119 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2120 
2121 	atomic_add(segs, &sk->sk_drops);
2122 }
2123 
2124 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2125 			   struct sk_buff *skb);
2126 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2127 			     struct sk_buff *skb);
2128 
2129 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2130 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2131 {
2132 	ktime_t kt = skb->tstamp;
2133 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2134 
2135 	/*
2136 	 * generate control messages if
2137 	 * - receive time stamping in software requested
2138 	 * - software time stamp available and wanted
2139 	 * - hardware time stamps available and wanted
2140 	 */
2141 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2142 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2143 	    (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2144 	    (hwtstamps->hwtstamp.tv64 &&
2145 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2146 		__sock_recv_timestamp(msg, sk, skb);
2147 	else
2148 		sk->sk_stamp = kt;
2149 
2150 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2151 		__sock_recv_wifi_status(msg, sk, skb);
2152 }
2153 
2154 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2155 			      struct sk_buff *skb);
2156 
sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2157 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2158 					  struct sk_buff *skb)
2159 {
2160 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2161 			   (1UL << SOCK_RCVTSTAMP))
2162 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2163 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2164 
2165 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2166 		__sock_recv_ts_and_drops(msg, sk, skb);
2167 	else
2168 		sk->sk_stamp = skb->tstamp;
2169 }
2170 
2171 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2172 
2173 /**
2174  * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2175  * @sk:		socket sending this packet
2176  * @tsflags:	timestamping flags to use
2177  * @tx_flags:	completed with instructions for time stamping
2178  *
2179  * Note : callers should take care of initial *tx_flags value (usually 0)
2180  */
sock_tx_timestamp(const struct sock * sk,__u16 tsflags,__u8 * tx_flags)2181 static inline void sock_tx_timestamp(const struct sock *sk, __u16 tsflags,
2182 				     __u8 *tx_flags)
2183 {
2184 	if (unlikely(tsflags))
2185 		__sock_tx_timestamp(tsflags, tx_flags);
2186 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2187 		*tx_flags |= SKBTX_WIFI_STATUS;
2188 }
2189 
2190 /**
2191  * sk_eat_skb - Release a skb if it is no longer needed
2192  * @sk: socket to eat this skb from
2193  * @skb: socket buffer to eat
2194  *
2195  * This routine must be called with interrupts disabled or with the socket
2196  * locked so that the sk_buff queue operation is ok.
2197 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2198 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2199 {
2200 	__skb_unlink(skb, &sk->sk_receive_queue);
2201 	__kfree_skb(skb);
2202 }
2203 
2204 static inline
sock_net(const struct sock * sk)2205 struct net *sock_net(const struct sock *sk)
2206 {
2207 	return read_pnet(&sk->sk_net);
2208 }
2209 
2210 static inline
sock_net_set(struct sock * sk,struct net * net)2211 void sock_net_set(struct sock *sk, struct net *net)
2212 {
2213 	write_pnet(&sk->sk_net, net);
2214 }
2215 
skb_steal_sock(struct sk_buff * skb)2216 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2217 {
2218 	if (skb->sk) {
2219 		struct sock *sk = skb->sk;
2220 
2221 		skb->destructor = NULL;
2222 		skb->sk = NULL;
2223 		return sk;
2224 	}
2225 	return NULL;
2226 }
2227 
2228 /* This helper checks if a socket is a full socket,
2229  * ie _not_ a timewait or request socket.
2230  */
sk_fullsock(const struct sock * sk)2231 static inline bool sk_fullsock(const struct sock *sk)
2232 {
2233 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2234 }
2235 
2236 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2237  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2238  */
sk_listener(const struct sock * sk)2239 static inline bool sk_listener(const struct sock *sk)
2240 {
2241 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2242 }
2243 
2244 /**
2245  * sk_state_load - read sk->sk_state for lockless contexts
2246  * @sk: socket pointer
2247  *
2248  * Paired with sk_state_store(). Used in places we do not hold socket lock :
2249  * tcp_diag_get_info(), tcp_get_info(), tcp_poll(), get_tcp4_sock() ...
2250  */
sk_state_load(const struct sock * sk)2251 static inline int sk_state_load(const struct sock *sk)
2252 {
2253 	return smp_load_acquire(&sk->sk_state);
2254 }
2255 
2256 /**
2257  * sk_state_store - update sk->sk_state
2258  * @sk: socket pointer
2259  * @newstate: new state
2260  *
2261  * Paired with sk_state_load(). Should be used in contexts where
2262  * state change might impact lockless readers.
2263  */
sk_state_store(struct sock * sk,int newstate)2264 static inline void sk_state_store(struct sock *sk, int newstate)
2265 {
2266 	smp_store_release(&sk->sk_state, newstate);
2267 }
2268 
2269 void sock_enable_timestamp(struct sock *sk, int flag);
2270 int sock_get_timestamp(struct sock *, struct timeval __user *);
2271 int sock_get_timestampns(struct sock *, struct timespec __user *);
2272 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2273 		       int type);
2274 
2275 bool sk_ns_capable(const struct sock *sk,
2276 		   struct user_namespace *user_ns, int cap);
2277 bool sk_capable(const struct sock *sk, int cap);
2278 bool sk_net_capable(const struct sock *sk, int cap);
2279 
2280 extern __u32 sysctl_wmem_max;
2281 extern __u32 sysctl_rmem_max;
2282 
2283 extern int sysctl_tstamp_allow_data;
2284 extern int sysctl_optmem_max;
2285 
2286 extern __u32 sysctl_wmem_default;
2287 extern __u32 sysctl_rmem_default;
2288 
2289 #endif	/* _SOCK_H */
2290