• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the Free
6  * Software Foundation; either version 2 of the License, or (at your option)
7  * any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in the
15  * file called COPYING.
16  */
17 #ifndef LINUX_DMAENGINE_H
18 #define LINUX_DMAENGINE_H
19 
20 #include <linux/device.h>
21 #include <linux/err.h>
22 #include <linux/uio.h>
23 #include <linux/bug.h>
24 #include <linux/scatterlist.h>
25 #include <linux/bitmap.h>
26 #include <linux/types.h>
27 #include <asm/page.h>
28 
29 /**
30  * typedef dma_cookie_t - an opaque DMA cookie
31  *
32  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
33  */
34 typedef s32 dma_cookie_t;
35 #define DMA_MIN_COOKIE	1
36 
dma_submit_error(dma_cookie_t cookie)37 static inline int dma_submit_error(dma_cookie_t cookie)
38 {
39 	return cookie < 0 ? cookie : 0;
40 }
41 
42 /**
43  * enum dma_status - DMA transaction status
44  * @DMA_COMPLETE: transaction completed
45  * @DMA_IN_PROGRESS: transaction not yet processed
46  * @DMA_PAUSED: transaction is paused
47  * @DMA_ERROR: transaction failed
48  */
49 enum dma_status {
50 	DMA_COMPLETE,
51 	DMA_IN_PROGRESS,
52 	DMA_PAUSED,
53 	DMA_ERROR,
54 };
55 
56 /**
57  * enum dma_transaction_type - DMA transaction types/indexes
58  *
59  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
60  * automatically set as dma devices are registered.
61  */
62 enum dma_transaction_type {
63 	DMA_MEMCPY,
64 	DMA_XOR,
65 	DMA_PQ,
66 	DMA_XOR_VAL,
67 	DMA_PQ_VAL,
68 	DMA_MEMSET,
69 	DMA_MEMSET_SG,
70 	DMA_INTERRUPT,
71 	DMA_SG,
72 	DMA_PRIVATE,
73 	DMA_ASYNC_TX,
74 	DMA_SLAVE,
75 	DMA_CYCLIC,
76 	DMA_INTERLEAVE,
77 /* last transaction type for creation of the capabilities mask */
78 	DMA_TX_TYPE_END,
79 };
80 
81 /**
82  * enum dma_transfer_direction - dma transfer mode and direction indicator
83  * @DMA_MEM_TO_MEM: Async/Memcpy mode
84  * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
85  * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
86  * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
87  */
88 enum dma_transfer_direction {
89 	DMA_MEM_TO_MEM,
90 	DMA_MEM_TO_DEV,
91 	DMA_DEV_TO_MEM,
92 	DMA_DEV_TO_DEV,
93 	DMA_TRANS_NONE,
94 };
95 
96 /**
97  * Interleaved Transfer Request
98  * ----------------------------
99  * A chunk is collection of contiguous bytes to be transfered.
100  * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
101  * ICGs may or maynot change between chunks.
102  * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
103  *  that when repeated an integral number of times, specifies the transfer.
104  * A transfer template is specification of a Frame, the number of times
105  *  it is to be repeated and other per-transfer attributes.
106  *
107  * Practically, a client driver would have ready a template for each
108  *  type of transfer it is going to need during its lifetime and
109  *  set only 'src_start' and 'dst_start' before submitting the requests.
110  *
111  *
112  *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
113  *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
114  *
115  *    ==  Chunk size
116  *    ... ICG
117  */
118 
119 /**
120  * struct data_chunk - Element of scatter-gather list that makes a frame.
121  * @size: Number of bytes to read from source.
122  *	  size_dst := fn(op, size_src), so doesn't mean much for destination.
123  * @icg: Number of bytes to jump after last src/dst address of this
124  *	 chunk and before first src/dst address for next chunk.
125  *	 Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
126  *	 Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
127  * @dst_icg: Number of bytes to jump after last dst address of this
128  *	 chunk and before the first dst address for next chunk.
129  *	 Ignored if dst_inc is true and dst_sgl is false.
130  * @src_icg: Number of bytes to jump after last src address of this
131  *	 chunk and before the first src address for next chunk.
132  *	 Ignored if src_inc is true and src_sgl is false.
133  */
134 struct data_chunk {
135 	size_t size;
136 	size_t icg;
137 	size_t dst_icg;
138 	size_t src_icg;
139 };
140 
141 /**
142  * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
143  *	 and attributes.
144  * @src_start: Bus address of source for the first chunk.
145  * @dst_start: Bus address of destination for the first chunk.
146  * @dir: Specifies the type of Source and Destination.
147  * @src_inc: If the source address increments after reading from it.
148  * @dst_inc: If the destination address increments after writing to it.
149  * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
150  *		Otherwise, source is read contiguously (icg ignored).
151  *		Ignored if src_inc is false.
152  * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
153  *		Otherwise, destination is filled contiguously (icg ignored).
154  *		Ignored if dst_inc is false.
155  * @numf: Number of frames in this template.
156  * @frame_size: Number of chunks in a frame i.e, size of sgl[].
157  * @sgl: Array of {chunk,icg} pairs that make up a frame.
158  */
159 struct dma_interleaved_template {
160 	dma_addr_t src_start;
161 	dma_addr_t dst_start;
162 	enum dma_transfer_direction dir;
163 	bool src_inc;
164 	bool dst_inc;
165 	bool src_sgl;
166 	bool dst_sgl;
167 	size_t numf;
168 	size_t frame_size;
169 	struct data_chunk sgl[0];
170 };
171 
172 /**
173  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
174  *  control completion, and communicate status.
175  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
176  *  this transaction
177  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
178  *  acknowledges receipt, i.e. has has a chance to establish any dependency
179  *  chains
180  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
181  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
182  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
183  *  sources that were the result of a previous operation, in the case of a PQ
184  *  operation it continues the calculation with new sources
185  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
186  *  on the result of this operation
187  * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
188  *  cleared or freed
189  */
190 enum dma_ctrl_flags {
191 	DMA_PREP_INTERRUPT = (1 << 0),
192 	DMA_CTRL_ACK = (1 << 1),
193 	DMA_PREP_PQ_DISABLE_P = (1 << 2),
194 	DMA_PREP_PQ_DISABLE_Q = (1 << 3),
195 	DMA_PREP_CONTINUE = (1 << 4),
196 	DMA_PREP_FENCE = (1 << 5),
197 	DMA_CTRL_REUSE = (1 << 6),
198 };
199 
200 /**
201  * enum sum_check_bits - bit position of pq_check_flags
202  */
203 enum sum_check_bits {
204 	SUM_CHECK_P = 0,
205 	SUM_CHECK_Q = 1,
206 };
207 
208 /**
209  * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
210  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
211  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
212  */
213 enum sum_check_flags {
214 	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
215 	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
216 };
217 
218 
219 /**
220  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
221  * See linux/cpumask.h
222  */
223 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
224 
225 /**
226  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
227  * @memcpy_count: transaction counter
228  * @bytes_transferred: byte counter
229  */
230 
231 struct dma_chan_percpu {
232 	/* stats */
233 	unsigned long memcpy_count;
234 	unsigned long bytes_transferred;
235 };
236 
237 /**
238  * struct dma_router - DMA router structure
239  * @dev: pointer to the DMA router device
240  * @route_free: function to be called when the route can be disconnected
241  */
242 struct dma_router {
243 	struct device *dev;
244 	void (*route_free)(struct device *dev, void *route_data);
245 };
246 
247 /**
248  * struct dma_chan - devices supply DMA channels, clients use them
249  * @device: ptr to the dma device who supplies this channel, always !%NULL
250  * @cookie: last cookie value returned to client
251  * @completed_cookie: last completed cookie for this channel
252  * @chan_id: channel ID for sysfs
253  * @dev: class device for sysfs
254  * @device_node: used to add this to the device chan list
255  * @local: per-cpu pointer to a struct dma_chan_percpu
256  * @client_count: how many clients are using this channel
257  * @table_count: number of appearances in the mem-to-mem allocation table
258  * @router: pointer to the DMA router structure
259  * @route_data: channel specific data for the router
260  * @private: private data for certain client-channel associations
261  */
262 struct dma_chan {
263 	struct dma_device *device;
264 	dma_cookie_t cookie;
265 	dma_cookie_t completed_cookie;
266 
267 	/* sysfs */
268 	int chan_id;
269 	struct dma_chan_dev *dev;
270 
271 	struct list_head device_node;
272 	struct dma_chan_percpu __percpu *local;
273 	int client_count;
274 	int table_count;
275 
276 	/* DMA router */
277 	struct dma_router *router;
278 	void *route_data;
279 
280 	void *private;
281 };
282 
283 /**
284  * struct dma_chan_dev - relate sysfs device node to backing channel device
285  * @chan: driver channel device
286  * @device: sysfs device
287  * @dev_id: parent dma_device dev_id
288  * @idr_ref: reference count to gate release of dma_device dev_id
289  */
290 struct dma_chan_dev {
291 	struct dma_chan *chan;
292 	struct device device;
293 	int dev_id;
294 	atomic_t *idr_ref;
295 };
296 
297 /**
298  * enum dma_slave_buswidth - defines bus width of the DMA slave
299  * device, source or target buses
300  */
301 enum dma_slave_buswidth {
302 	DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
303 	DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
304 	DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
305 	DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
306 	DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
307 	DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
308 	DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
309 	DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
310 	DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
311 };
312 
313 /**
314  * struct dma_slave_config - dma slave channel runtime config
315  * @direction: whether the data shall go in or out on this slave
316  * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
317  * legal values. DEPRECATED, drivers should use the direction argument
318  * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
319  * the dir field in the dma_interleaved_template structure.
320  * @src_addr: this is the physical address where DMA slave data
321  * should be read (RX), if the source is memory this argument is
322  * ignored.
323  * @dst_addr: this is the physical address where DMA slave data
324  * should be written (TX), if the source is memory this argument
325  * is ignored.
326  * @src_addr_width: this is the width in bytes of the source (RX)
327  * register where DMA data shall be read. If the source
328  * is memory this may be ignored depending on architecture.
329  * Legal values: 1, 2, 4, 8.
330  * @dst_addr_width: same as src_addr_width but for destination
331  * target (TX) mutatis mutandis.
332  * @src_maxburst: the maximum number of words (note: words, as in
333  * units of the src_addr_width member, not bytes) that can be sent
334  * in one burst to the device. Typically something like half the
335  * FIFO depth on I/O peripherals so you don't overflow it. This
336  * may or may not be applicable on memory sources.
337  * @dst_maxburst: same as src_maxburst but for destination target
338  * mutatis mutandis.
339  * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
340  * with 'true' if peripheral should be flow controller. Direction will be
341  * selected at Runtime.
342  * @slave_id: Slave requester id. Only valid for slave channels. The dma
343  * slave peripheral will have unique id as dma requester which need to be
344  * pass as slave config.
345  *
346  * This struct is passed in as configuration data to a DMA engine
347  * in order to set up a certain channel for DMA transport at runtime.
348  * The DMA device/engine has to provide support for an additional
349  * callback in the dma_device structure, device_config and this struct
350  * will then be passed in as an argument to the function.
351  *
352  * The rationale for adding configuration information to this struct is as
353  * follows: if it is likely that more than one DMA slave controllers in
354  * the world will support the configuration option, then make it generic.
355  * If not: if it is fixed so that it be sent in static from the platform
356  * data, then prefer to do that.
357  */
358 struct dma_slave_config {
359 	enum dma_transfer_direction direction;
360 	phys_addr_t src_addr;
361 	phys_addr_t dst_addr;
362 	enum dma_slave_buswidth src_addr_width;
363 	enum dma_slave_buswidth dst_addr_width;
364 	u32 src_maxburst;
365 	u32 dst_maxburst;
366 	bool device_fc;
367 	unsigned int slave_id;
368 };
369 
370 /**
371  * enum dma_residue_granularity - Granularity of the reported transfer residue
372  * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
373  *  DMA channel is only able to tell whether a descriptor has been completed or
374  *  not, which means residue reporting is not supported by this channel. The
375  *  residue field of the dma_tx_state field will always be 0.
376  * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
377  *  completed segment of the transfer (For cyclic transfers this is after each
378  *  period). This is typically implemented by having the hardware generate an
379  *  interrupt after each transferred segment and then the drivers updates the
380  *  outstanding residue by the size of the segment. Another possibility is if
381  *  the hardware supports scatter-gather and the segment descriptor has a field
382  *  which gets set after the segment has been completed. The driver then counts
383  *  the number of segments without the flag set to compute the residue.
384  * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
385  *  burst. This is typically only supported if the hardware has a progress
386  *  register of some sort (E.g. a register with the current read/write address
387  *  or a register with the amount of bursts/beats/bytes that have been
388  *  transferred or still need to be transferred).
389  */
390 enum dma_residue_granularity {
391 	DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
392 	DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
393 	DMA_RESIDUE_GRANULARITY_BURST = 2,
394 };
395 
396 /* struct dma_slave_caps - expose capabilities of a slave channel only
397  *
398  * @src_addr_widths: bit mask of src addr widths the channel supports
399  * @dst_addr_widths: bit mask of dstn addr widths the channel supports
400  * @directions: bit mask of slave direction the channel supported
401  * 	since the enum dma_transfer_direction is not defined as bits for each
402  * 	type of direction, the dma controller should fill (1 << <TYPE>) and same
403  * 	should be checked by controller as well
404  * @max_burst: max burst capability per-transfer
405  * @cmd_pause: true, if pause and thereby resume is supported
406  * @cmd_terminate: true, if terminate cmd is supported
407  * @residue_granularity: granularity of the reported transfer residue
408  * @descriptor_reuse: if a descriptor can be reused by client and
409  * resubmitted multiple times
410  */
411 struct dma_slave_caps {
412 	u32 src_addr_widths;
413 	u32 dst_addr_widths;
414 	u32 directions;
415 	u32 max_burst;
416 	bool cmd_pause;
417 	bool cmd_terminate;
418 	enum dma_residue_granularity residue_granularity;
419 	bool descriptor_reuse;
420 };
421 
dma_chan_name(struct dma_chan * chan)422 static inline const char *dma_chan_name(struct dma_chan *chan)
423 {
424 	return dev_name(&chan->dev->device);
425 }
426 
427 void dma_chan_cleanup(struct kref *kref);
428 
429 /**
430  * typedef dma_filter_fn - callback filter for dma_request_channel
431  * @chan: channel to be reviewed
432  * @filter_param: opaque parameter passed through dma_request_channel
433  *
434  * When this optional parameter is specified in a call to dma_request_channel a
435  * suitable channel is passed to this routine for further dispositioning before
436  * being returned.  Where 'suitable' indicates a non-busy channel that
437  * satisfies the given capability mask.  It returns 'true' to indicate that the
438  * channel is suitable.
439  */
440 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
441 
442 typedef void (*dma_async_tx_callback)(void *dma_async_param);
443 
444 enum dmaengine_tx_result {
445 	DMA_TRANS_NOERROR = 0,		/* SUCCESS */
446 	DMA_TRANS_READ_FAILED,		/* Source DMA read failed */
447 	DMA_TRANS_WRITE_FAILED,		/* Destination DMA write failed */
448 	DMA_TRANS_ABORTED,		/* Op never submitted / aborted */
449 };
450 
451 struct dmaengine_result {
452 	enum dmaengine_tx_result result;
453 	u32 residue;
454 };
455 
456 typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
457 				const struct dmaengine_result *result);
458 
459 struct dmaengine_unmap_data {
460 	u8 map_cnt;
461 	u8 to_cnt;
462 	u8 from_cnt;
463 	u8 bidi_cnt;
464 	struct device *dev;
465 	struct kref kref;
466 	size_t len;
467 	dma_addr_t addr[0];
468 };
469 
470 /**
471  * struct dma_async_tx_descriptor - async transaction descriptor
472  * ---dma generic offload fields---
473  * @cookie: tracking cookie for this transaction, set to -EBUSY if
474  *	this tx is sitting on a dependency list
475  * @flags: flags to augment operation preparation, control completion, and
476  * 	communicate status
477  * @phys: physical address of the descriptor
478  * @chan: target channel for this operation
479  * @tx_submit: accept the descriptor, assign ordered cookie and mark the
480  * descriptor pending. To be pushed on .issue_pending() call
481  * @callback: routine to call after this operation is complete
482  * @callback_param: general parameter to pass to the callback routine
483  * ---async_tx api specific fields---
484  * @next: at completion submit this descriptor
485  * @parent: pointer to the next level up in the dependency chain
486  * @lock: protect the parent and next pointers
487  */
488 struct dma_async_tx_descriptor {
489 	dma_cookie_t cookie;
490 	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
491 	dma_addr_t phys;
492 	struct dma_chan *chan;
493 	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
494 	int (*desc_free)(struct dma_async_tx_descriptor *tx);
495 	dma_async_tx_callback callback;
496 	dma_async_tx_callback_result callback_result;
497 	void *callback_param;
498 	struct dmaengine_unmap_data *unmap;
499 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
500 	struct dma_async_tx_descriptor *next;
501 	struct dma_async_tx_descriptor *parent;
502 	spinlock_t lock;
503 #endif
504 };
505 
506 #ifdef CONFIG_DMA_ENGINE
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)507 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
508 				 struct dmaengine_unmap_data *unmap)
509 {
510 	kref_get(&unmap->kref);
511 	tx->unmap = unmap;
512 }
513 
514 struct dmaengine_unmap_data *
515 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
516 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
517 #else
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)518 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
519 				 struct dmaengine_unmap_data *unmap)
520 {
521 }
522 static inline struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)523 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
524 {
525 	return NULL;
526 }
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)527 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
528 {
529 }
530 #endif
531 
dma_descriptor_unmap(struct dma_async_tx_descriptor * tx)532 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
533 {
534 	if (tx->unmap) {
535 		dmaengine_unmap_put(tx->unmap);
536 		tx->unmap = NULL;
537 	}
538 }
539 
540 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
txd_lock(struct dma_async_tx_descriptor * txd)541 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
542 {
543 }
txd_unlock(struct dma_async_tx_descriptor * txd)544 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
545 {
546 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)547 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
548 {
549 	BUG();
550 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)551 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
552 {
553 }
txd_clear_next(struct dma_async_tx_descriptor * txd)554 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
555 {
556 }
txd_next(struct dma_async_tx_descriptor * txd)557 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
558 {
559 	return NULL;
560 }
txd_parent(struct dma_async_tx_descriptor * txd)561 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
562 {
563 	return NULL;
564 }
565 
566 #else
txd_lock(struct dma_async_tx_descriptor * txd)567 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
568 {
569 	spin_lock_bh(&txd->lock);
570 }
txd_unlock(struct dma_async_tx_descriptor * txd)571 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
572 {
573 	spin_unlock_bh(&txd->lock);
574 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)575 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
576 {
577 	txd->next = next;
578 	next->parent = txd;
579 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)580 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
581 {
582 	txd->parent = NULL;
583 }
txd_clear_next(struct dma_async_tx_descriptor * txd)584 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
585 {
586 	txd->next = NULL;
587 }
txd_parent(struct dma_async_tx_descriptor * txd)588 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
589 {
590 	return txd->parent;
591 }
txd_next(struct dma_async_tx_descriptor * txd)592 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
593 {
594 	return txd->next;
595 }
596 #endif
597 
598 /**
599  * struct dma_tx_state - filled in to report the status of
600  * a transfer.
601  * @last: last completed DMA cookie
602  * @used: last issued DMA cookie (i.e. the one in progress)
603  * @residue: the remaining number of bytes left to transmit
604  *	on the selected transfer for states DMA_IN_PROGRESS and
605  *	DMA_PAUSED if this is implemented in the driver, else 0
606  */
607 struct dma_tx_state {
608 	dma_cookie_t last;
609 	dma_cookie_t used;
610 	u32 residue;
611 };
612 
613 /**
614  * enum dmaengine_alignment - defines alignment of the DMA async tx
615  * buffers
616  */
617 enum dmaengine_alignment {
618 	DMAENGINE_ALIGN_1_BYTE = 0,
619 	DMAENGINE_ALIGN_2_BYTES = 1,
620 	DMAENGINE_ALIGN_4_BYTES = 2,
621 	DMAENGINE_ALIGN_8_BYTES = 3,
622 	DMAENGINE_ALIGN_16_BYTES = 4,
623 	DMAENGINE_ALIGN_32_BYTES = 5,
624 	DMAENGINE_ALIGN_64_BYTES = 6,
625 };
626 
627 /**
628  * struct dma_slave_map - associates slave device and it's slave channel with
629  * parameter to be used by a filter function
630  * @devname: name of the device
631  * @slave: slave channel name
632  * @param: opaque parameter to pass to struct dma_filter.fn
633  */
634 struct dma_slave_map {
635 	const char *devname;
636 	const char *slave;
637 	void *param;
638 };
639 
640 /**
641  * struct dma_filter - information for slave device/channel to filter_fn/param
642  * mapping
643  * @fn: filter function callback
644  * @mapcnt: number of slave device/channel in the map
645  * @map: array of channel to filter mapping data
646  */
647 struct dma_filter {
648 	dma_filter_fn fn;
649 	int mapcnt;
650 	const struct dma_slave_map *map;
651 };
652 
653 /**
654  * struct dma_device - info on the entity supplying DMA services
655  * @chancnt: how many DMA channels are supported
656  * @privatecnt: how many DMA channels are requested by dma_request_channel
657  * @channels: the list of struct dma_chan
658  * @global_node: list_head for global dma_device_list
659  * @filter: information for device/slave to filter function/param mapping
660  * @cap_mask: one or more dma_capability flags
661  * @max_xor: maximum number of xor sources, 0 if no capability
662  * @max_pq: maximum number of PQ sources and PQ-continue capability
663  * @copy_align: alignment shift for memcpy operations
664  * @xor_align: alignment shift for xor operations
665  * @pq_align: alignment shift for pq operations
666  * @fill_align: alignment shift for memset operations
667  * @dev_id: unique device ID
668  * @dev: struct device reference for dma mapping api
669  * @src_addr_widths: bit mask of src addr widths the device supports
670  * @dst_addr_widths: bit mask of dst addr widths the device supports
671  * @directions: bit mask of slave direction the device supports since
672  * 	the enum dma_transfer_direction is not defined as bits for
673  * 	each type of direction, the dma controller should fill (1 <<
674  * 	<TYPE>) and same should be checked by controller as well
675  * @max_burst: max burst capability per-transfer
676  * @residue_granularity: granularity of the transfer residue reported
677  *	by tx_status
678  * @device_alloc_chan_resources: allocate resources and return the
679  *	number of allocated descriptors
680  * @device_free_chan_resources: release DMA channel's resources
681  * @device_prep_dma_memcpy: prepares a memcpy operation
682  * @device_prep_dma_xor: prepares a xor operation
683  * @device_prep_dma_xor_val: prepares a xor validation operation
684  * @device_prep_dma_pq: prepares a pq operation
685  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
686  * @device_prep_dma_memset: prepares a memset operation
687  * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
688  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
689  * @device_prep_slave_sg: prepares a slave dma operation
690  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
691  *	The function takes a buffer of size buf_len. The callback function will
692  *	be called after period_len bytes have been transferred.
693  * @device_prep_interleaved_dma: Transfer expression in a generic way.
694  * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
695  * @device_config: Pushes a new configuration to a channel, return 0 or an error
696  *	code
697  * @device_pause: Pauses any transfer happening on a channel. Returns
698  *	0 or an error code
699  * @device_resume: Resumes any transfer on a channel previously
700  *	paused. Returns 0 or an error code
701  * @device_terminate_all: Aborts all transfers on a channel. Returns 0
702  *	or an error code
703  * @device_synchronize: Synchronizes the termination of a transfers to the
704  *  current context.
705  * @device_tx_status: poll for transaction completion, the optional
706  *	txstate parameter can be supplied with a pointer to get a
707  *	struct with auxiliary transfer status information, otherwise the call
708  *	will just return a simple status code
709  * @device_issue_pending: push pending transactions to hardware
710  * @descriptor_reuse: a submitted transfer can be resubmitted after completion
711  */
712 struct dma_device {
713 
714 	unsigned int chancnt;
715 	unsigned int privatecnt;
716 	struct list_head channels;
717 	struct list_head global_node;
718 	struct dma_filter filter;
719 	dma_cap_mask_t  cap_mask;
720 	unsigned short max_xor;
721 	unsigned short max_pq;
722 	enum dmaengine_alignment copy_align;
723 	enum dmaengine_alignment xor_align;
724 	enum dmaengine_alignment pq_align;
725 	enum dmaengine_alignment fill_align;
726 	#define DMA_HAS_PQ_CONTINUE (1 << 15)
727 
728 	int dev_id;
729 	struct device *dev;
730 
731 	u32 src_addr_widths;
732 	u32 dst_addr_widths;
733 	u32 directions;
734 	u32 max_burst;
735 	bool descriptor_reuse;
736 	enum dma_residue_granularity residue_granularity;
737 
738 	int (*device_alloc_chan_resources)(struct dma_chan *chan);
739 	void (*device_free_chan_resources)(struct dma_chan *chan);
740 
741 	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
742 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
743 		size_t len, unsigned long flags);
744 	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
745 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
746 		unsigned int src_cnt, size_t len, unsigned long flags);
747 	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
748 		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
749 		size_t len, enum sum_check_flags *result, unsigned long flags);
750 	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
751 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
752 		unsigned int src_cnt, const unsigned char *scf,
753 		size_t len, unsigned long flags);
754 	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
755 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
756 		unsigned int src_cnt, const unsigned char *scf, size_t len,
757 		enum sum_check_flags *pqres, unsigned long flags);
758 	struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
759 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
760 		unsigned long flags);
761 	struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
762 		struct dma_chan *chan, struct scatterlist *sg,
763 		unsigned int nents, int value, unsigned long flags);
764 	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
765 		struct dma_chan *chan, unsigned long flags);
766 	struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
767 		struct dma_chan *chan,
768 		struct scatterlist *dst_sg, unsigned int dst_nents,
769 		struct scatterlist *src_sg, unsigned int src_nents,
770 		unsigned long flags);
771 
772 	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
773 		struct dma_chan *chan, struct scatterlist *sgl,
774 		unsigned int sg_len, enum dma_transfer_direction direction,
775 		unsigned long flags, void *context);
776 	struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
777 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
778 		size_t period_len, enum dma_transfer_direction direction,
779 		unsigned long flags);
780 	struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
781 		struct dma_chan *chan, struct dma_interleaved_template *xt,
782 		unsigned long flags);
783 	struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
784 		struct dma_chan *chan, dma_addr_t dst, u64 data,
785 		unsigned long flags);
786 
787 	int (*device_config)(struct dma_chan *chan,
788 			     struct dma_slave_config *config);
789 	int (*device_pause)(struct dma_chan *chan);
790 	int (*device_resume)(struct dma_chan *chan);
791 	int (*device_terminate_all)(struct dma_chan *chan);
792 	void (*device_synchronize)(struct dma_chan *chan);
793 
794 	enum dma_status (*device_tx_status)(struct dma_chan *chan,
795 					    dma_cookie_t cookie,
796 					    struct dma_tx_state *txstate);
797 	void (*device_issue_pending)(struct dma_chan *chan);
798 };
799 
dmaengine_slave_config(struct dma_chan * chan,struct dma_slave_config * config)800 static inline int dmaengine_slave_config(struct dma_chan *chan,
801 					  struct dma_slave_config *config)
802 {
803 	if (chan->device->device_config)
804 		return chan->device->device_config(chan, config);
805 
806 	return -ENOSYS;
807 }
808 
is_slave_direction(enum dma_transfer_direction direction)809 static inline bool is_slave_direction(enum dma_transfer_direction direction)
810 {
811 	return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
812 }
813 
dmaengine_prep_slave_single(struct dma_chan * chan,dma_addr_t buf,size_t len,enum dma_transfer_direction dir,unsigned long flags)814 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
815 	struct dma_chan *chan, dma_addr_t buf, size_t len,
816 	enum dma_transfer_direction dir, unsigned long flags)
817 {
818 	struct scatterlist sg;
819 	sg_init_table(&sg, 1);
820 	sg_dma_address(&sg) = buf;
821 	sg_dma_len(&sg) = len;
822 
823 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
824 		return NULL;
825 
826 	return chan->device->device_prep_slave_sg(chan, &sg, 1,
827 						  dir, flags, NULL);
828 }
829 
dmaengine_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags)830 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
831 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
832 	enum dma_transfer_direction dir, unsigned long flags)
833 {
834 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
835 		return NULL;
836 
837 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
838 						  dir, flags, NULL);
839 }
840 
841 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
842 struct rio_dma_ext;
dmaengine_prep_rio_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,struct rio_dma_ext * rio_ext)843 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
844 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
845 	enum dma_transfer_direction dir, unsigned long flags,
846 	struct rio_dma_ext *rio_ext)
847 {
848 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
849 		return NULL;
850 
851 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
852 						  dir, flags, rio_ext);
853 }
854 #endif
855 
dmaengine_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)856 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
857 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
858 		size_t period_len, enum dma_transfer_direction dir,
859 		unsigned long flags)
860 {
861 	if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
862 		return NULL;
863 
864 	return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
865 						period_len, dir, flags);
866 }
867 
dmaengine_prep_interleaved_dma(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)868 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
869 		struct dma_chan *chan, struct dma_interleaved_template *xt,
870 		unsigned long flags)
871 {
872 	if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
873 		return NULL;
874 
875 	return chan->device->device_prep_interleaved_dma(chan, xt, flags);
876 }
877 
dmaengine_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)878 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
879 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
880 		unsigned long flags)
881 {
882 	if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
883 		return NULL;
884 
885 	return chan->device->device_prep_dma_memset(chan, dest, value,
886 						    len, flags);
887 }
888 
dmaengine_prep_dma_sg(struct dma_chan * chan,struct scatterlist * dst_sg,unsigned int dst_nents,struct scatterlist * src_sg,unsigned int src_nents,unsigned long flags)889 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
890 		struct dma_chan *chan,
891 		struct scatterlist *dst_sg, unsigned int dst_nents,
892 		struct scatterlist *src_sg, unsigned int src_nents,
893 		unsigned long flags)
894 {
895 	if (!chan || !chan->device || !chan->device->device_prep_dma_sg)
896 		return NULL;
897 
898 	return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
899 			src_sg, src_nents, flags);
900 }
901 
902 /**
903  * dmaengine_terminate_all() - Terminate all active DMA transfers
904  * @chan: The channel for which to terminate the transfers
905  *
906  * This function is DEPRECATED use either dmaengine_terminate_sync() or
907  * dmaengine_terminate_async() instead.
908  */
dmaengine_terminate_all(struct dma_chan * chan)909 static inline int dmaengine_terminate_all(struct dma_chan *chan)
910 {
911 	if (chan->device->device_terminate_all)
912 		return chan->device->device_terminate_all(chan);
913 
914 	return -ENOSYS;
915 }
916 
917 /**
918  * dmaengine_terminate_async() - Terminate all active DMA transfers
919  * @chan: The channel for which to terminate the transfers
920  *
921  * Calling this function will terminate all active and pending descriptors
922  * that have previously been submitted to the channel. It is not guaranteed
923  * though that the transfer for the active descriptor has stopped when the
924  * function returns. Furthermore it is possible the complete callback of a
925  * submitted transfer is still running when this function returns.
926  *
927  * dmaengine_synchronize() needs to be called before it is safe to free
928  * any memory that is accessed by previously submitted descriptors or before
929  * freeing any resources accessed from within the completion callback of any
930  * perviously submitted descriptors.
931  *
932  * This function can be called from atomic context as well as from within a
933  * complete callback of a descriptor submitted on the same channel.
934  *
935  * If none of the two conditions above apply consider using
936  * dmaengine_terminate_sync() instead.
937  */
dmaengine_terminate_async(struct dma_chan * chan)938 static inline int dmaengine_terminate_async(struct dma_chan *chan)
939 {
940 	if (chan->device->device_terminate_all)
941 		return chan->device->device_terminate_all(chan);
942 
943 	return -EINVAL;
944 }
945 
946 /**
947  * dmaengine_synchronize() - Synchronize DMA channel termination
948  * @chan: The channel to synchronize
949  *
950  * Synchronizes to the DMA channel termination to the current context. When this
951  * function returns it is guaranteed that all transfers for previously issued
952  * descriptors have stopped and and it is safe to free the memory assoicated
953  * with them. Furthermore it is guaranteed that all complete callback functions
954  * for a previously submitted descriptor have finished running and it is safe to
955  * free resources accessed from within the complete callbacks.
956  *
957  * The behavior of this function is undefined if dma_async_issue_pending() has
958  * been called between dmaengine_terminate_async() and this function.
959  *
960  * This function must only be called from non-atomic context and must not be
961  * called from within a complete callback of a descriptor submitted on the same
962  * channel.
963  */
dmaengine_synchronize(struct dma_chan * chan)964 static inline void dmaengine_synchronize(struct dma_chan *chan)
965 {
966 	might_sleep();
967 
968 	if (chan->device->device_synchronize)
969 		chan->device->device_synchronize(chan);
970 }
971 
972 /**
973  * dmaengine_terminate_sync() - Terminate all active DMA transfers
974  * @chan: The channel for which to terminate the transfers
975  *
976  * Calling this function will terminate all active and pending transfers
977  * that have previously been submitted to the channel. It is similar to
978  * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
979  * stopped and that all complete callbacks have finished running when the
980  * function returns.
981  *
982  * This function must only be called from non-atomic context and must not be
983  * called from within a complete callback of a descriptor submitted on the same
984  * channel.
985  */
dmaengine_terminate_sync(struct dma_chan * chan)986 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
987 {
988 	int ret;
989 
990 	ret = dmaengine_terminate_async(chan);
991 	if (ret)
992 		return ret;
993 
994 	dmaengine_synchronize(chan);
995 
996 	return 0;
997 }
998 
dmaengine_pause(struct dma_chan * chan)999 static inline int dmaengine_pause(struct dma_chan *chan)
1000 {
1001 	if (chan->device->device_pause)
1002 		return chan->device->device_pause(chan);
1003 
1004 	return -ENOSYS;
1005 }
1006 
dmaengine_resume(struct dma_chan * chan)1007 static inline int dmaengine_resume(struct dma_chan *chan)
1008 {
1009 	if (chan->device->device_resume)
1010 		return chan->device->device_resume(chan);
1011 
1012 	return -ENOSYS;
1013 }
1014 
dmaengine_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)1015 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1016 	dma_cookie_t cookie, struct dma_tx_state *state)
1017 {
1018 	return chan->device->device_tx_status(chan, cookie, state);
1019 }
1020 
dmaengine_submit(struct dma_async_tx_descriptor * desc)1021 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1022 {
1023 	return desc->tx_submit(desc);
1024 }
1025 
dmaengine_check_align(enum dmaengine_alignment align,size_t off1,size_t off2,size_t len)1026 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1027 					 size_t off1, size_t off2, size_t len)
1028 {
1029 	size_t mask;
1030 
1031 	if (!align)
1032 		return true;
1033 	mask = (1 << align) - 1;
1034 	if (mask & (off1 | off2 | len))
1035 		return false;
1036 	return true;
1037 }
1038 
is_dma_copy_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1039 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1040 				       size_t off2, size_t len)
1041 {
1042 	return dmaengine_check_align(dev->copy_align, off1, off2, len);
1043 }
1044 
is_dma_xor_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1045 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1046 				      size_t off2, size_t len)
1047 {
1048 	return dmaengine_check_align(dev->xor_align, off1, off2, len);
1049 }
1050 
is_dma_pq_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1051 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1052 				     size_t off2, size_t len)
1053 {
1054 	return dmaengine_check_align(dev->pq_align, off1, off2, len);
1055 }
1056 
is_dma_fill_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1057 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1058 				       size_t off2, size_t len)
1059 {
1060 	return dmaengine_check_align(dev->fill_align, off1, off2, len);
1061 }
1062 
1063 static inline void
dma_set_maxpq(struct dma_device * dma,int maxpq,int has_pq_continue)1064 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1065 {
1066 	dma->max_pq = maxpq;
1067 	if (has_pq_continue)
1068 		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1069 }
1070 
dmaf_continue(enum dma_ctrl_flags flags)1071 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1072 {
1073 	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1074 }
1075 
dmaf_p_disabled_continue(enum dma_ctrl_flags flags)1076 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1077 {
1078 	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1079 
1080 	return (flags & mask) == mask;
1081 }
1082 
dma_dev_has_pq_continue(struct dma_device * dma)1083 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1084 {
1085 	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1086 }
1087 
dma_dev_to_maxpq(struct dma_device * dma)1088 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1089 {
1090 	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1091 }
1092 
1093 /* dma_maxpq - reduce maxpq in the face of continued operations
1094  * @dma - dma device with PQ capability
1095  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1096  *
1097  * When an engine does not support native continuation we need 3 extra
1098  * source slots to reuse P and Q with the following coefficients:
1099  * 1/ {00} * P : remove P from Q', but use it as a source for P'
1100  * 2/ {01} * Q : use Q to continue Q' calculation
1101  * 3/ {00} * Q : subtract Q from P' to cancel (2)
1102  *
1103  * In the case where P is disabled we only need 1 extra source:
1104  * 1/ {01} * Q : use Q to continue Q' calculation
1105  */
dma_maxpq(struct dma_device * dma,enum dma_ctrl_flags flags)1106 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1107 {
1108 	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1109 		return dma_dev_to_maxpq(dma);
1110 	else if (dmaf_p_disabled_continue(flags))
1111 		return dma_dev_to_maxpq(dma) - 1;
1112 	else if (dmaf_continue(flags))
1113 		return dma_dev_to_maxpq(dma) - 3;
1114 	BUG();
1115 }
1116 
dmaengine_get_icg(bool inc,bool sgl,size_t icg,size_t dir_icg)1117 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1118 				      size_t dir_icg)
1119 {
1120 	if (inc) {
1121 		if (dir_icg)
1122 			return dir_icg;
1123 		else if (sgl)
1124 			return icg;
1125 	}
1126 
1127 	return 0;
1128 }
1129 
dmaengine_get_dst_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1130 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1131 					   struct data_chunk *chunk)
1132 {
1133 	return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1134 				 chunk->icg, chunk->dst_icg);
1135 }
1136 
dmaengine_get_src_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1137 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1138 					   struct data_chunk *chunk)
1139 {
1140 	return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1141 				 chunk->icg, chunk->src_icg);
1142 }
1143 
1144 /* --- public DMA engine API --- */
1145 
1146 #ifdef CONFIG_DMA_ENGINE
1147 void dmaengine_get(void);
1148 void dmaengine_put(void);
1149 #else
dmaengine_get(void)1150 static inline void dmaengine_get(void)
1151 {
1152 }
dmaengine_put(void)1153 static inline void dmaengine_put(void)
1154 {
1155 }
1156 #endif
1157 
1158 #ifdef CONFIG_ASYNC_TX_DMA
1159 #define async_dmaengine_get()	dmaengine_get()
1160 #define async_dmaengine_put()	dmaengine_put()
1161 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1162 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1163 #else
1164 #define async_dma_find_channel(type) dma_find_channel(type)
1165 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1166 #else
async_dmaengine_get(void)1167 static inline void async_dmaengine_get(void)
1168 {
1169 }
async_dmaengine_put(void)1170 static inline void async_dmaengine_put(void)
1171 {
1172 }
1173 static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)1174 async_dma_find_channel(enum dma_transaction_type type)
1175 {
1176 	return NULL;
1177 }
1178 #endif /* CONFIG_ASYNC_TX_DMA */
1179 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1180 				  struct dma_chan *chan);
1181 
async_tx_ack(struct dma_async_tx_descriptor * tx)1182 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1183 {
1184 	tx->flags |= DMA_CTRL_ACK;
1185 }
1186 
async_tx_clear_ack(struct dma_async_tx_descriptor * tx)1187 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1188 {
1189 	tx->flags &= ~DMA_CTRL_ACK;
1190 }
1191 
async_tx_test_ack(struct dma_async_tx_descriptor * tx)1192 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1193 {
1194 	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1195 }
1196 
1197 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1198 static inline void
__dma_cap_set(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1199 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1200 {
1201 	set_bit(tx_type, dstp->bits);
1202 }
1203 
1204 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1205 static inline void
__dma_cap_clear(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1206 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1207 {
1208 	clear_bit(tx_type, dstp->bits);
1209 }
1210 
1211 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
__dma_cap_zero(dma_cap_mask_t * dstp)1212 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1213 {
1214 	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1215 }
1216 
1217 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1218 static inline int
__dma_has_cap(enum dma_transaction_type tx_type,dma_cap_mask_t * srcp)1219 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1220 {
1221 	return test_bit(tx_type, srcp->bits);
1222 }
1223 
1224 #define for_each_dma_cap_mask(cap, mask) \
1225 	for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1226 
1227 /**
1228  * dma_async_issue_pending - flush pending transactions to HW
1229  * @chan: target DMA channel
1230  *
1231  * This allows drivers to push copies to HW in batches,
1232  * reducing MMIO writes where possible.
1233  */
dma_async_issue_pending(struct dma_chan * chan)1234 static inline void dma_async_issue_pending(struct dma_chan *chan)
1235 {
1236 	chan->device->device_issue_pending(chan);
1237 }
1238 
1239 /**
1240  * dma_async_is_tx_complete - poll for transaction completion
1241  * @chan: DMA channel
1242  * @cookie: transaction identifier to check status of
1243  * @last: returns last completed cookie, can be NULL
1244  * @used: returns last issued cookie, can be NULL
1245  *
1246  * If @last and @used are passed in, upon return they reflect the driver
1247  * internal state and can be used with dma_async_is_complete() to check
1248  * the status of multiple cookies without re-checking hardware state.
1249  */
dma_async_is_tx_complete(struct dma_chan * chan,dma_cookie_t cookie,dma_cookie_t * last,dma_cookie_t * used)1250 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1251 	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1252 {
1253 	struct dma_tx_state state;
1254 	enum dma_status status;
1255 
1256 	status = chan->device->device_tx_status(chan, cookie, &state);
1257 	if (last)
1258 		*last = state.last;
1259 	if (used)
1260 		*used = state.used;
1261 	return status;
1262 }
1263 
1264 /**
1265  * dma_async_is_complete - test a cookie against chan state
1266  * @cookie: transaction identifier to test status of
1267  * @last_complete: last know completed transaction
1268  * @last_used: last cookie value handed out
1269  *
1270  * dma_async_is_complete() is used in dma_async_is_tx_complete()
1271  * the test logic is separated for lightweight testing of multiple cookies
1272  */
dma_async_is_complete(dma_cookie_t cookie,dma_cookie_t last_complete,dma_cookie_t last_used)1273 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1274 			dma_cookie_t last_complete, dma_cookie_t last_used)
1275 {
1276 	if (last_complete <= last_used) {
1277 		if ((cookie <= last_complete) || (cookie > last_used))
1278 			return DMA_COMPLETE;
1279 	} else {
1280 		if ((cookie <= last_complete) && (cookie > last_used))
1281 			return DMA_COMPLETE;
1282 	}
1283 	return DMA_IN_PROGRESS;
1284 }
1285 
1286 static inline void
dma_set_tx_state(struct dma_tx_state * st,dma_cookie_t last,dma_cookie_t used,u32 residue)1287 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1288 {
1289 	if (st) {
1290 		st->last = last;
1291 		st->used = used;
1292 		st->residue = residue;
1293 	}
1294 }
1295 
1296 #ifdef CONFIG_DMA_ENGINE
1297 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1298 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1299 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1300 void dma_issue_pending_all(void);
1301 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1302 					dma_filter_fn fn, void *fn_param);
1303 struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
1304 
1305 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1306 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1307 
1308 void dma_release_channel(struct dma_chan *chan);
1309 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1310 #else
dma_find_channel(enum dma_transaction_type tx_type)1311 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1312 {
1313 	return NULL;
1314 }
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)1315 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1316 {
1317 	return DMA_COMPLETE;
1318 }
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1319 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1320 {
1321 	return DMA_COMPLETE;
1322 }
dma_issue_pending_all(void)1323 static inline void dma_issue_pending_all(void)
1324 {
1325 }
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param)1326 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1327 					      dma_filter_fn fn, void *fn_param)
1328 {
1329 	return NULL;
1330 }
dma_request_slave_channel(struct device * dev,const char * name)1331 static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
1332 							 const char *name)
1333 {
1334 	return NULL;
1335 }
dma_request_chan(struct device * dev,const char * name)1336 static inline struct dma_chan *dma_request_chan(struct device *dev,
1337 						const char *name)
1338 {
1339 	return ERR_PTR(-ENODEV);
1340 }
dma_request_chan_by_mask(const dma_cap_mask_t * mask)1341 static inline struct dma_chan *dma_request_chan_by_mask(
1342 						const dma_cap_mask_t *mask)
1343 {
1344 	return ERR_PTR(-ENODEV);
1345 }
dma_release_channel(struct dma_chan * chan)1346 static inline void dma_release_channel(struct dma_chan *chan)
1347 {
1348 }
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)1349 static inline int dma_get_slave_caps(struct dma_chan *chan,
1350 				     struct dma_slave_caps *caps)
1351 {
1352 	return -ENXIO;
1353 }
1354 #endif
1355 
1356 #define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
1357 
dmaengine_desc_set_reuse(struct dma_async_tx_descriptor * tx)1358 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1359 {
1360 	struct dma_slave_caps caps;
1361 
1362 	dma_get_slave_caps(tx->chan, &caps);
1363 
1364 	if (caps.descriptor_reuse) {
1365 		tx->flags |= DMA_CTRL_REUSE;
1366 		return 0;
1367 	} else {
1368 		return -EPERM;
1369 	}
1370 }
1371 
dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor * tx)1372 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1373 {
1374 	tx->flags &= ~DMA_CTRL_REUSE;
1375 }
1376 
dmaengine_desc_test_reuse(struct dma_async_tx_descriptor * tx)1377 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1378 {
1379 	return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1380 }
1381 
dmaengine_desc_free(struct dma_async_tx_descriptor * desc)1382 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1383 {
1384 	/* this is supported for reusable desc, so check that */
1385 	if (dmaengine_desc_test_reuse(desc))
1386 		return desc->desc_free(desc);
1387 	else
1388 		return -EPERM;
1389 }
1390 
1391 /* --- DMA device --- */
1392 
1393 int dma_async_device_register(struct dma_device *device);
1394 void dma_async_device_unregister(struct dma_device *device);
1395 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1396 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
1397 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
1398 #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
1399 #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1400 	__dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1401 
1402 static inline struct dma_chan
__dma_request_slave_channel_compat(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device * dev,const char * name)1403 *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1404 				  dma_filter_fn fn, void *fn_param,
1405 				  struct device *dev, const char *name)
1406 {
1407 	struct dma_chan *chan;
1408 
1409 	chan = dma_request_slave_channel(dev, name);
1410 	if (chan)
1411 		return chan;
1412 
1413 	if (!fn || !fn_param)
1414 		return NULL;
1415 
1416 	return __dma_request_channel(mask, fn, fn_param);
1417 }
1418 #endif /* DMAENGINE_H */
1419